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Abstract

The primary goal of this work is to ensure that optimum performance is achieved for

a Multiplier Design, while reducing as much static power dissipation as possible or atleast

equal to their slower counterparts. This design tries to exploit the input based Statisti-

cal Distribution of Completion Delays of a circuit in optimizing the performance. Design

methodologies such as Razor [3,4,5] minimize power dissipation by slowing down circuits

so as to eliminate timing slacks to the point where occasional timing errors are observed.

The main challenge is the design of efficient mechanisms to detect and recover from these

infrequent errors.

We present a novel design for widely used Wallace multiplication using 4:2 compressors,

where because of the highly skewed input based statistical distribution in completion delays,

the potential for power and performance gains is significantly higher; clock periods can be

potentially reduced by a factor of 3 or more, with very rare timing violations for random

input distributions. For this we present a novel low cost error recovery approach that latches

and holds logic values at key internal circuit nodes during every clock cycle beyond the next

clock edge. This allows generation of the correct outputs for that clock period one clock

cycle later in case of a timing error. Meanwhile, very fast error evaluation, exploiting a

unique characteristic of carry ripple addition, allows this hold to be quickly released if no

error is detected, ensuring no impact on the circuit timing in error free operation. While

an additional area overhead of 10% was observed after implementing the design in a 32x32

Wallace Multiplier a 2.5x improvement in the average performance was achieved. Spice

simulation results with varied clock period for 10000 vectors shows an optimum average

performance improvement can be achieved at a reduced clock period of 3.75ns against the

actual clock period of 9.5ns, the vectors which can trigger the critical path were obtained
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from [8]. Also, this design when deployed in a logic circuit would prove to be a Variation

Tolerant Design.
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Chapter 1

Introduction

Many factors introduce variation into the behavior of CMOS-based processor designs.

Non-idealities such as voltage fluctuations in the power supply network, temperature fluc-

tuations in the operating environment, manufacturing variations in parameters such as gate

length and doping concentration, and cross-coupling noise all affect the timing behavior of

a processor, making it statistical in nature rather than deterministic.

In traditional processor designs, great pains are taken to ensure that a processor al-

ways produces correct results, even when subjected to a worst-case combination of non-

idealities.This means that conservative guardbands are incorporated into design parame-

ters to ensure correct behavior in all possible scenarios. Design for such a conservative

operating point incurs a considerable overhead in terms of power spent to ensure correct-

ness. Making matters worse, variation in CMOS-based circuits is expected to increase in

comming technology generations [International Technology Roadmap for Semiconductors

2008, http://public.itrs.net.],resulting in the need for even more conservative designs. Con-

sequently, the already expensive cost of pristine computation will continue to increase in the

future.

Although processors are traditionally designed to tolerate worst-case conditions, it is

unlikely that all nonidealities will take effect at once, pushing a processor to the brink of

erroneous behavior. Thus, there exists a considerable potential to increase the power eff-

ciency or performance of processors by relaxing traditional, conservative requirements for

correctness in the worst-case and instead designing processors for the average-case. Such

better-than-worstcase designs work normally in the average case and have recovery mecha-

nisms to ensure correct operation when errors occur.
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1.1 Background

Digital circuits are classified into synchronous and asynchronous circuits. Synchronous

circuits (and systems) include clocked elements like flip flops, latches and registers. The

input of these elements should be stable before the next active edge of the clock. One major

problem with these systems is the distribution of clock signals which must be in phase without

significant skew every place in the chip. This makes designing a complex synchronous circuit

operating at high frequency difficult due to timing skew and delays. Besides, a design should

also accommodate some timing window for PVT induced variation during which the system

is completely inactive, which indeed contributes to the already significant leakage power.

Having mentioned the above constraints, it is imperative to design an innovative tech-

nique which can not only exploit the timing window to accommodate PVT induced variation

but also the slack available in completion delays. While the above mentioned solutions seems

possible if the design has a mechanism which can not only sense the failing paths but also

effectively recover them by providing an additional clock cycle.

Authors in [ref ] deploy voltage scaling and frequency scaling techniques to reduce the

power dissipation or improve the performance by exploiting the non-critical paths completion

delays timing slack. The Razor approach, proposed in [3], aims at reducing the power

consumption by minimizing the timing margin to zero and beyond (used to accommodate

PVT induced timing margin), by building in a system capability to detect occasional errors

due to slow signal paths and recover from them. The timing margins are removed by reducing

the supply voltage to slow down the circuit to a point where a small, acceptable number

of errors are observed. As long as the power saving from the reduced voltage operation

exceeds the extra power needed, on average, by the occasional error detection and recovery

cycle, such a scheme can provide a net power saving. The challenge clearly is in designing

an efficient low cost error detection and recovery capability to support this approach. The

original Razor design [3] has changed and evolved [4,5,7] significantly over time in an attempt

to achieve practicality. Even so the potential power savings from eliminating timing margins
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appear limited. Besides CRISTA [6], tries to exploit the input based statistical distribution

in completion delays and use an algorithm to synthesize a circuit such that a critical path is

triggered occasionally i.e. aiming to obtain a skewed distribution in completion delays, this

technique uses shannon’s expansion theorem to synthesize a circuit and upsize the gates in

a critical path to make it furthur critical.

Figure 1.1: Delay Distribution of 32 bit RCA

Instead of applying this approach of minimizing circuit timing slack with recovery from

occasional errors to general purpose logic as attempted by the Razor team and others, we

have implemented it in specific widely used computations such as addition and multiplication

as in [1] where, because of the inherent characteristics in the applications, the potential

for power savings can be much greater. Depending on the hardware implementation, these

computations can display a wide range of completion delays depending on the applied inputs.

For example a simple low cost (in hardware and power) 32-bit ripple carry adder (RCA) can

generate a result with no carry propagation delays for some input cases, while requiring 32

stages of carry propagation in the worst case. Importantly, for random inputs, this delay

distribution is highly skewed, which can allow a significant speedup in the operating clock
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period while still ensuring only a small error and recovery rate. This is seen in Figure 1.1,

which simulates addition completion delays for a 32bit RCA designed at the gate level and,

for simplicity, assumes fixed unit delay for every gate. Observe that the median addition

delay is only 10 units when compared to the worst-case delay of 64 units. Note this does

not mean that only 3-4 full adder stages generate a carry for the median case because

strings of carries are generated and propagate in parallel at the same time. From the point

of generation, a carry needs to see 01 or 10 inputs in the subsequent full adder stage for

propagation, resulting in only a 50% chance that it will propagate through the next stage.

The probability of a carry propagating n stages is 2n , which dies out quickly with increasing

n. Consequently, it if observed in Figure 1 that compared to a worst case delay of 64 units,

less than 0.1% of random inputs result in an addition delay of greater than 25 units. This

suggests that the addition can potentially be run at 2.5X the worst case speed, with only

one in a thousand operations, on average, requiring correction and recovery. Of course

the overall system, utilizing such an adder must be designed to support and work with this

occasional recovery operation. Fortunately, architectural level handing of exceptions through

pipeline stalls and out of order instruction issue are now well understood and commonplace

in processors to handle other forms of speculative execution; our design can be considered

just another speculative implementation. Note the greatly reduced average clock period

results in significant energy saving per computation because of the saving in the static

power wasted during the mostly inactive part of the longer clock period in a traditional

design. Moreover, this performance gain can be traded off for lower power consumption by

reducing the supply voltage to slow down the circuitry instead of speeding up the clock as

in the Razor[3] approach.

1.2 Motivation

Current trends in the CMOS VLSI design methodologies show steady scaling of feature

sizes to meet the speed and performance requirements for complex applications in the areas
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of communication, aerospace, defence and consumer electronics. Extensive scaling of CMOS

process has given rise to many problems such as leakage current, short circuit current, large

process variations, etc [2]. It is proving to be difficult to achieve higher performance with

transistor channel length scaled to few nanometres. These problems have to be addressed

while designing circuits for low power and high speed applications. Also, with CMOS technol-

ogy approaching its limit, new approaches for processes and design architectures are needed.

Apart from scaling, there has been much focus on very low power consumption and area

efficient design methodologies in developing consumer applications.

As performance and battery life requirements are becoming more crucial in small and

lightweight systems like laptops and hand-held devices, power consumption is becoming

a critical problem. For example, processors and microcontrollers for these small portable

systems should provide higher system performance while keeping power consumption within

specified limits. The performance of these chips is mainly dependent on the Arithmetic Logic

Units (ALUs) used in them to perform complex mathematical operations such as addition,

subtraction, division and multiplication. To save silicon area and power, some chips do

not include dedicated arithmetic circuits for multiplication and other complex computations

which are considered to be very area intensive and power hungry; multiplication is performed

through repeated addition. In such scenarios, there is a critical need for fast and power

efficient adder circuits which are almost constantly active during computation, and can have

a major impact on overall system performance. Current Sensing Completion Detection for

High Speed and Area Efficient Arithmetic is one such design [1] which try to exploit a unique

characteristic of a Ripple Carry Adder in improving the performance and power of a Booth

Multiplier.

Our focus is low cost, high throughput integer multiplication. To portray the efficacy of

our approach we present the design of a 32x32 Wallace Multiplier. Arithmetic circuits, par-

ticularly the multiplier, often have a decisive impact on overall timing in electronic systems.

Moreover, multiplication being a very important and commonly used operation consumes
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a significant portion of the system’s power in modern processors. Traditionally, state-of-

the-art multiplier designs have focused on the performance over hardware cost and power,

with numerous high-speed designs proposed in the literature. Many high speed multipli-

ers employ a carry save approach, based on designs proposed by Wallace [10] and Dadda

[11], that first quickly reduces the input based partial products to two numbers without

any carry propagation delays, and then quickly adds these two numbers using high speed

adders. Enhancements speed up each of these two steps at considerable expense in hardware

and power. For example, the high speed multiplier described in [9] employs Booth encoding

on the operands to reduce the number of partial products to be reduced by the carry save

tree, specialized compressor circuits for carry save partial product reduction, and a mixed

carry-select, carry look-ahead topology to add the final two accumulated partial products

[12,13,14]. Our goal is to achieve comparable speed for almost all the multiplication oper-

ations without many of these enhancements for partial product reduction, and the use of a

much lower cost carry ripple adder to generate the final product; only rarely requiring recov-

ery for a timing error due to the activation of a long path. Furthermore, it is critical for the

timing error detection and correction circuitry to be fast, low cost and robust. Developing

such a timing exception recovery capability is a major contribution of this thesis.

To achieve this error recovery we present a novel low cost approach which involves latch-

ing and holding logic values at key internal circuit nodes during every clock cycle beyond the

clock edge to allow recreation of the correct outputs for that clock period one clock cycle later

in case of a timing error. Then very fast error evaluation, exploiting a unique characteristic

of carry ripple addition, allows this hold to be quickly released without any impact on the

circuit timing in the next period cycle in error free operation. The rare detection of a timing

error (long carry propagation path) extends the hold signal for additional one or more clock

cycles to give the computation time to complete. Note that this approach is very different

from those previously proposed for Razor or other work in the literature, and is particularly

well suited to exploit the architecture of low cost Wallace multipliers.
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1.3 Problem Statement

While in the earlier work timing slack due to PVT variation was addressed and overcome

in Razor, CRISTA a circuit design technique where the clock frequency can be increased by

a factor of two by making the delay paths skewed was addressed. In this thesis we try to

improvise the following by exploiting the innate skewed distribution property of a Wallace

Multiplier with Ripple Carry Adder as a final vector merger.

1) A better recovery mechanism to quickly recover from the occasional timing errors.

2) Exploit the Skewed distribution property and PVT timing margin slack of a circuit.

3) Increase the clock frequency by a factor of two or more.

1.4 Contribution of This Thesis

In this thesis we present a novel design technique to leverage the input based statistical

distribution of a Ripple Carry Adder, further this design technique is implemented on a

Wallace Multiplier with a Ripple Carry Adder as a final Adder. The key contribution of this

thesis is achieving a performance benefit of close to 2.5x compared to the actual design i.e.,

clock period determined by the worst case delay. The performance achieved was comparable

to that of the fastest multiplier which is supposed to be hardware intense.

An analysis of how the delays are spread in a Ripple Carry Adder was done using unit

delay simulation in Modelsim. The skewed delay distribution of the Ripple Carry Adder

was as expected and this delay distribution was leveraged after implementing a Wallace

Multiplier with Ripple Carry Adder as final adder. The key concept is to hold the internal

signal at the final adder beyond the next clock edge and release them quickly if there are

no active carry signal propagating within the Ripple Carry Adder thus, providing additional

two/three clock cycles in the case of occasional timing paths which go beyond the already

set clock period. Spice simulation results on this design for 10,000 random vectors with

progressively decreasing clock period shows a performance benefit of 2.36x.
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1.5 Organization of Thesis

The thesis is organized as follows. In Chapter 2, we discuss a general background of

the earlier Better than Worst Case Design techniques, their pros and cons, and their use

in narrower but widely used designs such as Adders and Multipliers. Chapter 3 presents a

detailed overview of the performance of Ripple Carry Adder, Carry Look Ahead adders and

other complex adders. Chapter 4 presents a brief overview of various stages in a Multiplier

and how we leverage the unique characteristics of a RCA. In Chapter 5, the proposed BTWC

design is discussed. Implementation of the proposed BTWC design in a Wallace Multiplier

is discussed in Chapter 6. Simulation results with Conclusions and future work are discussed

in Chapter 7.
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Chapter 2

Literature Survey

This chapter presents a brief study on the present and past research work on better

than worst case delay designs. Though BTWC designs were implemented earlier either for

performance improvement or for power aware computation the design has to make sure that

a circuit operates without any errors even in the worst case scenario. Thus, the design of

a efficient Error resilient logic and a mechanism which can recover from a timing critical

error can be thought of as a metric for the designs based on BTWC delay. The completion

detection and correction in this work is novel, and can be implemented on designs whose

delay distribution is skewed. Also, it is important to keep in mind that power or performance

is a compromising design metrics i.e. one needs to trade power for performance or vice versa.

2.1 Requirement for BTWC designs

After decades of astonishing improvement in integrated circuit performance, digital

circuits have come to a point in which there are many problems ahead of us. Two main

problems are power consumption and process variations.

In the past few decades, circuit designs have followed Moores law and the number of

transistors on a chip has doubled every two years. As we fit more transistors into a given

area and clocked them faster and faster, power density increases exponentially. The most

effective way to reduce power density is to minimize the supply voltage, as predicted by

CV 2f . Currently, we have been successful in containing the power density within tolerable

levels, but this will not last. One barrier comes from the threshold voltage. In order to

maintain the same performance, we have to reduce the threshold voltage together with the
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supply voltage. However, reducing threshold voltage leads to an exponential increase in off-

state leakage current. Leakage current has become so significant that a further reduction in

threshold voltage and supply voltage has slowed or even stopped. Without voltage scaling,

the power density of a chip will increase without bound. If a solution to this ever increasing

power consumption cannot be found, Moores law will come to an end and we will no longer

be able to experience the tremendous increase in performance experienced in the past.

The other problem of the IC industry is process variations [17,18]. As transistor sizes

approach atomic levels, it is very difficult to fabricate exactly what we specify. For example,

a variation of dopant implantation on order of a few atoms may translate to a huge dif-

ference in dopant concentration, and may cause a noticeable shift in the threshold voltage.

Because traditional designs dictate that our circuit must always function correctly in all

circumstances, the huge process variations present today forces designers to allocate more

voltage margin on top of the typical case in order to ensure proper operation. To make

things worse, other temperature, die-to-die, and IR drop variations further increases safety

margins needed. The general practice of conservative over design has become a barrier to

low power design. Because these large margins are used only to prevent the rare worst case

scenario from failing, a large amount of energy can be saved if these margins are eliminated

and instead utilize an error-resilient logic that can dynamically tune itself for all kinds of

variations. We will then be able to run our chip at the lowest possible energy consumption

or highest possible performance .

Power consumption and variations have become two of the most important roadblocks

for extending Moores law and these problems must be addressed before we can continue to

improve the performance of electronics at the amazing pace we enjoyed in the past decades.

Thus even a minor improvement in performance without trading off power shall be a signif-

icant contribution in the face of the above mentioned bottlenecks of digital circuits.
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2.1.1 Previous BTWC designs

A number of better-than-worst case (BTWC) designs have been proposed in the past

to allow circuits to save power by operating under normal conditions rather than conserva-

tive worst case limits. One class of BTWC techniques specifies multiple safe voltage and

frequency levels that a design may operate at and allows for switching between these states.

Examples in this class are correlating VCO [23, 24] and Design-Time DVS [27]. As voltage

changes, correlating VCO adapts the frequency of a circuit to a level slightly below the crit-

ical frequency. The clock frequency for a given voltage is selected to incorporate a margin

for process and temperature variations, as well as noise in the power supply network. Thus,

scaling past the critical point is not allowed.

Similarly, Design-Time DVS provides the capability to switch between multiple voltage

/ frequency operating points to match user or application requirements. As with correlating

VCO, each operating point incorporates a conservative margin to ensure that errors do

not occur.Another class of BTWC designs uses canary circuits to detect when arrival at

the critical point is imminent, thus revealing the extent of safe scaling. Delay line speed

detectors [25] work by propagating a signal transition down a path that is slightly longer

than the critical path of a circuit. Scaling is allowed to proceed until the point where the

transition no longer reaches the end of the delay line before the clock period expires. While

this circuit enables scaling, no scaling is allowed past the critical path delay plus a safety

margin.

Another similar circuit technique uses multiple latches which strobe a signal in close

succession to locate the critical operating point of a design. The third latch of a triple

latch monitor [26] is always assumed to capture the correct value, while the first two latches

indicate how close the current operating point is to the critical point. A design is considered

to be tuned when the values in the first two latches do not match but the values in last two

latches do match, indicating that the setup time of the third latch is longer than the critical

delay of the circuit by a small margin.
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All the BTWC techniques mentioned above have similar limitations. They allow for

scaling up to, but never beyond,the critical operating point. However, with increasing vari-

ability in circuits, there is also high potential for benefit (in terms of power e.g.) when scaling

is allowed to proceed past the critical point. Razor [3,4,5] actually allows voltage scaling

past the critical point, since it incorporates error detection and correction mechanisms to

handle the case when errors occur. While CRISTA [6] allows aggressive voltage scaling by

Isolating and predicting the set of possible paths that may become critical under process

variation and ensure that they are activated rarely, it avoids possible delay failures in the

critical paths by dynamically switching to two-cycle operation.

On the other hand CSCD [1] provides carry completion signaling in low cost ripple carry

adders which allows the control logic to schedule the next addition as soon as an earlier one

is complete, thereby achieving the average case, rather than worst case addition delay over

a set of computations.

While all the above mentioned designs can be considered as BTWC. Only Razor,

CRISTA and CSCD fall under a less conservative design as each design has unique way

to sense the timing paths completion, and the challenge is to design a least conservation

design technique. Instead of applying this approach to general purpose logic as attempted

by the Razor team and others, we have explored its use in specific widely used computations

such as addition and multiplication.

2.2 Razor

The Razor approach, proposed in [3], aims at reducing the power consumption by min-

imizing the PVT timing margin to zero and beyond (since timing critical paths are not

activated in every cycle), by building in a system capability to detect occasional errors due

to slow signal paths and recover from them. The timing margins are removed by reducing

the supply voltage to slow down the circuit to a point where a small, acceptable number

of errors are observed. As long as the power saving from the reduced voltage operation
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exceeds the extra power needed, on average, by the occasional error detection and recovery

cycle, such a scheme can provide a net power saving. The challenge clearly is in designing

an efficient low cost error detection and recovery capability to support this approach. The

original Razor design [3] has changed and evolved [4,5] significantly over time in an attempt

to achieve practicality. Even so the potential power savings from eliminating timing margins

appear limited.

2.2.1 Razor I Overview

The key concept in Razor I [3] is to sample the input data of the flip-flop at two different

points in time. The earlier, speculative sample is stored in a conventional positive-edge

triggered, master-slave flip-flop. This main flip-flop is augmented with a so-called shadow

latch which samples at the negative edge of the clock.

Figure 2.1: Razor flop-flop

Thus, the shadow-latch gets additional time equal to the high-phase of the clock to

capture the correct state of the data. An error is flagged when data captured at the main
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flip-flop differs from the shadow-latch data. As the setup and hold constraints for the main

flip-flop are allowed to be violated, an additional detector is required to flag the occurrences

of metastability at the output of the main flip-flop. The error-pins of individual RazorI

flip-flops are then OR-ed together to generate a pipeline restore signal which overwrites the

correct data in the shadow-latch into the main flip-flop, at the next positive edge of the clock.

Since the shadow latch data is used to overwrite state in the main flip-flop, it is required to

ensure using conventional worst-case techniques that the data in the shadow latch is always

correct.

There are key design issues that complicate the deployment of RazorI in high-performance,

aggressively-clocked microprocessors. The primary difficulty is the generation and propaga-

tion of the pipeline restore signal. The restore signal is evaluated at the output of a high

fan-in OR-tree and is suitably buffered and routed to every flip-flop in the pipeline stage

before the next rising edge of the clock. This imposes significant timing constraints on the

restore signal and the error recovery path can itself become critical when the supply voltage

is scaled. This limits the voltage headroom available for Razor, especially in aggressively

clocked designs. The design of the metastability detector is also difficult under rising pro-

cess variations as it is required to respond to metastable flip-flop outputs across all process,

voltage and temperature corners. Consequently, it requires the use of larger devices which

adversely impacts the area and power overhead of the RazorI flip-flop. There is the addi-

tional risk of metastability at the restore signal which can propagate to the pipeline control

logic, potentially leading to system failure.

2.2.2 RazorII

Razor II [3] was implemented to effectively address the design and timing issues in RazorI

which moves the responsibility of recovery entirely to the micro-architectural domain. The

RazorII approach introduces two novel components which are described in the following

paragraphs.
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Instead of performing both error detection and correction in the flip-flop, RazorII per-

forms only detection in the flip-flop, while correction is performed through architectural

replay. This allows significant reduction in the complexity and size of the Razor flip-flop.

although at the cost of increased IPC penalty during recovery. Architectural replay is a

conventional technique which often already exists in high-performance microprocessors to

support speculative operation such as out-of-order execution and branch prediction. Hence,

it is possible to overload the existing framework to support replay in the event of timing

errors. In addition, this technique precludes the need for a pipeline restore signal, thereby

significantly relaxing the timing constraints on the error recovery path. This feature makes

RazorII highly amenable to deployment in high-performance processors.

Figure 2.2: Pipeline augmented with Razor latches and control lines

Besides, the design of the RazorII flip-flop uses a positive level-sensitive latch instead

of a master-slave flip-flop. The flip-flop operation is enforced by flagging any transition on

the input data in the positive clock-phase as a timing error. Elimination of the master latch

significantly reduces the clock pin capacitance of the flip-flop bringing down its power and

area overhead.
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2.2.3 Razor Limitations

Designs such as Razor that allow scaling past the critical operating point [ref (rl) J. Patel.

Cmos process variations: A critical operation point hypothesis, 2008.] must be mindful of

two aspects of error recovery - error detection and correction. Razor detects an error when

the value latched by the shadow latch differs from the value latched by the main flip-flop.

This happens when the logic signal has not settled to its final value before the setup time of

the main flip-flop. If the signal transitions again before the shadow latch latches, an error

will be detected.

For error correction, the Razor flip-flop must not only detect a timing violation, but

must also latch the correct value in the shadow latch. This simply implies that the correct

value must arrive by the setup time of the shadow latch for all Razor flip-flops in a design.

So, Razor may not be able to correct errors if a) detection fails (i.e., both the main flip-flop

and the shadow latch have the same incorrect value), or b) detection succeeds, but the value

latched in the shadow latch is not the correct value.

To guarantee correctness, Razor requires two conditions to be met on the circuit delay

behaviour the short path constraint and the long path constraint. The long path constraint

(eqn. 2.1), states that the maximum delay through a logic stage protected by Razor must

be less than the clock period (T) plus the skew between the two clocks (the clock for the

main flip-flop and the clock for the shadow latch).

delay < T + skew (2.1)

If the long path constraint is not satisfied, false negative detections can occur when a

timing violation causes both the main flip-flop and shadow latch to latch the incorrect value.

The short path constraint (eqn. 2.2) states that there must not be a short path through a

logic stage protected by Razor that can cause the output of the logic to change before the

shadow latch latches the previous output.
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delaymin > skew + hold (2.2)

Failure to satisfy the short path constraint leads to false positive error detections when

the logic output changes in response to new circuit inputs before the shadow latch has

sampled the previous output. Combination of the short and long path constraints (eqn. 2.4)

demonstrates that Razor can only guarantee correctness when the range of possible delays

for a circuit output falls within a window of size

skew + hold < delay < T + skew (2.3)

delaymax − delaymin < T − hold (2.4)

Note that equation 2.4 implies a tradeoff between the limit of Razor protection and

the range of Razor usability. While increasing skew can reduce the number of uncorrectable

errors by protecting longer path delays, this also leads to a reduction in the range over which

Razor can be applied to correct errors due to violation of the short path constraint.

The authors of [22] try to demonstrate the voltage scaling limitations of Razor based

design using two circuits which are chosen to be canonical examples of two contrasting design

philosophies i.e., a Kogge-Stone adder (KSA) and a Ripple Carry Adder (RCA)

The KSA architecture has timing paths of nearly the same length, and therefore exhibits

a critical operating point akin to traditional high performance processor designs. Due to this

property of KSA, it was observed that in [ref ] scaling beyond a certain voltage point leads

to a catastrophic failure of the adder (i.e., 100% error rate). Aggressive voltage scaling,

therefore, is not possible for such designs even with an efficient error correction mechanism
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as the power consumption may actually increase drastically in spite of voltage scaling. This

is because the absolute error rate is high (close to 100%) and the overhead of error recovery

for Razor is roughly an order of magnitude more expensive than the overhead of executing

an instruction normally [ref ]. So, for designs like KSA where timing paths are bunched up

(like in traditional high performance processor designs), Razor may not be very effective in

terms of power reduction through undervolting (1.e., scaling beyond the voltage for which

the first timing violation appears). While some power can be saved by eliminating the

voltage guardband, scaling past the critical operating point results in nearly 100% erroneous

computations.

The second circuit i.e., ripple carry adder (RCA architecture is not subject to catas-

trophic failure in response to scaling past the point of first error. The delay distribution

show in fig 1 of chapter 1 implies that the error rate increases gradually as voltage decreases.

Although the minimum delay for any path of the RCA equals the delay of the sum path

of a full adder, operational delay ultimately depends on adder inputs, which generate carry

chains from lower to higher order bits. The RCA exhibits maximum delay when the carry

chain extends from the least significant bit to the most significant bit. However, on average,

carry chains are much shorter, leaving extensive room for aggressive scaling past the point

where errors begin to occur. In fact, the error rate reaches close to 100% only at very low

voltages.

The behaviour of RCA may be a suitable desired behaviour for high performance pro-

cessor designs to enable significant power savings through undervolting. Recent attempts

[20, 21] at processor designs that produce graceful degradation in reliability in the face of

voltage scaling try to mimic this behaviour.

It might be obvious that Razor should perform well for architectures that fail gracefully,

since such designs do not have a wall of criticality. However, analysis of the results in [22]

reveals some serious limitations of using Razor, even in such architectures.
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Limitations arise due to the potential short path and long path constraint violations

as discussed earlier. If the long path constraint is not satisfied, false negative detection can

occur when the main flip-flop and shadow latch both latch the incorrect value. Similarly,

the failure to meet short path constraints makes Razor unusable over a range of voltages.

In fact, the same factor that makes the error behavior of RCA graceful (skewed delay

distribution) makes Razor less effective. This is because Razor relies on the variation in delay

to be less than a threshold. The variation in delay is significantly larger for an RCA design

than a KSA design. In order to make Razor work for circuits that fail gracefully, buffering

must be used to increase the delay of short paths, thus shifting them into the window of

correction. This buffering adds area and power overheads in a design, negating some of

the power savings afforded by better than worst-case design. Secondly, required buffering

increases the delay on short paths, transforming a circuit from one that fails gracefully to

one that fails catastrophically, thus limiting the extent of possible scaling.

So, while Razor is ineffective for circuits like KSA because of massive timing violations

in the face of undervolting, it is also not very effective for circuits like RCA due to a large

span between the maximum and minimum circuit delays. The results in [ref razor limits]

demonstrate the inadequacies of current better than worst-case design methodologies (like

Razor) in terms of voltage/ frequency scaling, motivating the need for new techniques for

processor design and error handling.

2.3 CRISTA

CRISTA [6] is a low-power variation-tolerant circuit design called CRitical path ISo-

lation for Timing Adaptiveness [ref crista], which allows aggressive voltage scaling. The

principal idea includes the following:

1.) isolates the critical paths and makes them predictable (based on few primary inputs)

under parametric variation so that with reduced supply voltage, possible delay errors under

single-cycle operation are deterministic and can be avoided by a two-cycle operation.
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2.) restricts the occurrences of the previous two-cycle operations by reducing the activation

probability of critical paths.

3.) increases the delay margin between critical and noncritical paths by both logic synthesis

and proper gate sizing for improved yield, reliability of operations, and aggressive voltage

scaling.

As mentioned above CRISTA induces the skewed distribution in completion delays for a

given pipeline stage logic and further downsizes the critical path gates to increase the timing

slack between non-critical and critical paths for performance/power benefits in a circuit. The

occurrence of an error is detected by a Decode logic which monitor the activation probability

of critical path vectors.

It can be understood intuitively that the performance or power benefit from such a

design technique for designs such as a 32-bit RCA can be minimal. The primary reason

being RCA has an innate skewed distribution as shown in [fig chap 1] besides the decode

logic used to flag for two cycle operation could impose additional hardware penalty.

Therefore, though the design can be considered as a less conservative design for generic

circuits with balanced critical paths it might not gain huge performance benefits from designs

with skewed delay distribution such as RCA.

2.4 CSCD for High Speed and Area Efficient Arithmetic

This design [1] equips a Ripple Carry Adder with a current sensing capability which

observes late settling carry signal nodes in the circuit and indicates when they reach a

quiescent state. The incorporation of a computation completion signal into a RCA offers a

way for improving the ”average case” RCA to signal to the higher level circuitry controlling

it that it has completed the operation. Thus, for example, if 32 repeated additions are to be

performed to multiply two 32 bit numbers, using completion signalling to initialize the next

addition can cut down the total multiplication time from 32 worst case addition delays, to

32 average case delays.
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The proposed method for implementing the current sensor involves using a sense-inverter

such as the one shown in fig-2.3 . A CMOS inverter draws current from the power supply as

long as its input is midrange between a high and a low voltage, such that both the P and N

transistors see a gate source voltage above their respective threshold voltages. The Supply

current does not flow once the input reaches within a threshold of either the high or low

supply voltages. Thus monitoring the supply current provides a means to determine if the

input has stabilized close (within a threshold voltage) of a high or low.

Figure 2.3: Current Sensor Circuitry

In fig-2.3 the sense current is drawn from a transient current generator i.e., an inverter

whose IDD quiescent current is monitored with respect to the rising clock edge of each

capture flop. The Addcomp signal is flagged in the case of an addition completion.

Though this design seems to be promising for circuits with a skewed delay distribution

such as a RCA, the loading on the sense circuitry increases linearly with the number of
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capture flops to be monitored for transition completion. Thus, imposing an upper bound on

performance or power benefits.

2.5 Need for Fast and Resilient Error Detection Circuit

Though designs such as RAZOR, CRISTA and CSCD are less conservative compared

to other BTWC designs the performance/power benefits for a design with skewed delay

distribution (like a RCA) using any of the above techniques is limited.

Thus, to exploit the innate skewed distribution of a much narrower but widely used

arithmetic designs i.e. Multiplier (With a RCA as a final Vector Merger) it is important that

an Error detection technique which is fast and resilient is required. The major contribution

of the work in this thesis is the design of a Fast Error Detection logic which makes the

performance of a Multiplier with a low cost RCA comparable to that of the fastest Multiplier.
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Chapter 3

Brief Overview on Adders

In this chapter the performance of a Ripple Carry Adder for delay in the best and worst

case scenarios is discussed. Also ripple carry adder performance and area is compared to

a different flavors of adders such as Carry Look Ahead (CLA), Carry Save Adder (CSA),

Kogge Stone Adder etc..

3.1 Basic Adders

The basic building blocks for any adder are Half Adder and Full Adder (3:2 compressor),

there are several complex compressors in the literature but a good insight in Half Adder and

Full Adder will give an intuitive understanding in characterizing the performance of complex

adders.

3.1.1 Half Adder

The half adder adds two single binary digits A and B. It has two outputs, sum (S)

and carry (C). The carry signal represents an overflow into the next digit of a multi-digit

addition. The simplest half-adder design, pictured in Fig 3.1, incorporates an XOR gate for

S and an AND gate for C.

Figure 3.1: Half Adder
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In the above figure the Worst case delay is one XOR gate delay.

3.1.2 Full Adder

A full adder performs additions of three 1-bit numbers, A, B, Cin, and gives outputs

Sum, and Carry out, Cout. The expressions for sum and carry are given by

S = A⊕B ⊕ Cin (3.1)

Cout = A ·B + Cin(A⊕B) (3.2)

Cout = A ·B + A · Cin + B · Cin (3.3)

Figure 3.2: Full Adder Block

Two half adders can be combined to make a full adder with the addition of an OR gate

to combine their carry outputs. Using Eqn 3.1 and 3.2 we can represent a Full Adder at

gate level as shown in Fig 3.3. It can be observed from the figure that the critical path for

Sum output is determined by two XOR gates, whereas the Critical path for a Carry out

is determined by an XOR, AND and an OR gate. Since, carry output is the one which
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propagates in adders with bit length > 1 it is important to build a full adder which can

generate a carry output faster as shown in fig 3.4.

Figure 3.3: Full Adder using two Half Adders

In Fig 3.4 the carry out delay is determined by an AND gate and an OR gate (3-input)

which is much faster than the fig 3.3. Henceforth, a full adder is considered to be the one in

fig 3.4 in this thesis.

Figure 3.4: Full Adder with fast carry out

3.2 Ripple Carry Adder (RCA)

A Ripple carry adder consists of blocks of 1-bit full adders connected in series with the

carry out of one block serving as carry in to the next block. Fig 3. shows the interconnection

of a 4-bit ripple carry adder. It can be observed that the critical path for this design is the

path from C0 to C4.
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Figure 3.5: 4-bit Ripple Carry Adder

3.2.1 Performance Analysis of a 4-bit RCA

Figure 3.6 shows the gate level representation of 4-bit full adder circuit with sum and

carry outputs. The addition of two bits at any stage depends on the carry generated by the

addition of the two bits in the previous stage. Thus, the sum of the most significant bit is

only available after the carry signal has rippled through the adder from the least significant

stage to the most significant stage. The critical path for this design is the carry propagation

path from C0 to C4 which is 8 gate delays. Extending the design concept for 32- bit ripple

carry adder gives us the critical path delay of 64 gates.

Figure 3.6: 4-bit Ripple Carry Adder

3.2.2 Best Case Performance

The best case performance for a ripple carry adder is seen when there is no carry

generated at each bit position. In the case of the 4-bit adder in Figure 20 the sum outputs
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are available just after two xor gate delays. This can be observed with input values A =

1111, B = 0000 and C0=0, which gives C1=C2=C3=C4=0 at each bit position. For this

case there are no carry bits generated and since no propagation takes place the sum outputs

are valid after two gate delays.

Figure 3.7: 4-bit adder best case performance

Delay

S0 = 2 gate delays

S1 = 2 gate delays

S2 = 2 gate delays

S3 = 2 gate delays

3.2.3 Worst Case Performance

The worst case performance for a ripple carry adder is seen when the input carry, Cin is

propagated to next stage by each bit position. Because of carry propagation from the least

significant position to most significant position the sum bits generation takes variable time

delays.

Figure 3.8: 4-bit adder worst case performance
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Delay

S0 = 2 gate delays

S1 = 4 gate delays

S2 = 6 gate delays

S3 = 8 gate delays

In the case of the 4-bit adder in Figure 3.6, this can be observed with A = 1111, B

= 0000 and C0=1, which gives C1=C2=C3=C4=1 at each bit position. Since the carry is

propagated the delays for the sum outputs is observed to be two to eight gate delays.

3.2.4 Average Case Performance

The average case performance of a ripple carry can be obtained from the delay distribu-

tion of the RCA. To look at this from a statistical perspective let us consider the probability

of having a ’10’ or ’01’ combination at the input of the Full Adder i.e., two out of four

cases the Full Adder inputs can have the above combination (A carry can only propagate

to the next full adder only if the input bits are either ’10’ or ’01’) so the probability that a

carry propagates to the next Full Adder is 1
2
. Hence, the probability that a carry propagates

beyond the nth stage is 1
2n

i.e., for a 5 bit adder the critical path is triggered once in 32 cases

as shown in Figure 3.9. Hence, the skewed nature of RCA becomes more prominent with

the RCA bit length.

Figure 3.9: Illustrating the probability of carry rippling through a 5 stage RCA

In figure 3.9 we try to illustrate the probability of a carry being propagated all the way

down to Cout in a 5 stage Ripple Carry Adder.
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3.3 Carry Look Ahead Adder

The carry look ahead adder calculates carry bits simultaneously using complex logic

circuitry. This minimizes the worst case delay to calculate the sum bits. Due to large fan

out on the gates, the carry generation and propagation bits are calculated by making groups

of carry blocks (usually four bits) as shown in Figure

The primary block of the carry look ahead adder is Partial Full Adder (PFA). Each

block of PFA takes three bits A, B, C; as inputs and generates three outputs G, P and S.

These are

Generate, G = A . B

Propagate, P = A⊕B

Sum, S = A ⊕ B ⊕ C

Figure 3.10: Partial Full Adder

3.3.1 Performance Analysis of 4-bit CLA

Fig 3.10 shows the gate level architecture of a 4-bit carry look ahead adder. In order

to construct a 4-bit CLA four PFAs are needed to generate the signals. When Pi = 1, an

incoming carry is propagated to the next bit position from Ci to Ci+1. For Pi = 0, carry

propagation to the bit position is blocked. Regardless of the value of Pi, when Gi = 1, the

carry output from the current position is ”1.
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The carry output has the following logic:

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

The carry look ahead block takes only two gate delays to generate carry bits from C1

through C3. The implementation of C4 is becomes more complicated when this 4-bit carry

look ahead adder is extended to multiples of 4 bits, such as 16 bits and 32 bits. The carry

look ahead adder for 4 bits computes carry bits at all the bit positions simultaneously. The

longest delay in the 4-bit carry look ahead adder is 4 gate delays, compared with 8 gate

delays in the ripple carry adder. The improvement is very modest but at the cost of much

additional hardware. From Figure 22 it can be observed that the fan in for generating the

C4 is 4, if we extend the same concept to generate more carry bits simultaneously then the

high fan-in for generating the carry bits could contribute to additional adder delays. So in

such cases the carry bits are limited to groups of 4 and are extend to next higher level of

blocks to generate the carry bits. For a 16 bit carry look ahead adder the higher numbered

bits 4 - 7, 8 - 11, and 12 - 15 are grouped together. For this in positions 4, 8, and 12 we

would like the carry to be produced as fast as possible without using excessive fan-in. The

estimated worst case delay for a 32-bit CLA is 8 gate delays but high fan-in in the carry

generation block could add additional delays in the adder circuit.
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Figure 3.11: 4-bit Carry Look Ahead Adder

3.4 Carry Select Adder

In a Ripple Carry Adder, every full-adder cell has to wait for the incoming carry before

an outgoing carry can be generated. One way to get around this linear dependency is to

anticipate both possible values of the carry input and evaluate the result for both possibilities

in advance. Once the real value of the input carry is known, the correct result is easily selected

with a simple multiplexer stage. An implementation of this idea, appropriately called the

carry-select adder is demonstrated in Figure 3.11

Consider the block of adders, which is adding bits k to k+3. Instead of waiting on the

arrival of the output carry of bit k -1, both the 0 and 1 possibilities are analysed. From a

circuit point of view, this means that two carry paths are implemented. When C in finally

at the last stage finally settles, either the result of the 0 or the 1 path is selected by the

multiplexer, which can be performed with a minimal delay. As is evident form the Figure
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Figure 3.12: Carry Select Adder

3.11, the hardware overhead of the carry-select adder is quite significant with an additional

carry path and a multiplexer.
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Chapter 4

Overview on Multipliers

Multiplications are expensive and slow operations. The performance of many compu-

tational problems often is dominated by the speed at which a multiplication operation can

be executed. Many multiplier designs focus on the performance perspective of a multiplier,

and may not fit a low-power environment. Hence, the fastest multiplier in the literature

comes with the expense of Area, Power or complexity in routing. This chapter tries to dis-

cuss some basic multiplier designs from the literature [ref ] which are similar to the decimal

multiplication using paper and pencil and fastest multiplier with significant overhead in area.

4.1 The Multiplier

Consider two unsigned binary numbers X and Y that are M and N bits wide, respec-

tively. To introduce the multiplication operation, it is useful to express X and Y in the

binary representation

X =
M−1∑
i=0

Xi2
i Y =

N−1∑
j=0

Yj2
j (4.1)

with Xi ∈ 0, 1. The multiplication operation is then defined as follows:

Z = X× Y =
M+N−1∑

k=0

Zk2k = (
M−1∑
i=0

Xi2
i)(

N−1∑
j=0

Yj2
j) =

M−1∑
i=0

(
N−1∑
j=0

XiYj2
i+j) (4.2)

The simplest way to perform a multiplication is to use a single two-input adder [9]. For

inputs that are M and N bits wide, the multiplication takes M cycles, using an N bit adder.
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This shift and-addd algorithm for multiplication adds together M partial products. Each

partial product is generated by multiplying the multiplicand with a bit of the multiplier

- which, essentially, is an AND operation - and by shifting the result on the basis of the

multiplier bit’s position.

A faster way to implement multiplication is to resort to an approach similar to manually

computing a multiplication. All the partial products are generated at the same time and

organized in the array. A multioperand addition is applied to compute the final product.

The approach illustrated in fig 4.1.

Figure 4.1: Binary Multiplication - an example

This set of operations can be mapped directly into hardware. The resulting structure

is called an array multiplier and combines the following three functions:

i) Partial-Product Generation

ii) Partila-Product Accumulation and

iii) Final Addition

4.2 Partial Product Generation

Partial products result from the logical AND of multiplicand X with a multiplier bit

Yi. Each row in the partial-product array is either a copy of the multiplicand or a row of

zeros.
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It is obvious that this stage of multiplication is done quickly and the maximum delay of

multiplier is contributed by the partial-product accumulation and the final addition which

have a fixed and a variable delay respectively as discussed in the following subsections.

4.3 Partial Product Accumulation

After the partial products are generated, they must be summed. This accumulation is

essentially a multioperand addition. A straightforward way to accumulate partial products

is by using a number of adders that will form an array - hence, the name, array multiplier.

4.3.1 Array Multiplier

The most direct approach to multiplication implementation is the Array Multiplier.

The composition of an array multiplier is shown in fig. There is a one-to-one topological

correspondence between this hardware structure and the manual multiplication shown in

fig 4.1. The generation of N partial products requires N xM two-bit AND gates (in the

style of fig). Most of the area of the multiplier is devoted to the adding of the N partial

products, which require N -1 M -bit adders. The shifting of the partial products for their

proper alignment is performed by simple routing and does not require any logic. The overall

structure can be easily compacted into a rectangle, resulting in a very efficient layout.

Figure 4.2: 4x4 Array Multiplier
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Due to array organization, determining the propagation delay of this circuit is not

straightforward. Consider the implementation of fig. The partial sum adders are imple-

mented as ripple-carry structures. Performance optimization requires that the critical timing

path be identified first. This turns out to be nontivial. In fact, a large number of paths of

almost identical length can be identified. One such path which is the critical path is shown

in the fig 4.2. A closer look at the critical path yields an approximate expression for the

propagation delay (derived here for critical path), we can represent this as

tmult = [(M− 1) + (N− 1)]tcarry + (N− 1)tsum + tand (4.3)

where tcarry is the propagation delay between input and output carry, tsum is the delay

between carry and the sum bit of the full adder (as calculated from capter 3 section ), and

tand is the delay of the AND gate. From equation 4.3 we can say that the timing paths in

a Arrray Multiplier are balanced which is illustrated in the Delay Distribution of an Array

Multiplier obtained for 50,000 vectors.

Figure 4.3: Delay Distribution of an Array Multiplier for 50,000 vectors
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Since all critical paths have the same length, speeding up just one of them-for instance,

by replacing one adder by a faster one such as a carry-select adder- does not make much sense

from a design standpoint. All critical paths have to be attacked at the same time. From

equation 4.3, it can be deduced that the minimization of tmult requires the minimization of

both tcarry and tsum. In this case, it could be beneficial for tcarry to equal tsum. This contrasts

with the requirements for adder cells discusssed before, where a minimal tcarry was of prime

importance.

4.3.2 Carry-Save Multiplier

Due to large number of almost identical critical paths, increasing the performance of

the Array multiplier through transistor sizing yields marginal benefits. A more efficient

realization can be obtained by noticing that the multiplication result does not change when

the output carry bits are passed diagonally downwards instead of only to the right, as shown

in fig

Figure 4.4: A 4x4 carry-save multiplier
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An extra adder is included to merge the final vectors to generate the final result. The

resulting multiplier is called a carry-save multiplier or a, because the carry bits are not

immediately added, but rather are ”saved” for the next adder stage. In the final stage,

carries and sums are merged in a fast carry-propagate (e.g, carry-lookahead or carry-skip)

adder stage (the major contribution of this thesis is to attain comparable performance to a

Carry Save multiplier design with one of the above mentioned adders as final vector merger

without any area overhead). While this structure has a slightly increased area cost (one

extra adder), it has the advantage that its worst case critical path is shorter and uniquely

defined, and is expressed as

tmult = tand + (N− 1)tcarry + tmerge (4.4)

4.3.3 Wallace Multiplier

The partial-sum adders can also be rearranged in a treelike fashion, reducing both the

critical path and the number of adder cells needed. Consider the simpler example of four

partial products each of which is four bits wide, as shown in fig. The number of full adders

needed for this operation can be reduced by observing that only column 3 in the array has to

add four bits. All other columns are somewhat less complex. This is illustrated in fig, where

the original matrix of partial products is reorganized into a tree shape to visually illustrate

its varying depth. The challenge is to realize the complete matrix with a minimum depth

and a minimum number of adder elements. The first type of operator that can be used to

cover the array is a full adder, which takes three inputs and produces two outputs: the sum,

located in the same column and the carry, located in the next one. For this reason, the FA

is called a 3-2 compressor. It is denoted by a circle covering three bits. The other operator

is the half-adder, which takes two input bits in a colum and produces two outputs. The HA

is denoted by a circle covering two bits.
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Figure 4.5: Transforming a Partial-Product tree (a) into a Wallace tree (b,c,d), using an
iterative covering process.

To arrive at the minimal implementation, we iteratively cover the tree with FAs and

HAs, starting from its densest part. In a first step, we introduce HAs in columns 4 and 3

fig b. The reduced tree is shown in fig c. A second round of reductions creates a tree of

depth 2 d. Only three FAs and three HAs are used for the reduction process, compared with

six FAs and six HAs in the carry-save multiplier of fig. The final stage consists of a simple

two-input adder, for which any type of adder can be used (as discussed in the next section

”Final Addition”)

The presented structure is called the Wallace tree multiplier, and its implementation is

shown in fig along with the illustration of an 8x8 multiplier with the three different stages of

a multiplier. The tree muliplier realizes substantial hardware savings for larger multipliers.

The propagarion delay is reduced as well. In fact, it can be shown that the propagation

delay through the tree is equal to O(log3/2(N ) ). While substantially faster than carry-save

structure for large multiplier word lengths, the Wallace multiplier has the disadvantage of

being very irregular, which complicates the task of coming up with an efficient layout.
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Figure 4.6: Wallace Multiplier

Figure 4.7: Illustration of Wallace Multiplier

There are numerous other ways to accumulate the partial-product tree. A number of

compression circuits has been proposed in the literature [ref ], They are all based on the

concept that when full adders are used as 3:2 compressors, the number of partial products

is reduced by two-thirds per multiplier stage. Hence, we can go further and device a 4:2

compressor shown in fig 4.8 or even higher order compressors.
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Figure 4.8: 4:2 Compressor

By using a higher order compressor like the one shown in fig 4.8 the carry save tree or

the partial product stage delay reduces by one XOR gate delay for every two stages depicted

by the highlighted path in the fig 4.8. The higher level picture is shown in fig 4.9 which

is similar to fig 4.7 but with the use of 4:2 compressors besides a Half Adder and a Full Adder.

Figure 4.9: Illustration of Wallace Multiplier with 4:2 compressors
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4.4 Final Addition

The final step for completing the multiplication is to combine the result in the final

adder. Performance of this ”vector-merging” operation is of key importance. The choice

of the adder style depends on the structure of the accumulation array. A carry look-ahead

adder is preferable option if all input bits to the adder arrive at the same time, as it yields

the smallest possible delay. This is the case if a pipeline stage is placed right before the

final addition. Pipelining is a technique frequently used in high-performance multipliers.

In nonpipelined multipliers, the arrival time profile of the inputs to the final adder is quite

uneven due to the varying logic depts of the multiplier tree and hence, we in this thesis use

a Ripple Carry Adder with a skewed delay distribution as shown in fig 4.10 with an efficient

Error Detection and Correction design. It should be intuitive that the skewed distribution

of the RCA fits perfectly for Better than Worst case design (BTWC) making the multipliers

performance comparable to that of the fastest Multipliers with a Carry Select adder or other

hybrid adders [ref ]

Figure 4.10: Delay Distribution of a Ripple Carry Adder
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From the above discussion we can conclude that, even though the partial product re-

duction stage has a variable delay it is limited by the number of stages in the carry save tree

and hence the delay of the carry save tree can be treated as constant delay and the final

adder delay as variable delay as illustrated in the fig 4.10. So, having a Ripple Carry Adder

with a variable delay in a Wallace multiplier would result in a delay distribution which is

displayed by the carry save trees fixed delay. The unit delay simulation results for a Wallace

Multiplier to obtain the delay distribution is illustrated in the fig 4.11 along with the RCA’s

distribution.

Figure 4.11: Delay Distribution of 32-bit Wallace Multiplier with final RCA distribution for
100000 vectors
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Chapter 5

Proposed BTWC Design

In Chapter 2 a brief overview on Better than Worst Case designs was given and in chapter

3 and 4 several Adder and Multiplier designs were discussed. In this chapter the key features

of how the design is implemented to leverage the unique characteristics of a Ripple Carry

Adder are described(shown in the delay distribution in fig) besides the primary requirement

of a Better than Worst Case design i.e. efficient error detection and providing multiple clock

cycles during an occasional error are illustrated.

5.1 The Internal signal Hold until Completion Confirmed Scheme

The schematic in Fig illustrates pipelined operation of proposed Wallace multiplier

design at a high level, where new inputs arrive and the current cycle results are captured

and made available on each edge. The multiplier itself is broken up into two parts, the front-

end logic that generates the partial products along with the carry save tree (these mostly

display a fixed delay relatively independent of inputs), and the carry ripple adder with highly

variable delay. For purposes of this initial discussion we assume that there exists a register of

latches between these two parts that can hold the output signals of the carry save tree (the

inputs to the ripple carry adder) for a desired duration. (In practice, as we shall see later, his

capability can be more cost effectively implemented using tri-state gates that create dynamic

latches.) This (low active) hold signal is activated on each active clock edge, but released

(making the latches transparent again) shortly thereafter if no error is detected. Observe

that if the hold activated at the start of a clock cycle is released within a period less than the

propagation delay of the first (carry save tree) part of the logic, i.e. before new logic values

due to the updated inputs propagate to the latch register, the activation of the hold in each
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cycle does not in any way restrict the propagation of logic signals. Therefore it has no impact

on the overall multiplication delay, beyond the extra logic and loading delays introduced by

the insertion of the latches.

Figure 5.1: Pipelined Schemtic for Wallace Multiplier Operation

As was observed in previous chapter, because of the highly skewed completion delay

distribution of the carry ripple adder, even with the system running at a clock 2-3X faster

than the worst case delay, errors in the result of the multiplication due to timing violations on

long paths can be expected to be extremely rare. Assume for the moment that a capability

for the fast detection of such errors exists, i.e. it is possible to know quickly after the clock

edge that captures a result in the results register whether or not that result is correct. This

information can be used to control the hold/release signals for the latches, as shown in the

timing waveforms in Figure 5.2. In case an error is detected, the hold on the latches is not

released for the remainder of the cycle, and into the next cycle, until an error free result in

the next cycle is confirmed. Observe that since the hold is activated on the same clock edge

that updates the input registers, changes from the updated inputs are unable to immediately

propagate through the carry save tree to influence the values in the latches. Thus in the hold

mode the latches always hold signal values from the previous clock cycle. If not released

in the event of an error, the hold latches continue to hold the values from the previous

cycle at the inputs of the ripple carry adder, giving that computation an additional cycle
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to complete. The correct result is then available one cycle after the incorrect result for the

same multiplication was captured in the results register. This can even extend to a third

(or fourth) cycle for worst-case carry propagation until an error free result is confirmed.

Meanwhile, the error flag can also be used as a signal to supervisory system for appropriate

handling of the input and output values in each clock cycle. Erroneous cycles must be

marked as stalls in pipelined operations, with the correct result following in the next cycle.

Additionally, the flow of new inputs to the multiplier must be halted corresponding to each

stall.

Figure 5.2: Timing Model Waveforms for Hold Until Completion

5.2 Timing Error Detection

In the discussion in the previous Section we have assumed that a timing error, caused

by a longer carry propagation path in the ripple carry adder than was allowed for in setting

the clock period, can be quickly detected following the capture clock edge. The key to

this capability lies in an important characteristic associated with the propagating carries.

Observe from Fig 5.2 that the latches go into the hold mode and retain the signal values
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at the input of the ripple carry adder on the clock edge that captures a new multiplication

result. This allows the ripple carry adder to continue working on the previous (just captured)

result until the hold is released. In most cases, the outputs of the ripple carry adder stabilize

before the clock edge, and the correct multiplication result is captured in the results register.

Here the outputs of the ripple carry adder (inputs to the results register) do not change even

as the adder is given additional time to operate into the next clock cycle. However, if the

outputs of the ripple carry adder have not stabilized at clock time because of a long carry

propagation path, then they will continue to change after the clock edge. This condition can

be detected by comparing each of the adder output bits with the corresponding bit captured

in the results register at the clock edge a mismatch indicates a timing error. A timing error

detection circuit can therefore be constructed as shown in Figure 5.3.

Figure 5.3: Timing Error Detection Circuitry

Recall that a propagating carry in the carry ripple adder causes a change in the sum

output of every full adder stage it propagates through. This is because the sum is is formed

using EXORs on three inputs, two of which are stable as the carry propagates. Thus if final

stable outputs are not captured on a clock edge, at least on ripple carry adder output can be

expected to change within a full adder delay of the clock edge. (It is impossible for the adder

outputs to show no change over any full adder delay window, but then change with a larger

delay.) This allows the error/computation complete indication in Figure 5.3 to be evaluated
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within a few gate delays of the clock edge, achieving the important requirement of quick

completion confirmation that can allow the hold in the latches to be released without any

performance penalty.

5.3 Fast Comparator to monitor output completion

As mentioned in the previous section in fig 5.3 the key design feature which helps in

detecting the output completion, is the ability to detect any carry which is still propagating

in the RCA one cycle after the inputs are fed into the multiplier design. The fast detection

is primarily due to the full adder logic which reflects any change in its input carry to the

output sum. Hence, by comparing the sum bit of each Full Adder and the data captured at

the end of previous clock cycle, we can flag an error saying that a carry is still alive in the

RCA and that we need to continue holding the input data to the RCA beyond the previous

clock cycle.

One major overhead is as the number of full adders increase the number of comparators

increases and the delay to generate an error signal increases thus, impeding the current clock

cycles computational data at the input of the RCA. In the proposed design the final vector

merger (RCA) has 59 full adders. Besides theXOR gates which flags an error we need to

have all the generated signals from the XOR gate OR’ed Since, the standard cell library

does not support one monolithic OR gate (we use an OR gate to flag an error in case of

any carry propagating in the RCA, since a change in any of the sum output is sufficient

condition to flag an error) the synthesis tool might place several stages or OR logic (5 stages

of 3-input OR gates in the case of our design) thus, delaying the error signal generation by

the number of 3-inputOR gates deduced by the synthesis tool. The following is the verilog

code implemented as one monolithic OR gate.
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\\Verilog Code for Comparator to detect Error

module monolithic_OR(a,b);

input [58:0] a;

output b;

assign \#6 b = |a;

endmodule

Figure 5.4: Implementation of the above verilog code by Mentor Graphics Synthesis tool
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Fig 5.4 shows the comparator implementation of the monolithic OR gate coded in

verliog. As can be seen from the figure 5.4 if each 3-input OR gate is considered to have

a delay of 2-units, the total delay of the entire comparator logic will be 10 units, implying

that the current clock cycles computation is held by the hold signal until the Completion

detection is done. Even thought the overhead is not significant, on an average case there

would be some loss in performance. To address this issue we describe some fast Comparators

present in the literature.

5.3.1 Equality Comparator

Most of the high performance processors use Dynamic logic as comparators which are

robust when compared to the Static CMOS desing but are sensitive to noise and hence,

proper care is to be taken while designing a Dynamic logic by having fixed noise margins.

One such design is shown in fig 5.5

An example of Equality Comparator [15] CMOS 4-bit equality comparator is shown in

Fig. 5.5. In Fig. 5.5, when the CLK is low, Node 1 is precharged to VDD. If A < 0 > and

B< 0 > are both high, then N1 and N2 are on and P1 and P2 are off. Thus, no current path

exists during the evaluation period, and then Node 1 will be kept high. If A< 0 > is high

and B< 0 > is low, then N1 and P2 are on. Thus, a current path is formed between Node

1 and ground through P2 and N1 during the evaluation period. Node 1 will then be pulled

down.

The operation for A < 1 > and B< 1 >, A< 2 > and B< 2 >, and A< 3 > and B< 3 >

is the same. In short, when any pair of A< i > and B< i > is not equal, a current path will

be formed and Node 1 will be low. By contrast, if A< i > is equal to B< i > for all i, Node

1 will keep high.
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Figure 5.5: 4-bit Equality comparator

5.3.2 A Pass Logic Single Stage Comparator

The second dynamic comparator design [16], shown in Figure 5.6, avoids the use of

dominostyle logic altogether.

Figure 5.6: 4-bit Equality comparator

The pass transistor logic shown within the greyed box in Figure 5.6 passes a high logic

level to the gate of the ntransistor Q1 when bits A7 and B7, as well as bits A6 and B6

of the comparands match. The series pulldown structure consisting of the devices Q1, Q2,
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Q3 and Q4 thus conducts when all 8 bits of the comparands are equal. The output of this

comparator, precharged to Vdd by Q0 is thus discharged when all bits of the comparands

are equal and when the evaluate device, Q5, is on. The ntransistors Q6, Q7, Q8 and Q9

discharge any accumulated charges when partial matches occur

Hence, the OR tree structure shown in fig 5.4 for our design can be replaced with the

above dynamic comparator which is both robust and less in hardware implementation, but

as mentioned proper care is to be taken to avoid any noise due to coupling capacitance.
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Chapter 6

Implementation of 32x32 Wallace Multiplier with the proposed BTWC Design

A 32x32 Wallace multiplier with statistical timing was implemented as described in the

earlier Sections with a carry save tree built from 4:2 compressors, and a ripple carry adder

for the final stage. A schematic of the design is shown in Figure 6.1.

Figure 6.1: Illustration of Wallace Multiplier with the Proposed Design

The partial products are generated by performing the AND operation on the appropriate

bits from the multiplicand and the multiplier, resulting in 32 partial products, each 32 bits
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long, arranged as illustrated in Figure 2 for 8x8 multiplication. The carry save tree then

compresses the partial products in 8 stages using 4:2 compressors to two numbers that are

added by the ripple carry adder. As can be observed form the example in Figure 2, some

of the least significant bits of the multiplication result are already available from the carry

save compression and need not be added further. For the 32x32 multiplier, 5 bits are pre-

generated in this manner, requiring a 59 bit ripple carry adder to add the remaining bits.

(Note that the some of the 5 pre-generated bits least significant have very short logic paths

through the carry save tree, and may need to be delayed through buffers to avoid a race

condition at the hold latches.)

The hold block shown represent the latch and hold mechanism that is initiated on each

clock edge, to continue to hold the inputs of the ripple carry adder until the error detection

logic confirms that the correct multiplication result was captured at that clock edge. To

minimize, performance and hardware overhead, this function is actually optimized in our

design as a dynamic signal hold by tri-stating the driving output gates of the carry save tree.

As described in the previous section, detection whether or not the result captured on a

clock edge is in error is achieved by comparing the captured result on a clock edge with the

output of the ripple carry adder driving the results register. Since the inputs of the carry

ripple adder are held stable past the active clock edge for all clock-cycles (until the hold is

released), it can, if needed, continue working on the computation for which an initial result

is captured on the clock edge. A subsequent mismatch between the ripple adder output and

the captured result after the clock edge is an indication that the addition did not complete

within the clock period. In our design an error signal is generated by latching this mismatch

signal (from the EXOR-OR comparator circuit) using a clock appropriately delayed from

the active clock edge. Since a propagating carry in the carry ripple adder causes a change in

the sum output of every full adder stage it propagates through, this delayed clock need only

incorporate the carry to sum output delay of a full adder, plus the comparator delay. In our

design, this is about ten gate delays, allowing for the high fan in of the OR gate. Such fast
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error evaluation/completion detection, allows the tri-state/hold condition at the outputs of

the carry save tree to be removed well before results for the new set of partial products for

the next computation are ready, thereby avoiding any performance penalty from the hold

during an error free cycle.

A 32x32 Wallace multiplier with statistical timing incorporating the hold until comple-

tion detection logic described above was implemented at the RTL level and synthesized and

optimized for timing using Mentor Graphics Spectrum in tsmc180nm technology. The entire

design was then simulated for performance evaluation.
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Chapter 7

Simulation Results and Conclusion

7.1 Simulation Results using TSMC 180nm technology

The timing simulations results shown in Table 1 were obtained using SPICE and tsmc

180nm technology files. The pessimistic worst-case delay of the multiplier without timing

errors was found to be 9.5ns from the Mentor Graphics STA tool. Actual SPICE timing

evaluation using know worst case inputs [5] yielded a delay of 9ns. This extremely rare

worst case delay was not observed in the simulation of 10,000 random inputs in SPICE.

Table I shows the number of timing errors observed for the 10,000 random inputs when

the allowed clock period for multiplication completion is reduced from the worst case 9ns

to a range between 5ns and 3.5ns. It can be observed that as the clock period decreses the

number of errors with a single clock period penalty increase very quickly. This is consistent

with the delay distribution in Figure 4. For yet shorter clock periods, errors that require two

additional clock cycle also begin to grow rapidly. Only 4 out of the 10,000 inputs triggered a

timing error with the clock period set at 5ns, and understandably no case required more than

two clock periods (10ns). 26 errors were triggered with the clock period set at 4ns, with one

case requiring more than two cycles (greater than 8ns)to complete. Column 4 in the Table

shows the effective average time required per multiplication at the corresponding single cycle

clock period. This can be used to select an optimum clock period, which from the table is

3.75ns for our design. At this clock period the average multiplication time is 3.86ns. Finally,

the last column shows the performance improvement over using a worst case clock of 9ns for

all multiplications. This is obtained by dividing 9ns by the average multiplication time in

column 3. At the optimum clock period of 3.75ns, the performance improvement is 2.36X.
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Table 7.1: Spice Simulation Results with Reduced Clock Periods
Error Count

Reduced Clock 10,000 random inputs Average Clock Performance
period ns (one cycle

penalty)
(two cycle
penalty)

Period ns Improvement
(actual clk/avg
clk)

5 4 0 5.002 1.79x
4.5 10 0 4.5045 1.99x
4 26 1 4.015 2.24x
3.85 113 3 3.91 2.3x
3.75 257 13 3.856 2.36x
3.5 1876 47 4.2 2.14x

Direct comparisons of the performance of this new design with other designs in the

literature are difficult to make, even at the same feature sizes, because of differences in

the cell libraries and technology files, particularly the threshold and supply voltages used

in the reported simulations. Nevertheless, the fastest multiplier described in the literature

in comparable 180nm technology reported a simulated multiplication time of 2.85ns. This

design employed a Kogge-Stone fast adder which is extremely expensive in hardware, along

with other enhancements. For the 60-bit final addition required by 32x32 bit multipliers,

the chip area and gate count overhead of the fast adders can be 2-4X when compared to

a ripple carry adder, and this hardware dominates the chip area. Our design as presented

incurs a 35-40% overhead in gate counts, mostly in the comparator used for error detection.

Fortunately comparators, being widely used in many applications, have been extensively

improved and optimized. It should be possible to use fast comparators designs such as those

in [4] to significantly reduce the overhead of the proposed approach to about 20%.

57



7.2 Simulation Results using TSMC 28nm technology

From the simulation results in table 7.1 it is observed that a Multiplier design with a

Carry Save tree and a Ripple Carry Adder as final adder deployed with the proposed better-

than-worst-case design implementation with Hold Until Completion can, on average, achieve

a performance gain of 2.36X. Assuming a similar speed up for the better-than-worst-case

(area optimized) design in 28nm technology, our new multiplier design can achieve a perfor-

mance almost comparable to that of the design optimized for performance as shown in table

7.2. It can be observed that the multiplier design optimized for performance will dissipate

2.5X power and require almost 2.5X area compared to our area optimized better-than-worst-

case design.

Table 7.2: Relative numbers for 28nm Multiplier Design (Performance and Area Optimized)
Multiplier Design Timing (ps) Area (units) Power (Watts)

Optimized for Per-
formance

1 1 1

Optimized for Area
(Traditional Worst
Case Design)

3.07 0.41 0.4

Optimized for
Area (Better Than
Worst Case Design)

1.3 0.41 0.4
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7.3 Conclusion

In this thesis a novel design approach was proposed for exploiting the highly skewed sta-

tistical variation in completion delays observed in low cost Wallace multipliers implemented

with ripple carry adders in the final stage. In the vast majority of cases, such multipliers

complete the computation in well under half the worst case delay, making it possible to

operate them with a 50-60% shorter clock period with fewer than one timing error every

thousand multiplications. To support such operation, we have developed a novel internal

signal hold until completion detection recovery scheme that automatically allows such an

”overclocked” multiplier to steal one or more additional clock periods as needed to trans-

parently complete the infrequent computation that needs additional time. Of course the

overall system, utilizing such a multiplier, must be designed to support and work with this

occasional recovery process. Fortunately, architectural level handing of exceptions through

pipeline stalls and out of order instruction issue are now well understood and commonplace

in processors to handle other forms of speculative execution; our design can be considered

just another speculative implementation.

Achieving comparable deterministic multiplication speed requires very high speed, long

word length, adders in the design which can require 3-4x more gates/area and consume

significantly more power. By reducing the clock period to the point of encountering an

acceptable number of timing errors, our design, like the Razor[3] approach, eliminates the

wasted static (leakage) power during the frequent quiescent intervals observed in traditional

designs that reliably allow for rare worst case signal propagation. This greatly reduces

the average power consumed per multiplication, which is critical in battery powered mobile

applications.
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