
SISE: A Novel Approach to Individual Effort Estimation

by

Russell Thackston

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 3, 2013

Keywords: effort, estimation, individual

Copyright 2013 by Russell Thackston

Approved by

David Umphress, Chair, Associate Professor of Computer Science and Software Engineering
James Cross, Professor of Computer Science and Software Engineering

Dean Hendrix, Associate Professor of Computer Science and Software Engineering

Abstract

Author’s note: This dissertation has been prepared following a manuscript style. Each

chapter has been constructed as a stand alone manuscript, suitable for separate publication.

Therefore, each chapter contains an abstract and introductory subject material, as well as

some overlapping content.

The software engineering discipline is filled with many varied examples of software pro-

cess methods and tools focused on the team or organization. In recent years, the agile

approach to software engineering has increased the focus of software process on small teams

and individuals; however, not all aspects of software process have been deeply or fully ad-

dressed.

The majority of effort estimation models – traditional and agile – focus on teams or

groups of software engineers. The discipline is ripe with various examples of team-based

models including Wideband Delphi, Planning Poker, function point analysis, COCOMO,

etc. The few examples of effort estimation models focused on the lone software engineer

are limited to traditional mathematical models with (relatively) substantial complexity and

required time investment; the Personal Software Process (PSP) contains one such model:

PROBE. The discipline lacks a truly agile model based on a minimal combination of empirical

data and expert judgment.

The SISE model under development at Auburn University’s microISV Research Lab is a

simple to understand, lightweight, and agile effort estimation model that specifically targets

individual software engineers. SISE combines an individual’s personal, empirical data with

his or her expert judgment and experiences to produce relatively accurate estimates with a

minimal investment of training and time.

ii

The SISE model rests on two foundational principles. First, software engineers are

capable of identifying the largest of a pair of tasks based solely on their descriptions. Second,

a software engineer who is presented with a future work activity is capable of identifying

two historical tasks – one larger, one smaller – which may serve as a prediction of the future

activity’s size.

The name “SISE” is an acronym for the model’s four basic steps: Sort, Identify, Size, and

Evaluate. The first step – Sort – involves the ordering of historical data by the actual effort

required to complete the activity. The second step – Identify – involves choosing two tasks

from the historical data set: one confidently known to be smaller, one confidently known

to be larger, and both relatively close in size to the future work. Once the practitioner has

chosen a pair of tasks, the third step – Size – produces a rough prediction interval of the

future activity’s size using the actual effort values for the two completed tasks. The final step

– Evaluate – involves shifting or resizing the prediction interval to account for any historical

bias. This last step is optional and is only applied if the estimator is dissatisfied with the

precision, accuracy, or confidence level of his or her estimate.

Validation of the SISE model included two major steps. First, the foundational principle

that relative tasks sizing by software engineers is suitably accurate was validated. The

validation occurred in the form of a survey, presented to over 100 software engineering

students, which presented the respondents with a series of task pairs from which they were

to identify the larger. Some of the pairs had a known, verifiable size difference based on

ten years of time logs provided by students in the Software Process course, while some of

the pairs did not. The results indicated that, on average, a majority of software engineers

were able to identify the larger task, while not typically misidentifying the smaller. When

presented with tasks demonstrating no significant difference in size, the respondents were

typically swayed by the wording, format, or word count.

iii

The second phase of validation involved a series of Software Process students who were

asked to identify where a future activity should be placed in the ordered list of their com-

pleted tasks. In addition, the students were asked to construct a PCSE estimate. The results

indicated that SISE predictions were no more or less accurate than the PCSE model’s esti-

mates. In addition, the students indicated that SISE, in their opinion, took less time and

was based on less a complex model. In summary, SISE appears capable of producing results

of equal quality, in less time, and with less training.

iv

Acknowledgments

I would like to acknowledge David Umphress for his extensive contributions, both as a

mentor and editor. I would also like to thank Laura Thackston – my wife, my peer, my best

friend – for keeping me grounded and on track.

v

Table of Contents

Abstract . ii

Acknowledgments . v

List of Figures . ix

List of Tables . x

1 Individual Effort Estimating: Not Just for Teams Anymore 1

1.1 Abstract . 1

1.2 Introduction . 1

1.3 Rise of the one-person team . 2

1.4 The plight of the individual estimator . 3

1.5 Estimation landscape . 5

1.6 Estimation for the one-person team . 6

1.7 A “Better than Guessing” Agile Approach 8

1.8 Conclusion . 10

1.9 Further Information . 10

2 Support for Individual Effort Estimation . 11

2.1 Abstract . 11

2.2 The Importance of Effort Estimation . 11

2.3 Effort Estimation and the Individual . 13

2.4 Effort Estimating Tools, Techniques, and Approaches 13

2.5 Common Estimation Approaches . 15

2.6 Common Estimation Tools and Techniques 19

2.7 Measuring Estimation Quality . 22

2.8 Estimation Techniques for the Individual . 28

vi

2.9 Summary and Conclusions . 30

3 SISE: A Novel Approach to Individual Effort Estimation 32

3.1 Abstract . 32

3.2 Introduction . 32

3.3 The SISE Steps . 34

3.3.1 Step 1: Sort . 34

3.3.2 Step 2: Identify . 34

3.3.3 Step 3: Size . 34

3.3.4 Step 4: Evaluate . 35

3.4 Getting Started with SISE . 38

3.5 Accuracy, Precision, and Confidence Level 39

3.6 SISE Example . 41

3.7 Validation of SISE . 45

3.8 Conclusion . 45

4 Validation of the SISE Model . 47

4.1 Abstract . 47

4.2 Introduction . 48

4.3 SISE: An Agile Estimation Model . 49

4.4 Relative Sizing . 50

4.4.1 Hypothesis . 51

4.4.2 Survey . 51

4.4.3 Metrics . 53

4.4.4 Participants . 54

4.4.5 Questions and Presentation . 55

4.4.6 Results . 55

4.4.7 Individual Respondents . 64

4.4.8 Conclusions . 65

vii

4.5 Accuracy . 65

4.5.1 Hypothesis . 66

4.5.2 Experiment . 66

4.5.3 Metrics . 67

4.5.4 Participants . 68

4.5.5 Questions and Presentation . 69

4.5.6 Results . 70

4.5.7 Conclusions . 71

4.6 Time Investment and Perceived Value . 71

4.6.1 Hypothesis . 72

4.6.2 Survey . 73

4.6.3 Metrics . 73

4.6.4 Participants . 74

4.6.5 Questions and Presentation . 74

4.6.6 Results . 76

4.6.7 Conclusions . 77

4.7 Summary . 77

5 Conclusions and Additional Research . 79

5.1 Summary . 79

5.2 Conclusions . 81

5.3 Additional Research . 81

Bibliography . 85

Appendices . 89

A Output Listings . 90

B Themes in Relative Sizing Rationale . 101

C Relative Sizing Survey Questions . 103

D Attitudinal Survey Questions . 114

viii

List of Figures

4.1 Distribution of actual construction times (all data). 52

4.2 Distribution of actual construction times (values < 1,000 minutes). 52

4.3 Relative sizing survey results. 56

4.4 Distribution of percentage of correct answers (task pairs 1-4). 65

4.5 Sample PROBE calculation using the assignment spreadsheet. 69

ix

List of Tables

2.1 Common approaches to estimation. 16

2.2 Common approaches to estimation. 23

2.3 Sample MARE values. 25

3.1 One completed activity. 41

3.2 Two completed activities. 42

3.3 Three completed activities. 42

3.4 Four completed activities. 43

3.5 Ten completed activities. 44

3.6 Adjusting for width bias. 44

4.1 Average construction effort (in minutes). 52

4.2 Average construction time comparison for assignment pairs. 53

4.3 Relative Sizing Survey Results. 56

4.4 Task pair 1 distribution of themes in respondents’ rationales. 57

4.5 Task pair 2 distribution of themes in respondents’ rationales. 58

4.6 Task pair 3 distribution of themes in respondents’ rationales. 59

4.7 Task pair 4 distribution of themes in respondents’ rationales. 60

4.8 Task pair 5 distribution of themes in respondents’ rationales. 61

4.9 Task pair 6 distribution of themes in respondents’ rationales. 61

4.10 Task pair 7 distribution of themes in respondents’ rationales. 62

4.11 Task pair 8 distribution of themes in respondents’ rationales. 63

4.12 Task pair 9 distribution of themes in respondents’ rationales. 63

4.13 Sample assignment summary. 70

4.14 Summary of survey results. 76

x

Chapter 1

Individual Effort Estimating:

Not Just for Teams Anymore

Author’s note: This manuscript was originally published in the May/June 2012 edition

of CrossTalk: Journal of Defense Software Engineering.

1.1 Abstract

Truly viable software – mobile device apps, services, components – are being written by

one-person teams, thus demonstrating the need for engineering discipline at the individual

level. This article examines effort estimation for individuals and proposes a lightweight

approach based on a synthesis of a number of concepts derived from existing team estimation

practices.

1.2 Introduction

Software engineering is usually portrayed as a team activity, one where a myriad of

technical players are choreographed to build a software solution to a complex problem. With

such a perspective, estimating the effort required to write software involves a top-down view

of development projects. Effort is forecasted based on a characterization of previous projects

that is intended to represent teams performing to the statistical norm. While large projects

are predominant – especially in the DoD environment – the fact remains that teams are made

of unique individuals, each of whom write software at a different tempo and with different

properties. At some point in a project, the top-down prediction of required effort must be

tempered with a bottom-up frame of reference in which the team fades from being a group

of generic members to being a collection of distinct persons.

1

Historically, estimation methods have focused on effort at the team level. Recent agile

software development practices have shed light on taking individuals – who are acting as

part of a team – into consideration. Emerging trends in software development for mobile

devices suggest that effort estimation methods can be employed for one-person endeavors

and that those methods can benefit teams, but also that such methods are still very much in

their infancy. This paper examines effort estimation from the one-person team perspective

and describes a lightweight effort estimation technique in that light.

1.3 Rise of the one-person team

One-person software companies – historically referred to as shareware authors, but more

recently labeled “micro Independent Software Vendors,” or microISVs – are on the rise, fueled

in part by the proliferation of free and open source tools and new eco-systems, such the

Apple App Store and the Android Market. In fact, metrics gathered by AdMob – a mobile

advertising network – estimated the market for paid mobile apps in August of 2009 at $203

million [1]. That is an estimated $2.4 billion per year, for mobile apps alone, where the

greatest barrier to entry is the cost of the mobile device.

For example, publishing a game app in the Apple App Store requires an investment of

around $100, not including the device, as the only requirement is the $99/year to join the

Apple iOS Developer Program [4]. Publishing an Android app is even less costly since the

developer membership fee is only $25 [3]. Both platforms boast generous support documenta-

tion, which is freely available on the Apple and Google websites, respectively. Furthermore,

many books are available for app authors wishing to dive deeper into the technologies of

these platforms.

In addition to the mobile app market, opportunities exist in other markets, such as the

traditional downloadable software venue as well as the relatively new concept of Software as

a Service (SaaS) websites. Gartner Research measured worldwide SaaS revenue for 2010 at

$10 billion and should reach $12.1 billion in 2011 [14].

2

MicroISVs encapsulate the entire spectrum of company activities into a single individual.

As a result, the successful microISV focuses only on those activities that provide clear,

measurable benefit and contribute directly to the bottom line; all other activities are deemed

unimportant and are, as a result, discarded. It is through this natural selection process that

successful microISV founders learn what is essential to the operation of a business and what

is not. Unfortunately, the benefits derived from certain activities may not be directly visible.

Many business activities – such as planning and risk management – are proven to provide

measurable benefit, but may seem unimportant by a microISV operator confronted with the

daily operations of a business. Too often, this category includes non-technical activities,

such as taking the time to understand the size and scale of upcoming work (e.g. estimating

effort).

1.4 The plight of the individual estimator

MicroISVs are not the only one-person software development operations in action. Re-

gardless of the size of the team (enterprise, company, firm, etc.), software development still

boils down to the individual on the front line: the developer. No matter what label is given

to the developer – microISV owner, consultant, or team member – it is his or her respon-

sibility to help craft estimates and to manage his or her own time. The motivation varies,

depending on the circumstances. For example, microISV owners might primarily use esti-

mates to plan release cycles and orchestrate business and technical tasks. Consultants might

use personal estimates to provide billing estimates. Team members could use personal esti-

mates to validate requested delivery dates and coordinate time allocations among multiple

activities and projects. However, individual software engineers remain generally ill equipped

to construct personal estimates. This leaves the individual developer faced with the choice

between guesswork, formal models, and/or relying on team-oriented techniques.

3

Unfortunately, team members, too, fall into behaviors which either avoid giving proper

attention to estimating effort, or they fall back on one of the least accurate approaches: “gut

feel” estimates.

Why do individual software developers not value good effort estimates? An informal

survey of members of the Association of Software Professionals (ASP) reveals the perception

that developing an estimate provides no direct value, either to microISV owners or their

customers, the primary reason being that microISV product requirements are too fluid and

are, therefore, not a good basis for an estimate [5]. Some microISV owners indicate that

effort estimates are unnecessary unless a customer or client is holding them accountable;

however, this is not often the case for microISVs, which tend to focus on shrink-wrapped

products.

Many of the same arguments expressed by microISVs apply to individual developers

acting as team members. Developers on a team may not be asked for effort estimates;

someone in a senior position may directly provide deadlines to them. In the event that a

developer is asked for an estimate, it is likely they are not properly equipped to provide a

good estimate or they do not view this non-technical activity as an interesting and engaging

problem, like coding. This can lead to an estimating rule of thumb, such as “make a guess

and multiply by three.”

Regardless of the circumstances and rationale, many individual developers are not

equipped to construct and derive benefit from personal effort estimates. The spectrum

of effort estimation approaches is broad, often overwhelming so. At the near end of the

spectrum lies guesswork; at the far end lies formal models. The former is quick, but difficult

to tune; the latter involves complex mathematical calculations to model past performance

and requires a heavy investment of time. The agile software development movement strives

to strike a conciliatory balance that takes advantage of individual expert opinions adjusted

by the collective wisdom of multiple participants. Planning Poker, for example, exemplifies

this philosophy of guessing effort individually then attenuating the range of guesses through

4

team dialog [9]. Up to this point, there are no single person equivalents to Planning Poker

(i.e., “Planning Solitaire”).

Additionally, developers do not see a benefit to themselves in constructing an effort

estimate. This is due in part to the tools and techniques currently available to the individ-

ual, which are either too heavyweight or non-existent. Either the process of constructing

the estimate takes too much time and effort (heavy-weight) or it produces low-quality re-

sults (light-weight, guessing). In either case, the ROI doesn’t fit the circumstances. What

is needed is a lightweight effort estimating process, focused on the individual, capable of

constructing an estimate with a reasonable degree of accuracy.

1.5 Estimation landscape

The process of estimating the cost of future software development efforts, in terms of

time and resources, is a complex issue. Researchers have designed and tested models for

predicting effort using a variety of approaches, techniques, and technologies. For example,

while researchers found that half of all published research into effort estimation (up through

2004) utilized some form of regression technique – predicting future effort based on past

effort – a good deal of research was still going into other techniques such as function point

analysis, expert judgment, and analogy [22]. These models are capable of predicting effort

in a variety of environments with varying degrees of success and accuracy.

Most approaches share a common thread of complex mathematical models, requiring

calibration and tuning. For example, COCOMO – one of the most well known models –

uses 15 cost drivers (or “attributes”) to estimate the size of the product to be created [7].

Organizations must accurately rate each cost driver, as well as determine software project

coefficients that characterize their environment. Function point analysis employs a model

based on determining the number and complexity of files internal to the system, files external

to the system, inputs, outputs, and queries. This allows an organization to estimate effort

by comparing the number and type of function points to historical data from past projects.

5

Like COCOMO, function point analysis requires adjusting the estimate based on a variety

of technical and operational characteristics, such as performance and reusability.

Despite the large amount of research focused on producing an accurate effort estimation,

the typical software project is on time, on budget, and fully functional only about one-third

of the time [37]. Clearly, the factors behind this statistic are poorly enumerated and vaguely

understood, at best, given the number of variables involved. Despite the complexity of the

problems facing the software cost estimating disciple, a wide variety of research into the

problem has been conducted, focusing on such aspects as estimating approaches and models

[22]. Perhaps one of the contributing factors lies at the bottom of the hierarchy, with software

engineers who are ill equipped to provide estimates and validate deadlines imposed by their

managers.

While there are many approaches to estimating effort, it is clear that the available

approaches focus on the team or enterprise. Few approaches deal with individual effort

estimation, such as at the task level. Furthermore, few approaches can be characterized as

“light-weight” and suitable to the agile environments of one-person software development

teams.

1.6 Estimation for the one-person team

In 1995, Humphrey introduced the Personal Software Process (PSP), which defined

the first published software process tailored for the individual [17]. PSP defines a highly

structured approach to measuring specific aspects of an individual’s software development

work. With respect to effort estimation, PSP employs a proxy-based approach referred to as

PROBE (Proxy-Based Estimating). In general, a proxy is a generic stand-in for something

else, where the two object’s natures are similar. With regard to software estimating, a proxy

is a completed task of similar size to an incomplete task. Therefore, it can be assumed

that the time to complete the second task should be similar to that of the first. PROBE

specifically uses a lengthy, mathematical process for determining anticipated software lines

6

of code (SLOC), which are used to compare tasks and find an appropriate proxy from which

a time estimate is derived.

PSP has demonstrated popularity in both academic and business environments. Busi-

nesses, such as Motorola and Union Switch & Signal, Inc., have adopted PSP and claimed

varying degrees of success. Many universities have integrated PSP into software engineering

courses in an effort to demonstrate and measure the value of a structured personal devel-

opment process. A University of Hawaii case explored some of the benefits and criticisms

of PSP [20]. The study demonstrated that students using PSP developed a stronger appre-

ciation for utilizing a structured process. However, the study also noted PSP’s “crushing

clerical overhead,” which could result in significant data recording errors.

Interestingly, Humphrey’s Team Software Process (TSP) [18] corroborates the fusing

individual estimation efforts into a team-level estimate. Individual members of TSP teams

practice PSP and employ individual PSP-gathered measures in making team-level estimates.

Researchers at Auburn University have developed a lightweight alternative to PSP,

known as the Principle-Centered Software Engineering (PCSE) [40]. PCSE uses a proxy-

based approach to estimating software lines of code, which is clearly lighter weight, yet still

relies on non-trivial, mathematical models to produce a result. On one hand, the lightweight

nature of PCSE calculations overcomes the heavy mathematical models of PROBE. On the

other hand, the use of software lines of code limits the usefulness of PCSE in graphical or

web-based development, which may include graphics, user interface widgets, etc.

The informal survey of ASP members reveals anecdotal evidence that software engineers

typically opt for a “gut-feel” approach, where effort estimation is based on no more than

educated guesses [5]. This impression is especially true of software engineers working outside

the constraints of an organization, which typically mandates the use of formal tools and

processes. Since developers typically underestimate 20-30% lower than actual effort [41],

this would explain why the gut feel approach is typically heavily padded.

7

1.7 A “Better than Guessing” Agile Approach

A void exists in the spectrum of effort estimating tools, specifically focused on light

weight tools for the individual. SISE – which stands for Sort-Identify-Size-Evaluate – rep-

resents a new approach to forecasting future software development effort by combining a

standard regression model with relative task sizing. SISE introduces an agile approach to

sizing by the individual in much the same way Planning Poker introduced agile sizing to the

team.

Specifically, the SISE model guides the estimator through the process of organizing

future tasks, not by matching them to historical analogies, but by size ranking, relative to

historical tasks with known effort measurements. The SISE model then derives its results

based on a simple principle: if the perceived size of a future task falls in between the actual

size of two historical tasks, then the actual effort of the future task should also lie between

the actual effort of the two historical tasks.

For example, assume two tasks have been completed on a project by a software developer:

the first task in four hours and the second in six hours. A third task is then assigned to the

developer, who estimates the relative size of the task to be somewhere between the first two

tasks. It can be assumed, then, that the actual effort for the third task is somewhere between

four and six hours. Note that this approach does not necessarily produce a single value

estimate, but rather an upper and lower bound for the estimate (i.e. prediction interval).

If a single-value estimate is required, it can be extracted from the prediction interval in

a number of ways. One approach to deriving a specific value for the estimate is to take the

upper bound values. This produces a high confidence estimate, yet strongly resembles the

practice of “padding” the estimate (i.e. playing it safe). Another approach involves simply

averaging the upper and lower values and relying on the law of averages to even out the

errors. In many instances, this approach may produce a specific value that is “good enough”

for the circumstances with a minimal amount of effort and complexity. A third approach

relies on a simple statistical analysis of the developer’s historical data to produce a weighting

8

factor which is applied to the upper and lower bounds to produce a single value. Simply put,

the weighting factor represents where, on average, the developer’s actual effort for all tasks

fell between the upper and lower bounds of the estimates for those tasks. For example, a

developer who, on average, completes tasks exactly at the midpoint between the upper and

lower bounds of the estimate will possess a weighing factor of 0.5.

In its simplest form, the SISE model is specifically targeted at individual software de-

velopers, such as microISV operators, independent consultants, and team members. The

approach’s strength lies in the fact that individuals may develop reasonably accurate per-

sonal estimates based on their own historical data, while excluding team-level factors such

as communication and overhead costs. Although the factors involved in a team-level effort

estimate are more numerous, project-level estimates may be also be derived with the assis-

tance of the SISE model by combining individual team members’ estimates and applying

existing, proven approaches to adjusting for overhead. Another, more radical application of

SISE might involve treating entire projects as tasks and deriving an estimate in the same

manner as used by individual developers. This type of application would be most useful

in certain organizations, which insist on estimates extremely early in the development cycle

(i.e. before requirements are fully elaborated and understood).

Obviously, the SISE approach requires a calibration period, during which a historical

data pool is constructed for deriving future estimates. Fortunately, many organizations and

individuals already track effort expenditures, via time sheets or project management tools,

providing a ready source for historical data. This leaves a historical gap for new developers

and for environments lacking historical records. Fortunately, the calibration period can be

relatively short, depending on the typical size variations in tasks; organizations with task

sizes that vary widely will require a longer calibration period to derive a suitable data pool of

historical values. Although not recommended, in the absence of historical data, it is possible

to use another software engineer’s actuals as a surrogate data pool and then rotate surrogate

data out as actual developer data becomes available.

9

A variety of other factors exist which may affect the accuracy or precision of an estimate.

These factors – such as programming environment changes, statistical outliers in the data

set, data recording and accuracy, and granularity – must be addressed in a consistent manner

when implementing the SISE model in an organization’s environment. The key to successfully

applying this approach lies in the individual’s ability to recognize and adjust for these factors.

1.8 Conclusion

The emergence of software written by one-person teams – mobile device apps, services,

components – renders inaccurate the portrayal of software engineering exclusively as a team

activity. It brings a vanguard of exciting concepts in which the individual plays a pivotal role

in not only creating viable software, but in controlling the development process. Systematic

effort estimation, once the province of teams, has benefit to individuals as well; however, it,

like so many other software methods, has to be stripped of unnecessary tasks if individual

developers are to reap that benefit. It has to be intuitive, usable, and produce results that

are more accurate than outright guessing.

1.9 Further Information

The SISE model is currently under development at Auburn University by IT veteran and

graduate student Russell Thackston. The model is currently under evaluation by Auburn

University’s Computer Science and Software Engineering program.

10

Chapter 2

Support for Individual Effort Estimation

2.1 Abstract

Estimation models play an important role in developing software both within teams and

for individuals, as they validate deadlines, design project plans, and schedule work. These

models rely on approaches such as regression and analogy to provide practitioners with the

tools to derive useful estimates. The perception of the quality of these models is often defined

by the accuracy of their estimates. However, many practitioners contend that the true value

of an estimate lies in its usefulness as a project-planning tool, not in its ability to predict

the future.

Despite the wide variety of existing estimation techniques available to teams, individ-

uals few realistic choices in building estimates: PSP’s PROxy-Based Estimates (PROBE);

PCSE’s Component-Based Estimating; and expert judgment (i.e. guesswork). The struc-

tures of PSP’s and PCSE’s estimation models arguably demonstrate a level of time com-

mitment higher than guesswork. Anecdotal evidence suggests that a subset of practitioners

choose guesswork as an alternative to established models due to the perceived overhead asso-

ciated with using such a model. The space between guesswork and established models (such

as PROBE and PCSE) represents a gap that can be filled with a lighter-weight, reasonably

accurate model tailored to the individual and suited to estimation of individual tasks.

2.2 The Importance of Effort Estimation

The exact benefits of accurate software effort estimates vary from organization to or-

ganization. However, some common threads exist regardless of the environment. First, a

11

software estimate predicts the scale – from small to massive – of the work being undertaken.

From this estimate of scale, predictions for staffing, computing resources, milestones, and

deadlines are derived. Without a reasonably accurate estimate, many project management

activities could not be conducted without resorting to guesswork. For example, an accu-

rate estimate allows the project manager to predict milestone and delivery dates. These

milestones assist in predicting project staffing or outsourcing needs, which may require in-

teraction and scheduling with external entities. This leads into a proper project schedule

and efficient resource management; without a reasonable estimate, resources may be brought

in too early, resulting in slack time, or too late, resulting in delays. Risk management is also

heavily impacted in the absence of a good estimate, since the purpose of an estimate is to

enable efficient work management, not predict exact schedules [26].

Activities outside project management may also be affected by the lack of an effort

estimate. For example, consulting firms who competitively bid on projects must rely on the

estimate to properly estimate their time and resource investment and, based on that estimate,

how much they will bill their clients. Furthermore, most clients will wish to establish and

work to delivery dates based on the initial estimates. Inaccurate or absent estimates require

a level of guesswork be employed and may result in cost overruns or excessively high, non-

competitive bids for work.

The importance of effort estimates has led to the development of a wide variety of

estimating approaches, tools, and techniques. Naturally, much of the research focuses on

projects and teams; team projects present some of the most complex challenges in estimat-

ing as they attempt to address the myriad factors, such as overhead and communication.

However, few approaches and tools attempt to address the challenge of estimates at the level

of the individual.

12

2.3 Effort Estimation and the Individual

A wide variety of organizations exist for the purpose of creating software. Ultimately,

these organizations employ one or more software engineers, regardless of team size or com-

position, for the purpose of building the product. In addition to the well-established role of

“team member,” software engineers can also be found in roles such as independent consul-

tants, where the lone consultant performs all the functions and duties of a small team. In

the extreme, software engineers are also found operating as one-person software companies,

known as micro Independent Software Vendors (microISVs).

Software engineers, in all their incarnations, are faced with deriving, validating, and be-

ing managed to estimates. For example, software engineers working on teams are regularly

given assignments with attached deadlines. A proper analysis of the allotted time (estimate)

allows the software engineer to plan his or her schedule accordingly, or provide useful feed-

back to his or her superiors in order to adjust the deadline. Independent consultants must

competitively bid projects. An accurate estimate is essential to deriving a high quality bid; if

the estimate is inaccurate or incomplete, the consultant may underbid the project and incur

a loss or may overbid and fail to secure the contract. MicroISV owners rely on estimates in

selecting where best to spend their limited time: development, marketing, support, etc.

Only two established methodologies, discussed later, present individual software engi-

neers with reasonable alternatives to guesswork, an all too common alternative to established

methods. The remaining challenge for consultants, team members, and microISVs is to im-

plement these models into their own personal process in a non-invasive manner with minimal

overhead and time investment.

2.4 Effort Estimating Tools, Techniques, and Approaches

Extensive research in the field of effort estimation has produced a wide variety of tools

and techniques. These tools and techniques typically implement one or more underlying

13

approaches to solving the problem. To differentiate among tools, techniques, and approaches,

consider Mountain Goat Software’s implementation of Planning Poker [29]. In Planning

Poker, a group of experts discuss the requirements behind the tasks to be estimated. For each

task, the individual estimators select a number from a Fibonacci sequence to represent the

complexity of the task, though not necessarily in hours or days. All estimators simultaneously

reveal their estimate to the other members of the group. If the estimates differ significantly,

a discussion is held in which the outliers describe the reasoning behind their selections. The

process then repeats until the estimates converge on a common value.

The Planning Poker model may be described in terms of the tool used to implement

the model as well as the underlying technique and approach. To clarify, a tool is defined as

“an instrument or apparatus” and a technique as “the manner in which technical details are

treated” [27]. The tool used to implement Planning Poker is a simple deck of playing cards.

The technique can be most succinctly described as a group of experts iteratively developing,

presenting, and discussing individual estimates of effort for tasks, which ends as consensus

is reached. At a more detailed level, the technique behind Planning Poker involves aspects

such as informality, speed, and simplicity.

Planning Poker does not, in fact, implement a single approach to estimation; like most

estimation models, Planning Poker combines multiple approaches: expert opinion, analogy,

and work breakdown (disaggregation). These approaches may be used in different combi-

nations to produces a variety of techniques. For example, the Wideband Delphi estimation

model uses the same approaches as Planning Poker and the descriptions of the two models

sound very similar. In contrast, the Wideband Delphi process involves formal meetings,

paper forms, and anonymous estimates. Furthermore, the process takes days or weeks, as

opposed to minutes or hours.

The specific tools used to implement a technique could vary based on the needs of

the organization or its structure. For example, Planning Poker could be implemented for

14

geographically disperse teams using computers, voting software, and video chat, without

sacrificing the core principles of the technique.

2.5 Common Estimation Approaches

There are a wide variety of approaches to address the problem of effort estimation [22].

Table 2.1 lists the some common approaches with a brief description. This list is not intended

to be comprehensive; rather, it is designed to present a general cross-section of some widely

used approaches.

Regression, also known as regression analysis, involves modeling and analyzing multiple

variables that are assumed to be interdependent. In software effort estimation, regression

typically involves “sizing” a project in terms of some known or estimated quantity – features,

inputs/outputs, or lines of code – then calculating the effort from that quantity. For example,

COCOMO is a series of models designed to compute software development effort as a function

of size in estimated software lines of code (SLOC) [7] [8]. The SLOC is translated into effort

based on industry data and, depending on the COCOMO model employed, the project type,

cost drivers, or phase.

Another common approach to estimating effort involves drawing analogies. Analogy-

based reasoning involves drawing conclusions about a future occurrence based on the details

of a similar, past occurrence. Estimating software effort by analogy involves four factors,

which directly influence the accuracy of the estimate: the availability of an appropriate

analogue; the soundness of the selection strategy; how the differences between the analogue

and target are considered and adjusted for; and the accuracy of the available data points

[42].

A third approach involves the expert judgment of one or more members of the project

team. Simply put, expert judgment involves relying on an individual, or group of individuals,

to gather, evaluate, discuss, and analyze data concerning a target project [21]. Instead of

inputting the data into a formal analytical model and publishing the result, the estimators

15

Approach Description
Analogy Drawing conclusions about a future occurrence based on

the details of a similar, past occurrence.
Artificial Neural Networks Application of massively parallel, computer-simulated, bi-

ological neurological systems to predict outputs through
the use of complex dependent and independent input vari-
ables.

Classification and Regression
Trees

Building a binary tree with branches representing possi-
ble effort values for each estimation characteristic, then
locating the ÒoptimalÓ sub-tree. Traversing the sub-tree
from terminal node to root allows for the calculation of an
effort estimate.

Expert Judgment Relying on an individual, or group of individuals, to
gather, evaluate, discuss, and analyze data concerning a
target project to build an estimate.

Function Point The use of system inputs, outputs, and persistent data as
a measure of the amount of functionality required by a sys-
tem. The functionality is expressed as “function points,”
which can be used to derive effort.

Mathematical Models A mathematical formula that predicts effort (output)
based on the multiple inputs, such as team productivity
and project scale.

Proxy-Based Using a known or predicted unit of size (screens, lines of
code, etc.) for a task to infer required future effort for the
task.

Regression Modeling and analyzing multiple variables that are as-
sumed to be interdependent. For example, predicting
task’s duration based on the estimated lines of code.

Simulation A computer model that attempts to simulate the abstract
model of the required work effort for a set of activities.

Work Breakdown Decomposition of an effort into individual tasks. Also
known as “disaggregation.”

Table 2.1: Common approaches to estimation.

16

produce an estimate based on their knowledge of the work to be performed and the environ-

ment. The estimators may follow a checklist or set of guidelines, but no mathematical model

is employed to derive the final numbers. Some experts characterize expert judgment as a

“gut-feel” alternative to established models. However, when viewed as an approach, expert

judgment can be characterized as one aspect of a larger tool or technique. In fact, aspects of

expert judgment find their way into most tools and techniques, simply because their input

process is managed by individuals making decisions about how to divide, structure, and

organize work.

Work breakdown, as an approach, is fundamental to many estimation tools and tech-

niques, as well as project management in general. In simple terms, a work breakdown is

a decomposition of an effort into individual tasks. The level of decomposition required is

defined by many factors, such as the overall size of the project; the size and structure of

the project team; and the type of project. One major benefit of creating a thorough work

breakdown is that it helps reveal all the individual tasks involved in the effort, reducing the

chance of leaving out small, but important steps [26]. The work breakdown also serves as

a tool for comparing a future project to past projects that have been similarly decomposed

into smaller tasks. The disadvantage of the work breakdown approach is that it requires a

more complete knowledge of the system to be built at the time the estimate is derived.

Another approach, known as function point analysis, involves counting the number and

complexity of functions performed by a software product [2]; such functions include files

operations internal to the system, files operations external to the system, inputs, outputs,

and queries. The number of function points may be translated into an estimate of SLOC,

which in turn may be used to estimate effort in terms of time commitment, based on the

historical productivity of the project team.

Proxy-based estimation approaches involve identifying and counting known features of a

task or effort – such as the number of screens, lines of code, number of functions/procedures,

17

etc. – then inferring future effort based on those “proxies.” For example, a high level archi-

tectural design may describe the number of components that must be created to complete the

software product. By combining the number of components, their individual estimated com-

plexity, and historical data on productivity, an estimator can infer the amount of required

effort to build the new components.

Artificial neural networks (ANN) are software models inspired by the architecture of

biological neural networks [43]. ANNs represent a novel approach to estimation by utilizing a

massively parallel network of interconnected nodes (representing virtual, biological neurons),

each with a series of inputs, and each generating an output when the sum of the inputs

exceeds a predefined threshold. Neural networks with a feedback – or learning – mechanism

improve performance by fine-tuning the weighting of the inputs and/or the threshold for

producing the output. ANNs are particularly suited to modeling software estimates when a

non-linear relationship exists between the inputs (e.g. size) and outputs (e.g. effort) [13].

Estimation approaches based on mathematical models are also common. Researchers

have attempted to derive mathematical models and formulas to represent the relationship

between size and effort. The simplest model of this relationship is a linear relationship:

as size increases, effort also increases at a steady rate. Linear models, however, are not

suitable for estimating non-trivial projects in large and complex environments; therefore,

more complex models were developed, such as Putnam’s model, which is based on a Rayleigh

distribution [31]. These models, in their various forms, attempt to compensate for factors

such as increased overhead and communications as the size of the project and/or team

increases.

In addition to the aforementioned approaches, researchers and practitioners have devel-

oped a wide variety of approaches that are best described as “academic exercises” intended

to explore novel theories or highly specialized situations [22]. While these additional ap-

proaches add significant value to the discipline, they are highly specialized and are beyond

the scope of this analysis.

18

2.6 Common Estimation Tools and Techniques

The tools and techniques derived from various approaches may be categorized in several

ways. For example, some tools are highly structured, requiring the practitioner to follow

specific steps in a prescribed order. Some tools use a strict mathematical formula to calculate

their output, while others rely more on expert judgment or human reasoning.

COCOMO is a well-structured, formal approach to developing software estimates [7].

COCOMO, in its original form (COCOMO 81), addressed the software development prac-

tices of the day, such as mainframe overnight batch processing. In 2000, COCOMO II was

published in a revised form to reflect recent changes, such as software reuse and off-the-shelf

software components [8]. Four major steps comprise the foundation of COCOMO. In the

first step, the nominal effort is determined based on estimating the number of “source in-

structions,” or lines of code. Next, a series of fifteen cost drivers – relating to the product,

environment, and hardware – are evaluated and each is assigned a weight or value. In the

third step, the product of these “effort multipliers” is used to derive an effort value – usu-

ally in man-months – from the nominal effort from step 1. Lastly, the estimator adjusts

for additional factors, beyond the first three steps. Boehm’s stated goal in developing the

COCOMO model is to “help people understand the cost consequences of the decisions they

will make in commissioning, developing, and supporting a software product” [7].

The Putnam Model is another formal technique based on historical data and mathe-

matical analysis [31]. The Software Lifecycle Model (SLIM) is the proprietary tool released

by QSM, Inc., a company founded by Putnam. The Putnam model follows the idea that his-

torical project data such as time, effort, and size can be mapped to a consistent distribution

of data, or curve on a graph. Therefore, an effort estimate, usually in man-months, may be

derived for a future project by fitting it to the curve based on the projects estimated size

(e.g. lines of code, etc.).

The term function point analysis refers to both an approach (described earlier) and

a technique. Function point analysis is a highly structured technique that begins with a

19

thorough review of project requirements to uncover a comprehensive list of software “function

points.” These function points are comprised of a list of inputs, inquiries, outputs, internal

files, and external interfaces. The function points are counted, adjusted for factors such as

complexity, and summed. The resulting value is a dimensionless number representing the

relative measure of the number of functions defined by the requirements. By comparing this

number to past projects and their corresponding values, an estimate of required effort can be

proposed. Various tools exist – such as the Construx Estimate tool from Construx Software

Builders [10] and ESTIMACS (known as CA-Estimacs) from Computer Associates [25] – to

assist in deriving software estimates based on function points.

PROxy-Based Estimating (PROBE) – a component of the Personal Software Process

(PSP) – is both a technique and a tool for deriving estimates [17]. As a technique, PROBE

draws on several approaches, including proxy-based estimation, regression, and analogy. Like

the preceding techniques, the PROBE tool is a well-defined model, however, its estimates are

derived through the use of proxies or objects that are used to estimate the size of the software

product. Each object is assigned a type – which loosely defines the relative complexity –

and an estimated number of methods. The combination of type and method count defines

the estimated size of the object. Based on the proxy list and historical data – past estimates

and actuals – the overall size of the project is estimated.

PROBE is not the only proxy-based technique for deriving estimates. The Principle

Centered Software Engineering (PCSE) process also derives estimates through the use of

proxy-based estimating. While both PROBE and the PCSE estimation approach are proxy-

based, the techniques differ significantly in terms of complexity and number of steps. PCSE’s

technique derives an estimate of effort through the estimation of the number of “parts”

required to build the software, which are translated into an estimate of software lines of

code. The required effort is then inferred from the combination of lines of code and historical

productivity.

20

Case-based reasoning, a superset of analogy-based reasoning, involves constructing a

model of a problem, retrieving an appropriate analogue, transferring the solution used for

the analogue to the target instance, mapping attributes between the analogue and the target,

then adjusting the estimate to account for attribute differences. Estor is one example a

software product, which combines the concepts of function points and case-based reasoning

to derive estimates [42].

Analogy Software Tool (ANGEL) is another software product, which applies analogy-

based reasoning to developing estimates [36]. Unlike Estor, which uses function points,

ANGEL allows the estimator to define and input variables to describe the features of the

project to be estimated. From the user-defined variables, a subset is selected and ANGEL

locates the “closest” match between the target project and historical projects based on the

Euclidean distance between the variable sets.

Web Objects is an approach designed to address the many disparate elements that

make up web-based applications, such as static and dynamic pages, JavaScript, cascading

style sheets, images, etc [33]. Web Objects calculates size using the language independent

Halstead’s equation [15], which focuses on the operands and operators involved in the pro-

posed application to determine the “volume of work” from which an estimate of effort is

obtained. Within the Web Objects context, an operand is something done to an operator.

The Web Objects approach accounts for complexity by weighting the operators/operands as

low, medium, or high.

The Wideband Delphi method presents a formal approach to deriving estimates based

on expert judgment [7]. In this approach, a group of experts follow a structured series of

steps, managed by a coordinator, to reach a consensus on an estimate for a project or series

of tasks. First, each expert is presented with the specification and forms to share his or

her estimates. The experts meet, discuss the issues involved in completing the work, and

then anonymously provide their estimates using the provided forms. If the estimates vary

significantly, the coordinator calls another meeting in which the issues are further discussed.

21

The approach repeats the discussion/estimation steps until the estimates converge, forming

the basis for the final estimate.

Planning Poker is an agile approach to estimation, similar to Wideband Delphi, which

involves a group of experts iteratively involved in discussion and estimate presentation, in an

attempt to reach consensus [29]. Unlike Wideband Delphi, however, no forms are used and

the discussion is not anonymous. Furthermore, the process occurs in a single meeting, not

over a period of days. In addition, the estimates are presented in terms of complexity, such

as hours, days, or story points; a single number chosen from a deck of cards, usually made

up of the values from a Fibonacci sequence, represents the expert’s estimate of complexity.

As with the Wideband Delphi approach, significant differences in estimates are discussed;

however, unlike the Wideband Delphi method, the discussion is immediate and public. Once

a consensus is reached, the results form the basis of the full estimate.

Table 2.2 lists the previously discussed tools and techniques, cross-referenced with the

underlying approaches demonstrated by the technique. Note that expert judgment plays

some role in all techniques/tools, since the inputs to the processes are constructed or guided

by a human, at some point. In addition, most techniques require some form of work break-

down to occur prior to beginning the estimation process.

2.7 Measuring Estimation Quality

Despite the large number of estimation approaches and techniques available, the software

engineering discipline does not formally recognize a single “standard” quantitative measure-

ment for the quality of a software effort estimation model. However, most research assumes

the quality of a model is directly related to the model’s ability to accurately predict future

effort. This accuracy, or lack thereof, may be measured in a variety of ways.

Most quality measurements begin by comparing the estimated effort to the actual effort.

For example, the estimated effort for a task may be ten hours less than the actual effort.

However, the value of “ten hours” has little meaning outside the context of the project.

22

Approach

Technique/Tool A
na

lo
gy

/C
as
e-
B
as
ed

E
xp

er
t
Ju

dg
m
en
t

Fu
nc
ti
on

P
oi
nt
s

M
at
he
m
at
ic
al

M
od

el
s

P
ro
xy

-B
as
ed

R
eg
re
ss
io
n

W
or
k
B
re
ak

do
w
n

ANGEL • • • • •
CLAIR • • • •

COCOMO/COCOMO II • • • •
ESTIMACS • • • • •

Estor • • • • •
Expert Judgment •

Function Point Analysis • • • • •
Planning Poker • • • •

PROBE • • • •
PCSE • • • • •

Putnam Model/SLIM • • • •
Web Objects • •

Wideband Delphi • • • •

Table 2.2: Common approaches to estimation.

23

Ten hours could be a significant error in the context of a two hours task; on the other

hand, ten hours would be virtually insignificant in the context of a five person-year project.

Therefore, the relative error (RE) is used as a foundation for measuring estimation accuracy

(see Equation 2.1). For example, if a 100-hour project is underestimated by ten hours, the

relative error is 0.1 (10%), or ten divided by 100. This may produce either a positive number

(underestimation) or a negative number (overestimation). In many cases, the magnitude of

relative error (MRE) is used to eliminate negative numbers and simplify calculations (see

Equation 2.2).

RE =
(actual − estimate)

actual
(2.1)

MRE =

∣∣∣∣∣(actual − estimate)

actual

∣∣∣∣∣ (2.2)

The RE and MRE values are useful for determining the accuracy of a single estimate.

However, a single large-scale estimate is typically composed of multiple smaller estimates;

in such cases, the Mean Absolute Relative Error (MARE) is used [11]. The MARE value

(see Equation 2.3) may be referred to as the Mean Magnitude of Relative Error (MMRE) or

the average magnitude of relative error. Variations of MARE and MMRE also include the

Median MRE.

MARE =
1

n

n∑
i=1

∣∣∣∣∣(actuali − estimatei)

actuali

∣∣∣∣∣ (2.3)

where n is the number of individual tasks in the set.

The MARE produced by a particular model is sensitive to the environment in which

the model is applied. Certain models have demonstrated widely varying MARE values when

applied to different projects in different organizations with different teams. Furthermore,

the calibration process appears to be one of the most significant influencing factors. For

example, one study found MARE values for all tested models varying from an average of

24

Model MARE Notes
Jeffery and Low, 1990 [19]

CLAIR 79% Average of three organizations with values
ranging from 43% to 117%.

Function Points 108% Average of six organizations with values rang-
ing from 39% to 132%

Kemerer, 1987 [25]
SLIM 772% Overestimated in all cases.
COCOMO 601% Overestimated in all cases.
Function Points (FP) 102% Function points to person months
Function Points (SLOC) 167% SLOC to person months
Function Points (FP to SLOC) 38% Large negative bias.
ESTIMACS 85% Low (92%) confidence level.

Mukhopadhyay et al., 1992 [30]
Expert Judgment 31% -
Estor 53% -
Function Points 103% -
COCOMO 619% -

Ruhe et al., 2003 [32]
Function Points 33% -
Web Objects 24% -
Expert Opinion 37% -

Schoedel, 2006 [34]
PROBE 14% Limited study of one student over 10 SQL pro-

grams with values ranging from 1% to 67%.
Yenduri et al., 2007 [44]

Expert Judgment 59% 14 projects
COCOMO II 35% 49 projects

Table 2.3: Sample MARE values.

57 percent to almost 600 percent [30]. Table 2.3 lists several MARE values from various

researchers and studies.

Practitioners should note that the MARE value represents the difference between an

estimate of effort for a task and the actual effort expended to complete the task. A MARE

value cannot reflect the complex environmental, architectural, and social factors that in-

evitably influence the time spent by an individual or team working to complete a task or

project [24]. This is why many estimates should be given in the form of a low and high value,

as opposed to a single value; these low and high values represent the reasonable best and

worst cases. Furthermore, an estimate – in its truest form – is designed to facilitate project

management controls, not predict the future. Therefore, while an “accurate” estimate is

25

desirable, an “inaccurate” estimate does not necessarily indicate a failure of the estimation

model.

Whereas the MRE and MARE values represent the “accuracy” of an estimate, practition-

ers must also take into consideration a variety of other factors, such as confidence interval,

prediction interval, and estimation bias. The confidence interval indicates the estimator’s

confidence that the actual effort will fall within the range of the estimate, assuming the

estimate is composed of a low and high value, such a “90 to 110 person hours.” A confidence

interval of 90% or higher is recommended for project planning models [28]. Therefore, an

estimator’s goal is to produce an estimate in which he or she has a high level of confidence

in its accuracy.

The prediction interval (PI) represents the low and high bounds of the estimate. For

example, an estimate of “90 to 110 person hours” for an activity has a prediction interval

of [90,110]. A natural correlation exists between the confidence interval of an estimate and

the prediction interval: as the prediction interval expands, the confidence in the estimate

should increase. For example, a prediction interval of “between 10 and 1,000 person hours”

is more likely to be correct than a prediction interval of “between 99 and 101 person hours.”

Therefore, an estimate should include both the prediction interval and the confidence interval.

The quality of an estimation model may be evaluated over a period of time by analyzing

the hit rate, width-accuracy correlation, and estimation bias. The hit rate is defined as the

percentage of time the actual effort falls within the prediction interval [23]. Equation 2.4

shows the formula for calculating the hit rate. This value can be compared to the confidence

interval; a hit rate that is lower than the confidence interval indicates overconfidence in the

estimate and vice versa.

26

HitRate =
1

n

∑
i

hi, hi =

{
1,mini ≤ actuali ≤ maxi

0, actuali > maxi ∨ actuali < mini

(2.4)

where mini and maxi are the minimum and maximum values, respectively, of the PI for the

effort estimate of task i ; actuali is the actual effort of the task i ; and n is the number of the

estimated task.

The width-accuracy correlation is a measurement of quality that attempts to determine

if the estimates produced by the model are the result of informed analysis or wild guessing.

It can be assumed that informed analysis will produce estimates with a high correlation

between accuracy of the most likely effort and PI width. In other words, narrow PI widths

should accompany accurate estimates, and wider PI widths should accompany inaccurate

estimates. Wild guessing would, theoretically, produce a low correlation between the PI

width and the estimate accuracy.

Equation 2.5 shows the formula for calculating the balanced relative error (BRE), which

is used as the foundation for the width-accuracy correlation, due to the fact that the BRE

allows for more realistic modeling of linear relationships, such the width-accuracy correlation.

BREi =
actuali − estimatei

min(actuali, estimatei)
(2.5)

where min(actuali,estimatei) is the lowest value for actuali and estimatei.

Lastly, a set of estimates can be used to determine if estimation bias exists (i.e. a

tendency toward the low or high ends of the PI). The Actual Effort Relative to PI (ARPI)

value can be a good indicator of estimation bias. ARPI is a measure of the distance between

the actual effort and the midpoint of the PI, normalized by the width of the PI. Equation

2.6 demonstrates the ARPI calculation.

27

ARPIi =
actuali − PI_midpoint

maxi −mini

(2.6)

where PI_midpoint = (Maxi + Mini) / 2

In summary, the quality of an effort estimation model’s output must be measured against

a variety of factors. First, the model’s accuracy – ability to predict future effort within an

acceptable margin of error – must be measured and evaluated (i.e. relative error and mag-

nitude of relative error). Next, the model’s output for a set of activities must be considered

(i.e. mean absolute relative error). Lastly, the attributes of an estimate should be considered

to address factors such as confidence, quality over time, and bias.

2.8 Estimation Techniques for the Individual

Despite the wide variety of existing research and products available to teams, individual

estimators possess few realistic options for deriving estimates for single tasks. Many of

the aforementioned techniques and approaches require a significant investment of time and

resources, which are not realistic for an individual to perform. An individual interested in

deriving personal estimates at the task level has a few limited options.

The most obvious and least time-consuming option for deriving estimates is expert

opinion, or guesswork. Naturally, the quality of estimates produced in this manner varies

widely with the experience of the estimator, the type of work, and the environment. In fact,

research suggests that subjective estimates are most accurate when derived from groups of

estimators, as opposed to lone individuals [16].

In opposition to guesswork are the established models based on many of the afore-

mentioned techniques and approaches. These established models require a significant time

investment in the form of organizational historical data, carefully derived multipliers, and/or

mathematical models. The required investment makes these models impractical for an indi-

vidual estimator to implement, leaving a handful of models constructed specifically for the

28

individual. PSP’s PROBE and the PCSE estimation approach are two such models designed

specifically for individuals and small task set estimation.

The PROBE tool is characterized by a highly structured approach to software devel-

opment, involving careful recordkeeping and data analysis. The fourteen-step estimation

method and the five-step estimation script (with an accompanying one-page worksheet) lead

estimators through the process of planning, preparing, and implementing a proxy-based esti-

mate [17]. Although this highly structured approach makes it a good fit for PSP advocates,

some practitioners see the “crushing clerical overhead” as too time consuming for certain

environments [20].

The PCSE process is currently under development at Auburn University. One goal

of the PCSE software process is to remain as lightweight as possible while providing the

most benefit. The use of a proxy-based estimation technique in PCSE – which requires

a moderate level of recordkeeping and a relatively simple regression formula – fits nicely

between guesswork and PROBE.

The agile development movement tends to avoid complex and highly structured software

processes and relies on simpler techniques, such as expert judgment or expert opinion. For

example, Scrum endorses an agile, expert opinion-based approach to estimating effort, such

as Planning Poker, which involves the entire team [35]. The key feature of Scrum estimates

are the use of abstract values, such as Fibonacci numbers or story points to represent the

relative size of a task, rather than actual size in hours, days, or weeks.

Taking into consideration the lightest weight approaches to effort estimation in terms

of time spent preparing to derive an estimate, team-oriented models, such as COCOMO and

SLIM, are impractical for an individual to set up, tune, and operate for single tasks. Guess-

work/expert opinion requires the least commitment, as there is no mandatory recordkeeping

requirement. PROBE and PCSE require the practitioner to maintain a detailed record of

work activities; however, no additional analysis – such a deriving cost drivers – is required to

29

begin preparation of the estimate. In terms of pre-estimation time investment, a gap exists

between guesswork and PROBE/PCSE.

With regard to time spent deriving an estimate, the alternatives – guesswork, PROBE,

and PCSE – represent varying investments. Guesswork, arguably, requires the least time

investment, as the estimate is derived as a result of careful consideration on the part of the

estimator; no formal standards exist as to what steps should be employed to derive a value.

PROBE and PCSE require a series of forms to be completed along with a set of non-trivial

calculations. Arguably, PCSE’s forms and calculations are less in-depth and complex than

PROBE, however, both instances require larger time investments than guesswork. Again, a

gap exists between guesswork and PROBE/PCSE, this time in terms of time spent calculating

an estimate.

As previously mentioned, a study of PSP’s PROBE model demonstrated a MARE value

of 14%. On the other hand, studies of expert opinion-based estimation demonstrate MARE

values ranging from 31% to 59%. Although the scope of the PROBE study was extremely

limited, it is logical to assume that a structured estimation model would, on average, produce

more accurate results than unstructured guesswork. This implies a third aspect to the gap

between guesswork and established estimation models: accuracy. Arguably, these three

aspects – preparation time, execution time, and accuracy – define an exploitable space

between the simplest estimation approach (guesswork) and the lightest-weight established

models (PSP/PROBE and PCSE).

2.9 Summary and Conclusions

Effort estimation plays an important role in software development. A broad spectrum

of approaches, tools, and techniques exist to support the estimation process. The quality

of the models built upon these techniques may be measured by their accuracy, consistency,

and specificity. In fact, most models present organizations with an opportunity for improved

project and risk management, regardless of their specific ability to predict the future.

30

A vast majority of these tools and techniques focus on teams or projects; few approaches

address the needs of the individual software engineer or microISV. The exceptions are PSP

and PCSE, the only two processes specifically designed for individuals. However, the time

investment in both PSP and PCSE are non-trivial. The space between guesswork and

these two estimating approaches is wide enough to accommodate a new model, targeted at

individuals interested in an estimation approach that outperforms guesswork without the

overhead of the estimation models currently available.

Ideally, an estimating approach tailored to the individual – such as a consultant, team

member, or microISV owner – would have the features of simplicity, speed, and relative

accuracy. Such attributes would naturally increase the likelihood of adoption and continued

usage. While PSP represents a model designed specifically for the individual and PCSE

represents a highly streamlined model, neither fully bridges the gap between established

models and guessing.

31

Chapter 3

SISE: A Novel Approach to Individual Effort Estimation

3.1 Abstract

Individuals rely on their personal processes to develop software in a systematic and

structured manner. Time management, which relies on relatively accurate effort estimation

techniques, has been shown to be a key component in planning and executing software

development activities. Despite a plethora of research into team-based effort estimation

models, few models are suitable for use by individual software engineers. Models tailored

to the individual include guesswork, an approach commonly used in industry; the PCSE

model, under development at Auburn University; and the PROBE model, the only peer-

reviewed model devoted to lone software engineers. This spectrum of choices features a

gap between guesswork and more formal models, which could be filled with a lightweight,

agile, and reasonably accurate alternative. The SISE model combines expert judgment –

in the form of relative sizing decisions – with empirical, historical data to create such an

alternative. The SISE model is based on a four-step process in which historical tasks are

sorted by actual effort values; a future activity’s effort is forecasted, relative to the historical

tasks’ requirements; and a prediction interval is constructed for the future activity.

3.2 Introduction

In recent years, dramatic changes to the software industry have brought individual

developers to the forefront of software engineering practices. In addition, the rise of the

software micropreneur in markets such as mobile app development and web applications

has reinforced the need for lightweight, agile software engineering practices. For example,

32

recent surveys of the microISV industry have shown that time management and related

issues topped their founders’ list of “pain points” [39]. Historically, however, many of the

software process tools available to software engineers have been team-oriented, making them

impractical for the individual to benefit from their usage [38].

In response, researchers at Auburn University have been focusing their efforts on con-

structing tools targeted directly at the individual software engineer. One such tool is the

SISE effort estimation model.

SISE is a lightweight, agile model designed to construct estimates based on expert

knowledge and empirical evidence. In this respect, SISE outperforms simple guesswork,

while incurring a much lower overhead than traditional, established models, which rely on

complex software, algorithms, or mathematical calculations. The SISE Model

“SISE” is an acronym for the model’s four-step process. The four steps, in order, are

Sort, Identify, Size, and Evaluate. The first step – Sort – involves the ordering of historical

data by the actual effort required to complete the activity. The second step – Identify

– involves choosing two tasks from the historical data set: one confidently known to be

smaller, one confidently known to be larger, and both relatively close in size to the future

work. Using this pair of tasks, the estimator begins the third step – SizeÑby producing a

rough prediction interval of the future activity’s size using the actual effort values for the

two completed tasks. The final step – Evaluate – involves shifting or resizing the prediction

interval to account for any historical bias. This last step is optional and is only applied if

the estimator is dissatisfied with the precision, accuracy, or confidence level of his or her

estimate.

The design of the SISE model focuses specifically on the individual software engineer.

Its estimates are based solidly on empirical data gathered by the software engineer and only

applicable to that person. Personal skills and experiences are too numerous to list, quantify,

and apply to every estimation scenario. Therefore, the SISE model seeks to join empirical

33

data to the process of expert judgment. This results in a model that must be individually

calibrated by each software engineer using his or her own personal data.

3.3 The SISE Steps

3.3.1 Step 1: Sort

The Sort step involves the ordering of historical data by the actual effort required to

complete the activity. The simplest approach is to maintain an electronic record of historical

data, such as a spreadsheet or database. The data is then sorted by the actual effort, from

smallest to largest. Next, the numeric values associated with each historical data point –

estimated effort, actual effort, etc. – are hidden, leaving only the text description of the

completed tasks; this prevents the software engineer from selecting tasks based on a desired

numeric outcome, such as “eight hours.”

3.3.2 Step 2: Identify

Next, the description of the future activity is compared to the descriptions of the histor-

ical tasks. Two historical tasks must be located: one confidently smaller and one confidently

larger than the future activity. The smaller task should be one which the estimator is con-

fident is smaller than the future activity, but is as close as possible in size to the future

activity. The larger task should be the inverse: larger in size, but still relatively close. Since

the historical data set is already sorted, a very efficient way of locating these two tasks is

through the use of a binary search algorithm.

3.3.3 Step 3: Size

Once the practitioner has chosen a pair of tasks, the third step – Size – produces a rough

prediction interval of the future activity’s size. The size of the future activity is inferred by

looking at the actual effort values of the two historical tasks. For example, assume the

historical record contains twenty completed tasks and the estimator has selected tasks 9 and

34

14 as the two tasks confidently believed to be smaller and larger, respectively, than the future

activity. The rough size of the future activity can, therefore, be inferred to fall between the

actual sizes of tasks 9 and 14.

Prediction intervals are expressed using a low estimate and a high estimate, with the

actual value expected to fall somewhere in between. Prediction intervals are expressed using

the notation “[low, high].” For example, the prediction interval [5, 7] means we expect the

actual value to fall somewhere between five and seven hours, inclusive [23].

The actual effort values associated with the bracketing tasks represent the low bound

and high bound of a prediction interval. However, this interval is a rough estimate of the

expected effort and may need to be refined.

3.3.4 Step 4: Evaluate

The final step – Evaluate – is optional and may be applied in the event the estimator is

dissatisfied with the precision, accuracy, or confidence level of the estimate. The estimator

may choose to shift the prediction interval based on an analysis of his or her historical

bias. This involves analyzing the practitioner’s track record with using SISE and implies a

prerequisite: the practitioner has been using SISE or some other prediction interval-based

estimation approach and has an idea of his or her historical accuracy. This historical bias

is then used to modify the rough estimate to produce a specific estimate. For more details

on how to shift a prediction interval based on historical bias, refer to the sidebars Removing

Shift Bias and Removing Width Bias.

It should be noted that within the SISE model estimation bias is not an indication or

measure of error committed by an estimator. Rather, it is a measure of how the best efforts

of the estimator translate through the SISE model to create an estimate that mirrors actual

effort.

35

Removing Shift Bias
Shift bias involves a prediction interval that is too low or too high and may be corrected by
shifting the interval. Shift bias exists only if the historical actuals fall predominately below
or above the associated prediction intervals; estimation error that is spread equally between
overestimates and underestimates is a width bias and must be corrected in a different manner.

To determine if a shift bias exists, a form of simulation must be conducted. The simulation
involves (1) compiling a list of the historical estimation error values, (2) shifting all the
historical prediction intervals by each error value, then (3) checking the change in overall hit
rate with each shift.

Consider, for example, the following historical data:

Activity Prediction Interval Actual Error
Task 1 10-15 hours 16 hours 1
Task 2 12-16 hours 18 hours 2
Task 3 2-5 hours 5 hours 0
Task 4 1-3 hours 3 hours 0

The hit rate for the unmodified data set is 50%. All the prediction intervals could be shifted
by 1 hour, which would cause Task 1 to become a successful prediction. Additionally, all
the prediction intervals could be shifted by 2 hours, which would cause Task 2 to become
successful. But how would these shifts affect the other predictions?

If all the prediction intervals are shifted by 1 hour, the hit rate rises to 75%; task 1’s prediction
interval now contains the actual effort and Tasks 3 and 4 are still successful. If the intervals
are shifted by 2 hours, the hit rate rises to 100%. So, given this limited data set, shifting
future estimate’s prediction intervals by 2 hours may produce more accurate results.

36

Removing Width Bias
Once shift bias has been accounted for, the estimator may wish to either improve their preci-
sion or confidence level. This action involves a trade-off since increasing one reduces the other.
For example, if the estimator wishes to increase their confidence level, the prediction intervals
must be widened, making the estimates less precise. If the estimator wished to increase the
precision of their estimates, by reducing the size of the prediction interval, the confidence level
in the estimate will be proportionally reduced.

Improving the confidence level is accomplished by symmetrically widening all past prediction
intervals by whatever amount is necessary to reach a hit rate equal to the desired confidence
level. For example, if the historical record demonstrates a hit rate of 50% and the estimator
would like to reach a confidence level of 80%, then all the past estimates’ prediction intervals
are widened until 80% of the actuals fall within the associates prediction intervals.

The inverse operation may be performed to improve the precision of the estimates. Past
prediction intervals may be symmetrically reduced in size until the desired prediction interval
width is reached. The new (and reduced) confidence level may then be calculated by checking
the hit rate for the entire historical record.

Here’s an example of how widening the prediction interval may allow for an increase in the
hit rate from 60% to 80%.

Activity Original Prediction
Interval

Actual New Prediction
Interval

Task 1 10-15 hours 10 hours 9-16 hours
Task 2 12-16 hours 16 hours 11-17 hours
Task 3 5-7 hours 6 hours 4-8 hours
Task 4 9-11 hours 12 hours 8-12 hours
Task 5 13-15 hours 11 hours 12-16 hours

Shifting the prediction intervals would not have improved the hit rate; however, if all the
prediction intervals are increased by two hours (-1 to the low and +1 to the high), the hit
rate moves from 60% to 80%.

37

3.4 Getting Started with SISE

Introducing the SISE model into an individual’s software process is simple. As with all

regression-based approaches, the first step is to begin tracking effort expended to complete

the work activities. As each new task is completed, it is recorded in the historical record

with its description, estimated effort, actual effort, etc. This historical record will be the

basis for all future estimates. If an estimator has already been tracking his or her time, then

this information may be used, as long as it matches the granularity of the future activities

to be estimated.

The software engineer produces a SISE estimate by reviewing his or her historical record.

The historical record is sorted from smallest to largest by actual effort and the numeric values

are hidden from view (step 1). The engineer reviews the list looking for a task that he or

she is confident is smaller than the future activity. If a task is located (step 2), the actual

effort is revealed and that value is recorded as the low end of the future task’s prediction

interval (step 3). If the estimator is not confident that any historical task is smaller than the

future activity, then a value of zero is recorded as the low end of the future task’s prediction

interval.

Next, the estimator reviews the list a second time to locate a confidently larger task,

again using only the descriptions of the future and historical tasks. If one is located, the

actual effort value is revealed and recorded as the high bound of the future task’s prediction

interval. If a larger task cannot be confidently identified, then the upper bound of the future

activity’s prediction interval is recorded as “unknown” using the sign for infinity (∞).

With the prediction interval for the future activity established, the software engineer

proceeds with work on the activity. Once the activity is completed, the actual effort is

recorded in the historical record and the process repeats.

38

Measuring Accuracy
The accuracy of a single value estimate is determined by the magnitude of the estimate’s
error, relative to the actual effort. For example, if an activity is estimated to take 4 hours,
but actually takes 5, the magnitude of relative error (MRE) is 0.2 (or 20%). Here is the
formula:

MRE = (actual-estimate)/actual

When using prediction intervals to describe an effort estimate, the practitioner’s accuracy is
determined by the number of activities with actual effort values that fall within the predicted
interval. Here’s the formula:

Hit Rate = No. hits / No. estimates

For example, consider the following list of work activities.
Activity Prediction Interval Actual
Task 1 10-15 hours 12 hours
Task 2 12-16 hours 15 hours
Task 3 2-5 hours 5 hours
Task 4 1-2 hours 3 hours
Task 5 16-22 hours 15 hours
Task 6 9-13 hours 12 hours
Task 7 4-6 hours 5 hours
Task 8 6-8 hours 8 hours
Task 9 3-4 hours 4 hours
Task 10 6-10 hours 9 hours

Eight of the ten activities were completed within the time frame defined by the prediction
interval; Tasks 4 and 5 took more and less time, respectively, than predicted. Therefore, the
hit rate for this sample is 0.8, or 80%.

3.5 Accuracy, Precision, and Confidence Level

By using a prediction interval as the basis for estimates, the SISE model presents the

software engineer with a competing set of factors: accuracy, precision, and confidence.

The accuracy of an estimate is measured in different ways depending on the type of

estimate. Many project managers and project management applications expect an effort

estimate to be phrased as a single value. Single value estimates are easy to understand,

simple to aggregate, and are expected to be wrong. After all, what is the probability that

an activity estimated at 10 hours will take exactly 600.00 minutes? Therefore, the accuracy

of a single value estimate is measured in terms of its error (see sidebar titled Measuring

Accuracy).

39

The accuracy of a prediction interval, on the other hand, is measured by how often

the actual effort falls within the interval. The overall percentage of actual effort values

falling within their prediction intervals is known as the hit rate. Several logical observations

can be made about the use of a hit rate. First, wider prediction intervals are less precise

and will typically produce higher hit rates; conversely, smaller prediction intervals are more

precise and will typically produce lower hit rates. In other words, precision and accuracy are

inversely proportional, generally tasking the estimator with balancing the two.

For ease of use, the SISE model deliberately takes a statistically simplistic approach to

assigning confidence levels; the model assumes the software engineer will repeatedly employ

the same method for determining relative size and creating estimates. Based on this assump-

tion, the estimator’s past performance can be used as a predictor of future performance. For

example, if an estimator’s hit rate is 50%, it can be said that half of the activities they

have estimated have had actual effort values that fell within his or her prediction interval.

Therefore, all things being equal, a new estimate has a 50% probability of being correct. Put

another way, the estimator has a 50% confidence level in his or her next estimate.

Note that confidence level should not be confused with an estimator’s logical or emo-

tional confidence in his or her abilities and estimates. It can be assumed that when an

estimator produces an estimate, he or she does so to the best of their ability; the estimator

is confident the estimate is correct. Confidence level, on the other hand, is a measure of the

probability that the estimate will be correct and allows the estimator to make statements

such as:

In the past, my estimates have been correct 90% of the time. Therefore, I have

a 90% confident level in my next estimate, which I feel confident I have done my

best in constructing.

Beginning with the first estimate, the SISE model assigns each new estimate a confidence

level based on the estimator’s current hit rate. As noted in the fourth step of SISE, however,

the estimator may take steps to adjust this confidence level by compensating for historical

40

S
m

al
le

r→ Task Low Est.
(hours)

High Est.
(hours)

Actual
(hours)

Design security model 0 ∞ 10

←
L
ar

ge
r

Hit rate = 100%

Table 3.1: One completed activity.

bias (see sidebar Adjusting for Width Bias and Adjusting for Shift Bias). Note that shift

and width biases are not to be viewed as errors on the part of the estimator; rather they

are to be viewed as the manner in which the SISE model adapts to an individual software

engineer’s perspective of past and future work.

3.6 SISE Example

Assume a software engineer, who has never engaged in time tracking, has decided to

begin using the SISE model for his web development project. The developer been assigned

a new work activity: “Design security model.” Given that the software engineer’s historical

record is empty, he has no data points for an estimate; no smaller task or larger task can be

identified to use as the basis for a prediction interval. Therefore, following the SISE model,

the prediction interval for the first activity is [0, ∞]. Once the first activity is completed

and the actual value is recorded, the hit rate is calculated to be 100% (see Table 3.1).

The next activity assigned to the software engineer is to “Design the user model.” Since

only one items exists in the historical record, the first SISE step (sorting) is complete by

default. Our software engineer hides all but the first column and compares the future activ-

ity’s description to the task description in the historical record. He decides that designing

a user model is easier than designing a security model; we have a larger historical task, but

no smaller one. The estimate, therefore, is a prediction interval of [0,10]. Our confidence in

the estimate is equal to the hit rate, which is currently 100%.

41

S
m

al
le

r→ Task Low Est.
(hours)

High Est.
(hours)

Actual
(hours)

Design user model 0 10 8
Design security model 0 ∞ 10

←
L
ar

ge
r

Hit rate = 100%

Table 3.2: Two completed activities.

S
m

al
le

r→ Task Low Est.
(hours)

High Est.
(hours)

Actual
(hours)

Design user model 0 10 8
Design security model 0 ∞ 10

←
L
ar

ge
r Design content model 8 10 11

Hit rate = 67%

Table 3.3: Three completed activities.

Work proceeds and the activity is completed in eight hours. The estimate and actual

are recorded and the new hit rate is calculated to be 100% (see Table 3.2). For convenience,

the historical data in these examples will be kept sorted from smallest to largest task.

The third activity is assigned to the software engineer: “Design the content model.” Our

software engineer scans the historical record, after hiding the numeric values, and decides

that “designing a user model” is smaller and “designing a security model” is larger. Therefore,

the prediction interval for the future activity is set at [8, 10]. The work is completed with

an actual effort of 11 hours, giving a new hit rate of 67%, with two of the three completed

tasks falling within his prediction intervals (see Table 3.3).

A fourth activity is assigned to the software engineer: “design database tables.” By

scanning the historical record’s task descriptions, the software engineer decides the confi-

dently larger task is “design content model,” but is unable to designate a smaller task. The

prediction interval, therefore, is set as [0, 11].

42

S
m

al
le

r→ Task Low Est.
(hours)

High Est.
(hours)

Actual
(hours)

Design database tables 0 11 6
Design user model 0 10 8

←
L
ar

ge
r Design security model 0 ∞ 10

Design content model 8 10 11

Hit rate = 75%

Table 3.4: Four completed activities.

The confidence level is assumed to be 67%, based on the historical hit rate. After

referring to the sidebars on adjusting for bias, the software engineer considers making a shift

adjustment. A one-hour upward shift of all the historical prediction intervals would move

the hit rate from 67% to 100%. This leaves the estimator with two choices. The estimate’s

prediction interval could be shifted one hour upward to account for a possible historical bias,

or the estimate could be left alone. In short, the estimator now has two options to choose

from: [0, 11] with a 67% confidence level or [1, 12] with a confidence level of 100%. Assume

the estimator chooses to not shift the estimate due to the small data set size; the work is

performed and recorded (see Table 3.4).

Assuming the software engineer proceeds in this fashion, he will accumulate a sizable

historical record. With each hit or miss within the prediction interval, the hit rate will

rise and fall. The software engineer may, at some point, choose to adjust a future estimate

for width bias in order to increase his confidence level in a new estimate. Here’s a simple

example, assuming ten completed tasks, with no verifiable shift bias to correct.

As Table 3.5 indicates, the hit rate is 70%, with three of the ten tasks falling outside

their prediction intervals. A future activity, “Create Contact Us page,” has been assigned

a prediction interval of [2, 8] and the confidence level is assumed to be 70%. In this case,

however, the manager has requested a higher confidence level. To accomplish this, the

software engineer adjusts for width bias.

43

S
m

al
le

r→ Task Low Est.
(hours)

High Est.
(hours)

Actual
(hours)

Missed
Prediction
Interval?

Design FAQ data model 0 4 2
Create FAQ classes 2 6 2
Create security classes 2 8 3
Create user classes 5 8 4 Yes
Create database tables in MySQL 0 6 5
Design database tables 0 11 6
Design user model 0 10 8
Design security model 0 ∞ 10

←
L
ar

ge
r Design content model 8 10 11 Yes

Create data connector classes 0 11 14 Yes

Hit rate = 70%

Table 3.5: Ten completed activities.

S
m

al
le

r→

Task Low
Est.
(hours)

Adj.
Low

High
Est.
(hours)

Adj.
High

Actual
(hours)

Missed
Prediction
Interval?

Design FAQ data model 0 0 4 5 2
Create FAQ classes 2 1 6 7 2
Create security classes 2 1 8 9 3
Create user classes 5 4 8 9 4
Create database tables in MySQL 0 0 6 7 5
Design database tables 0 0 11 12 6

←
L
ar

ge
r Design user model 0 0 10 11 8

Design security model 0 0 ∞ ∞ 10
Design content model 8 7 10 11 11
Create data connector classes 0 0 11 12 14 Yes

Hit rate = 90%

Table 3.6: Adjusting for width bias.

The margins of error for each of the three tasks are one hour, one hour, and three hours,

respectively. If the prediction intervals for all historical tasks were increased by one hour in

each direction, the hit rate would rise to 90%. See Table 3.6.

Therefore, the prediction interval for the future activity “Create Contact Us page” must

also be adjusted using a one-hour expansion, making it [1, 9] with a confidence level of 90%.

In summary, the software engineer has a choice between two, fact-based estimates: [2,8] with

a 70% confidence level or [1,9] with a 90% confidence level.

Each of the subsequent iterations through the SISE model follows a similar pattern to

those reviewed above. The software engineer is assigned a new activity to complete. The

activity is compared to previously completed tasks to identify a smaller and larger task,

44

which leads to a prediction interval. The prediction interval is adjusted, if necessary and

possible, to achieve a desired confidence level or prediction interval.

3.7 Validation of SISE

The SISE model has been validated through a multi-step process. First, over 100 soft-

ware engineering students participated in a relative sizing activity, where they were asked to

identify the larger of two tasks, based solely on the task descriptions. The results demon-

strated that a majority of students were able to identify the larger task two-thirds of the

time. Equally as important, the results indicated that students, on average, were unlikely to

incorrectly identify a task’s size; instead, they tended to identify the tasks as similar in size.

The next step in validating SISE involved sizing estimates using classroom programming

assignments. Each student constructed a SISE-style estimate, as well as, an estimate based

on a proxy-based model, derived from PSP’s PROBE model. Overall, the SISE model’s

predictions proved no more or less accurate than the proxy-based approach. In addition,

the students indicated that SISE, in their opinion, took less time and was based on less a

complex model.

3.8 Conclusion

The SISE model represents an empirically based approach to effort estimation that re-

lies less on complex mathematical models and more on intuitive expert judgment, without

sacrificing the quality of the final product. Software engineers willing to take the first tenta-

tive steps toward adopting a personal process now have access to a truly lightweight, agile

estimation model. The SISE model does not burden the practitioner with any more work

than the absolute minimum necessary to produce a reasonably accurate, fact-based effort

estimate. In addition, the model is the first of its kind, suitable for use by a single software

engineer.

45

Further development and improvements to the model are currently underway at Auburn

University’s microISV Research Lab. We are formalizing ways in which the SISE model may

be integrated into team-based software processes, as well as tool development. For more

information, visit our website at http://microisvresearch.org.

46

Chapter 4

Validation of the SISE Model

4.1 Abstract

Personal software processes rely on individuals approaching software development ac-

tivities in a systematic and structured manner. Time management has been shown to be

a key component in meeting obligations, but relies on relatively accurate effort estimation

techniques. Despite a plethora of research into team-based effort estimation models, few

models are suitable for use by individual software engineers. Models tailored to the indi-

vidual include guesswork, an approach commonly used in industry; the PCSE model, under

development at Auburn University; and the PROBE model, the only peer-reviewed model

devoted to lone software engineers. This spectrum of choices features a gap between guess-

work and more formal models, which could be filled with a lightweight, agile, and reasonably

accurate alternative. The SISE model combines expert judgment – in the form of relative

sizing decisions – with empirical, historical data to create such an alternative. Four key fea-

tures of the model have undergone validation through a series of surveys and experiments:

relative sizing by software engineers, model accuracy, perceived time investment, and per-

ceived value. This research has demonstrated that software engineers are generally capable

of sizing development tasks relative to each other based solely on the tasks’ descriptions,

which is a key feature of SISE. Additionally, this research has demonstrated that the SISE

model’s accuracy is not significantly different from that of PROBE, its nearest validated

competitor. This research has also indirectly demonstrated that software engineers perceive

the SISE model to require a smaller time investment than the PROBE mode, by relative

comparison to the PCSE model, which represents a subset of the PROBE model. Lastly, this

47

research has demonstrated that software engineers perceive the value of the SISE model’s

results to be higher than that of guesswork.

4.2 Introduction

Software engineering as a discipline seeks to create a systematic and structured approach

to the development of software. In order to effectively manage software development efforts,

monitoring and controlling activities must be applied, especially at the team level. However,

such management activities should also be self-imposed by individual software engineers as

they manage themselves and their individual efforts. Time management is one of the most

critical of these elements. A software engineer must be willing and capable of properly

allocating his or her time and effort as necessary to either complete tasks on time or provide

project management resources with the information necessary to properly manage risks.

A major component of time management is the forecasting of future effort, known as

effort estimation or, less formally, sizing. The ability of a software engineer or engineering

team to predict future effort directly impacts the ability to allocate resources, schedule

development cycles, and meet client needs in a timely fashion. As a result, a great deal

of time and effort has been spent developing estimation models for teams. These models

encompass the full spectrum, from lightweight, agile models such as Planning Poker, to

complex, all-encompassing models such as COCOMO.

The vast majority of effort estimation models rely on a team of individuals to set up

and implement. Planning Poker, for example, relies on the members of a team to discuss

requirements, share their thoughts, and iteratively refine a series of estimates. COCOMO, on

the other hand, requires weeks, months, or years of data collection and planning to properly

tune the core metrics that drive the underlying estimation model, which is focused on large-

scale effort that are too large for a single developer to attempt. As a result, individual

software engineers do not have access to a simple, agile estimation tool to use for their own

benefit when posed the all-too-common question “When can you have this done?”

48

Two estimation models exist, which were specifically designed for the individual software

engineer. Watts S. Humphrey introduced the first model – PROBE – in A Discipline for

Software Engineering [17]. PROBE relies on careful record-keeping and the use of proxies to

estimate future effort. The underlying model is built upon a series of complex mathematical

formulas and workflows to derive an estimate. The second model – PCSE – is currently

under development at Auburn University and it also relies on the use of proxies to build

estimates, but uses only a subset of PROBE features.

The final estimation approach frequently used in industry is expert judgment, commonly

known as guesswork [21]. Expert judgment relies on an individual software engineer’s ability

to assign a numeric value to the estimate based on his or her knowledge, experiences, and

intuition. Expert judgment is not a prescriptive model and estimators may use a variety

of conscious or subconscious approaches to construct the estimate, such as analogy or work

breakdown [42] [26].

Unlike the complete spectrum of effort estimation options available to teams, the indi-

vidual software engineer’s array of estimation tools has a gap. The gap falls directly between

expert knowledge and the two aforementioned models (PROBE and PCSE). Any viable

solution for filling this gap would be best describes as lightweight, agile, and reasonably

accurate.

4.3 SISE: An Agile Estimation Model

The SISE model is designed to provide individual software engineers with a lightweight,

agile, and reasonably accurate effort estimation model. The SISE model is built upon a few

common estimation concepts. First, SISE relies on regression, the principle that future effort

may be predicted based on past actual effort. Second, effort predictions should always be

formulated as a prediction interval: a range in which the actual effort is expected to fall.

Third, a confidence level must be assigned to any estimate to indicate the likelihood of the

49

actual effort falling within the prediction interval. Lastly, the confidence level for an estimate

is directly related to the practitioner’s historical accuracy in constructing estimates.

Building on these four concepts, the SISE model assumes the following: a past activity,

which is perceived to be smaller than a future activity, may be used as the low bound of

the future task’s prediction interval; the reverse is also true for a larger activity used as the

high bound of the prediction interval. In addition, an analysis of an estimator’s historical

accuracy (or error) in predicting future effort can be used to establish an optimal size for

the prediction interval as it correlates to a desired confidence level.

“SISE” is an acronym for the four-step process underlying the model: Sort, Identify,

Size, Evaluate. The model begins by having the estimator sort his or her historical work

activities by actual effort from smallest to largest. Next, a future task’s description is

compared to the descriptions of the past activities; comparisons of numbers (e.g. actual

effort, estimated effort, etc.) should be avoided to prevent the introduction of biases based

on unconscious guesswork by the estimator. The estimator must identify two tasks, one

perceived to be smaller than the future activity, one perceived to be larger, and both as

close to the future activity as possible. The actual effort values of these two tasks constitute

the rough prediction interval, or size, of the future task. The last step involves evaluating

the rough estimate and – if the estimator is dissatisfied with the precision, accuracy, or

confidence level of the estimate – adjusting for historical bias.

4.4 Relative Sizing

The first step in validating the SISE model lies in an examination of its core underlying

assumption: software engineers are generally capable of identifying the larger of two software

developments tasks. This principle of the SISE model was tested through a relative sizing

survey.

50

4.4.1 Hypothesis

The SISE model relies on the abilities of an estimator to predict the relative size of each

future activity, as compared to past, completed tasks. To confirm that a software engineer is

generally capable of relative sizing, a survey was constructed to test the following hypothesis:

Ha1: An estimator is, on average, capable of identifying the larger of a pair of

tasks, in terms of required effort to complete (selection accuracy > 0.5).

with the null hypothesis as

H01: An estimator is, on average, unable to identify the larger of a pair of tasks,

in terms of required effort to complete (selection accuracy ≤ 0.5).

4.4.2 Survey

Project data was gathered from the Auburn University’s Software Process course for the

last 10 years; the data represented 4,060 individual programming projects for 772 students

with 53 unique programming assignments. Students completing these assignments were

required to maintain a time log of their efforts. Table 4.1 lists the name, average effort,

and sample size for nine distinct tasks. Appendix C – Relative Sizing Survey Questions

contains the ten survey questions with the stated requirements, as provided to the students

completing the work and those responding to the survey.

Data Distribution

An inspection of the actual effort values demonstrated that the data points do not

follow a normal distribution. Figure 4.1 shows the entire dataset and Figure 4.2 shows the

less extreme data points between 1 and 1,000 minutes. Due to the non-normal distribution of

data, parametric tests, such as a t-test, were ruled inappropriate for data analysis; therefore,

non-parametric tests were utilized, such as the Mann–Whitney U test.

51

Assignment Avg. Effort (min.) Sample Size
CriticalPath 408.9 114
T-Dist 292.5 279
T-Dist2 285.7 29
ComponentInfo 265.2 27
5-Slot 215.8 29
Text 202.5 38
CalcCorr 200.6 28
A-M-S 194.0 84
M-P-P-S 143.1 49

Table 4.1: Average construction effort (in minutes).

Figure 4.1: Distribution of actual construction times (all data).

Figure 4.2: Distribution of actual construction times (values < 1,000 minutes).

52

No. Assignment Pair Diff. Psuedomedian 95% CI P-Value
1 T-Dist vs. M-P-P-S 173 105.0 75.0 - INF 1.007e-09
2 CriticalPath vs. T-Dist 91 67.0 37.0 - INF 0.0001667
3 T-Dist vs. 5-Slot 90 62.0 15.0 - INF 0.01516
4 Text vs. M-P-P-S 57 47.4 16.0 - INF 0.004951
5 T-Dist2 vs. CalcCorr 95 46.0 -5.0 - INF 0.06837
6 5-Slot vs. M-P-P-S 83 43.8 -5.4 - INF 0.05171
7 ComponentInfo vs. 5-Slot 362 38.0 -34.0 - INF 0.1399
8 Text vs. A-M-S 6 22.0 -6.0 - INF 0.1012
9 Text vs. CalcCorr 2 21.0 -20.0 - INF 0.1689
10 A-M-S vs. M-P-P-S 51 27.0 -3.0 - INF 0.06977

Table 4.2: Average construction time comparison for assignment pairs.

Task Pair Selection

Based on the student time logs, four diverse task pairs, numbered 1 through 4, were

identified, which have a statistically significant difference in size (95% confidence) based on

actual construction effort. Six uniform task pairs, numbered 5 through 10, were identified

that had no statistically provable difference in size. The statistical difference was determined

via a Mann–Whitney U test using R. Output Listings 1 - 10 show the results from R; Table

4.2 summarizes the task pairs, the difference in average construction times, an estimate of

the psuedomedian, the 95% nonparametric confidence interval for the difference, and the

associated p-value for the comparison.

4.4.3 Metrics

Estimators presented with two tasks that are significantly different in size (i.e. a correct

answer exists) should demonstrate a significant tendency to choose the larger of the two.

Given that random chance in an A/B scenario would result in 50% accuracy, a group of

estimators who demonstrate selection accuracy significantly greater than 50% are making

selections in a non-random manner. To determine if the group’s selection accuracy is sig-

nificantly greater than 50%, a 1-sample proportion test was employed using R (accuracy >

0.5).

53

Conversely, estimators presented with two tasks that are not significantly different in size

(i.e there is no correct answer) should approximate random chance in their selections. In this

case, a group of estimators who demonstrate selection accuracy significantly different from

50% are making selections in a non-random manner. To determine if the group’s selection

accuracy is significantly different from 50%, a 1-sample proportion test was employed using

R (accuracy 6= 0.5).

An additional metric was employed to determine if a significant proportion of the re-

spondents were able to select a simple majority of correct answers; since only task pairs 1-4

had a statistically correct answer, the respondents’ answers to task pairs 5-10 were excluded

from consideration. To determine if this proportion was significant, the number of respon-

dents who correctly identified more than half the larger tasks was compared to the total

number of respondents, via a 1-sample proportion test using R (proportion > 0.5). Output

Listing 21 lists the results.

Finally, a linguistic analysis was performed on the rationales provided by each respon-

dent to determine what general themes motivated his or her selections. The analysis involved

a subjective assignment of a theme category based on word and phrase choice, such as “com-

plex,” “familiar with,” or “number of methods.” The number of responses including each

theme was tabulated and compared.

4.4.4 Participants

Survey respondents were selected from Auburn University’s Department of Computer

Science and Software Engineer classes, including Software Process (COMP 5700) and Data

Structures (COMP 2210), in Fall 2012. The Software Process course is designed to pro-

vide: insight into process-oriented software development; exposure to common engineering

processes; and experience with a software process [12]. The Data Structures course is a

continuation of the introductory programming course with emphasis on data structures such

54

as lists, trees, graphs, and hash tables [6]. A total of 113 software engineering students

responded.

4.4.5 Questions and Presentation

The survey was presented as a ten page questionnaire, with each page detailing two task

descriptions, side-by-side. Appendix D – Attitudinal Survey Questions contains the complete

descriptions of each of the nine tasks used in the task pairs. The following instruction were

provided with each task pair:

Read the descriptions for the two tasks below. Based on your knowledge and

experience, select which of the two tasks you believe will require the most effort to

complete; this is the “larger” task. In the box at the bottom of the page, write the

number of the larger task. In the space provided, write a one-sentence justification

for selecting that task as the larger task.

Respondents were not allowed to specify that a task pair was equal in size and had to

choose a larger task in all instances.

In addition to the relative sizing questions, each respondent was asked to identify his or

her enrollment (undergraduate, masters, doctoral), program of study, and completed courses.

4.4.6 Results

Table 4.3 shows the respondents’ accuracy for task pairs 1-4 and the respondents’ selec-

tion of the first vs. second task for task pairs 5-10; the table also shows the corresponding

95% confidence interval for the proportion of correct answers.

Figure 4.3 also shows the results of the survey, including the accuracy of the responses

and the corresponding 95% confidence interval for the proportion. The possibility that a

particular answer was selected at random is 50%, as demonstrated by the red line. Response

ranges that do not include the 50% mark are considered to be non-random.

55

Task Pair Correct 95% Prop. CI
D
iv
er
se

1 84% 77-100%
2 71 63-100
3 50 41-100
4 63 63-100

U
ni
fo
rm

Task Pair First Task 95% Prop. CI
5 46% 36-55%
6 81 72-87
7 56 47-66
8 67 58-77
9 68 59-76
10 95 88-98

Table 4.3: Relative Sizing Survey Results.

Figure 4.3: Relative sizing survey results.

56

M-P-P-S T-Dist Total
Theme Count Pct. Count Pct. Count Pct.
Data 3 17% 0 0% 3 3%
Familiarity 3 17 14 15 17 15
Math 3 17 15 16 18 16
Methods 5 28 5 5 10 9
Planning 0 0 3 3 3 3
Problem 1 6 7 7 8 7
Reuse 0 0 4 4 4 4
Simplicity 2 11 44 46 46 41
Testing 0 0 2 2 2 2
Unspecified 1 6 1 1 2 2
Total 18 16 95 84 113

Table 4.4: Task pair 1 distribution of themes in respondents’ rationales.

Diverse Pairs

For task pairs 1, 2, and 4, the proportion of correct responses was significantly greater

than 50%, indicating non-random selection. The proportion of correct responses for task pair

3 was not significantly different from 50% and failed to demonstrate non-random selection.

The linguistic analyses of themes in the respondents’ rationales are listed in Tables 4.4 - 4.7.

For task pair 1, a significant majority of the respondents correctly selected the T-Dist

assignment as larger. The dominant theme was the simplicity of the M-P-P-S assignment or

the complexity of the T-Dist assignment, indicating a majority of the respondents intuitively

selected the larger task.

For task pair 2, a significant majority of the respondents correctly selected the Criti-

calPath assignment as larger. Although the dominant theme was, again, the simplicity or

the complexity, the respondents for this theme were roughly split between the two assign-

ments. However, a significant number of respondents voting in favor of the CriticalPath

assignment as larger, cited their familiarity with the assignment as the rationale, breaking

the tie. In addition, a large number of respondents cited the data handling requirements

and other problem-specific features of the Critical Path assignment as reason for choosing

it as the larger task. In summary, this indicates that a roughly equal number of students

57

CriticalPath T-Dist Total
Theme Count Pct. Count Pct. Count Pct.
Data 10 13 2 6 12 11
Familiarity 15 19 1 3 16 14
Math 1 1 2 6 3 3
Methods 6 8 4 12 10 9
Planning 7 9 2 6 9 8
Problem 11 14 4 12 15 13
Reuse 1 1 0 0 1 1
Simplicity 22 28 18 55 40 35
Testing 4 5 0 0 4 4
Unspecified 3 4 0 0 3 3
Total 80 71 33 29 113

Table 4.5: Task pair 2 distribution of themes in respondents’ rationales.

made an intuitive decision about the assignments’ relative size, some correctly and some in-

correctly. However, a significant number of students made their choices based on the larger

assignment’s complexity by evaluating the problem details, resulting in a correct decision,

on average.

For task pair 3, the respondents were split 56/57 between the T-Dist and 5-Slot as-

signments, despite the T-Dist assignment being historically larger. The provided rationales

indicated that a majority – 37 vs. 12 – of respondents intuitively (and incorrectly) viewed the

5-Slot assignment as more complex or the T-Dist assignment as simpler. On the other hand,

a larger majority – 22 vs. 2 – of respondents (correctly) cited the T-Dist assignment as larger

due to the size of the assignment in terms of lines of code, methods, or functions; in fact,

an optimal implementation of the 5-Slot assignment will primarily involve a single method,

called by the remaining methods with different parameter values. In summary, a significant

portion of the respondents failed to recognize certain attributes of the assignments, such as

code reuse, leading to an incorrect relative sizing.

For task pair 4, a significant majority of the respondents correctly selected the Text

assignment as larger. Although the dominant theme was the simplicity or the complexity,

the respondents for this theme were roughly split between the two assignments. However,

58

T-Dist 5-Slot Total
Theme Count Pct. Count Pct. Count Pct.
Data 4 7 0 0 4 4
Familiarity 6 11 6 11 12 11
Math 2 4 0 0 2 2
Methods 22 39 2 4 24 21
Problem 2 4 2 4 4 4
Reuse 1 2 4 7 5 4
Simplicity 12 21 37 65 49 43
Testing 0 0 2 4 2 2
Unspecified 7 13 4 7 10 9
Total 56 50 57 50 113

Table 4.6: Task pair 3 distribution of themes in respondents’ rationales.

a significant number of respondents voting in favor of the Text assignment as larger, cited

the complexities of file processing or other problem-specific attributes of the assignment,

breaking the tie. In summary, this indicates that a roughly equal number of students made

an intuitive decision about the assignments’ relative size, some correctly and some incorrectly.

However, a significant number of students made their choices based on the larger assignment’s

complexity by evaluating the problem details, resulting in a correct decision, on average.

In summary, when presented with two tasks of distinctly different size, a majority of

software engineering students were able to successfully identify the larger task in three-

quarters of the instances.

Uniform Pairs

An analysis of the responses to the uniform task pairs revealed varying results. In a

situation where there is no discernible difference in size for two tasks, one would expect the

survey responses to approach a random distribution in choosing between one task and the

other (i.e. the responses should be split 50-50). However, this only occurred for two of the

six uniform task pairs. For the other four, a majority of respondents selected one of the

tasks as larger.

59

M-P-P-S Text Total
Theme Count Pct. Count Pct. Count Pct.
Data 1 2 1 1 2 2
Familiarity 5 12 4 6 9 8
File 2 5 12 17 14 12
Math 4 10 5 7 9 8
Methods 5 12 3 4 8 7
Planning 1 2 6 8 7 6
Problem 8 19 11 15 19 17
Reuse 2 5 2 3 4 4
Simplicity 14 33 17 24 31 27
Testing 0 0 6 8 6 5
Unspecified 0 0 4 6 4 4
Total 42 37 71 63 113

Table 4.7: Task pair 4 distribution of themes in respondents’ rationales.

A linguistic analysis was performed on the respondents’ rationale for choosing a partic-

ular task. The analysis indicated that respondents were influenced either by specific aspects

of the problem definition or by the format, word count, and word choice of the requirements.

For task pair 5, the respondents were split 59/51, which is consistent with the fact that

neither assignment is historically larger than the other. The respondents cited a variety

of themes – familiarity, length of code, problem details, simplicity – with no single theme

demonstrating a significant majority. In summary, the students were unable to cite a single,

consistent reason for sizing one task larger than the other.

For task pair 6, respondents selected the 5-Slot assignment as larger than the M-P-P-S

assignment by more than a 4-to-1 margin. The two most commonly cited themes were the

relative simplicities/complexities of the assignments and the length of the required code. In

summary, a majority of the respondents incorrectly viewed the 5-Slot assignment as larger

than the M-P-P-S assignment, similar to the results of task pair 3.

For task pair 7, the respondents were split 57/55, which is consistent with the fact that

neither assignment is historically larger than the other. The respondents cited a variety of

themes – length of code, reuse, simplicity – with no single theme demonstrating a significant

60

CalcCorr T-Dist2 Total
Theme Count Pct. Count Pct. Count Pct.
Data 1 2 0 0 1 1
Familiarity 9 15 4 8 13 12
File 1 2 0 0 1 1
Math 3 5 3 6 6 5
Methods 7 12 18 35 25 23
Planning 1 2 0 0 1 1
Problem 3 5 7 14 10 9
Reuse 1 2 0 0 1 1
Simplicity 27 46 15 29 42 38
Testing 0 0 1 2 1 1
Unspecified 6 10 3 6 9 8
Total 59 54 51 46 110

Table 4.8: Task pair 5 distribution of themes in respondents’ rationales.

M-P-P-S 5-Slot Total
Theme Count Pct. Count Pct. Count Pct.
Data 0 0 1 1 1 1
Familiarity 0 0 2 2 2 2
File 1 5 0 0 1 1
Math 2 9 6 7 8 7
Methods 6 27 51 56 57 50
Problem 7 32 8 9 15 13
Reuse 3 14 2 2 5 4
Simplicity 2 9 17 19 19 17
Testing 0 0 2 2 2 2
Unspecified 1 5 2 2 3 3
Total 22 19 91 81 113

Table 4.9: Task pair 6 distribution of themes in respondents’ rationales.

61

ComponentInfo 5-Slot Total
Theme Count Pct. Count Pct. Count Pct.
Data 3 5 1 2 4 4
Familiarity 2 4 5 9 7 6
File 1 2 3 5 4 4
Math 4 7 5 9 9 8
Methods 9 16 11 20 20 18
Planning 3 5 3 5 6 5
Problem 4 7 1 2 5 4
Reuse 8 14 6 11 14 13
Simplicity 13 23 16 29 29 26
Testing 2 4 1 2 3 3
Text 5 9 2 4 7 6
Unspecified 3 5 1 2 4 4
Total 57 51 55 49 112

Table 4.10: Task pair 7 distribution of themes in respondents’ rationales.

majority. In summary, the students were unable to cite a single, consistent reason for sizing

one task larger than the other.

For task pair 8, respondents selected the Text assignment as larger than the A-M-S

assignment by a 2-to-1 margin. Two of the three most commonly cited themes were the rel-

ative simplicities/complexities of the assignments and the mathematics involved; references

to these themes were roughly split between the two assignments. The third commonly ref-

erenced theme was challenge of implementing code with file handling; respondents in favor

of the Text assignment as larger referenced this theme more often by a 10-to-1 margin. In

summary, a majority of the respondents incorrectly viewed the Text assignment as larger

than the A-M-S assignment due to the perceived complexities of the required file operations.

For task pair 9, respondents selected the Text assignment as larger than the CalcCorr

assignment by more than a 2-to-1 margin; it should be noted that the CalcCorr assignment

was accompanied by a six-page handout describing, in detail, the process for completing the

required mathematical calculations. The most commonly cited themes were the students’

familiarity with the requirements, relative simplicities/complexities of the assignments, the

requirement to read files, the requirements to process text, and the mathematics involved. Of

62

Text A-M-S Total
Theme Count Pct. Count Pct. Count Pct.
Data 1 1 0 0 1 1
Familiarity 7 9 2 5 9 8
File 20 26 2 5 22 19
Math 10 13 14 38 24 21
Methods 4 5 4 11 8 7
Planning 4 5 0 0 4 4
Problem 1 1 1 3 2 2
Reuse 1 1 0 0 1 1
Simplicity 18 24 7 19 25 22
Testing 2 3 0 0 2 2
Text 1 1 0 0 1 1
Unspecified 7 9 7 19 14 12
Total 76 67 37 33 113

Table 4.11: Task pair 8 distribution of themes in respondents’ rationales.

the respondents selecting the CalcCorr assignment as larger, a significant portion referenced

the file and text processing themes; of the respondents selecting the Text assignment as

larger, a significant portion referenced their familiarity, the mathematics, and the intuitive

judgment of the relative simplicity/complexity. In summary, a majority of the respondents

incorrectly viewed the Text assignment as larger than the CalcCorr assignment due to a

general attitude was that unstructured text processing presenting more inherent difficulties

than a highly structured and well-documented, complex math formula.

CalcCorr Text Total
Theme Count Pct. Count Pct. Count Pct.
Familiarity 2 6 11 14 13 12
File 7 19 2 3 9 8
Math 5 14 33 43 38 34
Planning 4 11 6 8 10 9
Simplicity 5 14 21 27 26 23
Testing 1 3 1 1 2 2
Text 12 33 0 0 12 11
Unspecified 0 0 3 4 2 2
Total 36 32 77 68 113

Table 4.12: Task pair 9 distribution of themes in respondents’ rationales.

63

For task pair 10, 95% of the respondents selected the M-P-P-S assignment as larger

than the A-M-S assignment, despite the fact that, based on the historical data, the A-M-S

assignment took an average of 51 minutes longer to complete (though this difference is not

statistically significant, given the small dataset). A review of the requirements and student

comments revealed the A-M-S assignment to be a subset of the M-P-P-S assignment; in

other words, to complete the M-P-P-S assignment, a software engineer would need to first

complete all the requirements of A-M-S, then, additional work would need to be done to

complete M-P-P-S. Interestingly, 95% of the respondents recognized this relationship and

identified the M-P-P-S assignment as larger.

In summary, when presented with two tasks in which neither task is significantly larger

than the other, software engineering students do not relied on a single, consistent method or

process; their decision-making involves a variety of influencers such as personal experience,

problem-specific attributes, word choice, and/or description length.

4.4.7 Individual Respondents

An analysis was performed to determine if a significant proportion of the respondents

were able to select a simple majority of correct answers. Since task pairs 1-4 were the

only pairs with a demonstrably correct answer, task pairs 5-10 were excluded. Of the 113

respondents, 72 correctly identified at least 3 out of the four larger tasks. Figure 4.4 shows

the distribution of correct answers among individual respondents and Output Listing 21

shows the 1-sample proportion test conducted using R (accuracy > 0.5).

In summary, the 95% confidence interval for the proportion of respondents with a sim-

ple majority of correct answers is 55.6-100% with a p-value < 0.0001 making the results

significant.

64

Figure 4.4: Distribution of percentage of correct answers (task pairs 1-4).

4.4.8 Conclusions

Overall, the survey results indicate that software engineers are generally capable of

identifying the larger of two tasks when the size difference is statistically significant. When

the two tasks are not significantly different in size, software engineers tend to choose based

on their perceptions of the task complexity, as influenced by the problem description. Lastly,

individual responses indicate that a significant proportion of software engineers are capable

of selecting a simple majority of correct answers.

Decision: Reject the null hypothesis H01 in favor of the alternate Ha1, concluding that

software engineers are generally capable of identifying the larger of two tasks.

4.5 Accuracy

Direct validation of the accuracy of the SISE model began in the Software Process

classroom in Fall 2012 and continued through Spring 2013. Prior to beginning their last

assignment of the semester, the students were asked to review the requirements and size it

relative to their past assignments; this relative sizing formed the basis for a SISE estimate.

The accuracy of these estimates was then compared to the accuracy of PROBE estimates,

collected from the Software Process course over a period from 2001 to 2008.

65

4.5.1 Hypothesis

The accuracy of the SISE model should, at a minimum, equal the accuracy of existing,

validated models, tailored to the individual. To confirm the relative accuracy of SISE, an

experiment was constructed to test the following hypothesis:

Ha2: The SISE model produces estimates that are equally or more accurate than

PROBE (accuracySISE ≥ accuracyPROBE).

with the null hypothesis as

H02: The SISE model produces estimates that are less accurate than PROBE

(accuracySISE < accuracyPROBE).

4.5.2 Experiment

Students enrolled in the Software Process course were taught and required to follow

a personal software process. Each coding assignment was accompanied by a spreadsheet,

completed by the student, which detailed his or her adherence to an individual software

process and activities as they related to the completion of the assignment. The components

of the spreadsheet that are relevant to this research include the description of the assignment’s

requirements, a detailed time log, and various estimates. Each student was instructed to keep

a careful record of time spent during each aspect of construction and project management.

From 2001 through 2008, the students in the Software Process course completed a por-

tion of their assignments by providing a PROBE effort estimate. A total of 34 distinct assign-

ments that included PROBE estimates were completed by students across twelve semesters.

Within that sample, 406 assignments produced valid estimates utilizing a prediction interval.

These estimates formed the basis for the accuracy measurement of the PROBE model.

In the Fall 2012 and Spring 2013 classes, students compiled a historical record of their

actual effort values by completing a series of six to seven coding assignments. Prior to

beginning work on their last assignment, the students completed a brief survey on the relative

66

sizing for the future assignment as compared to the completed ones; the results were used

to construct a SISE-style estimate.

From 2001 through 2012, for all assignments that did not include a PROBE or PCSE

estimate, the students were required to construct an estimate prior to beginning development

work based on their expert judgment. This estimate was included in their spreadsheets and

turned in with their completed work. No mechanism was imposed to prevent these estimates

from being constructed after development had begun or after it had been completed. Due

to this fact, the estimates based on expert judgment were not considered reliable to use for

accuracy comparisons.

The accuracy values for the PROBE and SISE models were compared to determine if a

significant difference in their respective accuracies existed.

4.5.3 Metrics

Both the SISE and PROBE models produced an estimate containing a prediction in-

terval. In addition, the PROBE model produced a single, planned effort value. The SISE

model, however, does not employ a prescriptive method for translating its prediction interval

into a single value estimate. Therefore, to construct a valid comparison between the two

models, the metric employed must rely on a comparison of prediction intervals, as opposed

to single value estimates.

Two methods are commonly used to evaluate estimation model accuracy. The first

method involves the calculation of the mean absolute relative error (MARE) for a set of

estimates [11]. The MARE value (see Equation 4.1) is an average of the magnitude of all

estimate errors and requires single value estimates to calculate.

67

MARE =
1

n

n∑
i=1

∣∣∣∣∣(actuali − estimatei)

actuali

∣∣∣∣∣ (4.1)

where n is the number of individual tasks in the set.

The second method of comparison involves a calculation of the estimation model’s hit

rate and requires that the original estimates be phrased in terms of a prediction interval.

A prediction interval (PI) represents the low and high bounds of the estimate. For

example, an estimate of “90 to 110 person hours” for an activity has a prediction interval

of [90,110]. The prediction interval width (PI width) is the difference between the high and

low bounds. The hit rate is defined as the percentage of time the actual effort falls within

the prediction interval [23]; Equation 4.2 shows the formula for calculating the hit rate.

Logically, the hit rate may be greatly affected by the PI width, which, in turn, relates to the

confidence level.

HitRate =
1

n

∑
i

hi, hi =

{
1,mini ≤ actuali ≤ maxi

0, actuali > maxi ∨ actuali < mini

(4.2)

where mini and maxi are the minimum and maximum values, respectively, of the PI for the

estimate of task i ; actuali is the actual effort of the task i ; and n is the number of the estimated

task.

Due to the fact that SISE only produces estimates in terms of a prediction interval, the

hit rate was chosen as the method for comparison to PROBE. In addition, the PI widths

were compared to give perspective to the relative hit rates.

4.5.4 Participants

The students involved in this experiment were, at the time, enrolled in Auburn Univer-

sity’s Software Process course (COMP 5700). The Software Process course is designed to

provide: insight into process-oriented software development; exposure to common engineer-

ing processes; and experience with a software process [12].

68

Figure 4.5: Sample PROBE calculation using the assignment spreadsheet.

4.5.5 Questions and Presentation

Students preparing a PROBE estimate utilized a custom spreadsheet, which guided and

facilitated the model’s calculations. Figure 4.5 shows an example.

In Fall 2012 and Spring 2013, the Software Process course had moved beyond the

PROBE estimation model and was employing PCSE estimates. In these semesters, prior

to the last assignment, each student was provided a summary of his or her actual effort

values from past assignments (see Table 4.13). The students were asked to review the sum-

mary data and answer the following questions before beginning work on the assignment

(approximately a week prior).

Place a check next to each past assignment that you are confident is smaller than

CA07 in terms of required effort to complete.

69

Assignment Actual Effort Description
CA06 272 min. Calculate effort based on historical

data.
CA04 298 min. Extract design components from a

file containing Python source code.
CA03 433 min. Determine the size of a software

component relative to a list of com-
ponents.

CA02 765 min. Analyze a time log.

Table 4.13: Sample assignment summary.

2 CA02

2 CA03

2 CA04

2 CA06

Place a check next to each past assignment that you are confident is larger than

CA07 in terms of required effort to complete.

2 CA02

2 CA03

2 CA04

2 CA06

Based on the results of these questions, the researchers constructed a SISE-style estimate

for each student. The accuracy of the SISE estimates was calculated and compared to the

historical accuracy of PROBE estimates.

4.5.6 Results

A total of 406 estimates were constructed using the PROBE model. Of that number, 176

assignments were completed within the estimate’s prediction interval and 230 fell outside.

The average PI width was 758 minutes.

70

A total of 77 estimates were constructed using the SISE model. Of that number, 26

assignments were completed within the estimate’s prediction interval and 51 fell outside.

The average PI width was 292 minutes.

The hit rates were compared using 2-sample test for equality of proportions with conti-

nuity correction in R. Output Listing 22 shows the results. The p-value of 0.07535 prevents

the rejection of the test’s null hypothesis that the SISE proportion is less than the PROBE

proportion. Therefore, it cannot be concluded that the accuracy of the PROBE model

out-performs the SISE model.

The PI width values for each model were analyzed and determined to follow a non-

normal distribution. Therefore, the comparison of the PI widths was conducted using a

Mann-Whitney U test (see Output Listing 23). At a 95% confidence interval, the p-value of

0.008988 indicated that the PI width values from the two data sets were significantly different.

A second Mann-Whitney U test was conducted (see Output Listing 24) to determine if the

PROBE PI widths were significantly larger than the SISE PI widths; the p-value of 0.004494

confirmed they were.

4.5.7 Conclusions

Overall, the analysis revealed that no provable statistical difference existed between

the accuracy of the PROBE and SISE models’ hit rates. In addition, the SISE model

demonstrated significantly smaller PI widths than that of the PROBE model, which may –

subjectively – be interpreted as more useful for project planning purposes.

Decision: Reject the null hypothesis H02 in favor of the alternate Ha2, concluding that

the SISE model estimates are equally or more accurate than PROBE.

4.6 Time Investment and Perceived Value

The next steps in validation of the SISE model involved demonstrating the model’s

required time investment and perceived value. To accomplish this, an attitudinal survey was

71

conducted in the Spring 2013 Software Process class, which had constructed estimates using

both expert judgment and PCSE in project assignments.

The PCSE model is based on a subset of the activities composing the PROBE model;

it follows that the complexity and time investment required to complete a PCSE estimate is

equal to or less than that of the PROBE model. Therefore, a comparison of the SISE model

to the PCSE model was determined valid in demonstrating the SISE model’s complexity and

required time investment as (indirectly) compared to the PROBE model.

4.6.1 Hypothesis

The amount of time spent constructing an estimate directly impacts a practitioner’s

perception of the model’s value and may influence the decision to use the model. The

direct comparison of SISE time investments to PCSE, which uses a subset of the PROBE

model, indirectly demonstrates SISE’s relationship to PROBE. To confirm the relative time

investment in a SISE estimate is less than that of a PCSE estimate, a survey was constructed

to test the following hypothesis:

Ha3: An estimator using the SISE model will invest less time in producing an

estimate as the time required using PCSE (timeSISE < timePCSE).

with the null hypothesis as

H03: An estimator using the SISE model will invest as much or more time in

producing an estimate as the time required to use PCSE (timeSISE ≥ timePCSE).

In addition, the perceived value of an estimate may influence a practitioner’s usage of a

particular model or approach. A comparison of the value of a SISE estimate to guesswork, a

commonly used approach, demonstrates a significant factor in adoption. To confirm that a

software engineer’s perception of value for a SISE estimate is greater than that of guesswork,

a survey was constructed to test the following hypothesis:

72

Ha4: An estimator introduced to the SISE model and underlying approach will

perceive the output of the model as equally or more useful than guesswork (val-

ueSISE ≥ valueGuess).

with the null hypothesis as

H04: An estimator introduced to the SISE model and underlying approach will

perceive the output of the model as less useful than guesswork (valueSISE < val-

ueGuess).

4.6.2 Survey

A survey was conducted of software engineering students to determine their attitudes

and opinions regarding the relationships between SISE, PCSE, and guesswork with respect

to their relative time investment and expected value. The survey presented twenty-six ques-

tions covering PCSE and SISE comprehension; model usage as compared to risk; and time

investment, complexity, and value comparisons.

4.6.3 Metrics

The answers to the survey questions followed either a Likert scale or categorical model.

The scaled responses allowed the student to choose along a rating scale such as “much more,”

“somewhat more,” “same,” “somewhat less,” and “much less.” The categorical responses

typically followed a pattern of “choice 1,” “choice 2,” or “neither.”

Once the survey responses were tabulated, a proportion was assigned to each response.

The responses were analyzed to determine if the number of people choosing a particular

response was significantly greater than the others by calculating a 1-sample proportions

test with continuity correction in R. In addition, the scaled responses were categorized into

more general “agree,” “disagree,” or “neither” values to determine if a particular category

demonstrated a significantly greater proportion than the others.

73

4.6.4 Participants

The students involved in this experiment were, at the time, enrolled in Auburn Univer-

sity’s Software Process course (COMP 5700). The Software Process course is designed to

provide: insight into process-oriented software development; exposure to common engineer-

ing processes; and experience with a software process [12].

4.6.5 Questions and Presentation

Appendix D – Attitudinal Survey Questions contains the complete list of survey ques-

tions. The questions relevant to this research include: contrasting the time investment

required for SISE to that of PCSE and contrasting the perceived value of a SISE estimate to

that of expert judgment.

21. The PCSE and SISE effort estimation models take two distinct approaches

to constructing an estimate.

(Descriptions of models omitted for brevity.)

Based on the descriptions of each model, select the statement below that best

described your impression of the PCSE model as compared to the SISE model in

terms of time investment.

2 I believe the PCSE model would require a larger time investment than the

SISE model.

2 I believe neither model is more time-consuming to utilize than the other.

2 I believe the SISE model would require a larger time investment than the PCSE

model.

26. Based on the description of each the SISE model and your experience with

expert judgement (i.e. guesswork), select the statement below that best described

your impression of the SISE model as compared to expert judgement in terms of

the value of the estimate produced.

74

2 I believe the SISE model will produce much more valuable estimates as com-

pared to expert judgement.

2 I believe the SISE model will produce somewhat more valuable estimates as

compared to expert judgement.

2 I believe the SISE model will produce estimate of equal value as compared to

expert judgement.

2 I believe the SISE model will produce somewhat less valuable estimates as

compared to expert judgement.

2 I believe the SISE model will produce much less valuable estimates as compared

to expert judgement.

In addition, students were asked to provide their opinion of the SISE and PCSE models’

relative complexities.

22. Based on the descriptions of each model, select the statement below that best

described your impression of the PCSE model as compared to the SISE model in

terms of complexity.

2 I believe the PCSE model is much more complex as compared to the SISE

model.

2 I believe the PCSE model is somewhat more complex as compared to the SISE

model.

2 I believe the PCSE model is the same complexity as the SISE model.

2 I believe the PCSE model is somewhat less complex as compared to the SISE

model.

2 I believe the PCSE model is much less complex as compared to the SISE model.

The survey was made available to the students near the end of the semester and partic-

ipation was voluntary.

75

Reason Count Prop.
Time Investment

PCSE requires a larger time investment than SISE 31 88.6%
Neither model is more time consuming 3 8.6
PCSE requires a smaller time investment than SISE 1 2.9
Total 35

Perceived Value
SISE much more than expert judgment 18 51.4%
SISE somewhat more than expert judgment 16 45.7
No difference 1 2.9
SISE somewhat less than expert judgment 0 0.0
SISE much less than expert judgment 0 0.0
Total 35

Perceived Complexity
PCSE much more than SISE 20 57.1%
PCSE somewhat more than SISE 13 37.1
No difference 0 0.0
PCSE somewhat less than SISE 2 5.7
PCSE much less than SISE 0 0.0
Total 35

Table 4.14: Summary of survey results.

4.6.6 Results

A total of 35 responses to the survey were received. Table 4.14 lists the questions, the

responses, the count of each response, and the relative proportion.

In terms of time investment, the responses demonstrate that 31 out of 35 students believe

the PCSE model requires a larger time investment as compared to the SISE model, based

on the provided descriptions. The 95% confidence interval for this proportion is 72.3-96.2%

(see Output Listing 25).

In terms of perceived value, the responses demonstrate that 34 out of 35 students be-

lieve the SISE model provides greater value – either “much more” or “somewhat more” –

as compared to expert judgment, based on the provided descriptions. The 95% confidence

interval for this proportion is 83.4-99.9% (see Output Listing 26).

76

In terms of complexity, the responses demonstrate that 33 out of 35 students believe

the PCSE model is more complex – either “much more” or “somewhat more” – as compared

to the SISE model, based on the provided descriptions. The 95% confidence interval for this

proportion is 79.5-99.0% (see Output Listing 26).

4.6.7 Conclusions

In summary, a significant proportion of the respondents indicated their belief that SISE

requires a smaller time investment as compared to PCSE; SISE provides a higher level of

perceived value as compared to expert judgment; and PCSE is a more complex model as

compared to SISE.

Decision: Reject the null hypothesis H03 in favor of the alternate Ha3, concluding that

an estimator using the SISE model will invest less time in producing an estimate as required

using PCSE.

Decision: Reject the null hypothesis H04 in favor of the alternate Ha4, concluding that

an estimator introduced to the SISE model and underlying approach will perceive the output

of the model as equally or more useful than guesswork.

4.7 Summary

This work addresses the viability of the SISE estimation model as a reasonable option

for individuals wishing to construct effort estimates. Specifically, SISE attempts to fill the

gap between expert judgment (guesswork) and other individual estimation models, such as

PROBE.

It has been demonstrated that software engineers are generally capable of identifying

the larger of two tasks. In terms of estimation accuracy, this research had demonstrated that

the SISE model is no more or less useful than PROBE, its nearest, validated competitor.

In fact, this research has demonstrated that the SISE model, with no provable difference in

accuracy, produces estimates with a narrower, and arguably more useful, prediction interval.

77

This research has also demonstrated that the SISE model is perceived as less complex and

less time consuming than the PCSE model, and by relative comparison, the PROBE model.

Lastly, it has been demonstrated that software engineers view the output of the SISE model

as more valuable than that of expert judgment, a factor that may influence adoption and

continued usage.

Obviously, further research is required to determine the extent to which these results

apply to an industrial environment. Furthermore, additional research into the benefits and

effectiveness of the SISE model should be conducted to determine how the model behaves

when calibrated with larger, more extensive historical data sets. Lastly, the relative sizing

survey may produce different and more interesting results if it is modified to allow the

respondents to specify a third option of “unknown,” for the relative size differences.

78

Chapter 5

Conclusions and Additional Research

5.1 Summary

The software engineering discipline is filled with many varied examples of software pro-

cess methods and tools focused on the team or organization. In recent years, the agile

approach to software engineering has increased the focus of software process on small teams

and individuals; however, not all aspects of software process have been deeply or fully ad-

dressed.

The majority of effort estimation models – traditional and agile – focus on teams or

groups of software engineers. The discipline is ripe with various examples of team-based

models including Wideband Delphi, Planning Poker, function point analysis, COCOMO,

etc. The few examples of effort estimation models focused on the lone software engineer

are limited to tradition mathematical models with (relatively) substantial complexity and

required time investment. The discipline lacks a truly agile model based on a minimal

combination of empirical data and expert judgment.

The SISE model under development at Auburn University’s microISV Research Lab is a

simple-to-understand, lightweight, and agile effort estimation model that specifically targets

individual software engineers. SISE combines an individual’s personal, empirical data with

expert judgment and experiences to produce relatively accurate estimates with a minimal

investment of training and time.

The SISE model rests on two foundational principles. First, software engineers are

capable of identifying the largest of a pair of tasks based solely on their descriptions. Second,

a software engineer who is presented with a future work activity is capable of identifying

79

two historical tasks – one larger, one smaller – which may serve as a prediction of the future

activity’s size.

The name “SISE” is an acronym for the model’s four basic steps: Sort, Identify, Size, and

Evaluate. The first step – Sort – involves the ordering of historical data by the actual effort

required to complete the activity. The second step – Identify – involves choosing two tasks

from the historical data set: one confidently known to be smaller, one confidently known

to be larger, and both relatively close in size to the future work. Once the practitioner has

chosen a pair of tasks, the third step – Size – produces a rough prediction interval of the

future activity’s size using the actual effort values for the two completed tasks. The final step

– Evaluate – involves shifting or resizing the prediction interval to account for any historical

bias. This last step is optional and is only applied if the estimator is dissatisfied with the

precision, accuracy, or confidence level of his or her estimate.

Validation of the SISE model included two major steps. First, the foundational principle

that relative tasks sizing by software engineers is suitably accurate was validated. The

validation occurred in the form of a survey, presented to over 100 software engineering

students, which presented the respondents with a series of task pairs from which they were

to identify the larger. Some of the pairs had a known, verifiable size difference based on

ten years of time logs provided by students in the Software Process course, while some of

the pairs did not. The results indicated that, on average, a majority of software engineers

were able to identify the larger task, while not typically misidentifying the smaller. When

presented with tasks demonstrating no significant difference in size, the respondents were

typically swayed by the wording, format, or word count.

The second phase of validation involved a series of Software Process students who were

asked to identify where a future activity should be placed in the ordered list of their com-

pleted tasks. In addition, the students were asked to construct a PCSE estimate. The results

indicated that SISE predictions were no more or less accurate than the PCSE model’s esti-

mates. In addition, the students indicated that SISE, in their opinion, took less time and

80

was based on less a complex model. In summary, SISE appears capable of producing results

of equal quality, in less time, and with less training.

5.2 Conclusions

Several conclusions may be drawn from the results of this research. First, it should be

noted that a lightweight, agile effort estimation mode – SISE – has been proven effective as

a tool for individual software engineers. From this, several other conclusions may be drawn.

For example, this research has reinforced the notion that effort estimation, in general, does

not need to be a heavy weight activity. Approaches such as Planning Poker and SISE provide

valuable results with minimal cost. In fact, it is possible that many data-driven activities

within the software engineer discipline may benefit from a lightweight version based on

expert judgment and backed by empirical data, in much the same way SISE is built. In

other words, new models may be constructed to build upon the intuitive knowledge and

experience of software engineers while grounding the activities in solid, fact-based data.

Lastly, this research has demonstrated that individual software engineers possess skillsets

that are unpredictable and likely very difficult to quantify. Nowhere has this been more

apparent than in this research’s attempts to identify “common” rank orderings of tasks by

effort. Actual effort values demonstrated that one person may struggle on a simple task,

whereas another person may finish quickly. In fact, the wide variety of responses from

students on why they believed one task might be larger than another demonstrated a plethora

of subtle experiences, skills, and talents, each capable of affecting personal productivity in

significant ways.

5.3 Additional Research

Building upon the conclusions drawn from this research, the authors have identified

several topics of future of research.

81

Individual software developers – whether they are labeled as team members, consultants,

or micropreneurs – represent fertile ground for future research activities. A wide variety

of tools exist for facilitating team software development activities; however, the tools and

techniques specific to the lone software engineer are few and far between. For example, the

study of effort estimation approaches and models has been underway for decades, however,

the software engineering industry still lacks for agile, reasonably accurate tools for individuals

to size their own personal work efforts.

Another obvious area of research remaining is the method or methods by which SISE

may be integrated into a team environment. Team integration should include a basic method-

ology for combining individual and team estimates, calculating and incorporating overhead

costs, and creating synergy between team members.

Once the role and behaviors of SISE model have been defined with the larger context of

a team environment, a sample implementation plan must be formulated. The implementa-

tion plan will cover the basics steps in introducing SISE into a team environment, training

the participants, equipping team members with appropriate tools, measuring the model’s

effectiveness, and adjusting for quality, as necessary.

A key factor in support of the SISE model will be development of supporting tools.

Although the use of tools is not mandatory for the successful use of the SISE model, several

areas of the model may benefit from their creation. Such areas include data pruning, histor-

ical data management, and relative sizing. For example, a tool supporting the data pruning

process, based on a variety of algorithms, would reduce the preparation time for each esti-

mate. A data repository for historical activities – descriptions, dates, estimated effort, and

actual effort values – would streamline the data pruning process. Lastly, a relative sizing tool

– designed to present a list of activities and assist in the process of inserting a new, future

task into the list – would be useful in both training new estimators and assisting experienced

ones. As such tools are developed, methods must be developed for integrating these tools

82

into a team environment (e.g. integration with time tracking tools). Such integration will

encourage SISE adoption into team-based development environments.

Another area of research can be found in the development of pruning algorithms to

support the SISE model. Such research would be based in the exploration of the factors

involved in the pruning of historical data (e.g. age of activities, sizes of activities, data

distribution types, etc.). Depending on the factors involved, algorithms may be developed

to identify and remove extraneous historical data, while leaving sufficient data to establish

a reliable estimate within the desired confidence levels.

In instances where the SISE model is utilized for long periods of time, research should

be undertaken to determine if the model is self-correcting, or if a combination of pruning and

output tuning are necessary. It is possible that the model will not require specific actions,

other than historical pruning, to maintain an acceptable level of quality. However, it may

also be possible that the practitioner will eventually need to tune the estimates based on

historical performance. Additional research into such feedback mechanisms may benefit the

overall quality of the model.

During the process of gathering and analyzing data related to relative task sizing, a

moderate-to-strong correlation was noted between individual students and groups, such as

a class. Additional research into such correlations may provide insight into task sizing in

general. Questions that may be explored include: How strong are these correlations? How

homogeneous must the groups be to maintain a strong correlation to the individuals’ sizings?

Can relative sizing techniques be combined with rank correlation techniques to enhance

existing estimation models?

Surprisingly, this research noted that early estimates, within the context of the software

process course, tended to outperform formal estimation models, such as PCSE and SISE.

While this may be due to a lack of data to calibrate the models, further research into the

relationship between expert judgment, formal models, and data set sizes may reveal some

interesting trends that can be used to improve existing estimation approaches.

83

One last area of potential research, beyond the “software engineering” focused practices,

is the underlying psychological factors involved in the use of the SISE model (and sizing in

general). For example, research indicates that word choice, word count, and grammatical

structure during requirements definition affects a reader’s perception of complexity and re-

quired effort. In addition, the attitudinal survey revealed a tendency, on the part of software

engineers, to equate higher complexity with more value, which may not always be the case.

Techniques for identifying and addressing these psychological influences would positively

affect both the implementation of the SISE model and other estimation models.

84

Bibliography

[1] AdMob Metrics. July 2009 metrics report. http://metrics.admob.com/2009/08/
july-2009-metrics-report/, August 2011. Accessed August 14, 2011.

[2] Alan Albrecht. Function points: A new way of looking at tools. IBM, 1979.

[3] Android Market. Android market developer signup. https://market.android.com/
publish/signup/, August 2011. Accessed August 14, 2011.

[4] Apple. Apple Developer Programs 2011. http://developer.apple.com/programs/,
August 2011. Accessed August 14, 2011.

[5] Association of Software Professionals. ASP member forum. http://members.
asp-software.org/newsgroups/showthread.php?t=25806, August 2011. Accessed
August 14, 2011.

[6] Auburn University. COMP 2210 course description. http://www.eng.auburn.edu/
files/acad_depts/csse/syllabi/comp2210.pdf, 2013. Accessed May 13, 2013.

[7] Barry W. Boehm. Software engineering economics. Software Engineering, IEEE Trans-
actions on, SE-10(1):4 –21, jan. 1984.

[8] Barry W. Boehm, Chris Abts, A Winsor Brown, Sunita Chulani, Bradford K. Clark,
Ellis Horowitz, Ray Madachy, Donald J. Reifer, and Bert Steece. Software Cost Esti-
mation with Cocomo II with CD-ROM. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1st edition, 2000.

[9] M. Cohn. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley
signature series. Addison-Wesley, 2009.

[10] Construx. Software development practices. http://www.construx.com/Page.aspx?
nid=68, 2012. Accessed January 26, 2012.

[11] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software engineering metrics and models.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1986.

[12] David Umphress. COMP 5700/6700/6706 software process. http://www.eng.auburn.
edu/users/umphress/comp6700/index.html, 2013. Accessed May 13, 2013.

[13] Iris Fabiana de Barcelos Tronto, José Demisio Simões da Silva, and Nilson Sant Anna.
Comparison of artificial neural network and regression models in software effort estima-
tion. In IJCNN, pages 771–776, Brazil, 2007. IEEE.

85

[14] Gartner Incorporated. Gartner says worldwide software as a service revenue is forecast to
grow 21 percent in 2011. http://www.gartner.com/it/page.jsp?id=1739214, August
2011. Accessed August 14, 2011.

[15] Maurice H. Halstead. Elements of Software Science (Operating and programming sys-
tems series). Elsevier Science Ltd, Amsterdam, May 1977.

[16] M. Host and C. Wohlin. An experimental study of individual subjective effort estima-
tions and combinations of the estimates. In Software Engineering, 1998. Proceedings of
the 1998 International Conference on, pages 332 –339, Sweden, apr 1998. IEEE, IEEE.

[17] Watts S. Humphrey. A Discipline for Software Engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[18] W.S. Humphrey. Introduction to the team software process(sm). SEI series in software
engineering. Addison-Wesley, 2000.

[19] D.R. Jeffery and G. Low. Calibrating estimation tools for software development. Soft-
ware Engineering Journal, 5(4):215 –221, jul 1990.

[20] Philip M. Johnson and Anne M. Disney. The personal software process: A cautionary
case study. IEEE Software, 15(6):85–88, November 1998.

[21] M. Jorgensen, B. Boehm, and S. Rifkin. Software development effort estimation: Formal
models or expert judgment? Software, IEEE, 26(2):14 –19, march-april 2009.

[22] M. Jorgensen and M. Shepperd. A systematic review of software development cost
estimation studies. Software Engineering, IEEE Transactions on, 33(1):33 –53, jan.
2007.

[23] M Jorgensen, K H Teigen, and K J Molokken-Ostvold. Better sure than safe? overcon-
fidence in judgment based software development effort prediction intervals. Journal of
Systems and Software, 70(1-2):79–93, 2004.

[24] Magne Jørgensen. A critique of how we measure and interpret the accuracy of software
development effort estimation. In Jacky Keung, editor, 1st International Workshop on
Software Productivity Analysis and Cost Estimation, pages 15–22, Tokyo, Japan, 2007.
Information Processing Society of Japan.

[25] Chris F. Kemerer. An empirical validation of software cost estimation models. Com-
munications of the ACM, 30(5):416–429, May 1987.

[26] Steve McConnell. Software Estimation: Demystifying the Black Art (Best Practices
(Microsoft)). Microsoft Press, Redmond, WA, USA, kindle edition edition, 2006.

[27] Mirriam-Webster. Mirriam-webster dictionary. http://www.merriam-webster.com/,
2012. Accessed January 26, 2012.

[28] J.J. Moder, C.R. Phillips, and E.W. Davis. Project management with CPM, PERT,
and precedence diagramming. Van Nostrand Reinhold, New York, NY, USA, 1983.

86

[29] Mountain Goat Software. Planning poker cards.
http://store.mountaingoatsoftware.com, 2013. Accessed May 30, 2013.

[30] Tridas Mukhopadhyay, Steven S. Vicinanza, and Michael J. Prietula. Examining the fea-
sibility of a case-based reasoning model for software effort estimation. MIS Q., 16:155–
171, June 1992.

[31] L. H. Putnam. A general empirical solution to the macro software sizing and estimating
problem. IEEE Trans. Softw. Eng., 4:345–361, July 1978.

[32] M. Ruhe, R. Jeffery, and I. Wieczorek. Using web objects for estimating software devel-
opment effort for web applications. In Software Metrics Symposium, 2003. Proceedings.
Ninth International, pages 30 – 37, sept. 2003.

[33] Melanie Ruhe, Ross Jeffery, and Isabella Wieczorek. Cost estimation for web appli-
cations. In Proceedings of the 25th International Conference on Software Engineering,
ICSE ’03, pages 285–294, Washington, DC, USA, 2003. IEEE Computer Society.

[34] R. Schoedel. PROxy Based Estimation (PROBE) for Structured Query Language (SQL).
Technical note. Carnegie Mellon University, Software Engineering Institute, 2006.

[35] Scrum Methodology. Scrum effort estimation and story points.
http://scrummethodology.com/scrum-effort-estimation-and-story-points,
2008. Access January 30, 2012.

[36] Martin Shepperd, Chris Schofield, and Barbara Kitchenham. Effort estimation using
analogy. In Proceedings of the 18th international conference on Software engineering,
ICSE ’96, pages 170–178, Washington, DC, USA, 1996. IEEE Computer Society.

[37] Standish Group. Standish chaos report 2009. https://secure.standishgroup.com/
reports/reports.php, August 2011. Accessed August 14, 2011.

[38] Russell Thackston and David Umphress. Individual effort estimating: Not just for
teams anymore. CrossTalk: The Journal of Defense Software Engineering, 25(3):4–7,
May/June 2012.

[39] Russell Thackston and David Umphress. Micropreneurs: The rise of the microisv. IT
Professional, 15(2):50–56, 2013.

[40] David Umphress. Principle-centered software engineering. http://swemac.cse.eng.
auburn.edu/~umphrda/PCSE, October 2011. Accessed October 12, 2011.

[41] M. van Genuchten. Why is software late? an empirical study of reasons for delay in
software development. Software Engineering, IEEE Transactions on, 17(6):582 –590,
jun 1991.

[42] Fiona Walkerden and Ross Jeffery. An empirical study of analogy-based software effort
estimation. Empirical Softw. Engg., 4:135–158, June 1999.

87

[43] Gerhard E. Wittig and Gavin R. Finnie. Using artificial neural networks and function
points to estimate 4gl software development effort. Australasian J. of Inf. Systems,
1(2):87–94, 1994.

[44] S. Yenduri, S. Munagala, and L.A. Perkins. Estimation practices efficiencies: A case
study. In Information Technology, (ICIT 2007). 10th International Conference on, pages
185 –189, dec. 2007.

88

Appendices

89

Appendix A

Output Listings

The following output listings were produced using R. Listings 1 - 10 compare the average

construction times for assignment pairs used in the relative sizing survey. Listings 11 -

20 compare the proportion of correct answers against the probability of random chance

(proportion = 0.5). Output Listing 21 compares the proportion of correct survey answers to

the total number of answers. Output Listing 22 compares the hit rates of SISE and PROBE

via the number of hits for each model versus the total number of assignments. Output

Listings 23 and 24 compare the PROBE and SISE prediction interval widths. Output Listings

25 - 27 compare the respondents’ perceptions of time investment, value, and complexity for

SISE, PCSE, and expert judgment.

> wilcox.test(TDist[,1], MPPS[,1], conf.int="T" alternative="g")

Wilcoxon rank sum test with continuity correction

data: TDist[, 1] and MPPS[, 1]

W = 9923.5, p-value = 1.007e-09

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

75.00005 Inf

sample estimates:

difference in location

105.0001

(1)

90

> wilcox.test(CriticalPath[,1], T-Dist[,1], conf.int="T"

alternative="g")

Wilcoxon rank sum test with continuity correction

data: CriticalPath[, 1] and T-Dist[, 1]

W = 19022.5, p-value = 0.0001667

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

36.99997 Inf

sample estimates:

difference in location

66.99999

(2)

> wilcox.test(TDist[,1], FiveSlot[,1], conf.int="T"

alternative="g")

Wilcoxon rank sum test with continuity correction

data: TDist[, 1] and FiveSlot[, 1]

W = 4701, p-value = 0.01516

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

14.99994 Inf

sample estimates:

difference in location

62.00005

(3)

> wilcox.test(Text[,1], MPPS[,1], conf.int="T" alternative="g")

Wilcoxon rank sum test with continuity correction

data: Text[, 1] and MPPS[, 1]

W = 1133, p-value = 0.004951

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

15.99999 Inf

sample estimates:

difference in location

47.40739

(4)

91

> wilcox.test(TDist2[,1], CalcCorr[,1], conf.int="T"

alternative="g")

Wilcoxon rank sum test with continuity correction

data: TDist2[, 1] and CalcCorr[, 1]

W = 451, p-value = 0.06837

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

-5.000015 Inf

sample estimates:

difference in location

45.99993

(5)

> wilcox.test(FiveSlot[,1], MPPS[,1], conf.int="T"

alternative="g")

Wilcoxon rank sum test with continuity correction

data: FiveSlot[, 1] and MPPS[, 1]

W = 764, p-value = 0.05171

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

-5.4093e-05 Inf

sample estimates:

difference in location

43.78432

(6)

92

> wilcox.test(ComponentInfo[,1], FiveSlot[,1], conf.int="T"

alternative="g")

Wilcoxon rank sum test with continuity correction

data: ComponentInfo[, 1] and FiveSlot[, 1]

W = 397, p-value = 0.1399

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

-33.99998 Inf

sample estimates:

difference in location

37.99995

(7)

> wilcox.test(Text[,1], AMS[,1], conf.int="T" alternative="g")

Wilcoxon rank sum test with continuity correction

data: Text[, 1] and AMS[, 1]

W = 1739.5, p-value = 0.1012

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

-6.000062 Inf

sample estimates:

difference in location

22.00008

(8)

> wilcox.test(Text[,1], CalcCorr[,1], conf.int="T" alternative="g")

Wilcoxon rank sum test with continuity correction

data: Text[, 1] and CalcCorr[, 1]

W = 570.5, p-value = 0.1689

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

-20.00005 Inf

sample estimates:

difference in location

21.00005

(9)

93

> wilcox.test(AMS[,1], MPPS[,1], conf.int="T" alternative="g")

Wilcoxon rank sum test with continuity correction

data: AMS[, 1] and MPPS[, 1]

W = 2184, p-value = 0.06977

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

-2.999972 Inf

sample estimates:

difference in location

26.99997

(10)

M-P-P-S vs. T-Dist

> prop.test(95,113, alternative="g")

1-sample proportions test with continuity correction

data: 95 out of 113, null probability 0.5

X-squared = 51.115, df = 1, p-value = 4.355e-13

alternative hypothesis: true p is greater than 0.5

95 percent confidence interval:

0.7712947 1.0000000

sample estimates:

p

0.840708

(11)

T-Dist vs. CriticalPath

> prop.test(80,113, alternative="g")

1-sample proportions test with continuity correction

data: 80 out of 113, null probability 0.5

X-squared = 18.7257, df = 1, p-value = 7.547e-06

alternative hypothesis: true p is greater than 0.5

95 percent confidence interval:

0.6287827 1.0000000

sample estimates:

p

0.7079646

(12)

94

5-Slot vs. T-Dist

> prop.test(56,113, alternative="g")

1-sample proportions test with continuity correction

data: 56 out of 113, null probability 0.5

X-squared = 0, df = 1, p-value = 0.5

alternative hypothesis: true p is greater than 0.5

95 percent confidence interval:

0.4149116 1.0000000

sample estimates:

p

0.4955752

(13)

M-P-P-S vs. Text

> prop.test(71,113, alternative="g")

1-sample proportions test with continuity correction

data: 71 out of 113, null probability 0.5

X-squared = 6.9381, df = 1, p-value = 0.004219

alternative hypothesis: true p is greater than 0.5

95 percent confidence interval:

0.546867 1.000000

sample estimates:

p

0.6283186

(14)

CalcCorr vs. T-Dist2

> prop.test(51,113)

1-sample proportions test with continuity correction

data: 51 out of 113, null probability 0.5

X-squared = 0.885, df = 1, p-value = 0.3468

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.3584833 0.5475238

sample estimates:

p

0.4513274

(15)

95

M-P-P-S vs. 5-Slot

> prop.test(91,113)

1-sample proportions test with continuity correction

data: 91 out of 113, null probability 0.5

X-squared = 40.9204, df = 1, p-value = 1.586e-10

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.7179120 0.8714467

sample estimates:

p

0.8053097

(16)

ComponentInfo vs. 5-Slot

> prop.test(63,112)

1-sample proportions test with continuity correction

data: 63 out of 112, null probability 0.5

X-squared = 1.5089, df = 1, p-value = 0.2193

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.4656548 0.6550020

sample estimates:

p

0.5625

(17)

Text vs. A-M-S

> prop.test(76,113)

1-sample proportions test with continuity correction

data: 76 out of 113, null probability 0.5

X-squared = 12.7788, df = 1, p-value = 0.0003506

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.5770539 0.7561623

sample estimates:

p

0.6725664

(18)

96

CalcCorr vs. Text

> prop.test(77,113)

1-sample proportions test with continuity correction

data: 77 out of 113, null probability 0.5

X-squared = 14.1593, df = 1, p-value = 0.000168

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.5861820 0.7641181

sample estimates:

p

0.6814159

(19)

M-P-P-S vs. A-M-S

> prop.test(107,113)

1-sample proportions test with continuity correction

data: 107 out of 113, null probability 0.5

X-squared = 88.4956, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.8832757 0.9782325

sample estimates:

p

0.9469027

(20)

97

Proportion of respondents answering correctly (Tasks 1-4)

> prop.test(72,113,alternative="g")

1-sample proportions test with continuity correction

data: 72 out of 113, null probability 0.5

X-squared = 7.9646, df = 1, p-value = 0.002385

alternative hypothesis: true p is greater than 0.5

95 percent confidence interval:

0.5558603 1.0000000

sample estimates:

p

0.6371681

(21)

> hitMiss <- matrix(c(26,176,51,230), ncol=2)

> colnames(hitMiss) <- c(’Hit’,’Miss’)

> rownames(hitMiss) <- c(’SISE’,’PROBE’)

> hitMiss

Hit Miss

SISE 26 51

PROBE 176 230

> prop.test(hitMiss, alternative="l")

2-sample test for equality of proportions with continuity correction

data: hitMiss

X-squared = 2.0652, df = 1, p-value = 0.07535

alternative hypothesis: less

95 percent confidence interval:

-1.000000000 0.009330862

sample estimates:

prop 1 prop 2

0.3376623 0.4334975

(22)

98

> wilcox.test(probePI[,1],sisePI[,1], conf.int="T")

Wilcoxon rank sum test with continuity correction

data: probePI[, 1] and sisePI[, 1]

W = 14635, p-value = 0.008988

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

18.00009 162.00005

sample estimates:

difference in location

78.00007

(23)

> wilcox.test(probePI[,1],sisePI[,1], conf.int="T" alternative="g")

Wilcoxon rank sum test with continuity correction

data: probePI[, 1] and sisePI[, 1]

W = 14635, p-value = 0.004494

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

26.00004 Inf

sample estimates:

difference in location

78.00007

(24)

> prop.test(31,35)

1-sample proportions test with continuity correction

data: 31 out of 35, null probability 0.5

X-squared = 19.3143, df = 1, p-value = 1.109e-05

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.7232023 0.9627436

sample estimates:

p

0.8857143

(25)

99

> prop.test(34,35)

1-sample proportions test with continuity correction

data: 34 out of 35, null probability 0.5

X-squared = 29.2571, df = 1, p-value = 6.338e-08

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.8338216 0.9985068

sample estimates:

p

0.9714286

(26)

> prop.test(33,35)

1-sample proportions test with continuity correction

data: 33 out of 35, null probability 0.5

X-squared = 25.7143, df = 1, p-value = 3.959e-07

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.7947722 0.9900403

sample estimates:

p

0.9428571

(27)

100

Appendix B

Themes in Relative Sizing Rationale

In performing a linguistic analysis of each respondent’s rationale for selecting a particular

task as larger, the following common themes were detected.

Data – Referenced specific data structures, specific data types, or problems inherent

in dealing with a particular data set. “Again, task number two only needs to have values

dumped into an array while task number one will need to process an indeterminate amount

of data.”

Familiarity – Referenced prior experience with the problem space. “I have done a

project using this task and it seems more involved that basically an array with basic math

applied to it. (Task) 2 would require less time to start/understand.”

File – Referenced the ease or difficulties involved with file I/O, processing file contents,

etc. “Sometimes unexpected errors can occur when scanning text files, not to mention task

number one is very simple.”

Math – Referenced either the ease or difficulty of creating math-based software or

algorithms. “From my experience with math a t-distribution is more complicated to calculate.”

Methods – Referenced the number of methods/functions, amount of code or lines of

code required to complete the assignment, number of operations to be performed by the

software, steps involved in the algorithms, etc. “Requires more equations to implement which

means more functions, more logic to code.”

Planning – Referenced the amount of time that would be spent in planning and/or

design. “It requires more of analysis and design work before coding.”

101

Problem – Directly referenced actual aspects of the problem space as defined by the

assignment. “Both require degrees of freedom and probability / x, but task number two also

requires number of tails functionality to be implemented.”

Reuse – Referenced either the ability to reuse code the respondent has already written,

reuse code within the assignment, or standard libraries available in the programming lan-

guage. “Dependent on which language you wrote in, but task 1 is a accomplished with built-in

packages- which makes it quicker to finish.”

Simplicity – Referenced either the simplicity of the smaller assignment or the complex-

ity of the larger assignment. Based on the general tone of the responses, this theme appears

most closely linked with a non-empirical, unstructured, and intuitive guess. “Task 2 is more

complex and will require more effort to implement.”

Testing – Referenced the ease or difficulty of testing the assignment. “Writing test code

that would cover this code would be quite extensive.”

Text – Referenced the ease of difficulty inherent in dealing with text-based problems.

“In my experience, parsing of English/text documents and has always led to more work, task

2 includes parsing, but it is less complex and mathematics usually are too hard to do.”

102

Appendix C

Relative Sizing Survey Questions

103

104

105

106

107

108

109

110

111

112

113

Appendix D

Attitudinal Survey Questions

114

115

116

117

118

119

120

121

122

