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Abstract 
 

 
 Automated recognition and classification of brain diseases are of tremendous value to society. 

Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose clinical 

diagnosis is based on behavior. In this study, I proposed a two-step cross-validation procedure to 

illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) 

architecture, which provided excellent capability of generalization and outperformed support 

vector machines in terms of accuracy for both balanced and unbalanced sample sizes, 

irrespective of the features used. Additionally, I employed various directional and non-

directional connectivity based methods to extract discriminative features. I obtained close to 90% 

accuracy for distinguishing ADHD from healthy subjects and 95% between the ADHD subtypes, 

which are better than the winning accuracy of the ADHD-200 Global Competition and those 

reported subsequently. Finally, the most discriminative connectivity features showed reduced 

and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in 

ADHD.  
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Chapter 1 Introduction 
 

I. MRI 

Magnetic resonance imaging (MRI) is a noninvasive medical imaging technique that uses 

magnetic fields and radio wave pulses to make pictures of organs and structures inside the body. 

Magnetic field gradients cause nuclei at different locations to rotate at different speeds. 

Magnetized nuclei generate their own magnetic fields and create signals with different 

frequencies and amplitudes at different locations. 

Therefore, Fourier analysis can be applied to recover 

spatial information of the measured signal and an image 

of the scanned area of the body can be constructed. By 

using gradients in different directions, 2D images and 

3D volumes can be obtained in any arbitrary orientation. 

For many organs and structures including brain, heart, 

eyes, soft tissues, connective tissues, muscles, most tumors, and cartilage, MRI gives different 

information from what can be seen with other medical imaging techniques such as computed 

tomography (CT), X-rays, or ultrasound.  

By changing the settings on the scanners (a typical sectional diagram of MRI scanner is 

shown in Fig.1.1), contrast can be created between different types of body tissues or between 

other structures, as in fMRI and diffusion MRI. In some cases, contrast material and higher 

magnetic fields may be used during the MRI scan to show certain structures more clearly. 

Researchers have contributed great effort utilizing MRI technology on brain study. The 

development of various methods for noninvasive brain function mapping without using an 

exogenous contrast agent has brought revolutionary advancement in MRI [1]. 

 
 

Fig.1.1 MRI scanner 
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II. Functional MRI 

Functional magnetic resonance imaging (fMRI) is an MRI procedure that measures brain 

activity mainly based on the blood oxygenation level dependent contrast [2] and has developed 

into an essential tool for studying brain functionality in both healthy and unhealthy states [3]. 

fMRI relies on the fact that cerebral blood flow and neuronal activation are coupled. When an 

area of the brain is in use, blood flow to that region increases. The change in the magnetic 

resonance (MR) signal from neuronal activity is called the hemodynamic response (HDR), which 

lags the neuronal events triggering it by 1 to 2 seconds. From this point it typically rises to a peak 

at about 5 seconds after the stimulus. If the neurons keep firing, the peak spreads to a flat plateau 

while the neurons stay active. After activity stops, the blood oxygen level dependent (BOLD) 

signal falls below the original level, the baseline. Over time the signal recovers to the baseline. In 

short words, within the brain, changes in the local concentration of paramagnetic 

deoxyhemoglobin lead to alterations in the MR signal. Neuronal activation is generally believed 

to cause an increase in regional blood flow without a corresponding increase in the regional 

oxygen consumption rate [4], which should cause a decrease in the capillary and venous 

deoxyhemoglobin concentrations. Consequently, an increase in magnetic spin-spin relaxation 

times T2* and T2 should occur [1], thus leads to an increase of intensity in T2*- and T2-weighted 

MR images.  

Spatial resolution of an fMRI image is measured by the size of voxels, as in MRI. A voxel is a 

three-dimensional rectangular cuboid, whose dimensions are set by the slice thickness, the area 

of a slice, and the grid imposed on the slice by the scanning process. Full-brain studies use larger 

voxels, while those focusing on specific regions of interest (RIO) typically use smaller sizes. 

Temporal resolution for fMRI scan is usually between 1 and 2 seconds. The scanner platform 
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generates a 3D volume of the subject's brain every time of repetition (TR). This consists of an 

array of voxel intensity values, one value per voxel in the scan. The voxels are arranged one after 

the other, unfolding the three-dimensional structure into a single line. Several such volumes from 

a session are joined together to form a 4D volume corresponding to the time period when the 

subject stayed in the scanner without adjusting head position.  

 

III. FMRI data preprocessing 

In order to fully utilize fMRI data, preprocessing procedure has to be taken prior to brain 

functionality study. The first conventional step in fMRI data preprocessing is slice timing 

correction. The MRI scanner acquires different slices within a single brain volume at different 

times; therefore the slices represent brain activity at different time points. Since this complicates 

later analysis, a timing correction is applied to bring all slices to the same time point reference. 

This is done by assuming the time course of a voxel is smooth when plotted as a dotted line. 

Hence the voxel's intensity value at other times which is not in the sampled frames can be 

calculated by filling in the dots to create a continuous curve.  

Head motion correction is another common preprocessing step. When the head moves, the 

neurons under a voxel move; therefore its current time course represents largely that of some 

other voxel in the past. The time course curve is effectively cut and pasted from one voxel to 

another. Motion correction applies a rigid-body transform to the volume, by shifting and rotating 

the whole volume data to account for motion. The transformed volume is compared statistically 

to the volume at the first time point to see how well they match, using a cost function such as 

correlation or mutual information. The transformation that gives the minimal cost function is 

chosen as the model for head motion. Since the head can move in a vastly varied number of 
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ways, neither is it practical to search for all possible candidates; nor is there an algorithm that 

provides a globally optimal solution independent of the first transformations in a chain.  

Distortion corrections account for field nonuniformities of the scanner. One method is to use 

shimming coils. Another method is to recreate a field map of the main field by acquiring two 

images with differing echo times. If the field were uniform, the differences between the two 

images also would be uniform. Bias field estimation is a preprocessing technique using 

mathematical models of the noise from distortion, such as Markov random fields and expectation 

maximization algorithms, to correct for distortion. In general, fMRI studies acquire both many 

functional images with fMRI and a structural image with MRI. The structural image is usually of 

a higher resolution and depends on the T1 magnetic field decay after excitation. To mark regions 

of interest in the functional image, one needs to align it with the structural one.  

Temporal filtering is the removal of frequencies of no interest from the signal. A voxel's 

intensity change over time can be represented as the sum of a number of different repetitive 

waves with differing periods and amplitudes. A plot with these periods on the x-axis and the 

amplitudes on the y-axis is called a power spectrum, and this plot is created with the Fourier 

transform technique. Temporal filtering amounts for removal of the periodic waves of least 

interest to us from the power spectrum, and then summing the waves back again, using the 

inverse Fourier transform to create a new time course for the voxel. A high-pass filter removes 

the lower frequencies, and the lowest frequency that can be identified with this technique is the 

reciprocal of twice the TR. A low-pass filter removes the higher frequencies, while a band-pass 

filter removes all frequencies except the particular range of interest.  

Smoothing, or spatial filtering, is the idea of averaging the intensities of nearby voxels to 

produce a smooth spatial map of intensity change across the RIO. The averaging is often done by 
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convolution with a Gaussian filter, which, at every spatial point, weights neighboring voxels by 

their distance. If the true spatial extent of activation matches the width of the filter used, this 

process improves the signal-to-noise ratio. It also makes the total noise for each voxel follow a 

bell-curve distribution. But if the presumed spatial extent of activation does not match the filter, 

signal is reduced. 

 

IV. ADHD and ADHD-200 Global Competition 

Attention deficit-hyperactivity disorder (ADHD) is a mental and neurobehavioral disorder 

characterized by either significant difficulties of inattention or hyperactivity and impulsiveness 

or a combination of the two. ADHD affects at least 5% of school-age children and is associated 

with substantial lifelong impairment, with annual direct costs exceeding $36 billion in the US. 

ADHD consists of three subtypes: (1) predominantly inattentive (ADHD-PI or ADHD-I), (2) 

predominately hyperactive-impulsive (ADHD-HI or ADHD-H), (3) combination of subtype 1 

and subtype 2 (ADHD-C). The symptoms of ADHD usually emerge before age seven. 

Inattention, hyperactivity, disruptive behavior and impulsivity are common in ADHD. Academic 

difficulties are also frequently shown for ADHD patients. The symptoms are especially difficult 

to define because it is hard to draw a line which clearly separates normal levels from abnormal 

levels of inattention, hyperactivity and impulsivity. The specific causes of ADHD are not known 

to this day. However there are a number of factors, including genetics, diet and the social and 

physical environments, which may contribute to, or exacerbate ADHD.  

Despite voluminous empirical literature, the scientific community is still handicapped on 

modeling the pathophysiology of ADHD. Further, the clinical community remains without 

objective biological tools capable of informing the diagnosis of ADHD for individual or guiding 
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clinicians in their decision-making regarding treatment. The ADHD-200 Sample [5] is dedicated 

to accelerating the scientific community's understanding of the neural basis of ADHD through 

the implementation of open data-sharing and discovery-based science. The data consist of 776 

resting-state fMRI and anatomical images aggregated across 8 independent imaging sites, 491 of 

which were obtained from typically developing individuals and 285 in children and adolescents 

with ADHD (ages: 7-21 years). Accompanying phenotypic information includes diagnostic 

status, dimensional ADHD symptom measures, age, sex, intelligence quotient (IQ) and lifetime 

medication status. Preliminary quality control assessments (usable vs. questionable) based upon 

visual time series inspection are included for all resting state fMRI scans. Winning team from 

Johns Hopkins University scored 119 out of 195 points, with one point awarded per correct 

diagnosis (typically developing, ADHD primarily inattentive type, or ADHD combined type). A 

half point was awarded for a diagnosis of ADHD with incorrect subtype. The winning team 

correctly classified 94% of Typically Developing Children (TDC), excellent specificity. Their 

method was not as effective in terms of sensitivity. They only identified 21% of cases; however, 

among those cases, they discerned the subtypes of ADHD with 89.47% accuracy [6]. The 

methods developed by teams from the Chinese Academy of Sciences and the University of North 

Carolina at Chapel Hill both scored well on the J-statistic, a joint measure of specificity and 

sensitivity, suggesting that tests can be developed that satisfy needs in both these crucial 

diagnostic areas. Participants were able to develop predictive methods that performed 

significantly better than chance analyzing datasets that were gathered in an uncoordinated way 

by multiple centers. These results suggest that effective methods can be developed in less-than-

ideal and poorly controlled environments. Importantly while the intent of the competition was 

imaging-based classification, the team of the University of Alberta scored 124 points using all 
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available phenotypic data while excluding imaging data – 5 more points than the winning 

imaging-based classification approach. Their achievement highlights both the need for carefully 

coordinated imaging datasets for the development of analytic tools, and that diagnostic imaging 

tools have not yet reached full maturity.  

 

V. Motivation and Proposal 

Metrics derived from fMRI data have been widely used for disease classification [7, 8], 

providing potentially important applications in clinical diagnoses that benefit society. However, 

not all classification efforts have been successful. For example, spectrum disorders (i.e. the ones 

whose clinical diagnostic criteria can be very broad), including ADHD, have been particularly 

difficult to classify using imaging and behavioral metrics. A recent report showed that including 

both phenotypic and imaging information can boost performance [9]. Another study 

demonstrated that careful removal of motion confounds from fMRI data improves classification 

[10]. However, all these previous studies used support vector machines (SVMs) for 

classification. In this study, I investigated the utility of deep neural network architectures for 

classification purposes and demonstrated its superiority over support vector machines for 

classification of ADHD from healthy subjects using resting state fMRI data. 

In classification literature, SVMs, K Nearest Neighbor (K-NN), Logistic Regression 

(LogReg), Radial Basis Network (RBF) and artificial Neural Networks (NN) are the most widely 

used classifiers. One of the most favored one is the SVM classifier, which has been applied in 

many application areas including text categorization [11], handwritten character recognition [12], 

image based gender identification [13], and bioinformatics [14]. SVM and NN with Multi-Layer 

Perceptron (MLP) architecture (Fig.1.3) are both well suited for classification and regression 

tasks. While NN with MLP possesses better generalization ability, SVM learning algorithm is 
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based on support vector selection and higher order optimization, and therefore, has greatly 

reduced training time. Hence, it is better suited for large data sets [15]. Models based on SVM 

with Gaussian RBF kernel generally perform better than Error Back Propagation Neural Network 

with MLP architecture as demonstrated by applications using financial data, blood pressure data 

and facial expression images [16, 17]. SVM classifier shows a significant increase (over 15%) in 

classification accuracy when using RBF and polynomial kernels [18] and much shorter training 

time than NN with MLP when diagnosing breast tumor – 1 vs. 189 seconds [19]. The main 

advantage of using SVM over NN is that SVM always finds a global minimum, while feed 

forward neural networks can be stuck in a sub-optimal solution [20]. However SVM is not 

always superior to NN. With a better training algorithm and more efficient architecture, NN’s 

performance can be significantly improved. While Levenberg-Marquardt (LM) training 

algorithm is specifically developed for MLP, it has been recently demonstrated that Neuron-by-

Neuron (NBN) training algorithm is faster and more accurate than error back propagation and 

LM algorithms [21]. Fully Connected Cascade (FCC) architecture (Fig.1.2) is the most powerful 

architecture which can apply NBN training algorithm. It allows connections across layers and 

therefore possesses more computing power than MLP [22]. For example, with 10 neurons, FCC 

is possible to solve as large a problem as Parity-1023 (1023 inputs and 21023 output patterns) 

using 1023=1=1=1=1=1=1=1=1=1=1 topology while MLP with one hidden layer can only solve 

Parity-9 with 10 neurons [21, 22, 23].  Therefore in our study, we tested the hypothesis that FCC 

with NBN training algorithm can outperform SVM on ADHD classification using fMRI data.  

In addition to the efficacy of classifier design, the classification accuracy also depends on the 

ability of the input features to discriminate between the classes. Therefore, it is imperative to 

choose the features which are biologically informed and model the underlying neural process 
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well, such that they are most likely to discriminate 

between healthy subjects and ADHD patients. In this 

regard, it is increasingly being recognized that the 

connectivity (synchronization of brain activity among 

activated areas) among the brain regions is an 

important marker of brain functionality [24], in 

addition to activity in individual areas. Many task-

based connectivity studies have demonstrated 

alterations in clinical populations. For instance,  

lower functional connectivity was shown in the left 

hemisphere language network during irony 

processing for autism patients [25], greater functional 

connectivity was shown from the putamen to other 

front-striatal regions for Obsessive-Compulsive 

Disorder (OCD) participants [26], reduced frontal connectivity was shown in individuals with 

Major Depressive Disorder (MDD) [27], clear increase of connectivity was demonstrated 

between work memory regions and language regions as the processing load increases for 

syntactically complex sentences [28], etc. However, given the fact that clinical populations have 

difficulty performing tasks inside the MRI scanner, distributed connectivity in resting state brain 

networks, as opposed to various task states, have previously been shown to be very sensitive to 

baseline alterations in various disorders such as cocaine abuse [29], multiple sclerosis [30] and 

Alzheimer’s disease [31], depression [32], autism [33] and Parkinson’s disease [34].  

Specifically with respect to ADHD, it has also been confirmed that (1) resting state brain 

 
 

Fig.1.2 Fully Connected Cascade architecture 
(Denoted as: 5=1=1=1=1=1) 

 
 

Fig.1.3 Multi-Layer Perceptron architecture  
(Denoted as: 5-4-4-1) 
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connectivity patterns in individuals are capable of differentiating the two most prominent ADHD 

subtypes using SVM-based multivariate pattern analysis (MVPA) [10], (2) compared to healthy 

subjects, patients with ADHD showed significantly reduced connectivity between bilateral 

pulvinar and right prefrontal regions, and significantly increased connectivity between the right 

pulvinar and bilateral occipital regions [35]. All of the studies cited above suffer from two major 

drawbacks. First, the connectivity metrics do not model directional interactions between regions. 

Rather, they calculated undirected association between signals from different brain regions, i.e. 

zero-lag synchronization, using statistical metrics such as Pearson’s correlation coefficient. On 

the other hand, directional connectivity metrics such as Granger causality [36, 37, 38, 39, 40, 41, 

42, 43, 44] model the causal interactions between brain regions and have been shown to be 

superior to correlation-based metrics for disease state classification [7]. Therefore, in this study, 

we derived directional connectivity metrics between brain regions from individual subjects and 

used them as features in our classification. Second, the connectivity metrics are based on linear 

models whereas biological processes are known to be non-linear. Therefore, in this study we 

estimate nonlinear directional connectivity using Kernel Granger causality [45, 46] and nonlinear 

undirected synchronous connectivity using correlation between probabilities of recurrences 

(CPR) [47]. Finally, we compared the performance of various connectivity-based metrics with 

that obtained by using raw fMRI data as features. 

Even though the choice of brain connectivity-based metrics as features for disease state 

classification is biologically inspired, noise in the data (i.e. not all connectivities may be relevant 

for distinguishing the classes and thermal/physiological noise may impact those which do have 

the discriminatory power) and sample size may impact classifier performance. Therefore, feature 

selection plays a prominent role in determining the performance of a classifier. Therefore, we 
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performed statistical tests on our features to pick the ones that are at least statistically different 

between the classes and adopted Principal Component Analysis (PCA) to reduce 

thermal/physiological noise and reduce the dimensionality of the features. PCA was invented in 

1901 by Karl Pearson, is an eigenvector-based multivariate analyses that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called principal components. It reveals the internal 

structure of the data in a way that best explains the variance in the data. It shows the lower-

dimension view of the high dimensional data with the most informative viewpoints.  The number 

of principal components is less than or equal to the number of original variables. This 

transformation is defined in such a way that the first principal component has the largest possible 

variance, and each succeeding component in turn has the highest variance possible under the 

constraint that it be orthogonal to the preceding components. PCA can be done by eigenvalue 

decomposition of a data covariance (or correlation) matrix or singular value decomposition of a 

data matrix, usually after mean centering (and normalizing or using Z-scores) the data matrix for 

each attribute. Many previous studies have demonstrated the utility of PCA for feature selection 

and classification. For example, a classification accuracy of 90.6% was achieved using PCA of 

resting-state brain connectivity and SVM-based classification techniques for distinguishing 

healthy individuals from those with MDD [27]. PCA based metrics yielded a sensitivity of 82% 

and specificity of 86% for distinguishing between Multiple Sclerosis (MS) patients and healthy 

subjects [48]. In another study, multivariate pattern analysis using PCA was employed to classify 

depressed patients from healthy subjects with 100% specificity and 94.3% sensitivity [49]. PCA-

based features also showed 80.4%, 77.6%, and 78.7% accuracies for classifying patients with 

schizophrenia & healthy controls, patients with schizophrenia & healthy siblings and healthy 
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controls & healthy siblings [50], respectively. When multiple-kernel SVMs with PCA was 

applied, 96.3% classification accuracy was achieved for Mild Cognitive Impairment (MCI) 

diagnosis [51]. Therefore, we hypothesize that, when used in combination with a state-of-the-art 

deep neural network architecture and biological inspired features, the principal components and 

latent variables of those features are likely to boost the classification performance of even a 

difficult problem such as the one discriminating ADHD from healthy subjects. The second aspect 

of the effect of the sample size on classifier performance has been debated for a long time [52]. 

For example, the correspondence between the size of the sample and the number of support 

vectors in an SVM is a well-researched topic [53]. Some studies have shown that increasing 

training size will better performance [54]. Therefore in our study, we experimented with 

different sample sizes and tested whether classification results in our specific application was 

sensitive to it.  

For my thesis, I propose a FCC deep NN architecture (Fig.1.2, compared with MLP in 

Fig.1.3) which overcomes MLP’s limitations and possesses broad generalization ability. We 

demonstrate that the proposed NN architecture performs better than SVMs do, on classifying 

healthy subjects, i.e. TDC, from the ones with ADHD combined and ADHD inattentive for all 

combinations of metrics (i.e. raw data, linear/nonlinear directional/non-directional connectivity, 

principal components/latent variables of those features), and balanced/unbalanced samples of 

different sizes. We report that the overall performance of FCC deep NN architecture exceeds the 

best results obtained from the ADHD-200 Global Competition held in 2011 (best classification 

accuracy was 61%) [6], as well as results provided by Fair et al  [10] in 2013 after their 

subsequent re-analysis of this dataset. 
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Chapter 2 Method 

I. fMRI data 

Pre-processed (head motion correction, spatial smoothing and normalization, frame-wise 

displacement adjustment, temporal 

band-pass filtering, etc.) fMRI 

time series data  from 190 brain 

regions of 744 TDC subjects, 260 

ADHD combined subjects, and 

173 ADHD inattentive subjects, 

were obtained from the ADHD-

200 Global Competition database 

[55]. The 190 brain regions were 

defined based on spectral 

clustering of resting state fMRI 

data. These regions contained 

voxels whose corresponding time series were most homogeneous [56]. All subjects were scanned 

on 3 Tesla scanners using standard resting T2*-weighted echo-planar imaging, with sampling 

period (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90 degree, and in-plane resolution = 

64×64 mm2 [10]. Table 2.1 shows the data acquisition sites which contributed to the composition 

of our sample.  

 

II. Feature Extraction and Selection 

In addition to the raw image intensity values at each of the 190 brain regions, brain 

connectivity metrics between the 190 brain regions were extracted using three methods:  

(1) Correlation between Probabilities of Recurrences (CPR): This is a non-parametric method for 

finding phase synchronization (PS) from two time series using temporal recurrence of patterns 

[47]. CPR is obtained from the phase space trajectory of the observed signal. CPR captures 

 TDC ADHD 
combined 

ADHD 
inattentive 

KENNDY KRIEGER INSTITUTE 62 17 6 
NEW YORK UNIVERSITY CHILD 

STUDY CENTER 
184 128 82 

NEUROIMAGE SAMPLE 23 18 1 
OREGON HEALTH & SCIENCE 

UNIVERISTY 
124 69 38 

PEKING UNIVERSITY_1 61 7 17 
PEKING UNIVERSITY_2 32 15 20 
PEKING UNIVERSITY_3 23 7 12 

UNIVERSITY OF PITTSBURGH 89 0 0 
WASHINGTON UNIVERSITY IN 

ST.LOUIS 
151 0 0 

Total 749 261 176 
Table 2.1. Data sample composition 



14 
 

higher order and potentially nonlinear synchronizations [47]. Complete PS occurs when the 

respective phases and frequencies of two signals are locked. CPR measures the degree of PS 

between two signals as ranging from 0 to 1, where 0 represents no PS and 1 represents complete 

PS.  

Given a time series of length N as given below,  

𝑥1, 𝑥2, 𝑥3,⋯⋯𝑥𝑖,⋯𝑥𝑁                                                                    (1.1) 

 

Vectors yi of dimension D and lag (delay) d are defined as 

𝒚𝑖 =

⎣
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                                                                             (1.2) 

 

Where D ≥1, d ≥1, i=1 to N, k=i mod N-(D-1)d. The variable y gives the trajectory of x in phase 

space of dimension D and lag d. Based on this, we define the recurrence matrix as follows 

( ) ||)||(, τ+−−Θ= ii yyrjiR  ; i, j=1,2,3.......N                                               (1.3) 

 

Where N is the number of states considered, r is the threshold distance, Θ(.) is the Heaviside unit 

step function, and ∥.∥  is a norm. The trajectory returns to the neighborhood of i after a delay τ 

when j=i+τ, and R(i,j)=1. Considering the number of such recurrences for all (i, i+τ), relative to 

the total number N- τ, we get P(τ), which is an estimate of the probability that the system returns 

to a pre-defined state after a delay τ. The probability P(τ) that each of the samples of the 

trajectory returns to its own neighborhood after τ samples delay, is given by the equation 
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P(τ) can be viewed as the probability with which the trajectory has a period k. By using the 

probability of recurrence P(τ) of two signals, it is possible to detect PS between any two signals 

by a measure called Correlation between Probabilities of Recurrence (CPR) [47]. Evaluation of 

CPR consists of two steps: 

• Compute probabilities of recurrence P1(τ) and P2(τ) for the signals 1 and 2 respectively 

• Compute the correlation coefficient between probabilities of recurrence 

𝐶𝑃𝑅 =  
∑ {𝑃1(𝜏) −𝑚1}{𝑃2(𝜏)−𝑚2}𝜏𝑚−1
𝜏=𝜏𝑒

𝜎1𝜎2
                                                  (1.5) 

 

Where m1 and m2 are the mean, and, σ1 and σ2 are the standard deviations of P1(τ) and P2(τ) 

respectively. τ ranges from τe to τm. Since P(τ) always has a value of 1 for τ =0, CPR is computed 

only over the segment starting when P(τ) falls below 1/e. τe is the value of τ for which P(τ)=1/e. 

 

(2) Correlation-purged Granger Causality (CPGC): The principle of Granger causality is that if 

the past and present state of time series A is able to predict the future state of time series B, then 

A is said to Granger-cause B. CPGC extends this concept by separately modeling out the effect 

of instantaneous correlation and hence gives linear causal influence between different brain 

regions [39]. For k fMRI time series 𝑌(𝑡) = [𝑦1(𝑡) 𝑦2(𝑡)𝑦3(𝑡) … 𝑦𝑘(𝑡)], the traditional 

multivariate Vector Autoregressive (VAR) model of order p is defined as: 

𝑌(𝑡) = �𝐶(𝑎)𝑌(𝑡 − 𝑎) +
𝑝

𝑖=1

∆(𝑡)                                                             (2.1) 

 

Where ∆(𝑡) is the model error, 𝐶(𝑎) are the model coefficients and is defined as: 
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𝐶(𝑎) =  �
𝑐11(𝑛) ⋯ 𝑐1𝑘(𝑛)

⋮ ⋱ ⋮
𝑐𝑘1(𝑛) ⋯ 𝑐𝑘𝑘(𝑛)

�                                                               (2.2) 

 

Eq.(2.2) can be rewritten as: 

∆(𝑡) = 𝑌(𝑡) −�𝐶(𝑎)𝑌(𝑡 − 𝑎)                                                   (2.3)
𝑝

𝑖=1

 

 

Applying frequency transformation on Eq.(2.2), we would have 

∆(𝑓) = 𝑌(𝑓)�𝛽𝑖𝑗 − ∑ 𝑐𝑖𝑗(𝑎)𝑒−𝑖2𝜋𝑓𝑛𝑝
𝑖=1 �                                           (2.4)  

 

Where 𝑐(𝑓) can be defined as: 

𝑐𝑖𝑗(𝑓) = 𝛽𝑖𝑗 −�𝑐𝑖𝑗(𝑎)𝑒−𝑖2𝜋𝑓𝑛                                                     (2.5)
𝑝

𝑖=1

 

 

Where cij is an element of 𝐶(𝑓) and 𝛽𝑖𝑗 is the Kroenecker-delta function. Therefore, the transfer 

matrix of the VAR model can be defined as: 

𝐻(𝑓) = 𝐶−1(𝑓)                                                                             (2.6) 

 

Hence the correlation-purged Granger Causality (CPGC) can be calculated as: 

𝐶𝑃𝐺𝐶𝑖𝑗 = �ℎ𝑖𝑗
′(𝑓)                                                                       (2.7)

𝑓
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(3) Kernel Granger Causality (KGC): This is a nonlinear extension of Granger causality, similar 

to the linear case described above. Consider both a univariate (Eq.3.1 and a bivariate (Eq.3.2) 

linear autoregressive models between two fMRI time series x and y. (Note that 𝑥𝑛′ is not the 

derivative of 𝑥𝑛; rather 𝑥𝑛′ represents a different estimation of 𝑥𝑛. Same notion will follow 

through the rest of this section) 

𝑥𝑛 = �𝛼𝑗

𝑚

𝑗=1

𝑥𝑛−𝑗 + 𝑒𝑛                                                                             (3.1) 

𝑥𝑛′ = �𝛼𝑗′
𝑚

𝑗=1

𝑥𝑛−𝑗 + �𝛽𝑗
′

𝑚

𝑗=1

𝑦𝑛−𝑗 + 𝑒𝑛′                                                      (3.2) 

 

Where 𝛼𝑗 ,𝛼𝑗′, and 𝛽𝑗
′ are coefficients for the autoregressive models, m is the model order, and 

𝑒𝑛, 𝑒𝑛′  are residual errors. Granger causality index 𝛾 for y causing x: 𝑦 → 𝑥 can be then defined 

as: 

𝛾𝑦→𝑥 =
∑ ‖𝑒𝑛‖2𝑛 −  ∑ ‖𝑒𝑛′‖2𝑛

∑ ‖𝑒𝑛‖2𝑛
                                                            (3.3) 

 

Let’s define a couple of new vectors: 

𝐴𝑖 = (𝑥𝑖, … 𝑥𝑖+𝑚−1)𝑇                                                          (3.4) 

 𝐴𝑖′ = (𝑥𝑖′, … 𝑥𝑖+𝑚−1
′)𝑇                                                       (3.5) 

𝐵𝑖 = (𝐴𝑖𝑇 ,𝐴𝑖′
𝑇)𝑇                                                           (3.6)  

𝜑 = (𝑥1+𝑚, … 𝑥𝑁+𝑚)𝑇                                                      (3.7) 

𝑥�𝑗 = ∑ 𝛼𝑗𝑚
𝑗=1 𝑥𝑛−𝑗                                                         (3.8)  

 𝑥′�𝑗 = ∑ 𝛼𝑗′𝑚
𝑗=1 𝑥𝑛−𝑗 + ∑ 𝛽𝑗

′𝑚
𝑗=1 𝑦𝑛−𝑗                                         (3.9)  
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We then can construct four matrices: 

𝑋� = (𝑥�1, 𝑥�2, … , 𝑥�𝑁)                                                          (3.10)  

𝑋′� = �𝑥′� 1, 𝑥′� 2, … , 𝑥′� 𝑁�                                                       (3.11)  

𝐶 = 𝐴𝑇𝐴                                                                       (3.12)   

𝐷 = 𝐵𝑇𝐵                                                                       (3.13) 

 

Let 𝐻 be the range of matrix C, 𝐻′ be the range of matrix D. Then 𝑋� can be considered as the 

projection of 𝜑 on 𝐻, 𝑋′� can be considered the projection of 𝜑 on 𝐻′.  If we define 𝑃 as the 

projector on the space 𝐻 and 𝑃′ as the projector on the space 𝐻′, considering matrix 

multiplication as the process of calculating projection of one matrix on the other, we will have 

𝑋� = 𝑃𝜑                                                                           (3.14)  

 𝑋′� = 𝑃′𝜑                                                                          (3.15) 

 

We can further define 

𝜇 = 𝜑 − 𝑃𝜑                                                                         (3.16)   

𝜇′ = 𝜑 − 𝑃′𝜑                                                                        (3.17) 

 

Where 𝜇 is orthogonal to 𝑋� and represents the error 𝑒𝑛 space, which should be orthogonal to 𝐻. 

𝜇′ is orthogonal to 𝑋′� and represents the error 𝑒𝑛′ space which, should be orthogonal to 𝐻′. Let’s 

decompose 𝐻′ into two orthogonal parts: 𝐻′ = 𝐻⨁𝐻⊥, where 𝐻⊥ is orthogonal to 𝐻 and 

corresponds to the additional features due to the inclusion of 𝑦 in Eq.(3.2). Also let’s define 𝑃⊥ 

as the projector on 𝐻⊥ space, then 𝑃⊥𝜇  should represent the projection of 𝜇 on 𝐻⊥. Further 𝑃⊥𝜇 
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represents the difference vector between 𝑒𝑛 and 𝑒𝑛′. Therefore we can calculate the numerator 

∑ ‖𝑒𝑛‖2𝑛 −  ∑ ‖𝑒𝑛′‖2𝑛  in Eq.(3.3) by calculating ‖𝑃⊥𝜇‖2; If we normalize and zero-mean 𝜑 

without losing generality, the denominator ∑ ‖𝑒𝑛‖2𝑛   in Eq.(3.3) can be calculated by  1 − 𝑋�𝑇𝑋�. 

Therefore Eq.(3.3) can be re-written as: 

𝛾𝑦→𝑥 =
‖𝑃⊥𝜇‖2

1 − 𝑋�𝑇𝑋�
                                                                  (3.18) 

 

𝐻⊥ can be spanned by chosen bases such as eigenvectors. Let’s call the eigenvector in 𝐻⊥  𝑡𝑖. 

The projection 𝑃⊥𝜇 can be calculated using the Pearson correlation coefficients for 𝜇 and 𝑡𝑖 by  

𝑟𝑖 =
(𝑎𝜇𝑡𝑖 − ∑𝜇∑ 𝑡𝑖)

�[𝑎𝜇𝜇𝑇 − (∑𝜇)2][𝑎𝑡𝑖𝑇𝑡𝑖 − (∑𝑡𝑖)2]
                                     (3.19) 

 

Where 𝑎 is the dimension for either in  𝜇 or 𝑡𝑖. We assume 𝜇 is a row vector and 𝑡𝑖 is a column 

vector. Replace 𝑃⊥𝜇 with 𝑟𝑖, Eq.(3.18) can be re-written as Eq.(3.20) 

𝛾𝑦→𝑥 =
∑ 𝑟𝑖2𝑖

1 − 𝑋�𝑇𝑋�
                                                                  (3.20) 

 

Applying Bonferroni correction to select significant 𝑡𝑖′ with false positive threshold to be 0.05, 

we can re-calculate Granger causality index by: 

𝛾𝑦→𝑥 =
∑ 𝑟𝑖′2𝑖′

1 − 𝑋�𝑇𝑋�
                                                                    (3.21) 

 

For kernel Granger causality, we replace the linear autoregressive models in Eq.(3.1) and (3.2) 

with 𝑘(𝑥, 𝑥′). Each step for deriving linear Granger causality should be correspondingly 
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followed in the derivation of kernel Granger causality. Two commonly used kernels are worth 

mentioning:  

(1) Inhomogeneous polynomial kernel: 

𝑘𝑝(𝑥, 𝑥′) =  (1 + 𝑥𝑇𝑥′)𝑝                                                    (3.22) 

 

(2) Gaussian kernel: 

𝑘𝜎(𝑥, 𝑥′) =  exp (−
(𝑥 − 𝑥′)𝑇(𝑥 − 𝑥′)

2𝜎2
)                                         (3.23) 

 

Further details can be obtained from Liao et al [57]. Specifically, we used a linear Kernel as well 

as an inhomogeneous polynomial nonlinear Kernel to obtain two different values for KGC. 

CPR represents non-directional connectivity while CPGC and KGC represent directional 

connectivity. We obtained two measures of KGC using polynomial orders 1 (called KGC_par1, 

corresponding to linear Granger causality) and 2 (called KGC_par2, corresponding to linear 

Granger causality). The model order was chosen to be 5 for both CPGC and KGC using the 

Bayesian information criterion [58]. Latent variables (Eigen values) and principal components 

were extracted from the raw fMRI time series derived from 190 brain regions, as well as the 4 

sets of connectivity metrics obtained from each subject using MATLAB. Consequently, two 

different feature sets were derived for each of the five metrics. First, we chose the top 20 latent 

variables, which explained most of the variance in the data, as feature inputs to the classifiers. 

Second, we performed a t-test to find principal components which were significantly different 

among the groups and chose the 200 most significant ones as input features.  
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III. Classification 
  

(1) Neural Networks 

Artificial Neural Network, commonly known as 

Neural Network, consists of interconnecting 

artificial neurons that mimic the functionality of 

biological neurons such as firing upon receiving 

excitatory signals and not firing upon receiving 

inhibitory signals (illustrated in Fig.2.1). 

Therefore it possesses human-like decision 

making ability. A bipolar artificial neuron (or a 

bipolar perceptron) was originally designed as a 

classifier with linear activation functions, generating a positive output if the net value exceeded 

the threshold and a negative output otherwise (illustrated in Fig.2.2). The backbones of NN are 

training algorithms and architectures. Various types of NN training algorithms and architectures 

have been developed along the course of implementing NN on artificial computation. Training 

algorithms include Error Back Propagation (EBP), Levenberg-Marquardt (LM), Neuron by 

Neuron (NBN), etc. Architectures include Multi-Layer Perceptron (MLP) shown in Fig.1.3, 

Fully Connected Cascade (FCC) shown in Fig.1.2, Cascade Correlation (CC), etc. Multi-Layer 

Perceptron (MLP) Neural Network architecture was designed to handle nonlinear mapping 

between inputs and outputs, and is the most popular neural network architecture.  It utilizes the 

Error Back Propagation (EBP) algorithm for training. For a single output case, EBP can be 

performed using  

 

 
Fig.2.1 Biological neurons 

 
Fig.2.2 Artificial neurons 
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∆𝑤𝑝 = 𝛼���𝑎𝑝 − 𝑜𝑝�𝑓′�𝑎𝑒𝑡𝑝�𝑥𝑝�                                                    (4.1)
𝑃

𝑝=1

 

 

where  w is the weight vector, α is the learning constant, P is the number of input patterns, d is 

the desired output, o is the actual output, 𝑓′�𝑎𝑒𝑡𝑝� is the first derivative of the activation 

function f (normally hyperbolic), 𝑎𝑒𝑡 is the output of f, and x is the input. This method becomes 

slow and has convergence issues when dealing with large data [23]. A few remedies were later 

developed including: 

 

(i) EBP with variable learning rate [59]: If error increased by 5%, the updated values are ignored 

and learning constant is reduced; if error decreased by more than 5%, the learning constant is 

increased 

 

(ii) Steepest descent EBP [60], defined as: 

 

  𝒘𝑘+1 = 𝒘𝑘 − 𝛼𝑔                                                                          (4.2) 

 

where 𝒘𝑘 is the weight vector, 𝛼 is the learning constant, and 𝑔 is the gradient vector given by 

 

𝑔 = (
𝜕𝐸
𝜕𝑤1

,
𝜕𝐸
𝜕𝑤2

, …
𝜕𝐸
𝜕𝑤𝑛

)𝑇                                                               (4.3) 

 

(iii) Newton method [61], defined as:  

𝒘𝑘+1 = 𝒘𝑘 − 𝐴𝑘−1𝑔                                                                  (4.4) 
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where 𝐴𝑘 is the Hessian matrix given by 

 

𝐴 =  

⎝

⎜
⎜
⎜
⎜
⎛

𝜕2𝐸
𝜕𝑤12

𝜕2𝐸
𝜕𝑤2𝜕𝑤1

⋯
𝜕2𝐸

𝜕𝑤𝑛𝜕𝑤1
𝜕2𝐸

𝜕𝑤1𝜕𝑤2

𝜕2𝐸
𝜕𝑤2

2 ⋯
𝜕2𝐸

𝜕𝑤𝑛𝜕𝑤1
⋮ ⋮ ⋱ ⋮

𝜕2𝐸
𝜕𝑤1𝜕𝑤𝑛

𝜕2𝐸
𝜕𝑤2𝜕𝑤𝑛

⋯
𝜕2𝐸
𝜕𝑤𝑛2 ⎠

⎟
⎟
⎟
⎟
⎞

                                             (4.5) 

where E is the output error, n is the number of weights. 

 

(iv) Gauss-Newton algorithm [62], defined as: 

 

 𝒘𝑘+1 = 𝒘𝑘 − (𝐽𝑘𝑇𝐽𝑘)−1𝐽𝑘𝑇𝑒                                                         (4.6)    

 

where 𝑱 is the Jacobian matrix given by 
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𝑱 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜕𝑒11
𝜕𝑤1

𝜕𝑒11
𝜕𝑤2

⋯
𝜕𝑒11
𝜕𝑤𝑛

𝜕𝑒21
𝜕𝑤1

𝜕𝑒21
𝜕𝑤2

⋯
𝜕𝑒21
𝜕𝑤𝑛

⋮ ⋮ ⋯ ⋮
𝜕𝑒𝑀1
𝜕𝑤1

𝜕𝑒𝑀1
𝜕𝑤2

⋯
𝜕𝑒𝑀1
𝜕𝑤𝑛

⋮ ⋮ ⋯ ⋮
𝜕𝑒1𝑝
𝜕𝑤1

𝜕𝑒1𝑝
𝜕𝑤2

⋯
𝜕𝑒1𝑝
𝜕𝑤𝑛

𝜕𝑒2𝑝
𝜕𝑤1

𝜕𝑒2𝑝
𝜕𝑤2

⋯
𝜕𝑒2𝑝
𝜕𝑤𝑛

⋮ ⋮ ⋯ ⋮
𝜕𝑒𝑀𝑝
𝜕𝑤1

𝜕𝑒𝑀𝑝
𝜕𝑤2

⋯
𝜕𝑒𝑀𝑝
𝜕𝑤𝑛 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

                                                       (4.7) 

Where 𝑎 is the number of weights, 𝑀 is the number of outputs, and 𝒆 is the vector for output 

error 

𝒆 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑒𝟏𝟏
𝑒𝟐𝟏
⋮

𝑒𝑴𝟏
⋮
𝑒𝟏𝑷
𝑒𝟐𝑷
⋮

𝑒𝑴𝑷⎠

⎟
⎟
⎟
⎟
⎟
⎞

                                                                                (4.8) 

𝒆 is defined as  

𝒆 = � � (𝑎𝑝𝑚 − 𝑜𝑝𝑚)2                                                              
𝑀

𝑚=1

𝑃

𝑝=1

(4.9) 

 

Where 𝑎 is the desired output, 𝑜 is the actual output, 𝑀 is the number of outputs and P is the 

number of inputs.  

 

(v) LM training algorithm [63, 64], defined as:  
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𝒘𝑘+1 = 𝒘𝑘 − (𝐽𝑘𝑇𝐽𝑘  + 𝜇𝐼 )−1𝐽𝑘𝑇𝑒                                                 (4.10)  

 

Where 𝜇 is a learning parameter, and 𝐼 is the identity matrix. Between Newton algorithm 

Eq.(4.4) and Gauss-Newton algorithm Eq.(4.6), the improvement is made on the Hessian matrix 

and the gradient matrix computation. Gauss-Newton algorithm calculates the quasi-Hessian 

matrix using the Jacobian matrix, which makes the computation faster since it is a first order 

derivative. For gradient matrix, derivative is not needed anymore, which saves more computation 

time. 𝐴𝑘−1 in Eq.(4.4) is replaced by (𝐽𝑘𝑇𝐽𝑘)−1 in Eq.(4.6). 𝐽𝑘𝑇𝐽𝑘 is considered as the quasi-

Hessian; 𝑔 in Eq.(4.4) is replaced by 𝐽𝑘𝑇𝑒 in Eq.(4.6). Notice that a learning parameter is added 

to the LM algorithm so that when learning constant is small, 𝜇𝐼 can be ignored comparing to 

𝐽𝑘𝑇𝐽𝑘; when 𝜇𝐼 is not small, it stays. This choice makes LM faster than the Gauss-Newton 

algorithm. 

Traditional matrix 

multiplication 𝐴 × 𝐵 =

𝐶 is done by multiplying 

one row from A with one 

column from B and producing a scalar for C (shown in Fig.2.3). However we can also perform 

multiplication for one column from A and one column from B (shown in Fig.2.4). If we examine 

the two routines carefully, we will find out that both of them require exactly the same numbers of 

operations (shown in Table 2.2 and 2.3). However for NN training only one row of Jacobian 

matrix is calculated when each input subject is applied. Therefore, the calculation of Hessian 

matrix can start right after the calculation of the first row and then finish after the calculation of 

 
Fig.2.3 matrix multiplication routine 1 

 
Fig.2.4 matrix multiplication routine 2 
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the last row. This way, not only training time is shortened, but also imposes less storage 

requirement on a computer demonstrated in Table 2.4. 

MLP uses LM training algorithm to 

reduce the computation cost by calculating 

Jacobian matrix instead of second 

derivative Hessian matrix. However there 

are two factors which can significantly 

increase MLP’s computational complexity: 

(1) the interconnection among the neurons, 

(2) size of the input sample. Both these 

factors are predominant in fMRI based 

classification which may explain why 

SVMs are clearly preferred over MLP NNs 

in this field. A Neuron-By-Neuron method was developed by Wilamowski to address these 

issues. This method fully implemented the idea of interconnection by connecting each neuron to 

the output neuron while retaining the connections between contiguous neurons and shortened 

training time by incorporating a Neuron-by-Neuron architecture with improved LM training 

algorithm that implements matrix multiplication routine 2 (shown in Fig.4, compared with 

normal routine shown in Fig.1.3) to gain computation speed and storage advantages  [23, 65]. 

Therefore, we have adopted this method in our study.  

 

Multiplication 

routine 

Number of elements 

for storage 

Row-column (routine 1) (𝑃 × 𝑀) × 𝑁 + 𝑁 × 𝑁 + 𝑁 

Column-row (routine 2) 𝑁 × 𝑁 + 𝑁 

Difference (𝑃 × 𝑀) × 𝑁 

Table 2.4 Storage for matrix multiplication routine 1 and 2 

Number of Multiplication Number of Addition 

(𝑃 × 𝑀) × 𝑁 × 𝑁 (𝑃 × 𝑀 − 1) × 𝑁 × 𝑁 

Table 2.2 Number of operations needed for routine 1 
 
 Number of Multiplication Number of Addition 

(𝑁 × 𝑁) × 𝑃 × 𝑀 (𝑃 × 𝑀 − 1) × 𝑁 × 𝑁 

Table 2.3 Number of operations needed for routine 2 
 
 



27 
 

Fig.2.5 

illustrates a 

schematic of the 

proposed two-

stage 

classification 

procedure 

consisting of Pre-

Cross-Validation-

Training and 

leave-one- out 

cross validation 

(LOOCV). We first randomly sampled the data into two equal halves. One half of the data was 

for Pre-Cross-Validation-Training, the other for LOOCV. In Pre-Cross-Validation-Training 

stage, we gathered features for all subjects and took features for the ith
 subject out. Therefore, the 

training data consisted of features from all subjects except subject i. We selected significant 

features by t-test for principal components and connectivity path weights. For latent variables, t-

test was not applied and the top 20 latent variables were chosen since they contained most 

energy. We trained the NNs towards the desired error rage using the training set. The subject 

index i was then incremented by 4% of the size of the training data. For example, if i=1 in the 

first iteration and the size of the training data is 500, then i=21 in the next iteration. We 

experimented with various values for the increment and found that an increment of around 4-5 % 

lead to more generalizability. After the subject index i iterated through the entire training data, 

 

 
Fig.2.5 Proposed two-stage cross validation procedure.  Left: Pre-Cross-Validation- Training; 

right: Leave-One-Out-Cross-Validation 
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we checked whether the desired error range (for example, ≤ 0.75) was reached. If yes, the 

corresponding weights were saved and passed onto the LOOCV loop. In LOOCV stage, the 

training data comprised of all but one subject in every loop. We repeated the same steps as we 

did in Pre-Cross-Validation-Training stage but using the saved weights to train the NN. Also, we 

tested the trained NN using the ith
 subject, which was left out of training in each loop, as the 

testing set. Classification accuracy for each LOOCV iteration was recorded and averaged after 

LOOCV was finished.  

In the Pre-Cross-Validation-Training loop, the root mean square training error was restricted 

to be ≤ 0.75 (+1 and -1 being the two labels representing the two groups of subjects) when both 

principal components and connectivity path weights ranked by the t-test were used as the feature 

inputs and ≤ 0.70 when latent variables were the feature inputs. In the training stage of the 

LOOCV loop, the root mean square error was also restricted to be ≤ 0.75 for principal 

components and connectivity path weights and ≤ 0.70 for latent variables on the training data 

while the error was restricted to be ≤ 90% of the root mean square training error on testing data. 

The smaller the range of training error, higher the classification accuracy for the given sample, 

but the NN may lose broader generalizability. We tried the error range from 0.25 to 0.90 by 0.05 

increments. When the training error was 0.25 and 0.90, the trained NN produced ≤ 25 % 

classification accuracy. When the training error was in the range of [0.7,0.75], the classification 

accuracy was boosted over chance. We chose 0.75 for principal components and connectivity 

path weights, and 0.70 for latent variables because it showed least standard deviation and >80% 

accuracy, indicating generalizability. It also was reasonable to confine the testing error a little 

more than the training error in order to be conservative. For the error on testing data, we tried 

from 95% to 80% of the training error threshold by 5% decrements. 90% generally produced the 
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best results with least standard deviation. Instead of starting with random weights for each 

LOOCV iteration, this two-stage classification process demanded that the NN have to be trained 

previous to cross validation to get a set of weights, which generally met the required training 

error range. Therefore, each LOOCV loop started with the saved weights from the Pre-Cross-

Validation-Training stage, not the weights from the previous LOOCV iteration. However, note 

that the desired training error range was not always met. In such a situation, the trained NN 

weights were still accepted because in the LOOCV stage, we restricted the testing error to be 

within 90% of the training error, which guaranteed the result to be conservative. These steps 

ensured complete separation of training and testing data. Therefore the results obtained were 

conservative.  

The NBN NN architecture we used consisted of only bipolar neurons (with +1 and -1 being 

the two labels representing the two groups of subjects being compared at once, bipolar neuron 

was the best choice for outputs) with hyperbolic activation function (hyperbolic activation 

function was preferred over linear activation function because the output necessarily did not have 

a linear range), and formed a fully connected cascade (FCC) architecture (example of FFC 

architecture shown in Fig.1). This NN architecture was trained using the modified NBN software 

[66]. We used a fully connected cascade deep NN architecture which had 

200=1=1=1=1=1=1=1=1 configuration (please refer to Fig.1 for an illustration) for both the 

stages of classification when the top ranked 200 principal components were used, and 

20=1=1=1=1=1 configuration when the largest 20 latent variables were used. For comparison, 

we also performed classification using a multi-layer perceptron (MLP) NN which is traditionally 

used in many applications. We used 20-10-10-10-1 configuration (refer to Fig.1.3) MLP 
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architecture for the top 20 latent variables, 200-10-10-10-10-1 configuration (refer to Fig.1.3) for 

the top ranked 200 principal components. However the MLP architecture did not converge.  

 

(2) Support Vector Machines (SVMs)   

SVM classifier was introduced in 

1998. It is supervised learning model 

with associated learning algorithms that 

analyze data and recognize patterns. To 

classify data points into linear separable 

data sets, SVMs find out the optimal 

line for 2D space, plane for 3D space, and hyperplane for any higher dimension space by 

minimizing an upper bound of the training errors and maximizing the margin between the 

separating lines, planes, or hyperplanes. SVM is non-probabilistic classifier and well suited for 

both classification and regression analysis. For instance, given a set of training examples, each 

marked as belonging to one of two categories, a two-class SVM classifier is trained to build a 

model that assigns new examples into one category or the other. SVMs model represents the 

examples as mapped points in space so that the examples of the separate categories are divided 

by a clear gap which is as wide as possible (shown in Fig.2.6). New examples are mapped into 

the same space and predicted to belong to a category based on which side of the gap they fall on. 

SVMs essentially solve optimization problems. 

Given a training set of the form (𝑥𝑖,𝑦𝑖) with 𝑥𝑖 being the data points and 𝑦𝑖 being the class 

labels, the SVMs solve the following optimization problem:  

min
𝑤,𝑏,𝜉

 
1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑛

𝑖=1

                                                                       (5.1) 

 
 

Fig.2.6 2D SVMs 
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subject to 𝑦𝑖(𝑤 × 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0, where 𝜉𝑖 is the slack variable, measuring the 

degree of a data point’s misclassification, 𝑤 is the weight defining the hyperplane and 𝐶 > 0 is 

the penalty parameter of the error term. The first term in Eq.(5.1) is the reciprocal of the margin, 

and can be derived as follows: select a data point 𝑥−, indicated by a green circle, on the negative 

separating line in Fig.16. Then select the corresponding data point 𝑥+, indicated by a green 

circle, on the positive separating line. The connection of the two data points should be 

perpendicular to the optimal line in the middle. From Fig.7, we know that  

𝒘𝒙− + 𝑏 = −1                                                                           (5.2)   

𝒘𝒙+ + 𝑏 = +1                                                                           (5.3)   

 

Let’s further define  

𝒙+ − 𝒙− = 𝜆𝒘                                                                           (5.4)  

 

Substitute Eq.(5.4) back into Eq.(5.2), we get 

𝒘(𝒙+ − 𝜆𝒘) + 𝑏 = −1                                                                  (5.5) 

 

From Eq.(5.5), we can solve for 𝜆: 

𝜆 =  
2

𝒘𝑻𝒘
                                                                                  (5.6) 

 

The margin 𝑀 can be calculated as: 

𝑀 =  ‖𝒙+ − 𝒙−‖ =  ‖𝜆𝒘‖ =  𝜆‖𝒘‖ = 𝜆�𝒘𝑻𝒘 =
2

𝒘𝑻𝒘
�𝒘𝑻𝒘 =

2
√𝒘𝑻𝒘

            (5.7) 
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Applying Lagrangian Multiplier, Eq.(5.1) can be transformed into Eq.(5.8) defined below: 

𝐿𝑃 ≡
1
2
‖𝑤‖2 −�𝛼𝑖

𝑙

𝑖=1

𝑦𝑖(𝑥𝑖𝑤 + 𝑏) + �𝛼𝑖

𝑙

𝑖=1

                                                 (5.8) 

 

We need to minimize 𝐿𝑃 with respect to 𝑤 and 𝑏, and simultaneously require that the derivative 

of 𝐿𝑃 with respect to all the 𝛼𝑖 vanish. This means we can equivalently solve the following 

“dual” problem: maximize 𝐿𝑃, subject to the constraints that the gradient of 𝐿𝑃 with respect to 

𝑤 𝑎𝑎𝑎 𝑏 vanish. 

Take the partial derivative of 𝐿𝑃 with respect to 𝑤, we get Eq.(5.9) as below: 

𝜕𝐿𝑃
𝜕𝑤

=
1
2

2‖𝑤‖ −�𝛼𝑖

𝑙

𝑖=1

𝑦𝑖(𝑥𝑖 + 0) + 0                                                  (5.9) 

 

Take the partial derivative of 𝐿𝑃 with respect to 𝑏, we get Eq.(5.10) as below: 

𝜕𝐿𝑃
𝜕𝑏

= 0 −�𝛼𝑖

𝑙

𝑖=1

𝑦𝑖(0 + 1) + 0                                                      (5.10) 

 

For 𝑤 to vanish in Eq.(5.9), Eq.(5.11) has to be true: 

𝑤 = �𝛼𝑖

𝑙

𝑖=1

𝑦𝑖𝑥𝑖                                                                             (5.11) 

 

For 𝑏 to vanish in Eq.(5.10), Eq.(5.12) has to be true: 
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�𝛼𝑖

𝑙

𝑖=1

𝑦𝑖 = 0                                                                          (5.12) 

 

The decision function implemented by SVMs is originally written as: 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑎(𝑤𝑥 + 𝑏)                                                             (5.13) 

 

Substitute Eq.(5.11) and (5.12) into Eq.(5.13), we get Eq.(5.14) as below: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑎 ��𝑦𝑖

𝑛

𝑖

𝛼𝑖𝑥𝑥𝑖  + 𝑏�                                                  (5.14) 

 

The decision function implemented by SVM can be written as: 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑎(∑ 𝑦𝑖𝑛
𝑖 𝛼𝑖𝐾(𝑥, 𝑥𝑖)  + 𝑏)                                                        (5.15) 

 

Where 𝐾(𝑥𝑖, 𝑥𝑗) is the kernel function. We used the radial basis kernel (RBF) of the form  

𝐾�𝑥𝑖, 𝑥𝑗� = exp �−
�𝑥𝑖−𝑥𝑗�

2

2𝜎2
�                                                                (5.16)                                                       

 

In the study, I used Spider [67], a MATLAB toolbox for implementing the RBF-based SVM 

explained above using the following parameters: soft margin C = Infinity and RBF sigma = 11. 

Fig.2.7 shows a schematic for this procedure wherein we first sampled half of class 1 and class 2 

subjects (for example, 372 from 744 TDC subjects and 130 from 260 ADHD combined 

subjects). Though this is strictly not required for LOOCV of SVM, we did it in order to keep the 

data sizes consistent with our NN procedure and so that the results across both methods are 

comparable. Second, we conducted LOOCV. Inside the LOOCV loop, we gathered features for 
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all subjects and took 

features for the ith
 subject 

out to get the training set 

and testing set. We selected 

significant features by t-test 

for principal components 

and connectivity path 

weights. For latent 

variables, t-test was not 

applied and the top 20 latent 

variables were chosen 

because they contain the most energy. We trained the SVMs using the training set and tested the 

trained SVMs using the ith
 subject. Classification accuracy for each LOOCV iteration was 

recorded and averaged after LOOCV was finished.  

 

IV. Features Important for Classification 

While it is possible to find the features which are most discriminative, and hence, important 

for classification, those features do not always carry meaningful interpretation. For example, the 

latent variables and principal component features cannot be interpreted because they are drawn 

from the entire data set. However, raw features, i.e. connectivity path weights, represent specific 

interactions between brain regions can be informative for inferring the underlying neuronal 

alterations in ADHD. Therefore, we ranked the directional connectivity features which gave 

maximum accuracy using the following procedure. First, we calculated the number of times each 

 
Fig.2.7 Proposed SVMs classification procedure 
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feature was picked across all iterations and divided that number by the maximum number of 

LOOCV iterations. This gave the frequency of occurrence of features across all iterations with a 

range [0,1]. We picked the top ranked paths for each comparison. They were 1, 0.9989 and 

0.9931 for comparisons of TDC & ADHD combined, TDC & ADHD inattentive and ADHD 

combined & ADHD inattentive, respectively. This guaranteed that the picked features occurred 

in almost all iterations.  

The most discriminative features represent a metric of generalizability, but they do not 

necessarily indicate statistical separation between the classes. Therefore, we also performed a t-

test using the entire subject sample and created a mask of features which were most significantly 

different between the groups (p<0.0001). This mask was applied to the ranked features and the 

surviving features were used to infer differences between the groups. 
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Chapter 3 Results & Discussion 

I. Results 

SVM versus NN: As shown in Fig.3.1 that FCC deep architecture NN classifier consistently gives 

higher classification accuracies than SVM classifiers do across all combinations. For Connectivity 

Path Weights and Principal Components, SVMs classifier’s performance is not consistently high. 

In contrast, NN classifier’s performance is consistently high and stable. For Latent Variable 

features obtained from PCA, NN classifier’s accuracies between ADHD combined & ADHD 

inattentive are significantly better than that of SVM.  

 
 

Fig.3.1 Comparison of classification accuracies between SVM and NN. There are 3 feature categories: (1) Raw 
Connectivity Path Weights, (2) Principal Components, and (3) Latent Variables. In each feature category, there are 4 size 
categories representing the number of subjects taken from TDC, ADHD combined and ADHD inattentive groups: (1) 372-
130-86, (2) 186-65-44, (3) 86-86-86, (4) 52-52-52. In each size category, there are features obtained from raw data, CPR, 
CPGC, KGC_par1 and KGC_par2. For each feature, the average accuracies from left to right represent the following three 
pairwise group comparisons: TDC & ADHD combined, TDC & ADHD inattentive, ADHD combined & ADHD inattentive 



37 
 

  
 

Fig.3.2 Comparison of classification accuracies between balanced and unbalanced data. There are 4 sample size categories 
representing the number of subjects taken from TDC, ADHD combined and ADHD inattentive groups: (1) 86-86-86 (front 
left), (2) 52-52-52 (front right), (3) 372-130-86 (back left), (4) 186-65-44 (back right); two classifier categories: (1) SVM, 
(2) NN; 3 feature categories: (1) Connectivity Path Weights, (2) Principal Components, (3) Latent Variables. In each feature 
category, there are features obtained from raw data, CPR, CPGC, KGC_par1 and KGC_par2. For each feature, the average 
accuracies from left to right represent the following three pairwise group comparisons: TDC & ADHD combined, TDC & 
ADHD inattentive, ADHD combined & ADHD inattentive 

 

  

Balanced versus Unbalanced Sample Size: For SVM, unbalanced data (back row), i.e. unequal 

number of subjects in each class, generate better classification accuracies than balanced data 

(front row) as demonstrated in Fig.3.2. For NN classifier, balanced or unbalanced sample sizes 

generally do not make much difference except when latent variables are used as features.  
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Feature Category (latent variables vs principal components vs raw connectivity): It can be seen 

in Fig.3.3 that Principal Components (middle row) and Connectivity Path Weights (back row) 

generally provide better classification accuracies than Latent Variables (front row) do. For 

ADHD combined & ADHD inattentive comparison, all 3 feature categories provide very high 

accuracy. 

 

 

 
 

Fig.3.3 Comparison of accuracies between feature categories of latent variables (front row), principal components (middle 
row), and connectivity path weights (back row). From left to right, there are 4 sample size categories representing the 
number of subjects taken from TDC, ADHD combined and ADHD inattentive groups: (1) 372-130-86, (2) 186-65-44, (3) 
86-86-86 , (4) 52-52-52 ; two classifier categories: (1) SVM, (2) NN; four feature categories: (1) CPR, (2) CPGC, (3) 
KGC_par1, (4) KGC_par2. For each feature, the average accuracies from left to right represent the following three pairwise 
group comparisons: TDC & ADHD combined, TDC & ADHD inattentive, ADHD combined & ADHD inattentive 
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TDC and ADHD group comparisons: For both SVMs and NN classifiers, the accuracies for 

classifying TDC group from ADHD groups were generally better than the accuracy for 

classifying between ADHD sub-groups in Fig.3.4. In fact, connectivity path weights with NN 

gave over 90% accuracy in classifying between TDC & ADHD inattentive, and between TDC & 

ADHD combined. However, NN classifier with latent variable features performed extremely 

well (close to 95%) in classifying between the ADHD subgroups. 

 
 

Fig.3.4 Comparison of accuracies obtained from TDC & ADHD combined (front row), TDC & ADHD inattentive (middle 
row), and ADHD combined & ADHD inattentive (back row). There are 3 feature categories: (1) Connectivity Path Weights 
(front row left), (2) Principal Components (front row middle), (3) Latent Variables (front row right); 4 sample size 
categories from left to right representing the number of subjects taken from TDC, ADHD combined and ADHD inattentive 
groups: (1) 372-130-86, (2) 186-65-44, (3) 86-86-86 , (4) 52-52-52 ; two classifier categories: (1) SVM, (2) NN. Note that 
for Connectivity Path Weights, the accuracy bars represent 4 features: (1) CPR, (2) CPGC, (3) KGC_par1, (4) KGC_par2; 
for Principal Components and Latent Variables, the accuracy bars include performance using raw intensities of fMRI 
images in addition to the 4 connectivity-based features. 
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Comparisons between performances across different features: From Fig.3.5, there is no 

significant trend showing one connectivity-based feature outperforming others. In order to 

illustrate this, we sorted the accuracies for each feature and plotted them in Fig.3.6. It can be 

seen that all connectivity path weights gave similar classification accuracies. However raw 

image intensities generally gave lower classification accuracies than the connectivity path 

weights. 

 
 

Fig.3.5 Comparison of accuracies obtained from the 5 types of features (1) RAW data, (2) CPR, (3) CPGC, (4) KGC_par1, 
(5) KGC_par2.  There are 4 sample sizes from left to right representing the number of subjects taken from TDC, ADHD 
combined and ADHD inattentive groups: (1) 52-52-52, (2) 86-86-86, (3) 186-65-44, (4) 372-130-86; 3 feature categories 
from left to right: (1) Connectivity Path Weights, (2) Principal Components, (3) Latent Variables; two classifier categories: 
(1) SVM, (2) NN.  
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Fig.3.6 Comparison of accuracies obtained from the following features: (1) RAW, (2) CPR, (3) CPGC, (4) KGC_par1, (5) 
KGC_par2.  All accuracies have been sorted in descending order. Note that for raw data, we only had features based on 
principal components and latent variables as against connectivity-based features wherein even the path weights were used as 
features. Therefore the total number of features for the former is lesser than the latter.  
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Effect of Sample Size on Performance:  As seen from Figs.3.7 and 3.8. Larger sample sizes 

generally gave higher classification accuracy. The exception to this was the NN classification 

accuracies for ADHD combined & ADHD inattentive, especially with Latent Variables, wherein 

the accuracy obtained by lower sample sizes was comparable to those obtained from larger 

sample sizes. However, it is noteworthy that the peak accuracies obtained from different sample 

sizes are not significantly different from each other. 

 

 

 
 

Fig.3.7 Comparison of accuracies for different sample sizes representing the number of subjects taken from TDC, ADHD 
combined and ADHD inattentive groups: (1) 52-52-52, (2) 86-86-86, (3) 186-65-44, (4) 372-130-86. There are two 
classifier categories: (1) SVM, (2) NN. For each of them, there are 3 feature categories from left to right: (1) Connectivity 
Path Weights, (2) Principal Components, (3) Latent Variables. Note that for Connectivity Path Weights, the accuracy bars 
correspond to the following features: (1) CPR, (2) CPGC, (3) KGC_par1, (4) KGC_par2 whereas for Principal Components 
and Latent Variables, there is an additional accuracy bar for raw data.  
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Fig.3.8 Comparison of accuracies for different sample sizes representing the number of subjects taken from TDC, ADHD 
combined and ADHD inattentive groups: (1) 52-52-52, (2) 86-86-86, (3) 186-65-44, (4) 372-130-86, with the accuracies 
having been sorted in descending order.  
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Features Important for Classification: Figures 3.9, 3.10 and 3.11 show the directional 

connectivity features with the highest discriminative power obtained by the ranking procedure 

described in the methods section for the following comparisons between the groups, 

respectively: TDC & ADHD combined, TDC & ADHD inattentive, ADHD combined & ADHD 

inattentive. Fig.3.12 shows the regions which drove L mid orbitofrontal cortex and which were 

greater in TDC as compared to ADHD combined as well as those which drove the same region, 

but were greater in ADHD combined as compared to TDC. It can be seen that differential inputs 

to the L mid orbitofrontal cortex and higher drive to the Vermis region of the cerebellum mainly 

distinguishes these two groups. On the other hand, large numbers of inputs to many cerebellar 

regions were higher in TDC as compared to ADHD inattentive and this was discriminative. 

Finally, higher drive of L Mid orbitofrontal cortex in ADHD combined distinguished it from the 

ADHD inattentive group. 
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Fig.3.9.a   

 
Fig.3.9.b  

 Top ranked connectivity paths which were greater in TDC as compared to ADHD combined group (Fig.15a) 
and vice versa (Fig.15b). The width and the color of each path represent the rank of the path, with thinner and 
darker color path representing lower rank, bigger and lighter color path representing higher rank. The radius of 

the nodes is proportional to the number of inputs/outputs to/from them.  
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Fig.3.10.a  

 
Fig.3.10.b   

Top ranked connectivity paths which were greater in TDC as compared to ADHD inattentive group (Fig.16a) 
and vice versa (Fig.16b). The width and the color of each path represent the rank of the path, with thinner and 
darker color path representing lower rank, bigger and lighter color path representing higher rank. The radius of 

the nodes is proportional to the number of inputs/outputs to/from them. 
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Fig.3.11.a   

 
Fig.3.11.b   

Top ranked connectivity paths which were greater in ADHD combined as compared to ADHD inattentive 
group (Fig.17a) and vice versa (Fig.17b). The width and the color of each path represent the rank of the path, 
with thinner and darker color path representing lower rank, bigger and lighter color path representing higher 

rank. The radius of the nodes is proportional to the number of inputs/outputs to/from them.  
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II. Discussion 

The main contributions of this paper are multifold. First, we have shown that the fully 

connected cascade deep neural network architecture outperforms support vector machines, which 

are popular in neuroimaging, for disease state classification using fMRI. In doing so, we have 

bested the top accuracy previously reported for the ADHD-200 global competition dataset [6]. 

Second, we have shown that connectivity-based features have higher discriminatory power as 

compared to raw data. Third, we have investigated the effects of principal component analysis of 

the features, as well as sample size and balance, on the performance of classifiers. Finally, the 

top ranked discriminative features inform us about the neural underpinnings, specifically altered 

brain connectivity, of ADHD. Below, we discuss each of these themes. 

 
 

Fig.3.12 Regions which drove L mid orbitofrontal cortex (shown by red arrow) with greater influence in TDC as compared to 
ADHD combined (yellow) and with greater influence in ADHD combined as compared to TDC (orange).   

 L Mid Orbitofrontal 
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Introduced in 1998, SVMs are capable of handling data of high dimensionality and generally 

offer very good classification accuracy. Techniques of feature extraction and selection have been 

developed accordingly to optimize SVMs’ performance depending on the informative feedback 

on the significance of each feature to classification [68, 69]. Consequently, SVMs have been 

ubiquitously used in brain state and disease state classification using neuroimaging data [10, 70, 

71]. On the other hand, NNs have been handicapped by issues relating to training, computational 

complexity and convergence of the traditional MLP architecture [21, 22, 23] . In this study, 

trained a fully connected cascade deep neural network architecture trained by the NBN algorithm 

and have proposed a two step-procedure for cross-validation maintaining complete separation of 

training and testing data. Further, we have demonstrated that the FCC NNs outperform SVMs 

irrespective of sample size, the type of feature or the classes being compared. This is a 

remarkable result which should pave the way for increased future usage of FCC NNs for brain 

state and disease state classification problems in neuroimaging.  

Since ADHD is a spectrum disorder with heterogeneity inherent in its clinical definition, 

previous efforts to classify TDC from ADHD, as well as between ADHD sub-types, have not 

met with a lot of success. In response to this challenge, a global competition for classification of 

ADHD based on resting state fMRI data and phenotypic information (including age, gender, 

handedness, verbal and performance IQ) was announced [5]. Most researchers in the field were 

surprised by the poor overall accuracy (61%) of the winning fMRI-based classification approach. 

This was aggravated by the fact that phenotypic features performed better than fMRI (64%) [6, 

72], undercutting the argument that directly measuring brain activity should give rise to more 

discriminative features. Subsequent careful re-analysis of the data by Fair et al [10] using a 

smaller sample size of 52 subjects in each class, functional connectivity patterns as features and a 
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SVM classifier, increased the accuracy to around 80%. We report around 90% accuracy in 

classifying between TDC & ADHD inattentive, and TDC & ADHD combined, and close to 95% 

accuracy in classifying the ADHD sub-types. This clearly demonstrates the utility of FCC deep 

architecture NNs. 

Comparing the classification accuracy between different features, we found that connectivity-

based features outperform raw image data. This is unsurprising given the fact that this has been 

demonstrated previously in other disorders [7]. It also makes sense specifically with respect to 

ADHD since it is a diffuse disorder with no focal point in the brain being solely involved in its 

pathology. Rather, different brain systems covering large parts of the brain have been implicated 

in ADHD [73, 74, 75, 76, 77]. However, we did hypothesize that directional connectivity 

features will perform better than non-directional ones and nonlinear connectivity features may 

show better accuracy as compared to linear ones. We did not find a strong evidence for this with 

respect to this data set. It is not possible to generalize this finding since other studies have shown 

that directional connectivity features perform better than non-directional connectivities [7].  

Noise in the data can adversely affect the discriminatory power of features. Therefore, 

previous studies have used PCA as a means to separate the noise from the signal of interest and 

extract features such as principal components and latent variables which are likely to have more 

discriminatory power [78]. We did not find strong support for this notion from our data set. 

Though principal components gave much better accuracy than latent variables, and were 

comparable to raw connectivity path weights, they lack neuroscientific interpretation and hence 

are less preferable to connectivity path weights with comparable accuracy. 
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The relative sample sizes of classes can have a large bearing on the performance of a classifier. 

For example, suppose we have a three-class problem with 40%, 45% and 5% of the sample 

drawn from classes 1, 2 and 3, respectively. A classifier misclassifying all samples in class 3 

may still give 90% overall classification accuracy. However this classifier is not desirable 

because it is unable to discriminate class 3. This phenomenon becomes problematic if class 3 is 

of primary interest. Such a scenario is not uncommon in disease state classification because more 

often than not, including the ADHD-200 data set, the size of the disease class is smaller than the 

healthy class because it is difficult to recruit and acquire data from a patient population. Our 

investigation of the performance of SVM and FCC NN for balanced and unbalanced data sets 

showed that the former was sensitive to it with higher accuracy for unbalanced data while the 

latter was relatively insensitive with high accuracy for both balanced and unbalanced data sets. 

However, it is noteworthy that weighted-SVMs can be employed to overcome SVM’s sensitivity 

to unbalanced data [79].  

The top ranked features obtained from connectivity path weights highlight dysfunction of 

causal pathways associated with frontal and cerebellar regions. Specifically, there appeared to be 

a large reduction of the causal influence of many cerebellar regions from other cortical areas in 

ADHD inattentive as compared to TDC. There were more limited reductions of the input to the 

vermis region of the cerebellum in ADHD combined as compared to TDC. These reductions in 

the causal input to the cerebellum are consistent with previously observed structural deficits in 

cerebellar white matter pathways [80, 81] as well as focal and distributed functional 

abnormalities involving the cerebellum [80, 82, 83, 84]. There were specific increases in the 

causal input to left mid orbitofrontal cortex in TDC as compared to ADHD combined while 

certain other regions had a higher causal influence on the same region in ADHD combined as 
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compared to TDC. This shows that dysregulation of frontal circuitry in ADHD is not 

unidimensional. Rather it is more complex, with re-organization of regions driving this region in 

ADHD as compared to controls. These findings are consistent with previously reported structural 

[80, 81, 85] and functional [80, 82, 83, 86] alterations of frontal circuitry in ADHD. It is 

particularly noteworthy that previous studies found more alterations with left, rather than right, 

frontal cortex [86]. This is corroborated by our results. Comparison of the ADHD subtypes also 

show specific differences in frontal and cerebellar connectivity. This shows that there may be a 

neurological basis for the sub-types based on which regions drive frontal and cerebellar regions 

and by how much.  
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Chapter 4 Conclusion 

In this study, I have demonstrated the utility of fully connected cascade deep architecture 

neural network for classifying subjects with attention deficit hyperactivity disorder from 

typically developing subjects. Given that support vector machines are predominantly used as 

classifiers in neuroimaging, my major contribution is to introduce FCC NN to the neuroimaging 

community. My second major contribution is to dispel the pessimism about neuroimaging based 

ADHD classification borne out of the final results of the ADHD-200 competition. I have shown 

that with improved classifier design and discriminative connectivity-based features, the 

classification accuracy can be greatly improved.   
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