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Abstract 

 

 This study applies a new map representation, named R-map, to the path-planning 

problem. The R-map is calculated as a reduced-element representation of a grid map. Grid maps 

express obstacles and free space with a binary representation for each cell. The concept of the R-

map is to integrate free cells into the maximal empty rectangles by surveying the numbers in a 

grid map. By calculating the R-map, the number of free cells in the grid map is dramatically 

reduced and this accomplishes data reduction. Since the R-map is a new map representation, it 

has potential applications in many other fields. 

 This thesis consists of two major parts, R-map and path planning. The R-map part 

explains a specific R-map algorithm with a simple example, and demonstrates its advantages 

comparing examples for indoor and outdoor environments. Also, data reduction by applying R-

map is demonstrated. In the path planning part, the path planning using Dijkstra’s algorithm is 

described and paths according to four different weights are illustrated. Moreover, path planning 

with grid maps and R-maps is compared. R-maps are naturally suited for path planning due to 

their reduced number of elements and focus on the largest obstacle-free areas. 
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Chapter 1 

Introduction 

 

 Autonomous mobile robots have been studied for decades. To make the robot move, 

many things are required. The most essential constituent is a map of its environment. By this 

map, an optimal path can be calculated, and the robot can move to the destination performing 

obstacle avoidance. The most popular map representation is a grid map which expresses 

obstacles and free space with binary numbers, 0 representing an obstacle and 1 representing free 

space. Also since these numbers are in a matrix form, it is easy to locate obstacles and robots. A 

grid map, however, has a problem of resolutions. Different-resolution grid maps can be generated 

from an image of the environment. Figure 1.1 shows two grid maps, (b) and (c), in different 

resolutions which are generated from the original image (a). They are a       grid map and a 

twice higher resolution map,       grid map. The lower resolution map, the       grid 

map, consumes less data but, the obstacles are distorted. Hence, path planning with a lower 

resolution map may give an unreliable path. The higher resolution map, the       grid map, 

represents obstacles close to the image of environment but, this twice bigger map has    times 

more cells. Hence, path planning with   times higher resolution map gives more reliable path 

but, it has    times more cells to consider. 
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(a) Image of Environment 

           

(b)       Grid Map               (c)       Grid Map 

Figure 1.1:  Two Different-Resolution Grid Maps from the Image 

 

 As a solution of this problem, multiresolution cell decomposition has been suggested [1]. 

The algorithm decomposes cells into smaller cells, in order to minimize the distortions of 

obstacles. Thus the map has varied sizes of cells. Prazenica and Kurdila adopted multiresolution 

decomposition for obstacle-location estimation using receding horizon control formulation [2-3]. 

Another solution for the drawback of grid maps has been suggested, named Rectangular map or 

R-map. The main idea is integration of empty cells into a maximal empty rectangle. R-maps 

were invented by Ahn and Jeon in 2010 [4]. They introduce R-map as a hybrid map of the grid 

and the topological maps. The topological map is a graph-based map which only shows 
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relationships between nodes by branches such as a subway map. In R-map, each integrated cells 

as maximal rectangles are the nodes and relationships, connections of the rectangles, are 

calculated.  

 This thesis details the computation of R-maps, and implements path planning with R-

maps using Dijkstra’s algorithm. Furthermore, it includes illustrations of applications of R-map 

to other fields. Chapter 2 describes the R-map algorithm and result. The algorithm consists of 

four steps: initialization, finding a maximal empty rectangle, grid map updating and computing 

connection. Each step is explained with a simple example and Figures as separated subsections. 

Also, the result of the R-map algorithm for indoor and outdoor maps is illustrated. 

 Chapter 3 describes the path-planning algorithm and results. Dijkstra’s algorithm is 

applied for path planning, and since paths can be different depending on weights in Dijkstra’s 

algorithm, four different approaches are demonstrated to find an optimal path. The weights are 

defined based on rectangle area, border length, shortest path, and number of neighbors. Path 

planning with the indoor and outdoor R-maps from Chapter 2 are illustrated.  

 Further examples using R-map are suggested in Chapter 4. Because R-map is an image 

reconstruction, it can be applied to other fields such as image processing. The examples include 

reduction of data, driving assistance and image recognition. 

 The purpose of this study is to advance the previous R-map [4] and apply it to path 

planning. The R-map and path planning are specifically explained with examples and analyzed 

throughout following Chapters. 
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Chapter 2 

R-map 

 

 The main idea of the R-map is the integration of empty cells of the grid map into a 

maximal empty rectangle. The key issue of R-map algorithm is finding maximal empty 

rectangles in the form of non-overlapping rectangles. The maximal empty rectangle problem has 

been studied by mathematicians and computer scientists to mine empty areas [5], and reduce data 

(image compression) [6]. There are two basic ways to find the rectangles within an image. One is 

finding the rectangles with geometrical calculations on the image. This way is focused on saving 

the largest-area rectangular piece in the field such as a piece of fabric or sheet metal with holes 

[7]. The other way is calculations of values in an image represented with binary numbers. This 

way is focused on extracting a required or empty data set from the field [8]. The R-map 

algorithm is the second way as long as the input of the algorithm is a grid map. The flow of the 

algorithm in this study is referred from Ahn and Jeon [4].  

 

2.1 R-map Algorithm 

 The input of the R-map algorithm is a binary image, G, as shown in Figure 2.1. In step 1, 

cx and Gx matrices are defined. cx is transformed from G, and Gx is the same matrix with G. cx 

is used in step 2 and Gx is used in step 4. In step 2, every element of free space in cx is surveyed 

to compare the areas of possible rectangles and find the largest one. The property of the largest 

rectangle in each survey is saved as   which includes its coordinate of the left-upper corner, the 
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width and height. As the survey proceeds, the property of the larger rectangle is updated to the 

largest one. The survived largest rectangle is the maximal empty rectangle and the property of 

the rectangle is saved as   . In step 3, the corresponding elements of    in G are updated to 

zeros to find non-overlapping empty rectangles in the subsequent iterations. The process goes 

back to step 1 with updated G, and steps 1, 2 and 3 are repeated until all of the elements in G 

have been set to zero. In step 4, the maximal empty rectangles are labeled as k in the rank of    

to find neighbors of kth rectangles and they are saved as            . The output of the 

algorithm is a structure M which consists of   . 

 

 

Figure 2.1:  Diagram of the R-map Algorithm 
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2.1.1 Step1: Initialization 

 A binary image that shows obstacles and free space can be represented as a grid map, 

and is the starting point for creating the R-map. The grid map is a     matrix G whose 

elements consist of 0 and 1, with 0 representing an obstacle and 1 representing free space. To aid 

in defining the R-map, G is preprocessed to define a         matrix cx which is a right-to-

left row-wise summation of contiguous free-space elements in G. The elements of      th 

row of cx are set as zeros. Also, Gx matrix which is the same as G is defined for use in step 4. 

Figure 2.2 illustrates an example of G and cx. 

 

           

(a) G Matrix                          (b) cx Matrix 

Figure 2.2:  Example of G and cx 

 

2.1.2 Step 2: Find a Maximal Empty Rectangle 

 The critical step in computing the R-map is finding the maximal empty rectangle in the 

grid map. The idea of the algorithm used here is referred from Vandevoorde [9]. Step 2 is done 

by surveying cx column-by-column, starting with the first element of the first column. The 

survey of each column considers the largest rectangles that can be formed with the left edge of 
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the rectangles in that column. As the survey progresses, the candidate rectangles under current 

consideration are stored in a stack called stack. Each entry in stack stores the width of that 

rectangle and the top row number of that rectangle. 

 As the survey for each element proceeds down the jth column, the value of the next 

element           is compared to the value of the current element        . There are four 

possibilities of the comparison. In the first possibility, if these values are equal, then no changes 

are made to stack. In the second possibliity, if the         value is greater than the ith value, 

then a new rectangle is added to stack. The new rectangle has a top row equal to     and a 

width equal to          . In the third possibility, if the         value of cx is less than the 

ith value, the areas of the rectangles in stack are calculated and compared to the area of the 

largest previously found rectangle. The larger area is updated to the largest area and the property 

of the rectangle is saved as  . As the areas are calculated, the widths of the rectangles with width 

greater than           in stack are updated to          . Of all the resulting rectangles with 

width           only the one with the lowest row number is retained, and the other rectangles 

with this width (if any) are removed from stack. In the fourth possibility, if the         value 

is 0, all rectangles are removed from stack. In addition, because the         value of cx is 

zero, all rectangles are removed at the end of the column. The survey then proceeds to the next 

column. For the example shown in Figure 2.3, cx(1, 1) is 2. This means that there is a rectangle 

whose top row is 1 and width is 2, then stack is [1, 2] and this is the rectangle 1. The second 

element cx(2, 1) is also 2, and no changes are made in stack, because the rectangle 1 can be 

extended to the second row. The third element cx(3, 1) is 3 which is greater than the previous 

value. Therefore, a new rectangle, the rectangle 2, whose top row is 3 and width is 3 is added to 

stack. 
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Figure 2.3:  Top Rows and Areas of Rectangles 1, 2 and 3 

 

At third element:         
  
  

                      (2.1) 

 

 The fourth element cx(4, 1) is 10, and it is greater than the third element. Thus another 

new rectangle with top row 4 and width 10 is added to stack, and this is the rectangle 3. 

 

At fourth element:         
  
  
   

                     (2.2) 

  

The fifth value cx(5, 1) is 2, and that is less than the previous value. Thus the areas of the 

rectangles in stack are calculated and compared. The heights of the rectangles are subtraction of 

their top row and the      th row, i.e. the height of the jth rectangle in stack is       

          . 
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                                                                    (2.3) 

                                          

                                                                    (2.4) 

                                          

                                                                    (2.5) 

 

 Rectangle 3 is the largest rectangle so far. The property of the rectangle   which 

indicates column number, top row, width and height, is            Then, the widths of the 

candidate rectangles with widths greater than the fifth element, 2, are updated to 2 and other 

rectangles except the lowest row number are removed from stack thus the rectangle 1 is retained 

but, the rectangles 2 and 3 are removed from stack. 

 

At fifth element:                                 (2.6) 

 

 The rectangle in stack is the rectangle 1 but, redefine it as the rectangle    to distinguish 

from the rectangle 1. The fifth value cx(5, 1) and the next values up to seventh cx(7, 1) are equal, 

so stack has no changes. The eighth element cx(8, 1) is 8, and this is greater than the seventh 

element. Thus a new rectangle is added to stack. The new rectangle is the rectangle 4 in Figure 

2.4, which has the top row 8 and the width 8. Now, stack has two candidate rectangles, the 

rectangle    and 4. 

 

At eighth element:         
  
  

                      (2.7) 
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Figure 2.4:  Top Rows and Areas of Rectangles    and 4 

 

 The ninth element cx(9, 1) is 0, then the area is calculated and compared to the largest 

rectangle. 

 

                                              

                                                                    (2.8) 

                                             

                                                                    (2.9) 

 

 Since the rectangle    is larger than the previous largest rectangle, the rectangle    is 

updated to the largest rectangle. The property of the rectangle    is          . In addition, 

because the ninth element cx(9, 1) is 0, all rectangles in stack are removed, and the updated stack 

is empty. 

 



11 

 

 

Figure 2.5:  Top Row of Rectangle 5 

 

 As shown in Figure 2.5, the tenth element cx(10, 1) is 8. Thus a new rectangle, the 

rectangle 5, which has top row 10 and width 8 is added to stack.  

 

At tenth element:                                (2.10) 

 

 Because the last element cx(11, 1) is 0, the area of the rectangle in stack is calculated, 

compared and removed. 

 

                                              

                                                               (2.11) 

  

 The largest area is still larger than the area of rectangle 5 therefore, the rectangle    is 

kept as the largest rectangle.  

 The survey proceeds to the second column, and is continued to the last column. As the 
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survey proceeds, the largest rectangle is replaced by a larger area. After the survey of the last 

column, the largest rectangle is the maximal empty rectangle and the property of the rectangle is 

saved as    in the structure M. After the survey of this example, the rectangle    is in fact the 

maximal empty rectangle and saved as    in M. 

 

2.1.3 Step 3: Grid Map Update 

 For the elements of the maximal empty rectangle calculated in the previous step, the 

corresponding elements of G are updated to zeros. For example, the maximal empty rectangle  

in cx found in step 2 is   , then the corresponding elements of G are updated to zeros as in 

Figure 2.6. This updating ensures that the subsequent iteration only searches the remaining free 

space. 

 

                 

          (a) Original cx Matrix                      (b) Updated G Matrix 

Figure 2.6:  (a) Maximal Empty Rectangle 1 in the Original cx Matrix (b) Corresponding 

Elements in the Updated G Matrix are Updated to Zeros 
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2.1.4 Iteration of Steps 1, 2 and 3 

 Steps 1, 2, and 3 are repeated with the updated G in an interative fashion until all of the 

elements in G have been set to zero or until a desired threshold is reached in terms of the number 

or size of the maximal rectangles, related to the desired R-map resolution. In this example, after 

all iterations with G, properties of 10 maximal empty rectangles are saved as    up to     in M. 

Figure 2.7 shows G with elements are all updated to zeros and the 10 rectangles after the 

iteration. 

 

 

Figure 2.7:  10 Rectangles after Iteration 

 

2.1.5 Step 4: Compute Connection 

 The purpose of this step is finding neighbors of the maximal empty rectangles using Gx 

from step 1. To find what neighbors are connected to the rectangles, the rectangles need to be 

labeled. To label the rectangles, the elements of    are updated to k. Also, additional columns 

and rows are added on both sides, top and bottom of Gx, with elements equal to zeros. Thus, Gx 

is updated to             demension. As the size of Gx has changed, the locations of the 

rectangles are changed and they can be derived from the properties of the rectangles,    which 
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contains column number, top row, width and height. Because of the additional column and row 

on the left and top of Gx, every element of Gx is moved one cell right and one cell down. 

Therefore, the left-upper corner of a rectagle should have an additional 1. The right-lower corner 

of a rectangle is ((the column number)   (the width), (the top row)   (the height)). 

Knowledge of the corner positions define the entire boundary of the    rectangle, and the 

labeling of neighboring elements in Gx therefore allows determination of all connected 

rectangles. 

 Continuing the example, the elements of    are updated to 1, and the elements of    

are updated to 2. In the same manner, the elements of    are updated to k, where k is up to 10. 

Figure 2.8 shows the labeled rectangles in updated Gx as a       matrix. The property of the 

maximal empty rectangle 1 in G is   , and the location of the rectangle 1 in Gx can be derived 

from   . The location of the maximal empty rectangle 1 in updated Gx is represented as   . 

 

                                         (2.12) 

  

Left-Upper Corner of                                         (2.13) 

Right-Lower Corner of                                         (2.14) 

 

                                         (2.15) 
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Figure 2.8:  Labeled Rectangles in Gx 

 

 Figure 2.9 depicts the left-upper and right-lower corners of the maximal empty rectangle 

1 which are (2, 2) and (3, 9) respectively. Because the rectangle 1 is known and other rectangles 

are labeled, the neighbors of rectangle 1 can be found. The left connections of the rectangle 1 are 

the values of the left column of the left-upper corner and the right connections are the values of 

the right column of the right-lower corner as many cells as the height of the rectangle 1. The 

upper connections are the values of the upper row of the left-upper corner and the lower 

connections are the values of the lower row of the right-lower corner as many cells as the width 

of rectangle 1.  

 



16 

 

 

Figure 2.9:  Location of the Corners in Gx 

 

     [2, 2, 3, 9] 

 

                                                                   (2.16) 

                                                                    (2.17) 

                                                                 (2.18) 

                                                                 (2.19) 

 

 The unique numbers of the connections except zero indicate the connected rectangles of 

the maximal empty rectangle 1.  

 

             [7, 8, 9]                       (2.20) 

 

 The connections up to              are saved in a structure M. In this manner, 
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            is saved in M. The output of the R-map algorithm is M which consists of    and 

           .  

 

2.2 Result of R-map Algorithm 

 The input to the R-map algorithm is a binary image G, and the output is a structure M. G 

is an     matrix, and M is a structure which consist of properties and neighbors of maximal 

empty rectangles. The properties are from cx in step 1 and the neighbors are from Gx from step4. 

Since properties and neighbors are information of each rectangle, M has as many elements as the 

number of maximal empty rectangles in G. Figure 2.10 shows the input and output of the 

example. Because the input G has 10 maximal empty rectangles, there are 10 elements in the 

output M. 

 

     

Figure 2.10:  Input and Output of R-map Algorithm 
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2.3 R-map Examples 

 To demonstrate how the R-map represents a higher resolution map with fewer cells, 

different resolution R-maps are compared. Obstacles in a map image can have various shapes of 

surfaces with vertical, horizotal, diagonal and curved lines, but the grid map represents these 

obstacles with a gridded approximation. The grid-map resolution can be increased to improve 

this approximation. Therefore, the map image can produce different resolution grid maps. As 

different resolution grid maps have different number of cells, their numbers of free cells which 

need to be surveyed to find maximal empty rectangles are different. Thus, depending on the 

resolution of the grid map, the computation time to generate the R-map varies.  

 An example indoor environment is shown in Figure 2.11 to Figure 2.15, and an example 

outdoor environment is shown in Figure 2.17 to Figure 2.21. For the indoor case, the indoor map 

image of Figure 2.11 is reproduced in four different resolutions,      ,      ,       

and        . Table 2.1 compares the number of free cells in the grid maps and the number of 

rectangles in the R-maps of the indoor map. For the outdoor map, the Auburn University campus 

map of Figure 2.17 is also reproduced in four different resolution:      ,      ,       

and        . Table 2.2 compares the number of free cells in the grid maps and the number of 

rectangles in the R-maps of the outdoor map. In both tables, as the level of the resolution raises 

by factor of two, the number of free cells in the grid map increases by approximately four. 

However, the number of R-map rectangles increases by only a factor of approximately two. 

Therefore, R-map accomplishes a higher resolution map with fewer elements. Additionally, 

Tables 2.1 and 2.2 show the computational expense of calculating the R-map from each grid map 

using MATLAB implementation on a laptop computer. Whereas higher resolution maps require 

more computation time, a trend for the scaling of the computation time is not immediately 
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obvious. It is also noteworthy that these computation times are for the complete R-map. Some 

reduction in computation time could be achieved by setting thresholds for the number or size of 

the rectangles in the R-map. 

 

 

Figure 2.11:  Indoor Map Image 
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Figure 2.12:        Grid Map and Its R-map 

 

       

Figure 2.13:        Grid Map and Its R-map 
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 Figure 2.14:        Grid Map and Its R-map 

 

    

Figure 2.15:          Grid Map and Its R-map 
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Table 2.1:  Indoor R-mapping by Different Resolutions 

Resolutions                           

Computation Time 

of R-mapping (sec) 
0.041 0.061 0.146 0.549 

Free cells in Grid Map 153 562 2,325 9,331 

Rectangles in R-map 25 44 86 156 

 

 

 

 

Figure 2.16:  Comparison of Indoor Maps by Number of Elemnets 
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Figure 2.17:  Auburn University Campus 
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Figure 2.18:        Grid Map and Its R-map 

 

   

 Figure 2.19:        Grid Map and Its R-map
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Figure 2.20:        Grid Map and Its R-map 

 

   

Figure 2.21:          Grid Map and Its R-map 
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Table 2.2:  Outdoor R-mapping by Different Resolutions 

Resolutions                           

Computation Time 

of R-mapping (sec) 
0.057 0.189 0.747 3.283 

Free cells in Grid Map 292 1,240 4,859 19,397 

Rectangles in R-map 53 154 302 552 

 

 

 

 

Figure 2.22:  Comparison of Outdoor Maps by Number of Elemnets 
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2.4 Comparison of Data Storage 

 In this section, data storage of an R-map is discussed. A number is saved in a computer 

memory as binary numbers. One binary digit occupies one bit, and 8 bits are bound as one byte. 

This one byte can express        different numbers, and the numbers in this study are 

considered as integers. To save a map, there three approaches are considered here: saving entire 

grid map as binary numbers, saving locations of only empty cells in a grid map and saving 

locations of empty rectangles in an R-map. For the first case, saving entire grid map as binary 

numbers, (width) (length) bits are required to save them. For the second case, the locations of 

empty cells such as (1,1), (1,2), (2,3), , (x,y) are the numbers to be stored. Each location (x,y) 

has two numbers to be stored in a memory. If the dimension of the map is less than 256, then two 

bytes are required to save one location. The last case is with an R-map. In this case, locations of 

empty rectangles which are the properties from the R-map algorithm are considered. The 

properties from Figure 2.10 are [1, 1, 2, 8], [5, 1, 3, 4],  , [8, 7, 1, 1] where [x, y, width, length], 

and each rectangle has four numbers. Thus for map dimensions less than 256, one rectangle 

needs four bytes to be saved.  

 Four different resolution maps are shown in Figure 2.23, and Table 2.3 shows required 

spaces to save maps using each cases. In Table 2.3, the numbers of the first case are intuitively 

calculated, (width) (length) bits. The numbers of the cases 2 and 3 are actual numbers from 

MATLAB using class of variables integer. Note that the first three maps whose dimensions are 

less than 256 are saved as integer 8 in MATLAB, but since the last           map has 

dimensions more than 256, it is saved as integer 16. For the first two       and       

maps, case 1 needs less space than case 3. Therefore, to store the first two maps, saving the entire 

map as binary numbers is more efficient. However, the obstacles in their maps are distorted, and 
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a reliable path cannot be generated from these maps. On the other hand, for the last two maps, 

        and           resolutions, case 3 occupies less space than case 1. This means 

that if a map has enough resolution to generate a reliable path, saving locations of empty 

rectangles is more efficient than saving the entire map. 
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               (a)                                 (b)       

             

              (c)                                (d)           

                                                     (grid removed) 

Figure 2.23:  Grid Maps in Different Resolutions 

 

 

Table 2.3:  Comparison of Data Storage 

Resolutions                               

1. Entire Map (bytes) 13 313 7,813 195,313 

2. Empty Cells (bytes) 154 3,838 94,776 2,365,330 

3. Empty Rectangles (bytes) 80 764 3,128 32,936 
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Chapter 3 

Path Planning 

 

 Because the R-map provides a reduced-element map representation focused on the 

largest obstacle-free spaces, it appears to be naturally suited for path-planning problems. For path 

planning with R-maps, Dijkstra’s algorithm will here be used. This cost-based algorithm 

calculates the optimal path between any two points on a map. 

 This chapter investigates several methods for defining costs (i.e. weights) based on the 

properties of the R-map and the desired path. The following sections review Dijkstra’s algorithm, 

introduce several weight definitions, and present path-planning examples. 

 

3.1 Dijkstra’s Algorithm 

 Dijkstra’s algorithm was introduced by his paper in 1959 [10]. The algorithm computes 

optimal path based on a cost function. The algorithm applies to graphs with vertices (nodes) 

connected by edges (branches) which have nonnegative weights (costs) [11]. Thus the graph 

expresses the relationships between the vertices, and shows possible ways to a destination vertex. 

To travel vertex to vertex, a cost is incurred. The weighted graph is        where   is the set 

of vertices and   is the set of edges. The algorithm starts with the start node as the “current” 

node. All connected nodes become “tentative” and a tentative cost is assigned to each. The 

current node then becomes “settled”, and the tentative node with the lowest tentative cost 

becomes the new current node. All nodes connected to the new current node are then evaluated.
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Figure 3.1:  Example of Dijkstra’s Algorithm 

 

Among those connected nodes, previously unvisited nodes become tentative and an accumulated 

cost is assigned, and connected nodes that are already tentative potentially have their 

accumulated cost updated. The steps are repeated until the lowest-cost path to the destination 

node is found. The algorithm is in        , because every node is current once, and the possible 

connections or settled nature of every other node must be considered. Figure 3.1 shows an 

example of undirected graph with start node 1 and destination node 6. In step 1, the tentative 

nodes are 2, 3 and 4, and their tentative costs are 3, 4 and 2 respectively. Because node 4 has the 

lowest cost, it becomes the next current node. In step 2, nodes 5 and 6 become tentative in 

addition to 2 and 3, and their accumulated costs are 4 and 7. For node 3, a new tentative cost of 5 

is evaluated, but because the tentative cost of this node is already lower, it is not updated. These 

steps and the remaining steps are summarized in Table 3.1. The final costs for each node and 

optimal path from node 1 to node 6 are indicated in Figure 3.2. 

 To apply Dijkstra’s algorithm to an R-map, each maximal empty rectangle,   , is 

considered as a vertex, and they are connected as             from the R-map algorithm, with 

the vertex weights defined in next section. Depending on the desired properties of the resulting  
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Table 3.1:  Tentative Costs in Each Step 

Step 
Current  

Node 

Cost of 

Current Node 

Tentative 

Nodes 

Tentative 

Costs 

1 1 0 

2 

3 

4 

3 

4 

2 

2 4 2 

2 

3 

5 

6 

3 

4 

4 

7 

3 2 3 

3 

5 

6 

4 

4 

7 

4 3 4 
5 

6 

4 

7 

5 5 4 6 5 

 

 

 

Figure 3.2:  The Final Costs and the Lowest-Cost Path  

 

path, a number of different parameters can be considered in assigning weights to the edges, such 

as the area, border length, distance and connections of the maximal empty rectangles.These 

definitions will result in symmetric directed graphs such that the cost to traverse from    to    

may be different than the cost from    to   . 
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3.2 Weight Definitions 

 The weights in this study are defined with four parameters. The first approach is weight 

by area. Since the R-map algorithm produces a ranked list from the largest to smallest rectangle, 

the list of    in the structure M is in order of area. Thus, by simply giving lower weight to the 

higher ranked rectangle, their weights are set by area and the algorithm selects the path of larger 

area. The second approach is weight by border length of the rectangles. By giving lower weight 

to a rectangle which has longer border length, the algorithm selects a wider path. The third 

approach is weight by distance between center points of two rectangles. By giving lower weight 

to closer points, the path planning algorithm selects the shortest path to a destination, a classic 

application of Dijkstra’s algorithm. The last possible approach is weight by number of 

connections. To give lower weight to the rectangle which has more potential paths to the next 

rectangle, find the number of connections of each rectangle. Thus, the result is a path who has 

diverse alternative path.  

 

3.2.1 Weight by Area 

 Since the list of the property    in the structure M is in order from the largest to 

smallest rectangle, the weight to a rectangle   is simply the value itself,  .  

 

                                      (3.1) 

 

where      is a cost weight to travel from   to  . Table 3.2 shows the weight by area,       

of the example in Chapter 2. 
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3.2.2 Weight by Border Length 

 To let the algorithm select a wider path, a rectangle with longer connected-border length 

should have a lower weight. The connected-border length of two rectangles is the number of 

connected elements In step 4 of the R-map algorithm, neighboring elements of each maximal 

rectangle in Gx have been found to find the neighbors of the maximal rectangles. The 

neighboring elements of rectangle k      is the elements from equations (2.16)-(2.19). 

 

                                             

                                                        (3.2) 

 

where    indicates what rectangle is connected to the rectangle k and how many cells are 

connected. For example, from the equations (2.16)-(2.19),           . Thus, rectangle 1 and  

rectangles 7, 8, 9 are connected with one cell, and since the path from rectangle 1 to the others is 

the narrowest, it should cost the most weight. Therefore, the weight is set to the reciprocal of the 

number of elements. 

 

     
 

    
                               (3.3) 

 

where      is the number of connected element beween rectangles   and  . Table 3.2 shows 

the weight by border length,         of the example; however, in the example, all borders have 

a length of one cell. 
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3.2.3 Weight by Distance 

 R-maps have a diverse size of cells, unlike the grid maps. Although two rectangles are 

connected, their area could be larger than that of several smaller rectangles. For that reason, the 

distance between two center points of two rectangles impacts whether that is a shorter path or not. 

To calculate the distances, the properties of rectangles    are recalled. As mentioned, the 

property contains location of the upper-left corner      , width and height of a rectangle      . 

From the property, the horizontal and vertical center points are calculated. Note that the locations 

of the points are       and      . For example,    and    from the example of Chapter 

2 are              and             . The center points (C.P.) are calculated as below. 

 

                                    
     

 
   

 

 
              (3.4) 

                                  
     

 
   

 

 
               (3.5) 

                                                (3.6) 

 

                                    
     

 
   

 

 
             (3.7) 

                                  
     

 
   

 

 
                 (3.8) 

                                                 (3.9) 

 

                                                       (3.10) 

 

 The distance value is the cost weight to travel from rectangle 1 to 7. In this manner, the 

weights can be designated to each connection.  
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                                         (3.10) 

 

where         is the center point of rectangle k and         is the center point of rectangle j. 

Table 3.2 shows the weight by distance,          .  

 

3.2.4 Weight by Number of Connections 

 To define the weight by number of the connections of rectangles, recall             

from the structure M. To provide for a diversity of connections in the event of re-planning 

rectangles with more neighbors should have lower weight. Therefore the weight of each 

rectangle is designated as the reciprocal of the number of connections. 

 

     
 

  
                              (3.11) 

 

where    is the number of elements of            . For example, rectangle 2 in the example is 

connected to rectangles 4, 6 and 7. Rectangle 4 has 2 connections as in                   , 

rectangle 6 has 1 connection as in                 and rectangle 7 has 3 connections as in 

                   . Thus, their weights are            ,             and 

           . The weight by number of connections             is shown in Table 3.2. 

 

 

 

 



37 

 

Table 3.2:  Comaparison of Weights using Different Parameters 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

3.3 Selected Rectangles 

 In Table 3.2, a start rectangle of a path is among k and a finish rectangle is among the 

neighbors. For example, using the weight by area      , if a path starts at rectangle 1 and the 

destination is rectangle 3, the algorithm selects a next rectangle among the neighbors of    , 

there are three possible paths as [7, 8, 9], and the chosen neighbor becomes k. If rectangle 7 is 

chosen as the next rectangle, 7 becomes k and it has three possible paths as [1, 2, 9]. However, 

note that because the path should have the lowest total cost, the algorithm does not choose the 

lowest weight at each decision. In Figure 3.3, for example, there are two paths from rectangle 1 

k Neighbor                                     

1 7 7 1 2.0616 0.3333 

1 8 8 1 4.0311 0.5000 

1 9 9 1 2.1213 0.5000 

2 4 4 1 3.9051 0.5000 

2 6 6 1 3.3541 1 

2 7 7 1 2.9155 0.3333 

3 5 5 1 4.1231 1 

3 8 8 1 3.1623 0.5000 

3 10 10 1 2.5000 0.5000 

4 2 2 1 3.9051 0.3333 

4 10 10 1 2.2361 0.5000 

5 3 3 1 4.1231 0.3333 

6 2 2 1 3.3541 0.3333 

7 1 1 1 2.0616 0.3333 

7 2 2 1 2.9155 0.3333 

7 9 9 1 1.1180 0.5000 

8 1 1 1 4.0311 0.3333 

8 3 3 1 3.1623 0.3333 

9 1 1 1 2.1213 0.3333 

9 7 7 1 1.1180 0.3333 

10 3 3 1 2.5000 0.3333 

10 4 4 1 2.2361 0.5000 
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to 3. The path 1 is rectangles              and the path 2 is rectangles     

 . Among the three neighbors of rectangle 1, rectangle 7 has the lowest weight. However, 

selecting rectangle 7 makes the path go around to get to rectangle 3 and the total cost goes up as 

shown in Figure 3.3 (a). Selecting rectangle 8 as the path 2 costs more than selecting rectangle 7, 

but because the destination shows up right after rectangle 8, the path 2 has the lower total cost 

than the path 1. Therefore, the path planning algorithm selects the path 2 as the lowest cost path, 

Figure 3.3 (b).  

 

           

               (a) Path 1                               (b) Path 2 

 Figure 3.3:  Comparison of Two Possible Paths 

 

 Using the weight by area      , the selected rectangles as the path and the graph are 

shown in Figure 3.4, The start rectangle is 1 and the destination is rectangle 4. The algorithm 

considers all of the possible paths from rectangle 1 to 4, and compare their cost weights to select 

the lowest one. Figure 3.5 illustrates the results of path planning with          . 



39 

 

   

              (a)                                        (b)  

Figure 3.4:  (a) Result of Path Planning (b) Selected Path in Graph  

 

   

Figure 3.5:  Results of Path Planning with Maps 

 

3.4 Way Point Navigation 

 Path planning with grid maps give exact points to move on, but path planning with R-

maps give only areas (rectangles). Although a vehicle will get to its destination after following 
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selected rectangles, it needs exact way points to define a precise path. To select way points, there 

are several approaches. A vehicle may pass the center points of each rectangle or the center point 

of the boundary of two rectangles. In this study, the latter appoach is adopted. Thus, way points 

consist of outward and inward points in each rectangle. To pick a center point of the boundary of 

two rectangles, two things are required. First, in which direction the next rectangle is connected. 

Depending on which side is the way to the next rectangle, its outward point will be different. 

Second, how many elements are connected between the next and current rectangles. By knowing 

this, the coordinates of a center point can be calculated.  

 

 

Figure 3.6:  Selected Rectangles as a Path from 1 to 4 in Matrix G. 

 

 Figure 3.6 shows the selected rectangles from rectangle 1 to 4 and the path is 1 → 7 →2 

→ 4. At this point in time, the current rectangle is 1 and next rectangle is 7. The required 

information is that which side is rectangle 7 on rectangle 1, and with how many elements they 

are connected. For initialization, zeros are added around G. From step 4 of the R-map algorithm, 
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elements around rectangle 1 are acquired and they are from equations (2.16)-(2.19). 

 

                                                                   (2.16) 

                                                                    (2.17) 

                                                                 (2.18) 

                                                                 (2.19) 

 

 The next rectangle is 7 and it is in                  . Thus, it is obvious that 

rectangle 7 is on the right side of rectangle 1. To find with how many elements they are 

connected, two columns are considered, the column on the rightmost of rectangle 1 (column 1) 

and its next column on right side (column 2). In Figure 3.6, column 1 is the second column and 

column 2 is the third column. Note that G in Figure 3.6 has ten elements in each column but, 

column 1 and 2 have twelve elements each since zeros are added around G. 

 

                                                       (3.12) 

                                                       (3.13) 

 

 Elements of rectangle 1 in column 1 and elements of rectangle 7 in column 2 can be 

found as true or false, 1 or 0. The locations of their intersection indicate row numbers of 

connected elements. In this example, they are connected with one element.  

 

                                                       (3.14) 

                                                       (3.15) 
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 The two columns are connected with fifth element. To calculate the center point of their 

connection, the first and last locations of the intersected elements are considered. 

 

                           
                                 

 
          (3.16) 

 

 The center point is located on fifth row and the next column of the current rectangle. In 

this example, the row number is 5 and column number is 4. Since zeros are added around G, the 

location should be adjusted to the original G. The adjusted location is (3,4) where (x,y), and it 

will be the inward point to rectangle 7. The outward point from rectangle 1 is the next element on 

left side of the inward point, (2,4). Therefore, the way points from rectangle 1 to 7 are (2,4) and 

(3,4) as shown in Figure 3.7 (a), and next way points can be found in this manner.  If the next 

rectangle is on the upper or lower sides, elements of two rows are extreacted from G instead of 

columns, and equation (3.16) is to find column number of the center point.  

 Examples of the result of way point navigation are shown in Figure 3.7 (a) and (b) with 

red for start and finish points, yellow for outward points and green for inward points. Figure 3.7 

(c) shows details of the result from MATLAB. 
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                   (a)                                     (b) 

 

(c) 

Figure 3.7:  Results of Way Point Navigation 

 

3.5 Path Planning Examples 

 In this section, examples of path planning with the four different weights are 

demonstrated. Three maps (complex, simple and AU campus map) are used for the path planning 

to make the difference of the weights clear, Figures 3.8-3.9 are path plannings with a complex  

map, Figures 3.10-3.11 are with a simple map and Figures 3.12-3.13 are with the AU campus 

map. The four paths with the complex map are all different depending on their weight parameters. 

Figure 3.8 (a) illustrates the path with the weight by area,      . The list of the properties,   , 
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is used to designate lower weight to larger area. The algorithm selects the path of larger area. 

Figure 3.8 (b) shows the path with the weight by border length,        . By calculating number 

of connected cells and designate lower weight to wider path, the algorithm selects the path of 

wider passageway. Figure 3.8 (c) shows the path with the weight by distance of center points, 

         . The location of center points of every rectangle is calculated and distances for them 

are computed to find a shorter path to the finish point. Figure 3.8 (d) illustrates the path with the 

weight by number of connections,            . To get the number of connections of each 

rectangle,             is used and the algorithm selects the rectangle which has more 

potential ways.  

 However, if a map does not have diverse rectangles and connections, the optimal paths 

with different weight definitions may be similar to each other. To demonstrate that the weight 

parameters do not always have a big effect on the path planning, paths with different start and 

end points are shown in Figure 3.10-3.11, a simple map, and Figure 3.12-3.13, the AU campus 

map. In Figure 3.10, the three paths are same out of four. This similarity is because of the 

simplicity of the map and lack of diverse connections. Also, basically paths with three weight 

definitions,      ,         and            , are similar because larger area has longer border 

length and more connections. Figure 3.11 also shows the similarity in path planning. Therefore, 

the importance of the definition of the weight parameters are marked as the complexity of a map 

increases.  
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              (a)                                        (b)         

       

              (c)                                       (d)             

Figure 3.8:  Path Planning 1 with a Complex Map 
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             (a)                                        (b)         

       

             (c)                                        (d)             

Figure 3.9:  Path Planning 2 with a Complex Map 
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               (a)                                      (b)         

       

             (c)                                        (d)             

Figure 3.10:  Path Planning 1 with a Simple Map 
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               (a)                                      (b)         

       

              (c)                                      (d)             

Figure 3.11:  Path Planning 2 with a Simple Map 
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                (a)                                     (b)         

   

                (c)                                      (d)             

Figure 3.12:  Path Planning 1 with the AU Campus Map  
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                (a)                                     (b)         

   

               (c)                                      (d)             

Figure 3.13:  Path Planning 2 with the AU Campus Map 
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3.6 Comparison of Path Planning with Grid maps and R-maps 

 Path planning with R-maps is completed by considering Dijkstra’s algorithm, four 

different weight definitions and way point navigation. In this section, to demonstrate efficiency 

of path planning with R-maps, paths with grid maps and with R-maps are compared. In both path 

planning, weight parameter is distance. For path planning with grid maps, Dijkstra’s algorithm is 

applied as well, and each cell has weight one. Thus, the algorithm selects the shortest path 

between a start point and a destination. In Figure 3.14,       maps are used for path planning. 

Figure 3.15 shows path planning with four times higher resolution maps. Table 3.3 has 

comparisons of numbers of elements, connections, computation time of path planning and total 

distance. The computation time for R-maps includes weight and way point calculations. For both 

resolutions, path planning with an R-map takes less time than with a grid map. This is because 

R-maps have less elements and connections to compute a path with Dijkstra’s algorithm. Total 

distance is the distance between start and finish points in each map. Since every cell in grid maps 

has weight one, path planning with grid maps should generate the shortest path. However, 

because paths in grid maps are always horizontal and vertical lines, these staircase paths can be 

longer than diagonal paths from R-maps as shown in Figure 3.14. Total distance in Table 3.3 

demonstrates that path planning with R-maps can generate shorter paths than paths from grid 

maps. 

            

Figure 3.14:  Total Distance in Each Map 



52 

 

       

     (a) Path Planning with Grid Map                 (b) Path Planning with R-map 

            (grid removed)                             (rectangles removed) 

Figure 3.15:  Path Planning with       Resolution Maps 

 

  

     (a) Path Planning with Grid Map                 (b) Path Planning with R-map 

            (grid removed)                             (rectangles removed) 

Figure 3.16:  Path Planning with         Resolution Maps 
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Table 3.3:  Comparison of Path Planning 

Resolutions               

Map Type Grid map R-map Grid map R-map 

Elements 

(nodes) 
2,084 351 33,138 1,482 

Connections 

(edges) 
6,220 988 123,502 5,456 

Computation Time of 

Path Planning (sec) 
0.184 0.213 7.666 0.714 

Total Distance (cells) 97 91.6 387 355.9 
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Chapter 4 

Further Applications and Conclusions 

 

 Because the input of the R-map algorithm is an image, R-map can be applied to other 

fields such as image processing. In addition, R-map reduces the amount of data by integration of 

redundant data. In this chapter, several further examples of R-map are suggested and conclusions 

of this work are described. 

 

4.1 Further Applications 

4.1.1 Data Reduction in Communication between Cooperative Agents 

 In the situation of sharing information between agents, their ability to send data can be 

limited for some reasons such as hardware limitation, computing speed or disturbance from 

outside. In Figure 4.1 (a), the two red agents are flying, doing collision avoidance using a grid 

map in a region. Assuming that they are on the same plane (same altitude), they gather 

information of obstacles through onboard sensors. Each agent sensing different area 

communicates their information about obstacles. In this scenario, the amount of data can be 

reduced by R-mapping. The three different approaches for data storage in section 2.4 can be 

applied for this scenario. As mentioned in section 2.4, if a map has resolution high enough to 

avoid distortion of obstacles, saving locations of empty rectangles from an R-map is more 

efficient. In the same sense, sharing locations of empty rectangles requires fewer amounts of data. 

Therefore, by using R-maps, the agents may not need high performance hardware. 
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                 (a) Grid Map                        (b) R-map 

Figure 4.1:  Example of the Data Reduction 

 

4.1.2 Driving Assistance 

 Not only a map image but also a landscape image can be used in the R-map algorithm. 

In a landscape image, bright parts are considered as free space and dark parts are considered as 

obstacles. The landscape image of Figure 4.2 (a) can be acquired from a visual camera mounted 

on a car. To make the road empty space and the lines on the road obstacles, the color should be  

reversed. Then the car can run through the empty space, and cannot cross the obstacles or the 

lines. Therefore, the car can keep in the lane not crossing the lines. This system can Figure out 

the area that a car can pass through, and give notice to the driver when the car gets close to the 

lines. However, the system has a weakness of lights and signs on the surface of the road. 

         

         (a) Image from Visual Camera            (b) Path Planning for Driving 

Figure 4.2:  Example of the Driving Assistance 
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4.1.3 Image Recognition 

 The next applications are of the image processing using    or             from the 

R-map algorithm. A pattern image, Figure 4.3 (a), is R-mapped to find connections of the 

rectangles. By knowing the relationships of the rectangles, Figure 4.3 (b), similar relationships 

can be found from a library and that is a similar pattern.  

 To apply R-map to the letter recongnition, two selected rectangles are compared after R-

mapping as in Figure 4.4 (b). Then, a rule of the rectangles may be found. For example, in letter 

A, the two rectangles are selected. If the upper one is smaller than the lower one, it might be A. If 

the upper one is larger than the lower one and they are touching, it might be U. Hence, by 

scanning or taking a picture of a document, the letters are recognizable. 

 

   

               (a) Pattern                          (b) R-map of the Pattern 

Figure 4.3:  Examples of the Pattern Recognition 
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(a) Letter Image

 

(b) R-map of the Letter Image 

Figure 4.4:  Example of the Letter Recognition 

 

4.2 Summary 

 Figure 4.5 illustrates the flows to implement path planning with the two mapping 

representations. Through this study, grid mapping is always faster than R-mapping, because grid 

mapping is only converting an RGB image to a binary image. On the other hand, R-mapping 

includes four steps to find maximal empty rectangles. However, for path planning with a grid 

map takes much longer than with an R-map. This is because path planning with a grid map 

considers every single cell to compute a path, while path planning with an R-map considers 

dramatically reduced number of rectangles. Furthermore, the reduced number of rectangles 

yields reduced space requirement to save a map.  
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Map Image 

 

                                

 

 

 

Grid Mapping         R-mapping                                       

0.466 sec             33.078 sec 

 

 

 

 

      (grid removed) 

 

 

 

 

 

 

 

Path Planning       Path Planning 

112.697 sec            0.706 sec 

              

 

 

                                                            (rectangles removed) 

 

113.163 sec          Total Time          33.784 sec 

20,000 bytes      Memory requirement      5,180 bytes 

Figure 4.5:  Comparison of Entire Process of Two Maps 

R-map Grid Map 
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4.3 Conclusions 

 In this thesis, the efficiency of R-maps is demonstrated comparing cell numbers of actual 

examples: the indoor and outdoor maps. In R-map chapter, specific steps of the algorithm, 

examples of R-mapping and efficiency in data storage were described. In path planning chapter, 

Dijkstra’s algorithm, four different weight definitions, way point navigation, examples of path 

planning and efficiency in path planning were described to highlight the utility of R-maps in path 

planning. 

 R-map helps to build a higher resolution map with fewer elements by applying the 

maximal empty rectangle problem. R-map representation has several advantages. First, by 

focusing on the maximal empty rectangles, it is naturally suited to obstacle avoidance by 

focusing on the largest possible obstacle-free space. Second, by using a reduced number of 

elements, R-map is more efficient for path-planning algorithms such as Dijkstra’s algorithm. Last, 

by integration of empty cells into a larger rectangle, R-map reduces redundant data thus it is 

efficient for data saving. 

 Although, the R-map has been introduced three years ago, this study advances the R-

map for path planning, and demonstrates its efficiency in data storage and path planning. This 

new map representation, R-map, could be beneficial not only for path planning but also image 

processing. Since the R-map algorithm starts with an image, it can be applied to other fields 

related to image reconstruction. 
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Appendix A 

Matlab Codes Used for R-mapping and Path Planning 

clear all 
close all 
clc 

  
% =========================================================================== 
% ================================ R-mapping ================================ 
% =========================================================================== 

 

% ========================= Image Read and Plotting ========================= 

RGB = imread('complex.jpg'); 

I = rgb2gray(RGB);  
threshold = graythresh(I); 
bw = im2bw(I,threshold);  
r1 = imresize(bw,0.2,'nearest');  
r2 = imresize(r1,5,'nearest');  

  
[G M] = Rmap(r2); 

 

Ga = -G; 
[m n] =  size(Ga); 
Ga = [zeros(m,1) Ga zeros(m,1)]; 
Ga = [zeros(1,n+2) ; Ga ; zeros(1,n+2)]; 

 
imshow(r2); 
hold on; 
for i=1:length(M) 
    r = M(i).r; 
    rectangle('Position',[r(1:2)-0.5 r(3:4)],'EdgeColor','r') 
end 

 

% ============================= Main Algorithm ============================== 

function [Gx M] = Rmap(G) 
 

Gx = double(G); 
a = sum(sum(G)); 
M(a,1) = 

struct('r',[],'connection',[],'ele',[],'left',[],'right',[],'upper',[],'lower

',[]); 
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for i=1:a 
    r = FindMaximalEmptyRectangle(G); 
    M(i).r = r; 
    G = GridMapUpdate(G,r); 
    if ~sum(sum(G)) 
        break; 
    end 
end 
M = M(1:i,1); 
[Gx M] = ComputeConnection(Gx,M); 

 

% ========================= Step 1: Initialization ========================== 

%                                            and  

% ================= Step 2: Finding Maximal Empty Rectangle ================= 

function [best_r] = FindMaximalEmptyRectangle(G) 

 

[M N] = size(G); 
cx = zeros(M,N); 
cx(:,N) = G(:,N); 
for i = N-1:-1:1 
    cx(:,i) = cx(:,i+1)+G(:,i); 
    cx(G(:,i)==0,i)=0; 
end 
width = 0; 
push = zeros(M,2); 
largest_area = 0; 
k = 1; 
for x=1:N 
    c = [cx(:,x);0]; 
    for y=1:M+1 
        if c(y)>width 
            k = k+1; 
            width = c(y); 
            push(k,:) = [y width]; 
        end 
        if c(y)<width 
            while (1) 
                y0 = push(k,1); 
                w0 = push(k,2); 
                area = w0*(y-y0); 
                if  area > largest_area 
                    best_r =  [x y0 w0 y-y0]; 
                    largest_area = area; 
                end 
                k = k-1; 
                if c(y)>=push(k,2) 
                    break; 
                end 
            end 
            width = c(y); 
            if width ~= 0 
                k = k+1; 
                push(k,:) = [y0 width]; 
            end 
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         end 
    end 
end 
 

 

% ========================= Step 3: Grid Map Update ========================= 

function G = GridMapUpdate(G,r,k) 

 

if nargin<3 
    k=0; 
end 
G(r(2):r(2)+r(4)-1,r(1):r(1)+r(3)-1)= -k; 

 

% ======================= Step 4: Compute Connection ======================== 

function [Gx M] = ComputeConnection(Gx,M) 
[m n] =  size(Gx); 
for i=1:size(M,1) 
    Gx = GridMapUpdate(Gx,M(i).r,i); 
end 
Gx = [zeros(m,1) Gx zeros(m,1)]; 
Gx = [zeros(1,n+2) ; Gx ; zeros(1,n+2)]; 
for i=1:size(M,1) 
    r = M(i).r; 
    x0 = r(1)+1; 
    y0 = r(2)+1; 
    x = r(1)+r(3); 
    y = r(2)+r(4); 

     
    left_conn  = Gx(y0:y,x0-1)'; 
    right_conn = Gx(y0:y,x+1)'; 
    upper_conn = Gx(y0-1,x0:x); 
    lower_conn = Gx(y+1,x0:x); 

     

    M(i).left = -unique(left_conn); 
    M(i).right = -unique(right_conn); 
    M(i).upper = -unique(upper_conn); 
    M(i).lower = -unique(lower_conn);    

     
    CONN = -[left_conn right_conn upper_conn lower_conn]; 
    M(i).ele = CONN; 
    conn = unique(CONN);     
    conn(conn==0)=[]; 
    M(i).connection = conn; 
end 
Gx = Gx(2:end-1,2:end-1); 
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% =========================================================================== 
% ============================== Path Planning ============================== 
% =========================================================================== 

 

% ==================== Start and Finish Points Selection ==================== 

 

MAP=G; 

 

% Select START point 
pause(1); 
h=msgbox('Please Select the START point using the Left Mouse button'); 
uiwait(h,5); 
if ishandle(h) == 1 
    delete(h); 
end 
xlabel('Please Select the START point ','Color','black'); 
but=0; 
while (but ~= 1)  
    [xstart,ystart,but]=ginput(1); 
end 
xstart=floor(xstart); 
ystart=floor(ystart); 
STARTISIN=-MAP(ystart,xstart); 
MAP(ystart,xstart)=11111111; 
plot(xstart,ystart,'bo'); 
text(xstart+5,ystart,'START','color','b') 

 
% Select FINISH point 
pause(1); 
h=msgbox('Please Select the FINISH point using the Left Mouse button'); 
uiwait(h,5); 
if ishandle(h) == 1 
    delete(h); 
end 
xlabel('Please Select the FINISH point using the Left Mouse 

button','Color','black'); 
but=0; 
while (but ~= 1)  
    [xfinish,yfinish,but]=ginput(1); 
end 
xfinish=floor(xfinish); 
yfinish=floor(yfinish); 
FINISHISIN=-MAP(yfinish,xfinish); 
MAP(yfinish,xfinish)=99999999; 
plot(xfinish,yfinish,'bd'); 
text(xfinish+5,yfinish,'FINISH','color','b') 

 

% =============== Weight Calculation and Dijkstra’s Algorithm =============== 

% Calculate number of all connections 
NUMBEROFCONNECTION=zeros(length(M),1);  
for i=1:length(M) 
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    A=size(M(i).connection); 
    NUMBEROFCONNECTION(i)=A(2); 
end 
LENGTH=sum(NUMBEROFCONNECTION); 

 
% Rearrange the connections into CONNECTION 
CONNECTION=zeros(LENGTH,3); 
t = 0; 
for j=1:length(M) 
    CONNECTION(t+1:t+size(M(j).connection,2),1)= j; 
      for k=1:size(M(j).connection,2) 
          CONNECTION(k+t,2)= M(j).connection(k); 
      end 
    t= t+size(M(j).connection,2); 
end 

 
%% Calculate weights 

  

% =====Weight by area===== 
W = CONNECTION(:,2); 

  
% =====Weights by border length===== 
for i=1:length(CONNECTION) 
    rect=CONNECTION(i,1); 
    neigh=CONNECTION(i,2); 
    s=sum(M(rect).ele==neigh); 
    W(i)=1/s; 
end 

  
% =====Weight by distance===== 
center_point=zeros(length(M),2); 
for i=1:length(M) 
    center_point(i,1)=M(i).r(1)+M(i).r(3)/2; 
    center_point(i,2)=M(i).r(2)+M(i).r(4)/2; 
end 
for j=1:length(CONNECTION) 
    rectangles=[... 
        center_point(CONNECTION(j,1),1),center_point(CONNECTION(j,1),2);... 
        center_point(CONNECTION(j,2),1),center_point(CONNECTION(j,2),2)]; 
    W(j)=pdist(rectangles,'euclidean'); 
end     
W=W'; 

  
% =====Weight by number of connection===== 
for i=1:length(CONNECTION) 
    j = CONNECTION(i,2); 
    W(i) = 1/numel(M(j).connection); 
end 
W = W'; 

 
% Calculate path 
DG=sparse(CONNECTION(:,1),CONNECTION(:,2),W); 
h=view(biograph(DG,[],'ShowWeights','on')) 
[dist,path,pred]=graphshortestpath(DG,STARTISIN,FINISHISIN); 
set(h.Nodes(path),'Color',[1 0.4 0.4]) 



68 

 

edges = getedgesbynodeid(h,get(h.Nodes(path),'ID')); 
set(edges,'LineColor',[1 0 0]) 
set(edges,'LineWidth',1.5) 
%% Path Color 
for i=path 
    r = M(i).r; 
    rectangle('Position',[r(1:2)-0.5 r(3:4)],'FaceColor','g') 
end 

 
%% Labeling on the rectangles 

% Find center point of rectangle 
center=zeros(length(M),2); 
for i=1:length(M) 
    center(i,1)=floor(M(i).r(3)/2+M(i).r(1))-4; 
    center(i,2)=floor(M(i).r(4)/2+M(i).r(2)); 
end 

 
% Labeling 
for i=1:length(M) 
    text(center(i,1),center(i,2),['',num2str(i)],'color','r') 
end 
plot(xstart,ystart,'bo') 
text(xstart+5,ystart,'START','color','b') 
plot(xfinish,yfinish,'bd') 
text(xfinish+5,yfinish,'FINISH','color','b') 
 

%% Waypoint navigation 
location = zeros(2*(length(path)-2)+2,2); 
k = 1; 

  
for i = 1:length(path)-1 
    j = path(i); 
    x1 = M(j).r(1)+1; 
    y1 = M(j).r(2)+1; 

         
    if sum(M(j).left == path(i+1))>=1 
        left1 = (Ga(:,x1)==path(i)); 
        left2 = (Ga(:,x1-1)==path(i+1)); 
        y = find(left1&left2); 
        s = size(y); 
        location(k,2) = (y(1)-1+y(s(1))-1)/2; 
        location(k,1) = M(j).r(1); 
        location(k+1,2) = location(k,2); 
        location(k+1,1) = location(k,1)-1; 
    end 
    if sum(M(j).right == path(i+1))>=1 
        right1 = (Ga(:,x1+M(j).r(3)-1)==path(i)); 
        right2 = (Ga(:,x1+M(j).r(3))==path(i+1)); 
        y = find(right1&right2); 
        s = size(y); 
        location(k,2) = (y(1)-1+y(s(1))-1)/2;     
        location(k,1) = M(j).r(1)+M(j).r(3)-1; 
        location(k+1,2) = location(k,2); 
        location(k+1,1) = location(k,1)+1; 
    end 



69 

 

    if sum(M(j).upper == path(i+1))>=1 
        upper1 = (Ga(y1,:)==path(i)); 
        upper2 = (Ga(y1-1,:)==path(i+1)); 
        x = find(upper1&upper2); 
        s = size(x); 
        location(k,1) = (x(1)-1+x(s(2))-1)/2; 
        location(k,2) = M(j).r(2); 
        location(k+1,1) = location(k,1); 
        location(k+1,2) = location(k,2)-1; 
    end 
    if sum(M(j).lower == path(i+1))>=1 
        lower1 = (Ga(y1+M(j).r(4)-1,:)==path(i)); 
        lower2 = (Ga(y1+M(j).r(4),:)==path(i+1)); 
        x = find(lower1&lower2); 
        s = size(x); 
        location(k,1) = (x(1)-1+x(s(2))-1)/2; 
        location(k,2) = M(j).r(2)+M(j).r(4)-1; 
        location(k+1,1) = location(k,1); 
        location(k+1,2) = location(k,2)+1; 
    end 
    k = k+2; 
end 
location(:,1) = location(:,1)-0.5; 
location(:,2) = location(:,2)+0.5; 
location2 = [xstart,ystart; location; xfinish yfinish]; 
y = location2(:,1)'; 
x = location2(:,2)'; 
line(y,x,'Color','r','LineWidth',1) 

 

 


