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Abstract

Despite the tremendous growth of computational power, scientific applications and busi-

ness data analytics continue to face many challenges such as programming productivity, ap-

plication scalability, and efficiency. Recently, Global Address Space (GAS) or Partitioned

Global Address Space (PGAS) programming models are emerging as scalable alternatives

for fast computation because of their ability to alleviate programming burden by supporting

data access to both local and remote memory through a simple shared-memory addressing

model. Meanwhile, with the exponential growth of the digital universe, the MapReduce

programming model becomes popular for data analytics because of its ease of use, low cost

on commodity hardware, fault tolerance, and programming flexibility. Furthermore, with

social media data gets bigger, relationships inside social media data get complex and have

normally been modeled as massive graphs, which require scalable algorithms to analyze the

real-world graphs for data processing.

This dissertation investigates the research challenges in those directions and contributes

efficient and scalable programming models for fast computation and data processing. It

first focuses on addressing the critical challenges faced by the underlying runtime systems of

GAS model on petascale systems. In particular, I have proposed and designed a Hierarchical

Cooperation (HiCOO) supporting scalable communication for GAS programming models,

which is able to realize scalable resource management and achieve resilience to network

contention while at the same time maintaining or enhancing the performance of scientific

applications. The second study is to address the performance challenge in the existing

MapReduce programming model. I have revealed a number of issues faced by the current

MapReduce Programming model and proposed a novel virtual shuffling strategy to enable

efficient data movement for MapReduce data shuffling, which is able to significantly reduce
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disk I/O accesses and results in performance improvement and power consumption saving.

The third study is on large-scale graph processing. I have designed and implemented a

parallel community detection algorithm over distributed memory system, which can perform

community analysis in real-time for massive graphs.
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Chapter 1

Introduction

Innovation in technologies pushes the revolution of computational power in our society.

Researchers and engineers make use of the tremendous computational power to solve the

complexity problems such as climate change, nuclear fusion, drug design, web log analyt-

ics and fraud detection. To this purpose, parallel programming models become the main

bridge between human and hardwares and are evolving fast to adapt to the technological

advances. Amongst these parallel programming models, the Global Address Programming

(GAS) model becomes more and more popular and researchers in scientific domains use it as

a popular interface to solve problems on the supercomputers, which are normally equipped

with cutting edge hardware technologies.

In the meantime, the digital universe continues to expend rapidly, according to IDC [1],

more than 40 zettabyte (1,000 exabytes) data will be generated by 2020. With the ex-

ponential growth in the digital universe, there is an urgent need to scalably and efficiently

process the Big Data [2]. Introduced by google, MapReduce has been widely accepted by the

community for large scale data analytics because of its applicability on low cost commodity

hardwares as well as powerful fault tolerance characteristic. With data getting bigger, vari-

ous social media datasets emerge as more complex, more semi-structured, and more densely

connected. The complexity of such Big Data has been modeled explicitly as massive graphs

with billion of edges, which require deeper processing for further understanding the data. It

is critical to design scalable and efficient parallel algorithms to mine these real-world mas-

sive graphs. One of the representative problems in social media is community detection in

complex social graphs.
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In the rest of this chapter, We first introduce some background of GAS programming

mode and its runtime system. Following that we provide an introduction on MapReduce.

Then we describe the community detection problem. In the end, we provide an overview of

research in this dissertation.

1.1 GAS programming model and Its Runtime System

Scientific applications such as climate modeling, life science, and energy production

are normally computation intensive. Several supercomputing sites have deployed systems

with extreme amounts computational power [3] to serve the need of solving such complex

problems. For example, the Sequoia and Titan Cray XT5 system in the U.S. can perform

tens of 1015 floating point operations per second (petaflop). While supercomputing systems

grow to unprecedented number of processors (exscale supercomputers in the near future),

scientific applications continue to face many challenges such as programming productivity,

application scalability, and efficiency.

In this aspect, Global Address Space (GAS) or Partitioned Global Address Space

(PGAS) models emerging as scalable alternatives because they have the ability to alle-

viate programming burden by supporting data access to both local and remote memory

through a simple shared memory styled access. PGAS languages like Unified Parallel C

(UPC) [4], Co-Array Fortran (CAF) [5], and GAS libraries such as Global Arrays (GA)

Toolkit [6] are becoming increasingly popular. Recently, a slightly different category of

PGAS model, termed Asynchronous Partitioned Global Address space model, has emerged

to add additional capabilities such as remote method invocations. IBM X10 language [7]

and Asynchronous Remote Methods (ARM) [8] in UPC have pioneered this new model.

All the above mentioned GAS languages and libraries use the services of an underlying

communication library (which we refer to as the GAS Runtime) for serving their communica-

tion needs. GAS languages normally use this runtime as a compilation target to do the data

transfers on distributed memory architectures. They have a translation layer that translates
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a memory access to a corresponding data transfer on the underlying system. ARMCI (Ag-

gregated Remote Memory Copy Interface) [9] is a popular GAS runtime that has been used

to implement both PGAS languages (such as Co-Array Fortran) and GAS libraries (such as

Global Arrays). ARMCI is highly scalable and has been ported to a variety of environments

and platforms. Recently, a scalable implementation of ARMCI (described in [10]) was made

available on the Jaguar Cray XT5 supercomputer at Oak Ridge National Laboratory.

Figure 1.1: Typical Usage of ARMCI

Typical structure of an application using ARMCI is shown in Figure 1.1. ARMCI re-

lies on a message-passing library and elements of the execution environment (job control,

process creation, interaction with the resource manager) and provides all the communica-

tion need for the GAS languages and libraries. It uses the fastest available mechanism

underneath to transmit data wherever possible. For example, it uses Portals library for

inter-node communication on the Cray XT5 systems [10]. ARMCI offers an extensive set of

functionalities in the area of RMA communication: 1) data transfer operations (Get, Put

Accumulate); 2) atomic operations; 3) memory management and synchronization opera-

tions; and 4) locks. Communication in most of the non-collective operations is implemented

as one or more ARMCI communication operations. ARMCI also supports blocking and
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non-blocking versions of contiguous, strided and vector data transfer operations along with

Read-Modify-Write operations for the special need of scientific applications.

1.2 MapReduce Programming Model

In the era of Big Data [2], processing explosive amounts of data in a scalable, reliable

and efficient manner to mine critical knowledge for human intelligence is becoming one of the

most important challenges. For example, AT&T currently processes close to 20 petabytes

of data every 24 hours, and Google processes more than 1 petabytes of information every

hour [11]. To be able to process data-intensive analysis in a scalable and fault-tolerant

manner in a distributed environment, Google introduced a distributed and parallel program-

ming model called MapReduce [12]. Due to its ease of programming, scalability, especially

highly fault-tolerant and applicability on low-cost hardware MapReduce paradigm has be-

come the favor of many commercial enterprises such as web crawling, financial services and

telecommunications.

Hadoop [13] is an open-source implementation of MapReduce, supported by leading

IT companies such as Google and Yahoo!, and widely adopted and deployed in industry

on several thousands of commodity machines. Hadoop implements MapReduce framework

with two categories of components: a JobTracker and many TaskTrackers. TaskTrackers

are managed by the JobTracker and launched on each computational node to perform the

tasks they receives from JobTracker. Data processing is performed in parallel through two

main functions: map and reduce. The JobTracker is in charge of scheduling the map tasks

(MapTasks) and reduce tasks (ReduceTasks) to TaskTrackers. It also monitors job progress,

collects run-time execution statistics, and handles possible faults and errors through task

re-execution.

The general workflow of Hadoop MapReduce is shown in the Figure 1.2. Hadoop consists

of three main execution phases: map, shuffle, and reduce. When a user job is submitted to

the JobTracker, its input dataset is divided into many data splits and stored in HDFS. The
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HDFSHDFS

ReduceTask …… ReduceTaskreduce

MOF MOF MOF MOF

shuffle

map MapTask MapTaskMapTask ……

Split …. SplitSplit

HDFS

Figure 1.2: Workflow of MapReduce Programming Model

MapTask first reads the splits from HDFS and performs the map function. The corresponding

output, which is called Map Output File (MOF), will be stored locally. As soon as MOFs are

available, the ReduceTask starts fetching a partition (also called segment) that is intended

for it, from all the MOFs, which leads to all-to-all shuffle. The ReduceTask also merges the

segments while fetching. Once all the segments are locally available, the ReduceTasks starts

processing the merged segments using the reduce function. The final result is then stored to

Hadoop Distributed File System [14].

1.3 Community Detection in Graphs

The real-world graphs representation of the Big Data [2] depict the complexity rela-

tionship and become more and more popular format for data mining. There are many

important kernels to serve the purpose of mining graphs such as breadth first search, single
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source shortest path, and community detection etc. Amongst them, the community detection

is the most challenging problem. A graph with communities is shown in the figure 1.3, where

the vertices with densely connection are likely to form communities. The connections among

communities are much sparser.

Vertex:

Edge:

Community:

Figure 1.3: A Graph with Communities

Community detection spans many areas such as health care, social networks, systems

biology, power grid etc. It has been so extensively investigated over the last few years [15].

The goal is to identify the modules and, possibly, their hierarchical organization. No rigu-

ous mathematical definition of the community structure is available yet. The modularity

proposed by Newman is by far the most used and best known quality function to quantify

community structure in a graph. High modularity indicates good partition, which corre-

sponds to good modularity value. Modularity maximization is currently the most popular

class of methods to detect communities in graph.

The technique used for modularity maximization can be categorized into four classes,

namely greedy, simulated annealing, extremal optimization and spectral optimization. Greedy

based optimization apply different approach to merge the vertices to form communities for

higher modularity, which normally generates high quality communities and attracts a great
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deal of research interest [16, 17, 18, 19, 20]. Simulated annealing adopts probabilistic pro-

cedure for global optimization on modularity [21, 22], which is slow and can only be used

for small graphs. Extremal optimization (EO) is a heuristic search procedure and Spectral

optimization takes use of the eigenvalues and eigenvectors of a special matrix for modularity

optimization [23, 24, 25, 26, 27]. These two methods normally lead to poor results on large

networks with many communities.

The focus of this dissertation is on scalable and efficient programming models for fast

computation and data processing, which aims at solving the challenges comes from rapidly

increasing of the computational power and exponential exploration of the data. To be

specific, this dissertation makes the following research contributions:

1. A framework HiCOO [28], which supports scalable communication architecture in a

representative GAS runtime system for scalable resource management and contention

attenuation on petascale Cray XT5 systems, is proposed and designed;

2. Virtual Shuffling is proposed and designed as a new strategy which enables efficient

data movement and relieves the disk contention for MapReduce programming model.

3. A novel parallel community detection algorithm is designed and implemented over

distributed memory systems for tackling massive graphs.

The remainder of the dissertation is organized as follows. In Chapter 2, we present the

problem statement, which reveals the challenges in the current GAS programming model and

MapReduce infrastructure. In Chapter 3, we first review the prior work on how to improve

the scalability of communication runtime. We then describe the prior work of MapReduce

in a number of directions, including performance tuning, data communication, and Energy

efficiency. Following that is a review on the parallel community detection algorithm. The

detailed design and implementation will be explained in chapter 4. In Chapter 5, we present

experimental results of performance evaluation with many different types of benchmarks,
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which contains both micro benchmark and applications. We conclude the dissertation in

Chapter 6 and point out directions for future research in Chapter 7.
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Chapter 2

Problem Statement

This chapter discusses the detailed challenges to be investigated in this dissertation.

Firstly, it presents the scalability and contention challenges of underlying GAS programming

model runtime system towarding exascale. Then it explains the severe performance problem

during the data movement phase of the MapReduce programming model. Finally, it discusses

the challenges involved for mining massive graphs.

2.1 Challenges in GAS Runtime System

ARMCI has recently been enabled for Cray XT5 using the native portals communi-

cation library [10]. However, running a GAS model and its underlying GAS runtime in

the context of a real scientific application at a scale similar to Jaguar (200,000+ cores) has

brought forth a few staggering challenges. These challenges are a result of the characteristics

and asynchronous one-sided features of the GAS runtime. The first is that of resource man-

agement, incurred by unpredictable communication patterns and communication resources

(such as buffers) that need to be allocated to support it. The second challenge is that of

network contention – allowing any process to access the address space of any other process

and supporting load balancing at the same time create an environment that is prone to

contention.

2.1.1 ARMCI Process Management for One-Sided Communication

ARMCI guarantees that its one-sided operations are fully unilateral, i.e., may complete

regardless of the actions taken by the remote processes. In particular, polling the appli-

cation by remote processes (implicitly when making a library call, or explicitly by calling
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Figure 2.1: ARMCI Process Management

provided polling interface) is not required for communication progress. This is realized by

introducing a communication helper thread (a.k.a communication server) at each compute

node. This communication helper thread is created by the lowest ranked process (master)

on a node. An area of shared memory is allocated for these processes. The communication

server (CS) handles remote one-sided requests on behalf of all local processes, and exchanges

data with them through the shared memory. Similar to what described earlier, the com-

munication server pre-allocates buffers and related data structures for remote requests, in

order to support direct one-sided communication for all operations (particularly for lock,

unlock, accumulate, and noncontiguous data transfer operations) and allow one process to

asynchronously initiate an operation without the involvement of the targeted process.

Figure 2.1 shows the process management of ARMCI. On two arbitrary nodes, i and j,

each has a set of parallel processes. All processes have a global rank. Processes on node i

are also denoted as P(i,k), ∀ k ∈ [0,m− 1]. An area of shared memory is allocated for these

m processes. The lowest ranked process P(i,0) creates a separate thread as a communication

server CSi. The communication server CSi communicates with all intra-node processes
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through the shared memory and handles all incoming inter-node one-sided communication

requests on behalf of them.

Every communication server has to pre-allocate request buffers for for all remote peer

processes. Figure 2.2 shows the request buffer management of CSi. Each processes is denoted

based on its global rank Pr, ∀ r ∈ [0, n − 1]. A set of request buffers are allocated for each

remote process, e.g. Br for Pr.

2.1.2 Critical Challenges for GAS Runtime

To better formulate the memory resource management of ARMCI, We define virtual

topology as a means to represent the graph of resource allocation. In the case of memory

buffers for communication, a directed graph can represent the resource allocation of buffers

amongst all nodes. A graph G: (V, E) consists of a set of vertices V and a set of edges E.

A vertex i represents all processes and the CS on a single node i. A directed edge E(i, j)

from i to j denotes the fact that there is a set of request buffers allocated on node i for tasks

on node j. For an ARMCI application running on N nodes, this representation of buffer

allocation forms a FCG with N ∗ (N − 1) directed edges. There are (N − 1) outgoing edges
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at each vertex (node), representing N−1 sets of buffers from N−1 remote nodes. Figure 2.3

shows the resource allocation graph for a 6-node case.

The directed graph representation of resource allocation in Figure 2.3 reveals two critical

challenges that a GAS model (in our case, Global Arrays) poses to its underlying GAS

runtime (in our case, ARMCI).
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4

Figure 2.3: A Directed Graph Represent-
ing Resource Allocation for One-Sided Re-
quests

1
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Figure 2.4: A Flat-Tree Representation
of Contention among Communication Re-
quests

Resource Management – The first challenge is on the allocation of resources for

communication. Consider an example of the targeted systems for our research, the Cray

XT5. Cray XT5 has Seastar2+ interconnect and uses the connection-less Portals messaging

library as the lowest level communication protocol. To support the connection-less Portals

interface, the Cray Seastar2+ allows for 256 simultaneous message streams. When additional

streams need to be initiated (or in case of resource exhaustion), the Cray BEER (Basic End

to End Reliability) protocol does the necessary flow control and handles reliability. This

means that the resource allocation problem for ARMCI communication buffers (where a

set of buffers needs to be allocated for every incoming edge as shown in Figure 2.3) maps

to parallel message streams in Portals but at a different scale. The total request buffer

requirement in ARMCI for the FCG would be roughly N ∗ B ∗M , where N is the total

number of processes (actually slightly smaller than N due to local processes), B the buffer

size, and M the set of buffers per process. With only two 16-KB buffers per process, it would
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require 1,024 MB per CS to support parallel programs with 32,000 processes, and 32 GB per

CS on an future system with a million processes.

Contention – Another challenge revealed by the FCG model is the potential contention

that could be caused by many concurrent requests to a single node. Because all nodes (ver-

tices) are directly connected, the paths for requests from all nodes to traverse a virtual FCG

and reach one node can be represented as a flat tree of depth 1. Figure 2.4 shows a tree repre-

sentation of request traversal paths to Node 0. Such a flat tree is very vulnerable to transient

hot-spot access scenarios, such as when thousands of processes simultaneously accessing one

data element in an address space. These scenarios create a severe hot-spot contention prob-

lem in addition to the resource allocation problem described above. Under such scenarios,

significant burden is placed on the physical network, which will be forced to adopt some

throttling mechanisms, typically causing serious slowdown of the entire communication and

jeopardizing the system productivity.

2.2 Challenges in the MapReduce Programming Model

Hadoop MapReduce has been widely adopted in industrial communities as the engine

to perform data analytics. However, it is still facing a lot of challenges e.g. performance,

resource management, quality of service, and so on. Amongst these challenges, the per-

formance is a major concern of current research focus. As mentioned in Section 1.2, the

MapReduce programing model contains three major phases (Map, Shuffle, and Reduce).

All these three phases involve a great deal of I/O activities to read input and store output

repetitively. Especially in the all-to-all shuffling, which crosses the network bisection and

severely hurts the performance.

As explained in Section 1.2, right after the finish of the MapTasks, ReduceTasks start

to fetch the <key, val> pairs from all the MOFs on remote MapTasks node. The fetched

intermediate data has to be merged before the reduce function can be applied. During

this phase, data is moved from the map nodes’ disks rather than their main memories,
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through the cluster network, to the disks of the reduce nodes, incurring both disk and

network latencies. Even worse, due to the need of the scalability, inside the ReduceTasks,

the Hadoop MapReduce constrains the number of concurrent connections to the MapTasks

and performs the polling of the intermediate data sequentially and adopts a combination of

in-memory merge and on-disk external merge to handle this process. However, this strategy

can result in a slow merging phase when ReduceTask has a huge amount of intermediate

data to handle. The reason is that, with increasing intermediate data size, on-disk merge

becomes dominant in the merging phase because of limited amount memory. Consequently,

the slow merging phase causes long delay to the reducing phase inside ReduceTask. In

addition, disk bandwidth is a scare resource on the nodes, aggressive external merge can

cause heavy disk contention among all the tasks running on the same node resulting in the

performance degradation of the entire system, which has been observed from production

MapReduce clusters [29].
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Figure 2.5: Disk I/O Contention in MapReduce Applications

To deeply understand the importance of this problem, we conduct a data-intensive

MapReduce test case, running 200GB TeraSort on 10 slave nodes. We have examined the
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wait (queuing) time and the service time of I/O requests during the execution. Figure 2.5

shows the results, where X-axis is the execution time, the left Y-axis is the I/O service

time, and the right Y-axis is the queuing percentage. As shown in Figure 2.5, the wait

time can be more than 1,100 milliseconds. Worse yet, most I/O requests are spending close

to 100% of this time waiting in the queue, which means the disk is not able to keep up

with the requests. Because the shuffling of intermediate data competes for disk bandwidth

with MapTasks, which significantly overloads the disk subsystem. Disk subsystem becomes

a serious bottleneck due to the severe disk I/O contention in data-intensive MapReduce

programs, which entails further research on efficient data shuffling techniques.

2.3 Challenges in Parallel Community Detection

With the rapid growth of the digital universe, the real-world graphs tend to be ex-

tremely huge with billions of vertices and hundreds of billion edges. and follow the power

law distribution. Those graphs decompose naturally into communities where vertices are

densely connected within the community and have much sparser connection between the

communities [30]. The communities from large graphs carry great scientific and practical

value because they typically correspond to behavior or functional units of the network, such

as social groups in a social graph. Community detection provides a valuable kernel to ana-

lyze and mine the Big Data. However, efficient analysis and processing on large-scale graphs

remains a challenge, because of pool locality of memory access, very little work per vertex,

and a changing degree of parallelism over the course of execution [31, 32].

2.3.1 Problem Definition

A weighted graph G can be represented as a 2-tuple (V,E), where V denotes a set of

vertices, E a set of edges. When u, v ∈ V , an edge e(u, v) ∈ E has a weight wu,v. The

goal of community detection is to partition a graph into a set of disjoint communities C, as
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described in Equations 2.1 and 2.2.

∪ ci = V, ∀ci ∈ C (2.1)

ci ∩ cj = ∅,∀ci, cj ∈ C (2.2)

When a graph is partitioned into communities, vertices in the same community are then

densely connected while those in different communities are only sparsely connected. The

quality of community detection algorithms is often measured by the metric modularity Q

(see Equation 2.3) [33],

Q =
∑
ci∈C

[
Σci
in

2m
− Σci

tot

4m2

]
, (2.3)

where Σci
in is the sum of the weights from all internal edges of Community ci, represented as∑

wu,v,∀u, v ∈ ci and e(u, v) ∈ E, Σci
tot the sum of the weights from the edges incident to any

vertex in Community ci, represented as
∑
wu,v,∀u ∈ ci and e(u, v) ∈ E, and m (

∑
e(u,v)∈E

wu,v)

is the sum of the weights from all edges in the entire graph.

2.3.2 Sequential Louvain Algorithm

Modularity has been widely used to compare the quality of the communities obtained by

different algorithms, hence an objective function to optimize [34] by many. However, mod-

ularity optimization is an NP-complete problem [35]. Thus research efforts have focused on

approximation algorithms that are usually heuristic-based and yield suboptimal detection of

communities. Among many different approaches, the state-of-the-art Louvain algorithm [16]

adopts a greedy policy that can find high modularity communities in large graphs in a short

time and unfold a complete hierarchical community structure. This algorithm has been
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employed for community detection for a great variety of purposes.

∆Qu→ci =

[
Σci
in + wu→ci

2m
−
(
Σci
tot + w(u)

2m

)2
]

−

[
Σci
in

2m
−
(
Σci
tot

2m

)2

−
(
w(u)

2m

)2
]

=
wu→ci
2m

− Σci
tot ∗ w(u)

2m2
(2.4)

The Louvain algorithm greedily maximizes the modularity gain ∆Qu→ci when moving

an isolated vertex u into Community ci. It can be calculated by Equation 2.4, where Σci
in

and Σci
tot have been defined in Equation 2.3, w(u) (

∑
e(u,v)∈E

wu,v) is the sum of the weights of

the edges incident to vertex u, wu→ci (
∑
v∈ci

wu,v) is the sum of the weights of the edges from

u to vertices in Community ci. m is the same as defined in Equation 2.3.

The original Louvain algorithm only considers the undirected graphs. The algorithm

tries to find the communities with the maximum modularity Q, as shown in Algorithm 1. It

initially creates one community per vertex. For each vertex u, it then considers the neighbor

v of u and evaluates the gain of the modularity(∆Q) which could take place by removing

u from its community and by placing it in the community of ckv . The vertex u is placed in

the community ĉkv for which the ∆Q is maximum. If there is no positive gain, u stays in the

original community (Lines 8–13). This process is applied repeatedly and sequentially for all

nodes until no further improvement can be achieved and the first phase is then complete. The

latest community information (Ck+1) and modularity (Lines 19–23) thus can be obtained.

The second phase of the algorithm is to build a new graph whose vertices are now the

communities found previously. To do so, the new vertex set V k+1 consists of the latest

community (ckv), and the weights of the edges between the new vertices are given by the

sum of the weight of the edges between vertices in the corresponding two communities [36].

The edges between vertices of the same community lead to self-loops for this community in
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Algorithm 1: Sequential Louvain Algorithm

Input: k : current level;
G = (V 0, E0): graph representation at
level 0;
C 0 community set at level 0 ;
c0
u : the vertex u’s community at level 0;

Output: C: community sets at each level;
Q: modularity at each level

k ← 0;1

repeat2

ck
u ← u, u ∈ V k;3

Σ
cku
tot ←

∑
wu,v, e(u, v) ∈ Ek;4

Σ
cku
in ←

∑
wu,v,∀ckv = cku and e(u, v) ∈ Ek;5

// Phase 16

repeat7

for u ∈ V do8

// Find the best community for vertex u.9

ĉkv ← arg max
∀v,∃e(u,v)∈Ek

∆Qu→ckv ;
10

// Update Σtot and Σin.11

Σ
ĉkv
tot ← Σ

ĉkv
tot + w(u) ; Σ

ĉkv
in ← Σ

ĉkv
in + w

u→ĉkv
;12

Σ
cku
tot ← Σ

cku
tot − w(u) ; Σ

cku
in ← Σ

cku
in − wu→cku ;13

// Update the community information.14

cku ← ĉkv ;15

if No further improvement can be achieved then16

exit loop;17

// Calculate community set and modularity18

Ck+1 ← {cku},∀u ∈ V k ;19

Qk+1 ← 0 ;20

for c ∈ C k+1 do21

Qk+1 ← Qk+1 +
Σcin
2m
− (

Σctot
2m

)2 ;22

print Ck+1 and Qk+1;23

// Phase 2: Rebuild Graph24

V k+1 ← Ck+1 ;25

Ek+1 ← {e(cku, ckv)},∃e(u, v) ∈ Ek ;26

wcku,ckv ←
∑
wu,v,∀e(u, v) ∈ Ek ;27

if No improvement on the modularity then28

exit loop;29

k ← k + 1;30
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the new graph (Lines 25–27). Then it repeats these two phases for the next level until the

modularity cannot increase anymore.

2.3.3 Challenges for Designing Parallel Louvain Algorithm

The most computationally intensive part in the Louvain algorithm is the calculation

of the modularity gain for all vertices (Lines 8–13 in Algorithm 1) and the ensuing re-

construction of next-level supergraph based on new community structures (Lines 25–27 in

Algorithm 1). Throughout the modularity calculation and the supergraph reconstruction,

the change of vertex connectivity and community structure for each vertex is immediately

applied to the same computation for the next vertex. Simply speaking, computation in the

algorithm has an widespread serial dependence at every level, from vertex to vertex and

iteration to iteration. Thus, the parallelization of the Louvain algorithm on a distributed

memory system cannot be achieved by simply partitioning all vertices and distributing the

modularity calculation across compute nodes because the change of connectivity and com-

munity structure at one vertex is not available to the other vertices.

A parallel version of the Louvain algorithm needs to preserve the same convergence,

modularity and community detection properties of the original sequential version. The lack

of a global shared memory leads to a number of important challenges for the design of a

parallel Louvain algorithm.

The first challenge is the calculation of modularity gain ∆Q for all vertices with dy-

namically updated community structures. Imaging in a parallel environment, the vertices

are spread across many compute nodes. Each vertex needs to examine the modularity gain

for joining its neighbors’ communities, which requires repetitively gathering all edges to ver-

tices in the corresponding communities (wu→ci). Such gather operation requires a significant

amount of communication and synchronization, and hinders the degree of parallelism.

The second challenge is the convergence property. The sequential algorithm guarantees

that the modularity always increases when moving one vertex to a community because of
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the greedy policy. However, this is not always true in a parallel environment. Because when

vertices compute their ∆Q in parallel, each only sees a static snapshot of their neighbors

based on the available pre-existing community structures. The convergence property of the

greedy policy is no longer preserved. Vertices may end up exchanging obsolete community

structures with little gain on modularity, resulting in the infinite movement of vertices, i.e.,

not converging.

A solution to these challenges requires not only in-depth examination of inherent com-

putation and communication parallelism in the algorithm, but a novel heuristic that can dy-

namically control the vertex coverage of the calculation, purge obsolete or non-contributing

vertices, and eventually converge with high-modularity communities.

2.4 Summary

In summary, this dissertation seeks to investigate efficient and scalable programming

models for fast computation and data processing in the following directions:

• Scalable communication for GAS runtime system;

• Efficient data movement for MapReduce programming model; and

• Scalable parallel community detection over distributed memory systems.
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Chapter 3

Related Work

A great deal of effort has been directed toward programming model. In this chapter we

first review prior work on the communication runtime. Following that, we describe latest

research on MapReduce. In the end, we review the research in parallel community detection.

3.1 Research On Communication Runtime

The scalability of communication runtime involves a number of complicated design is-

sues, including process management, selection of connection models, data communication,

communication buffer management, as well as flow control.

Runtime Communication Library: The design and implementation of MPI on Por-

tals was first described by Brightwell et al. [37]. This has been one of the reference implemen-

tations for other programming models on top of Portals, in which communication protocols

for different size messages are elaborated. Huang et al. [38] studied the scalability of commu-

nication for MPI on multicore clusters. Sun et al. [39] re-evaluated the impact of Amdahl’s

law in the multicore aera. Our work investigates the scalability of runtime communication

through multinode cooperation. Bonachea et al. [40] recently ported GASNet to the Portals

communication library on the Cray XT platform to support UPC and other GAS models.

Generic issues such as enabling communication operations, handling requests/replies, and

flow control were discussed. Global Arrays [41]and, more specifically, its runtime system,

ARMCI [9], have been implemented for a while variety of high-performance architectures and

interconnects. Nieplocha et al. [42] described an efficient implementation for cluster with

Myrinet. Nieplocha et al. [43] described and evaluated protocols for optimizing communi-

cation on the Quadrics QsNetII hight-performance network interconnect, which observed
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over 40% improvement in overall communication time. Tipparaju et al. [44] evaluated the

implementation of ARMCI on the Portals network interface on the Cray XT3 and showed

over 80% overlap for all the message sizes tested. Recently Tipparaju et al. [10] designed

and implemented a scalable ARMCI communication library on Cray XT5 2.3 PetaFLOPs

computer at Oak Ridge National Laboratory, and demonstrated its strength in enabling GA

and a real world scientific application - NWChem - from small jobs up through 180,000 cores.

Runtime Communication Topology: Topologies for communication networks have

been well documented in the textbooks [45, 46]. Exploiting scalable topologies for high

performance communication networks has also been studied extensively in the literature,

such as those in [47, 48, 49]. Our research represents an innovative use of classic topologies.

By imposing mesh and cube topologies on top of small fully connected graphs (FCG), we

introduced meshed FCGs (MFCG) and cubic FCGs (CFCG) to formalize challenging issues

faced by today’s petascale programming models.

Runtime Communication Algorithm: Numerous algorithms were investigated to

support deadlock-free message routing in interconnection networks. In their classic paper,

Dally et al. [50] proposed deadlock-free message routing algorithms, such as dimension-order

routing, for multiprocessor interconnection networks using the concept of virtual channels.

Duato et al. [51] investigated deadlock-free adaptive multicast routing algorithms on worm-

hole networks using a path-based routing model. Lin and Lionel [52] compared different

multicast worm-hole routing algorithms, such as dual-path routing and multi-path routing,

for multicomputers with 2D-mesh and hypercube topologies. Our work builds on top of the

dimension-order routing algorithm, and proposes the deadlock-free LDF (lowest dimension

first) algorithm. LDF only needs to forward an ARMCI request once per dimension in

MFCG, CFCG, and Hypercube. In addition, it allows partially populated MFCG and CFCG

on any number of network nodes.

Runtime Resource Management: Many efforts studied the scalability of resource

management for other contemporary programming models. Sur et al. [53] examined the
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memory scalability of various MPI implementations on the InfiniBand network. Koop et

al. [54] exploited the use of message coalescing to reduce the memory requirements for MPI

on InfiniBand clusters. Chen et al. [55] optimized the communication for UPC applications

through a combination of techniques including redundancy elimination, split-phase com-

munication, and communication coalescing. Our work differs from these earlier studies by

introducing new virtual topologies to reveal the challenges of resource management and con-

tention in the ARMCI Global Address Space runtime system. To the best of our knowledge,

this thesis is the first in literature to exploit the concept of virtual topology for system-

atic investigation of scalability and contention issues in Global Address Space programming

models.

3.2 Research On MapReduce Programming Model

MapReduce is popularized by Google as a very simple but powerful program model

that offers parallelized computation, fault-tolerance and distributing data processing [12].

Its open-source implementation, Hadoop, provides a software framework for distributed pro-

cessing of large datasets [13]. We review related work in a number of directions.

MapReduce Data Communication: Kim et al. [56] improved the performance of

MapReduce by reducing redundant I/O in the software architecture. But it did not study

the I/O issue caused by the data shuffling between MapTasks and ReduceTasks. The closest

work to this research is MapReduce Online as proposed by Condie et al. [57]. This work

focused on enabling instant shuffling (so called online) of intermediate data from MapTasks

to ReduceTasks. Essentially, MapReduce Online introduces direct data shuffling channels

between MapTasks and ReduceTasks to avoid the creation of intermediate MOF files. In do-

ing so, it requires the direct coupling of each MapTask with all ReduceTasks, and completely

changes the fault handling mechanism of Hadoop. A failure of a MapTask or a ReduceTask

is no longer a local event that can easily be recovered by re-launching the failed task. In

addition, MapReduce Online requires a large number of TCP connections, which limits its
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scalability. Our work does not require close coupling of data flow between MapTasks and

ReduceTasks, allowing separated recovery from failures of either MapTasks or ReduceTasks.

We propose virtual shuffling as a new strategy to enable data shuffling on-demand instead

of physically moving, merging and storing data before they are processed by the reduce

function.

Power and Energy of MapReduce Programs: Leverich et al. [58] modified Hadoop

to allow scale-down of operational clusters which could save between 9% and 50% of energy

consumption. They also outlined further research into the energy-efficiency of Hadoop. Lang

et al. [59] closely examined two techniques, namely Covering Set (CS) and All-In Strategy

(AIS), which could be used for the management of MapReduce clusters. They showed that

AIS was the right strategy for energy conservations. Chen et al. [60] presented a statistics-

driven workload generation framework which distilled summary statistics from production

MapReduce traces and realistically reproduced representative workloads. This methodology

could be useful for understanding design trade-offs in MapReduce. The same team also

exploited and analyzed how compression could improve performance and energy efficiency

for MapReduce workloads [61]. They proposed an algorithm which examines per-job data

characteristics and I/O patterns, and decides when and where to use compression. Our work

does not directly study energy conservation techniques, but evaluates the benefits of virtual

shuffling in energy savings. This is complementary to previous research efforts. Our work

documents a case study in conserving energy by reducing other related system activities such

as disk access.

3.3 Research On Parallel Community Detection

It is nontrivial to find a solution for community detection problem. a superior approach

always manifests itself in its three key features: scalability, accuracy, efficiency. Towards

this end, Many algorithms have been attempted. however, only a handful of these methods

consider parallelism, which is an indispensable characteristic in maintaining high efficiency.
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These methods generally fall into two categories: algorithm based on shared memory and

algorithm built upon distributed memory. With respect to the former, Riedy et al. [62]

proposed a parallel algorithm by partitioning a graph into subgraphs and merging the in-

termediate subgraphs towards better graph property. following a principle that maximize

the modularity or minimize the conductance. It is laudable in that the parallelism through

shared memory enables fast computation, however, This solution was confined by specific

hardware, precluding the possibility to be ported to other hardware platforms. Martelot et

al. [63] came up with an multi-threaded algorithm for fast community detection with a local

criterion that dispatches the work to multiple threads. This algorithm was efficient and fast,

however, it did not have good accuracy. Bhowmic et al. [64] recently introduced a shared-

memory implementation of Louvain method. Their work achieved modularity comparable

to the sequential algorithm. This approach could scale to only a small number of threads,

due to the built-in nature of shared memory.

Zhang et al. [65] proposed an algorithm that was built upon the mutual update between

network topology and topology based propinquity. Their work generated community through

a self-organizing process that distributes the workload among thousands of machines. But

this algorithm contained too many synchronizations among different participating processes

and could not scale. Yang et al. [66] implemented a parallel community detection scheme

on top of the MapReduce [67] framework, which is based on maximal cliques. However this

approach suffered from the runtime complexity and led to poor performance. Soman et

al. [68] implemented a parallel algorithm based on the label propagation algorithm [69] on

GPGPUs. Label propagation algorithms are fast but often does not deliver a unique solution,

which requires further investigation on the community quality. In addition, algorithms fail

to unfold the hierarchical organization, which is an important feature [70] displayed by most

networked systems in the real world [15].

Furthermore, Soman et al. [68] implemented a community detection algorithm optimized

for GPU architectures based on label propagation algorithm [69], Their technique could scale
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with a number of cores/threads and delivered high modularity for large sized RMAT graphs.

It makes decisions on community structure on top of local topological information, with

linear time complexity. This algorithm performs well in that the label propagation technique

inherently contains fine-grained parallelism and minimal synchronization, which aptly fall

into the category of GPGPU based solution and achieves a higher speedup. However, Due

to the inherent limitation of label propagation, this algorithm could not always deliver a

unique solution, necessitating further investigation on the community quality.
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Chapter 4

Design and Implementation

In this chapter We first present the design of the Hierarchical Cooperation which extends

ARMCI with supporting indirect one-sided communication. Two key components multinode

cooperation [71, 72] and virtual topology [73] will be described to show how they are able to

address the challenges in the current runtime systems. Following that, We introduce virtual

shuffling strategy for MapReduce programming model. The implementation of three-level

segment table, on-demand merging, and dynamic and balanced merging subtrees will be

explained in detail. In the end, we present our novel design on scalable parallel community

detection algorithm for massive graphs over distributed memory systems.

4.1 Hierarchical Cooperation (HiCOO) for Scalable GAS Runtime System

Figure 4.1 shows the software architecture of Hierarchical Cooperation (HiCOO). On

a system that supports GAS-enabled scientific applications such as NWChem, ARMCI will

support the required one-sided operations, including data transfer, atomic and locks, memory

management, and synchronization. HiCOO extends ARMCI with an indirect communication

model for transmitting one-sided requests in these operations. It includes two key compo-

nents: multinode cooperation and virtual topology. These two components are mutually

dependent on each other for their functionalities. Multinode cooperation offers the funda-

mental communication mechanisms for different nodes and their communication servers to

cooperate with each other for request handling. Virtual topology offers a formal model that

defines the geometric relationship among all the nodes, and accordingly their distance in the

topology hierarchy.
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Figure 4.1: Software Architecture of Hierarchical Cooperation

4.1.1 Multinode Cooperation

Multinode cooperation is intended to address the scalability challenge of communica-

tion buffers, as well as the associated network contention, caused by one-sided messages in

ARMCI’s original direct communication model. It is supported through two communication

mechanisms: request forwarding and request aggregation. We will focus on describing these

two mechanisms in more detail.

Multinode cooperation fundamentally addresses the scalability issues of direct one-sided

request messages. Instead of allocating one set of buffers for all remote processes on each

node, multiple nodes form a cooperative multinode group to allocate buffers. Communication

servers on these nodes divide incoming requests from outside processes amongst themselves.

For example, for a program with N processes, one communication server roughly has to
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preallocate N − 1 sets of communication buffers in the original ARMCI. When a K-node

group is formed through multinode cooperation, one communication server will only need

to preallocate (N − 1)/K sets of communication buffers. Because of the division of requests

among servers, a multinode group effectively reduces each server’s communication buffer

requirement by the size of the multinode group. The servers in a multinode group then

cooperate and handle one-sided requests from processes outside the group. When one request

reaches any server in the multinode group, it will be forwarded to the actual target server.

With multinode cooperation, most of one-sided communication requests are no longer

sent directly to the destination communication server. This brings in another beneficial

feature. The risk of network contention caused by many requests to a single hot-spot target

node is significantly alleviated, because requests are first buffered by cooperative nodes in

a multinode group, and aggregated if they arrive closely with each other in time. Request

aggregation is described in more detail below.

The original ARMCI has a very simple communication model to support direct one-sided

operations. Figure 4.2(a) shows the flow of request and reply between a pair of processes (Pr

and Pt). The communication server CST (co-located with Pt) receives the request from Pr

on behalf of Pt. As the requested operation completes, CST returns a corresponding reply

or acknowledgment (ack/rep) to Pr. This forms a direct request/reply pair and a simplified

flow control scheme between Pr and CST .

The key of multinode cooperation is its indirect request communication model. This is

achieved through request forwarding and request aggregation. Figure 4.2(b) shows the flow

of requests and replies in multinode cooperation. Three processes (Pr0, Pr1, and Pr2) are

initiating three one-sided requests (R0, R1, and R2) to a target process (Pt), through the

communication server (CSI) at the same intermediate node. CSI receives these requests, and

detects that they are targeting for the same communication server CST . So these requests

are aggregated together into a single request and sent to CST . Only one acknowledgment is
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Figure 4.2: Request Handling in ARMCI and Multinode Cooperation

needed for the aggregation request. CST receives a combined request, and processes the em-

bedded requests separately. In the end, it sends back individual replies or acknowledgments

back to three requesting processes.

Request forwarding can be viewed as a special case of the same diagram, where requests

are not allowed to be aggregated together. When a request arrives at CSI , it is immediately

forwarded to CST . There must be a separate acknowledgment for every request message.

Event-Driven Aggregation Window – To allow request aggregation, a communi-

cation server must hold on to one request and wait for the arrival of more requests. When

requests arrive closely within each other, there are plenty of opportunities to aggregate re-

quests. However, the communication server should not keep a request for too long when no

31



more requests arrive in time. On the other hand, the communication server cannot busy

wait for the arrival of new requests, which would consume a lot of CPU cycles. We address

this issue through an event-driven aggregation window. Upon the arrival of a new request,

the communication server records its timestamp. It is then blocked, waiting for the arrival

of more requests. Every portals message generates an event on the communication server,

and wakes up the communication server to perform possible request aggregation. A request

will be forwarded when the aggregation window expires. An extra event is introduced to

wake up the communication server when no portals messages are communicated. Within a

multinode group, an empty message is periodically initiated by a communication server to

its peer. This message will generate an event to wake up blocked communication servers,

thereby breaking a potential stalemate caused by a held request.

4.1.2 Virtual Topology

As discussed in Section 2.1, the default resource allocation in ARMCI leads to a serious

scalability challenge. More importantly, its resource dependence relationship (irrespective of

any underlying physical network topology) can cause contention when some processes become

hot-spots to the communication requests. A virtual topology FCG can precisely reflect the

state of resource allocation and contention. It also suggests that alternative virtual topologies

may offer a solution for scalable resource management and contention attenuation. We first

introduce two new virtual topologies: MFCG and CFCG, and examine various features of

these two, along with a canonical topology Hypercube. Then we describe the details of

request routing in realizing these topologies.
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4.1.2.1 Comparisons of Three Virtual Topologies
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Figure 4.3: Three Virtual Topologies (For clarity, not all vertices/edges are shown in CFCG)
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MFCG – The first virtual topology we have introduced is called Meshed Fully Con-

nected Graphs (MFCG for short). Figure 4.3 (a) shows an example of MFCG, in which all

nodes are virtualized as vertices in a X × Y mesh (in this case, X = 3 and Y = 3). Nodes

with the same Y-offset are fully connected. That is to say, they all dedicate request buffers

to each other. The same policy is applied to nodes with the same X-offset. Thus, for an

arbitrary X × Y MFCG, an individual node has (X − 1) outgoing edges on X-dimension

and (Y − 1) outgoing edges on Y-dimension. A request routing mechanism is provided to

exchange requests between a pair of nodes that are not directly connected. Therefore, using

MFCG, the number of request buffers on each node decreases to O(
√
N), instead of O(N)

in FCG.

MFCG is also beneficial in alleviating contention. Figure 4.4 (a) shows request paths

for nodes in a 3 × 3 MFCG to reach Node 0. Two types of request paths are possible: the

first type is used by the nodes that are directly connected to Node 0; and the second type

is used by the nodes that are not directly connected. These paths form a tree of height 2

and rooted at Node 0. Compared to the flat tree as shown in Figure 2.4, the contention is

reduced to O(
√
N). One may rightfully argue that contention as depicted in Figure 4.4(a)

does not reflect the actual contention in the physical network. The purpose of scalable virtual

topology is to offer a convenient tool that can cope with network contention at a software

level, instead of leaving the contention issues completely to the network hardware.

CFCG – Another virtual topology we introduced is Cubic Fully Connected Graphs

(CFCG). Figure 4.3 (b) shows an example of CFCG, in which all nodes are virtualized as

vertices in a X × Y × Z cube (in this case, X = 3, Y = 3, and Z = 3). The nodes

with the same offsets on two dimensions are fully connected as an FCG. For an arbitrary

X×Y ×Z CFCG, an individual node have (X− 1) outgoing edges on X-dimension, (Y − 1)

outgoing edges on Y-dimension, and (Z − 1) outgoing edges on Z-dimension (to clarify, not

all vertices/edges are shown for CFCG). Using CFCG, the number of request buffers on one

node scales in the order of O( 3
√
N), instead of O(N) with FCG. A request may have to be
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Figure 4.4: Tree Representations of Request Paths in Virtual Topologies

forwarded maximally two times before reaching its destination.
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Figure 4.4(b) shows the tree representation of request paths for nodes in a 3 × 3 × 3

CFCG to reach Node 0. These directed paths form a trinomial tree of height 3 and rooted

at Node 0. For a system with N nodes, the tree of request paths rooted at an arbitrary

node will be k-nomial tree where k = 3
√
N . Compared to the flat tree in Figure 2.4, network

contention is then reduced by an order of O( 3
√
N), at the expense of up to 2 forwarding steps

to deliver a request.

Hypercube – As discussed above, CFCG is more scalable in resource allocation than

MFCG and FCG, despite more steps for request transmission. One may wonder if a vir-

tual topology of even higher dimension could be a worthy solution. So we investigate the

third virtual topology, Hypercube. Figure 4.3(c) shows 16 nodes that are connected as a

Hypercube. Each node is directly connected to log2N nodes (4 in this case). Figure 4.4(c)

provides a tree representation of request paths from all nodes to Node 0. For N nodes, it is

essentially a binomial tree of depth log2N . Using Hypercube, the number of request buffers

required on one node scales in the order of O(log2N). Two nodes may be separated by up

to log2N dimensions apart. Therefore, up to (log2N − 1) transmissions are needed for a

request to reach its destination. On the other hand, at each depth of a request path tree,

contention is reduced by an order of O(log2N).

4.1.2.2 Request Routing in Virtual Topologies

We have implemented MFCG, CFCG, and Hypercube in ARMCI on Jaguar. The

support for request routing is the key to realizing these virtual topologies. Communication

servers on intermediate nodes are used to transmit a request from the original process to the

target server. Upon the arrival of a request, the target sends a response (or acknowledgment)

directly to the original process. If an intermediate server (or the target) detects that the

request is routed from an upstream server, it sends an acknowledgment to the upstream

server. To support multidimensional topologies such as MFCG, CFCG, and Hypercube, our

implementation also allows a request to be transmitted multiple steps.
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For correct request routing, the actual implementation of virtual topologies requires

proper handling of two important issues: (a) how to determine the order of routing; and (b)

how to enable virtual topologies, MFCG and CFCG, when the number of nodes can only

be configured as partially-populated topologies (mesh or cube), e.g., a prime number that

cannot be evenly divided. As mentioned earlier, we include Hypercube only to examine its

tradeoff in resource management and contention, compared to MFCG and CFCG. For the

investigative purpose, we only support hypercube when the number of nodes is a power of

2.

Lowest-Dimension-First Routing – Multiple communication steps are needed for

an ARMCI request to properly reach its destination, in multi-dimensional virtual topologies

such as MFCG, CFCG and Hypercube. Each step corresponds to a relationship in which an

upstream node is dependent on the availability of request buffer at the downstream node. If

the routing of requests were to happen arbitrarily, it would create cyclic dependences and

lead to deadlocks in a multi-dimensional virtual topology.

Algorithm 1 Lowest Dimension First Routing

1: {Dimension: k}
2: {Current Node: S = (s0, s1, ..., sk−1)}
3: {Destination Node: T = (t0, t1, ..., tk−1)}
4: D ← S {Initialize D as the next node}
5: i← 0
6: while (D 6= T ) do
7: if si 6= ti then
8: D ← (s0, s1, ..., si−1, ti, si+1, ..., sk−1)
9: {Forward the request to the next node, D}

10: end if
11: i← i+ 1
12: end while

We develop a lowest-dimension-first (LDF) protocol to ensure deadlock-free routing in

virtual topologies. Algorithm 1 illustrates the selection of next node for request routing in

LDF. For two nodes S = (s0, s1, ..., sk−1) and T = (t0, t1, ..., tk−1) on a virtual topology with

k dimensions, LDF always chooses the lowest dimension i on which S and T differ. A request
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is then forwarded to the next destination D, which is a number derived by replacing si of S

with ti. Since the order of routing is established in an monotonic dimension order, breaking

any cyclic dependence. Therefore LDF is deadlock-free. When the number of nodes allows

virtual topologies to be fully populated as meshes, cubes, or hypercubes, LDF as shown in

Algorithm 1 works perfectly.

Routing on Virtual Topologies with Any Number of Nodes – Routing in a

virtual topology is similar to routing in a physical interconnect. In the case of a fully

populated two-dimensional MFCG, LDF can be reduced to the classic turn model [74] that

was designed for 2-D meshes. However, the key difference is that a virtual topology is very

dynamic and frequently partially populated. For this reason, each node frequently changes

its position from one topology to another. It is important that deadlock-free routing be

enabled on virtual topologies (MFCG and CFCG) with any number of nodes.

We achieve that by strictly ordering all nodes in a lowest dimension first manner.

For a virtual topology G with dimension k, the lower order dimensions are first popu-

lated with available nodes. Only the highest dimension, k − 1, is allowed to be partially

populated. Assume that a virtual topology G has M as its highest ranked node, where

M = (M0,M1, ...,Mk−1). With all nodes ordered this way, we extend the LDF algorithm

slightly. It allows routing only when the next destination D is a number smaller than or

equal to M . An extra condition, “if (D ≤M)”, is introduced to Algorithm 1 before a request

is forwarded. With this extension, if routing paths of a set of requests did not violate this

extra condition, there would not be a deadlock because their routing paths are determined

by Algorithm 1. For a possible deadlock to occur, one request must have violated this con-

dition once in its path. This is not possible because the nodes are strictly ordered and no

node can have a rank higher than M (by definition). Therefore, it prevents any circle in

request routing. The listing of the extended LDF algorithm is not included here, due to the

simplicity of this addition.
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4.2 Virtual Shuffling for Efficient Data Movement in MapReduce

As discussed in Section 2.2, the default Hadoop MapReduce programming model in-

volves a large number of I/O accesses in three phases, especially for data-intensive appli-

cation, which severely hurts the performance. In this dissertation, I undertake a different

effort to investigate the issue of disk I/O contention in data shuffling phase of MapReduce

programming model. As shown in Figure 4.5, we take a new perspective at data shuffling of

MapReduce programs. In the default Hadoop implementation, intermediate data segments

are pulled by ReduceTasks in their entirety to local disks, and then merged before being

reduced for final results. This is shown by Figure 4.5(a). Because the physical movement of

segments across disks, we refer to this strategy as physical shuffling.

Inspired by the classic concepts of virtual memory and demand paging, we propose

a virtual shuffling strategy to enable efficient data movement for MapReduce programs.

Figure 4.5(b) shows the general idea. Instead of moving data segments to local disks before

starting the reduce function, virtual shuffling allows a ReduceTask to fetch only a minimal set

of segment attributes and create a virtual segment table that records the actual locations of

remote segments. Virtual shuffling delays the actual movement of data until the ReduceTask

requests data to be reduced. At that point, virtual shuffling employs on-demand merging to

fetch data in small blocks into memory, merge and send them directly to the reduce function.

In doing so, virtual shuffling greatly reduces the number of disk accesses of physical shuffling,

and enables efficient data movement. In order to overcome the disk I/O problem of physical

shuffling, virtual shuffling needs to address three important issues:

1. How to scalably represent intermediate data segments in a virtual manner?

2. How to minimize the impact of actual shuffling of data?

3. How to dynamically coordinate and balance data shuffling and merging without de-

grading the performance?
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Figure 4.5: Comparisons of Different Shuffling Strategies

4.2.1 A Three-Level Segment Table

We draw our inspiration from the classic concept of virtual memory in designing virtual

shuffling. To manage many intermediate data segments produced by MapTasks, we design

a three-level table to organize them in a scalable manner. As shown in Figure 4.6, at

the completion of a MapTask, its data segment is not physically copied for merging at a

ReduceTask. Instead, a Segment Table Entry (STE) is created at the lowest level–Segment
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Figure 4.6: Design of A Three-Level Segment Table for Virtual Shuffling

Table (SegTable)–to represent the segment in a virtual manner. The STE includes several

attributes of the segment such as its first<key, val> pair, its total length, its source MapTask,

as well as its physical location on the remote disk. The number of STEs in a SegTable is a

tunable parameter based on the computation, memory, and I/O resources. Many SegTables

are organized into a Segment Middle Directory (SMD), in which each entry represents a

SegTable. Many SMDs in turn are organized as a Segment Global Directory (SGD).

In addition, three kinds of memory buffers are used as interfaces across different levels of

entries. For example, an SGD will interface with its SMDs through a Segment Global Buffer

(SGB), an SMD with its SegTables through a Segment Middle Buffer (SMB), and a SegTable

with its segments through a Segment Table Buffer (STB). With this three-level hierarchical

table, if there were memory pressure, we can keep only a few active SegTables and their

ancestral SMDs and SGDs in memory, while other SegTables are temporarily stored on disk.
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4.2.2 On-Demand Merging

We design virtual shuffling not to eliminate data movement, but to hide its cost within

the reduce phase of MapReduce. To this end, virtual shuffling mimics the concept of demand

paging and realizes on-demand merging to minimize the impact of actual data movement.

Figure 4.7 shows the operation of on-demand merging. When the ReduceTask needs to

reduce some data, it initiates a data request to the segment table, which in turn triggers the

fetching of data blocks (which contain more intermediate <key,val> pairs from MapTasks)

from remote segments. These blocks will then be buffered at the SEBs. Based on the

virtual segment table, these <key,val> pairs in SEBs will then be merged through segment

buffers such as STBs and SMBs, and finally into SGBs. The data in SGBs are available to be

reduced. To avoid synchronously waiting on the completion of these steps, two sets of buffers

are provided at each interface. This enables double buffering and overlaps the on-demand

merging of incoming data with the reducing of previous data. Data from each segment are

brought in sequentially as small blocks. One block will be fetched into an SEB only when

it is the next block to be merged. On-demand merging is built on top of our previous work
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network-levitated merging [75]. While network-levitated merging strives to lift data merging

up above disks, on-demand merging emphasizes the importance of hiding and minimizing

the cost of shuffling to the reduce phase. On-demand merging does not preclude the need of

flushing data to disks, as will be described in Section 4.2.3.

4.2.3 Dynamic and Balanced Subtrees
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Figure 4.8: Dynamic and Balanced Subtrees for Concurrent Merging

With a hierarchical segment table, all virtual segments are essentially organized into a

merging tree in which the leaves are the SEBs. If on-demand merging with double buffering

were to activate all leaves, there would be a need of 2N SEBs, where N is the number of

total virtual segments. For an application with a dataset (S) and a data split size (B), it

will then have N = S
B

segments. Assume a split size of 64 MB, SEB of 32 KB, and the

use of double buffering for blocks from each segment, the amount of memory needed for all

SEBs would be S
1024

Bytes per ReduceTask, i.e., 1 GB memory for a MapReduce application

with 1 terabyte of data. Clearly, this does not allow good scalability for applications with

petascale data and beyond.

We employ a dynamic orchestration mechanism to manage the merging of virtual seg-

ments. Instead of activating all leaves, we organize the whole tree as many subtrees, each
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composed of a SegTable and its SEBs. At any time, only a limited number of subtrees are

actively merging data. As shown in Figure 4.8, two subtrees are currently active in merging

its SEBs into STBs. The merged data will be further merged to SMBs and/or SGBs. To bal-

ance the merging progress at different subtrees, previously active subtrees will be deactivated

to allow other subtrees to make progress.

There is an intriguing issue here. At the time when a subtree is to be deactivated,

their SEBs usually contain data that are not yet merged to the STB. Worse yet, the use of

double buffering means that, for any segment, one SEB has data left to be merged while the

other SEB is waiting on data to be fetched remotely. A decision needs to be made on either

dumping the data including the remaining data in one SEB and the data in flight for the

other SEB or flushing the data to the disk, to make memory available for other subtrees.

To improve the utilization of data in memory, we prevent a subtree from fetching more data

into SEBs when its STB is already 70% full, and also provide a grace period of 0.5 second

(a configurable parameter) in the deactivation of a subtree, allowing more data in SEBs to

be consumed (merged) into the STB. For a subtree that still has data left in its SEB, we by

default dump the data. A user option is also allowed to flush the data to disk. The reason

for dumping data by default is to avoid frequently writing small data blocks to, and reading

them back from, disks.

4.2.4 Hierarchical Merge Design Issues

Virtual shuffling is applied to MapReduce through hierarchical merge technique [76]

using a two-level hierarchy of priority queues as shown in Figure 4.9. At the very bottom, a

linear array (called treeset) is used to sort the incoming segments based on their size. Once

the number of segments goes over a threshold, the segments are moved into a Child Priority

Queue (CPQ). More segments will lead to the creation of more CPQs. After all segments

have arrived, the remaining segments in treeset are moved to the last CPQ. All CPQs are

then organized into a root priority queue (RPQ), which merges data from CPQs into an
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additional staging buffer. The segments are spread into many small CPQs. The novelty of

Hierarchical Merge is to minimize the number of merges down to 2 and yet keep the merging

process in memory.

RPQ <5,v’> <13,v’> …… <17,v’> ……

CPQCPQ

CPQCPQ CPQCPQ

CPQCPQ CPQCPQ CPQCPQ CPQCPQ
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Seg1 Seg2 Seg3 SegI SegJ SegK

Figure 4.9: Hierarchical Merge Algorithm

There are several issues require further investigation. Since the Hierarchical Merge in-

volves extra merging steps and might cause overhead, it is critical to manage the merging

process of RPQ and CPQs smoothly. In addition, limited buffers are shared by all the seg-

ments, it is also important to manage buffers efficiently during the assignment and eviction.
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4.2.4.1 Merging Orchestration

The merging of the RPQ and that of CPQs are overlapped through the use of multiple

worker threads and memory double buffering. Because of this, the merging process of RPQ

and CPQ can be conducted asynchronously on different temporary buffers through different

workers. One thread, namely the primary worker, is dedicated to the RPQ and several other

threads, named secondary workers, handle all the CPQs which depends on the available

buffers. To balance the workload among all the secondary workers, our implementation

equally assigns CPQs among them, which also guarantees fairness among them.

Low-priority queue
(waiting area)

Secondary 

Classify

CPQs arrival Update CPQ
Worker

Hi h i iHigh-priority queue
(waiting area)

Figure 4.10: Priority-based Scheduling Policy

In order to pipeline the merging at different levels, a scheduler is needed to minimize

the stall, which could be caused by the unavailability of the intermediate merged result. We

apply Priority-based Scheduling to fulfill this requirement. Figure 4.10 shows the scheduling

policy. Each secondary worker has two waiting queues for the CPQs belong to it. One queue

is for high-priority CPQs, which require to be processed immediately, otherwise the primary

worker will be blocked. The other queue is for low-priority CPQs, which can be delayed.

Normally, the low-priority queue of a secondary worker is not empty and it contains several

CPQs. The secondary worker merges the CPQs from the low-priority queue in a First In
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First Out (FIFO) manner and updates them accordingly. CPQs are normally inserted into

the corresponding low-priority queue. Only when the merging of the RPQ is blocked and

waiting for the update of a specific CPQ, this CPQ has the highest priority and will be insert

into the high-priority queue. If such scenario occurs, the corresponding secondary worker

will be interrupted (if it is working on other CPQ) to process and update that CPQ with

the highest priority, which eventually enables the merging of RPQ and resumes the pipeline.

4.2.4.2 Buffer Management

Hierarchical Merge improves the scalability of Hadoop-A by using less memory. Our

buffer manager is able to efficiently manage these limited resource while maintaining the

performance improvement. A Buffer Manager is designed to be responsible for the buffer

assignment. When a segment is created, two buffers are allocated to it. One is for fetching,

called FetchingBuffer, the other one is for merging, named MergingBuffer. When a CPQ is

partially merged, all of the buffers hold by its segments should be returned to the Buffer

Manager so that other CPQs can have their fair share of the resources. However, simply

returning the buffers may cause waste of unused data which shall be avoided to the maximum

degree. So, instead, the Buffer Manager records the addresses of the available buffers, leaves

them within the CPQs and only evicts the buffer from the CPQ on demand.

In addition, a naive strategy to assign a random buffer to a CPQ can also be prob-

lematic. For example, when both the fetching and merging buffers become available, if the

MergingBuffer is firstly evicted, the merging thread has to stall until the data in the Merg-

ingBuffer is restored when the CPQ is activated for merging again. On the contrary, if the

FetchingBuffer is evicted, then the intermediate merge can continue making progress and the

cost of restoring the data can be hidden, without delaying the merging phase. In addition,

when there are unused buffers available, returning the buffers that contain recently fetched

data can cause unnecessary data movement costs. To address these performance issues, we
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organize all the available buffers within a queue and sorted them according to their usage

status, and assign the next buffer from the head of the queue.

4.2.5 Fault Tolerance

Hadoop adopts restart fault-tolerance model to handle the node failures. During the job

execution, the JobTracker periodically communicate with TasksTrackers through heartbeat

message. If a TaskTracker fails to communicate with JobTracker for a period of time (by

default, 1 minute in Hadoop), JobTracker will assume that TaskTracker has crashed. The

JobTracker chooses another TaskTracker to re-execute all MapTasks, if it is in map phase

(or ReduceTasks if it is in reduce phase), that previously ran at the failed TaskTracker.

Our virtual shuffling does not need complicate efforts to this simple and clean fault-

tolerance model. If the jobs failed is in the map phase, JobTracker will choose another

TaskTracker to re-execute the MapTasks. Meanwhile, all the ReduceTasks will re-fetch the

segment headers belonged to the failed MapTasks, which leads to an update of the globale

segment table. Similarly, if the jobs failed is in the reduce phase, another TaskTracker

will re-execute the failed ReduceTasks and the global segment table will be created and all

the intermediate data will be shuffled again. Virtual shuffling only renovates the shuffle

strategy inside ReduceTasks, which can be viewed as an independent component and is not

coupled with the TaskTracker. MapTask execution is completely decoupled from ReduceTask

execution which is maintained as it is in the vanilla Hadoop. This property of virtual shuffling

contributes to a less effort on the fault tolerance inside Hadoop.

4.3 A Scalable Parallel Community Detection Algorithm for Distributed Mem-

ory Systems

To address the modularity maximization challenges discussed in Section 2.3.1, we have

introduced (1) a novel hash-based data organization for computation and communication

parallelization; and (2) a novel heuristic that controls the fraction of vertices for hierarchical
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supergraph construction. Together, these techniques are integrated into our parallel Lou-

vain algorithm. Furthermore, we have designed a communication runtime that is specially

optimized for lock-free message generation and fast communication on Blue Gene/Q systems.

4.3.1 Hash-Based Data Organization

We linearly organize the vertices and partition them among compute nodes. Each node

is assigned a set of vertices, which we refer as the node owns the vertices. The same node is

responsible for all the information related to the vertices. 1D partition is a good fit because

our parallel algorithm requires multiple iterations and a synchronization is only needed after

all iterations.
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Figure 4.11: Edge Hashing

Instead of using the traditional sorting based implementation, we introduce a hash based

data organization to gather all edges and reduce communication and synchronization. The

edges belonging to the vertices on a compute node are managed by two distinct hash tables,

In Table and Out Table. Figure 4.11 shows the hash mechanism for two representative

vertices i and f on one processing node along with all the neighbors (a, b, d). We derive our

data organization scheme based on the original Fibonacci hash function. The resulting hash

function H(x) used for our purpose is defined in Equation 4.1, where M is the size of the
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hash table, W is 264 − 1, and φ is the golden ratio.

H(x) = bM
W
· ((φ−1 ·W · x)modW )c (4.1)

As shown in the figure, both hash tables are hashed on edges. The difference is that the

In Table manages the in-edges (the edges with destination as i) and the Out Table manages

the out-edges (the edges with source as i). These tables use different keys. For In Table the

key field is represented by a tuple composed of the source vertex u and the destination vertex

i of the edge being hashed. It is denoted as f(u, i), ∀e(u, i) ∈ E, as shown by Equation 4.2.

λ is a constant.

f(a, b) = (a << λ) | b (4.2)

For Out Table, the key field is represented by a tuple composed of the source vertex and

the destination vertex’s community for the corresponding edge, denoted as f(i, cu), ∀u ∈

cu, e(u, g) ∈ E. For the In Table, the value field represents the weight of the corresponding

edges denoted as wu,i. Because different neighbors of one vertex may belong to the same

community, the value field in the Out Table actually represents the sum of weights of all

edges from the vertex u to a specific community, i.e., wu→ci in Equation 2.4.

4.3.2 A Novel Heuristic for Convergence

We have examined and analyzed the detailed behavior of the convergence property

of the sequential Louvain algorithm through extensive simulation study. In particular, we

study the trace of the movement of the vertices using a variety of graphs and observe an

exponential relation between the movement of the vertices and the number of iterations. By

using statistic regression to quantify such relationship, we identified a dynamical threshold

ε,

ε = |V | ∗ α ∗ e
1

β∗iter , (4.3)
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which identifies the fraction of the vertices that needs to be updated during each iteration

of the inner loop. The threshold decreases exponentially with the number of iterations as

shown by Equation 4.3, where |V | is the current size of the graph, iter is the number of

iterations of the current inner loop, α and β are the parameters obtained through regression

training and analysis. ε can be translated to the threshold ∆Q̂ by sorting the ∆Qu,∀u ∈ V

and selecting the bottom one from the top ε fraction. This purges out the vertices that will

not contribute much to the modularity gain in the following iterations.

Once ∆Q̂ is obtained, the vertices can update the community information in parallel.

∆Q̂ helps preserve the same convergence and has been examined with large social graphs on

modularity community quality as detailed in Section 5.3.2.

4.3.3 Parallel Louvain Algorithm

The pseudocode for the parallel Louvain algorithm is shown in Algorithm 2. The al-

gorithm starts by initializing all the data structures. At the very beginning, the In Table

contains all the in-edges information of the vertices owned by each nodes. Each vertex’s

community is set to itself and Out Table is set to empty. The algorithm starts with Stat-

Prop, which is a function to exchange messages on the community state. Once all the

messages have been delivered and hashed in place, the Out Table is initialized. We then

invoke Refine, which corresponds to the inner loop of the sequential algorithm and allows

the vertex move to different communities based on the modularity gain. After it converges

to a certain point we reconstruct the graph (GraphReconstruction) and prepare for the

next round of execution. The algorithm halts when there is no more movement of vertices.

4.3.3.1 Community State Propagation

We have designed an efficient communication runtime for message exchange and synchro-

nization on top of our hash based implementation, which will be elaborated in Section 4.3.4.

Here we only explain the algorithm. As shown in Algorithm 3, all the threads sequentially
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Algorithm 2: Parallel Louvain Algorithm.

Input: k : current level;
p: processor;
G = (V 0, E0): graph representation at
level 0;
C 0

p community set at level 0 owned by
processor p ;
V 0

p vertices set at level 0 owned by
processor p ;
c0
u : the vertex u’s community at level 0;

c0
bu : the vertex u’s best community at

level 0;
m0

u : the vertex u’s maximum modu-
larity gain at level 0;

In Table0
p In Table at level 0 owned by

processor p ;
Out Table0

p Out Table at level 0 owned
by processor p ;

Output: C: community sets at each level;
Q: modularity at each level

k ← 0;1

In Tablekp ← ((u, v), wu,v)∀v ∈ V p
k ,∀e(u, v) ∈ E;2

repeat3

cku ← u, u ∈ V k
p ;4

Out Tablekp ← ∅;5

StatProp () ;6

// Refine the vertices’ community until it meets certain threshold.7

Refine () ;8

k ← k + 1 ;9

print Ck and Qk;10

// Reconstruct the Graph.11

GraphReconstruction () ;12

if No improvement on the modularity then13

exit loop;14
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scans its own partition of the In Table and send messages to the destination node, who owns

the corresponding vertex (u in the algorithm) (Lines 4–6). In the meantime, the threads also

receive messages from others and insert/update hashed edges to the Out Table (Lines 8–13),

using operations such as sequential scan and insert/update.

Algorithm 3: Community State Propagation

function StatProp1

begin2

// Scan In Table and send messages.3

for ((u, v), w) ∈ In Tablekp do4

c← Ck
v ;5

send (u, c, w) to processor p
′
(u ∈ Vp′ )6

// Update Out Table.7

for ((u, c), w) received do8

hash tuple ((u, c), w) into Out Tablek
p ;9

if ∃((u, c), w′) then10

w
′ ← w

′
+ w ;11

else12

linear probing until find a free bucket and place the tuple13

end14

4.3.3.2 Refine

Algorithm 4 depicts the Refine routine. It starts with initializing ckbu and mk
u. The

Out Table contains all the neighbors’ communities and the accumulated weights to the com-

munities for the vertices owned by that compute node. Each node starts scanning the hashed

edges (u, c) and then calculates the modularity gain of putting vertex u to Community c.

It updates the corresponding ckbu and mk
u if needed, as shown by Lines 7–10. Consider that

different threads may process the same vertex u concurrently. The updates on the best

community in ckbu and the maximum ∆Q in mk
u need to be atomic. After all the Out Tables

have been examined, each vertex has the information on the best community to join.

For the need to converge, we then build a histogram based on mk
u and calculate the

updated threshold ∆Q̂ according to Equation 4.3. Lines 14–17 update the community vector
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Algorithm 4: Refine.

function Refine1

begin2

ckbu ← u, u ∈ V k
p ;3

mk
u ← 0, u ∈ V k

p ;4

repeat5

// Find best candidate community.6

for ((u, c), w) ∈ Out Tablekp do7

if ∆Qu→c ≥ mk
u then8

ckbu ← c;9

mk
u ← ∆Qu→c10

// Build histogram.11

All reduce and build a histogram to calculate updating threshold ∆Q̂;12

// Updating the community information.13

∀u ∈ V k
p if mk

u ≥ ∆Q̂ then14

// atomically update Σtot15

Σ
ckbu
tot ← Σ

ˆckbu
tot + w(u) ; Σ

cku
tot ← Σ

ĉku
tot − w(u) ;16

cku ← ckbu ;17

StatProp ();18

// Update Σin.19

for ((u, c), w) ∈ Out Tablekp do20

if (c = cku) then21

// atomically update Σin22

Σc
in ← Σc

in + w23

// Calculate community set and modularity24

Ck
p ← {cku}, ∀u ∈ V k

p ;25

Qk
p ← 0 ;26

for c ∈ C k
p do27

Qk
p ← Qk

p +
Σcin
2m
− (

Σctot
2m

)2 ;28

Qk ← Allreduce(Qk
p);29

if No improvement on the modularity then30

exit loop;31

Ck+1
p ← {cku},∀u ∈ V k

p ;32

V k+1
p ← Ck+1

p ;33

end34
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and the corresponding Σtot based on ∆Q̂. The rest is to calculate the new modularity

(Lines 18–29). For this purpose, we need the latest Σc
in, which is the sum of the weights of

all edges inside Community c. We first perform a community state propagation to refresh

the latest community information and weights (Line 18). Then we update the Σin for

each community (Lines 20–23). Finally, we calculate the modularity (Lines 27–29). The

procedure terminates when no further vertex movement can increase the modularity, and

the community and modularity information is printed out.

Algorithm 5: GraphReconstruction.

function GraphReconstruction1

begin2

for ((u, c), w) ∈ Out Tablekp do3

send (cku, c, w) to processor p
′
(c ∈ Ck

p′
)4

// Reconstruct In Table.5

for (u, v), w) received do6

hash tuples ((u, v), w) into In Tablek
p ;7

if ∃((u, v), w
′
) then8

w
′ ← w

′
+ w ;9

else10

linear probing until find a free bucket and place the tuple11

end12

4.3.3.3 Graph Reconstruction

The novelty of our edge hashing is that the In Table describes the initial graph and the

Out Table represents the graphs for communities over iterations.

When the edges are managed by the two hash tables, the reconstruction of graph can

be easily achieved through an exchange of messages between Out Table and In Table. The

GraphReconstruction routine is shown in Algorithm 5. It reconstructs a graph whose

vertices are now the communities found during the Refine phase. To do so, the weights

of the edges between the new vertices are given by the sum of the weight of the edges

between vertices in the corresponding two communities[20]. Edges between vertices of the
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same community lead to self-loops in the new graph. Lines 3–4 scan the Out Table and send

the aggregated edges information to the owner of the vertex (community). Upon receiving

the messages, Lines 6–11 finally prepare the In Table for the next round of execution. Our

hash based graph reconstruction avoids intensive computation compared to the traditional

graph relabeling technique.

4.3.4 Communication Runtime

Communication is always the major performance concern for parallel algorithms. Taking

advantage of the hash based data structure, we have carefully designed a powerful communi-

cation runtime, which is able to serve the need of exchanging the edge information for graph

algorithm with close to maximum bandwidth. The MPI based implementation is highly

portable and agnostic to any parallel systems. We also optimized the runtime for special

network such as Blue Gene/Q network.

Thread1 Thread2 Thread3

…
Dest1

Destn

Head

Thread Table Partition

Tuple: (dest, weight) 

…

Sliding
Window

Destk

Remote Ring
Buffer 

Tail

…

Figure 4.12: Communication Runtime

Figure 4.12 shows the working mechanism of the runtime, where a representative node

is presented. As mentioned in the previous algorithm, The In Table contains the in-edge
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information and the Out Table contains the out-edge information for the vertices owned by

the node. The worker threads on the node partition these two tables and manage their own

region independently. The communication happens when all the nodes exchange the edge

information between the In Table and the Out Table.

On each node, the runtime allocates a ring buffer for each destination node (Desti in

Figure 4.12). Each ring buffer contains a sliding window and two pointers, head and tail,

for flow control with the remote ring buffer. To communicate messages, the threads start

scanning their own In Table region and then write messages (8 bytes or 16 bytes) into the

ring buffer for the destination. Since small messages do not yield good bandwidth, our

communication runtime will aggregate messages until a window of 512 bytes is filled up and

then send out the window as a whole.

On the sender side, multiple threads write into the same ring buffer. To minimize the

contention cost, the tail pointer controls the write position. It is increased atomically by

the threads. If one thread has acquired an available slot, it does not mean that it can

write the message immediately because the corresponding buffer may still have outstanding

communication. The write to the available slot is granted only if the head and the tail fall

into the same window, which means the buffer is available. When a window is filled up

with messages, the aggregated message is sent to the destination node. The head pointer is

updated when the message completes. Our communication runtime can use either one-sided

put or two-sided send.

On the receiver side, it is the responsibility of receiving threads to process the arrived

messages and hash them into the Out Table. In terms of the sequential scan operation,

the worker threads can perform such operations without interference with each other. For

the insert/update operations, contention happens when multiple threads hash messages to

the same bin. A lock operation will be inefficient for concurrent threads. We adopt a lock-

free design for insert/update operations based on the Compare-and-Swap (CAS) primitive.

Update/insert operations on the same bin will happen only if the CAS operation is successful.
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4.3.4.1 Special Design for Blue Gene/Q network

Blue Gene/Q is a five-dimensional (5D) torus, with direct links between the nearest

neighbors in 5 directions. Each link runs at 2 GB/s (2 GB/s send + 2 GB/s receive). The

network supports point-to-point messages, collectives and barriers/global interrupts over

the same physical torus. To achieve a high processing rate, our communication runtime has

leveraged several features from the special Blue Gene/Q architecture.

(1) SPI communication layer : The inter-node communication in our communication

runtime is implemented at the SPI level, a thin software layer that allows direct access to

hardware resources such as injection and reception DMA engines of the network interface.

Each thread has private injection and reception queues and its communication does not

require locking. In addition, our collective operations are completely nonblocking. Barriers

and all-reduces are overlapped with the program execution. These operations take advantage

of the collective acceleration units in the network routers that can perform reduce operations

at the line rate, along with combining and broadcast capabilities.

(2) L2 Flush: To send a message, the Blue Gene/Q network interface can read data

directly from the L2 cache. This provides an opportunity to flush the write queue directly

into the L2 cache instead of memory. Our communication runtime exploits this feature. To

send a message to the network, the sending thread only makes sure that the window buffer

is present in the L2 Cache before calling the send function.
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Chapter 5

Performance and Evaluation

In this chapter we present experimental results from the systematical performance test-

ing that has been performed on our implementation.

5.1 Performance Evaluation of HiCOO

Our evaluation of HiCOO were conducted on Kraken and Jaguar supercomputers (both

Cray XT5 systems). Both computers have dual hex-core Opteron processors, a total of 12

cores per node. Because of the similarity in the processor architecture and interconnection

network, we will not distinguish between Kraken and Jaguar, but mention the number of

processes in our experimental results.

5.1.1 Analysis of Memory Management and Contention Attenuation

In this section, we describe our experiments that evaluate the impact of different virtual

topologies on memory management and contention attenuation. Performance results from

these topologies are compared to the original ARMCI that uses the FCG pattern for request

buffer allocation.

5.1.1.1 Scalable Memory Management

Jaguar runs the Compute Node Linux operating system. On each node, the /proc

file system reports the memory footprint of all processes as the resident working set size

(VmRSS). We create an ARMCI program that reports VmRSS from all processes. This

number represents the total memory consumed by an ARMCI process at runtime before any

additional application-level memory consumption.
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Figure 5.1: Scalability Virtual Topologies for Memory Management

We measure the impact of virtual topologies on memory resources. Our experiments

are conducted with 12 processes per node. All processes start with a memory consumption

of about 612 MBytes. However, due to the allocation of request buffers by the internal CS, a

master process requires more memory for an increasing number of remote processes. The size

of each buffer in CS is 16KB; and the number of buffers per process is 4. Figure 5.1 shows the

memory consumption of master processes, using different virtual topologies. As expected,

the memory requirement of the original ARMCI increases linearly. On 12,288 processes, the

original has a memory consumption of 1,424 MBytes, an increment of 812 MBytes, on top

of 612 MBytes that is needed to run a few processes. The other three virtual topologies

provide much better scalability in terms of memory resources. Compared to the original,

HiCOO-MFCG, HiCOO-CFCG, and HiCOO-Hypercube cut down the increment in memory

consumption significantly, by 7.5, 16.6, and 45 times, respectively.
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5.1.1.2 Contention Attenuation

Virtual topologies are also designed to address the other critical challenge, hot-spot con-

tention in the GAS runtime. We evaluate contention for all one-sided ARMCI operations,

and observe that virtual topologies are beneficial to the contention caused by lock, accumu-

late, noncontiguous data transfer, and atomic operations. Herein presented are results for

two representative operations, noncontiguous vector data transfer and atomic Fetch-&-Add

operations.

Description of Contention Experiments We define hot-spot contention as the percent-

age of processes in a program that are contending for communication to a single process, or

access to a single data element. It is understood that such contention can arise from sources

outside of a program, e.g., from other programs or system services. But, for practical pur-

poses, we consider those beyond the scope of this study, and focus on hot-spot contention

within a program.

We use programs with 1,024 processes for contention assessment, 4 processes per node

across 256 nodes. These numbers provide a reasonable balance between the need of many

nodes to exhibit contention and the need of clarity in visualizing all data points of the

results. In these programs, each process (except those on the same node with Rank 0),

prepares its data as needed (vectored or strided data in the case of noncontiguous data

transfer operations), and then performs one or more one-sided operations to Rank 0. This

is then repeated for 20 iterations. The average time for these iterations is taken as the time

to complete an operation between the respective process and Rank 0.

Measurements are collected under three different contention scenarios. In the first sce-

nario, each process sequentially performs its own one-sided operations to Rank 0, repeats for

20 iterations, and records the time. At the same time, all other processes are idle in a barrier.

This effectively measures the performance of one-sided operations between Rank 0 and all

other processes, without any contention. In the second scenario, each process sequentially
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Figure 5.2: Vectored Data Transfer Operations Under Different Contention

performs the same number of operations to Rank 0, for the same number of iterations. How-

ever, in the meantime, one in every nine processes performs the same operations to Rank

0, while the remaining processes are idle in a barrier. Therefore this corresponds to 11%
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contention. The third scenario is very similar to the second one, except that one in every

five processes concurrently invokes one-sided operations to Rank 0. This then corresponds

to 20% contention.

Noncontiguous Data Transfer Operations We conduct experiments to measure the

performance of vectored put and get operations as representatives of noncontiguous data

transfer functions. Figure 5.2 shows the time of vectored put operations from all remote

processes to Rank 0. Comparisons are provided among varying levels of contention (no

contention, 11% contention, and 20% contention).

Figures 5.2(a) and (b) show the comparisons under no contention. Several behaviors are

revealed by this figure. First, the use of MFCG, CFCG and Hypercube increases the time

to complete noncontiguous data transfer operations between Rank 0 and other processes.

Second, even though all processes are one step away from Rank 0 in the original ARMCI,

the time to complete noncontiguous data transfers gradually increases with process rank.

This suggests that the distance between a processes and Rank 0 in the underlying physical

topology would play a role and contribute to the increased performance. This increment of

time is magnified by the use of MFCG, CFCG and Hypercube. In particular, the results from

HiCOO-Hypercube indicate that using a topology with very high dimensions for minimal

memory consumption does not provide a good tradeoff to the performance. Third, with

MFCG, the performance numbers from all processes form several distinct curves, representing

differences in their (virtual-) topological relationship with respect to Rank 0. The same can

be observed for HiCOO-CFCG and HiCOO-Hypercube as shown in Figure 5.2 (b).

Figures 5.2 (c), (d), (e), and (f) show performance comparisons with increased con-

tention. HiCOO-Hypercube is not included in (e) and (f) because it takes too long to get

a complete set of numbers. While contention increases the time to complete noncontiguous

data transfer operations for all cases, it is evident that all virtual topologies exhibit con-

tention resilience. While the performance of vectored put operations is degraded by nearly
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two orders of magnitude due to contention in the original ARMCI. With 20% contention, it

becomes faster to complete noncontiguous data transfer operations for nearly all processes

in the case of HiCOO-MFCG, compared to the original ARMCI. Comparing Figures 5.2 (c)

and (e) it is interesting to note that HiCOO-MFCG also reduces the variations among all

processes at higher hot-spot contention. The operation time for the group of processes in the

middle has been brought down. This counterintuitive observation is because of the execution

behavior of ARMCI communication server. When more processes are actively forwarding

requests, they stay in the polling mode for handling requests and therefore have better re-

sponse time in average. In summary, these results demonstrate that virtual topologies, such

as MFCG and CFCG, can attenuate the pressure of many contending noncontiguous data

transfer operations, and lead to graceful resilience to contention.

Atomic Fetch-&-Add Operations We measure the performance of fetch-&-add as a

representative of atomic operations. Figure 5.3 shows the time for fetch-&-add operations

from all remote processes to Rank 0. Comparisons are provided among different virtual

topologies, and among varying levels of contention (no contention, 11% contention, and 20%

contention).

Figures 5.3 (a) and (d) show the comparisons under no contention. Similar observations

can be made for atomic operations as revealed by Figures 5.2 (a) and (d). To be brief, these

include (1) the use of MFCG, CFCG and Hypercube topologies increases the time to finish

atomic operations under no contention; (2) the time of an atomic operation increases with

a higher ranked process, suggesting a correspondence to the distance between the process

and Rank 0 in the underlying physical topology; and (3) the performance numbers of atomic

operations from all processes form several distinct groups, representing their relationship in

the virtual topologies.
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Figure 5.3: Fetch-&-Add Operations Under Different Contention

Figures 5.3 (b), (c), (e), and (f) show comparisons with increased contention. Again,

hypercube was not included in (e) and (f). While contention increases the time to com-

plete atomic operations for all cases, it is also evident that all virtual topologies exhibit
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contention resilience. With 20% contention, it becomes faster to complete atomic operations

for nearly all processes using HiCOO-MFCG than the original ARMCI. Under the same level

of contention, even with HiCOO-CFCG, the time for fetch-&-add is shorter for a majority of

processes compared to the same with the original ARMCI. These results again demonstrate

that virtual topologies, such as HiCOO-MFCG and HiCOO-CFCG, can greatly attenuate

the pressure of contending atomic operations.

Furthermore, we investigate the benefits of HiCOO-MFCG for fetch-&-add operations

under 100% contention, i.e., all processes concurrently performs atomic fetch-&-add op-

erations to Rank 0. In this test, within two consecutive barrier (and ARMCI AllFence)

operations, all process concurrently invoke 10 fetch-&-add operations, record the time, and

measure the average for these 10 operations on their own. This is repeated for 100 iter-

ations. Figure 5.4 shows the performance comparison between the original ARMCI and

HiCOO-MFCG, with 1,024 processes and 100 iterations. With 100% contention, it takes

8,000+ µsec in average for a process to complete an atomic operation when using the orig-

inal ARMCI. In contrast, when using HiCOO-MFCG, contention is dramatically reduced.

Many processes finish within 2,000 µsec; nearly all processes complete in 6,000 µsec. This

proves that the virtual topology HiCOO-MFCG is especially useful in attenuating the im-

pacts of heavy contention.

5.1.2 Performance of Communication Operations and Scientific Applications

We have shown that virtual topologies can be very beneficial to reduce memory footprint

and attenuate contention that would occur to hot-spot processes. It is important to find out

how HiCOO will impact the ARMCI communication operations and what benefits they have

to real applications, and how HiCOO will benefit real applications. In the rest of experiments,

we focus on HiCOO using the default topology MFCG.

66



 6500
 7000
 7500
 8000
 8500
 9000
 9500
 10000

 1024 896 768 640 512 384 256 128

 100
 80

 60
 40

 20

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

Time (usec)

Original

Process Rank

Iteration Number

Time (usec)

(a) Original-ARMCI

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000

 1024 896 768 640 512 384 256 128

 100
 80

 60
 40

 20

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

Time (usec)

HiCOO-MFCG

Process Rank

Iteration Number

Time (usec)

(b) HiCOO-MFCG

Figure 5.4: Fetch-&-Add Operations under 100% Contention

5.1.2.1 ARMCI One-sided Operations

ARMCI offers a rich set of one-sided communication primitives for GAS programming

models. These include (1) contiguous and noncontiguous data transfer operations, (2) atomic
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operations, (3) locks, and (4) synchronization operations. While multinode cooperation

is intended to address challenges faced by direct one-sided communication in the original

ARMCI, it is important to measure the performance impact of multinode cooperation to

these one-sided operations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4K 16K 64K 256K 1M

M
B

/s
ec

MesgSize (Bytes)

ARMCI_Put Bandwidth

Original
HiCOO

(a) ARMCI Put Bandwidth

 0

 50

 100

 150

 200

 250

 4  16  64  256 1K 4K

L
at

en
cy

 (
u

se
c)

MesgSize (Bytes)

ARMCI_Put Latency

Original
HiCOO

(b) ARMCI Put Latency

Figure 5.5: ARMCI Put Latency and bandwidth

Contiguous Data Transfer Operations ARMCI supports contiguous data transfer op-

erations, including direct put and direct get. On the Cray XT5, these direct put/get opera-

tions transfer contiguous data directly between source and destination memory, using native

portals put and get operations on the Seastar2+ network. No one-sided requests are sent for

these operations, and communication servers are not involved for these operations. We mea-

sure the performance of direct put/get operations across 16 nodes, each with 12 processes.

These nodes form four groups of cooperative nodes. Our latency and bandwidth tests are

different from the conventional ping-pong latency and stream-based bandwidth tests. 16

nodes are used to mimic the presence of message forwarding and compare the performance

between the original and HiCoo cases. Since there are 12 processes on each node, the la-

tency and bandwidth numbers are measured when each node (and its network card) has a

heavy load of communication generated by many processes. Figure 5.5 shows the latency

and bandwidth performance comparison between ARMCI and multinode cooperation.
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It is clear that our design of multinode cooperation has very little impact on the perfor-

mance of contiguous data transfer operations. Note that, for succinctness, we only show the

performance for direct put operations. The comparison is the same for direct get operations.
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Figure 5.6: Bandwidth of Noncontiguous Operations

Noncontiguous Data Transfer Operations Multidimensional data arrays are com-

monly adopted by scientific applications for numerical analysis and matrix calculation. When

such an array is decomposed into many parallel processes, each process typically owns a

noncontiguous set of data elements. ARMCI supports the movement of such noncontiguous

data through vectored I/O and strided I/O. The former is a generalized I/O format that

describes noncontiguous data segments with a series of <addr, length> pairs; the latter is

an optimization when segments are of the same length and distance from each other.

We have measured the performance of ARMCI strided data transfer. Our experiments

are conducted on sixteen nodes each with 11 processes. Processes on the first node are

paired with, and initiate one-sided ARMCI PutS (and ARMCI GetS) operations to, their

counterparts on the last node. Figure 5.6 shows the performance results of ARMCI for short

messages, with and without multinode cooperation. ARMCI PutS requests are usually large

and contain data inside. So they cannot be merged. Large requests with data need to

be forwarded to the target server separately as the size of aggregation buffer is limited.

On the other hand, ARMCI GetS requests have to retrieve data separately. This leads to
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Figure 5.7: Performance of Atomic and Synchronization Operations

very low bandwidth for ARMCI GetS operations in general. But there is little difference

between the original ARMCI and HiCOO, These results indicate that, while the performance

of noncontiguous data put operations can be affected by the additional overhead of request

forwarding, HiCOO is effective in minimizing such overhead with its request aggregation and

hierarchical cooperation mechanisms, resulting in close performance to the original ARMCI.
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Atomic and Synchronization Operations ARMCI supports a number of atomic and

synchronization operations for GAS models. These include lock, accumulate, and fetch-

&-add. The lock operation acquires a specified mutex on the target process on behalf of

an initiating process. The accumulate operation atomically updates one or more variables

on the target process. The fetch-&-add operation retrieves an integer variable at a remote

location, and at the same time atomically updates the value by an integer.

We measure the performance of these operations across 16 nodes. These nodes are

grouped into four sets of cooperative nodes. All processes are paired with each other for

atomic and synchronization operations. In order to evaluate the performance of multinode

cooperation, we tested different numbers of processes (4, 8, and 11) per node. For example, a

process on Node 0 initiates lock, accumulate, or fetch-&-add operations 1000 times (after the

first 50 warm-up operations) to its counterpart on Node 15. The average time is calculated

as the time for an operation.

Figure 5.7 shows the performance results for all three operations. HiCOO achieves

performance comparable to the original ARMCI for atomic lock operations, but it causes

performance degradation for the accumulate and fetch-&-add operations. The different per-

formance comparison is due to the underlying communication of these operations. Atomic

lock operations do not transmit actual data between processes, but accumulate and fetch-

&-add operations do.

Taken together, our microbenchmark evaluation results indicate that while HiCOO

strives to minimize memory consumption, its indirect one-sided communication does cause

performance overhead to atomic and synchronization operations. Care must be taken to

achieve a good tradeoff between the memory consumption and the cost of atomic operations

for applications need to use frequent atomic operations.
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5.1.2.2 NAS LU Application

The LU application in the NAS parallel benchmark suite [77] has been ported to the

ARMCI runtime. It can scale to hundreds or a couple of thousand processes. We evaluate the

performance impact of HiCOO to LU at this scale. Figure 5.8 shows the performance of LU

using HiCOO on a varying number of processes. As shown in the figure, HiCOO performs

better or similar to the original ARMCI. At a lower number of processes, the benefit of

HiCOO is slightly higher. Two observations can be made about these results. First, the LU

application does not suffer much from hot-spot contention. Second, the reduction in memory

footprint does not directly lead to the reduction in execution time, which is quite reasonable.

On the other hand, these results are encouraging because they demonstrate that, despite the

additional forwarding steps on ARMCI operations such as non-contiguous data transfer and

atomic accumulation, HiCOO still brings comparable or better performance for applications

such as LU.
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5.1.2.3 A Large-Scale Application: NWChem

To examine the benefits of our techniques to the real-world scientific application, we

focus on NWCHem [78], which is a widely used large-scale computational chemistry package.

It contains many methods for computing properties of molecuar and periodic systems using

standard quantum mechanical descriptions of the electronic wavefunction or density. We

evaluate HiCOO using two most widely used electronic structure methods in NWChem:

the SiOSi3 method for Density Functional Theory (DFT) and the water model of Coupled

Cluster (CC) in its CCSD(T) incarnation. DFT is the workhorse of electronic structure

for its balance between computational cost and accuracy (1998 Nobel prize in Chemistry),

whereas the more expensive CC method, in its CCSD incarnation, is labeled as the ”gold

standard” [79] because of its remarkable accuracy.

The performance of SiOSi3 is shown in Figure 5.9. HiCOO clearly performs better than

the original ARMCI. HiCOO reduces the total execution time by as much as 52%. These

results suggest that SiOSi3 is very prone to hot-spot contention, in which case HiCOO is

very effective in mitigating the impact of contention.
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Figure 5.9: DFT SiOSi3 Execution Time
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Figure 5.10 shows the performance of CCSD(T) water model when using the original

ARMCI and HiCOO. ARMCI generally performs better than HiCOO, except in one case at

10,000 cores. This result suggests that the total execution time for the water model does not

benefit from HiCOO. The primary benefit of HiCOO is the ability to significantly reduce

memory consumption of ARMCI low-level runtime library (as detailed in Section 5.1.1.1).

This spares much more memory to be used by applications and help them achieve better

scaling.

These application evaluation results demonstrate that HiCOO can hit the best balance

of memory consumption, the need of request forwarding, and contention attenuation for the

GAS runtime. With much reduced memory consumption at the runtime level, HiCOO in

general performs comparably to the original ARMCI. Particularly when an application is

experiencing hot-spot contention, HiCOO can mitigate the impact of contention and lead to

significantly reduced total execution time.
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5.2 Performance Evaluation of Virtual Shuffling

The original Hadoop only supports physical shuffling. We implement virtual shuffling

based on our previous work on Hadoop Acceleration [75], Hadoop-A. Hadoop-A used to

support only network-levitated merge. For a fair comparison, we implement physical shuffling

inside Hadoop-A. The three-level segment table is designed to hold as many as 1024 entries

per level, and more than 1 billion virtual segments together. But we realize that it is not

necessary to populate the entire SGD table. So our implementation keeps only one entry

at the SGD level. SGB and SMB buffers are equivalent and unified into a single level.

Nonetheless, for future MapReduce programs with big data sets, our implementation can

be easily turned into a real three-level segment table and host more than 1 millions virtual

segments. With this simplification, <key,val> pairs from an SEB only need to go through

memory-based data merging twice before being delivered to the reduce function. In addition,

with tree-based virtual segments, while subtrees are alternatively activated and merge SEBs

into STBs, STBs also need to be merged to SGBs (no separated SMBs as mentioned above).

All these merging tasks are undertaken by the same pool of merging threads. The reduce

function can get delayed if there are no data in SGBs. To minimize such delays, we enforce a

higher priority to the task of merging STBs into SGBs, allocate and activate a thread when

there is a need to refill SGBs with more <key,val> pairs.

Experimental Testbed – Our experiments were conducted on PASL cluster of 21

compute nodes from Auburn University. Each node is equipped with dual-socket quad-

core 2.13GHz, Intel Xeon processors and 8 GB of DDR2 800 MHz memory, along with 8x

PCI-Express Gen 2.0 bus. All nodes are equipped with Mellanox ConnectX-2 QDR Host

Channel Adapters, which can run in either InfiniBand mode or 10Gigabit Ethernet mode.

These nodes are connected to both a 108-port InfiniBand QDR switch and a 48-port 10GigE

Vantage switch. We use the InfiniBand software stack, OFED [80] version 1.5.3.2 released

by Mellanox. Each node has one 500GB, 7200 RPM, Western Digital SATA hard drive and

Hadoop version 0.20.0 was used.
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Test Benchmarks – We evaluated virtual shuffling with a number of popular public

benchmarks as shown in table 5.1, which have been heavily used for web crawling, and

compared with physical shuffling. These include the TeraSort, Grep, and WordCount test

programs that are distributed as part of Hadoop package and InvertedIndex, TermVector,

and SequenCount developed by Faraz et al. [81]. Grep searches in a text file for a predefined

expression and creates a file with matches. WordCount counts the number of occurrences of

different words in a data file. TeraSort is a popular benchmark that measures the capability

of a program in sorting a large-scale dataset. InvertedIndex takes a list of documents as

input and generates word-to-document indexing. TermVector determines the most frequent

words in a set of documents and is useful in the analyses of a hosts relevance to a search.

SequenCount generates a count of all unique sets of three consecutive words per document

in the input data. In addition, we examined a representing benchmark of Hive [82], which is

a a high-level query language that is designed to facilitate user queries for data processing

and analysis over Hadoop.

Table 5.1: Benchmarks Description
Benchmark Description
B1 Grep (20GB)
B2 WordCount (20GB)
B3 InvertedIndex (20GB)
B4 TermVector (20GB)
B5 SequenceCount (20GB)
B6 Hive (Order By) (60GB)
B7 TeraSort (512GB) (512GB)

5.2.1 Parameter Tuning of Virtual Shuffling

Virtual shuffling enables a seamless flow of data, starting from MOF (Map Output File)

segments, going through a series of steps including fetching, buffering, and merging, and

finally reaching the reduce function at ReduceTasks. A number of important parameters,

such as SEB and STB buffer sizes and the number of virtual segments in a subtree, need to
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be tuned for this pipeline to work efficiently. In our tuning tests, we have screened a variety

of different data sizes on a number of different nodes. For brevity, we present only a few

representative case studies, running the Terasort program with the data size being 128GB

and the data split size 128MB. This results in a total of 1024 data splits in the job, which

also equals to the number of data segments per ReduceTask.
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Figure 5.11: Tuning of Memory Buffer Sizes

5.2.1.1 SEB and STB Buffer Sizes

In the three-level segment table, SEB and STB are the primary interfaces for merging

data segments into the SGB. Their sizes can affect the effectiveness of the fetching and

merging processes. It is important to understand how they impact the performance of

MapReduce programs. To do this, we first fix the number of virtual segments in a subtree,

which we choose as the square root of the total number of segments.

Figure 5.11(a) shows the tuning of SEB buffer size. For a fixed STB buffer size, with an

increasing SEB buffer size, the execution time decreases. This is because, when a large SEB

buffer is used, the data fetching speed can catch up with the merging speed of the active

subtree, which benefits the pipeline of fetching and merging. However, when the SEB buffer

size goes further up, the execution time becomes worse. This is because more data from

SEBs are dumped when a subtree is deactivated. The same data often have to be re-fetched
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from remote segments. Resulting in wasteful and repetitive disk accesses. This delays the

effectiveness of data fetching and stalls the entire pipeline. As shown in the figure, for the

performance curves with different STB buffer size, the bottoms of these curves are different.

The best SEB buffer sizes are 32KB and 64KB for different STB buffers. Since the STB

buffer sizes are different, the fetching speed and merging speed on the subtrees are different

as well. The bottom only happens at the balanced point where the data fetching speed

catches up well with the merging speed.

To reveal more performance impact of the STB buffer size, we conduct another exper-

iment to tune the STB buffer size with a fixed SEB buffer size. Figure 5.11(b) shows the

results of this tuning experiment. With an increasing STB buffer size, the job execution

time gets shorter and reaches the lowest point when the STB size is between 4MB and 6MB.

After that, the job execution more or less stays flat. The underlying cause of this behavior

is again the interplay between the speed of data fetching and that of merging. In another

word, there is a competition between the speed of data fetching and data merging. The

optimal performance occurs when the data fetching and merging are well balanced. Thus,

when the size of the subtree is fixed, the job execution time can benefit from a large STB

buffer until it is big enough to hold all SEBs buffers. For the rest of the papers, we use 4MB

STB buffers and 64KB SEB buffers unless otherwise specified.

5.2.1.2 Virtual Segments in a Subtree

The number of the virtual segments in a subtree is another factor which impacts the

performance. Because it directly affects the concurrency of data merging, it is important

to understand its performance implications. Figure 5.12 shows the results of our tuning

experiment, in which we fix the STB size to be 4MB. As subtrees grow in size, the number

of total subtrees is decreased, which consequently reduces the load of merging threads. That

is to say, the merging threads are able to merge active subtrees efficiently without having to

deactivate many of them. If subtrees grow further in size, one active subtree will trigger many
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SEBs to fetch data from remote segments. In addition, requests from many ReduceTasks will

contend for different segments from the same intermediate data file. The program execution

is then affected and results in longer completion time.

 350

 400

 450

 500

 550

 4  8  16  32  64  128

E
xe

cu
ti

o
n

 T
im

e 
(S

ec
)

Subtree Size

SEB=8KB

SEB=16KB

SEB=32KB

SEB=64KB

Figure 5.12: Tuning of Virtual Segments in a Subtree

Given this intriguing behavior, we speculate that there is a theoretical relationship

between the subtree size and the job execution time. On one hand, smaller subtrees will lead

to more of them, causing a linear increasing complexity in managing subtrees (activating and

deactivating). On the other hand, virtual segments in a subtree need to be fetched remotely,

thus more of them will lead to a linear increasing cost of data movement. In addition,

Hadoop uses a heap-based priority queue for merging <key,val> pairs, which is inherited

by virtual shuffling as well. This implies that there is a logarithmic complexity in merging

SEBs into STBs and the same in merging STBs to the SGB.

To gain more insight on the relationship, we provide a simplistic analysis here. Let’s

assume the total number of segments is M , and the subtree size is x. The total number

of subtrees is then M
x

. The cost of managing these subtrees and merging their STBs can

be denoted as f1 = O(M
x

+ logM
x

). The cost of fetching SEBs of a subtree and merging
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them into the STB can be denoted as f2 = C ∗ O(x) + O(logx), where C (C > 1) is a

constant factor that represents the higher cost of fetching data remotely, compared to that

of managing subtrees locally. Ideally, the merging processes conducted on STB and SEB

would be completely asynchronous and be able to to achieve a pipeline without any stalls,

when the two costs are the same. The lower bound for x can be solved by letting f1 = f2.

Approximately, x is equal to (C+1)
√
M . With the total number of segments being 1024, the

theoretical lower bound would be a number close to 16, depending on the exact value of C.

As shown in Figure 5.12, this conjecture matches well with our empirical results.

5.2.2 Benefits to Job Execution

5.2.2.1 Overall Performance

We run Hadoop TeraSort benchmark with different data sizes and different numbers of

nodes. Each slave runs 8 MapTasks and 4 ReduceTasks concurrently. Figure 5.13 shows

the performance of Terasort on 20 nodes using different shuffling strategies, where the total

amount of physical memory is 160GB.

Table 5.2: Test Case Description

Test Cases Shuffle Strategy Transport Protocol Network
Hadoop on 10GigE Physical Shuffling TCP/IP 10GigE
Hadoop on IPoIB Physical Shuffling IPoIB InfiniBand
Hadoop-A on RoCE Physical Shuffling RoCE 10GigE
Hadoop-A on RDMA Physical Shuffling RDMA InfiniBand
Hadoop-A on RoCE Virtual Shuffling RoCE 10GigE
Hadoop-A on RDMA Virtual Shuffling RDMA InfiniBand

Three different cases are included in the comparison: virtual shuffling as implemented

in Hadoop-A, physical shuffling in Hadoop-A, and physical shuffling in the original Hadoop.

Hadoop-A tests were run with InfiniBand RDMA (Remote Direct Memory Access) and

RoCE (RDMA over Converged Ethernet) transport protocol. The original Hadoop was run

with InfiniBand IPoIB and 10GigE. Because of its scalability limitation, we did not include

our previous work network-levitated merge in this comparison.
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As shown in the figure, physical shuffling in Hadoop-A performs slightly better than

the original Hadoop for all cases. This is because the use of the high-speed RDMA protocol

compared to the IPoIB and 10GigE protocol. While RDMA is beneficial to data movement

on the network, the performance bottleneck lies with the disk I/O performance when physical

shuffling is used. Therefore, marginal benefits are observed when the transport protocol is

replaced. Among the three cases, virtual shuffling consistently performs the best and improve

the overall performance by up to 27%, which demonstrates that virtual shuffling is able to

speed up the data movement and boost the performance. Virtual shuffling also shows good

scalability on different networks, which demonstrates consistent performance improvement

compared to the physical shuffling. Because of the comparable performance, we use the

original Hadoop as the representative implementation of physical shuffling for the rest of the

paper and we conduct all the rest tests on InfiniBand network.
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Figure 5.13: Performance Comparison of Different Shuffling Strategies

Figure 5.14 shows the performance of different shuffling strategies on seven represen-

tative benchmarks as shown in table 5.1, Hive Benchmarks (Order By, 60GB), Terasort
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(512GB), and 20GB for the rest benchmarks. As shown in the figure, virtual shuffling im-

proves the performance of most of the benchmarks but not all of them. The workload of these

benchmarks can be categorized into two types. The first type is Reduce-heavy workloads

which include InvertedIndex, TermVector, SequenceCount, Hive OrderBy and Terasort. For

these applications, MapTasks generate a large amount of intermediate data which has to be

fetched by all the ReduceTasks. This causes heavy all-to-all network traffic. As shown in

Figure 5.14, virtual shuffling is able to significantly improve the performance of these bench-

marks by 23.4%, 20%, 18% 54.6%, and 26%, respectively, for InvertedIndex, TermVector,

SequenceCount, Hive OrderBy and Terasort.
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Figure 5.14: Performance of Different Benchmarks

The other type is Map-heavy workloads which include Grep and WordCount. These

workloads, on the other hand, do not benefit much from virtual shuffling due to their small

amount of intermediate data, which requires little data movement during data shuffling.

Thus, their data shuffling phase is mostly CPU bound. Overall, these performance results

indicate that virtual shuffling can significantly improve the performance of Reduce-heavy
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MapReduce applications, and the benefit dwindles for the applications that do not have

much intermediate data.

5.2.2.2 MapTask Improvement

In the original Hadoop Mapreduce, a job is spilt into multiple MapTasks. These map-

Tasks are launched in a wave manner on slave nodes. One wave can only execute limited

number of MapTasks in parallel which is normally the number of cores on one node. Right

after the first wave of MapTasks finished, ReduceTasks are launched and compete for the disk

bandwidth with later waves of MapTasks running on the same node. For physical shuffling,

this leads to severe disk contention and cascade impact to the job execution time. Through

virtual shuffling, the ReduceTask elimites huge amount of disk access, which dramatically

reduces the disk contention. This consequently benefits all the MapTasks running on the

same node. Figure 5.15 shows the MapTasks execution time comparison between physical

shuffling and virtual shuffling. The reduction of average MapTask execution is increased

linearly with the input size growing and we see at most 53.8% reduction on average Map-
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Figure 5.15: MapTask Improvement
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Task execution time with the 512GB input size. The hierarchical merge enable map phase

to finish much sooner without competing with co-located ReduceTasks for the scare disk

bandwidth, which is also a strong indication of the potential benefits for virtual shuffling on

future manycore environment.

5.2.2.3 Progress of TeraSort Execution

We compare the progress of TeraSort program execution using different shuffling strate-

gies. The results are shown in Figure 5.16. The Y-axis shows the percentage of completion

for Map and Reduce Tasks. The X-axis shows the progress of time during execution. Fig-

ure 5.16(a) shows that MapTasks of TeraSort complete much faster with virtual shuffling,

especially when the percentage of completion goes over 50%. This is because MapTasks are

launched as multiple waves of tasks. Right after the first wave of MapTasks finished, under

the physical shuffling strategy, ReduceTasks are launched and compete for the disk band-

width with later waves of MapTasks. This leads to severe disk contention and a cascading

impact to the job execution time.

 0

 20

 40

 60

 80

 100

 120

 140

 0  200  400  600  800  1000  1200  1400

P
ro

g
re

ss
 (

%
)

Time (sec)

Virtual

Physical

(a) MapTask

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500

P
ro

g
re

ss
 (

%
)

Time (sec)

Virtual

Physical

(b) ReduceTask

Figure 5.16: Progress Diagrams of TeraSort

In contrast, virtual shuffling eliminates such disk contention to MapTasks, which conse-

quently benefits the progress of MapTasks. Similarly, figure 5.16(b) shows that ReduceTasks

are completed faster with virtual shuffling. Note that in the case of physical shuffling, the
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progress of ReduceTasks is reported while the data are being merged. However, with virtual

shuffling, we do not report progress until the completion of all MapTasks, and then near the

completion of merging all segments. This is reflected in the figure as seemingly slow initial

progress for virtual shuffling. Virtual shuffling actually still makes progress on ReduceTasks.

Once it begins reporting, the progress in terms of percentage jumps up quickly, first at the

completion of MapTasks and then at the end of merging, as indicated by the two jumps in

the figure.

5.2.2.4 Scalability

Being able to leverage more nodes to process large amounts of data is an essential feature

of Hadoop. We want to ensure virtual shuffling can deliver scalability in a similar manner.

So we measure the total execution time of TeraSort in two scaling patterns: one with fixed

amount of total data (200GB) and an increasing number of nodes, and the other with fixed

data (10GB) per node and an increasing number of nodes. The aggregated throughput is

calculated by dividing the total size with the program execution time.
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Figure 5.17: Scalability with a Fixed Data Size per Node
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Figure 5.17 shows the scalability comparison between virtual shuffling and physical

shuffling with a fixed data size (10GB) per node Both of them can achieve linear scalability.

With the average amount of shuffled data per node is more or less similar, virtual shuffling

demonstrates consistent improvement over physical shuffling. On average, virtual shuffling

can speed up the execution time by approximately 30% and improvement throughput by

43%. Figure 5.18 shows the scalability comparison between virtual shuffling and physical

shuffling with a fixed size of total data (200GB). Again both of them can achieve good

scalability. Virtual shuffling can cut the execution time by up to 33%, compared to physical

shuffling. Conversely, this results in a throughput improvement of 49.2%. Note that with the

increasing of the compute node, the average amount of shuffled data per node is decreasing,

which means the percentage of the shuffling time over the total execution time decreases.

Hence, the virtual shuffling shows less improvement in this case. It indirectly reflects that

virtua shuffling can bring more benefits for data intensive applications. To summarize,

compared to physical shuffling, these results adequately demonstrate better scalability of

virtual shuffling for large-scale data processing.
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5.2.3 CPU Utilization

CPU utilization is an important performance metric. Virtual shuffling is able to take

the advantage of high speed interconnect, which is expected to lower the CPU utilization. In

this section, we quantifies the CPU utilization benefits of virtual shuffling. We measure CPU

utilization during the execution of TeraSort every 2 seconds. The percentage of CPU usage

for 8 cores is recorded. We then take the average across all slaves at the same timestamp.

Figure 5.19 shows the comparison of the average CPU utilization between virtual shuffling

and physical shuffling. These results are from a TeraSort program on 12 slave nodes. Similar

comparisons are observed for TeraSort on different number of nodes. Clearly, virtual shuffling

has less CPU utilization compared to physical shuffling. Cumulatively, virtual shuffling
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Figure 5.19: Comparison of CPU Utilization

has a CPU utilization of 18.7% at the time of its job completion, compared to 29.3% for

physica shuffling. Relatively, the reduction is 36.2%. Note that virtual shuffling has higher

CPU usage towards the end of its completion, during which it is running a pipeline of

shuffle/merge/reduce operations. Besides, shortening the application execution time, this

experiment demonstrates that virtual shuffling is able to significantly lower CPU utilization.
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5.2.4 Benefits to I/O and Power Consumption

Virtual shuffling is designed to alleviate the severe disk contention problem in MapRe-

duce infrastructure. In this section, we analyze the detailed I/O behavior of virtual shuffling

and compare it to physical shuffling. The benchmark used is Terasort and we conduct the

experiments on 12 slaves nodes with a fixed size of input data (250GB).

5.2.4.1 Profile of I/O Accesses

Table 5.3: I/O Blocks
READ WRITE Total (Kblocks)

Virtual 31,088 40,833 71,921
Physical 45,031 64,039 109,070

We trace the vmstat output every second on all the slave nodes at run time. Table 5.3

shows the average total number of read and write blocks on a slave node. As you can see, our

virtual shuffling significantly reduced the disk accesses for both read and write operations,

by 30.9% and 36.2% respectively. The total reduction is up to 34.1%. Figure 5.20 provides

the run-time profile of read and write blocks, which indirectly reflects the number of requests

issued during the program execution. The more read and write blocks are issued, the more

traffic is generated which essentially increases the disk contention and hurts the performance.

Note that total disk read and write blocks are different because intermediate files are read and

written in different ways and these I/O activities are concurrent with those to the Hadoop

Distributed File System.

When disk bandwidth is a scarce resource, high disk I/O traffic can lead to long queuing

time of I/O requests which essentially degrades the performance of the original Hadoop.

However, virtual shuffling is able to reduce the disk I/O traffic and support efficient data

movement. In order to further understand the benefits of disks accesses reduction, we analyze

the service time and the wait time of I/O requests. The service time is the time taken to

complete one I/O request and the wait time includes the queuing time and the service time.
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Figure 5.20: Run-time Profile of I/O Accesses

Figure 5.21(a) shows the details for both virtual shuffling and physical shuffling. Several I/O

behaviors can be observed from this figure. First, virtual shuffling has the similar I/O service
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Figure 5.21: Dissection of Request Wait and Service Times

time as physical shuffling. Second, virtual shuffling leads to similar or lower I/O wait time

during the first 20 minutes, which correspond to the mapping phase of the execution. As the

execution progresses into the reducing phase, the I/O wait time is significantly reduced. This

is because virtual shuffling significantly reduces disk accesses. Third, for physical shuffling,

89



especially during the reducing phase, most of the I/O requests spend more than 95% of their

turnaround time waiting in the queue, which means the disk is not being able to keep up

with the requests. On the contrary, I/O requests only spend around 40% of the total time

waiting in the queue with virtual shuffling.

Taken together, the experiment demonstrates that virtual shuffling is able to efficiently

alleviate disk contention and leave it in an efficient working status, thereby significantly

reducing the execution time.

5.2.4.2 Power Consumption
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Figure 5.22: Comparison of Power Consumption

To examine the energy implication of virtual shuffling, we attach WattsUp PRO/ES

power meters to several compute nodes and measure their power consumptions at a per-

second interval. WattsUp meters have a simple serial-USB interface that allows us to record

the power profile of MapReduce programs in a fine-grained manner into a tracefile. We then

plot the power profile based on the trace files. The power is recorded every second. For

clarity, we plot the power consumption profile on a per-minute basis. Figure 5.22 shows
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the run-time profile of the power consumption per minute. The average draw for virtual

shuffling was 160 watts with a standard deviation of about 8 watts, while 180 watts on

average with a standard deviation 23 watts for physical shuffling. Compared to physical

shuffling, the average power consumption of virtual shuffling is reduced by 12%. It suggests

that, by reducing disk accesses, virtual shuffling can lead to significant savings on run-time

power consumption for MapReduce programs.

5.3 Performance Evaluation on Parallel Community Detection Algorithm

In this section we report the experimental evaluation of our parallel algorithm. We

first examine the quality of the community detection. Then we analyze the features of our

algorithm in detail. In the end, we evaluate the scalability of our parallel algorithm.

Table 5.4: Evaluation of Real World Graphs

Category Name Description # Vertices # Edges References

Small Size Social graphs
Zachary Karate Club Friendships of a karate club 34 78 [83]
Dolphin Social Network Doubtful Sound Community 62 159 [84]

Large Social
Graphs

Wikipedia(EW) Graph of the English Part of Wikipedia 4.206M 77.66M [85, 86]
LiveJournal (LJ) LiveJournal Social Network 3.997M 34.68M [87]
Youtube (YT) Youtube social network 1.135M 2.987M [87]
Amazon (AZ) Amazon product co-purchasing network 0.335M 0.925M [87]
ND-Web (ND) University of Notre Dame web-pages network 0.325M 1.497M [88]
DBLP (DB) DBLP collaboration network 0.317M 1.049M [87]
UK-2005 (UK) Web crawl of English sites in 2005 39.46M 936.4M [85, 86]

Large Synthetic Graphs R-MAT R-MAT generated graphs Scale from 25 to 32 [89]

Our parallel algorithm is entirely written in C and uses Pthreads. The communication

runtime can leverage either the generic MPI protocol or the special SPI communication

protocol on Blue Gene/Q. We test our algorithm on both a small size cluster and the 48-

rack Blue Gene/Q system, Mira, from Argonne Leadership Computing Facility (ALCF). The

cluster has 16 nodes and each node is equipped with two 2.67GHz hex-core Intel Xeon X5650

CPUs and 24GB memory.

5.3.1 Benchmarks and Performance Metrics

In our evaluation, we use an extensive set of graphs including both real world social

graphs and synthetic graphs as listed in Table 5.4. The real world graphs covers both small
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and large size social graphs. The small social graphs include Zachary Karate Club Graph and

Dolphin Social Network. The large social graphs include friendship network, collaboration

network and shopping network such as Wikipedia, LiveJournal, Youtube, Amazon, ND-

Web, DBLP, and UK-2005. The size of these graphs varies from hundreds of thousands

of vertices with several million of edges to hundreds of millions vertices with to nearly 1

billion edges. These real world graphs not only have good community structures but also

tend to be both small world and scale free with low effective diameter and power law degree

distribution [90, 91, 92]. The third type of graphs are synthetic graphs. We generate these

graphs using the massive random graph generator R-MAT [89]. The graphs generated by

R-MAT usually have very low modularity and do not have good community structure.

To quantify the quality and scalability of our parallel algorithm, we use several metrics

including Modularity, Evolution Ratio, and Traversed Edges Per Second (TEPS). We also

use Number of Hashed Entries, Average Bin Length, Maximum Bin Length and message rate

to analyze the internal features of our algorithm.

5.3.2 Community Quality Analysis

We compared our parallel algorithm to sequential algorithm on both modularity and

evolution ratio. The evolution ratio is defined as the percentage of the detected communities

divided by the size of the original graph. These tests are conducted on the small size cluster.

For both parallel algorithm and sequential algorithm, we run the experiments multiple times

and the results are consistent.

5.3.2.1 Real World Small Graphs

We use two small social graphs Zachary Karate Club [83] and Dolphin [84] social network

to examine the accuracy of our parallel algorithm. Figure 5.23 shows the resulting graphs

with our algorithm. The red dashed line splits the ground truth communities in these two

graphs, which have been detected by many other algorithm [93, 94, 17]. The vertices with
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Figure 5.23: Result on Small Graphs

different colors represent the communities detected by our parallel algorithm. It is clear

that our parallel algorithm is able to detect the ground truth communities for both graphs.

More importantly, it is able to extract fine-grained community structures. The resulting

modularity is 0.41 and 0.51 for Karate Club graph and Dolphin social network, respectively.
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These modularity numbers are similar to the results (0.41 and 0.495 respectively for the two)

reported in the literature [93, 94, 17].
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Figure 5.24: Convergence and Detection Quality with Social Networks

5.3.2.2 Real World large Social Graphs

We also use real world large social graphs to examine the quality of our algorithm

in terms of both evolution ratio and modularity. The results are shown in Figure 5.24

and Figure 5.25. Figure 5.24 compares the convergence property of our algorithm to the

sequential Louvain algorithm, where the X-axis is the resolution level, the Y-axis corresponds

to the applications. In (a) and (b), the Z-axis is the evolution ratio and, in (c) and (d),

the Z-axis is the modularity. Figure 5.25 compares the corresponding modularity for these

applications on the first level. Several important observations can be made from these

figures. First, the social graph size is reduced significantly at the first level and different
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social graphs show different graph evolution trend. For LiveJournal, ND-Web, Wikipedia,

and UK-2005, more than 94% vertices are merged into communities at the first level, while

for other networks, only 80% of vertices are merged. Second, both algorithms are able to

unfold the hierarchical community structures up to five levels. This means that the parallel

algorithm is able to capture the same important behavior as the sequential algorithm. Third,

our parallel algorithm is able to achieve similar convergence property in both modularity

and evolution ratio. Note that the first level output is normally the most informative.

Figure 5.25 shows that the modularity achieved by the parallel algorithm has little difference

from the sequential algorithm. Finally, with the resolution on the hierarchical community

structure of the social graphs, the graphs evolve in a way that increases the corresponding

modularity. This evolution is meaningful only if the modularity does not decrease. Because

good modularity implies the good community structure. Our parallel algorithm is able to

preserve this feature and achieve high modularity. Taken together, these experimental results

on real world social graphs adequately demonstrate the high quality and good convergence

of our parallel algorithm.
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5.3.3 Hash Behavior Analysis
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Figure 5.26: Profiling Comparison on Hash Policies

Our algorithm make use of a hashing scheme to partition data instead of the traditional

sorting based technique. It is important to understand the detailed behavior of hash func-

tions. To this end, we analyze our algorithm in terms of the impact of hash functions on

load balancing and the expansion factor which are important for parallel graph algorithms

over distributed memory systems.

5.3.3.1 Hash-based Load Balancing

Our parallel algorithm uses two hash operations, namely sequential scan and insert. To

take advantage of this hash based implementation, a carefully design on the hash table is

needed for good performance. The first consideration is load balancing. The hash table is

created on each compute node and will be managed by all the worker threads on that node.

We have examined a set of hash functions including concatenated hash, linear congruential

hash, and bitwise hash. Finally we choose Fibonacci hash, which achieves the best load

balancing.

Figure 5.26 shows the comparison on different hash policies, where we examined the

hash quality through simulation tests over 16 compute nodes with 32 threads concurrently

running on each node. The synthetic graphs generated by R-MAT are used as input. We

have tested multiple times with various graphs and only show one set of result here. To be

concise, we use Baseline hash to denote the best of hash policies other than Fibonacci hash.
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The workload of the threads is showing in Figure 5.26(a). Clearly, Fibonacci hash balances

the workload very well across all compute nodes. The other hash functions cannot balance

the workloads. Different compute nodes usually have different number of hashed edges. This

is due to the vertex based partition.

Figure 5.26(b) shows the comparison on the average length of the hashed bins and

Figure 5.26(c) shows the comparison on the maximum length of the hashed bins. Fibonacci

hash achieves an average bin length of 1.12 and a maximum bin length of 3. But the Baseline

hash has an average bin length of 1.35 and a maximum length of 6. From these simulation

analysis, we demonstrate that Fibonacci hash provides superior quality over other hash

policies.

5.3.3.2 Impact of the Expansion Factor

The expansion factor is an important parameter for the hash table and tightly related

with memory consumption. A large expansion factor reduces the chance of collision with

more memory holding the buckets. A small expansion factor increases the chance of the

collision because there is less room to hold buckets. We study the relationship between the

expansion factor and the chance of the collision by simulation. We use RMAT-generated

synthetic graphs as input and simulate 16 compute nodes with 32 threads per node. We

set the expansion factor as 1X, 2X, 4X, and 8X of the size of total hashed edges per node.

Figure 5.27 shows the statistic of average bin length of each thread. With the 1X expansion

factor, the corresponding average bin length is over 1.1, which implies lower hit ratio for

the insert operation. The average bin length is nearly 1 when the expansion factor reaches

8X, which leads to high hit ratio. This experiment provides insights on how to configure the

expansion factor in the real parallel environment. When memory is available, high expansion

factors should be chosen for good performance. In the rest of experiments, we choose the

expansion factor as 4X because of its tradeoff on the average bin length and 50% less memory

consumption compared to an expansion factor of 8X.
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Figure 5.27: Impact of Expansion Factor

5.3.4 Message Rate by the Runtime

We examine the actual message rate supported by our communication runtime on Blue

Gene/Q. The test is conducted on 128 nodes using the synthetic RMAT graphs with problem

sizes from 26 to 28. Figure 5.28 shows the message rate and the corresponding execution

time for a single node with various problem sizes. The message unit is 16 bytes. We vary the

number of threads per node from 4 to 64. The execution time is measured as a combination

of the time for scanning all the entries the hash table on sending side, the time on the

network, and the time of inserting the received entries in the hash table on the receiving

side. We collect the measurements across all nodes and observe a balanced distribution of

the execution time. This also indicates that our load balancing technique is effective. We

present the average message rate from all the nodes. With a fixed problem scale, the message

rate increase with an increasing number of threads per node leads to the increasing of the

message rate, which is proportional to the number of nodes. This is a strong evidence of the

efficiency of our communication runtime. Since more threads will lead to more contention

on the receiving side due to the concurrent updates in the hash table. Our runtime is able

to alleviate such contention by using Compare-and-Swap based implementation. Also note

98



that the message rate decreases with an increasing problem size. This is because, with

bigger problems, the number of edges on each node increases, which require more time for

the scan and hash operations. In theory, the message rate will never decrease to zero with

the increasing problem size, because the message rate still depends on the speed of hash

operations.
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5.3.5 Scalability Analysis
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We also evaluate the scalability of our parallel algorithm using RMAT-generated graphs.

Traversed Edges Per Second (TEPS) is often used as a performance metric in Graph 500,

which is calculated by the input edges and the execution time. With our parallel algorithm,

the graph is shrinking and the first level generates most of informative community structures.

This is different from Breadth First Search (BFS) in Graph 500, Thus we calculate TEPS

by dividing the input edges by the execution time it takes to finish the first level.

We evaluate the weak scaling trend of our algorithm, for which we fix the graph with

220 vertices and 224 undirected edges per node and increase the number of nodes from 32 to

4096. Figure 5.29(a) shows the performance trend of weak scaling. Our algorithm achieves

very good scalability with an increasing system size. The processing rate is proportional to

the number of nodes. We also evaluate the strong scaling trend. We fix the problem size to

be 30 and increase the number of nodes from 512 to 8192. As shown in Figure 5.29 (b), our

algorithm demonstrates very good scalability with an increasing number of nodes. Note that

these numbers are much smaller than that reported in Graph 500. The reason is that the

community detection algorithm is different from the BFS and the computation complexity

and communication are different. In addition, we are able to run a problem scale 32 on 8192

Blue Gene/Q nodes with a processing rate close to 2 GTEPS. Furthermore, we include the

percentage of the runtime cost during the execution for all test cases. As shown in the figure,

for both cases, the runtime cost is less than 50% of the total execution time. These results

indicate that our communication runtime provides efficient communication service for our

algorithm. Taken together, the scaling results show that our parallel algorithm is able to

achieve good scalability for massive synthetic graphs.
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Chapter 6

Conclusion

With the rapid increase of the computational power and exponential growth of the dig-

ital universe, scientific applications and data analytics still face challenges in terms of the

scalability and efficiency. This dissertation investigates the opportunities for scalable and

efficient fast computation and data processing. To this end, we have described HiCOO as a

hierarchical Cooperation architecture for scalable communication in Global Address Space

programming models. HiCOO formulates a cooperative communication architecture with

inter-node cooperation amongst multiple nodes (a.k.a multinode) and hierarchical cooper-

ation among multinodes that are arranged in different virtual topologies. With HiCOO,

we have systematically studied the resource management and contention issues in a GAS

run-time system, ARMCI, on the petascale Jaguar Cray XT5 system at ORNL. We use

several different virtual topologies to represent the management of communication resources

in ARMCI as directed graphs, and substantiate it with two new virtual topologies, MFCG

and CFCG, as well as a canonical topology Hypercube. Our extensive evaluation of all three

virtual topologies demonstrates that MFCG is the best choice for HiCOO in accomplish-

ing scalable memory usage and contention attenuation. While addressing the challenges

of resource scalability and network contention, equally important is the need to maintain

the performance of GAS programming models. We show that HiCOO improves ARMCI’s

resilience to network contention caused by transient and irregular communication patterns.

At the same time, it can maintain or improve the performance of scientific applications.

In addition, we have proposed virtual shuffling as a new strategy to enable efficient data

movement for MapReduce programming model. Accordingly, we have designed and imple-

mented virtual shuffling as a combination of three techniques including a three-level segment
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table, on-demand merging, and dynamic and balanced merging subtrees. Our experimen-

tal results show that virtual shuffling significantly relieves the disk I/O contention problem

and speeds up data movement in MapReduce programs. It also significantly reduces the

power consumption. Finally, we have designed a parallel version of the Louvain algorithm

for fast community detection over distributed memory systems. Along with this algorithm,

we have introduced a novel hierarchical hashing scheme to organize vertices, communities,

and their adjacency list, and partition their representation data across all processing nodes.

Our parallel detection algorithm preserves the same convergence modularity and community

properties of the original Louvain algorithm. It can scale to support graphs with up to 4

billion vertices/128 billion edges on 8,192 nodes (524,288 threads) of Blue Gene/Q.
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Chapter 7

Future Work

In this Chapter, we discuss some related areas that would be natural extensions to this

work. There are many interesting open problems to be explored, which we plan to investigate

in our future research.

For Global Address Space programming models, the majority of our research on the

runtime is performed on Cray XT platforms which uses Seastar network, To gain general

acceptance, it is important for these techniques to be examined and evaluated on other types

of supercomputers and physical network, e.g., 5-D torus on Blue Gene/Q [95]. Furthermore,

the focus of the runtime is ARMCI and it is meaningful to explore the benefits of our

techniques to other GAS runtime systems such as GASNet [96] for generic study. Besides, it

is also worth to investigating large-scale applications which can leverage more memory at the

application level for better performance. Last but not least, it is interesting to investigate

the benefits of virtual topologies in the context of PGAS languages such as UPC [4] and

Co-Array Fortran [5].

In terms of MapReduce programming model, our research mainly focus on the infiniband

and 10Gigabit Ethernet. Since the high-speed computer network are tended to be widely

adopted in data center. It is very meaningful to study the applicability of virtual shuffling

over different network protocols such as 40 Gigabit Ethernet, 100 Gigabit Ethernet, and

Sockets Direct Protocol (SDP). The characteristic of the performance may provide more

valuable insights for the performance factors. On the second place, our study of the virtual

shuffling focuses on the benchmarks mainly for simple data analytics. Thus it is worth

investigating virtual shuffling for more commercial and scientific workloads. Furthermore,
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it is meaningful to examine the virtual shuffling on large-scale commercial cloud computing

systems such as EC2 from Amazon.

For parallel community detection algorithm, we have introduced a novel hierarchical

hashing scheme to organize vertices, and their adjacency list, and partition their represen-

tation data across all processing nodes. It is worth applying our technique for other graph

computation kernels such as breadth first search, single source shortest path, and connectiv-

ity. On the second place, it is meaningful to examine the quality of our parallel community

algorithm. The third direction is to further abstract and optimize our portable runtime

system and provide a more generic interface which can serve the communication for many

parallel graph algorithms.
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[78] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J.
Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T. L. Windus, A. T. Wong,
High performance computational chemistry: An overview of NWChem a distributed
parallel application, Computer Physics Communications 128 (1-2) (2000) 260–283.

[79] T. H. Dunning, K. A. Peterson, D. E. Woon, A. K. Wilson, Quantifying quantum
chemistry, in: American Conference on Theoretical Chemistry, 1999, unpublished.

[80] Open Fabrics AllianceHttp://www.openfabrics.org.

110



[81] F. Ahmad, S. T. Chakradhar, A. Raghunathan, T. N. Vijaykumar, Tarazu: optimizing
mapreduce on heterogeneous clusters, in: Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS’12, ACM, New York, NY, USA, 2012, pp. 61–74.

[82] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Z. 0002, S. Anthony, H. Liu,
R. Murthy, Hive - a petabyte scale data warehouse using hadoop, in: ICDE, 2010, pp.
996–1005.

[83] W. Zachary, An information flow model for conflict and fission in small groups, Journal
of Anthropological Research 33 (1977) 452–473.

[84] D. Lusseau, The emergent properties of a dolphin social network., Proc Biol Sci 270
Suppl 2.

[85] P. Boldi, S. Vigna, The WebGraph framework I: Compression techniques, in: Proc. of
the Thirteenth International World Wide Web Conference (WWW 2004), ACM Press,
Manhattan, USA, 2004, pp. 595–601.

[86] P. Boldi, M. Rosa, M. Santini, S. Vigna, Layered label propagation: A multiresolution
coordinate-free ordering for compressing social networks, in: Proceedings of the 20th
international conference on World Wide Web, ACM Press, 2011.

[87] J. Yang, J. Leskovec, Defining and evaluating network communities based on ground-
truth, CoRR.

[88] R. Albert, H. Jeong, A.-L. Barabási, The diameter of the world wide web, CoRR cond-
mat/9907038.

[89] D. Chakrabarti, Y. Zhan, C. Faloutsos, R-MAT: A recursive model for graph mining,
in: Proc. 4th SIAM Intl. Conf. on Data Mining (SDM’04), Lake Buena Vista, FL, 2004.

[90] H. Kwak, C. Lee, H. Park, S. Moon, What is Twitter, a social network or a news media?,
in: WWW ’10: Proceedings of the 19th international conference on World wide web,
ACM, New York, NY, USA, 2010, pp. 591–600.

[91] D. J. Watts, S. H. Strogatz, Collective dynamics of ’small-world’ networks, Nature
393 (6684) (1998) 440–442.
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