Maximum and minimum degree in iterated line graphs

by
Manu Aggarwal
A thesis submitted to the Graduate Faculty of
Auburn University in partial fulfillment of the requirements for the Degree of Master of Science
Auburn, Alabama
August 3, 2013

Keywords: iterated line graphs, maximum degree, minimum degree

Approved by
Dean Hoffman, Professor of Mathematics
Chris Rodger, Professor of Mathematics
Andras Bezdek, Professor of Mathematics
Narendra Govil, Professor of Mathematics

Abstract

In this thesis we analyze two papers, both by Dr.Stephen G. Hartke and Dr.Aparna W. Higginson, on maximum [2] and minimum [3] degrees of a graph G under iterated line graph operations. Let Δ_{k} and δ_{k} denote the minimum and the maximum degrees, respectively, of the $k^{\text {th }}$ iterated line graph $L^{k}(G)$. It is shown that if G is not a path, then, there exist integers A and B such that for all $k>A, \Delta_{k+1}=2 \Delta_{k}-2$ and for all $k>B, \delta_{k+1}=2 \delta_{k}-2$.

Table of Contents

Abstract ii
List of Figures iv
1 Introduction 1
2 An elementary result 3
3 Maximum degree growth in iterated line graphs 10
4 Minimum degree growth in iterated line graphs 26
5 A puzzle 45
Bibliography 46

List of Figures

1.1 1
2.1 4
2.2 : Disappearing vertex of degree two 5
2.3 : Disappearing leaf 7
3.1 11
3.2 12
3.3 13
3.4 14
3.5 15
3.6 : When C_{D} is not a single vertex 17
3.7 : When C_{D} is a single vertex 18
4.1 27
4.2 28
4.3 29
4.4 30
4.5 31
4.6 : When C_{D} is not a single vertex 33
4.7 : When C_{D} is a single vertex 33
4.8 : Path from w_{B} to v_{B} 38
4.9 : Path from w_{B} to v_{B} 39
$4.10: v_{n-1}^{B+1} \in N\left\langle C_{B+1}\right\rangle$ 40
$4.11: v_{n-1}^{B+1} \in C_{B+1}$ 40
4.12 40
4.13 41
4.14 41
4.15 42
4.16 43
4.17 44

Chapter 1

Introduction

The line graph $L(G)$ of a graph G is the graph having edges of G as its vertices, with two vertices being adjacent if and only if the corresponding edges are adjacent in G. Please note that all graphs in this discussion are simple. We restrict our discussion to connected graphs. Refer to [4] for basic definitions of graph theory.

One of the most important resutls in line graphs has been by Beineke, who provides in [1], a new characterization of line graphs in terms of nine excluded subgraphs, also unifying some of the previous characterizations. We provide only the theorem here without the proof.

Figure 1.1

Theorem 1.1. A graph G is a line graph of some graph if and only if none of the nine graphs in Figure 1.1 is an induced subgraph of G.

The iterated line graph is defined recursively as $L^{k}(G)=L\left(L^{k-1}(G)\right)$ where $L^{0}(G)=G$. Let Δ and δ be the maximum and the minimum degree, respectively, of a graph G. We denote the minimum degree of $L^{k}(G)$ by δ_{k} and the maximum degree by Δ_{k}. Hartke and Higgins [2] show that if G is not a path, then, there exists an integer A, such that, $\Delta_{k+1}=2 \Delta_{k}-2$ for all $k>A$. Using similar concepts, they show in [3] that there exists an integer B such that $\delta_{k+1}=2 \delta_{k}-2$ for all $k>B$. Rather than focusing on the vertices of minimum and maximum degrees, they observe the behavior of particular kinds of regular subgraphs, of which, the vertices of maximum and minimum degrees form a special case. However, this proves only the existence and the question of tight bounds of A and B is still open.

We now define some notation which will be used throughout the proofs. Neighborhood of a vertex v, denoted by $N(v)$, is defined as the set of all vertices adjacent to v. Then, if S is a set of vertices of G, we use the following notation:-

1. $N(S)=\bigcup_{v \in S} N(v)$
2. $N[S]=N(S) \cup S$
3. $N\langle S\rangle=N(S) \backslash S$

We would first prove a result in Chapter 2 which was used in [2] and [3] without proof. Then, the result for the maximum degree is proved in Chapter 3 and for the minimum degree is proved in Chapter 4.

Chapter 2

An elementary result

In this chapter we will prove that for most graphs, minimum degree is unbounded under line graph iteration. Notice that, if G is not a path, then δ_{k} is defined for all k. As mentioned in the introduction, all graphs under consideration are simple and we restrict out discussion to connected graphs.

A leaf of a graph is a vertex of degree 1.

Lemma 2.1. If there exists an integer A such that $\delta_{A}>2$, then $\delta_{k}>2$ for all $k>A$. Moreover, δ_{k} is a strictly increasing sequence for all $k \geq A$, and hence $\lim _{k \rightarrow \infty} \delta_{k}=\infty$.

Proof: Clearly, the minimum possible value of δ_{k+1} is $2 \delta_{k}-2$. Now,

$$
\begin{aligned}
\delta_{A} & >2 \\
2 \delta_{A} & >\delta_{A}+2 \\
2 \delta_{A}-2 & >\delta_{A} .
\end{aligned}
$$

But $2 \delta_{A}-2$ is the minimum possible value of δ_{A+1}, hence, $\delta_{A+1}>\delta_{A}$ which implies $\delta_{A+1}>2$. Now, let $\delta_{A+i}>2$ for some i. Then, following similar set of equations, $\delta_{A+i+1}>\delta_{A+i}$ and $\delta_{A+i+1}>2$. It follows inductively that $\delta_{k+1}>\delta_{k}>2$ for all $k>A$ and therefore δ_{k} is a strictly increasing sequence. This also implies that the minimum degree is unbounded under line graph operation.

Lemma 2.2. Let s_{k} be the number of vertices of degree 1 in $L^{k}(G)$. Then, $\left\{s_{k}\right\}$ is nonincreasing.

Proof: Every vertex of degree 1 in a graph $L(G)$ corresponds to an edge in G which is incident with exactly one edge. So, a leaf in $L^{k}(G)$ corresponds to one leaf in $L^{k-1}(G)$. Also, a leaf in G will give a single leaf under the line graph operation.

Lemma 2.3. Let G be a graph which is not a path or a cycle. If $\delta=2$ then $\lim _{k \rightarrow \infty} \delta_{k}=\infty$.
Proof: A vertex of degree 2 in $L(G)$ will correspond to an edge in G which is incident with exactly two edges. It can either be a leaf or an edge in a path or cycle as shown in the

Figure 2.1

Figure 2.1. But as $\delta=2, G$ has no leaf. Hence, we only need to consider vertices of degree 2 in G.

Now, as G is not a path or a cycle, there exists at least one vertex, say v, of degree greater than 2. Also, as $\delta=2, G$ is not a $K_{1,3}$. Let u be a vertex of degree 2 in G. As G is connected, there is a path from u to v, say $P_{0}=\left(u=y_{1}^{0}, y_{2}^{0}, \ldots, y_{n}^{0}=v\right)$, as shown in Figure 2.2. Now, P_{0} induces a path $P_{1}=\left(y_{1}^{1}, y_{2}^{1}, \ldots, y_{n-1}^{1}\right)$ in $L(G)$ where $d_{L(G)}\left(y_{j}^{1}\right) \geq 2$ for $1 \leq j \leq n-2$ and $d_{L(G)}\left(y_{n-1}^{1}\right) \geq 3$. Now, let $P_{i}=\left(y_{1}^{i}, y_{2}^{i}, \ldots, y_{n-i}^{i}\right)$ with $d_{L^{i}(G)}\left(y_{j}^{i}\right) \geq 2$ for $1 \leq j \leq n-i-1$ and $d_{L^{i}(G)}\left(y_{n-i}^{i}\right) \geq 3$. Then P_{i} induces P_{i+1} in $L^{i+1}(G)$ such that $P_{i+1}=\left(y_{1}^{i+1}, y_{2}^{i}+1, \ldots, y_{n-i-1}^{i+1}\right)$.

$d_{L^{n-2}(G)}\left(y_{2}^{n-2}\right) \geq 3$

$$
d_{L^{n-1}(G)}\left(y_{1}^{n-1}\right) \geq 3
$$

Figure 2.2: Disappearing vertex of degree two

Now, for $1 \leq j \leq k-2$,

$$
\begin{aligned}
d_{L^{i}(G)}\left(y_{2}^{i}\right) & \geq 2 \\
d_{L^{i}(G)}\left(y_{2}^{i}\right)+d_{L^{i}(G)}\left(y_{1}^{i}\right) & \geq 2+2 \\
d_{L^{i}(G)}\left(y_{2}^{i}\right)+d_{L^{i}(G)}\left(y_{1}^{i}\right)-2 & \geq 2+2-2 \\
d_{L^{i+1}(G)}\left(y_{1}^{i+1}\right) & \geq 2 .
\end{aligned}
$$

and, for $j=k-1$,

$$
\begin{aligned}
d_{L^{i}(G)}\left(y_{k-1}^{i}\right) & \geq 2 \\
d_{L^{i}(G)}\left(y_{k-1}^{i}\right)+d_{L^{i}(G)}\left(y_{k}^{i}\right) & \geq 2+3 \\
d_{L^{i}(G)}\left(y_{k-1}^{i}\right)+d_{L^{i}(G)}\left(y_{k}^{i}\right)-2 & \geq 2+3-2 \\
d_{L^{i+1}(G)}\left(y_{k-1}^{i+1}\right) & \geq 3 .
\end{aligned}
$$

Also, $\left|P_{i+1}\right|=\left|P_{i}\right|-1$. Applying inductively, $P_{n-1}=\left(y_{1}^{n-1}\right)$ where $d_{L^{n-1}(G)}\left(y_{1}^{n-1}\right) \geq 3$ as shown in Figure 2.2, and we get that every vertex of degree 2 will definitely 'disappear' after $n-1$ line graph iterations. Doing this for every vertex of degree 2, there exists an integer N such that $L^{N}(G)$ has no vertex of degree 2 , hence $\delta_{N} \geq 3$ and we are done from Lemma 2.1.

Lemma 2.4. If G is neither a path, cycle nor a $K_{1,3}$, then the minimum degree is unbounded under line graph iteration and moreover, there exists an integer A such that $\lim _{k \rightarrow \infty} \delta_{k}=\infty$ for all $k>A$.

Proof: From Lemma 2.1 it is sufficient to show that for any graph G, as specified, there exists an integer A such that $\delta_{A}>2$. As G is neither a path, cycle nor a $K_{1,3}$, there exists an edge, say e, such that, $e=x z$ is incident with at least three edges.

Let $\delta(G)=1$. From Lemma 2.2, the number of leaves is a non-increasing sequence over line graph iteration. Moreover, a leaf in $L(G)$ corresponds to exactly one leaf in G. So it would suffice to consider line graph operation on leaves of G and show that it disappears at some iteration.

Let v be incident on a leaf of G such that $d_{G}(v)=1$. Then, as G is connected, there is a path $P_{0}=\left(v=y_{1}^{0}, y_{2}^{0}, \ldots, y_{n-1}^{0}=x, y_{n}^{0}=z\right)$ from v to the edge e such that $d_{G}\left(y_{i}^{0}\right) \geq 2$ for $2 \leq i \leq n-2$, as shown in Figure 2.3. Now, P_{0} induces a path, say P_{1}, in $L(G)$ such that $P_{1}=\left(y_{1}^{1}, y_{2}^{1}, \ldots, y_{n-1}^{1}\right)$ where y_{j}^{1} corresponds to the edge $y_{j}^{0} y_{j+1}^{0} \in E(G)$ for $2 \leq j \leq n-1$, as shown in Figure 2.3. Now, as $x z$ is incident with at least three edges, $d_{G}\left(y_{n-1}^{1}\right) \geq 3$. Also,

Figure 2.3: Disappearing leaf
$d_{L(G)}\left(y_{1}^{1}\right) \geq 1, d_{L(G)}\left(y_{j}^{1}\right) \geq 2$ for $2 \leq j \leq n-2$ and $d_{L(G)}\left(y_{n-1}^{1}\right) \geq 3$, as shown in Figure 2.3. Notice that $\left|P_{1}\right|=\left|P_{0}\right|-1$.

Now, let $P_{i}=\left(y_{1}^{i}, y_{2}^{i}, \ldots, y_{n-i}^{i}\right)$ in $L^{i}(G)$, such that, $d_{L^{i}(G)}\left(y_{1}^{i}\right) \geq 1, d_{L^{i}(G)}\left(y_{j}^{i}\right) \geq 2$ for $2 \leq j \leq$ $n-i-1$ and $d_{L^{i}(G)}\left(y_{n-i}^{i}\right) \geq 3$. Then P_{i} induces a path P_{i+1} in $L^{i+1}(G)$ such that $P_{i+1}=$
$\left(y_{1}^{i+1}, y_{2}^{i+1}, \ldots, y_{n-i-1}^{i+1}\right)$ where y_{j}^{i+1} corresponds to the edge $y_{j}^{i} y_{j+1}^{i}$ in P_{i} for $1 \leq j \leq n-i-1$ as shown in the Figure 2.3.

Now,

$$
\begin{aligned}
d_{L^{i}(G)}\left(y_{2}^{i}\right) & \geq 2 \\
d_{L^{i}(G)}\left(y_{2}^{i}\right)+d_{L^{i}(G)}\left(y_{1}^{i}\right) & \geq 2+1 \\
d_{L^{i}(G)}\left(y_{2}^{i}\right)+d_{L^{i}(G)}\left(y_{1}^{i}\right)-2 & \geq 2+1-2 d_{L^{i+1}(G)}\left(y_{1}^{i+1}\right) \quad \geq 1
\end{aligned}
$$

Also, for $2 \leq j \leq k-2$,

$$
\begin{aligned}
d_{L^{i}(G)}\left(y_{j}^{i}\right) & \geq 2 \\
d_{L^{i}(G)}\left(y_{j}^{i}\right)+d_{L^{i}(G)}\left(y_{j+1}^{i}\right) & \geq 2+2 \\
d_{L^{i}(G)}\left(y_{j}^{i}\right)+d_{L^{i}(G)}\left(y_{j+1}^{i}\right)-2 & \geq 2+2-2 \\
d_{L^{i+1}(G)}\left(y_{j}^{i+1}\right) & \geq 2,
\end{aligned}
$$

and, for $j=k-1$,

$$
\begin{aligned}
d_{L^{i}(G)}\left(y_{k-1}^{i}\right) & \geq 2 \\
d_{L^{i}(G)}\left(y_{k-1}^{i}\right)+d_{L^{i}(G)}\left(y_{k}^{i}\right) & \geq 2+3 \\
d_{L^{i}(G)}\left(y_{k-1}^{i}\right)+d_{L^{i}(G)}\left(y_{k}^{i}\right)-2 & \geq 2+3-2 \\
d_{L^{i+1}(G)}\left(y_{k-1}^{i+1}\right) & \geq 3 .
\end{aligned}
$$

So, $d_{L^{i+1}(G)}\left(y_{1}^{i+1}\right) \geq 1, d_{L^{i+1}(G)}\left(y_{j}^{i+1}\right) \geq 2$ for $2 \leq j \leq k-2$ and $d_{L^{i+1}(G)}\left(y_{k-1}^{i+1}\right) \geq 3$. Also, $\left|P_{i+1}\right|=\left|P_{i}\right|-1$, then, following inductively starting from P_{1} we get that $P_{n-1}=\left(y_{1}^{n-1}\right)$ where $d_{L^{n-1}(G)}\left(y_{1}^{n-1}\right) \geq 2$ as shown in the Figure 2.3. Hence, the number of vertices of degree 1 goes down by one.

Let G have N vertices, say $v_{1}, v_{2}, \ldots, v_{N}$, of degree 1 . Then, for every vertex v_{j} of degree 1 there exists an integer I_{j} such that there is no vertex of degree 1 in $L^{I_{j}}(G)$ corresponding to v_{j}. Then, for the integer $I=\max \left\{I_{j} \mid 1 \leq j \leq N\right\}$, there would be no vertex of degree 1 corresponding to any v_{j}. As there is no other way to get degree 1 vertices under line graph operation, $L^{I}(G)$ will have no vertices of degree 1 . Also, as $L^{k}(G)$ is connected for all k we conclude that $\delta_{I} \geq 2$ and we are done from Lemma 2.1 and Lemma 2.3.

Chapter 3

Maximum degree growth in iterated line graphs

In this chapter it will be shown that for any graph G, which is not a path, there exists an integer D such that $\Delta_{k+1}=2 \Delta_{k}-2$ for all $k>D$, where Δ_{k} is the maximum degree of $L^{k}(G)$.

If G is a path, then as G is a finite graph, there exists an integer I such that $L^{I}(G)$ is undefined.

If G is a cycle, then for all $k \in \mathbb{Z}^{+}, \Delta_{k+1}=2 \Delta_{k}-2=2$.
If G is a $K_{1,3}$, then $L(G)$ is a K_{3} and hence, for all $k>1, \Delta_{k+1}=2 \Delta_{k}-2=2$.
Now we have to prove the theorem for any graph G where it is not a path, a cycle or a $K_{1,3}$.
Definition: A vertex v is a locally maximum vertex or a l.max. vertex if no vertex in the neighborhood of v has degree greater than that of v.

Definition: The subgraph of G induced by its l.max. vertices is called the locally maximum subgraph or l.max. subgraph of G and is denoted by $L M(G)$.

Definition: A vertex $v \in L^{k}(G)$ is generated by a vertex $u \in G$ if there is a sequence of vertices $u=v_{0}, v_{1}, \ldots, v_{k}=v$ such that $v_{i+1} \in L^{i+1}(G)$ corresponds to an edge incident at $v_{i} \in L^{i}(G)$. A subgraph J of $L^{k}(G)$ is generated by a subgraph H of G if, for each vertex $v \in J, v$ is generated by a vertex in H.

Lemma 3.1. All vertices in the same component of $L M(G)$ have the same degree in G.

Proof: Let v and u be two vertices in a component of $L M(G)$. Then v and u are l.max. vertices of the graph G. As $v \in N(u), d(v) \leq d(u)$ from definition. Similarly, as $u \in N(v)$, $d(u) \leq d(v)$. Hence, $d(u)=d(v)$.

Lemma 3.2. The vertices of $L(G)$ corresponding to edges of G incident with the same vertex, say v, of G, form a clique in $L(G)$. In particular, all the vertices of $L M(L(G))$ generated by v are in the same component of $L M(L(G))$.

Proof: It follows from the definition of line graphs that the vertices of $L(G)$, corresponding to the edges of G that share a vertex, will be adjacent to each other.

Lemma 3.3. If w is a l.max. vertex of $L(G)$, then w corresponds to an edge e in G such that at least one end of e, say v, is l.max. in G and the other end of e, say u, has the maximum degree among the neighbors of v in G.

Proof: Assume that neither v nor u is a l.max. vertex. Let $d_{G}(v) \geq d_{G}(u)$. Then, as v is not a l.max. vertex, there exists a vertex $y \in N(v)$ such that $d_{G}(y)>d_{G}(v)$.

Figure 3.1

Now, the edge $v y$ of G corresponds to a vertex $v y$ of $L(G)$, adjacent to w as shown in the Figure 3.1. Also,

$$
d_{G}(v) \geq d_{G}(u) .
$$

But, as $d_{G}(y)>d_{G}(v)$,

$$
\begin{aligned}
& d_{G}(v)+d_{G}(y)-2>d_{G}(u)+d_{G}(v)-2 \\
& d_{L(G)}(v y)>d_{L(G)}(w),
\end{aligned}
$$

contradicting that w is a l.max. vertex of $L(G)$.
Hence, no such y exists, implying that v is a l.max. vertex of G.
Now, let there exist a vertex $z \in N(v)$ such that $d_{G}(z)>d_{G}(u)$.

Figure 3.2

Then the edge $v z$ of G corresponds to a vertex $v z$ adjacent to w in $L(G)$ as shown in the Figure 3.2.

But,

$$
\begin{aligned}
d_{G}(z) & >d_{G}(u) \\
d_{G}(z)+d_{G}(v)-2 & >d_{G}(u)+d_{G}(v)-2 \\
d_{L(G)}(v z) & >d_{L(G)}(w),
\end{aligned}
$$

contradicting that w is a l.max. vertex of $L(G)$. Hence, no such z exists, implying that u has the maximum degree in $N(v)$.

Lemma 3.4. Let v be an isolated vertex of $L M(G)$.
(a) If v has any neighbor of the same degree as that of v, then, v generates no l.max. vertices of $L(G)$.
(b) If all neighbors of v have degree less than that of v, and u is such a neighbor, then the edge uv corresponds to a l.max. vertex of $L(G)$ if and only if u has the maximum degree among the neighbors of v and for all $z \in N(u) \backslash\{v\}, d_{G}(z) \leq d_{G}(v)$.

Proof:

Figure 3.3
(a) As u is not a l.max. vertex of G, there exists a vertex z adjacent to u, such that, $d_{G}(z)>d_{G}(u)=d_{G}(v)$. Then, u and z generate a vertex $u z$ adjacent to w, generated by v and u, as shown in Figure 3.3. Now, $d_{L(G)}(u z)=d_{G}(u)+d_{G}(z)-2>d_{G}(u)+$ $d_{G}(v)-2=d_{L(G)}(w)$, therefore, the edge $v u$ does not correspond to a l.max. vertex of $L(G)$, for any u with $d_{G}(u)=d_{G}(v)$. Hence, by Lemma 3.3, v does not generate a l.max. vertex of $L(G)$.
(b) Let there exist a vertex $z \in N(u) \backslash\{v\}$ such that $d_{G}(z)>d_{G}(v)$. Then the edge $u z$ corresponds to a vertex $u z$ in $L(G)$ adjacent to a vertex w, which corresponds to the edge $u v$ in G, as shown in Figure 3.3. Now, $d_{L(G)}(u z)=d_{G}(u)+d_{G}(z)-2>$ $d_{G}(u)+d_{G}(v)-2=d_{L(G)}(w)$, therefore, w will not be a l.max. vertex.
Now, let, for all $z \in N(u) \backslash\{v\}, d_{G}(z) \leq d_{G}(v)$. Then,

$$
\begin{aligned}
d_{G}(u)+d_{G}(z)-2 & \leq d_{G}(u)+d_{G}(v)-2, \\
d_{L(G)}(u z) & \leq d_{L(G)}(w)
\end{aligned}
$$

where w corresponds to the edge $u v$ of G. Therefore, the edge $u v$ corresponds to a l.max. vertex of $L(G)$.

Moreover, if $u z$ is a l.max. vertex, it would be adjacent to w implying that the number of components will not increase.

Lemma 3.5. Let C be a component of $L M(G)$ which is not a single vertex.
a) If v_{1} and v_{2} are adjacent vertices in C, then the vertex $w \in L(G)$, corresponding to the edge $v_{1} v_{2}$, is a l.max. vertex.
b) If $u \in N\langle C\rangle$, then no edge joining u to a vertex in C corresponds to a l.max. vertex of $L(G)$.

Proof:

Figure 3.4
a) Let $e^{\prime}=v_{1} v_{2}$ be an edge in C. Let $w \in L(G)$ be the vertex corresponding to e^{\prime}. Then, any neighbor x of w will correspond to an edge e, in G, incident at either v_{1} or v_{2}. Let e be incident at v_{1} and some vertex $z \in N\left(v_{1}\right)$, as shown in the Figure 3.4. Then, as v_{1} is a l.max. vertex,

$$
\begin{aligned}
d_{G}(z) & \leq d_{G}\left(v_{1}\right) \\
d_{G}(z)+d_{G}\left(v_{2}\right)-2 & \leq d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)-2
\end{aligned}
$$

From Lemma 3.1, $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)$,

$$
\begin{aligned}
d_{G}(z)+d_{G}\left(v_{1}\right)-2 & \leq d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)-2 \\
d_{L(G)}(x) & \leq d_{L(G)}(w),
\end{aligned}
$$

hence, w is a l.max. vertex.

Figure 3.5
b) As $u \in N\langle C\rangle$, it is adjacent to a vertex, say v_{1}, in C. As C is not a single vertex, there exists a vertex $v_{2} \in C$ adjacent to v_{1}. Let w be the vertex in $L(G)$ corresponding to the edge $v_{1} v_{2}$ and let r be the common degree of vertices in C. Then, $d_{L(G)}(w)=2 r-2$. Now, the edge $u v_{1}$ corresponds to a vertex x adjacent to w in $L(G)$, as shown in the Figure 3.5. Also, $d_{L(G)}(x)=d_{G}(u)+r-2$ and as v_{1} is a l.max. vertex, we get that $d_{G}(u) \leq r$.

If $d_{G}(u)<r$, then,

$$
\begin{aligned}
d_{G}(u)+r-2 & <r+r-2 \\
d_{L(G)}(x) & <d_{L(G)}(w),
\end{aligned}
$$

hence, x can not be a l.max. vertex.
If $d_{G}(u)=r$ then as u is not a l.max. vertex, there exists a vertex $z \in N(u) \backslash\left\{v_{1}\right\}$ such that $d_{G}(z)>d_{G}(u)$. Then, the edge $u z$ corresponds to a vertex y in $L(G)$, adjacent to x as shown in Figure 3.5. Now,

$$
\begin{aligned}
d_{G}(z) & >d_{G}(u) \\
d_{G}(z)+d_{G}(u)-2 & >d_{G}(u)+d_{G}(u)-2 \\
d_{G}(z)+d_{G}(u)-2 & >d_{G}(u)+r-2 \\
d_{L(G)}(y) & >d_{L(G)}(x)
\end{aligned}
$$

and hence, x can not be a l.max. vertex.

Corollary 3.1: It follows from Lemma 3.5 that $L(C)$ is a component of $L M(L(G))$.
Corollary 3.2: If C is a single vertex, then from Lemma 3.4 it generates at most one component of $L M(L(G))$. Otherwise, if C is not a single vertex, then every vertex of C generates a l.max. vertex from Lemma 3.5(a). As the line graph operation preserves connectivity, C will generate at most one component of $L M(L(G))$. Hence, in either case, C generates at most one component.

Lemma 3.6. There exists an integer A such that for all $k>A$, every component of $L M\left(L^{k}(G)\right)$ generates exactly one component of $L M\left(L^{k+1}(G)\right)$.

Proof: Let c_{k} be the number of components of $L M\left(L^{k}(G)\right)$. From Corollary 3.2, $\left\{c_{k}\right\}$ is a non-increasing sequence. But as c_{k} is a non-negative number for all k, there exists an integer A, such that c_{k} is constant for all $k>A$.

We now define new notation which would be followed in the rest of this chapter. Let C_{A+1} be a component of $L M\left(L^{A+1}(G)\right)$ where A is the integer from Lemma 3.6. Inductively, for each $k>A$, let C_{k+1} be the component of $L^{k+1}(G)$ generated by C_{k}. Let r_{k} be the common
degree of vertices in C_{k}. We can further choose A to be sufficiently large so that $\delta_{k}>2$ for all $k>A$ from Lemma 2.1.

Lemma 3.7. Let $u \in N\left\langle C_{D}\right\rangle$ be adjacent to a vertex $v_{D} \in C_{D}$, where D is an integer greater than A. Let $y \in L^{D+1}(G)$ correspond to the edge uv of $L^{D}(G)$, so $y \in N\left[C_{D+1}\right]$.
(a) If C_{D} is not a single vertex, so $y \in N\left\langle C_{D+1}\right\rangle$, and,

$$
r_{D+1}-d_{L^{D+1}(G)}(y)=r_{D}-d_{L^{D}(G)}(u) .
$$

(b) In case C_{D} is a single vertex, then,

$$
r_{D+1}-d_{L^{D+1}(G)}(y)<r_{D}-d_{L^{D}(G)}(u)
$$

Proof:

Figure 3.6: When C_{D} is not a single vertex
(a) From Lemma 3.5(a), if C_{D} has an edge then it generates C_{D+1}, as shown in Figure 3.6, and $r_{D+1}=2 r_{D}-2$.

Also, $d_{L^{D+1}(G)}(y)=d_{L^{D}(G)}(u)+r_{D}-2$. So,

$$
\begin{aligned}
& r_{D+1}-d_{L^{D+1}(G)}(y)=\left(2 r_{D}-2\right)-\left(d_{L^{D}(G)}(u)+r_{D}-2\right) \\
& r_{D+1}-d_{L^{D+1}(G)}(y)=r_{D}-d_{L^{D}(G)}(u) .
\end{aligned}
$$

Figure 3.7: When C_{D} is a single vertex
(b) Suppose $y \in N\left\langle C_{D+1}\right\rangle$. Again, $d_{L^{D+1}(G)}(y)=d_{L^{D}(G)}(u)+r_{D}-2$. Let x be a vertex of largest degree in $N\left(v_{D}\right)$ such that the edge $x v_{D}$ corresponds to a l.max. vertex v_{D+1} in C_{D+1} from Lemma 3.6. Such a vertex x exists from Lemma 3.3 and as C_{D+1} is non-empty, we have,

$$
r_{D+1}=d_{L^{D}(G)}(x)+r_{D}-2
$$

As C_{D} is a single vertex, from Lemma 3.4(a), $d_{L^{D}(G)}(x)<r_{D}$ as C_{D} generates C_{D+1} and hence,

$$
\begin{aligned}
d_{L^{D}(G)}(x)+r_{D}-2 & <r_{D}+r_{D}-2 \\
r_{D+1} & <2 r_{D}-2 \\
r_{D+1}-d_{L^{D+1}(G)}(y) & <\left(2 r_{D}-2\right)-d_{L^{D+1}(G)}(y)
\end{aligned}
$$

But, since $d_{L^{D+1}(G)}(y)=d_{L^{D}(G)}(u)+r_{D}-2$, we have,

$$
\begin{aligned}
& r_{D+1}-d_{L^{D+1}(G)}(y)<\left(2 r_{D}-2\right)-\left(d_{L^{D}(G)}(u)+r_{D}-2\right) \\
& r_{D+1}-d_{L^{D+1}(G)}(y)<r_{D}-d_{L^{D}(G)}(u)
\end{aligned}
$$

Now, suppose $y \in C_{D+1}$. Then $r_{D+1}-d_{L^{D+1}(G)}(y)=0$. Also, as C_{D} is a single vertex, $r_{D}-d_{L^{D}(G)}(u) \neq 0$ as otherwise C_{D} will not generate a component. Hence, $r_{D+1}-d_{L^{D+1}(G)}(y)<r_{D}-d_{L^{D}(G)}(u)$.

Lemma 3.8. If $u \in N\left\langle C_{k}\right\rangle$ then u generates a vertex $y \in N\left[C_{k+1}\right]$.

Proof: As $u \in N\left\langle C_{k}\right\rangle, u$ is adjacent to a vertex $v \in C_{k}$. Let the edge $u v$ correspond to the vertex $y \in L^{k+1}(G)$. If C_{k} has an edge, from Lemma 3.5(a) v generates a vertex in C_{k+1}. Also, if $C_{k}=\{v\}$, as $k>A, v$ generates every vertex in C_{k+1}. So, there exists a vertex $w \in C_{k+1}$ generated by v. Now, the edges in $L^{k}(G)$ corresponding to y and w, are incident at the vertex v. Hence, y is adjacent to the vertex w in $L^{k+1}(G)$, implying that, if y is a l.max. vertex then $y \in C_{k+1}$ or else $y \in N\left\langle C_{k+1}\right\rangle$.

Let $N\left\langle C_{B}\right\rangle=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Then from Lemma 3.8, for every $1 \leq j \leq n, u_{j}$ generates a vertex, say y_{j}^{1}, in $N\left[C_{B+1}\right]$.

Now, if y_{j}^{i} is a vertex in $N\left\langle C_{B+i}\right\rangle$, then from Lemma 3.8, it generates a vertex, say y_{j}^{i+1}, in $N\left[C_{B+i+1}\right]$. Otherwise, if y_{j}^{i} is a vertex in C_{B+i}, then from Lemma 3.5(a), it generates a vertex, say y_{j}^{i+1}, in C_{B+i+1}. It follows inductively that u_{j} generates a sequence of vertices $\left(u_{j}=y_{j}^{0}, y_{j}^{1}, y_{j}^{2}, y_{j}^{3}, \ldots\right)$ where $y_{j}^{i} \in N\left[C_{B+i}\right]$ and, moreover, $y_{j}^{i} \in C_{B+i}$ for all $i>I$ if $y_{j}^{I} \in C_{B+I}$ for some integer I.

Then we define a function $f\left(u_{j}, i\right): N\left\langle C_{B}\right\rangle \rightarrow \mathbb{R}$ by $f\left(u_{j}, i\right)=r_{B+i}-d_{L^{B+i}(G)}\left(y_{j}^{i}\right)$ where $i \in \mathbb{Z}^{+}$. Clearly $f\left(u_{j}, i\right)$ is non-negative and from Lemma 3.7 it is a non-increasing function of i. Also, if C_{B+i} is a single vertex and $y_{j}^{i} \in N\left\langle C_{B+i}\right\rangle$, then, from Lemma 3.4(a), $f\left(u_{j}, i\right)$ can not equal to zero because otherwise C_{B+i} will not generate a component.

Theorem 3.1. Let G be a simple connected graph. Let C_{A} be a component of $L M\left(L^{A}(G)\right)$. Then, there are a finite number of integers $k>A$, such that C_{k}, generated by C_{A}, is a single vertex.

Proof: The proof is by contradiction. Let us assume that there are an infinite number of integers $k>A$ such that C_{k} is a single vertex. Then we prove the following series of lemmas.

Lemma 3.9. If $u_{1} \in N\left\langle C_{B}\right\rangle$ generates $\left(y_{1}^{0}, y_{1}^{1}, y_{1}^{2}, y_{1}^{3}, \ldots\right)$, then there exists an integer I such that $y_{1}^{I} \in C_{B+I}$.

Proof: We prove this by contradiction. Let $y_{1}^{i} \in N\left\langle C_{B+i}\right\rangle$ for all i. The function $f\left(u_{1}, i\right)$ is non-increasing and decreases when C_{B+i} is a single vertex. As there are infinite number of integers $k>A$ such that C_{k} is a single vertex, there are infinite integers i such that C_{B+i} is a single vertex as $B>A$. Hence, from Lemma 3.7(b) there exists an integer $D>B$ such that $f\left(u_{1}, D-B\right)=0$.

Now, if C_{D} is a single vertex, then as $y_{1}^{i} \in N\left\langle C_{B+i}\right\rangle$ for all i, it follows that $f\left(u_{1}, D-B\right)$ can not be zero and we have a contradiction. Otherwise, if C_{D} has an edge, then let E be the smallest integer greater than D such that C_{E} is a single vertex. From Lemma 3.7(a), $f\left(u_{1}, E-B\right)=f\left(u_{1}, D-B\right)=0$, and we again have a contradiction.

Lemma 3.10. If $u_{1} \in N\left\langle C_{B}\right\rangle$ then there exists an integer $D \geq B$ such that u_{1} generates $y_{1}^{D-B} \in N\left\langle C_{D}\right\rangle$ where C_{D} is a single vertex and $d_{L^{D}(G)}\left(y_{1}^{D-B}\right)$ is maximum in $N\left\langle C_{D}\right\rangle$.

Proof: From Lemma 3.9 there exists an integer I such that u_{1} generates $y_{1}^{I} \in C_{B+I}$. Let I be the smallest such integer. Hence, $y_{1}^{I-1} \in N\left\langle C_{B+I-1}\right\rangle$. From Lemma 3.5, if C_{B+I-1} has an edge then y_{1}^{I-1} cannot generate a vertex in C_{B+I}. Hence, C_{B+I-1} is a single vertex. Also, from Lemma 3.3, $d_{L^{B+I-1}(G)}\left(y_{1}^{I-1}\right)$ is maximum in $N\left\langle C_{B+I-1}\right\rangle$.

Lemma 3.11. If $u_{1} \in N\left\langle C_{B}\right\rangle$ where C_{B} is not a single vertex, then, $d_{L^{B}(G)}\left(u_{1}\right) \neq r_{B}$.

Proof: Assume that $d_{L^{B}(G)}\left(u_{1}\right)=r_{B}$ and hence, $f\left(u_{1}, 0\right)=0$. But as $f\left(u_{i}, j\right)$ is nonnegative and non-increasing, $f\left(u_{1}, j\right)=0$ for all j. But, from Lemma 3.10, there exists an integer $D \geq B$ such that u_{1} generates $y_{1}^{D-B} \in N\left\langle C_{D}\right\rangle$ where C_{D} is a single vertex with $f\left(u_{1}, D-B\right)=0$, which is a contradiction.

Corollary 3.3. From Lemma 3.4(a) and Lemma 3.11, if $u \in N\left\langle C_{k}\right\rangle$ then $d_{L^{k}(G)}\left(u_{1}\right) \neq r_{k}$.

Lemma 3.12. Let $C_{B}=\left\{v_{B}\right\}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be vertices of equal degree in $N\left\langle C_{B}\right\rangle$ such that $d_{L^{B}(G)}\left(u_{i}\right)$ is maximum in $N\left\langle C_{B}\right\rangle$. Then, u_{i} generates a vertex $v_{i} \in C_{B+1}$ for all $1 \leq i \leq n$. Moreover, $u_{1}, u_{2}, \ldots, u_{n}$ generate l.max. vertices which induce a complete subgraph in C_{B+1}.

Proof: As C_{B} generates C_{B+1}, from Lemma 3.3 there exists an integer $I \in[1, n]$ such that u_{I} generates a vertex $v_{B+1} \in C_{B+1}$. Let there be some $J \neq I$ such that u_{J} does not generate any vertex in C_{B+1}. Then, from Lemma 3.8, u_{J} generates a vertex, say u, in $N\left\langle C_{B+1}\right\rangle$. Now, $r_{B+1}=d_{L^{B+1}(G)}\left(v_{B+1}\right)=d_{L^{B}(G)}\left(u_{I}\right)+r_{B}-2=d_{L^{B}(G)}\left(u_{J}\right)+r_{B}-2=d_{L^{B+1}(G)}(u)$ which is a contradiction from Corollary 3.3 and hence no such J exists.

So, all $u_{1}, u_{2}, \ldots, u_{n}$ generate l.max. vertices, say $v_{1}, v_{2}, \ldots, v_{n}$, in C_{B+1} such that v_{i} corresponds to the edge $u_{i} v_{B}$ in $L^{B}(G)$. As all the corresponding edges share the vertex v_{B}, the vertices $v_{1}, v_{2}, \ldots, v_{n}$ induce a complete subgraph.

Lemma 3.13. Let $u_{1}, u_{2} \in N\left\langle C_{B}\right\rangle$ with $d_{L^{B}(G)}\left(u_{1}\right)=d_{L^{B}(G)}\left(u_{2}\right)$. Furthermore, let u_{1} generate the sequence $\left(u_{1}=y_{1}^{0}, y_{1}^{1}, y_{1}^{2}, y_{1}^{3}, \ldots.\right)$ and u_{2} generate the sequence $\left(u_{2}=y_{2}^{0}, y_{2}^{1}, y_{2}^{2}, y_{2}^{3}, \ldots\right.$). Then, $d_{L^{B+i}(G)}\left(y_{1}^{i}\right)=d_{L^{B+i}(G)}\left(y_{2}^{i}\right)$ for all $i \in \mathbb{Z}^{+}$and either $y_{1}^{i}, y_{2}^{i} \in C_{B+i}$ or $y_{1}^{i}, y_{2}^{i} \in N\left\langle C_{B+i}\right\rangle$.

Proof: For $i=1$,

$$
\begin{aligned}
d_{L^{B+1}(G)}\left(y_{1}^{1}\right) & =d_{L^{B}(G)}\left(u_{1}\right)+r_{B}-2 \\
& =d_{L^{B}(G)}\left(u_{2}\right)+r_{B}-2 \\
& =d_{L^{B+1}(G)}\left(y_{2}^{1}\right) .
\end{aligned}
$$

If C_{B} has an edge, then $y_{1}^{1}, y_{2}^{1} \in N\left\langle C_{B+1}\right\rangle$ from Lemma 3.5(b) as $u_{1}, u_{2} \in N\left\langle C_{B}\right\rangle$, otherwise, C_{B} is a single vertex. If $d_{L^{B}(G)}\left(u_{1}\right)=d_{L^{B}(G)}\left(u_{2}\right)$ is maximum in $N\left\langle C_{B}\right\rangle$, then $y_{1}^{1}, y_{2}^{1} \in C_{B+1}$ from Lemma 3.12. On the other hand, if $d_{L^{B}(G)}\left(u_{1}\right)=d_{L^{B}(G)}\left(u_{2}\right)$ is not maximum in $N\left\langle C_{B}\right\rangle$, then $y_{1}^{1}, y_{2}^{1} \in N\left\langle C_{B+1}\right\rangle$.

Let, for $i=n, d_{L^{B+n}(G)}\left(y_{1}^{n}\right)=d_{L^{B+n}(G)}\left(y_{2}^{n}\right)$ and either $y_{1}^{n}, y_{2}^{n} \in C_{B+n}$ or $y_{1}^{n}, y_{2}^{n} \in N\left\langle C_{B+n}\right\rangle$.
Now, if $y_{1}^{n}, y_{2}^{n} \in C_{B+n}$ then from Lemma 3.5(a), $y_{1}^{n+1}, y_{2}^{n+1} \in C_{B+n+1}$ and $d_{L^{B+n+1}(G)}\left(y_{1}^{n+1}\right)=$ $d_{L^{B+n+1}(G)}\left(y_{2}^{n+1}\right)=r_{B+n+1}$.

Otherwise $y_{1}^{n}, y_{2}^{n} \in N\left\langle C_{B+n}\right\rangle$. If C_{B+n} has an edge, from Lemma 3.5(b) we get that
$y_{1}^{n+1}, y_{2}^{n+1} \in N\left\langle C_{B+n+1}\right\rangle$. Then,

$$
\begin{aligned}
d_{L^{B+n+1}(G)}\left(y_{1}^{n+1}\right) & =d_{L^{B+n}(G)}\left(y_{1}^{n}\right)+r_{B+n}-2 \\
& =d_{L^{B+n}(G)}\left(y_{2}^{n}\right)+r_{B+n}-2 \\
& =d_{L^{B+n+1}(G)}\left(y_{2}^{n+1}\right) .
\end{aligned}
$$

But, if $y_{1}^{n}, y_{2}^{n} \in N\left\langle C_{B+n}\right\rangle$ and C_{B+n} is a single vertex, then, if $d_{L^{B+n}(G)}\left(y_{1}^{n}\right)=d_{L^{B+n}(G)}\left(y_{2}^{n}\right)$ is maximum in $N\left\langle C_{B+n}\right\rangle$, and then from Lemma 3.12, y_{1}^{n} and y_{2}^{n} generate y_{1}^{n+1} and y_{2}^{n+1}, respectively, in C_{B+n+1}. Else, if $d_{L^{B+n}(G)}\left(y_{1}^{n}\right)=d_{L^{B+n}(G)}\left(y_{2}^{n}\right)$ is not maximum in $N\left\langle C_{B+n}\right\rangle$, then from Lemma 3.3, y_{1}^{n+1} and y_{2}^{n+1} are in $N\left\langle C_{B+n+1}\right\rangle$ and $d_{L^{B+n+1}(G)}\left(y_{1}^{n+1}\right)=d_{L^{B+n}(G)}\left(y_{1}^{n}\right)+$ $r_{B+n}-2=d_{L^{B+n}(G)}\left(y_{2}^{n}\right)+r_{B+n}-2=d_{L^{B+n+1}(G)}\left(y_{2}^{n+1}\right)$.

Lemma 3.14. If $u_{1}, u_{2}, \ldots, u_{n} \in N\left\langle C_{B}\right\rangle$ with $d_{L^{B}(G)}\left(u_{i}\right)=d_{L^{B}(G)}\left(u_{j}\right)$, then there exists an integer $E>B$ such that $u_{1}, u_{2}, \ldots, u_{n}$ generate vertices $y_{1}^{E-B}, y_{2}^{E-B}, \ldots, y_{n}^{E-B} \in C_{E}$ which form a clique.

Proof: From Lemma 3.10 and Lemma 3.13, there exists an integer $D \geq B$ such that u_{j} generates $y_{j}^{D-B} \in N\left\langle C_{D}\right\rangle, 1 \leq j \leq n$, where C_{D} is a single vertex, say v_{D}, and $d_{L^{D}(G)}\left(y_{j}^{D-B}\right)$ is maximum in $N\left\langle C_{D}\right\rangle$. Then, from Lemma $3.12, y_{j}^{D-B}$ for $1 \leq j \leq n$ induce a complete subgraph in C_{D+1}.

Lemma 3.15. There exists an integer $E>A$ such that C_{E-1} has exactly one edge.
Proof: Pick an integer $B>A$ such that $C_{B}=\left\{v_{B}\right\}$. Such an integer exists from our assumption that there are infinite integers $k>A$ where C_{k} is a single vertex. Then, as
$\delta_{A}>2$, we have, from Lemma 2.1,

$$
\begin{aligned}
& \delta_{B}>2 \\
&-\delta_{B}<-2 \\
& r_{B}-\delta_{B}+1<r_{B}-2+1 \\
& r_{B}-\delta_{k}+1<r_{B}
\end{aligned}
$$

Now, there are r_{B} neighbors of v_{B} with $r_{B}-\delta_{B}+1$ possible unique degrees. Hence, by Pigeonhole principle, there exists at least two vertices $u_{1}, u_{2} \in N\left\langle C_{B}\right\rangle$ such that $d_{L^{B}(G)}\left(u_{1}\right)=$ $d_{L^{B}(G)}\left(u_{2}\right)$. Then from Lemma 3.14, u_{1}, u_{2} will induce an edge in C_{D} for some $D>B$. But, as there are infinite integers such that C_{k} is a single vertex, there exists an integer $E>D$ such that C_{E} is a single vertex. Let E be the smallest such integer. Then, C_{E-1} will have exactly one edge and the lemma is proved.

Lemma 3.16. There exists an integer E such that $C_{E}=\left\{v_{E}\right\}$ and there are three vertices $u_{1}, u_{2}, u_{3} \in N\left\langle C_{E}\right\rangle$ with equal degree.

Proof: Let δ_{k}^{\prime} denote the minimum degree in $N\left\langle C_{k}\right\rangle$. Then,

$$
\delta_{k}^{\prime}=\delta_{k-1}^{\prime}+r_{k-1}-2
$$

Now, pick an integer B such that C_{B} has exactly one edge. Such an integer exists from Lemma 3.15. Then, $r_{B+1}=2 r_{B}-2$ from Lemma 3.5(a). But,

$$
\begin{aligned}
\delta_{B}^{\prime} & >2 \\
\delta_{B}^{\prime}+r_{B}-1 & >2+r_{B}-1 \\
r_{B}-1 & >2+r_{B}-1-\delta_{B}^{\prime} \\
r_{B}-1 & >2+2 r_{B}-1-r_{B}-\delta_{B}^{\prime}+2-2 \\
r_{B}-1 & >\left(2 r_{B}-2\right)-\left(r_{B}+\delta_{B}^{\prime}-2\right)+1 \\
r_{B}-1 & >r_{B+1}-\delta_{B+1}^{\prime}+1 \\
2 r_{B}-2 & >2\left(r_{B+1}-\delta_{B+1}^{\prime}+1\right) \\
r_{B+1} & >2\left(r_{B+1}-\delta_{B+1}^{\prime}+1\right)
\end{aligned}
$$

Now, r_{B+1} is the number of neighbors of v_{B+1} and as v_{B+1} is a l.max. vertex, we have that $\left(r_{B+1}-\delta_{B+1}^{\prime}+1\right)$ is the number of possible unique values of degree of a neighbor of v_{B+1}. Also, because C_{B} has exactly one edge, $C_{B+1}=\left\{v_{B+1}\right\}$, and therefore, from Pigeonhole principle, there exist at least three vertices of equal degree in $N\left\langle C_{B+1}\right\rangle$.

Continuing rest of the proof of Theorem 3.1:
Now, from Lemma 3.16 and Lemma 3.14, there exists an integer $F>E$ such that C_{F} contains a K_{3}. Hence, from Lemma 3.5(a), C_{k} contains K_{3} all $k>F$ which contradicts that there are infinite number of integers $k>A$ such that C_{k} is a single vertex. Hence, there are finite values of $k>A$ where C_{k} is a single vertex and there exists an integer I, such that C_{I+i}, generated by C_{k}, has at least one edge, for all i.

So, from Theorem 3.1, for each component C_{B}^{j} of $L M\left(L_{B}(G)\right)$ where $B>A$, there exists an integer $I_{j}>B$ such that $C_{I_{j}+i}^{j}$ generated by C_{B}^{j} has at least one edge for all i. Suppose $L M\left(L^{B}(G)\right)$ has N components. Using this reasoning for all components $C_{B}^{j}, 1 \leq j \leq$ N, there exists an integer $D=\max \left\{I_{j} \mid 1 \leq j \leq N\right\}$, such that every component of $L M\left(L^{D+i}(G)\right)$ has at least one edge for all i.

Clearly, the vertices of maximum degree of any graph G are also l.max. vertices and hence are components of $L M(G)$. But every component of $L M\left(L^{D+i}\right)$ has edges for all i, hence, every vertex of maximum degree is adjacent to at least one vertex of maximum degree, and so, $\Delta_{k}=2 \Delta_{k-1}-2$ for all $k>D$.

Chapter 4

Minimum degree growth in iterated line graphs

In this chapter it will be shown that for any graph G, which is not a path, there exists an integer D such that $\delta_{k+1}=2 \delta_{k}-2$ for all $k>D$, where δ_{k} is the minimum degree of $L^{k}(G)$.

Note that, most of the lemmas for this proof parallel the lemmas, proved in Chapter 3, with the inequalities reversed. However, a different line of reasoning is used in the second half of the proof to contradict a theorem similar to Theorem 3.1. If G is a path, then as G is a finite graph, there exists an integer I such that $L^{I}(G)$ is undefined.

If G is a cycle, then for all $k \in \mathbb{Z}^{+}, \delta_{k+1}=2 \delta_{k}-2=2$.
If G is a $K_{1,3}$, then $L(G)$ is a K_{3} and hence, for all $k>1, \delta_{k+1}=2 \delta_{k}-2=2$.
Now we have to prove the theorem for any graph G where it is not a path, a cycle or a $K_{1,3}$. Definition: A vertex v is a locally minimum vertex or a l.min. vertex if no vertex in the neighborhood of v has degree smaller than that of v.

Definition: The subgraph of G induced by its l.min. vertices is called the locally minimum subgraph or l.min. subgraph of G and is denoted by $\operatorname{lm}(G)$.

Lemma 4.1. All vertices in the same component of $\operatorname{lm}(G)$ have the same degree in G.

Proof: Let v and u be two vertices in a component of $\operatorname{lm}(G)$. Then v and u are l.min. vertices of the graph G. As $v \in N(u), d(v) \geq d(u)$ from definition. Similarly, as $u \in N(v)$, $d(u) \geq d(v)$. Hence, $d(u)=d(v)$.

Lemma 4.2. If w is a l.min. vertex of $L(G)$, then w corresponds to an edge e in G such that at least one end of e, say v, is l.min. in G and the other end of e, say u, has the smallest degree among the neighbors of v in G.

Proof: Assume that neither v nor u is a l.min. vertex. Let $d_{G}(v) \leq d_{G}(u)$. Then, as v is not a l.min. vertex, there exists a vertex $y \in N(v)$ such that $d_{G}(y)<d_{G}(v)$.

Figure 4.1

Now, the edge $v y$ of G corresponds to the vertex $v y$ of $L(G)$, adjacent to w, as shown in the Figure 4.1. Also,

$$
d_{G}(v) \leq d_{G}(u)
$$

But, as $d_{G}(y)<d_{G}(v)$,

$$
\begin{gathered}
d_{G}(v)+d_{G}(y)-2<d_{G}(u)+d_{G}(v)-2, \\
d_{L(G)}(v y)<d_{L(G)}(w),
\end{gathered}
$$

contradicting that w is a l.min. vertex of $L(G)$, hence, no such y exists, implying that v is a l.min. vertex of G.

Now, let there exist a vertex $z \in N(v)$ such that $d_{G}(z)<d_{G}(u)$.

Then the edge $v z$ of G corresponds to the vertex $v z$ adjacent to w in $L(G)$, as shown

Figure 4.2
in the Figure 4.2.

But,

$$
\begin{aligned}
d_{G}(z) & <d_{G}(u) \\
d_{G}(z)+d_{G}(v)-2 & <d_{G}(u)+d_{G}(v)-2 \\
d_{L(G)}(v z) & <d_{L(G)}(w),
\end{aligned}
$$

contradicting that w is a l.min. vertex of $L(G)$. Hence, no such z exists, implying that u has the minimum degree in $N(v)$.

Lemma 4.3. Let v be an isolated vertex of $L M(G)$.
(a) If v has any neighbor of the same degree as that of v, then, v generates no l.min. vertices of $L(G)$.
(b) If all neighbors of v have degree greater than that of v, and u is such a neighbor, then the edge uv corresponds to a l.min. vertex of $L(G)$ if and only if u has the minimum degree among the neighbors of v, and for all $z \in N(u) \backslash\{v\}, d_{G}(z) \geq d_{G}(v)$.

Proof:
(a) Let u be a neighbor of v such that $d_{G}(u)=d_{G}(v)$. As u is not a l.min. vertex of G, there exists a vertex z adjacent to u, such that, $d_{G}(z)<d_{G}(u)=d_{G}(v)$. Then,

Figure 4.3
the edge $u z$ of G corresponds to a vertex $u z$ in $L(G)$, adjacent to a vertex w, which in turn corresponds to the edge $u v$ of G, as shown in Figure 4.3. Now, $d_{L(G)}(u z)=$ $d_{G}(u)+d_{G}(z)-2<d_{G}(u)+d_{G}(v)-2=d_{L(G)}(w)$.

So, the edge $u v$ cannot correspond to a l.min. vertex of $L(G)$ for any u with $d_{G}(u)=$ $d_{G}(v)$. Hence, by Lemma 4.2, v does not generate a l.min. vertex in $L(G)$.
(b) Let there exist a vertex $z \in N(u) \backslash\{v\}$ such that $d_{G}(z)<d_{G}(v)$. Then, the edge $u z$ corresponds to a vertex $u z$ in $L(G)$ which is adjacent to a vertex w, which in turn corresponds to the edge $v u$ of G, as shown in Figure 4.3. Now, $d_{L(G)}(u z)=$ $d_{G}(u)+d_{G}(z)-2<d_{G}(u)+d_{G}(v)-2=d_{L(G)}(w)$.

Therefore, the edge $u v$ will not correspond to a l.min. vertex of $L(G)$. Now, let, for all $z \in N(u) \backslash\{v\}, d_{G}(z) \geq d_{G}(v)$. Then,

$$
\begin{aligned}
d_{G}(u)+d_{G}(z)-2 & \geq d_{G}(u)+d_{G}(v)-2 \\
d_{L(G)}(u z) & \geq d_{L(G)}(w),
\end{aligned}
$$

where w corresponds to the edge $v u$. Therefore, w would be a l.min. vertex.
Moreover, if $u z$ is a l.min. vertex, it would be adjacent to w implying that the number of components will not increase.

Lemma 4.4. Let C be a component of $\operatorname{lm}(G)$ which is not a single vertex.
a) If v_{1} and v_{2} are adjacent vertices in C, then the vertex $w \in L(G)$, corresponding to the edge $v_{1} v_{2}$, is a l.min. vertex.
b) If $u \in N\langle C\rangle$, then no edge joining u to a vertex in C corresponds to a l.min. vertex of $L(G)$.

Proof:

Figure 4.4
a) Let v_{1}, v_{2} be two vertices of G such that $e^{\prime}=v_{1} v_{2}$ is an edge in C. Let $w \in L(G)$ be the vertex corresponding to e^{\prime}. Then, any neighbor x of w will correspond to an edge e, in G, incident at either v_{1} or v_{2}. Let e be incident at v_{1} and some vertex $z \in N\left(v_{1}\right)$ as shown in the Figure 4.4. Then, as v_{1} is a l.min. vertex,

$$
\begin{aligned}
d_{G}(z) & \geq d_{G}\left(v_{1}\right), \\
d_{G}(z)+d_{G}\left(v_{2}\right)-2 & \geq d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)-2 .
\end{aligned}
$$

From Lemma 4.1, $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)$,

$$
\begin{aligned}
d_{G}(z)+d_{G}\left(v_{1}\right)-2 & \geq d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)-2, \\
d_{L(G)}(x) & \geq d_{L(G)}(w) .
\end{aligned}
$$

Hence, w is a l.min. vertex.

Figure 4.5
b) As $u \in N\langle C\rangle$, it is adjacent to a vertex, say v_{1}, in C. As C is not a single vertex, there exists a vertex $v_{2} \in C$ adjacent to v_{1}. Let w be the vertex in $L(G)$ corresponding to the edge $v_{1} v_{2}$ and let r be the common degree of vertices in C. Then, $d_{L(G)}(w)=2 r-2$. Now, the edge $u v_{1}$ corresponds to a vertex x adjacent to w, as shown in Figure 4.5. Also, $d_{L(G)}(x)=d_{G}(u)+r-2$ and as v_{1} is a l.min. vertex, we get that $d_{G}(u) \geq r$. If $d_{G}(u)>r$, then,

$$
\begin{aligned}
d_{G}(u)+r-2 & >r+r-2, \\
d_{L(G)}(x) & >d_{L(G)}(w),
\end{aligned}
$$

and x can not be a l.min. vertex.
Otherwise, $d_{G}(u)=r$. But as u is not a l.min. vertex, there exists a vertex $z \in$ $N(u) \backslash\left\{v_{1}\right\}$ such that $d_{G}(z)<d_{G}(u)$. Then, the edge $u z$ of G corresponds to a vertex y adjacent to x, as shown in Figure 4.5. Now,

$$
\begin{aligned}
& d_{G}(z)<d_{G}(u), \\
& d_{G}(z)+d_{G}(u)-2<d_{G}(u)+d_{G}(u)-2, \\
& d_{G}(z)+d_{G}(u)-2<d_{G}(u)+r-2, \\
& d_{L(G)}(y)<d_{L(G)}(x),
\end{aligned}
$$

and hence, x can not be a l.min. vertex.

Corollary 4.1: It follows from Lemma 4.4 that $L(C)$ is a component of $\operatorname{lm}(L(G))$.
Corollary 4.2: If C is a single vertex, then from Lemma 4.3 it generates at most one component of $\operatorname{lm}(L(G))$. Otherwise, if C is not a single vertex, every vertex of C generates a l.min. vertex from Lemma 4.4(a). As the line graph operation preserves connectivity, C will generate at most one component of $\operatorname{lm}(L(G))$. Hence, in either case, C generates at most one component.

Lemma 4.5. There exists an integer A such that for all $k>A$, every component of $\operatorname{lm}\left(L^{k}(G)\right)$ generates exactly one component of $\operatorname{lm}\left(L^{k+1}(G)\right)$.

Proof: Let c_{k} be the number of components of $\operatorname{lm}\left(L^{k}(G)\right)$. From Corollary 4.2, $\left\{c_{k}\right\}$ is a non-increasing sequence. But as c_{k} is a non-negative number for every k, there exists an integer A, such that c_{k} is constant for all $k>A$.

We now define new notation which would be followed in the rest of this chapter. Let C_{A+1} be a component of $\operatorname{lm}\left(L^{A+1}(G)\right)$ where A is the integer from Lemma 4.5. Inductively, for each $k>A$, let C_{k+1} be the component of $L^{k+1}(G)$ generated by C_{k}. Let r_{k} be the common degree of vertices in C_{k}. We can further choose A to be sufficiently large so that $\delta_{k}>2$ for all $k>A$, from Lemma 2.1.

Lemma 4.6. Let $u \in N\left\langle C_{D}\right\rangle$ be adjacent to a vertex $v \in C_{D}$, where D is an integer greater than A. Further, let $y \in L^{D+1}(G)$ correspond to the edge $u v$ of $L^{D}(G)$, so $y \in N\left[C_{D+1}\right]$. Then the following holds.
(a) If C_{D} is not a single vertex, then

$$
d_{L^{D+1}(G)}(y)-r_{D+1}=d_{L^{D}(G)}(u)-r_{D}
$$

(b) Otherwise, if C_{D} is a single vertex, then,

$$
d_{L^{D+1}(G)}(y)-r_{D+1}<d_{L^{D}(G)}(u)-r_{D}
$$

Proof:

Figure 4.6: When C_{D} is not a single vertex
(a) From Lemma 4.4(a), if C_{D} has an edge then it generates C_{D+1}, as shown in Figure 4.6, and $r_{D+1}=2 r_{D}-2$.

Also, $d_{L^{D+1}(G)}(y)=d_{L^{D}(G)}(u)+r_{D}-2$. So,

$$
\begin{aligned}
& d_{L^{D+1}(G)}(y)-r_{D+1}=\left(d_{L^{D}(G)}(u)+r_{D}-2\right)-\left(2 r_{D}-2\right) \\
& d_{L^{D+1}(G)}(y)-r_{D+1}=d_{L^{D}(G)}(u)-r_{D} .
\end{aligned}
$$

$L^{D}(G)$

$$
L^{D+1}(G)
$$

Figure 4.7: When C_{D} is a single vertex
(b) Suppose $y \in N\left\langle C_{D+1}\right\rangle$. Again, $d_{L^{D+1}(G)}(y)=d_{L^{D}(G)}(u)+r_{D}-2$. Let x be a vertex of smallest degree in $N\left(v_{D}\right)$ such that the edge $x v_{D}$ corresponds to a l.min. vertex, say
v_{D+1}, in C_{D+1} from Lemma 4.5. Such a vertex x exists from Lemma 4.2 and because C_{D+1} is non-empty. Then,

$$
r_{D+1}=d_{L^{D}(G)}(x)+r_{D}-2 .
$$

Since C_{D} is a single vertex, hence from Lemma 4.3(a), $d_{L^{D}(G)}(x)>r_{D}$ as C_{D} generates C_{D+1}. So,

$$
\begin{aligned}
& d_{L^{D}(G)}(x)+r_{D}-2>r_{D}+r_{D}-2, \\
& r_{D+1}>>2 r_{D}-2, \\
& r_{D+1}-d_{L^{D+1}(G)}(y)>\left(2 r_{D}-2\right)-d_{L^{D+1}(G)}(y)
\end{aligned}
$$

But, $d_{L^{D+1}(G)}(y)=d_{L^{D}(G)}(u)+r_{D}-2$, therefore,

$$
\begin{aligned}
& r_{D+1}-d_{L^{D+1}(G)}(y)>\left(2 r_{D}-2\right)-\left(d_{L^{D}(G)}(u)+r_{D}-2\right), \\
& r_{D+1}-d_{L^{D+1}(G)}(y)>r_{D}-d_{L^{D}(G)}(u), \\
& d_{L^{D+1}(G)}(y)-r_{D+1}<d_{L^{D}(G)}(u)-r_{D} .
\end{aligned}
$$

Now, suppose $y \in C_{D+1}$. Then $d_{L^{D+1}(G)}(y)-r_{D+1}=0$. But as C_{D} is a single vertex, $d_{L^{D}(G)}(u)-r_{D} \neq 0$, as otherwise C_{D} will not generate a component. Hence $d_{L^{D+1}(G)}(y)-$ $r_{D+1}<d_{L^{D}(G)}(u)-r_{D}$.

Lemma 4.7. If $u \in N\left\langle C_{k}\right\rangle$ then u generates a vertex $y \in N\left[C_{k+1}\right]$.

Proof: As $u \in N\left\langle C_{k}\right\rangle, u$ is adjacent to a vertex $v \in C_{k}$. Let the edge $u v$ correspond to the vertex $y \in L^{k+1}(G)$. If C_{k} has an edge, from Lemma 4.4(a) v generates a vertex in C_{k+1}. Also, if $C_{k}=\{v\}$, as $k>A, v$ generates every vertex in C_{k+1}. Then, there exists a vertex $w \in C_{k+1}$ generated by v. Now, the edges in $L^{k}(G)$ corresponding to y and w, are incident at the vertex v. Hence, y is adjacent to the vertex w in $L^{k+1}(G)$, implying that, if y is a
l.min. vertex then $y \in C_{k+1}$ or else $y \in N\left\langle C_{k+1}\right\rangle$.

Let $N\left\langle C_{B}\right\rangle=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Then, from Lemma 4.7, for every $1 \leq j \leq n, u_{j}$ generates a vertex, say y_{j}^{1}, in $N\left[C_{B+1}\right]$.

Now, if y_{j}^{i} is a vertex in $N\left\langle C_{B+i}\right\rangle$, then from Lemma 4.7, it generates a vertex, say y_{j}^{i+1} in $N\left[C_{B+i+1}\right]$. Otherwise, if y_{j}^{i} is a vertex in C_{B+i}, then from Lemma 4.4(a), it generates a vertex, say y_{j}^{i+1} in C_{B+i+1}. It follows inductively that u_{j} generates a sequence of vertices $\left(u_{j}=y_{j}^{0}, y_{j}^{1}, y_{j}^{2}, y_{j}^{3}, \ldots\right.$.) where $y_{j}^{i} \in N\left[C_{B+i}\right]$ and, moreover, $y_{j}^{i} \in C_{B+i}$ for all $i>I$ if $y_{j}^{I} \in C_{B+I}$ for some integer I.

Then, we define a function $f\left(u_{j}, i\right): N\left\langle C_{B}\right\rangle \rightarrow \mathbb{R}$ by $f\left(u_{j}, i\right)=d_{L^{B+i}(G)}\left(y_{j}^{i}\right)-r_{B+i}$ where $i \in \mathbb{Z}^{+}$. Clearly $f\left(u_{j}, i\right)$ is non-negative and from Lemma 4.6 it is a non-increasing function of i. Also, if C_{B+i} is a single vertex and $y_{j}^{i} \in N\left\langle C_{B+i}\right\rangle$, then, from Lemma 4.3(a), $f\left(u_{j}, i\right)$ can not equal to zero as otherwise C_{B+i} will not generate a component.

Theorem 4.1. Let G be a simple and connected graph. Let C_{A} be a component of $\operatorname{lm}\left(L^{A}(G)\right)$. Then, there are a finite number of integers $k>A$, such that C_{k}, generated by C_{A}, is a single vertex.

Proof: The proof is by contradiction. Let us assume that there are infinite number of integers $k>A$ such that C_{k} is a single vertex. Then we prove the following series of lemmas.

Lemma 4.8. If $u_{1} \in N\left\langle C_{B}\right\rangle$ generates $\left(y_{1}^{0}, y_{1}^{1}, y_{1}^{2}, y_{1}^{3}, \ldots.\right)$, then there exists an integer I such that $y_{1}^{I} \in C_{B+I}$.

Proof: We prove this by contradiction. Let $y_{1}^{i} \in N\left\langle C_{B+i}\right\rangle$ for all i. The function $f\left(u_{1}, i\right)$ is non-increasing and decreases when C_{B+i} is a single vertex. As there are infinite number of integers $k>A$ such that C_{k} is a single vertex, there are infinite integers i such that C_{B+i} is a single vertex as $B>A$. Hence, from Lemma 4.6(b) there exists an integer $D>B$ such that $f\left(u_{1}, D-B\right)=0$.

Now, if C_{D} is a single vertex, then as $y_{1}^{i} \in N\left\langle C_{B+i}\right\rangle$ for all $i, f\left(u_{1}, D-B\right)$ can not be
zero and we have a contradiction. Otherwise, if C_{D} has an edge, then let E be the smallest integer greater than D such that C_{E} is a single vertex. From Lemma 4.6(a), $f\left(u_{1}, E-B\right)=$ $f\left(u_{1}, D-B\right)=0$, and we again have a contradiction.

Lemma 4.9. If $u_{1} \in N\left\langle C_{B}\right\rangle$ then there exists an integer $D \geq B$ such that u_{1} generates $y_{1}^{D-B} \in N\left\langle C_{D}\right\rangle$ where C_{D} is a single vertex and $d_{L^{D}(G)}\left(y_{1}^{D-B}\right)$ is minimum in $N\left\langle C_{D}\right\rangle$.

Proof: From Lemma 4.8 there exists an integer I such that u_{1} generates $y_{1}^{I} \in C_{B+I}$. Let I be the smallest such integer. Then, $y_{1}^{I-1} \in N\left\langle C_{B+I-1}\right\rangle$. From Lemma 4.4, if C_{B+I-1} has an edge then y_{1}^{I-1} cannot generate a vertex in C_{B+I}. Hence, C_{B+I-1} is a single vertex. Also, from Lemma 4.2, $d_{L^{B+I-1}(G)}\left(y_{1}^{I-1}\right)$ is minimum in $N\left\langle C_{B+I-1}\right\rangle$.

Lemma 4.10. If $u_{1} \in N\left\langle C_{B}\right\rangle$ where C_{B} is not a single vertex, then, $d_{L^{B}(G)}\left(u_{1}\right) \neq r_{B}$.

Proof: Assume that $d_{L^{B}(G)}\left(u_{1}\right)=r_{B}$ and hence, $f\left(u_{1}, 0\right)=0$. But as $f\left(u_{i}, j\right)$ is nonnegative and non-increasing, $f\left(u_{1}, j\right)=0$ for all j. But, from Lemma 4.9, there exists an integer $D \geq B$ such that u_{1} generates $y_{1}^{D-B} \in N\left\langle C_{D}\right\rangle$ where C_{D} is a single vertex with $f\left(u_{1}, D-B\right)=0$, which is a contradiction.

Corollary 4.3. From Lemma 4.3(a) and Lemma 4.10, if $u \in N\left\langle C_{k}\right\rangle$ then $d_{L^{k}(G)}(u) \neq r_{k}$.
Lemma 4.11. Let $C_{B}=\left\{v_{B}\right\}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be vertices of equal degree in $N\left\langle C_{B}\right\rangle$ such that $d_{L^{B}(G)}\left(u_{i}\right)$ is minimum in $N\left\langle C_{B}\right\rangle$. Then, u_{i} generates a vertex $v_{i} \in C_{B+1}$ for all $1 \leq i \leq n$. Moreover, $u_{1}, u_{2}, \ldots, u_{n}$ generate l.min. vertices which induce a complete subgraph in C_{B+1}.

Proof: As C_{B} generates C_{B+1}, from Lemma 4.2 there exists an integer $I \in[1, n]$ such that u_{I} generates a vertex in C_{B+1}. Let there be some $J \neq I$ such that u_{J} does not generate any vertex $v \in C_{B+1}$. Then, from Lemma 4.7 it follows that u_{J} generates a vertex, say u, in $N\left\langle C_{B+1}\right\rangle$. Now, $r_{B+1}=d_{L^{B+1}(G)}\left(v_{B+1}\right)=d_{L^{B}(G)}\left(u_{I}\right)+r_{B}-2=d_{L^{B}(G)}\left(u_{J}\right)+r_{B}-2=$ $d_{L^{B+1}(G)}(u)$ which is a contradiction from Corollary 4.3 and hence no such J exists. So, all $u_{1}, u_{2}, \ldots, u_{n}$ generate l.min. vertices, say $v_{1}, v_{2}, \ldots, v_{n}$, in C_{B+1} such that v_{i} corresponds
to the edge $u_{i} v_{B}$ in $L^{B}(G)$. As all the corresponding edges share the vertex v_{B}, the vertices $v_{1}, v_{2}, \ldots, v_{n}$ induce a complete subgraph.

Lemma 4.12. Let $u_{1}, u_{2} \in N\left\langle C_{B}\right\rangle$ with $d_{L^{B}(G)}\left(u_{1}\right)=d_{L^{B}(G)}\left(u_{2}\right)$. Let u_{1} generate the sequence $\left(u_{1}=y_{1}^{0}, y_{1}^{1}, y_{1}^{2}, y_{1}^{3}, \ldots\right)$ and u_{2} generate the sequence $\left(u_{2}=y_{2}^{0}, y_{2}^{1}, y_{2}^{2}, y_{2}^{3}, \ldots\right.$. . Then, $d_{L^{B+i}(G)}\left(y_{1}^{i}\right)=d_{L^{B+i}(G)}\left(y_{2}^{i}\right)$ for all $i \in \mathbb{Z}^{+}$and either $y_{1}^{i}, y_{2}^{i} \in C_{B+i}$ or $y_{1}^{i}, y_{2}^{i} \in N\left\langle C_{B+i}\right\rangle$.

Proof: For $i=1$,

$$
\begin{aligned}
d_{L^{B+1}(G)}\left(y_{1}^{1}\right) & =d_{L^{B}(G)}\left(u_{1}\right)+r_{B}-2 \\
& =d_{L^{B}(G)}\left(u_{2}\right)+r_{B}-2 \\
& =d_{L^{B+1}(G)}\left(y_{2}^{1}\right)
\end{aligned}
$$

If C_{B} has an edge, then $y_{1}^{1}, y_{2}^{1} \in N\left\langle C_{B+1}\right\rangle$ from Lemma 4.4(b) as $u_{1}, u_{2} \in N\left\langle C_{B}\right\rangle$.
Otherwise, C_{B} is a single vertex. If $d_{L^{B}(G)}\left(u_{1}\right)=d_{L^{B}(G)}\left(u_{2}\right)$ is minimum in $N\left\langle C_{B}\right\rangle$, then $y_{1}^{1}, y_{2}^{1} \in C_{B+1}$ from Lemma 4.11. Else, if $d_{L^{B}(G)}\left(u_{1}\right)=d_{L^{B}(G)}\left(u_{2}\right)$ is not minimum in $N\left\langle C_{B}\right\rangle$, then $y_{1}^{1}, y_{2}^{1} \in N\left\langle C_{B+1}\right\rangle$.

Let, for $i=n, d_{L^{B+n}(G)}\left(y_{1}^{n}\right)=d_{L^{B+n}(G)}\left(y_{2}^{n}\right)$ and either $y_{1}^{n}, y_{2}^{n} \in C_{B+n}$ or $y_{1}^{n}, y_{2}^{n} \in N\left\langle C_{B+n}\right\rangle$. Now, if $y_{1}^{n}, y_{2}^{n} \in C_{B+n}$ then from Lemma 4.4(a), $y_{1}^{n+1}, y_{2}^{n+1} \in C_{B+n+1}$ and $d_{L^{B+n+1}(G)}\left(y_{1}^{n+1}\right)=$ $d_{L^{B+n+1}(G)}\left(y_{2}^{n+1}\right)=r_{B+n+1}$.

Otherwise $y_{1}^{n}, y_{2}^{n} \in N\left\langle C_{B+n}\right\rangle$. If C_{B+n} has an edge, then, from Lemma 4.4(b), we have $y_{1}^{n+1}, y_{2}^{n+1} \in N\left\langle C_{B+n+1}\right\rangle$. Then,

$$
\begin{aligned}
d_{L^{B+n+1}(G)}\left(y_{1}^{n+1}\right) & =d_{L^{B+n}(G)}\left(y_{1}^{n}\right)+r_{B+n}-2 \\
& =d_{L^{B+n}(G)}\left(y_{2}^{n}\right)+r_{B+n}-2 \\
& =d_{L^{B+n+1}(G)}\left(y_{2}^{n+1}\right) .
\end{aligned}
$$

But, if $y_{1}^{n}, y_{2}^{n} \in N\left\langle C_{B+n}\right\rangle$ and C_{B+n} is a single vertex, then, if $d_{L^{B+n}(G)}\left(y_{1}^{n}\right)=d_{L^{B+n}(G)}\left(y_{2}^{n}\right)$ is minimum in $N\left\langle C_{B+n}\right\rangle$, from Lemma 4.11, y_{1}^{n} and y_{2}^{n} generate y_{1}^{n+1} and y_{2}^{n+1}, respectively,
in C_{B+n+1}. Else, if $d_{L^{B+n}(G)}\left(y_{1}^{n}\right)=d_{L^{B+n}(G)}\left(y_{2}^{n}\right)$ is not minimum in $N\left\langle C_{B+n}\right\rangle$, then from Lemma 4.2, y_{1}^{n+1} and y_{2}^{n+1} are in $N\left\langle C_{B+n+1}\right\rangle$ and $d_{L^{B+n+1}(G)}\left(y_{1}^{n+1}\right)=d_{L^{B+n}(G)}\left(y_{1}^{n}\right)+$ $r_{B+n}-2=d_{L^{B+n}(G)}\left(y_{2}^{n}\right)+r_{B+n}-2=d_{L^{B+n+1}(G)}\left(y_{2}^{n+1}\right)$.

Lemma 4.13. If $u_{1}, u_{2}, \ldots, u_{n} \in N\left\langle C_{B}\right\rangle$ with $d_{L^{B}(G)}\left(u_{i}\right)=d_{L^{B}(G)}\left(u_{j}\right)$, then there exists an integer $E>B$ such that $u_{1}, u_{2}, \ldots, u_{n}$ generate vertices $y_{1}^{E-B}, y_{2}^{E-B}, \ldots, y_{n}^{E-B} \in C_{E}$ which form a clique.

Proof: From Lemma 4.9 and Lemma 4.12, there exists an integer $D \geq B$ such that u_{j} generates $y_{j}^{D-B} \in N\left\langle C_{D}\right\rangle, 1 \leq j \leq n$, where C_{D} is a single vertex, say v_{D}, and $d_{L^{D}(G)}\left(y_{j}^{D-B}\right)$ is minimum in $N\left\langle C_{D}\right\rangle$. Then, from Lemma $4.2, y_{j}^{D-B}$ for $1 \leq j \leq n$, induce a complete subgraph in C_{D+1}.

Continuing rest of the proof of Theorem 4.1: Now, $\delta_{A}>3$. Hence, $\delta_{k}>3$ for all $k>A$. Pick any integer $B>A$. Let $v_{B} \in C_{B}$ and $w_{B} \in L^{B}(G)$ be a vertex of maximum degree, Δ_{B}. As G is connected, there exists a path $P_{B}=\left(w_{B}=v_{1}^{B}, v_{2}^{B}, \ldots, v_{n}^{B}=v_{B}\right)$ from w_{B} to

Figure 4.8: Path from w_{B} to v_{B}
v_{B} as shown in Figure 4.8. Now,

$$
\begin{gathered}
\delta_{B}>3 \\
-\delta_{B}<-3 \\
\Delta_{B}-\delta_{B}<\Delta_{B}-3 \\
\Delta_{B}-\delta_{B}+1<\Delta_{B}-2 .
\end{gathered}
$$

Degree of any neighbor of w_{B} can be any of $\Delta_{B}-\delta_{B}+1$ possible values. But there are

Figure 4.9: Path from w_{B} to v_{B}
$\Delta_{B}-1$ neighbors of w_{B} apart from v_{2}^{B}. From Pigeonhole principle, there exist at least two vertices, say $z_{1}^{B}, z_{2}^{B} \in N\left(w_{B}\right) \backslash\left\{v_{2}^{B}\right\}$ such that $d_{L^{B}(G)}\left(z_{1}^{B}\right)=d_{L^{B}(G)}\left(z_{2}^{B}\right)$, as shown in Figure 4.9.

Now, $L\left(P_{B}\right)$ will be a path in $L^{B+1}(G)$. Let the edge $z_{1}^{B} v_{1}^{B}$ correspond to the vertex z_{1}^{B+1} in $L^{B+1}(G)$. Let the edge $z_{2}^{B} v_{1}^{B}$ correspond to the vertex z_{2}^{B+1} in $L^{B+1}(G)$. Let the edge $v_{i}^{B} v_{i+1}^{B}$ correspond to the vertex v_{i}^{B+1} in $L^{B+1}(G)$ for $1 \leq i \leq n-2$. From Lemma 4.7, v_{n-1}^{B} generates a vertex, say v_{n-1}^{B+1}, such that either $v_{n-1}^{B+1} \in C_{B+1}$ or $v_{n-1}^{B+1} \in N\left\langle C_{B+1}\right\rangle$. When $v_{n-1}^{B+1} \in N\left\langle C_{B+1}\right\rangle$, there exists a vertex $v_{n}^{B+1} \in C_{B+1}$ adjacent to v_{n-1}^{B+1}.

Figure 4.10: $v_{n-1}^{B+1} \in N\left\langle C_{B+1}\right\rangle$
$L^{B}(G)$

$$
L^{B+1}(G)
$$

Figure 4.11: $v_{n-1}^{B+1} \in C_{B+1}$

Define $P_{B+1}=\left(v_{1}^{B+1}, v_{2}^{B+1}, \ldots, v_{n}^{B+1}\right)$ if $v_{n-1}^{B+1} \in N\left\langle C_{B+1}\right\rangle$, as shown in Figure 4.10. Otherwise, define $P_{B+1}=\left(v_{1}^{B+1}, v_{2}^{B+1}, \ldots, v_{n-1}^{B+1}\right)$ if $v_{n-1}^{B+1} \in C_{B+1}$, as shown in Figure 4.11. Notice that $d_{L^{B+1}(G)}\left(z_{1}^{B+1}\right)=d_{L^{B}(G)}\left(z_{1}^{B}\right)+d_{L^{B}(G)}\left(v_{1}^{B}\right)-2=d_{L^{B}(G)}\left(z_{2}^{B}\right)+d_{L^{B}(G)}\left(v_{1}^{B}\right)-2=$ $d_{L^{B+1}(G)}\left(z_{2}^{B+1}\right)$. Also, if $v_{n-1}^{B+1} \in N\left\langle C_{B+1}\right\rangle$, then $\left|P_{B+1}\right|=\left|P_{B}\right|$, and if $v_{n-1}^{B+1} \in C_{B+1}$, then $\left|P_{B+1}\right|=\left|P_{B}\right|-1$.
From Lemma 4.8 there exists an integer I_{n-1} such that v_{n-1}^{B} generates $v_{n-1}^{B+I_{n-1}} \in C_{B+I_{n-1}}$. Let I_{n-1} be the smallest such integer. Then $P_{B+I_{n-1}}=\left(v_{1}^{B+I_{n-1}}, v_{2}^{B+I_{n-1}}, \ldots, v_{n-1}^{B+I_{n-1}}\right)$ and $\left|P_{B+I_{n-1}}\right|=\left|P_{B}\right|-1$.

Figure 4.12

Following inductively, there exists an integer $I=I_{n-1}+I_{n-2}+\ldots+I_{1}$ such that $P_{B+I}=$ $\left(v_{1}^{B+I}\right)$ and $d_{L^{B+I}(G)}\left(z_{1}^{B+I}\right)=d_{L^{B+I}(G)}\left(z_{2}^{B+I}\right)$ as shown in Figure 4.12. From Lemma 4.9 and

Figure 4.13

Lemma 4.12, there exists an integer $D \geq B+I$ such that z_{1}^{B+I} and z_{2}^{B+I} generate z_{1}^{D} and z_{2}^{D}, respectively, in $N\left\langle C_{D}\right\rangle$, where $C_{D}=\left\{v_{D}\right\}$ and $d_{L^{D}(G)}\left(z_{1}^{D}\right)=d_{L^{D}(G)}\left(z_{2}^{D}\right)$ is minimum in $N\left\langle C_{D}\right\rangle$, as shown in Figure 4.13.
$L^{D}(G)$

Figure 4.14

But, as $\delta_{k}>3$ for all $k>A$, there are at least two more neighbors of v_{D}, say x and y and let $d_{L^{D}(G)}(x) \leq d_{L^{D}(G)}(y)$. As C_{D} is a single vertex, from Lemma 4.11 it follows that z_{1}^{D} and z_{2}^{D} generate $z_{1}^{D} v_{D}$ and $z_{2}^{D} v_{D}$, respectively, in C_{D+1}, which are adjacent to each other, as is shown in Figure 4.14. In the next iteration, we get four vertices,

Figure 4.15
$\left(x v_{D}\right)\left(z_{1}^{D} v_{D}\right),\left(x v_{D}\right)\left(z_{2}^{D} v_{D}\right),\left(y v_{D}\right)\left(z_{1}^{D} v_{D}\right)$ and $\left(y v_{D}\right)\left(z_{2}^{D} v_{D}\right)$, as are shown in the Figure 4.15. If $d_{L^{D}}(x)=d_{L^{D}}(y)$, then, from Lemma 4.12, we have $d_{L^{D+2}(G)}\left(\left(x v_{D}\right)\left(z_{1}^{D} v_{D}\right)\right)=d_{L^{D+2}(G)}\left(\left(x v_{D}\right)\left(z_{2}^{D} v_{D}\right)\right)=$ $d_{L^{D+2}(G)}\left(\left(y v_{D}\right)\left(z_{1}^{D} v_{D}\right)\right)=d_{L^{D+2}(G)}\left(\left(y v_{D}\right)\left(z_{2}^{D} v_{D}\right)\right)$. So, from Lemma 4.13, there exists an integer $F>E$, such that, C_{F} contains a K_{4}.

Otherwise, let $d_{L^{D}}(x)<d_{L^{D}}(y)$. From Lemma 4.9 and Lemma 4.12, there exists an integer $E>D+2$ such that C_{E} is a single vertex, say v_{E}, and, $x v_{D} z_{1}^{D} v_{D}$ and $x v_{D} z_{2}^{D} v_{D}$ generate vertices, say x_{1} and x_{2}, respectively, in $N\left\langle C_{E}\right\rangle$, such that they have the same degree which is minimum in $N\left\langle C_{E}\right\rangle$. Let y_{1} and y_{2} be the vertices generated by $\left(y v_{D}\right)\left(z_{1}^{D} v_{D}\right)$ and $\left(y v_{D}\right)\left(z_{2}^{D} v_{D}\right)$, respectively, in $L^{E}(G)$, as shown in the Figure 4.16. Notice that $d_{L^{E}(G)}\left(y_{1}\right)=$ $d_{L^{E}(G)}\left(y_{2}\right)$.

Then, we have the line graph iterations as shown in Figure 4.17. Now,

$$
\begin{aligned}
d_{L^{E+1}(G)}\left(y_{1} v_{E}\right) & =d_{L^{E}(G)}\left(y_{1}\right)+d_{L^{E}(G)}\left(v_{E}\right) \\
& =d_{L^{E}(G)}\left(y_{2}\right)+d_{L^{E}(G)}\left(v_{E}\right) \\
& =d_{L^{E+1}(G)}\left(y_{2} v_{E}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
d_{L^{E+2}(G)}\left(\left(y_{1} v_{E}\right)\left(x_{1} v_{E}\right)\right) & =d_{L^{E+1}(G)}\left(y_{1} v_{E}\right)+d_{L^{E+1}(G)}\left(x_{1} v_{E}\right)-2 \\
& =d_{L^{E+1}(G)}\left(y_{1} v_{E}\right)+r_{E+1}-2, \\
d_{L^{E+2}(G)}\left(\left(y_{1} v_{E}\right)\left(x_{2} v_{E}\right)\right) & =d_{L^{E+1}(G)}\left(y_{1} v_{E}\right)+d_{L^{E+1}(G)}\left(x_{2} v_{E}\right)-2 \\
& =d_{L^{E+1}(G)}\left(y_{1} v_{E}\right)+r_{E+1}-2, \\
d_{L^{E+2}(G)}\left(\left(y_{2} v_{E}\right)\left(x_{1} v_{E}\right)\right) & =d_{L^{E+1}(G)}\left(y_{2} v_{E}\right)+d_{L^{E+1}(G)}\left(x_{1} v_{E}\right)-2 \\
& =d_{L^{E+1(G)}}\left(y_{1} v_{E}\right)+r_{E+1}-2,
\end{aligned}
$$

and,

$$
\begin{aligned}
d_{L^{E+2}(G)}\left(\left(y_{2} v_{E}\right)\left(x_{2} v_{E}\right)\right) & =d_{L^{E+1}(G)}\left(y_{2} v_{E}\right)+d_{L^{E+1}(G)}\left(x_{2} v_{E}\right)-2 \\
& =d_{L^{E+1}(G)}\left(y_{1} v_{E}\right)+r_{E+1}-2 .
\end{aligned}
$$

Figure 4.16

So, there are four vertices of same degree in $N\left\langle C_{E+2}\right\rangle$. From Lemma 4.13, there exists an integer $F>E+2$ such that C_{F} will contain a K_{4}.

Returning to the proof of Theorem 4.1: Therefore, for a component C_{B}^{j} of $\operatorname{lm}\left(L_{B}(G)\right)$ where $B>A$ there exists an integer $I_{j}>B$ such that $C_{I_{j}}^{j}$ generated by C_{B}^{j} has a K_{4} and
hence, from Lemma 4.4(a), $C_{I_{j}+i}^{j}$ contains K_{4} for all i, which is a contradiction to the assumption that there are inifinite integers $k>A$ such that C_{k} is a single vertex. Hence, there exists an integer I such that C_{I+i} has at least one edge for all i.

Suppose $\operatorname{lm}\left(L_{B}(G)\right)$ has N components. Then, from Theorem 4.1, for every component $C_{B}^{j}, 1 \leq j \leq N$, as there are finite number of integers k such that C_{k} is a single vertex, there exists an integer $I_{j}>B$ such that $C_{I_{j}+i}^{j}$, generated by C_{B}^{j}, has at least one edge for all i. Hence, there exists $D=\max \left\{I^{j} \mid 1 \leq j \leq N\right\}$, such that every component of $\operatorname{lm}\left(L^{D+i}(G)\right)$ has at least one edge for all i.

Clearly, the vertices of minimum degree of any graph G are also l.min. vertices and, hence, are components of $\operatorname{lm}(G)$. But every component of $\operatorname{lm}\left(L^{D+i}(G)\right)$ has at least one edge for all i. Hence, every vertex of minimum degree is adjacent to at least one vertex of minimum degree, so, $\delta_{k}=2 \delta_{k-1}-2$ for all $k>D$.

Figure 4.17

Chapter 5

A puzzle

Dr.Hoffman assigned me an interesting puzzle. If G is a connected graph and $L(G)$ is regular, then show that G is either regular or bipartite.

Proof: For any graph G, its line graph, $L(G)$, is regular if and only if every edge of G is incident with the same number of edges. Hence, for any two edges $u v$ and $w y$,

$$
\begin{gathered}
d(u)+d(v)-2=d(w)+d(y)-2, \\
d(u)+d(v)=d(w)+d(y)
\end{gathered}
$$

Let $u v$ be an edge of G and w be a vertex. As G is connected, then without loss of generality, there exists a path $P=\left(u, v, v_{1}, v_{2}, \ldots, v_{n}, w\right)$. Now, $d\left(v_{1}\right)+d(v)=d(v)+d(u)$ and hence $d\left(v_{1}\right)=d(u)$. If $d\left(v_{i}\right)=d(u)$, then, $d\left(v_{i+1}\right)=d(v)$, otherwise, if $d\left(v_{i}\right)=d(v)$, then, $d\left(v_{i+1}\right)=$ $d(u)$. It follows from induction that for any vertex w of G, we have that, $d(w)=d(u)$ or $d(w)=d(v)$. Moreover, for any edge $w y$, either $d(w)=d(u)$ and $d(y)=d(v)$ or the other way round. Also, from induction, the degree of the vertices alternates along the path, hence, if $|P|$ is even, then, $d(w)=d(u)$, otherwise, if $|P|$ is odd then $d(w)=d(v)$.

Now, if G has an odd cycle, say, $P=\left(u, v_{1}, v_{2}, \ldots, v_{n}, u\right)$, then from above discussion $d(u)=$ $d\left(v_{1}\right)$. But as for any vertex w of $G, d(w)=d(u)$ or $d(w)=d\left(v_{1}\right)$, therefore G is regular. It follows that for any connected graph G with $L(G)$ regular, either G is regular and, if it is not regular, then it has no odd cycles, i.e., it is bipartite.

Bibliography

[1] Lowell W. Beineke, "Characterizations of Derived Graphs", J. Combin. Theory, 9 (1970), 129-135.
[2] Stephen G. Hartke and Aparna W. Higgins, "Maximum Degree Growth of the Iterated Line Graph", The Electron. J. Combin., 6 (1999), \# R28.
[3] Stephen G. Hartke and Aparna W. Higgins, "Minimum Degree Growth of the Iterated Line Graph", Ars Combin., 69 (2003), 275-283.
[4] Douglas B. West, "Introduction to Graph Theory", Second Edition, PHI Learning Pvt. Ltd., 2009.

