

Mapping for Path Planning using Maximal Empty Rectangles

by

Jinyoung Park

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Auburn, Alabama

August 3, 2013

Keywords: Mapping, Path Planning, Grid Map,

R-map, Maximal Empty Rectangle

Copyright 2013 by Jinyoung Park

Approved by

Andrew J. Sinclair, Chair, Associate Professor of Aerospace Engineering

John E. Cochran, Jr., Professor and Head of Aerospace Engineering

David A. Cicci, Professor of Aerospace Engineering

Gilbert L. Crouse, Associate Professor of Aerospace Engineering

Andrew B. Shelton, Assistant Professor of Aerospace Engineering

ii

Abstract

 This study applies a new map representation, named R-map, to the path-planning

problem. The R-map is calculated as a reduced-element representation of a grid map. Grid maps

express obstacles and free space with a binary representation for each cell. The concept of the R-

map is to integrate free cells into the maximal empty rectangles by surveying the numbers in a

grid map. By calculating the R-map, the number of free cells in the grid map is dramatically

reduced and this accomplishes data reduction. Since the R-map is a new map representation, it

has potential applications in many other fields.

 This thesis consists of two major parts, R-map and path planning. The R-map part

explains a specific R-map algorithm with a simple example, and demonstrates its advantages

comparing examples for indoor and outdoor environments. Also, data reduction by applying R-

map is demonstrated. In the path planning part, the path planning using Dijkstra’s algorithm is

described and paths according to four different weights are illustrated. Moreover, path planning

with grid maps and R-maps is compared. R-maps are naturally suited for path planning due to

their reduced number of elements and focus on the largest obstacle-free areas.

iii

Acknowledgments

 The author would like to sincerely appreciate Dr. Andrew J. Sinclair for his advice,

patience and kindness throughout his study at Auburn University. Also the author would like to

thank all faculties of the Aerospace Engineering Department at Auburn University. Finally the

author would like to express his thanks to his girl friend, Jiyeong Kim, in South Korea for her

love and encouragement.

 This work is dedicated to the author’s grateful parents, Hochul Park and Mija Choi,

appreciating their support and devotion.

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

1 Introduction . 1

2 R-map . 4

 2.1 R-map Algorithm . 4

 2.1.1 Step 1: Initialization . 6

 2.1.2 Step 2: Find a Maximal Empty rectangle . 6

 2.1.3 Step 3: Grid Map Update .12

 2.1.4 Iteration of Steps 1, 2, and 3 . 13

 2.1.5 Step 4: Compute Connection .13

 2.2 Result of R-map Algorithm .17

 2.3 R-map Examples .18

 2.4 Comparison of Data Storage .27

3 Path Planning . 30

 3.1 Dijkstra’s algorithm .30

 3.2 Weight Definitions . 33

 3.2.1 Weight by Area . 33

 3.2.2 Weight by Border Length .34

 3.2.3 Weight by Distance . 35

v

 3.2.4 Weight by Number of Connections . 36

 3.3 Selected Rectangles .37

 3.4 Way Point Navigation .39

 3.5 Path planning Examples . 43

 3.6 Comparison of Path Planning with Grid maps and R-maps 51

4 Further Applications and Conclusions . 54

 4.1 Further Applications . 54

 4.1.1 Data Reduction in Communication of Airplanes 54

 4.1.2 Driving Assistance .55

 4.1.3 Image Recognition .56

 4.2 Summary .57

 4.3 Conclusion .59

Bibliography . 60

Appendix . 62

A Matlab Codes Used for R-mapping and Path Planning . 63

vi

List of Figures

1.1 Two Different-Resolution Grid Maps from the Image . 2

2.1 Diagram of the R-map Algorithm . 5

2.2 Example of G and cx . 6

2.3 Top Rows and Areas of Rectangles 1, 2 and 3 .8

2.4 Top Rows and Areas of Rectangles 1' and 4 .10

2.5 Top Row of Rectangle 5 .11

2.6 (a) Maximal Empty Rectangle 1 in cx Matrix (b) Corresponding Elements in G Matrix

 are Updated to Zeros . 12

2.7 10 Rectangles after Iteration .13

2.8 Labeled Rectangles in Gx .15

2.9 Location of the Corners in Gx . 16

2.10 Input and Output of R-map Algorithm .17

2.11 Indoor Map Image . 19

2.12 Grid Map and Its R-map .20

2.13 Grid Map and Its R-map .20

2.14 Grid Map and Its R-map .21

2.15 Grid Map and Its R-map .21

2.16 Comparison of Indoor Maps by Number of Elements .22

vii

2.17 Auburn University Campus . 23

2.18 Grid Map and Its R-map .24

2.19 Grid Map and Its R-map .24

2.20 Grid Map and Its R-map .25

2.21 Grid Map and Its R-map .25

2.22 Comparison of Outdoor Maps by Number of Elements .26

2.23 Grid Maps in Different Resolutions .29

3.1 Example of Dijkstra’s Algorithm . 31

3.2 The Final Costs and the Lowest-Cost Path .32

3.3 Comparison of Two Possible Paths . 38

3.4 (a) Result of Path Planning (b) Selected Path in Diagram .39

3.5 Results of Path Planning with Maps .39

3.6 Selected Rectangles as a Path from 1 to 4 in Matrix G . 40

3.7 Results of Way Point Navigation . 43

3.8 Path Planning 1 with a Complex Map . 45

3.9 Path Planning 2 with a Complex Map . 46

3.10 Path Planning 1 with a Simple Map .47

3.11 Path Planning 2 with a Simple Map .48

3.12 Path Planning 1 with the AU Campus Map .49

3.13 Path Planning 2 with the AU Campus Map .50

3.14 Total Distance in Each Map .51

3.15 Path Planning with Resolutions Maps .52

3.16 Path Planning with Resolutions Maps .52

viii

4.1 Example of the Data Reduction . 55

4.2 Example of the Driving Assistance . 55

4.3 Example of the Pattern Recognition .56

4.4 Example of the Letter Recognition .57

4.5 Comparison of Entire Process of Two Maps . 58

ix

List of Tables

2.1 Indoor R-mapping by Different Resolutions . 22

2.2 Outdoor R-mapping by Different Resolutions .26

2.3 Comparison of Data Storage . 29

3.1 Tentative Costs in Each Step . 32

3.2 Comparison of Weights using Different Parameters . 37

3.3 Comparison of Path Planning .53

1

Chapter 1

Introduction

 Autonomous mobile robots have been studied for decades. To make the robot move,

many things are required. The most essential constituent is a map of its environment. By this

map, an optimal path can be calculated, and the robot can move to the destination performing

obstacle avoidance. The most popular map representation is a grid map which expresses

obstacles and free space with binary numbers, 0 representing an obstacle and 1 representing free

space. Also since these numbers are in a matrix form, it is easy to locate obstacles and robots. A

grid map, however, has a problem of resolutions. Different-resolution grid maps can be generated

from an image of the environment. Figure 1.1 shows two grid maps, (b) and (c), in different

resolutions which are generated from the original image (a). They are a grid map and a

twice higher resolution map, grid map. The lower resolution map, the grid

map, consumes less data but, the obstacles are distorted. Hence, path planning with a lower

resolution map may give an unreliable path. The higher resolution map, the grid map,

represents obstacles close to the image of environment but, this twice bigger map has times

more cells. Hence, path planning with times higher resolution map gives more reliable path

but, it has times more cells to consider.

2

(a) Image of Environment

(b) Grid Map (c) Grid Map

Figure 1.1: Two Different-Resolution Grid Maps from the Image

 As a solution of this problem, multiresolution cell decomposition has been suggested [1].

The algorithm decomposes cells into smaller cells, in order to minimize the distortions of

obstacles. Thus the map has varied sizes of cells. Prazenica and Kurdila adopted multiresolution

decomposition for obstacle-location estimation using receding horizon control formulation [2-3].

Another solution for the drawback of grid maps has been suggested, named Rectangular map or

R-map. The main idea is integration of empty cells into a maximal empty rectangle. R-maps

were invented by Ahn and Jeon in 2010 [4]. They introduce R-map as a hybrid map of the grid

and the topological maps. The topological map is a graph-based map which only shows

3

relationships between nodes by branches such as a subway map. In R-map, each integrated cells

as maximal rectangles are the nodes and relationships, connections of the rectangles, are

calculated.

 This thesis details the computation of R-maps, and implements path planning with R-

maps using Dijkstra’s algorithm. Furthermore, it includes illustrations of applications of R-map

to other fields. Chapter 2 describes the R-map algorithm and result. The algorithm consists of

four steps: initialization, finding a maximal empty rectangle, grid map updating and computing

connection. Each step is explained with a simple example and Figures as separated subsections.

Also, the result of the R-map algorithm for indoor and outdoor maps is illustrated.

 Chapter 3 describes the path-planning algorithm and results. Dijkstra’s algorithm is

applied for path planning, and since paths can be different depending on weights in Dijkstra’s

algorithm, four different approaches are demonstrated to find an optimal path. The weights are

defined based on rectangle area, border length, shortest path, and number of neighbors. Path

planning with the indoor and outdoor R-maps from Chapter 2 are illustrated.

 Further examples using R-map are suggested in Chapter 4. Because R-map is an image

reconstruction, it can be applied to other fields such as image processing. The examples include

reduction of data, driving assistance and image recognition.

 The purpose of this study is to advance the previous R-map [4] and apply it to path

planning. The R-map and path planning are specifically explained with examples and analyzed

throughout following Chapters.

4

Chapter 2

R-map

 The main idea of the R-map is the integration of empty cells of the grid map into a

maximal empty rectangle. The key issue of R-map algorithm is finding maximal empty

rectangles in the form of non-overlapping rectangles. The maximal empty rectangle problem has

been studied by mathematicians and computer scientists to mine empty areas [5], and reduce data

(image compression) [6]. There are two basic ways to find the rectangles within an image. One is

finding the rectangles with geometrical calculations on the image. This way is focused on saving

the largest-area rectangular piece in the field such as a piece of fabric or sheet metal with holes

[7]. The other way is calculations of values in an image represented with binary numbers. This

way is focused on extracting a required or empty data set from the field [8]. The R-map

algorithm is the second way as long as the input of the algorithm is a grid map. The flow of the

algorithm in this study is referred from Ahn and Jeon [4].

2.1 R-map Algorithm

 The input of the R-map algorithm is a binary image, G, as shown in Figure 2.1. In step 1,

cx and Gx matrices are defined. cx is transformed from G, and Gx is the same matrix with G. cx

is used in step 2 and Gx is used in step 4. In step 2, every element of free space in cx is surveyed

to compare the areas of possible rectangles and find the largest one. The property of the largest

rectangle in each survey is saved as which includes its coordinate of the left-upper corner, the

5

width and height. As the survey proceeds, the property of the larger rectangle is updated to the

largest one. The survived largest rectangle is the maximal empty rectangle and the property of

the rectangle is saved as . In step 3, the corresponding elements of in G are updated to

zeros to find non-overlapping empty rectangles in the subsequent iterations. The process goes

back to step 1 with updated G, and steps 1, 2 and 3 are repeated until all of the elements in G

have been set to zero. In step 4, the maximal empty rectangles are labeled as k in the rank of

to find neighbors of kth rectangles and they are saved as . The output of the

algorithm is a structure M which consists of .

Figure 2.1: Diagram of the R-map Algorithm

6

2.1.1 Step1: Initialization

 A binary image that shows obstacles and free space can be represented as a grid map,

and is the starting point for creating the R-map. The grid map is a matrix G whose

elements consist of 0 and 1, with 0 representing an obstacle and 1 representing free space. To aid

in defining the R-map, G is preprocessed to define a matrix cx which is a right-to-

left row-wise summation of contiguous free-space elements in G. The elements of th

row of cx are set as zeros. Also, Gx matrix which is the same as G is defined for use in step 4.

Figure 2.2 illustrates an example of G and cx.

(a) G Matrix (b) cx Matrix

Figure 2.2: Example of G and cx

2.1.2 Step 2: Find a Maximal Empty Rectangle

 The critical step in computing the R-map is finding the maximal empty rectangle in the

grid map. The idea of the algorithm used here is referred from Vandevoorde [9]. Step 2 is done

by surveying cx column-by-column, starting with the first element of the first column. The

survey of each column considers the largest rectangles that can be formed with the left edge of

7

the rectangles in that column. As the survey progresses, the candidate rectangles under current

consideration are stored in a stack called stack. Each entry in stack stores the width of that

rectangle and the top row number of that rectangle.

 As the survey for each element proceeds down the jth column, the value of the next

element is compared to the value of the current element . There are four

possibilities of the comparison. In the first possibility, if these values are equal, then no changes

are made to stack. In the second possibliity, if the value is greater than the ith value,

then a new rectangle is added to stack. The new rectangle has a top row equal to and a

width equal to . In the third possibility, if the value of cx is less than the

ith value, the areas of the rectangles in stack are calculated and compared to the area of the

largest previously found rectangle. The larger area is updated to the largest area and the property

of the rectangle is saved as . As the areas are calculated, the widths of the rectangles with width

greater than in stack are updated to . Of all the resulting rectangles with

width only the one with the lowest row number is retained, and the other rectangles

with this width (if any) are removed from stack. In the fourth possibility, if the value

is 0, all rectangles are removed from stack. In addition, because the value of cx is

zero, all rectangles are removed at the end of the column. The survey then proceeds to the next

column. For the example shown in Figure 2.3, cx(1, 1) is 2. This means that there is a rectangle

whose top row is 1 and width is 2, then stack is [1, 2] and this is the rectangle 1. The second

element cx(2, 1) is also 2, and no changes are made in stack, because the rectangle 1 can be

extended to the second row. The third element cx(3, 1) is 3 which is greater than the previous

value. Therefore, a new rectangle, the rectangle 2, whose top row is 3 and width is 3 is added to

stack.

8

Figure 2.3: Top Rows and Areas of Rectangles 1, 2 and 3

At third element:

 (2.1)

 The fourth element cx(4, 1) is 10, and it is greater than the third element. Thus another

new rectangle with top row 4 and width 10 is added to stack, and this is the rectangle 3.

At fourth element:

 (2.2)

The fifth value cx(5, 1) is 2, and that is less than the previous value. Thus the areas of the

rectangles in stack are calculated and compared. The heights of the rectangles are subtraction of

their top row and the th row, i.e. the height of the jth rectangle in stack is

 .

9

 (2.3)

 (2.4)

 (2.5)

 Rectangle 3 is the largest rectangle so far. The property of the rectangle which

indicates column number, top row, width and height, is Then, the widths of the

candidate rectangles with widths greater than the fifth element, 2, are updated to 2 and other

rectangles except the lowest row number are removed from stack thus the rectangle 1 is retained

but, the rectangles 2 and 3 are removed from stack.

At fifth element: (2.6)

 The rectangle in stack is the rectangle 1 but, redefine it as the rectangle to distinguish

from the rectangle 1. The fifth value cx(5, 1) and the next values up to seventh cx(7, 1) are equal,

so stack has no changes. The eighth element cx(8, 1) is 8, and this is greater than the seventh

element. Thus a new rectangle is added to stack. The new rectangle is the rectangle 4 in Figure

2.4, which has the top row 8 and the width 8. Now, stack has two candidate rectangles, the

rectangle and 4.

At eighth element:

 (2.7)

10

Figure 2.4: Top Rows and Areas of Rectangles and 4

 The ninth element cx(9, 1) is 0, then the area is calculated and compared to the largest

rectangle.

 (2.8)

 (2.9)

 Since the rectangle is larger than the previous largest rectangle, the rectangle is

updated to the largest rectangle. The property of the rectangle is . In addition,

because the ninth element cx(9, 1) is 0, all rectangles in stack are removed, and the updated stack

is empty.

11

Figure 2.5: Top Row of Rectangle 5

 As shown in Figure 2.5, the tenth element cx(10, 1) is 8. Thus a new rectangle, the

rectangle 5, which has top row 10 and width 8 is added to stack.

At tenth element: (2.10)

 Because the last element cx(11, 1) is 0, the area of the rectangle in stack is calculated,

compared and removed.

 (2.11)

 The largest area is still larger than the area of rectangle 5 therefore, the rectangle is

kept as the largest rectangle.

 The survey proceeds to the second column, and is continued to the last column. As the

12

survey proceeds, the largest rectangle is replaced by a larger area. After the survey of the last

column, the largest rectangle is the maximal empty rectangle and the property of the rectangle is

saved as in the structure M. After the survey of this example, the rectangle is in fact the

maximal empty rectangle and saved as in M.

2.1.3 Step 3: Grid Map Update

 For the elements of the maximal empty rectangle calculated in the previous step, the

corresponding elements of G are updated to zeros. For example, the maximal empty rectangle

in cx found in step 2 is , then the corresponding elements of G are updated to zeros as in

Figure 2.6. This updating ensures that the subsequent iteration only searches the remaining free

space.

 (a) Original cx Matrix (b) Updated G Matrix

Figure 2.6: (a) Maximal Empty Rectangle 1 in the Original cx Matrix (b) Corresponding

Elements in the Updated G Matrix are Updated to Zeros

13

2.1.4 Iteration of Steps 1, 2 and 3

 Steps 1, 2, and 3 are repeated with the updated G in an interative fashion until all of the

elements in G have been set to zero or until a desired threshold is reached in terms of the number

or size of the maximal rectangles, related to the desired R-map resolution. In this example, after

all iterations with G, properties of 10 maximal empty rectangles are saved as up to in M.

Figure 2.7 shows G with elements are all updated to zeros and the 10 rectangles after the

iteration.

Figure 2.7: 10 Rectangles after Iteration

2.1.5 Step 4: Compute Connection

 The purpose of this step is finding neighbors of the maximal empty rectangles using Gx

from step 1. To find what neighbors are connected to the rectangles, the rectangles need to be

labeled. To label the rectangles, the elements of are updated to k. Also, additional columns

and rows are added on both sides, top and bottom of Gx, with elements equal to zeros. Thus, Gx

is updated to demension. As the size of Gx has changed, the locations of the

rectangles are changed and they can be derived from the properties of the rectangles, which

14

contains column number, top row, width and height. Because of the additional column and row

on the left and top of Gx, every element of Gx is moved one cell right and one cell down.

Therefore, the left-upper corner of a rectagle should have an additional 1. The right-lower corner

of a rectangle is ((the column number) (the width), (the top row) (the height)).

Knowledge of the corner positions define the entire boundary of the rectangle, and the

labeling of neighboring elements in Gx therefore allows determination of all connected

rectangles.

 Continuing the example, the elements of are updated to 1, and the elements of

are updated to 2. In the same manner, the elements of are updated to k, where k is up to 10.

Figure 2.8 shows the labeled rectangles in updated Gx as a matrix. The property of the

maximal empty rectangle 1 in G is , and the location of the rectangle 1 in Gx can be derived

from . The location of the maximal empty rectangle 1 in updated Gx is represented as .

 (2.12)

Left-Upper Corner of (2.13)

Right-Lower Corner of (2.14)

 (2.15)

15

Figure 2.8: Labeled Rectangles in Gx

 Figure 2.9 depicts the left-upper and right-lower corners of the maximal empty rectangle

1 which are (2, 2) and (3, 9) respectively. Because the rectangle 1 is known and other rectangles

are labeled, the neighbors of rectangle 1 can be found. The left connections of the rectangle 1 are

the values of the left column of the left-upper corner and the right connections are the values of

the right column of the right-lower corner as many cells as the height of the rectangle 1. The

upper connections are the values of the upper row of the left-upper corner and the lower

connections are the values of the lower row of the right-lower corner as many cells as the width

of rectangle 1.

16

Figure 2.9: Location of the Corners in Gx

 [2, 2, 3, 9]

 (2.16)

 (2.17)

 (2.18)

 (2.19)

 The unique numbers of the connections except zero indicate the connected rectangles of

the maximal empty rectangle 1.

 [7, 8, 9] (2.20)

 The connections up to are saved in a structure M. In this manner,

17

 is saved in M. The output of the R-map algorithm is M which consists of and

 .

2.2 Result of R-map Algorithm

 The input to the R-map algorithm is a binary image G, and the output is a structure M. G

is an matrix, and M is a structure which consist of properties and neighbors of maximal

empty rectangles. The properties are from cx in step 1 and the neighbors are from Gx from step4.

Since properties and neighbors are information of each rectangle, M has as many elements as the

number of maximal empty rectangles in G. Figure 2.10 shows the input and output of the

example. Because the input G has 10 maximal empty rectangles, there are 10 elements in the

output M.

Figure 2.10: Input and Output of R-map Algorithm

18

2.3 R-map Examples

 To demonstrate how the R-map represents a higher resolution map with fewer cells,

different resolution R-maps are compared. Obstacles in a map image can have various shapes of

surfaces with vertical, horizotal, diagonal and curved lines, but the grid map represents these

obstacles with a gridded approximation. The grid-map resolution can be increased to improve

this approximation. Therefore, the map image can produce different resolution grid maps. As

different resolution grid maps have different number of cells, their numbers of free cells which

need to be surveyed to find maximal empty rectangles are different. Thus, depending on the

resolution of the grid map, the computation time to generate the R-map varies.

 An example indoor environment is shown in Figure 2.11 to Figure 2.15, and an example

outdoor environment is shown in Figure 2.17 to Figure 2.21. For the indoor case, the indoor map

image of Figure 2.11 is reproduced in four different resolutions, , ,

and . Table 2.1 compares the number of free cells in the grid maps and the number of

rectangles in the R-maps of the indoor map. For the outdoor map, the Auburn University campus

map of Figure 2.17 is also reproduced in four different resolution: , ,

and . Table 2.2 compares the number of free cells in the grid maps and the number of

rectangles in the R-maps of the outdoor map. In both tables, as the level of the resolution raises

by factor of two, the number of free cells in the grid map increases by approximately four.

However, the number of R-map rectangles increases by only a factor of approximately two.

Therefore, R-map accomplishes a higher resolution map with fewer elements. Additionally,

Tables 2.1 and 2.2 show the computational expense of calculating the R-map from each grid map

using MATLAB implementation on a laptop computer. Whereas higher resolution maps require

more computation time, a trend for the scaling of the computation time is not immediately

19

obvious. It is also noteworthy that these computation times are for the complete R-map. Some

reduction in computation time could be achieved by setting thresholds for the number or size of

the rectangles in the R-map.

Figure 2.11: Indoor Map Image

20

Figure 2.12: Grid Map and Its R-map

Figure 2.13: Grid Map and Its R-map

21

 Figure 2.14: Grid Map and Its R-map

Figure 2.15: Grid Map and Its R-map

22

Table 2.1: Indoor R-mapping by Different Resolutions

Resolutions

Computation Time

of R-mapping (sec)
0.041 0.061 0.146 0.549

Free cells in Grid Map 153 562 2,325 9,331

Rectangles in R-map 25 44 86 156

Figure 2.16: Comparison of Indoor Maps by Number of Elemnets

23

Figure 2.17: Auburn University Campus

24

Figure 2.18: Grid Map and Its R-map

 Figure 2.19: Grid Map and Its R-map

25

Figure 2.20: Grid Map and Its R-map

Figure 2.21: Grid Map and Its R-map

26

Table 2.2: Outdoor R-mapping by Different Resolutions

Resolutions

Computation Time

of R-mapping (sec)
0.057 0.189 0.747 3.283

Free cells in Grid Map 292 1,240 4,859 19,397

Rectangles in R-map 53 154 302 552

Figure 2.22: Comparison of Outdoor Maps by Number of Elemnets

27

2.4 Comparison of Data Storage

 In this section, data storage of an R-map is discussed. A number is saved in a computer

memory as binary numbers. One binary digit occupies one bit, and 8 bits are bound as one byte.

This one byte can express different numbers, and the numbers in this study are

considered as integers. To save a map, there three approaches are considered here: saving entire

grid map as binary numbers, saving locations of only empty cells in a grid map and saving

locations of empty rectangles in an R-map. For the first case, saving entire grid map as binary

numbers, (width) (length) bits are required to save them. For the second case, the locations of

empty cells such as (1,1), (1,2), (2,3), , (x,y) are the numbers to be stored. Each location (x,y)

has two numbers to be stored in a memory. If the dimension of the map is less than 256, then two

bytes are required to save one location. The last case is with an R-map. In this case, locations of

empty rectangles which are the properties from the R-map algorithm are considered. The

properties from Figure 2.10 are [1, 1, 2, 8], [5, 1, 3, 4], , [8, 7, 1, 1] where [x, y, width, length],

and each rectangle has four numbers. Thus for map dimensions less than 256, one rectangle

needs four bytes to be saved.

 Four different resolution maps are shown in Figure 2.23, and Table 2.3 shows required

spaces to save maps using each cases. In Table 2.3, the numbers of the first case are intuitively

calculated, (width) (length) bits. The numbers of the cases 2 and 3 are actual numbers from

MATLAB using class of variables integer. Note that the first three maps whose dimensions are

less than 256 are saved as integer 8 in MATLAB, but since the last map has

dimensions more than 256, it is saved as integer 16. For the first two and

maps, case 1 needs less space than case 3. Therefore, to store the first two maps, saving the entire

map as binary numbers is more efficient. However, the obstacles in their maps are distorted, and

28

a reliable path cannot be generated from these maps. On the other hand, for the last two maps,

 and resolutions, case 3 occupies less space than case 1. This means

that if a map has enough resolution to generate a reliable path, saving locations of empty

rectangles is more efficient than saving the entire map.

29

 (a) (b)

 (c) (d)

 (grid removed)

Figure 2.23: Grid Maps in Different Resolutions

Table 2.3: Comparison of Data Storage

Resolutions

1. Entire Map (bytes) 13 313 7,813 195,313

2. Empty Cells (bytes) 154 3,838 94,776 2,365,330

3. Empty Rectangles (bytes) 80 764 3,128 32,936

30

Chapter 3

Path Planning

 Because the R-map provides a reduced-element map representation focused on the

largest obstacle-free spaces, it appears to be naturally suited for path-planning problems. For path

planning with R-maps, Dijkstra’s algorithm will here be used. This cost-based algorithm

calculates the optimal path between any two points on a map.

 This chapter investigates several methods for defining costs (i.e. weights) based on the

properties of the R-map and the desired path. The following sections review Dijkstra’s algorithm,

introduce several weight definitions, and present path-planning examples.

3.1 Dijkstra’s Algorithm

 Dijkstra’s algorithm was introduced by his paper in 1959 [10]. The algorithm computes

optimal path based on a cost function. The algorithm applies to graphs with vertices (nodes)

connected by edges (branches) which have nonnegative weights (costs) [11]. Thus the graph

expresses the relationships between the vertices, and shows possible ways to a destination vertex.

To travel vertex to vertex, a cost is incurred. The weighted graph is where is the set

of vertices and is the set of edges. The algorithm starts with the start node as the “current”

node. All connected nodes become “tentative” and a tentative cost is assigned to each. The

current node then becomes “settled”, and the tentative node with the lowest tentative cost

becomes the new current node. All nodes connected to the new current node are then evaluated.

31

Figure 3.1: Example of Dijkstra’s Algorithm

Among those connected nodes, previously unvisited nodes become tentative and an accumulated

cost is assigned, and connected nodes that are already tentative potentially have their

accumulated cost updated. The steps are repeated until the lowest-cost path to the destination

node is found. The algorithm is in , because every node is current once, and the possible

connections or settled nature of every other node must be considered. Figure 3.1 shows an

example of undirected graph with start node 1 and destination node 6. In step 1, the tentative

nodes are 2, 3 and 4, and their tentative costs are 3, 4 and 2 respectively. Because node 4 has the

lowest cost, it becomes the next current node. In step 2, nodes 5 and 6 become tentative in

addition to 2 and 3, and their accumulated costs are 4 and 7. For node 3, a new tentative cost of 5

is evaluated, but because the tentative cost of this node is already lower, it is not updated. These

steps and the remaining steps are summarized in Table 3.1. The final costs for each node and

optimal path from node 1 to node 6 are indicated in Figure 3.2.

 To apply Dijkstra’s algorithm to an R-map, each maximal empty rectangle, , is

considered as a vertex, and they are connected as from the R-map algorithm, with

the vertex weights defined in next section. Depending on the desired properties of the resulting

32

Table 3.1: Tentative Costs in Each Step

Step
Current

Node

Cost of

Current Node

Tentative

Nodes

Tentative

Costs

1 1 0

2

3

4

3

4

2

2 4 2

2

3

5

6

3

4

4

7

3 2 3

3

5

6

4

4

7

4 3 4
5

6

4

7

5 5 4 6 5

Figure 3.2: The Final Costs and the Lowest-Cost Path

path, a number of different parameters can be considered in assigning weights to the edges, such

as the area, border length, distance and connections of the maximal empty rectangles.These

definitions will result in symmetric directed graphs such that the cost to traverse from to

may be different than the cost from to .

33

3.2 Weight Definitions

 The weights in this study are defined with four parameters. The first approach is weight

by area. Since the R-map algorithm produces a ranked list from the largest to smallest rectangle,

the list of in the structure M is in order of area. Thus, by simply giving lower weight to the

higher ranked rectangle, their weights are set by area and the algorithm selects the path of larger

area. The second approach is weight by border length of the rectangles. By giving lower weight

to a rectangle which has longer border length, the algorithm selects a wider path. The third

approach is weight by distance between center points of two rectangles. By giving lower weight

to closer points, the path planning algorithm selects the shortest path to a destination, a classic

application of Dijkstra’s algorithm. The last possible approach is weight by number of

connections. To give lower weight to the rectangle which has more potential paths to the next

rectangle, find the number of connections of each rectangle. Thus, the result is a path who has

diverse alternative path.

3.2.1 Weight by Area

 Since the list of the property in the structure M is in order from the largest to

smallest rectangle, the weight to a rectangle is simply the value itself, .

 (3.1)

where is a cost weight to travel from to . Table 3.2 shows the weight by area,

of the example in Chapter 2.

34

3.2.2 Weight by Border Length

 To let the algorithm select a wider path, a rectangle with longer connected-border length

should have a lower weight. The connected-border length of two rectangles is the number of

connected elements In step 4 of the R-map algorithm, neighboring elements of each maximal

rectangle in Gx have been found to find the neighbors of the maximal rectangles. The

neighboring elements of rectangle k is the elements from equations (2.16)-(2.19).

 (3.2)

where indicates what rectangle is connected to the rectangle k and how many cells are

connected. For example, from the equations (2.16)-(2.19), . Thus, rectangle 1 and

rectangles 7, 8, 9 are connected with one cell, and since the path from rectangle 1 to the others is

the narrowest, it should cost the most weight. Therefore, the weight is set to the reciprocal of the

number of elements.

 (3.3)

where is the number of connected element beween rectangles and . Table 3.2 shows

the weight by border length, of the example; however, in the example, all borders have

a length of one cell.

35

3.2.3 Weight by Distance

 R-maps have a diverse size of cells, unlike the grid maps. Although two rectangles are

connected, their area could be larger than that of several smaller rectangles. For that reason, the

distance between two center points of two rectangles impacts whether that is a shorter path or not.

To calculate the distances, the properties of rectangles are recalled. As mentioned, the

property contains location of the upper-left corner , width and height of a rectangle .

From the property, the horizontal and vertical center points are calculated. Note that the locations

of the points are and . For example, and from the example of Chapter

2 are and . The center points (C.P.) are calculated as below.

 (3.4)

 (3.5)

 (3.6)

 (3.7)

 (3.8)

 (3.9)

 (3.10)

 The distance value is the cost weight to travel from rectangle 1 to 7. In this manner, the

weights can be designated to each connection.

36

 (3.10)

where is the center point of rectangle k and is the center point of rectangle j.

Table 3.2 shows the weight by distance, .

3.2.4 Weight by Number of Connections

 To define the weight by number of the connections of rectangles, recall

from the structure M. To provide for a diversity of connections in the event of re-planning

rectangles with more neighbors should have lower weight. Therefore the weight of each

rectangle is designated as the reciprocal of the number of connections.

 (3.11)

where is the number of elements of . For example, rectangle 2 in the example is

connected to rectangles 4, 6 and 7. Rectangle 4 has 2 connections as in ,

rectangle 6 has 1 connection as in and rectangle 7 has 3 connections as in

 . Thus, their weights are , and

 . The weight by number of connections is shown in Table 3.2.

37

Table 3.2: Comaparison of Weights using Different Parameters

3.3 Selected Rectangles

 In Table 3.2, a start rectangle of a path is among k and a finish rectangle is among the

neighbors. For example, using the weight by area , if a path starts at rectangle 1 and the

destination is rectangle 3, the algorithm selects a next rectangle among the neighbors of ,

there are three possible paths as [7, 8, 9], and the chosen neighbor becomes k. If rectangle 7 is

chosen as the next rectangle, 7 becomes k and it has three possible paths as [1, 2, 9]. However,

note that because the path should have the lowest total cost, the algorithm does not choose the

lowest weight at each decision. In Figure 3.3, for example, there are two paths from rectangle 1

k Neighbor

1 7 7 1 2.0616 0.3333

1 8 8 1 4.0311 0.5000

1 9 9 1 2.1213 0.5000

2 4 4 1 3.9051 0.5000

2 6 6 1 3.3541 1

2 7 7 1 2.9155 0.3333

3 5 5 1 4.1231 1

3 8 8 1 3.1623 0.5000

3 10 10 1 2.5000 0.5000

4 2 2 1 3.9051 0.3333

4 10 10 1 2.2361 0.5000

5 3 3 1 4.1231 0.3333

6 2 2 1 3.3541 0.3333

7 1 1 1 2.0616 0.3333

7 2 2 1 2.9155 0.3333

7 9 9 1 1.1180 0.5000

8 1 1 1 4.0311 0.3333

8 3 3 1 3.1623 0.3333

9 1 1 1 2.1213 0.3333

9 7 7 1 1.1180 0.3333

10 3 3 1 2.5000 0.3333

10 4 4 1 2.2361 0.5000

38

to 3. The path 1 is rectangles and the path 2 is rectangles

 . Among the three neighbors of rectangle 1, rectangle 7 has the lowest weight. However,

selecting rectangle 7 makes the path go around to get to rectangle 3 and the total cost goes up as

shown in Figure 3.3 (a). Selecting rectangle 8 as the path 2 costs more than selecting rectangle 7,

but because the destination shows up right after rectangle 8, the path 2 has the lower total cost

than the path 1. Therefore, the path planning algorithm selects the path 2 as the lowest cost path,

Figure 3.3 (b).

 (a) Path 1 (b) Path 2

 Figure 3.3: Comparison of Two Possible Paths

 Using the weight by area , the selected rectangles as the path and the graph are

shown in Figure 3.4, The start rectangle is 1 and the destination is rectangle 4. The algorithm

considers all of the possible paths from rectangle 1 to 4, and compare their cost weights to select

the lowest one. Figure 3.5 illustrates the results of path planning with .

39

 (a) (b)

Figure 3.4: (a) Result of Path Planning (b) Selected Path in Graph

Figure 3.5: Results of Path Planning with Maps

3.4 Way Point Navigation

 Path planning with grid maps give exact points to move on, but path planning with R-

maps give only areas (rectangles). Although a vehicle will get to its destination after following

40

selected rectangles, it needs exact way points to define a precise path. To select way points, there

are several approaches. A vehicle may pass the center points of each rectangle or the center point

of the boundary of two rectangles. In this study, the latter appoach is adopted. Thus, way points

consist of outward and inward points in each rectangle. To pick a center point of the boundary of

two rectangles, two things are required. First, in which direction the next rectangle is connected.

Depending on which side is the way to the next rectangle, its outward point will be different.

Second, how many elements are connected between the next and current rectangles. By knowing

this, the coordinates of a center point can be calculated.

Figure 3.6: Selected Rectangles as a Path from 1 to 4 in Matrix G.

 Figure 3.6 shows the selected rectangles from rectangle 1 to 4 and the path is 1 → 7 →2

→ 4. At this point in time, the current rectangle is 1 and next rectangle is 7. The required

information is that which side is rectangle 7 on rectangle 1, and with how many elements they

are connected. For initialization, zeros are added around G. From step 4 of the R-map algorithm,

41

elements around rectangle 1 are acquired and they are from equations (2.16)-(2.19).

 (2.16)

 (2.17)

 (2.18)

 (2.19)

 The next rectangle is 7 and it is in . Thus, it is obvious that

rectangle 7 is on the right side of rectangle 1. To find with how many elements they are

connected, two columns are considered, the column on the rightmost of rectangle 1 (column 1)

and its next column on right side (column 2). In Figure 3.6, column 1 is the second column and

column 2 is the third column. Note that G in Figure 3.6 has ten elements in each column but,

column 1 and 2 have twelve elements each since zeros are added around G.

 (3.12)

 (3.13)

 Elements of rectangle 1 in column 1 and elements of rectangle 7 in column 2 can be

found as true or false, 1 or 0. The locations of their intersection indicate row numbers of

connected elements. In this example, they are connected with one element.

 (3.14)

 (3.15)

42

 The two columns are connected with fifth element. To calculate the center point of their

connection, the first and last locations of the intersected elements are considered.

 (3.16)

 The center point is located on fifth row and the next column of the current rectangle. In

this example, the row number is 5 and column number is 4. Since zeros are added around G, the

location should be adjusted to the original G. The adjusted location is (3,4) where (x,y), and it

will be the inward point to rectangle 7. The outward point from rectangle 1 is the next element on

left side of the inward point, (2,4). Therefore, the way points from rectangle 1 to 7 are (2,4) and

(3,4) as shown in Figure 3.7 (a), and next way points can be found in this manner. If the next

rectangle is on the upper or lower sides, elements of two rows are extreacted from G instead of

columns, and equation (3.16) is to find column number of the center point.

 Examples of the result of way point navigation are shown in Figure 3.7 (a) and (b) with

red for start and finish points, yellow for outward points and green for inward points. Figure 3.7

(c) shows details of the result from MATLAB.

43

 (a) (b)

(c)

Figure 3.7: Results of Way Point Navigation

3.5 Path Planning Examples

 In this section, examples of path planning with the four different weights are

demonstrated. Three maps (complex, simple and AU campus map) are used for the path planning

to make the difference of the weights clear, Figures 3.8-3.9 are path plannings with a complex

map, Figures 3.10-3.11 are with a simple map and Figures 3.12-3.13 are with the AU campus

map. The four paths with the complex map are all different depending on their weight parameters.

Figure 3.8 (a) illustrates the path with the weight by area, . The list of the properties, ,

44

is used to designate lower weight to larger area. The algorithm selects the path of larger area.

Figure 3.8 (b) shows the path with the weight by border length, . By calculating number

of connected cells and designate lower weight to wider path, the algorithm selects the path of

wider passageway. Figure 3.8 (c) shows the path with the weight by distance of center points,

 . The location of center points of every rectangle is calculated and distances for them

are computed to find a shorter path to the finish point. Figure 3.8 (d) illustrates the path with the

weight by number of connections, . To get the number of connections of each

rectangle, is used and the algorithm selects the rectangle which has more

potential ways.

 However, if a map does not have diverse rectangles and connections, the optimal paths

with different weight definitions may be similar to each other. To demonstrate that the weight

parameters do not always have a big effect on the path planning, paths with different start and

end points are shown in Figure 3.10-3.11, a simple map, and Figure 3.12-3.13, the AU campus

map. In Figure 3.10, the three paths are same out of four. This similarity is because of the

simplicity of the map and lack of diverse connections. Also, basically paths with three weight

definitions, , and , are similar because larger area has longer border

length and more connections. Figure 3.11 also shows the similarity in path planning. Therefore,

the importance of the definition of the weight parameters are marked as the complexity of a map

increases.

45

 (a) (b)

 (c) (d)

Figure 3.8: Path Planning 1 with a Complex Map

46

 (a) (b)

 (c) (d)

Figure 3.9: Path Planning 2 with a Complex Map

47

 (a) (b)

 (c) (d)

Figure 3.10: Path Planning 1 with a Simple Map

48

 (a) (b)

 (c) (d)

Figure 3.11: Path Planning 2 with a Simple Map

49

 (a) (b)

 (c) (d)

Figure 3.12: Path Planning 1 with the AU Campus Map

50

 (a) (b)

 (c) (d)

Figure 3.13: Path Planning 2 with the AU Campus Map

51

3.6 Comparison of Path Planning with Grid maps and R-maps

 Path planning with R-maps is completed by considering Dijkstra’s algorithm, four

different weight definitions and way point navigation. In this section, to demonstrate efficiency

of path planning with R-maps, paths with grid maps and with R-maps are compared. In both path

planning, weight parameter is distance. For path planning with grid maps, Dijkstra’s algorithm is

applied as well, and each cell has weight one. Thus, the algorithm selects the shortest path

between a start point and a destination. In Figure 3.14, maps are used for path planning.

Figure 3.15 shows path planning with four times higher resolution maps. Table 3.3 has

comparisons of numbers of elements, connections, computation time of path planning and total

distance. The computation time for R-maps includes weight and way point calculations. For both

resolutions, path planning with an R-map takes less time than with a grid map. This is because

R-maps have less elements and connections to compute a path with Dijkstra’s algorithm. Total

distance is the distance between start and finish points in each map. Since every cell in grid maps

has weight one, path planning with grid maps should generate the shortest path. However,

because paths in grid maps are always horizontal and vertical lines, these staircase paths can be

longer than diagonal paths from R-maps as shown in Figure 3.14. Total distance in Table 3.3

demonstrates that path planning with R-maps can generate shorter paths than paths from grid

maps.

Figure 3.14: Total Distance in Each Map

52

 (a) Path Planning with Grid Map (b) Path Planning with R-map

 (grid removed) (rectangles removed)

Figure 3.15: Path Planning with Resolution Maps

 (a) Path Planning with Grid Map (b) Path Planning with R-map

 (grid removed) (rectangles removed)

Figure 3.16: Path Planning with Resolution Maps

53

Table 3.3: Comparison of Path Planning

Resolutions

Map Type Grid map R-map Grid map R-map

Elements

(nodes)
2,084 351 33,138 1,482

Connections

(edges)
6,220 988 123,502 5,456

Computation Time of

Path Planning (sec)
0.184 0.213 7.666 0.714

Total Distance (cells) 97 91.6 387 355.9

54

Chapter 4

Further Applications and Conclusions

 Because the input of the R-map algorithm is an image, R-map can be applied to other

fields such as image processing. In addition, R-map reduces the amount of data by integration of

redundant data. In this chapter, several further examples of R-map are suggested and conclusions

of this work are described.

4.1 Further Applications

4.1.1 Data Reduction in Communication between Cooperative Agents

 In the situation of sharing information between agents, their ability to send data can be

limited for some reasons such as hardware limitation, computing speed or disturbance from

outside. In Figure 4.1 (a), the two red agents are flying, doing collision avoidance using a grid

map in a region. Assuming that they are on the same plane (same altitude), they gather

information of obstacles through onboard sensors. Each agent sensing different area

communicates their information about obstacles. In this scenario, the amount of data can be

reduced by R-mapping. The three different approaches for data storage in section 2.4 can be

applied for this scenario. As mentioned in section 2.4, if a map has resolution high enough to

avoid distortion of obstacles, saving locations of empty rectangles from an R-map is more

efficient. In the same sense, sharing locations of empty rectangles requires fewer amounts of data.

Therefore, by using R-maps, the agents may not need high performance hardware.

55

 (a) Grid Map (b) R-map

Figure 4.1: Example of the Data Reduction

4.1.2 Driving Assistance

 Not only a map image but also a landscape image can be used in the R-map algorithm.

In a landscape image, bright parts are considered as free space and dark parts are considered as

obstacles. The landscape image of Figure 4.2 (a) can be acquired from a visual camera mounted

on a car. To make the road empty space and the lines on the road obstacles, the color should be

reversed. Then the car can run through the empty space, and cannot cross the obstacles or the

lines. Therefore, the car can keep in the lane not crossing the lines. This system can Figure out

the area that a car can pass through, and give notice to the driver when the car gets close to the

lines. However, the system has a weakness of lights and signs on the surface of the road.

 (a) Image from Visual Camera (b) Path Planning for Driving

Figure 4.2: Example of the Driving Assistance

56

4.1.3 Image Recognition

 The next applications are of the image processing using or from the

R-map algorithm. A pattern image, Figure 4.3 (a), is R-mapped to find connections of the

rectangles. By knowing the relationships of the rectangles, Figure 4.3 (b), similar relationships

can be found from a library and that is a similar pattern.

 To apply R-map to the letter recongnition, two selected rectangles are compared after R-

mapping as in Figure 4.4 (b). Then, a rule of the rectangles may be found. For example, in letter

A, the two rectangles are selected. If the upper one is smaller than the lower one, it might be A. If

the upper one is larger than the lower one and they are touching, it might be U. Hence, by

scanning or taking a picture of a document, the letters are recognizable.

 (a) Pattern (b) R-map of the Pattern

Figure 4.3: Examples of the Pattern Recognition

57

(a) Letter Image

(b) R-map of the Letter Image

Figure 4.4: Example of the Letter Recognition

4.2 Summary

 Figure 4.5 illustrates the flows to implement path planning with the two mapping

representations. Through this study, grid mapping is always faster than R-mapping, because grid

mapping is only converting an RGB image to a binary image. On the other hand, R-mapping

includes four steps to find maximal empty rectangles. However, for path planning with a grid

map takes much longer than with an R-map. This is because path planning with a grid map

considers every single cell to compute a path, while path planning with an R-map considers

dramatically reduced number of rectangles. Furthermore, the reduced number of rectangles

yields reduced space requirement to save a map.

58

Map Image

Grid Mapping R-mapping

0.466 sec 33.078 sec

 (grid removed)

Path Planning Path Planning

112.697 sec 0.706 sec

 (rectangles removed)

113.163 sec Total Time 33.784 sec

20,000 bytes Memory requirement 5,180 bytes

Figure 4.5: Comparison of Entire Process of Two Maps

R-map Grid Map

59

4.3 Conclusions

 In this thesis, the efficiency of R-maps is demonstrated comparing cell numbers of actual

examples: the indoor and outdoor maps. In R-map chapter, specific steps of the algorithm,

examples of R-mapping and efficiency in data storage were described. In path planning chapter,

Dijkstra’s algorithm, four different weight definitions, way point navigation, examples of path

planning and efficiency in path planning were described to highlight the utility of R-maps in path

planning.

 R-map helps to build a higher resolution map with fewer elements by applying the

maximal empty rectangle problem. R-map representation has several advantages. First, by

focusing on the maximal empty rectangles, it is naturally suited to obstacle avoidance by

focusing on the largest possible obstacle-free space. Second, by using a reduced number of

elements, R-map is more efficient for path-planning algorithms such as Dijkstra’s algorithm. Last,

by integration of empty cells into a larger rectangle, R-map reduces redundant data thus it is

efficient for data saving.

 Although, the R-map has been introduced three years ago, this study advances the R-

map for path planning, and demonstrates its efficiency in data storage and path planning. This

new map representation, R-map, could be beneficial not only for path planning but also image

processing. Since the R-map algorithm starts with an image, it can be applied to other fields

related to image reconstruction.

60

Bibliography

[1] Cowlagi, R.V. and Tsiotras, P., “Multiresolution Path Planning with Wavelets: A Local

Replanning Approach,” 2008 American Control Conference, June 11-13, 2008.

[2] Prazenica, R.J., Kurdila, A.J. and Sharpley, R.C., “Receding Horizon Control for MAVs

with Vision-Based State and Obstacle Estimation,” AIAA Guidance, Navigation and

Control Conference and Exhibit, August 2007.

[3] Kurdila, A., Nechyba, M., Prazenica, R., Dahmen, W., Binev, P., DeVore, R. and

Sharpley, R., “Vision-Based Control of Micro-Air-Vehicles: Progress and Problems In

Estimation,” 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas,

December 2004.

[4] Ahn, J.G. and Jeon, H.S., “R-map : A Hybrid Map Created by Maximal Rectangles,”

International Conference on Control, Automation and Systems 2010, Gyeonggi-do,

Korea, pp. 1336-1339, October 2010.

[5] Dehne, F., “Computing the Largest Empty Rectangle on One- and Two-Dimensional

Processor Arrays,” Journal of Parallel and Distributed Computing, vol. 9, no. 1, pp. 63-

68, May 1990.

[6] Cheng, Y., Iyengar, S.S. and Kashyap, R.L., “A New Method of Image Compression

Using Irreducible Covers of Maximal Rectangles,” IEEE Transactions on Software

Engineering, vol. 14, no. 5, pp. 651-658, May 1988.

61

[7] Chazelle, B., Drysdale, R.L. and Lee, D.T., “Computing the Largest Empty Rectangle,”

Society for Industrial and Applied Mathematics Journal on Computing, vol. 15, no. 1, pp.

300-315, February 1986.

[8] Edmonds, J., Gryz, J., Liang, D. and Miller, R.J., “Mining for Empty Spaces in Large

Data Sets,” Theoretical Computer Science, vol. 296, no. 3, pp. 435-452, March 2003.

[9] Vandevoorde, D., “The Maximal Rectangle Problem,” Dr. Dobb’s Journal, vol. 23, no. 4,

pp. 28-32, April 1998.

[10] Dijstra, E.W., “A Note on Two Problems in Connexion with Graphs,” Numerische

Mathematik, vol. 1, pp. 269-271, 1959.

[11] Barbehenn, M., “A Note on the Complexity of Dijkstra’s Algorithm for Graphs with

Weighted Vertices,” IEEE Transactions on Computers, vol. 47, no. 2, pp. 263, Feb. 1998.

[12] Crauser, A., Mehlhorn, K., Meyer, U. and Sanders, P., “A Parallelization of Dijkstra’s

Shortest Path Algorithm,” 23rd International Symposium, MFCS’98, vol. 1450, pp. 722-

731, Brno, Czech Republic, August 24-28, 1998.

62

Appendices

63

Appendix A

Matlab Codes Used for R-mapping and Path Planning

clear all
close all
clc

% ===
% ================================ R-mapping ================================
% ===

% ========================= Image Read and Plotting =========================

RGB = imread('complex.jpg');

I = rgb2gray(RGB);
threshold = graythresh(I);
bw = im2bw(I,threshold);
r1 = imresize(bw,0.2,'nearest');
r2 = imresize(r1,5,'nearest');

[G M] = Rmap(r2);

Ga = -G;
[m n] = size(Ga);
Ga = [zeros(m,1) Ga zeros(m,1)];
Ga = [zeros(1,n+2) ; Ga ; zeros(1,n+2)];

imshow(r2);
hold on;
for i=1:length(M)
 r = M(i).r;
 rectangle('Position',[r(1:2)-0.5 r(3:4)],'EdgeColor','r')
end

% ============================= Main Algorithm ==============================

function [Gx M] = Rmap(G)

Gx = double(G);
a = sum(sum(G));
M(a,1) =

struct('r',[],'connection',[],'ele',[],'left',[],'right',[],'upper',[],'lower

',[]);

64

for i=1:a
 r = FindMaximalEmptyRectangle(G);
 M(i).r = r;
 G = GridMapUpdate(G,r);
 if ~sum(sum(G))
 break;
 end
end
M = M(1:i,1);
[Gx M] = ComputeConnection(Gx,M);

% ========================= Step 1: Initialization ==========================

% and

% ================= Step 2: Finding Maximal Empty Rectangle =================

function [best_r] = FindMaximalEmptyRectangle(G)

[M N] = size(G);
cx = zeros(M,N);
cx(:,N) = G(:,N);
for i = N-1:-1:1
 cx(:,i) = cx(:,i+1)+G(:,i);
 cx(G(:,i)==0,i)=0;
end
width = 0;
push = zeros(M,2);
largest_area = 0;
k = 1;
for x=1:N
 c = [cx(:,x);0];
 for y=1:M+1
 if c(y)>width
 k = k+1;
 width = c(y);
 push(k,:) = [y width];
 end
 if c(y)<width
 while (1)
 y0 = push(k,1);
 w0 = push(k,2);
 area = w0*(y-y0);
 if area > largest_area
 best_r = [x y0 w0 y-y0];
 largest_area = area;
 end
 k = k-1;
 if c(y)>=push(k,2)
 break;
 end
 end
 width = c(y);
 if width ~= 0
 k = k+1;
 push(k,:) = [y0 width];
 end

65

 end
 end
end

% ========================= Step 3: Grid Map Update =========================

function G = GridMapUpdate(G,r,k)

if nargin<3
 k=0;
end
G(r(2):r(2)+r(4)-1,r(1):r(1)+r(3)-1)= -k;

% ======================= Step 4: Compute Connection ========================

function [Gx M] = ComputeConnection(Gx,M)
[m n] = size(Gx);
for i=1:size(M,1)
 Gx = GridMapUpdate(Gx,M(i).r,i);
end
Gx = [zeros(m,1) Gx zeros(m,1)];
Gx = [zeros(1,n+2) ; Gx ; zeros(1,n+2)];
for i=1:size(M,1)
 r = M(i).r;
 x0 = r(1)+1;
 y0 = r(2)+1;
 x = r(1)+r(3);
 y = r(2)+r(4);

 left_conn = Gx(y0:y,x0-1)';
 right_conn = Gx(y0:y,x+1)';
 upper_conn = Gx(y0-1,x0:x);
 lower_conn = Gx(y+1,x0:x);

 M(i).left = -unique(left_conn);
 M(i).right = -unique(right_conn);
 M(i).upper = -unique(upper_conn);
 M(i).lower = -unique(lower_conn);

 CONN = -[left_conn right_conn upper_conn lower_conn];
 M(i).ele = CONN;
 conn = unique(CONN);
 conn(conn==0)=[];
 M(i).connection = conn;
end
Gx = Gx(2:end-1,2:end-1);

66

% ===
% ============================== Path Planning ==============================
% ===

% ==================== Start and Finish Points Selection ====================

MAP=G;

% Select START point
pause(1);
h=msgbox('Please Select the START point using the Left Mouse button');
uiwait(h,5);
if ishandle(h) == 1
 delete(h);
end
xlabel('Please Select the START point ','Color','black');
but=0;
while (but ~= 1)
 [xstart,ystart,but]=ginput(1);
end
xstart=floor(xstart);
ystart=floor(ystart);
STARTISIN=-MAP(ystart,xstart);
MAP(ystart,xstart)=11111111;
plot(xstart,ystart,'bo');
text(xstart+5,ystart,'START','color','b')

% Select FINISH point
pause(1);
h=msgbox('Please Select the FINISH point using the Left Mouse button');
uiwait(h,5);
if ishandle(h) == 1
 delete(h);
end
xlabel('Please Select the FINISH point using the Left Mouse

button','Color','black');
but=0;
while (but ~= 1)
 [xfinish,yfinish,but]=ginput(1);
end
xfinish=floor(xfinish);
yfinish=floor(yfinish);
FINISHISIN=-MAP(yfinish,xfinish);
MAP(yfinish,xfinish)=99999999;
plot(xfinish,yfinish,'bd');
text(xfinish+5,yfinish,'FINISH','color','b')

% =============== Weight Calculation and Dijkstra’s Algorithm ===============

% Calculate number of all connections
NUMBEROFCONNECTION=zeros(length(M),1);
for i=1:length(M)

67

 A=size(M(i).connection);
 NUMBEROFCONNECTION(i)=A(2);
end
LENGTH=sum(NUMBEROFCONNECTION);

% Rearrange the connections into CONNECTION
CONNECTION=zeros(LENGTH,3);
t = 0;
for j=1:length(M)
 CONNECTION(t+1:t+size(M(j).connection,2),1)= j;
 for k=1:size(M(j).connection,2)
 CONNECTION(k+t,2)= M(j).connection(k);
 end
 t= t+size(M(j).connection,2);
end

%% Calculate weights

% =====Weight by area=====
W = CONNECTION(:,2);

% =====Weights by border length=====
for i=1:length(CONNECTION)
 rect=CONNECTION(i,1);
 neigh=CONNECTION(i,2);
 s=sum(M(rect).ele==neigh);
 W(i)=1/s;
end

% =====Weight by distance=====
center_point=zeros(length(M),2);
for i=1:length(M)
 center_point(i,1)=M(i).r(1)+M(i).r(3)/2;
 center_point(i,2)=M(i).r(2)+M(i).r(4)/2;
end
for j=1:length(CONNECTION)
 rectangles=[...
 center_point(CONNECTION(j,1),1),center_point(CONNECTION(j,1),2);...
 center_point(CONNECTION(j,2),1),center_point(CONNECTION(j,2),2)];
 W(j)=pdist(rectangles,'euclidean');
end
W=W';

% =====Weight by number of connection=====
for i=1:length(CONNECTION)
 j = CONNECTION(i,2);
 W(i) = 1/numel(M(j).connection);
end
W = W';

% Calculate path
DG=sparse(CONNECTION(:,1),CONNECTION(:,2),W);
h=view(biograph(DG,[],'ShowWeights','on'))
[dist,path,pred]=graphshortestpath(DG,STARTISIN,FINISHISIN);
set(h.Nodes(path),'Color',[1 0.4 0.4])

68

edges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));
set(edges,'LineColor',[1 0 0])
set(edges,'LineWidth',1.5)
%% Path Color
for i=path
 r = M(i).r;
 rectangle('Position',[r(1:2)-0.5 r(3:4)],'FaceColor','g')
end

%% Labeling on the rectangles

% Find center point of rectangle
center=zeros(length(M),2);
for i=1:length(M)
 center(i,1)=floor(M(i).r(3)/2+M(i).r(1))-4;
 center(i,2)=floor(M(i).r(4)/2+M(i).r(2));
end

% Labeling
for i=1:length(M)
 text(center(i,1),center(i,2),['',num2str(i)],'color','r')
end
plot(xstart,ystart,'bo')
text(xstart+5,ystart,'START','color','b')
plot(xfinish,yfinish,'bd')
text(xfinish+5,yfinish,'FINISH','color','b')

%% Waypoint navigation
location = zeros(2*(length(path)-2)+2,2);
k = 1;

for i = 1:length(path)-1
 j = path(i);
 x1 = M(j).r(1)+1;
 y1 = M(j).r(2)+1;

 if sum(M(j).left == path(i+1))>=1
 left1 = (Ga(:,x1)==path(i));
 left2 = (Ga(:,x1-1)==path(i+1));
 y = find(left1&left2);
 s = size(y);
 location(k,2) = (y(1)-1+y(s(1))-1)/2;
 location(k,1) = M(j).r(1);
 location(k+1,2) = location(k,2);
 location(k+1,1) = location(k,1)-1;
 end
 if sum(M(j).right == path(i+1))>=1
 right1 = (Ga(:,x1+M(j).r(3)-1)==path(i));
 right2 = (Ga(:,x1+M(j).r(3))==path(i+1));
 y = find(right1&right2);
 s = size(y);
 location(k,2) = (y(1)-1+y(s(1))-1)/2;
 location(k,1) = M(j).r(1)+M(j).r(3)-1;
 location(k+1,2) = location(k,2);
 location(k+1,1) = location(k,1)+1;
 end

69

 if sum(M(j).upper == path(i+1))>=1
 upper1 = (Ga(y1,:)==path(i));
 upper2 = (Ga(y1-1,:)==path(i+1));
 x = find(upper1&upper2);
 s = size(x);
 location(k,1) = (x(1)-1+x(s(2))-1)/2;
 location(k,2) = M(j).r(2);
 location(k+1,1) = location(k,1);
 location(k+1,2) = location(k,2)-1;
 end
 if sum(M(j).lower == path(i+1))>=1
 lower1 = (Ga(y1+M(j).r(4)-1,:)==path(i));
 lower2 = (Ga(y1+M(j).r(4),:)==path(i+1));
 x = find(lower1&lower2);
 s = size(x);
 location(k,1) = (x(1)-1+x(s(2))-1)/2;
 location(k,2) = M(j).r(2)+M(j).r(4)-1;
 location(k+1,1) = location(k,1);
 location(k+1,2) = location(k,2)+1;
 end
 k = k+2;
end
location(:,1) = location(:,1)-0.5;
location(:,2) = location(:,2)+0.5;
location2 = [xstart,ystart; location; xfinish yfinish];
y = location2(:,1)';
x = location2(:,2)';
line(y,x,'Color','r','LineWidth',1)

