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Abstract

Many relevant data sets from environmental sciences, biomedical sciences, finance, in-

surance, engineering, and many other disciplines have high-dimensionality, difficult to model

dependence structure, outliers , and heavy tailed and asymmetric noise distribution. These

challenges posed by the data require the use of robust statistical techniques in order to make

reliable inferences. Many robust nonparametric statistical methods have been developed to

address these challenging issues. Rank estimators are among statistical methods recently

developed for this purpose.However little attention has been given to Rank estimation in

Generalized Linear Models, Longitudinal Data Analysis, and Variable Selection. This dis-

sertation proposes robust nonparametric methods based on the theory of rank for inferences

in Generalized Linear Models, Longitudinal Data Analysis, and Group Variable Selection in

Linear Models.

ii



Acknowledgments

This research project leaves some memories of people to whom I would like to express

my gratitude. First and foremost, I would like to thank God Almighty for his numerous

graces, including the good health that I enjoy today and the successful completion of this

project. Words cannot express how grateful I am towards my parents, brothers, and sisters

including my late father Miakonkana Paul for their love and support throughout my life.I

would like to express my deepest gratitude to my advisor Dr. Asheber Abebe for his ami-

ability, encouragement, guidance, patience throughout this work and my graduate studies

in general . The completion of this work would not have been possible without the endless

support of my advisor. I am very grateful to Professor Charles E. Chidume for his continued

encouragement and fatherly advice, including his recommendation to the mathematics PhD

program at Auburn University. I would like to thank Dr.Geraldo S. De Souza, Dr. Mark D.

Carpenter, and Dr. Peng Zeng for consenting to serve as my PhD committee members. I

am very grateful to Dr. Geraldo S. De Souza, not only for serving as my committee mem-

ber but also for his encouragement, amiability and endless support throughout my graduate

studies. I also want to express my gratitude to Dr. Floyd Woods for agreeing to serve as the

University reader of my dissertation. Last, but not least, special thanks to all my friends,

who in a way or another continued to encourage me during the years I spent in graduate

school, they made this journey easier.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Exponential Family of Distribution and Generalized Linear Models . 5

2.1.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 7

2.2 Longitudinal Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Variable Selection in Regression . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Lasso and Adaptive Lasso Regression . . . . . . . . . . . . . . . . . . 11

2.3.2 Grouped Variable Selection . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Robust Rank Based Regression . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Robustness Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Rank Based Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Iterative Rank Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



3.3.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Asymptotic Normality and Robustness . . . . . . . . . . . . . . . . . 24

3.3.3 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Simulations and Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Example 1: Swedish Third Party Motor Insurance . . . . . . . . . . . 30

3.4.3 Example 2: Universities presidents’ Compensation . . . . . . . . . . . 33

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Rank Based Estimation for Longitudinal Data Analysis . . . . . . . . . . . . . 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 The Model and Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Asymptotic Normality and Robustness . . . . . . . . . . . . . . . . . 50

4.4 Simulations and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Rank Based Group Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Rank Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Model and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Example 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.2 Example 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



List of Figures

3.1 Boxplot of the estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 MSE comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Boxplot of the estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 MSE comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Pearson residuals plot for clean and contaminated response . . . . . . . . . . . . 32

3.6 Deviance residuals vs Fitted values for clean and contaminated response . . . . 32

3.7 Pearson residuals plot for clean and contaminated response . . . . . . . . . . . . 35

3.8 Deviance residuals vs Fitted values for clean and contaminated response . . . . 36

4.1 Boxplot of the estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 MSE comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Deviance Vs fitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Variable Selection Performance Comparison 1 . . . . . . . . . . . . . . . . . . . 67

5.2 Variable Selection Performance Comparison 2 . . . . . . . . . . . . . . . . . . . 68

5.3 Variable Selection Performance Comparison 3 . . . . . . . . . . . . . . . . . . . 69

5.4 Variable Selection Performance Comparison 4 . . . . . . . . . . . . . . . . . . . 72

vii



5.5 Variable Selection Performance Comparison 5 . . . . . . . . . . . . . . . . . . . 73

5.6 Variable Selection Performance Comparison 6 . . . . . . . . . . . . . . . . . . . 74

5.7 Variable Selection Performance Comparison 7 . . . . . . . . . . . . . . . . . . . 75

5.8 Variable Selection Performance Comparison 8 . . . . . . . . . . . . . . . . . . . 76

viii



List of Tables

2.1 Exponential Family of Distributions . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Coefficient (Coef) and Standard Error (SE) estimates for Swedish Third Party
Motor Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Coefficient (Coef) and Standard Error (SE) estimates for universities presidents’s
compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 P-values Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Variable Selection Performance Comparison - Model 1 . . . . . . . . . . . . . . 77

5.2 Variable Selection Performance Comparison - Model 2 . . . . . . . . . . . . . . 77

ix



Chapter 1

Introduction

1.1 Background

Generalized linear models (Nelder and Wedderburn, 1972) provide a unified approach

to many of the most common statistical procedures used in applied statistics. They have

applications in disciplines ranging as widely as agriculture, demography, ecology, economics,

education, engineering, environmental studies and pollution, geography, geology, history,

medicine, political science, psychology, sociology and many others. In many studies, in the

above mentioned fields, measurements are made over time yielding dependent observations.

Dependence among observations in a data set may also occur when measurements are made

at nearby locations in space. The purpose of longitudinal data analysis (Liang and Zeger,

1986) is to develop statistical models that take into account the presence and the nature

of the dependence among the measurements. Another challenge encountered in many cur-

rent data sets is the so-called high dimensionality, i.e data sets with a massive number of

variables, usually far exceeding the number of observations. Examples of these data sets

include microarray gene expression data and data sets from image and signal processing.

The emergence of high dimensional data has, more than ever, driven researchers to exten-

sive development of methods for simultaneous estimation and variable selection (Tibshirani,

1996).

There has been continued interest in the development of the theory and methodology

related to generalized linear models, longitudinal data analysis, and variable selection meth-

ods. Since the fundamental work of Nelder andWedderburn (1972), many statistical methods

have been proposed for the generalized linear models. Wedderburn (1974) proposed the least

squares and the quasi-likelihood estimators. These estimators are asymptotically efficient
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in the sense that that the limiting variance-covariance matrix attains a Cramer-Rao-type

lower bound. Recently, Gao et al. (2012) have developed asymptotic properties of maximum

quasi-likelihood estimators in generalized linear models with adaptive designs. Other recent

developments in generalized linear models include Song et al. (2012) who have proposed a

method for hypothesis testing in generalized linear models with functional coefficient autore-

gressive processes and Liu and Yuan (2012) on combining quasi and empirical likelihoods

in generalized linear models with missing responses. Other recent works in this area, to

name a few, are She (2012), Hardin and Hilbe (2012),Augustin et al. (2012), Mbachu et al.

(2012), Abarin and Wang (2012), and Klar and Meintanis (2012). We also refer to McCul-

lagh and Nelder (1989) for a comprehensive account of the generalized linear models and

quasi-likelihood based inference procedures. Following the development of the approach of

generalized estimating equations (GEE) (Liang and Zeger, 1986) for longitudinal data analy-

sis, extensive research on longitudinal data analysis has given rise to a rich literature. Wang

and Carey (2004) provided a method to supplement and enhance the GEE by constructing

unbiased estimating equations from working correlation models for irregularly timed repeated

measures. Hin et al. (2007) developed a criteria for selection of working-correlation-structure

in GEE. Zhang (2011)studied generalized estimating equations and Gaussian estimation for

longitudinal data analysis. Other significant contributions in longitudinal data analysis are

the works of Tang and Leng (2011), Bandyopadhyay et al. (2011), Nakai and Ke (2011), Wang

and Hin (2010), Copas and Seaman (2010), Cheng et al. (2013), and Tsai et al. (2011), just

to mention a few.

Lasso regression (Tibshirani, 1996) for simultaneous estimation and variable selection

has triggered extensive continued research on methods for penalized regression models. Pe-

nalized regression methods have received a lot of attention and popularity among statis-

ticians, recently. The SCAD proposed by Fan and Li (2001) is another popular work in

simultaneous variable selection and estimation in regression . Knight and Fu (2000) studied

the asymptotic properties of the Lasso. Zou (2006) studied the adaptive Lasso, and showed
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that the adaptive Lasso has the so-called oracle property. Zou and Hastie (2005) proposed

the elastic-net penalty for variable selection in regression with dependent predictors. Zou

and Zhang (2009) enhanced the elastic-net with the adaptive elastic-net. The group Lasso

(Yuan and Lin, 2006) is a natural extension of the Lasso in a regression model with grouped

variables. The group variable selection method given in Yuan and Lin (2006) and its ram-

ifications have been further studied by many. These include Simon and Tibshirani (2012),

Chen and Hero (2012), Hirose and Konishi (2012), Wang and Leng (2008), and Nardi and

Rinaldo (2008).

Many of the statistical methods described above for generalized linear models, longitu-

dinal data analysis, as well as variable selection are based on maximum likelihood estimation

or least squares technique for parameter estimation. Despite their many good properties,

it is well known that such least squares or maximum likelihood based methods may have

very poor performance in data set containing outliers or heavy tailed asymmetric noise dis-

tribution. In this situation, it is desirable to use a robust estimation procedure. One way to

address the lack of robustness in regression models is to employ the so-called M -estimator

(Huber, 1981). Properties of the M -estimator and its multiple refinements (Klein and Yohai

(1981), Collins and Portnoy (1981), Prakasa Rao (1981), and many others) have been exten-

sively studied over the years for robust estimation of parameters in regression models. An

alternative approach to develop robust estimators in regression is to use the theory of rank

estimation. Rank estimation for a simple linear models was originally proposed by Adichie

(1967) based on simple Hodges-Lehmann type location estimators. Jurečková (1971) and

Jaeckel (1972) later generalized this to multiple regression.A comprehensive treatment of

rank estimation for linear models can be found in Hettmansperger and McKean (1998).

Rank estimator for nonlinear regression models have been studied by many others, among

which, Abebe and McKean (2007), and Bindele and Abebe (2012). Johnson and Peng (2008)

as well as Wang and Li (2009) have recently proposed rank based procedures for penalized

3



regression. However, not much attention has been given to rank estimation in generalized

linear models and longitudinal data analysis.

1.2 Contribution of the Dissertation

In this dissertation we develop an iterative rank based estimator for parameter estima-

tion in generalized linear models and its extension to longitudinal data analysis. In addition,

we propose a rank based variable selection method for linear regression models with grouped

variables. This generalizes the methods described in Johnson and Peng (2008) and Wang

and Li (2009) to linear models with either categorical predictors or other type of grouped

variables.

1.3 Outline of the Dissertation

Chapter 2 contains a brief review of generalized linear model and maximum likelihood

estimation, generalized estimating equations and maximum quasi-likelihood estimation, pe-

nalized linear regression methods, and the theory of Rank based estimation for linear models;

organized in four sections.We develop the iterative rank based procedure for parameter es-

timation in generalized linear models in Chapter 3. The chapter also contains results on

asymptotic results of the estimator as well simulation studies and real world data examples

that illustrate the theoretical results. Chapter 4 extends the procedure described in Chapter

3 to the case of dependent responses, giving rise to rank based estimation procedure for

longitudinal data. Simulation studies and a data example are also provided. In Chapter 5,

we study penalized linear regression with grouped predictors. We penalize a rank based ob-

jective function with the group adaptive Lasso type of penalty function. The oracle property

of the estimator is established. Simulation studies confirm this.

4



Chapter 2

Preliminaries

2.1 Generalized Linear Models

2.1.1 Exponential Family of Distribution and Generalized Linear Models

Let y be a response variable and x be a vector of predictors. Assume that both x and

y are random and that we have a random sample (xi, yi), i = 1, . . . , n. Recall the linear

regression model

E(yi|xi = x) = µi = xtiθ0 , yi ∼ N(µi, σ
2) (2.1.1)

where θ0 ∈ Θ ⊂ Rp is an unknown vector of parameters.

Advances in theoretical and computational statistics have allowed us to use method analogous

to those developed for linear regression models in the following more general situations:

1. Response variables, y, have distributions other than the normal distribution, they may

even be categorical rather than continuous

2. Relationship between the response and explanatory variables need not be of the simple

linear form in (2.1.1).

These more general models are referred to as generalized linear models(GLM). This term

was coined by Nelder and Wedderburn (1972). They proposed a generalization of the linear

regression model in (2.1.1) as follows:

h[E(yi|xi = x)] = h(µi) = xtiθ0 , (2.1.2)

where
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1. h is some monotone differentiable function, called the link function

2. yi, i = 1, · · · , n are independent random variables with mean µi, each. They share

the same distribution from the exponential dispersion family. That is, the probability

density function of yi has the form

f(yi; βi, φ) = exp
[yiβi − C(βi)

φ
+B(yi, φ)

]
;

where B(.) and C(.) are known functions, and the range of yi does not dependent on β

or φ. In this formulation, the parameter βi is called the canonical parameter and is a

function of the mean, that is βi = d(µi) for some function d. When h ≡ d, h is called the

canonical link function. The parameter φ is called the dispersion parameter.Many well known

distributions such as Normal, Binomial, Poisson, Gamma are members of the exponential

family of distribution. The choice of the functions B and C determines the particular

member of the exponential family of distribution.The exponential family of distribution has

very "nice" properties. Among others, the mean and the variance of yi are given by

E(yi) = Ċ(βi) V ar(yi) = φC̈(βi) (2.1.3)

where Ċ and C̈ are, respectively, the first and second derivative of the function C.

For fixed xi, we have

C̈(βi) =
∂Ċ(βi)

∂βi
=
∂µi
∂βi
≡ V (µi)

that is

V ar(yi) = φV (µi). (2.1.4)

V is called the variance function. It relates the mean to the variance of yi.

6



Table 2.1: Exponential Family of Distributions
Distribution β C(β) φ E(y) V (µ)

B(n, π) ln
( π

1− π

)
nln(1 + eβ) 1 nπ nπ(1− π)

P(µ) lnµ eβ 1 µ µ

N(µ, σ2) µ 1
2
β2 σ2 µ 1

G(µ, ν) − 1
µ

−ln(−β) 1
ν

µ µ2

IG(µ, σ2) − 1
2µ2

−
√
−2β σ2 µ µ3

NB(µ, κ) ln
(

κµ
1+κµ

)
− 1
κ
ln
(

1− κeβ
)

1 µ µ(1 + κµ)

As equation (2.1.2) indicates, in generalized linear models the mean of yi is related to

the predictor xi. Thus the mean varies with the explanatory variables. As the mean varies

so does the variance, trough V (µi). So the model in equation (2.1.2) also gives a relationship

between the predictor xi and the variance of yi. However there are many mean-variance

relationship that cannot be captured with an exponential family density, even distribution

for which the theory of generalized linear models is valid. This issue is addressed by the

quasi-likelihood method discussed below.

Table 2.1.1 gives a summary of different choices of the functions B, C and d leading to

different distributions in the exponential family. For simplicity of the presentation, we will

drop the index i in the table, that is we write µ in stead of µi, β in stead of βi, and y in

stead of yi.

2.1.2 Maximum Likelihood Estimation

Consider the model in (2.1.2), where yi is from an exponential family of distribution;

that is the log-likelihood function of y1, · · · , yn is given by.

l(θ, φ) =
n∑
i=1

lnf(yi,θ, φ) =
n∑
i=1

(yid(µi)− C(d(µi))

φ
+B(yi, φ)

)
(2.1.5)
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where

µi = h−1(xtiθ).

The maximum likelihood estimation (MLE) of θ and φ are obtained by maximizing the

log-likelihood l(θ, φ) . Consider the MLE of θ. Let θj denotes the jth component of θ. The

MLE of θ is a solution to the system of equations

∂l

∂θj
=

n∑
i=1

∂l

∂βi

∂βi
∂ηi

∂ηi
∂θj

= 0 , (2.1.6)

that is
n∑
i=1

∂βi
∂ηi

(yi − Ċ(βi))xij =
n∑
i=1

∂βi
∂ηi

(yi − µi)xij = 0 , (2.1.7)

with ηi = xtiθ ; βi = d(µi) = d(h−1(ηi)); and xij is the jth element of xi.

Noting that (∂βi
∂ηi

)−1

=
∂ηi
∂βi

=
∂ηi
∂µi

∂µi
∂βi

= ḣ(µi)V (µi)

and
∂µi
∂θj

=
xij

ḣ(µi)

the equation (2.1.7) can be rewritten as

n∑
i=1

∂µi
∂θj

(yi − µi)
V (µi)

= 0 . (2.1.8)

The equations (2.1.8) are usually referred to as estimating equations. They depend on

θ through µi = h−1(xtiθ).

The MLE requires full specification of the density of yi. However, in some practical

situations the distribution of yi may be completely unknown. Estimation of θ is still possible

with the maximum quasi-likelihood if the mean-variance relationship of the type (2.1.4) is

8



specified. The maximum quasi-likelihood estimator of θ is the minimizer of the function

Q(θ) =
n∑
i=1

∫ µi

yi

yi − t
φV (t)

dt . (2.1.9)

It is straightforward to show that
∂Q

∂θ
=

∂l

∂θ
, (2.1.10)

that is, the MLE is identical to the maximum quasi-likelihood when the response yi is from

an exponential family of distribution.

While the MLE (equivalently the maximum quasi-likelihood) of θ remains widely used

due to its many good properties, it is vulnerable to outlying observations in the data. This

deficiency is addressed in this dissertation.

2.2 Longitudinal Data Analysis

While applications of generalized linear models are abundant, there are many situations

in which repeated response measurements are made on the same unit, yielding a cluster of

dependent observations. These measurements are obtained either prospectively( such as in

clinical trial), following subjects forward in time, or retrospectively, by extracting multiple

measurements on each subject from historical records.The defining advantage with this type

of study is that one can distinguish changes over time within individuals from differences

at fixed times. The assumption of correlation is not confined to observations made over

time on the same individuals. Observations made at nearby locations in space may also be

correlated. For example, in agriculture studies we may have observations made on the same

small experimental area. The need to account for the correlation in the data gave rise to

special statistical methods suited for the analysis of longitudinal data.

Liang and Zeger (1986) applied the quasi-likelihood approach to longitudinal data by

proposing the generalized estimating equations (GEE) described below.
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Consider the longitudinal data (yij,xij), j = 1, 2, · · · ,mi and i = 1, 2, · · · , n, where the

response yij is the measurement on the ith subjects at time j, and xij the corresponding

p-dimensional vector of predictors. Assume that the mean of yij, µij = E(yij), is related to

the predictor xij through the model in equation (2.1.2). That is

h[E(yij|xij = x)] = xtijθ0. (2.2.1)

The assumptions made in model (2.1.2) remain valid here.

Let µi and Σi denote, respectively, the mean and the variance-covariance matrix of,

Yi = (yi1, · · · , yimi
), the response from the ith subject. Similarly, let Xi = (xi1, · · · ,ximi

).

For a s×1 vector of unknown parameters α, let Ri = Ri(α) denote a mi×mi matrix. Define

the matrix

Vi = A
1/2
i RiA

1/2
i /φ (2.2.2)

where Ai = diag{∂µi1/∂βi1, · · · , ∂µimi
/∂βimi

}. Note that the matrix Vi may or may not be

the variance-covariance matrix of Yi.Nonetheless, we refer to Ri as the correlation matrix.

Liang and Zeger (1986) GEE approach defines the estimator of θ0 in (2.2.1) as the solution

of the equation
n∑
i=1

∂µi

∂θ
V̂−1
i (Yi − µi) = 0 (2.2.3)

where the matrix ∂µi/∂θ = {∂µij/∂θl}jl, θl the lth element of θ, and V̂i is an estimate of

Vi. In fact the estimating equation (2.2.3) is the quasi-score equation (2.1.8) for correlated

data. Note that in addition to the lack of robustness, both in x and y direction, the GEE

estimator of θ0 requires a specification and estimation of the dependence structure of the

elements of Yi prior to estimating θ0. In addition, the GEE may be less efficient when

the correlation structure is incorrectly specified, even though they are still consistent.The

method developed in this dissertation, though, does not require the specification, nor does
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it require the estimation of the correlation structure,prior to estimating θ0. In addition, the

resulting estimator is robust in the response space, y.

2.3 Variable Selection in Regression

Recall the linear regression model :

yi = xtiθ0 + εi (2.3.1)

where xi = (xi1, · · · , xip) is a p-dimensional random vector of predictors and the random

vectors (y1,x1), · · · , (yn,xn) are independent and identically distributed. Model (2.3.1) is

identical to model (2.1.1) if εi ∼ N(0, σ2). However this assumption will not be made in

the model considered in this work. Assume, instead, that θ0 is sparse, i.e, most components

of θ0 are exactly 0. An example of such θ0 is (1, 0, 0, 0, 0, 0.8, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2.1). The

purpose of variable selection is to simultaneously estimate θ0 and identify the predictors in

(xi1, · · · , xip) that are associated with the non-zero components of θ0 as well as the ones

associated with the zero components of θ0. Traditional variable selection procedures use

best-subset selection and its step-wise variants. However, best-subset selection is computa-

tionally prohibitive when the number of predictors, p, is large. In the attempt to address

these fundamental issues of subset selection, penalized regression methods have been intro-

duced. In particular, the Lasso method proposed by Tibshirani (1996) is very popular for

simultaneous variable selection and estimation. We will discuss the Lasso and its variants

below.

2.3.1 Lasso and Adaptive Lasso Regression

The Lasso (Tibshirani, 1996) estimator of θ0 is obtained by minimizing the l1 penalized

least squares, i.e

θ̂(Lasso) = Argmin
Θ

n∑
i=1

(yi − xtiθ)2 + λ

p∑
j=1

|θj| (2.3.2)

11



where θ = (θ1, · · · , θp), and λ some regularization parameter to be specified. For some

chosen λ, the l1 penalty,
∑p

j=1 |θj| term enables the Lasso to simultaneously regularize the

least squares fit and shrink some components of θ̂(Lasso) to zero in order to recover the

sparsity of θ0.

Despite its popularity, the Lasso does have two serious deficiencies: instability in high-

dimensional data and a non-ignorable bias, asymptotically, for estimating the nonzero coef-

ficients (Fan and Li, 2001). Zou (2006) further showed that the Lasso could be inconsistent

for variable selection unless the predictor matrix satisfies a rather strong regularity condi-

tion. In order to overcome this drawback, Zou (2006) proposed the following adaptive Lasso

estimator

θ̂(AdaLasso) = Argmin
Θ

n∑
i=1

(yi − xtiθ)2 + λ

p∑
j=1

ŵj|θj| , (2.3.3)

where {ŵj} are some data-driven weights and can be computed by ŵj = (|θ̂0
j |)−γ, where

γ is a positive constant and θ̂
0
is an initial root-n consistent estimate of θ0. Note that

the weights ŵj = (|θ̂0
j |)−γ are adaptive in nature. That is, if the effect of a predictor on

the response is strong (equivalently the corresponding component in θ0 is nonzero), the

corresponding coefficient is lightly penalized and vice-versa. In fact, Zou (2006) showed that

with an appropriately chosen λ, the adaptive Lasso has the so-called oracle property, that is

the adaptive Lasso works as well as if the correct submodel was known in advance.

2.3.2 Grouped Variable Selection

Both the Lasso and the Adaptive Lasso perform individual variables(predictors) se-

lection. However, in some regression problems, predictors may present group structures.

Grouping structures can arise for many reasons, and require different modeling strategies

in variable selection. Common examples include the representation of multilevel categorical

covariates in a regression model by a group of indicator variables, and the representation of
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the effect of a continuous variable by a set of basis functions. The collinearity among predic-

tors, usually encountered in high dimensional data regression problem, can also be a source

of natural groupings among predictors, as is often the case in gene expression and genetic

association studies. In the regression with categorical covariates problem, the interest lies in

selecting important factors or groups. In some situations, like in genetic association studies,

where the groups are naturally present in the data and often unknown to the investigator,

selection of groups is just as important as selection of individual variables within a group.

Building on the ideas of Lasso and adaptive Lasso, several adjustments to variable selection

have been proposed to respond to these challenges. Yuan and Lin (2006) proposed the group

Lasso. In order to improve the performance of the group Lasso, which suffers the same

drawback as the Lasso, Wang and Leng (2008) improved the group Lasso into the adaptive

group Lasso given by

θ̂(AdaGrpLasso) = Argmin
Θ

n∑
i=1

(
yi −

K∑
k=1

xtikθk

)2

+ n
K∑
k=1

ŵk‖θk‖ , (2.3.4)

where θk = (θk1, · · · , θkpk) and xik = (xik1, · · · , xikpk) are, respectively, the regression coeffi-

cient and the vector of predictors associated with the kth group (factor).

Note that the adaptive group Lasso and many other related variable selection methods are

suitable for the situations where the group structure is known to the investigator. A regres-

sion model with categorical variables (factors) as the only group variables is an example of

such a situation.

Zou and Hastie (2005) proposed the Elastic-Net for simultaneous group structure iden-

tification and parameter estimation in high-dimensional linear models. The Elastic-Net

identifies important and irrelevant groups in high dimensional linear models even when the

grouping structure in the predictors is unknown to the investigator. This is particularly

useful when the groupings in the data are due to collinearity among the predictors. The

Elastic-Net was further improved by Zou and Zhang (2009) who proposed the following

adaptive Elastic-Net
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θ̂(AdaEnet) = (1 +
λ2

n
)
{

Argmin
Θ

n∑
i=1

(
yi − xtiθ

)2

+ λ2‖θ‖2
2 + λ1

p∑
j=1

ŵj|θj|
}
, (2.3.5)

where ‖ · ‖2 denotes the L2 norm, and λ1 and λ2 two parameters to be specified.

All the variable selection methods described so far and similar methods that are based

on regularized least squares objective function as well as penalized maximum likelihood are

known to have a poor performance when the data are contaminated with outliers or the

error term εi, in (2.3.1) has a heavy tailed or skewed distribution (Johnson and Peng, 2008).

In this dissertation, we propose a robust group variable selection method based on a rank

objective function.

2.4 Robust Rank Based Regression

The regression model in (2.3.1) can be rewritten as

yi = α + xtiθ0 + εi , (2.4.1)

where α is the intercept and xti is a p− 1 dimensional vector of predictors. It is convenient

to have the location parameter α in the regression model for estimation in rank regression.

A large body of literature exists of the estimation of parameters α and θ0 as well as tests of

linear hypotheses concerning them (Hettmansperger and McKean, 1998). However, we will

limit our discussion to estimation theory.

2.4.1 Estimation

Consider the following operator

‖v‖ϕ =
n∑
i=1

a(R(vi))vi, (2.4.2)
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where v = (v1, · · · , vn) ∈ Rn, R(vi) is the rank of vi among v1, · · · , vn; a(1) ≤ a(2) ≤

· · · ≤ a(n) is a set of scores generated as a(i) = ϕ(i/(n + 1)) for some nondecreasing score

function ϕ(u) defined on the interval (0, 1) and standardized such that
∫
ϕ(u)du = 0 and∫

ϕ2(u)du = 1.

The operator ‖.‖ϕ is a pseudo-norm (see Hettmansperger and McKean, 1998); that is, it

satisfies the following conditions:

1. ‖v‖ϕ ≥ 0 , for all v ∈ Rn

2. ‖v‖ϕ = 0 if and only if v1 = · · · = vn

3. ‖λv‖ϕ = |λ‖|v‖ϕ, for all λ ∈ R, v ∈ Rn

4. ||u+ v||ϕ ≤ ||u||ϕ + ||v||ϕ, for all u, v ∈ Rn.

A rank estimator of θ0 is a vector θ̂ϕ such that

θ̂ϕ = Argmin
Θ

‖y −Xθ‖ϕ . (2.4.3)

The estimate of α can be obtained as the median of y1 − xt1θ̂ϕ, · · · , yn − xtnθ̂ϕ.

The function ϕ(u) =
√

12(u−1/2) results in the so called Wilcoxon estimator of θ0 and

α.

Let X denote the n×p matrix whose ith row is xti, and Ω(X) the column space spanned

by the columns of X. Without loss of generality, assume that α = 0. Geometrically, the

rank estimator of θ0 is a vector that minimizes the distance between Y = (y1, · · · , yn) and

Ω(X).

It is easy to see that the geometry of the rank estimation in the linear model is identical

to the one of the least squares estimation (Hettmansperger and McKean, 1998). However,

the rank estimator is robust to outliers in the response y, while the least squares estimator

is not. The following section discusses the robustness properties of the rank estimation.
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2.4.2 Robustness Properties

The influence function(IF) of an estimator (Hampel, 1974) is a measure of the sensitivity

of the estimator to local changes. It provides an approximation of the behavior of the

estimator when the sample contains a small fraction t of identical outliers. Let θ̂ denote the

estimator of interest, and F ≡ F (x, y) a probability distribution function. The influence

function of θ̂ at a point (x0, y0) is defined as

IF(x0, y0, θ̂, F ) = lim
t→0

θ̂((1− t)F + t∆(x0,y0)) + θ̂(F )

t
, (2.4.4)

where ∆x0,y0 denotes the point mass at (x0, y0).

An estimator is robust if its influence function IF is a bounded function of both x and

y. If the IF is a bounded function of y (respectively x ) only, we say that the estimator

θ̂ is robust in the y (respectively x) direction. That is, infinitesimal contaminations in y

(respectively in x) do not affect the estimator.

In fact, for the model (2.3.1) if we can write

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

Λn(xi, yi,θ0) + op(1), (2.4.5)

where Λn is a known function, then the influence of θ̂ is given by

IF(x, y, θ̂, F ) = lim
n→∞

Λn(x, y,θ0). (2.4.6)

(See Appendix 5.2 of Hettmansperger and McKean (1998)).

The following theorem (Corollary 3.5.7 of Hettmansperger and McKean (1998)) gives

the influence function of the rank estimator in linear models.
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Theorem 2.1. Under some regularity conditions (see Hettmansperger and McKean (1998))

the estimator θ̂ϕ of θ0 in model (2.3.1) has the following asymptotic representation

√
n(θ̂ϕ − θ0) = τϕ(n−1XtX)−1n−1/2

n∑
i=1

ϕ(F (yi − xtiθ0))xi + op(1)

where (xi, yi) are independent and identically distributed from F and τϕ some constant de-

pending on ϕ and the distribution of εi; i = 1, · · · , n.

Therefore, the influence function of θ̂ϕ, given by

IF(x, y, θ̂ϕ, F ) = lim
n→∞

τϕ(n−1XtX)−1ϕ(F (y − xtθ0))

is a bounded function of y, since the distribution function F is such that 0 < F < 1. That

is, the rank estimator is robust in the y direction.

In this dissertation we establish a similar result for the rank estimator of parameters in

generalized linear models ((2.4.6)) as well as longitudinal data analysis.
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Chapter 3

Rank Based Generalized Linear Models

3.1 Introduction

Let y be a response variable and x be a vector of predictors. Assume that both x and

y are random and that we have a random sample (xi, yi), i = 1, . . . , n. We consider the

generalized linear regression model

h[E(yi|xi = x)] = xtθ0, (3.1.1)

where θ0 ∈ Θ ⊂ Rp is an unknown vector of parameters. We assume that y1, y2, . . . , yn are

independent absolutely continuous random variables with distribution in the exponential

family of distributions, xi ∈ X ⊂ Rp, 1 ≤ i ≤ n, are independent random vectors. The

function h is a known function such that its inverse g ≡ h−1 is a real valued function defined

on the set U = {u | u = xtθ for θ ∈ Θ and x ∈ X} ⊂ R, is monotone and three times

continuously differentiable. We shall assume that, X is compact, Θ is convex and compact,

and θ0 is an interior point of Θ.

Since the fundamental work of Nelder and Wedderburn (1972), there has been continued

interest in the development of the theory and the methodology related to generalized linear

models to estimate the parameter θ0. Wedderburn (1974) proposed the least squares and

the quasi-likelihood estimators. These estimators are asymptotically efficient in the sense

that the limiting variance-covariance matrix attains a Cramer-Rao-type lower bound. We

also refer to McCullagh and Nelder (1989) for a comprehensive account of the generalized

linear models and quasi-likelihood based inference procedures. However, in the presence

of outliers it is desirable to use a robust estimation procedure. Pregibon (1982), Stefanski
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et al. (1986), and Künsch et al. (1989) considered the robust estimation of generalized linear

models parameters with particular emphasis on logistic regression. Morgenthaler (1992)

studied least absolute deviations fits for generalized linear models. Robust M-estimators in

logistic regression model were proposed by Kordzakhia et al. (2001). An alternative way to

develop robust estimators is to use rank based procedures. The rank-based approach has not

been described in the literature and is the focus of this work. Our rank based method uses

the so called Wilcoxon objective function that provides us with an initial estimator which is,

afterwards, updated iteratively. The procedure results in estimators that are robust in the

response space. Extensions of this method give us bounded influence and high-breakdown

estimators.

Rank estimation for the linear regression model was proposed by Jurečková (1971) and

Jaeckel (1972). Over the years, several extensions and refinements of the rank regression

approach were proposed. A comprehensive treatise is given in Hettmansperger and McKean

(1998). Particularly relevant to our discussion are the works of Jung and Ying (2003) and

Abebe and McKean (2007). Jung and Ying (2003) studied the linear model with correlated

and non-i.i.d errors. Although our proposed method is developed for independent errors,

it allows for arbitrary link functions with minimal assumption on the error distribution.

Abebe and McKean (2007) studied the Wilcoxon estimator of a general nonlinear regression

function. The initial estimator we use in the iteratively defined rank estimator proposed in

this chapter is a special case of the estimator developed in Abebe and McKean (2007).

The remainder of this chapter is organized as follows. After introducing the model and the

estimators in Section 3.2, the consistency and the asymptotic normality of the rank version

of the maximum quasi-likelihood estimator are studied in Section 3.3. We illustrate the

robustness and the efficiency of the estimators in Section 3.4 via simulation studies and real

world data examples. Section 3.5 provides the conclusion. Proofs and technical details are

found in Section 3.6.
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3.2 Iterative Rank Estimator

Take θ ∈ Θ and define the Pearson residuals as zi(θ,θ0) = (yi−g(xtiθ))/φ
√
ν(g(xtiθ0)),

1 ≤ i ≤ n, where ν is a continuous function (McCullagh and Nelder, 1989, Page 30) related

to the variance of yi through var(yi) = φ2ν(g(xtiθ0)) and the dispersion parameter φ > 0

will be assumed to be an unknown constant and the function ν will be assumed to be twice

continuously differentiable.The assumptions on g and ν are the same as M3 in Chiou and

Müller (1999). Consider the estimator of θ defined as the minimizer of the rank dispersion

function of Jaeckel (1972)

Wn(θ,θ0) =
1

n

n∑
i=1

[
R(zi(θ,θ0))

n+ 1
− 1

2

]
zi(θ,θ0) ,

where R(zi(θ,θ0)) is the rank of zi(θ,θ0) among z1(θ,θ0), . . . , zn(θ,θ0). Since θ0 is not

known, the dispersion function cannot be directly minimized. As a solution, we plug-in an

initial estimator of θ0 in Wn and minimize the resulting dispersion function with respect

to θ. That is, given an initial estimator θ̂
0

n, θ̂
k

n = Argmin
θ∈Θ

Wn(θ, θ̂
k−1

n ) for k = 1, 2, . . ..

Note that, by Lemma 2 of Jennrich (1969), θ̂
k

n exists because Wn(θ, θ̂
k−1

n ) is continuous as a

function of θ on the compact space Θ for k fixed. This process gives rise to a Fisher scoring

scheme given by

θ̂
k

n = θ̂
k−1

n +
[
Ψ̇k
n(θ̂

k−1

n )
]−1

Ψk
n(θ̂

k−1

n ) k = 1, 2, 3, · · · , (3.2.1)

where Ψk
n(θ) is the rank score function defined by

Ψk
n(θ) ≡ W ′

n(θ, θ̂
k−1

n ) =
1

n

n∑
i=1

[
ri(θ, θ̂

k−1

n )

n+ 1
− 1

2

]
g′(xtiθ)√

ν(g(xtiθ̂
k−1

n ))

xi (3.2.2)
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and Ψ̇k
n(θ) = dΨk

n(θ)/dθ. Here ri(θ, θ̂
k−1

n ) is the rank of ei(θ, θ̂
k−1

n ) among e1(θ, θ̂
k−1

n ), . . . , en(θ, θ̂
k−1

n ),

where

ei(θ, θ̂
k−1

n ) =
yi − g(xtiθ)√
ν(g(xtiθ̂

k−1

n ))

, i = 1, . . . , n .

The quantity φ is removed from the denominator since it has no influence on the ranks and

hence the kth step estimator θ̂
k

n.

As an initial estimator, we propose the naïve Wilcoxon estimator

θ̂
0

n = Argmin
θ∈Θ

W 0
n(θ) ,

where

W 0
n(θ) =

1

n

n∑
i=1

(R(ei(θ))

n+ 1
− 1

2

)
ei(θ) (3.2.3)

and R(ei(θ)) is the rank of the ith raw residual ei(θ) = yi − g(xtiθ) among e1(θ) = y1 −

g(xt1θ), e2(θ) = y2−g(xt2θ), · · · , en(θ) = yn−g(xtnθ). Note that θ̂
0

n is a zero of the function

Ψ0
n(θ) defined by

Ψ0
n(θ) =

1

n

n∑
i=1

(R(ei(θ))

n+ 1
− 1

2

)
g′(xiθ)xi . (3.2.4)

Once again, because W 0
n(θ) is continuous and Θ is compact, Lemma 2 of Jennrich (1969)

implies the existence of a minimizer of W 0
n(θ).

For independent and identically distributed raw residuals ei(θ) = yi−g(xtiθ), the initial

estimator θ̂
0

n is referred to as the Wilcoxon estimator of θ0, in linear and nonlinear regression.

It is usually preferred to least squares estimators in the presence of outliers for its robustness

in the response space. The theory of the nonlinear Wilcoxon estimator, that includes θ̂
0

n as

a special case, has been studied by Abebe and McKean (2007).

For the case g(xtiθ) = xtiθ and ν(.) ≡ 1 with possibly dependent and non-identically

distributed residuals ei(θ), 1 ≤ i ≤ n, the method proposed in this chapter for obtaining

the initial estimator θ̂
0

n and the sequence {θ̂
k

n} reduces to the method considered by Jung

and Ying (2003). The theory presented in this and the next sections, though, is for a general
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function g satisfying the conditions given in the introduction, and for independent but not

necessarily identically distributed residuals ei(θ).

In our case, since we are studying generalized linear models, the raw residuals are not

as useful as they are in linear models. The Pearson residuals capture the mean-variance

relationship that exists in generalized linear models. Although under certain conditions θ̂
0

n

is asymptotically unbiased, it converges very slowly to θ0. The iterative scheme defined

above for θ̂
k

n for k = 1, 2, 3, · · · , updates θ̂
0

n to an estimator that converges much faster to

θ0 than θ̂
0

n.

The estimators θ̂
k

n, k = 0, 1, . . ., are related to a quasi-likelihood type rank estimator θ̂n

that solves

Ψn(θ̂n) = 0 , (3.2.5)

where

Ψn(θ) =
1

n

n∑
i=1

[
ri(θ,θ)

n+ 1
− 1

2

]
g′(xtiθ)√
ν(g(xtiθ))

xi . (3.2.6)

Note that, Ψn(θ) is a rank version of the quasi-score function given by Wedderburn (1974).

Moreover, Ψn(θ) ≡ Ψ0
n(θ) for ν(g(t)) ≡ 1; that is, θ̂n ≡ θ̂

0

n for ν(g(t)) ≡ 1. As Theorem 3.4

in the following section shows, θ̂
k

n → θ̂n as k →∞ for n fixed; that is, our iterative estimator

converges to the quasi-likelihood type estimator based on ranks. This is somewhat intuitive

since the score function (3.2.2) used in our iteration scheme satisfies Ψk
n(θ̂

k−1

n ) = Ψn(θ̂
k−1

n ).

For simplicity of notation, ri(θ,θ) will be denoted by ri(θ).

3.3 Asymptotic Properties

3.3.1 Consistency

We will present sufficient conditions for strong consistency of the rank quasi-likelihood

estimator as well as the initial estimator. Let (Ω,F , P ) be a probability space. Assume, for

i = 1, · · · , n, the random vectors (yi,xi), are independent and that yi and xi are each carried

by (Ω,F , P ) for all i = 1, · · · , n. Let a.s convergence denote almost sure convergence; that
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is, pointwise convergence everywhere on Ω except possibly for an event in F of probability

0.

Let µ(t) =
g′(t)√
ν(g(t))

and µ′(t) its derivative. Moreover, let λmin(
∑n

i=1 xix
t
i) and

λmax(
∑n

i=1 xix
t
i) denote the minimum and the maximum eigenvalues of

∑n
i=1 xix

t
i, respec-

tively. The following assumptions will be needed in establishing the strong consistency of

θ̂n:

C1 : inf
i∈N

µ′(xtiθ) > 0 for all θ ∈ Θ,

C2 : λmin(
∑n

i=1 xix
t
i)→∞ a.s as n→∞, and

C3 : there exist finite constants n0 > 0 and c > 0 such that
λmax(

∑n
i=1 xix

t
i)

λmin(
∑n

i=1 xixti)
< c for all

n ≥ n0.

Remark 3.1. Assumption C1 is equivalent to the assumption:
dµ(t)

dt
> 0 made in Chen et al.

(1999) and assumption C2 is the same as assumption C1 of Chen et al. (1999). Assumption

C3 is equivalent to equation (3.6) of Fahrmeir and Kaufmann (1985).

The following theorem gives the consistency of θ̂n. The consistency of θ̂
0

n follows as a

special case by taking ν(g(t)) ≡ 1 in the proof.

Theorem 3.1. Under C1, C2, and C3, θ̂n → θ0 a.s when n → ∞. In fact, ‖θ̂n − θ0‖ =

O
(
λ
−1/2
min

(∑n−1
i=1 xix

t
i

))
.

The proof of Theorem 3.1 is given in the appendix. The proof requires the following

lemma, Lemma 8 of den Boer and Zwart (2012):

Lemma 3.1. Let (xi)i∈N be a sequence of vectors in Rp and (ωi)i∈N a sequence of scalars

with infi∈N ωi > 0. Then for all n ∈ N

λmin

( n∑
i=1

ωixix
t
i

)
≥ λmin

( n∑
i=1

xix
t
i

)
inf
i∈N

ωi
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Remark 3.2. Note that Lemma 3.1 guarantees the existence of
(∑n

i=1 ωixix
t
i

)−1

whenever

λmin

(∑n
i=1 xix

t
i

)
> 0.

3.3.2 Asymptotic Normality and Robustness

We will now give conditions needed for the asymptotic normality of θ̂n, and θ̂
0

n in

particular. We will start by defining some quantities that will be used hereafter. Let τ ∈ Rp

and define

Ln(θ, τ) =
1

n

n∑
i=1

γn(xi,θ)
( ri(θ)

n+ 1
− 1

2

)
s2
n(θ) = n2E

(
L2
n(θ, τ)

)

where

γn(xi,θ) =
τ txiµ

′(xtiθ)

max1≤i≤n‖τ txiµ′(θtxi)‖
.

The notations Ln and s2
n are borrowed from Brunner and Denker (1994) in the particular case

of J(x) = x−1/2. As required in Brunner and Denker (1994), we have max1≤i≤n |γn(xi,θ)| =

1. Conditioning on xi gives deterministic regression coefficients γn(xi,θ).

Let X be the n × p matrix of regressors, with rows xi. In addition to C1, C2, and C3

consider the following assumptions

N1 : s2
n(θ0)→∞ as n→∞ and

N2 : Ψ̇n(θ0)
P−→ H0 invertible.

The following lemma is a consequence of corollaries 3.4 and 3.6 of Brunner and Denker

(1994), with J(t) = t− 1

2
, mi = 1 for all i and N = n.

Lemma 3.2. Under N1,

√
nΨn(θ0)

D−→ N(0,Ω0) as n→∞
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with Ω0 = lim
n→∞

nE(Ψn(θ0)Ψt
n(θ0)).

The following theorem gives the asymptotic normality of θ̂n. Since taking ν(g(t)) ≡ 1

gives θ̂n = θ̂
0

n, the asymptotic normality of θ̂
0

n follows as a special case of the theorem.

Theorem 3.2. Under C1 − C3 and N1, N2,

√
n(θ̂n − θ0)

D−→ N(0, H−1
0 Ω0H

−1
0 ) as n→∞ .

The asymptotic representations used in the proof of Theorem 3.2 may be used to obtain

the influence function of θ̂n (Hettmansperger and McKean, 1998). As the theorem below

shows, the influence function of θ̂n is bounded in y-space but unbounded in X space. This

mirrors the behavior of the Wilcoxon estimator in the linear model.

Theorem 3.3. Let ei(θ0,θ0) ∼ Fj.If Fj(t) > 0 ∀j ∈ N and t ∈ R, then the influence

function of the estimator θ̂n is

IF(θ̂n; x, y) = xµ(xtθ0)
(
F̄
( y − g(xtθ0)√

ν(g(xtθ0))

)
− .5

)
H−1

0

where F̄ = limn→∞ F̄n; F̄n =
1

n

∑n
j=1 Fj;

Remark 3.3. Note that the influence function of θ̂n depends on the response y only through

the function F̄ , and that 0 < F̄ < 1. Since F̄ is a bounded function ( therefore bounded in

y), so is the influence function of θ̂n. This in particular implies that the influence function

of θ̂
0

n is also bounded with respect to the response y, since it is a special case ( ν(g(t)) ≡ 1)

of the influence function of θ̂n. In fact, it is a well known fact (cf. Abebe and McKean,

2007; Hettmansperger and McKean, 1998) that the influence function of the initial Wilcoxon

estimator θ̂
0

n used in this work is bounded in the y direction. However, minimizing the

function

Wn(θ,θ) =
1

n

n∑
i=1

[
R(zi(θ,θ))

n+ 1
− 1

2

]
zi(θ,θ) ,
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will result in an estimator that is not robust in either x or y direction, since the gradient of

Wn(θ,θ) is unbounded in both x and y direction; giving rise to unbounded influence function.

Hence the choice of Wn(θ,θ0).

3.3.3 Iterations

The theorem below establishes the relationship between the quasi-likelihood rank type

estimator, θ̂n, and the sequence {θ̂
k

n}k, as the number of iterations (k) increases while holding

the sample size (n) constant. As the following theorem shows, increasing k leads to the quasi-

likelihood rank type estimator.

Theorem 3.4. For n fixed,

lim
k→∞

θ̂
k

n = θ̂n ,

where, again, Ψn(θ̂n) = 0 with Ψn(θ) defined in (3.2.6).

3.4 Simulations and Example

3.4.1 Monte Carlo Simulations

We conducted a small simulation study in order to evaluate the finite sample perfor-

mance of the proposed rank based k-step estimator. The behavior of the estimator was

studied for different sample sizes and various covariate types. The boxplots, the mean and

the mean squared error were produced from s = 200 estimates of the parameter correspond-

ing to 200 simulated data sets. The process was repeated in the presence of outliers and

compared to the corresponding quantities based on the maximum likelihood estimates of the

parameter.

We considered two settings for the simulation study. In both settings, the true parameter

vector was taken to be θ0 = (2, 1), and each response yi was generated from a gamma

distribution with shape parameter according to a model with the log link function and

scale parameter fixed at 6. In the first setting, the predictor xi = (xi1, xi2) is such that
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xi1 ∼ Bernoulli(0.5) and xi2 ∼ Bernoulli(0.4) whereas in the second setting we take xi1 ∼

Bernoulli(0.5) and xi2 ∼ N(0, 1).

Figure 1 presents the boxplots of the estimates and Figure 2 gives a comparison of

the accompanying mean squared error for the first simulation setting. Figures 3 and 4 give

the same summary for the second setting. The contamination of the response was done by

replacing the maximum element of y = (y1, y2, · · · , yn) by eight times its original value.

Figures 1 – 4 reveal that the proposed rank estimator (labelled as “Ours”) is comparable

to the maximum likelihood estimator (labelled as “MLE”) when there is no outlier in the

data. In addition, as Figures 2 and 4 show, the MSE goes to zero as the sample size increases

for both MLE and rank. This illustrates our theoretical result that the proposed estimator

converges to the true parameter in L2 norm. It is also observed that, in the presence of a

gross outlier, the MLE loses both its accuracy and its precision whereas the proposed rank

estimator remains unaffected. This can well be viewed on the boxplots (Figures 1 and 3)

and the right panels of Figures 2 and 4.

Figure 3.1: Boxplot of the estimates

● ●●

●
●●

Ours_Clean Ours_Oultier MLE_Clean MLE_Outlier

1.
6

2.
0

2.
4

2.
8

Boxplot for_True=2_n=30

●
●

●

●

Ours_Clean Ours_Oultier MLE_Clean MLE_Outlier

1.
0

1.
5

2.
0

Boxplot for_True=1_n=30

27



Figure 3.2: MSE comparison
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Figure 3.3: Boxplot of the estimates
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Figure 3.4: MSE comparison
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3.4.2 Example 1: Swedish Third Party Motor Insurance

A real world data example was considered to compare the performance of the proposed

estimator to that of the maximum likelihood estimator on real data. The findings reveal

that our estimator is robust to local contamination of the response and is comparable to the

maximum likelihood estimator when the data have no outliers.

The data were compiled by the Swedish Committee on the Analysis of Risk Premium

in Motor Insurance in 1977. The Committee was asked to evaluate the real influence on

claims of the risk arguments and to compare this structure with the actual tariff. Among

other variables, the following variables were considered: the total amount of the claim, the

number of claims, kilometers traveled by the automobile per year, and the make of the

car. In this work, we study the relationship between the average amount of the claim and

the make of the car as well as the kilometers traveled by year.The variable "make of the

automobile" has 9 categories. Categories 1 to 8 represent eight different common car models

and all other models are combined in class 9. The variable "kilometers traveled per year"

was categorized into 5 groups based on the number of kilometers traveled per year. These

categories were [0, 1000), [1000, 15000), [15000, 20000), [20000, 25000), and [25000,∞). We

used the data from the largest cities and their surroundings (zone 1) that resulted in a

sample size of 295. The original complete study for this data set can be found in Hallin

and Ingenbleek (1983). The data set for zone 1 is found in Andrews and Herzberg (1985).

Traditionally the average claims amount is modeled using a gamma distribution. Therefore,

we fitted a gamma generalized linear model with response the "average claim amount" and

regressors "the make of the car" and "kilometers traveled per year". We created an outlier

by replacing the average claim amount in position 70 of y by 100000. For our data, the

average maximum payment was 31442. So, a payment of 100000 is not out of realm. One

may think of a total-loss expensive luxury vehicle. The results of the study are summarized

in Table 3.1 as well as Figures 5 and 6.
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Table 3.1: Coefficient (Coef) and Standard Error (SE) estimates for Swedish Third Party
Motor Insurance

Coef - Rank Coef - MLE SE - Rank SE - MLE
Clean Outlier Clean Outlier Clean Outlier Clean Outlier

intercept 8.369 8.355 8.397 8.000 0.077 0.081 0.057 0.445
x2 0.112 0.135 0.089 1.523 0.059 0.066 0.055 1.455
x3 0.082 0.082 0.064 0.098 0.061 0.062 0.056 0.112
x4 0.076 0.079 0.082 0.125 0.075 0.078 0.068 0.126
x5 0.116 0.117 0.111 0.124 0.082 0.083 0.080 0.088
z2 0.080 0.081 0.072 0.197 0.079 0.082 0.071 0.267
z3 0.112 0.111 0.143 0.190 0.145 0.148 0.114 0.249
z4 -0.122 -0.119 -0.093 0.079 0.126 0.129 0.110 0.307
z5 -0.112 -0.112 -0.103 -0.096 0.098 0.097 0.094 0.264
z6 -0.027 -0.031 0.021 0.086 0.098 0.100 0.092 0.299
z7 -0.131 -0.131 -0.106 -0.113 0.135 0.133 0.114 0.297
z8 0.196 0.169 0.328 0.354 0.275 0.274 0.176 0.282
z9 -0.025 -0.010 -0.031 0.470 0.058 0.066 0.045 0.545

Table 3.1 shows the rank estimates of the coefficients are comparable with the maximum

likelihood estimates. The maximum likelihood estimates of the coefficients are sensitive to

the outlier whereas the rank estimates remain relatively unchanged by the introduction of a

gross outlier. The standard errors of the coefficients based on the rank procedure are quite

comparable with the standard error estimates based on the maximum likelihood procedure for

the clean data. Similar to the coefficients, rank standard errors remain relatively unchanged

when the outlier is included. However, the maximum likelihood based estimates of the

standard error are inflated by the outlier. The iterative scheme converged for k = 3 and

k = 4, respectively, for the clean data and contaminated data.

The Pearson and deviance residual plots (Figures 5 and 6, respectively) show that the

outlier inflated both the Pearson and deviance residuals of the MLE. We can also observe

that the outlier induced a clustering effect on the MLE estimated responses. This can result

in unusually high or unusually low estimates of insurance premiums. This is not true for the

rank estimator as the outlier has no apparent effect on the residual plots.
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Figure 3.5: Pearson residuals plot for clean and contaminated response
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Figure 3.6: Deviance residuals vs Fitted values for clean and contaminated response

●

●

●

●
● ●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

● ●
●

●●

●
●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

● ●
●

●

●

●

●
● ●

●

16.6 16.8 17.0 17.2 17.4

−2
−1

0
1

2

Ours − Clean 

2log(fitted)

de
via

nc
e 

re
sid

ua
ls

●

●

●

●
● ●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●●
●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●●
●

●●

●
●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
● ●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

16.6 16.8 17.0 17.2

−2
−1

0
1

2

Ours − Outlier 

2log(fitted)

de
via

nc
e 

re
sid

ua
ls

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●
●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

16.6 16.8 17.0 17.2 17.4 17.6

−4
−2

0
2

4

MLE − Clean

2log(fitted)

de
via

nc
e 

re
sid

ua
ls

●

●
●

●● ●● ●

●

● ●
●

●

●
●

●
● ●

● ●

●
●

●
●●

●
●

●
●

●
●●

●
●

●
● ●

●
●

● ●
●

●

● ●●●
● ●

● ●

●

●

●●
●

●
●

●

● ●

●

●●

●● ●
● ●

●

●●
●

●
●

● ●

●

●

●●●● ●●
●

●

●

●●●
●

●● ●

●

●
●

●

●●
●

● ●

●

●

●

●●● ●
● ●

●

●

●

●●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●
●
●

●● ●
● ●

●
●
●●●

●

● ● ●●
●●

●
●●

●
●

●
●

●● ●
●

●
●

●

●
●

●● ●
● ●

●

●

●
●●

● ●

●
●

●

● ●

●

●
●

●
●

● ●●
●

●

●

● ●
● ●●●● ●● ●

●● ●
●●

● ●
●● ●

●●

●
●●

● ●

●

●
●

●

●
●

●
●

●
●

●
●●
●

●
●

●
●

●
●

● ●
●

● ●

● ●●●●
●

●
●

●●
●

● ● ●

●

●● ●●
●

●
●

●●● ●

●
●

●

● ●●● ●
●

●

●

●
●

●

●
●

●● ●
●

16 17 18 19 20

−5
0

−3
0

−1
0

0
10

MLE − Outlier

2log(fitted)

de
via

nc
e 

re
sid

ua
ls

32



3.4.3 Example 2: Universities presidents’ Compensation

A second real world data example was considered to further compare the performance

of the proposed estimator to that of the maximum likelihood estimator. As in the previ-

ous example, the findings reveal that our estimator is robust to local contamination of the

response and is comparable to the maximum likelihood estimator in the absence of the po-

tential outlier.

The data is about the compensation received in the 2010-2011 fiscal year by 199 chief execu-

tives at 190 public universities and systems in the United States. The Chronicle surveyed in-

stitutions to collect compensation data.It includes public colleges and their affiliated systems

that were classified as research universities by the Carnegie Foundation for the Advancement

of Teaching in 2010. The four-year institutions included here comprise universities with total

fall enrollments of at least 10,000 and universities with smaller enrollments that are state

flagships. At some colleges, more than one president served during the year 2010-2011. All

people who served in the capacity of chief executive were used in the study, including interim

leaders if they served for at least six months.

In this work, we use the data from 49 states flagship universities included in the study.

We divided the 49 states flagship universities into four geographic region, mainly the South,

the West, the Northeast, and the Midwest. The purpose of the analysis conducted in this

work is to estimate and compare the compensation of states’ flagship universities by geo-

graphic region. However, the president of the Ohio State University had a compensation

of 1,893,911, where as the rest of the presidents had their compensation ranging between

126,340 to 944,697. That is, the data contained a potential outlier. Such a data point when

included in the study requires the use of a robust method like the one developed in this work.

Traditionally, income data are modeled with a gamma distribution and the same distribution

is adopted in this work. We fit a generalized linear model with a gamma response and log

link function. The predictor is the geographic region variable with four levels: the South,
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the West, the Northeast, and the Midwest. This gives rise to

log(E[yi]) = β0 + xi1β1 + xi2β2 + xi3β3, i = 1, 2, · · · , 49 ,

where

1. y = President’s Compensation (US dollars)

2. x1 = 1 if "region = South", x1 = 0 "otherwise"

3. x2 = 1 if "region = West", x2 = 0 "otherwise"

4. x3 = 1 if "region = Midwest", x3 = 0 "otherwise".

We computed 1000 bootstrap estimates of the coefficients with both the MLE and

the proposed method, with and without the potential outlier. The (componentwise) mean

and standard deviation of these 1000 estimates are reported in table 3.2. In addition we

report the sum of the squared deviance residuals (sqr.Dev) and the sum of the absolute

deviance residuals (abs.Dev). We also perform a test of hypotheses to determine whether

the compensations of the universities’s presidents in the Midwest differ from the ones of

Northeastern universities’s presidents. This can be expressed as

H0 : β3 = 0 versus Ha : β3 6= 0.

Table 3.3 provides the p-values of both the proposed method and the MLE. Although

both the MLE and the proposed rank procedure fail to reject the null hypothesis, the MLE

P-values are more affected by the outlier than the rank based ones.

The Pearson residual plots and the deviance residuals plots are respectively given by

figures 3.7 and 3.8. We observe that in the presence of the outlier, the proposed rank

method has a smaller sum of absolute deviance residuals than the MLE. Whereas this sum

of absolute deviance residuals is nearly the same for both methods when this potential outlier
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Table 3.2: Coefficient (Coef) and Standard Error (SE) estimates for universities presidents’s
compensation

Coef - Rank Coef - MLE SE - Rank SE - MLE
Clean Original Clean Original Clean Original Clean Original

inte 12.857 12.844 12.953 12.952 0.099 0.143 0.152 0.150
x2 0.249 0.252 0.173 0.176 0.163 0.154 0.173 0.164
x3 0.081 0.083 0.106 0.105 0.174 0.177 0.190 0.191
x4 -0.016 0.045 -0.032 0.201 0.189 0.203 0.204 0.282

sqr. Dev 6.973 13.412 5.689 12.846
abs. Dev 13.991 17.770 13.222 19.064

Table 3.3: P-values Comparison
Rank MLE

Clean pvalue=0.9325 pvalue=0.8753
Original pvalue=0.8245 pvalue=0.4759

is removed from the data. The MLE has a smaller sum of squared deviance residuals either

with or without the potential outlier in the data. This is expected as the MLE minimizes

the sum of squared deviance residuals. These observations are illustrated in the residuals

plots. Although the effect of the potential outlier is not remarkably significant, the outlier

does affect the MLE estimation as revealed by the deviance.

Figure 3.7: Pearson residuals plot for clean and contaminated response

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

−0
.5

0.
5

1.
5

2.
5

MLE−Original

Index

pe
ar

so
n 

re
sid

ua
ls

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

0
1

2
3

Rank−Original

Index

pe
ar

so
n 

re
sid

ua
ls

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40

0.
0

0.
5

1.
0

MLE−Clean

Index

pe
ar

so
n 

re
sid

ua
ls

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40

0.
0

0.
5

1.
0

Rank−Clean

Index

pe
ar

so
n 

re
sid

ua
ls

35



Figure 3.8: Deviance residuals vs Fitted values for clean and contaminated response
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3.5 Conclusion

A k-step rank based estimator for generalized linear model has been developed, with

its performance evaluated in comparison with the MLE for both simulated and real data.

Our estimation procedure produces its initial estimator and iteratively updates it through

minimization of a rank based objective function, yielding estimators that have bounded

influence in the response space. As such, the method developed in this work is ideal for

data from designed experiments where the x’s are controlled. There is no guarantee that our

procedure results in robust estimates for uncontrolled studies. It is interesting to extend our

procedure to the discrete response case.
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3.6 Proofs

Proof of Theorem 3.1. Let ωi(θ) =
( ri(θ)

n+ 1
−1

2

)
µ′(xtiθ). Observe that by C1, infi∈N µ

′(xtiθ) >

0 for all θ ∈ Θ. On the other hand, δi(θ) =
( ri(θ)

n+ 1
− 1

2

)
µ(xtiθ), is such that |δi(θ)| ≤ K

for all i ∈ N and θ ∈ Θ, for some constant K since µ(.) is continuous and U = {u | u =

xtθ for θ ∈ Θ and x ∈ X} is compact as a consequence of both Θ and X being compact and

also
∣∣∣ ri(θ)

n+ 1
− 1

2

∣∣∣ ≤ 1

2
.

Now, by definition of θ̂n
n∑
i=1

δi(θ̂n)xi = 0.

By the mean value theorem, there exists a random vector, θ̃n, on the line segment between

θ0 and θ̂n such that

0 =
n∑
i=1

δi(θ0)xi +
n∑
i=1

ωi(θ̃n)xix
t
i(θ̂n − θ0).

So, for large n

(θ̂n − θ0) =
( n∑
i=1

ωi(θ̃n)xix
t
i

)−1
n∑
i=1

δi(θ0)xi.

Note that, in addition to, the fact that
∣∣∣ ri(θ)

n+ 1
− 1

2

∣∣∣ ≤ 1

2
∀ i ∈ {1, 2, · · · , n} and n ∈ N;

ri(θ)

n+ 1
− 1

2
is equal to zero, only at a single point.That is, for large n, the random variable

ri(θ)

n+ 1
− 1

2
is only equal to zero on a set of measure zero. Therefore,

(θ̂n − θ0) = O(1)
( n∑
i=1

µ′(xtiθ̃n)xix
t
i

)−1
n∑
i=1

δi(θ0)xi a.s.

which in turn implies

‖θ̂n − θ0‖ ≤ K

∥∥∥∥∥(
n∑
i=1

µ′(xtiθ̃n)xix
t
i

)−1

∥∥∥∥∥
n∑
i=1

‖xi‖ a.s
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and so

‖θ̂n − θ0‖ ≤ Kλ−1
min

( n∑
i=1

µ′(xtiθ̃n)xix
t
i

) n∑
i=1

‖xi‖ a.s .

So by Lemma 3.1, we have

‖θ̂n − θ0‖ ≤ K
(

inf
i∈N

µ′(xtiθ̃n)
)−1

λ−1
min

( n∑
i=1

xix
t
i

) n∑
i=1

‖xi‖ a.s.

Note that
∑n−1

i=1 ‖xi‖ = O
(
λ

1/2
max

(∑n
i=1 xix

t
i

))
since all norms are equivalent on finite di-

mensional vector spaces. In addition,
(

infi∈N µ
′(xtiθ̃n)

)−1

<∞ since
(

infi∈N µ
′(xtiθ̃n)

)
> 0.

Therefore,

‖θ̂n − θ0‖ ≤ O(1)λ−1
min

( n∑
i=1

xix
t
i

)
λ1/2
max

( n∑
i=1

xix
t
i

)
a.s;

and by C3

‖θ̂n − θ0‖ ≤ O(1)λ
−1/2
min

( n∑
i=1

xix
t
i

)
a.s;

which converges to 0 a.s by C2, and the proof is complete.

Proof of Lemma 3.2. First, observe that

E
(
γn(xi,θ0)

(ri(θ0)

n+ 1
− 1

2

))
= E

(
E
(
γn(xi,θ0)

(ri(θ0)

n+ 1
− 1

2

)
|xi
))

(3.6.1)

= E
(
γn(xi,θ0)E

((ri(θ0)

n+ 1
− 1

2

)))
(3.6.2)

= E(0) (3.6.3)

= 0 (3.6.4)

which implies that

E
(
Ln(θ0, τ)

)
= 0
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So, by corollaries 3.4 and 3.6 of Brunner and Denker (1994)

√
nLn(θ0, τ) =

τ t
√
nΨn(θ0)

max1≤i≤n‖τ txiµ(θt0xi)‖
has an asymptotic N

(
0,
s2
n(θ0)

n

)
distribution.

That is

τ t
√
nΨn(θ0)

max1≤i≤n‖τ txiµ(θt0xi)‖
= N

(
0 ,

nτ tE(Ψn(θ0)Ψt
n(θ0))τ

(max1≤i≤n‖τ txig′(θt0xi)‖)2

)
+ op(1) .

Note that for each θ ∈ Θ, max1≤i≤n‖τ txiµ(xtiθ)‖ 6= 0; otherwise Ψn(θ) = 0 on Θ. Now,

there is some finite constant K such that ‖τ txiµ(θt0xi)‖ ≤ K for all i since µ is continuous

and U = {u | u = xtθ for θ ∈ Θ and x ∈ Xp} is compact as a consequence of both Θ and

X being compact. So,

τ t
√
nΨn(θ0) = N

(
0 , nτ tE(Ψn(θ0)Ψt

n(θ0))τ
)

+ op(1) .

Applying the Cramér-Wold device and taking limn→∞ we get

√
nΨn(θ0)

D−→ N(0,Ω0) .

Proof of Theorem 3.2. The technique used in this proof, Taylor expansion of Ψn(θ) around

θ0, is similar to the one used in establishing the asymptotic normality ofM -estimators. Note

that Ψn(θ) and all its subsequent derivatives are defined on the interior of Θ which is open

and convex. Since θ̂n is consistent for θ0 and θ0 is in the interior of Θ, this implies that the

sequence θ̂n will eventually be in the interior of Θ as well.

Let α = (α1, · · · , αp) ∈ Nn
0 , N0 = N ∪ {0}, be a multi-index. We define the differential

operator

Dα
θ =

∂|α|

∂θα1
1 · · · ∂θαp

p

,
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where |α| =
∑p

i=1 αi and θ = (θ1, · · · ,θp). For any function ψ : Θ→ R, we will take

ψ̇(θ) = Dα
θψ(θ) for all α such that |α| = 1.

By Taylor’s theorem, there exists a random vector θ̃n on the line segment between θ̂n and

θ0 for which

0 = Ψn(θ̂n) = Ψn(θ0) + Ψ̇n(θ0)(θ̂n − θ0) + (θ̂n − θ0)t
{

1

α!
Dα

θΨn(θ̃n)(θ̂n − θ0)δ
}

(θ̂n − θ0)

that can be rearranged as

−
{

(Ψ̇n(θ0) + (θ̂n − θ0)t
( 1

α!
Dα

θΨn(θ̃n)(θ̂n − θ0)δ
)}√

n(θ̂n − θ0) =
√
nΨn(θ0) , (3.6.5)

where α! = Πp
i=1αi! for all α such that |α| = 2 and (θ̂n − θ0)δ = Πp

i=1(θ̂n − θ0)δ
i

i with

δ = (δi, · · · , δn) and
∑n

i=1 δ
i = 1.

Now, for each value of α with |α| = 2, we have

∥∥∥∥ 1

α!
Dα

θΨn(θ̃n)

∥∥∥∥ ≤ L

n

n∑
i=1

∣∣∣ ri(θ)

n+ 1
− 1

2

∣∣∣ for some L (independent of n), with 0 ≤ L <∞ ,

since µ′′ is continuous and U = {u | u = xtθ for θ ∈ Θ and x ∈ X} is compact as a

consequence of both Θ and X being compact. Moreover, we have

lim
n→∞

1

n

n∑
i=1

∣∣∣ ri(θ)

n+ 1
− 1

2

∣∣∣ = lim
n→∞

1

n

n∑
i=1

∣∣∣ i

n+ 1
− 1

2

∣∣∣ =

∫ 1

0

∣∣∣u− 1

2

∣∣∣du
that is bounded (see Hettmansperger, 1984, page 307 Definition A4). Now since θ̂n − θ0 =

op(1), equation (3.6.5) can be written as

−
(

Ψ̇n(θ0) + op(1)
)√

n(θ̂n − θ0) =
√
nΨn(θ0) (3.6.6)
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which by Lemma 3.2 implies

Ψ̇n(θ0)
√
n(θ̂n − θ0)

D−→ N(0,Ω0)

Since Ψ̇n(θ0) = H0 + op(1), where H0 is invertible by N2, we have

√
n(θ̂n − θ0)

D−→ N(0, H−1
0 Ω0H

−1
0 ) .

Proof of Theorem 3.3. The consistency of θ̂n together with equation (3.6.6) imply that

√
n(θ̂n − θ0) =

√
n
(

Ψ̇n(θ0)
)−1

Ψn(θ0) + op(1)

that is

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

xiµ(xtiθ0)
(ri(θ0)

n+ 1
− 1

2

)(
Ψ̇n(θ0)

)−1

+ op(1). (3.6.7)

Note that, by definition
ri(θ0)

n+ 1
=

1

n+ 1

∑n
j=1 I(ej(θ0,θ0) ≤ ei(θ0,θ0)); where I is the

indicator function. By the uniform law of large numbers

1

n+ 1

∣∣∣ n∑
j=1

I(ej(θ0,θ0) ≤ ei(θ0,θ0))−
n∑
j=1

Fj(ei(θ0,θ0))
∣∣∣ P−→0

where ej(θ0,θ0) ∼ Fj.

Therefore, for large n, equation 3.6.7 can be rewritten as

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

xiµ(xtiθ0)
(
F̄n(ei(θ0,θ0))− 1

2

)(
Ψ̇n(θ0)

)−1

+ op(1). (3.6.8)
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with F̄n =
1

n

∑n
j=1 Fj.

From this representation, the influence function of θ̂n is the limit as n → ∞ of the

function under the summation (Hettmansperger and McKean, 1998, Corollary 3.5.7). This

function can be written as

IFn(x, y) = xµ(xtθ0)
(
F̄n(ei(θ0,θ0))− .5

)
H−1

0 ,

Therefore the influence function is

IF(θ̂n; x, y) = xµ(xtθ0)
(
F̄
( y − g(xtθ0)√

ν(g(xtθ0))

)
− .5

)
H−1

0

where F̄ = limn→∞ F̄n. Note that the assumption Fj(t) > 0 ∀j ∈ N and t ∈ R,

guarantees that for each t ∈ R, F̄n(t) is a Cauchy sequence of real numbers and therefore

converges.

Observe that 0 < F̄ < 1 since each Fj is such that 0 < Fj < 1. As a consequence,

the influence function of θ̂n, IF(θ̂n; x, y),is a bounded function of y. From this argument,

it follows that the influence function of θ̂
0

n, IF(θ̂
0

n; x, y), is bounded in the y direction; by

setting ν(g(t)) ≡ 1, since θ̂n ≡ θ̂
0

n in this case.

Proof of Theorem 3.4. Recall that Ψn(θ̂
k

n) = Ψk+1
n (θ̂

k

n) and Ψk+1
n (θ̂

k+1

n ) = 0. Now expanding

Ψk+1
n (θ̂

k+1

n ) about θ̂
k

n gives

θ̂
k+1

n = θ̂
k

n +
[
Γn(θ̂

k

n)
]−1

Ψn(θ̂
k

n) k = 1, 2, 3, · · ·

where Γn is the gradient of Ψk+1
n which is a function of θ̂

k

n alone. Define the function

T : Θ→ Θ by T (θ) = θ + [Γn(θ)]−1 Ψn(θ). Note that T is continuous. Since Θ is compact
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and convex, by the Schauder fixed point theorem, T has a fixed point. That is, ∃ θ∗n ∈ Θ

such that T (θ∗n) = θ∗n.

Therefore, θ̂
k+1

n = T (θ̂
k

n) implies that

lim
k→∞

θ̂
k

n = θ∗n for each n . (3.6.9)

If [Γn(θ)]−1 = 0, then T (θ) = θ, in which case θ̂
k

n = θ̂
0

n for all k. So, the sequence trivially

converges. So, assume [Γn(θ)]−1 6= 0. Then, by the definition of T , T (θ∗n) = θ∗n ⇒ Ψn(θ∗n) =

0.
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Chapter 4

Rank Based Estimation for Longitudinal Data Analysis

We extend the method developed in the previous chapter to longitudinal data. The

same notation will be used for corresponding expressions. In addition, identical arguments

or proof of theorems will be omitted in this chapter. We will, instead, focus on the specificities

pertaining to longitudinal data and how the method developed in the previous chapter are

extended to this type of data. All assumptions made in the previous chapter apply here.

4.1 Introduction

Longitudinal studies describe the relationship between a response variable and some

covariates when the observations made on the response are repeated over a certain period of

time, or in space. Such studies commonly arise in various fields of science, including medicine,

psychology, sociology and economics. Even though the measurements for different subjects

can be considered independent, this is not the case for repeated measurements on the same

subjects, and this within-cluster correlation must be taken into account. Over the years, ex-

tensive research has been conducted on statistical methods for inferences in longitudinal data

analysis.Liang and Zeger (1986) developed the approach of generalized estimating equations

(GEE), which involves a "working"correlation matrix to improve estimation efficiency. This

approach only requires specification of marginal mean and covariance functions.The theory

stems from constructing optimal linear combinations of pearson residuals for parameters

estimation.

However, this approach and many other related methods are vulnerable to outliers in the

data. Recently, several authors have considered robust methods for longitudinal data anal-

ysis. For example,He et al. (2002) proposed M-estimators in partly linear models. Qaqish

45



and Preisser (1999) developed a resistant version of the GEE method by down-weighting

influential data points.Huggins (1993) and Gill(2000) also applied the robust approach to

the repeated measures based on multivariate normal distributions. Welsh and Richardson

(1997) investigated multivariate t-distributions and truncated normal distributions.Linear

transformation of the Pearson residuals can result in uncorrelated residuals so that tradi-

tional M-estimation may be used. However for these approaches. symmetry of the joint

distribution , a rather strong assumption, is required. Hu and Lachin (2001)proposed to

robustify the GEE approach by applying the Huber function to the standardized residuals.

This approach is appropriate only when error distributions are symmetric. This assumption

is also required by many others, including Schrader and Hettmansperger (1980) and Gill

(2000). Cantoni (2004) also developed a robust approach to longitudinal data analysis based

on weighted quasi-likelihood functions. Jung and Ying (2003) explored rank methods for

repeated measures in linear models. Their approach assumes that the pairwise differences of

errors have symmetric distributions. In this chapter we use rank procedures in the context

of longitudinal data analysis described in Liang and Zeger (1986). Unlike Jung and Ying

(2003), we do not assume a linear relationship between the response and the predictor. In-

stead, we model the relationship between the mean response and the covariates through a

more general link function. Jung and Ying (2003) studied the linear model with correlated

and non-i.i.d errors. The proposed method is developed for correlated and non-i.i.d errors

and allows for arbitrary link functions with minimal assumption on the error distribution.

The remainder of this chapter is organized as follows. After introducing the model and

the estimators in Section 4.2, the consistency and the asymptotic normality of the rank

version of the maximum quasi-likelihood estimator are studied in Section 4.3. We illustrate

the robustness and the efficiency of the estimators in Section 4.4 via simulation studies and

a real world data example. Section 4.5 provides the conclusion.
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4.2 The Model and Estimator

Our notations follows that of Liang and Zeger (1986). Consider a longitudinal set

of observations over n subjects. Let yij denote the jth response for the ith subject for

j = 1, 2, · · · ,mi and i = 1, 2, · · · , n. Assume that xij is a p by 1 vector of corresponding

covariates. Let N =
∑n

i=1mi denote the total sample size. Assume that the random vectors

(yi1, · · · , yimi
) 1 ≤ i ≤ n are independent, the marginal distribution of yij is absolutely

continuous and from the exponential class of distribution and that the mean of yij is related

to xij by

h[E(yij|xij = x)] = xtθ0, (4.2.1)

where θ0 ∈ Θ ⊂ Rp is a vector of parameters. We assume, like in the previous chapter, that

xij ∈ X ⊂ Rp, 1 ≤ i ≤ n, are independent random vectors for each fixed j : 1 ≤ j ≤ mi.

The function h is such that its inverse g ≡ h−1 is a real valued function defined on the set

U = {u | u = xtθ for θ ∈ Θ and x ∈ X} ⊂ R , monotone and three times continuously

differentiable. We shall assume that, X is compact, Θ is convex and compact, and θ0 is an

interior point of Θ. We will also assume, like in Denker (1994) and Jung and Ying (2003),

that max1≤i≤nmi ≤ m < ∞, where m is independent of n. This condition, in part implies

that, N →∞ if and only if n→∞ .

We consider the rank quasi-likelihood for longitudinal data ,as the estimator of θ0. That

is the estimator of θ0, θ̂n is such that

Ψn(θ̂n) = 0 , (4.2.2)

where

Ψn(θ) =
1

N

n∑
i=1

mi∑
j=1

[
rij(θ,θ)

N + 1
− 1

2

]
g′(xtijθ)√
ν(g(xtijθ))

xij . (4.2.3)
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where rij(θ,θ) =
∑n

i=1

∑mi

j=1 I(ei′j′(u) ≤ eij(u)), as defined in Jung and Ying (2003), is the

rank of eij(θ,θ) among e11(θ,θ), . . . , e1m1(θ,θ) . . . , en1(θ,θ), . . . , enmn(θ,θ), with

eij(θ,θ) =
yij − g(xtijθ)√
ν(g(xtijθ))

, j = 1, . . . ,mi and i = 1, . . . , n .

Note that the above defined rank quasi-likelihood estimator θ̂n reduces to the one defined

in the previous chapter in the special case of mi = 1 ∀ i ∈ 1, · · · , n.

As shown in the previous chapter, for each n, the estimator θ̂n is the limit of the sequence

θ̂
k

n defined as:

θ̂
k

n = Argmin
θ∈Θ

Wn(θ, θ̂
k−1

n )

where

Wn(θ, θ̂
k

n) =
1

N

n∑
i=1

mi∑
j=1

[
rij(θ, θ̂

k

n)

N + 1
− 1

2

]
eij(θ, θ̂

k

n) .

The initial estimator θ̂
0

n is chosen similarly to the one in the previous chapter.

Once again, the existence of θ̂
k

n and θ̂n are justified by Lemma 2 of Jennrich (1969).The

argument of the convergence of θ̂
k

n to θ̂n as k →∞ and n fixed will not be included in this

chapter as it is identical to the one developed in the previous chapter.

For simplicity of notation, rij(θ,θ) will be denoted by rij(θ).

Jung and Ying (2003) studied the linear model in the case of {eij i = 1, . . . , n ; j =

1, . . . ,mi} that are such that {eij, j = 1, . . . ,mi} are dependent for each i and {e1j, j =

1, . . . ,m1} . . . {enj, j = 1, . . . ,mn} are independent random processes. Therefore, for the

case g(xtijθ) = xtijθ and ν(.) ≡ 1, the estimator proposed in this work is identical to the one

defined by Jung and Ying (2003).

4.3 Asymptotic Properties

The expressions used in this sections are defined similarly to the corresponding quantities

in chapter 3. Our intent will be on the ingredients necessary to extend the proof of the
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previous chapter to longitudinal data. Note that most of the assumptions made below are

similar to the ones in Chapter 3.

4.3.1 Consistency

In this subsection we will present sufficient conditions for strong consistency of the

initial estimator. Denote Yi = (yi1, · · · , yimi
) ,Xi = (xti1, · · · ,xtimi

) and let (Ω,F, P ) be a

probability space. Assume, for i = 1, · · · , n, the random vectors (Yi,Xi), are independent

and that Yi and Xi are each carried by (Ω,F, P ) for all i = 1, · · · , n.

The first ingredient necessary to extend the proofs of Chapter 3 to longitudinal data is

to introduce the following notation. The jth observation of the ith subject can be rewritten

as:

xij ≡ xq; q = j +
i−1∑
l=0

ml for 1 ≤ j ≤ mi; with m0 = 0 and 1 ≤ i ≤ n.

The response yq, the ranks rq and the residuals eq are defined via similar vectorizations.

Observe that the resulting predictors xq, responses yq, and residuals eq are not independent.

Instead they are clusters of independent random processes (vectors).

Similarly to the previous chapter,to establish the strong consistency of θ̂n, assumptions

C1, C2, and C3 will be needed. Mainly

C1 : inf
q∈N

µ′(xtqθ) > 0 for all θ ∈ Θ,

C2 : λmin(
∑N

q=1 xqx
t
q)→∞ a.s as n→∞, and

C3 : there exist finite constants n0 > 0 and c > 0 such that
λmax(

∑N
q=1 xqx

t
q)

λmin(
∑N

q=1 xqxtq)
< c for all

n ≥ n0.

The following theorem gives the consistency of θ̂n. The consistency of θ̂
0

n follows as a

special case by taking ν(g(t)) ≡ 1 in the proof.
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Theorem 4.1. Under C1 , C2, and C3, θ̂n → θ0 a.s when n→∞.

In fact, ‖θ̂n − θ0‖ = O
(
λ
−1/2
min

(∑N
q=1 xqx

t
q

))
.

Under the assumption max1≤i≤nmi ≤ m <∞, the proof of Theorem 4.1 is identical to

the one in Chapter 3 and will, therefore, not be discussed here.

4.3.2 Asymptotic Normality and Robustness

We now examine the conditions under which the result on the asymptotic normality of

θ̂n, and θ̂
0

n in particular continues to hold here. We will start by reminding the quantities

used to establish this result, in the context of longitudinal data. Let τ ∈ Rp and define

Ln(θ, τ) =
1

N

N∑
q=1

γn(xq,θ)
( rq(θ)

N + 1
− 1

2

)
s2
n(θ) = N2E

(
L2
n(θ, τ)

)
.

Once again, Ψn(θ0) and Ψ̇n(θ0) respectively denote the gradient and the Hessian ofWn(θ,θ0)

evaluated at θ0;

and

γn(xq,θ) =
τ txqµ

′(xtqθ)

max1≤k≤N‖τ txqµ′(θtxq)‖
.

Let X be the N × p matrix of regressors, with rows xq. Similarly to chapter 3, the

following assumptions are made

N1 : s2
n(θ0)→∞ as n→∞ and

N2 : Ψ̇n(θ0)
P−→ H0 invertible

in addition to C1, C2, and C3. Recall the lemma below.

Lemma 4.1. Under A1,

√
NΨn(θ0)

D−→ N(0,Ω0) as n→∞
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with Ω0 = lim
n→∞

NE(Ψn(θ0)Ψt
n(θ0)).

This lemma continues to hold for longitudinal data since, corollaries 3.4 and 3.6 of

Brunner and Denker (1994) are still valid for independent random processes. This fact

combined with the the assumptionmax1≤i≤nmi ≤ m <∞ are the main ingredients necessary

for the result below, the asymptotic normality of θ̂n, to continue to hold for longitudinal

data. The assumptionmax1≤i≤nmi ≤ m <∞ guarantees that n→∞ if and only if N →∞.

The proofs of the lemma above and the theorem below remain unchanged and we refer the

reader to the previous chapter for details.

We now state the result on the asymptotic normality of θ̂n. Once gain, Since taking

ν(g(t)) ≡ 1 gives θ̂n = θ̂
0

n, the asymptotic normality of θ̂
0

n follows as a special case of the

theorem.

Theorem 4.2. Under C1 − C3 and N1 −N2,

√
N(θ̂n − θ0)

D−→ N(0, H−1
0 Ω0H

−1
0 ) as n→∞ .

The result below on the influence function also persists in the case of longitudinal data.

The ingredient that allows this result to hold for longitudinal data is the uniform law of large

numbers for independent random processes (Pollard (1990)). This in fact implies that

1

N + 1

∣∣∣rij(θ0,θ0)−
n∑
t=1

mt∑
l=1

Ftl(eij(θ0,θ0))
∣∣∣ P−→0

where eij(θ0,θ0) ∼ Fij.

We recall the statement, of the result on the influence function.

Theorem 4.3. The influence function of the estimator θ̂n is

IF(θ̂n; x, y) = xµ(xtθ0)
(
F̄
( y − g(xtθ0)√

ν(g(xtθ0))

)
− .5

)
H−1

0
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where F̄ = limn→∞ F̄n; F̄n =
1

n

∑n
q=1 Fq; with eij(θ0,θ0) ∼ Fij.

Once again this influence function is bounded in the response space y, as discussed in

Chapter 3.

4.4 Simulations and Examples

4.4.1 Monte Carlo Simulations

To evaluate the performance of the proposed estimator,simulation studies were con-

ducted. Clustered gamma distributed variables were generated as follows:

1. the parameter θ0 = (1/2, 2, 1) ;

2. n=30, 100, 250; 1 ≤ i ≤ n

3. the covariates x = (x1, x2, x3) with x1 ∼ N(0, 1), x2 ∼ N(0, 1), and x3 ∼ Bernoulli(1/2);

4. g(t) = et, zj ∼ Gamma[(2/3)g(xtθ0), 3/2] yq ∼
∑l

j=1 zj/k 1 ≤ k, j ≤ 5

The vector (y1, y2, · · · , y5) is therefore a cluster of dependent gamma random variables.

We generated 250 data sets of the kind described above and computed estimates for each

and every data set using the proposed method. The process was repeated in the presence

an outlier and compared to the corresponding estimates based on the GEE with both the

auto-regressive correlation and user defined correlation structure estimation method. The

outlier was introduced by replacing the maximum coordinates of the response value Y by its

original value multiplied by 20. The boxplots below give a summary of the results.

We observe that our estimator is robust in the response space and perform better com-

pared to the GEE in the presence of the outlier. In the case of the data with no outlier

the proposed rank based method is found to be comparable to the GEE. In addition to

the robustness, the proposed method does not require estimation of the variance-covariance

matrix prior to the estimation of the model parameters, unlike the GEE.
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Figure 4.1: Boxplot of the estimates
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Figure 4.2: MSE comparison
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4.4.2 Examples

As an example, we have selected part of the study by Plaisance et al. (2007) concerning

the effect of a single session of high intensity aerobic exercise on inflammatory markers of

subjects taken over time. One purpose of the study was to see if these markers differed

depending on the fitness level of the subject. Subjects were placed into one of the two

groups (High Fitness and Moderate Fitness) depending on the level of their peak oxygen

uptake. The response we consider here is C-reactive protein (CRP). Elevated CRP levels are

a marker of low-grade chronic inflammation and may predict a higher risk for cardiovascular

disease (Ridker et al., 2002).

Of the 21 subjects in the study, three were removed due to noncompliance or incomplete

information. Thus, we consider the remaining 18 individuals, 9 in each group.CRP level was

obtained 24 hours and immediately prior to the acute bout of exercise and subsequently

24, 72, and 120 hours following exercise giving 90 data points in all. Let yi and ti denote

respectively the 5×1 vectors of observations and times of measurements for subjects i and let

xi denote his/her indicator variable for group, i.e., its components are either 0 (for Moderate

Fitness) or 1 (for High Fitness). We fit an interactive gamma regression model with the log

link function. That is,

log(E[yi]) = α1
¯5 + βxi + γti + µxiti, i = 1, 2, · · · , 18,

The question of interest is to determine whether "High Fitness" is associated with lower

levels of CRP. Hence, the one-sided hypothesis.

H0 : β = 0 versus Ha : β < 0.

We present the results for the proposed method in comparison with the findings from the

GEE estimation procedure with autoregressive correlation structure, using all the 90 data
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points. We remove the suspected outlier from the data and repeat the computations. This

reduces the data point to 85 points. The Table below and the residual plots give a summary

of the findings.

Coef - Rank Coef- GEE SE - Rank SE - GEE Pvalue - Rank Pvalue - GEE

Orig Clean Orig Clean Orig Clean Orig Clean Orig Clean Orig Clean

α 0.01709 0.0253 0.0134 0.0414 0.2024 0.2462 0.1136 0.1134 0.5335 0.5409 0.5470 0.6425

β -0.6026 -0.6841 -0.4802 -0.7004 0.3420 0.3101 0.3155 0.1543 0.0391 0.0137 0.0640 0.0000

γ -0.0022 -0.0085 -0.1365 -0.1375 0.2216 0.2081 0.1234 0.1372 0.4960 0.4838 0.1343 0.1581

µ -0.0341 -0.1313 -0.1362 -0.1403 0.3371 0.2512 0.3378 0.1806 0.4598 0.3006 0.3434 0.2186

At 5% significance level, with and without the potential outlier, both the proposed

method and the GEE procedure reveal that the interaction between time and group is not

significant. The main effect of time is not significant either. For the group factor, the

proposed method detects a significant difference, with and without the suspected outlier.

However, the GEE fails to detect the difference in the group factor for the data containing

the potential outlier. So the performance of the GEE procedure is influenced by this poten-

tial outlier as it reveals that the group factor is highly significant for the data without the

suspected outlier. This clearly shows that the proposed method is robust to local contami-

nation in the response space.
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Figure 4.3: Deviance Vs fitted
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Deviance versus fit plot gives a pictorial representation of these observations. In the case

of the rank estimation, with and without the outlier, the residuals plot display a clustering

of subject into two groups (high fitness and moderate fitness). However, for the GEE, this

clustering is destroyed in the presence of the outlier. So, the rank based deviance residuals

plot can be used for clustering (unsupervised learning) purposes in contaminated data.

4.5 Conclusion

The estimation technique developed in the previous chapter has been extended to longi-

tudinal data. The resulting procedure reduces to the one of Chapter 3 when each and every

cluster in the data is of size 1. Unlike the GEE, this procedure does not require estimation

of the correlation structure prior to the estimation of the parameters. In addition, the es-

timator inherits the robustness properties of the estimator in Chapter 3. Its performance

evaluated in comparison with the GEE for both simulated and real data, confirms the theo-

retical results. Like the rank based estimator for generalized linear model, the estimator in

this chapter is not protected against outliers in the design space “x”. As such, it should only

be employed when there is knowledge that x comes from some bounded space (eg. designed

experiments).
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Chapter 5

Rank Based Group Variable Selection

5.1 Introduction

Group structures in linear models arise for several reasons. For example, in ANOVA, a

factor may have several levels and can be expressed via several binary variables. The binary

variables corresponding to the same factor form a natural group. Similarly, in additive

models, each original prediction variable may be expanded into different order polynomials

or a set of basis functions. These polynomials corresponding to the same original prediction

variable form a natural group. Another example is the one encountered in gene expression

analysis, where genes belonging to the same biological pathway can be considered a group

whereas in genetic association studies, genetic markers from the same gene can be considered

a group. It is desirable to take into account the grouping structure in the analysis of such

data. Several statistical methods have been developed for variable selection that respect the

grouping structure. Yuan and Lin (2006) and Zhao et al. (2009) studied the Lasso model

for group variable selection.Yuan and Lin (2006) used a penalty function based on the L2

norm of the coefficients within each group to achieve a group selection. Zhao et al. (2009)

on the other hand employed the L∞ based penalty. In order to achieve the oracle property,

Wang and Leng (2008) extended the group Lasso to the adaptive group Lasso. Antoniadis

and Fan (2001) studied a class of block-wise shrinkage approaches for regularized wavelets

estimation in nonparametric regression problems.

In many applications, however, the data are contaminated with outliers, or even worse

have a noise distribution that is heavy tailed. Variable selection methods based on least-

squares objective function or maximum likelihood estimation, like the adaptive group Lasso

and many other related methods, are not guaranteed to be protected against the adverse
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effect of outliers and heavy tailed noise distributions. In linear models, influential outliers

are often associated with the explosion of parameter vector estimates. Therefore variable

selection in the presence of outliers and heavily asymmetric noise distribution can result in

recruiting irrelevant variables or failing to detect important predictors. The problems become

much more severe in group variable selection or high dimensional regression where the aim is

to both reduce the dimension and estimate the model parameters. To mitigate the adverse

effects of such issues, we propose a rank based group variable selection. Rank based variable

selection methods have been studied by Wang and Li (2009) and Johnson and Peng (2008).

Both address individual variable selection. In addition, the method proposed by Wang and

Li (2009) is robust both in the predictor and response space, whereas Johnson and Peng

(2008) was concerned with robustness in the response space. In this work we penalize a

weighted rank based objective function, identical to the one in Wang and Li (2009) except

for our use of a group adaptive Lasso type penalty function. We achieve robustness in both

the response and the predictor space while simultaneously performing variable selection that

respects the group structure in the data.

The remainder of this chapter is organized as follows: Section 5.2 introduces the pro-

posed rank based group variable selection. The asymptotic distribution and the oracle prop-

erty of the proposed estimator are developed in Section 5.3. In Section 5.4 we give simulation

studies to investigate the theoretical results established in the previous section for finite sam-

ples. We conclude the present work in Section 5.5. Proofs are presented in Section 5.6.

5.2 Rank Estimator

5.2.1 Model and Notation

Let (x1, y1), · · · (xn, yn) be n independent and identically distributed random vectors,

where yi ∈ R is the response of interest and xi ∈ Rp is the associated p-dimensional predictor.

Furthermore, it is assumed that xi can be grouped into K groups as xi = (xt1, · · · ,xtK)t,

where xik = (xik1, · · · , xikpk)t ∈ Rpk is a group of pk variables. To model the relationship
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between the responses yi and the predictors xi, we consider the linear regression model

yi =
K∑
k=1

xtikθk + εi =
K∑
k=1

pk∑
j=1

xikjθkj + εi.

Where θk = (θk1, · · · , θkpk)t ∈ Rpk is the regression coefficient vector associated with the kth

group, θ is defined as θ = (θt1, · · · , θtK)t, and (ε1, · · · , εn) are independent and identically

distributed errors with absolutely continuous density f .

In such models, the interest lies in identifying important groups or factors instead of

individual variables (cf. Yuan and Lin, 2006). The terms group and factor are used inter-

changeably to indicate grouping of variables. These grouped variables can be encountered

in many statistical models. For example, in ANOVA a factor may have several levels and

can be expressed via several dummy variables, then the dummy variables corresponding to

the same factor form a natural group. Similarly, in additive models, each original predictor

may be expanded into different order polynomials, then these polynomials corresponding to

the same original predictor form a natural group.

Multiple group variable selection methods based on a Penalized Least Square objective

function have been proposed, see for example Wang and Leng (2008). However in the

presence of outliers or error terms εi from a heavy tailed distribution, the Penalized Least

Square Estimators may perform poorly.Johnson and Peng (2008) as well as Wang and Li

(2009) have proposed penalized rank based procedures for variable selection, in linear models,

as a remedy to this problem. We extend these rank based techniques to linear models with

grouped variables. Hence the proposed objective function is

Qn(θ) =
1

n

∑
i<j

bij|εi − εj|+ n

K∑
k=1

pk∑
j=1

λkj|θkj| ,

where λkj = λn/(‖θ̃k‖2|θ̃kj|), θ̃k and θ̃kj the unpenalized estimators of θk and θkj, respec-

tively, λn some data driven regularization parameter, and bij some positive and symmetric
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weights used to downweight high leverage points. Note that λkj is the penalty term of the

jth variable of the kth group. This choice of the penalty function combining two norms (one

at the group level and the other at the individual variable level) is in part motivated by the

elastic net (Zou and Hastie, 2005). Unlike the elastic net, here both norms are L1 norm and

are combined in a multiplicative way. Note that the penalty term ‖θ̃k‖−2 is the common

penalty imposed on the members of the kth group, and within the kth group we regularize

the jth member by |θ̃kj|−1 in order to reduce the bias introduced by the group penalty on

individual members of the group. A more general penalty term, λn/‖θ̃k‖γ1 |θ̃kj|γ2 , can be

considered; where the choice of γ1 ≥ 0, and γ2 ≥ 0 are driven by whether the interest lies

in individual or group selection. Observe that the weights λkj are adaptive in nature. That

is, if the effect of a variable is strong, the corresponding coefficient is lightly penalized and

vice-versa, while respecting the grouping structure among the variables.

The corresponding estimator is defined by

θ̂n = Argmin
θ

Qn(θ) .

In the presence of outliers in either y or x direction, θ̂n defined above remains relatively

unaffected as will be shown both theoretically and in simulations. In contrast, the least

squares based group variable selection methods like adaptive hierarchical Lasso of Zhou and

Zhu (2010) are vulnerable to outliers in either x or y direction.

Observe that the objective function Qn reduces to the ww-scad by Wang and Li (2009)

for the particular choice of the scad penalty function in the special case of θk with dimension

1 for each k, that is no grouped variables are present in the model or all factors have at most

two levels. If in addition, bij ≡ 1, Qn(θ) is identical to the penalized rank dispersion function

proposed by Johnson and Peng (2008). While the method of Wang and Li (2009) may not

be appropriate to identify important factors or remove irrelevant groups in linear models,

the penalized estimator given by Johnson and Peng (2008), in addition, is not protected
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against high leverage points. A consequence of variable selection procedures that are not

robust to high leverage points is that not only does it affect the estimation, it also affects the

selection procedure. The method proposed in this work, however, yields estimators that are

robust in both x and y direction while taking into account the grouping structures among

the covariates.

5.3 Main Results

In this section, we study the asymptotic properties of the proposed rank based group

variable selection estimator. We show that the penalized rank based group variable selection

estimator has the oracle property under some regularity conditions.

Without loss of generality, we assume that only the first k0 ≤ K groups are important.

That is, we assume that ‖θk‖ 6= 0 for k ≤ k0 and ‖θk‖ = 0 for k > k0. Denote θ0 the

true parameter, θa = (θt1, · · · ,θtk0)
t the vector containing all relevant groups and θb =

(θt1+k0
, · · · ,θtK)t the vector made of all the irrelevant groups. Furthermore, let θ̂a and θ̂b be

their corresponding penalized rank estimator.

Similarly to Wang and Li (2009) and following their notation, we will use the GR weights

(Sievers (1983)), given by bij = b(xi,xj) = h(xi)h(xj), to downweight high leverage points.

h(xi) is defined as:

h(xi) = min

[
1,

b

(xi − µ̂)′S−1(xi − µ̂)

]
with (µ̂, S) being the robust minimum volume ellipsoid estimators of the location and scatter

and b the 95th percentile of χ2(p)

The following assumptions will be made.

A1. The errors’s εi density function f has a finite Fisher information. That is,

I(f) =

∫ ∞
−∞

[f ′(e)
f(e)

]2

f(e)de <∞
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A2. The matrices X and WX both satisfy the Huber’s condition.

A3. n−1X′WX
P−→C, n−1X′W2X

P−→V, and n−1X′X
P−→Σ,where C, V,and Σ are positive

definite matrices.

given by

C =
1

2

∫ ∫
(x2 − x1)(x2 − x1)′b(x1,x2)dM(x2)dM(x1)

V =

∫
{(x2 − x1)b(x1,x2)dM(x2)}{(x2 − x1)b(x1,x2)dM(x2)}′dM(x1)

Σ =
1

2

∫ ∫
(x2 − x1)(x2 − x1)′dM(x2)dM(x1)

and M(x) denotes the CDF of x, X is a matrix whose rows are xi; and the entries ωij of the

matrix W are defined, like in Naranjo and Hettmansperger (1994), by

ωij =


n−1bij if i 6= j

n−1
∑

k 6=i bij if i = j

Remark 5.1. Assumptions A1 to A3 are identical to the ones in Wang and Li (2009).

As noted in their paper, these assumptions guarantee the
√
n-consistency and the asymptotic

normality of the unpenalized estimator through the asymptotic quadraticity of the unpenalized

objective function and the asymptotic linearity of the corresponding score function.

All results will be conditional on the matrix X. That is the matrix X is treated as fixed.

We are now ready to state the Theorem that gives the estimation consistency, the selec-

tion consistency and the oracle property of the proposed estimator. Following the notation

in Wang and Leng (2008), define

an = max{λkj : 1 ≤ j ≤ pk ; k ≤ k0} and bn = min{λkj : 1 ≤ j ≤ pk ; k > k0} .
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Theorem 5.1. Let (y1,x1), · · · , (yn,xn) be independent and identically distributed from

H(x, y). Assume the regularity conditions A1− A3.

a. If
√
nan

P−→0 then ‖θ̂n − θ0‖ = Op(n
−1/2)

b. If
√
nan

P−→0 and
√
nbn

P−→∞ then θ̂b
P−→0

c. Under local shrinking contamination, H∗n(x, y),
√
n(θ̂a − θa)

D−→N(η, τ 2C−1
11 V11C

−1
11 )

where τ 2 = [
√

12
∫
f 2(u)du]−1, C11 is the k0×k0 submatrix in the upper-left corner of C, V11

the k0×k0 submatrix in the upper-left corner of V , H∗n(x, y) =
(

1− δ√
n

)
H(x, y)+ δ√

n
∆(x∗,y∗),

η = δ[2F (y∗−x∗θ0)− 1]
∫
b(x∗,x)(x∗−x)dM(x), with ∆(x∗,y∗) representing a point mass at

(x∗, y∗) and δ some constant.

The assumptions
√
nan

P−→0 and
√
nbn

P−→∞ are identical to the ones in Wang and Leng

(2008) for the special case λkj = λn/‖θ̃k‖ ∀j. So with probability tending to 1, the pro-

posed estimation technique correctly identifies relevant groups, removes irrelevant ones, and

estimate the corresponding coefficients as if the true model was known in advance.

Remark 5.2. As noted by Wang and Li (2009), the asymptotic bias η is bounded in y∗

and also bounded in x∗ with the proper choice of the weights bij, such as the GR weights

introduced above. In addition, in the absence of local contamination, the asymptotic bias

η = 0. The proof of part (c) of Theorem 5.1 is identical to the proof of Theorem 2 of Wang

and Li (2009) and will therefore be omitted in this work.

5.4 Monte Carlo Simulations

Two set of simulation studies were conducted to evaluate the performance of the rank

based group variable selection, for finite sample sizes, in comparison with the rank based

variable selection (Johnson and Peng, 2008), the ww-scad (Wang and Li, 2009), and the

adaptive hierarchical Lasso (Zhou and Zhu, 2010). Mainly, In example 1 we compare the

proposed method to the rank based variable selection and the adaptive hierarchical Lasso. In
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the second example we compare it to all the three methods. For simplicity of presentation,

we label the adaptive hierarchical Lasso by "hLasso", the proposed method by "grvs", the

rank based variable selection by "rvs", and we keep "ww-scad" for the ww-scad method.

5.4.1 Example 1:

We borrow the model and simulation settings used in Zhou and Zhu (2010). We consider

a model which has both categorical and continuous predictors. We first generate seventeen

independent standard normal random variables z1, z2, · · · , z16 and w. The predictors are then

defined as xj = (zj + w)/
√

2. Each of the predictors x1, x2, · · · , x8 is expanded through a

fourth-order polynomial. Subsequently, the last eight variables x9, · · · , x16 are all discretized

to 0,1,2, and 3 according to whether they are smaller than Φ−1(1/4); between Φ−1(1/4)

and Φ−1(1/2); between Φ−1(1/2) and Φ−1(3/4) or greater than Φ−1(3/4). This results in

eight continuous groups of size four each and eight categorical groups with four levels each

corresponding to three binary variables per category. We consider the following model

y = [x3+0.5x2
3+0.1x3

3+0.1x4
3]+[x6−0.5x2

6+0.15x3
6+0.1x4

6]+[I(x9 = 0)+I(x9 = 1)+I(x9 = 2)]+ε ,

(5.4.1)

where I() is the indicator function. We consider the error term from the following distribu-

tion: standard normal, t with 3 degrees of freedom, standard Laplace, the standard Cauchy,

and a standard normal contaminated with a normal distribution with mean zero and stan-

dard deviation 2. The proportions of contamination considered are 0.1, 0.2, 0.3, 0.4, and

0.5.

The regularization parameter λn is chosen such that the corresponding estimator, θ̂λn ,

minimizes the generalized cross validation (equivalently the AIC type criterion) as both the

rank based variable selection and the adaptive hierarchical Lasso estimators were originally

developed with λn tuned with the generalized cross validation. Each of the sub-models was

run 200 times. The results, for the sample size n = 400, are summarized in Table 5.1. For
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each case, we report the average proportion of coefficients correctly identified as zero, the

average proportion of non-zero coefficients correctly identified, and the median model error,

i.e the median of the quantity (θ̂−θ0)t(xtx)(θ̂−θ0) over the 200 runs. Overall, We observe

that under the standard normal distribution, the adaptive HLasso performs better than the

proposed rank based group variable selection and the proposed method in turn performs

better than the rank based variable selection. When the error is from the t distribution with

3 degrees of freedom the proposed estimation is the best of the three and the rank variable

selection is comparable to the adaptive hierarchical Lasso. For error distributions from the

contaminated normal distribution and the standard Cauchy distribution, the rank based

group variable selection dominates the performance of the rank variable selection which in

turn dominates the performance of the adaptive hierarchical Lasso. Figures 5.1, 5.2, and

5.3 provide a graphical representation of these findings.
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Figure 5.1: Variable Selection Performance Comparison 1
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Figure 5.2: Variable Selection Performance Comparison 2
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Figure 5.3: Variable Selection Performance Comparison 3
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5.4.2 Example 2:

In this example, we also consider a model which has both categorical and continuous

predictors. However, we generate ten latent variables x1, x2, · · · , x10 from a multivariate

normal distribution with mean zero and covariance between xi and xj given by 0.5|i−j|. Each

of x1, x2, · · · , x5 is expanded through a third-order polynomial. Subsequently, the last five

latent variables x6, · · · , x10 are all discretized to 0, 1, 2, and 3 according to whether they are

smaller than Φ−1(1/4); between Φ−1(1/4) and Φ−1(1/2); between Φ−1(1/2) and Φ−1(3/4)

or greater than Φ−1(3/4). This results in five continuous groups of size three each and five

categorical groups with four levels each corresponding to three binary variables per category.

We consider the following model:

y = [2.3x3+2x2
3+1.8x3

3]+[3.2x5−1.5x2
5+2.5x3

5]+[3I(x8 = 0)+2.4I(x8 = 1)+3.1I(x8 = 2)]+ε .

(5.4.2)

We first consider the error term, ε, from the normal distribution with mean zero and different

standard deviations 1, 2, 4, and 8. Next to evaluate the estimators in the presence of heavy

tails, we generate the random error terms from a t-distribution with 2 degrees of freedom

and a Cauchy distribution with parameters 0 and 1. We also investigate the effect of outliers

in the x direction on model selection. For this purpose, we consider models with normally

distributed error with mean 0 each and standard deviations 1 and 4, respectively, where in

both models we replace a random 1% of the elements of the design matrix X by observations

from an exponential distribution with parameter 0.1.

Here the regularization parameter λn is chosen such that the corresponding estimator,

θ̂(λn), minimizes the BIC criterion, since this is what was used originally by Wang and Li

(2009) in their simulations. Each of the five sub-models was run 250 times. The results

are summarized in Table 5.2 for the sample size n = 200. For each case, we report the
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average proportion of coefficients correctly identified as zero, the average proportion of non-

zero coefficients correctly identified, and the mean model error. We observe that under

the normally distributed errors model, the HLasso has the smallest model error and its

performance improves when the signal to noise ration σ/n increases. This observation was

made by Johnson and Peng (2008) for the Lasso and elastic net method.However the ww-

scad, the rank based variable selection and the method proposed in this work perform better

for small values of σ/n. The proposed method, the rank based group variable selection, has

smaller model error and an overall better performance than the ww-scad and the rank based

variable selection in all the four normally distributed error models.

When the error distribution is from the standard Cauchy distribution, or t-distribution

with 2 degrees of freedom, rank based group variable selection performs better than the

other three methods. The ww-scad and the rank variable selection have both smaller model

error than the hierarchical Lasso. The rank based group variable selection continues to be

the best of the four methods in the case of the normally distributed error with contaminated

design matrix X. Figures 5.4, 5.5, and 5.6 give us a pictorial description of these results.

71



Figure 5.4: Variable Selection Performance Comparison 4
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Figure 5.5: Variable Selection Performance Comparison 5
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Figure 5.6: Variable Selection Performance Comparison 6
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Figure 5.7: Variable Selection Performance Comparison 7
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Figure 5.8: Variable Selection Performance Comparison 8
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Table 5.1: Variable Selection Performance Comparison - Model 1
grvs hLasso rvs

Normal(0,1) relevant variables 1 1 0.922
irrelevant variables 0.987 0.993 0.996
median model error 17.44 11.53 74.99

t3 relevant variables 1 0.999 0.872
irrelevant variables 0.961 0.871 0.990
median model error 28.66 40.73 112.08

Laplace(0,2) relevant variables 0.998 0.994 0.748
irrelevant variables 0.782 0.543 0.935
median model error 157.55 233.25 247.41

0.7N(0,1)+0.3C(0,2) relevant variables 1 0.992 0.867
irrelevant variables 0.956 0.165 0.989
median model error 30.85 3036.46 112.42

Cauchy(0,1) relevant variables 0.997 0.996 0.767
irrelevant variables 0.831 0.0155 0.944
median model error 115.17 42541.18 213.86

Table 5.2: Variable Selection Performance Comparison - Model 2
ww-scad grvs hLasso rvs

Normal(0,2) relevant variables 0.979 1 1 0.973
irrelevant variables 0.845 0.973 0.925 0.969
mean model error 671.70 119.47 52.83 892.68

t2 relevant variables 0.993 1 0.997 0.994
irrelevant variables 0.893 0.994 0.907 0.993
mean model error 422.608 56.01 157.80 406.46

Cauchy(0,1) relevant variables 0.892 0.999 0.669 0.852
irrelevant variables 0.967 0.992 0.925 0.996
mean model error 1835 158.94 25257.01 3315.77

Normal(0,1)- relevant variables 0.992 0.997 0.991 0.940
x outliers irrelevant variables 0.967 0.992 0.925 0.996

mean model error 3781 3100 25989.70 26946.32
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5.5 Conclusion

A robust group variable selection method for linear regression has been developed in this

work. The proposed objective function is a weighted Wilcoxon objective function penalized

with a group penalty function. The resulting estimator is robust both in the design and the

response space. It provides robust simultaneous variable selection and estimation in linear

models with grouped variables. An extension of this work to high dimensional linear models

(p� n) will be considered in future work.
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5.6 Proofs

We adopt the following expressions defined in Wang and Li (2009) .

Qn(θ) =
1

n

∑
i<j

bij|εi − εj|+ n

K∑
k=1

pk∑
j=1

λkj|θkj|

Dn(θ) =
1

n

∑
i<j

bij|εi − εj|

Sn(θ) =
1

n

∑
i<j

bij(xi − xj)sgn((yi − yj)− (xi − xj)
′θ)

An(θ) = (2
√

3τ)−1(θ − θ0)′X′WX(θ − θ0)− (θ − θ0)′Sn(θ0) +Dn(θ0)

The following lemma establishes the asymptotic quadracity of Dn(θ) as well as the

asymptotic normality of Sn(θ0). Its proof can be found in Wang and Li (2009) , and will

therefore be omitted here.

Lemma 5.1. Under assumptions A1− A4.

i. ∀ε > 0, ∀c > 0, [
sup√

n‖θ−θ0‖≤c
|Dn(θ)− An(θ)| ≥ ε

] P−→0

under either H or H∗n.

ii. n−1/2Sn(θ0)
D−→N(0,V/3) under H

iii. n−1/2Sn(θ0)
D−→N(η,V/3) under H∗n

We are now ready to give the proof of Theorem 5.1.

Proof of Theorem 5.1. To prove part (a.), it is sufficient to show that ∀ε > 0, there

exists a large constant C such that

P
(

inf
‖u‖=C

Qn(θ0 + n−1/2u) > Qn(θ0)
)
≥ 1− ε,
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where u is a vector of dimension p. Since Qn(θ) is convex in θ, this implies that with

probability at least 1 − ε the penalized estimator lies in the ball {θ0 + n−1/2u : ‖u‖ ≤ C}.

Let Gn(u) = Qn(θ0 + n−1/2u) − Qn(θ0). Denote by ukj the component of u corresponding

to θkj. By lemma 5.1

Gn(u) = (2
√

3)−1u′[n−1X′WX]u− u′n−1/2Sn(θ0) + n
K∑
k=1

pk∑
j=1

λkj(|θkj + n−1/2ukj| − |θkj|) + op(1)

≥ (2
√

3)−1u′[n−1X′WX]u− u′n−1/2Sn(θ0)−
√
n

k0∑
k=1

pk∑
j=1

λkj|ukj|+ op(1)

= (2
√

3)−1u′[n−1X′WX]u− u′Op(1)−
√
n

k0∑
k=1

pk∑
j=1

λkj|ukj|+ op(1)

≥ (2
√

3)−1u′[n−1X′WX]u− u′Op(1)− k0

√
nan(‖u‖) + op(1)

Note that n−1X′WX
P−→C, a positive definite matrix, and

√
nan

P−→0 . Therefore, for n suffi-

ciently large, the first term on the right-hand side of the inequation above dominates. Gn(u)

can be made positive when C is chosen to be sufficiently large.

We now prove part (b). Suppose that θ̂b 6= 0 ∀ n ∈ N. Let k be such that k0 < k ≤ K and

θ̂kj 6= 0 for some j such that 1 ≤ j ≤ pk . Since Qn(θ) is differentiable at any point, except

the origin, θ̂kj must be solution of the equation

0 = n−3/2
∑
i<j

bij(xik − xjk)sgn((yi − yj)− (xi − xj)
′θ) +

√
nλkjsgn(θkj).

Now, by the consistency of θ̂n and part (ii.) of lemma 5.1, the first term of the right

hand side of the equation above is Op(1). In addition,
√
nbn

P−→∞ implies that
√
nλkj

P−→∞ . So

the equation does not hold for large values of n, as we assume that θ̂kj 6= 0. Therefore, θ̂b
P−→0.

The proof of part (c) is identical to the one of Wang and Li (2009) and will therefore

be omitted here.
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