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Southern Piedmont and Coastal Plain soils have undergone severe degradation, 

which is reflected in low soil organic carbon (SOC) contents. Restoration of SOC would 

improve soil quality and C sequestration, leading to a more sustainable agriculture and 

potentially mitigating the greenhouse effect. This dissertation examined the effects of soil 

management, climate, and landscape attributes on total SOC and related fractions within 

upland, well drained, Southeastern Ultisols. In Chapter 1, SOC fractions under croplands 

and pastures were determined on 87 fields distributed within the Piedmont and Coastal 

Plain. Total SOC (TOC) (0-20 cm) followed the order: pasture (38.9 Mg ha-1) > 

conservation tillage (27.9 Mg ha-1) > conventional tillage (22.2 Mg ha-1). Management 

affected TOC primarily at the soil surface (0-5 cm). Variation in TOC was explained by 

management (41.6%), clay content (5.2%), mean annual temperature (1.0%), and mean 
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annual precipitation (0.1%). Higher soil clay content and precipitation, and slightly cooler 

temperatures contributed to higher TOC. All SOC fractions were strongly correlated 

across a diversity of soils and management systems (r = 0.85 to 0.96). In Chapter 2, TOC 

within two Piedmont pastures (Alabama and Georgia) was spatially evaluated and related 

to easily obtainable secondary data; i.e., terrain attributes, remote sensing data (aerial 

photographs), and field-scale electrical conductivity. Ordinary kriging, multiple linear 

regression, and artificial neural networks were used to produce spatially distributed TOC 

maps. Elevation and remote sensing data explained 67% of TOC variability at the 

Alabama site, while elevation, slope, compound topographic index and electrical 

conductivity explained 35% of TOC variability at the Georgia site. At both sites, the most 

accurate TOC maps were produced with the artificial neural network approach 

(Prediction efficiency = 62% and 49% for Alabama and Georgia, respectively). In 

Chapter 3, the Environmental Policy Integrated Climate (EPIC) model was used to 

predict cotton (Gossypium hirsutum L.) and corn (Zea mays L.) yield and SOC dynamics 

on different landscape positions of a Coastal Plain soil. Simulated and measured yield 

were closely related (r2 = 0.88). Greatest disagreement occurred on the sideslope position, 

while the best agreement was found in the drainageway. Simulated TOC was moderately 

related to measured TOC (r2 = 0.41); highest agreement occurred on the sideslope. The 

following conclusions can be made: a) on-farm measurement of TOC stocks validated 

research station data and provided much-needed quantitative information of SOC stocks 

under pastures; b) terrain attributes and remote sensing data explained TOC variation 

within pastures; and c) with correct parameterization, EPIC would be an effective tool for 

evaluating field-scale SOC dynamics affected by short-term management decisions. 
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I. SOIL ORGANIC CARBON IN PASTURE AND CROP LANDS OF THE 

PIEDMONT AND COASTAL PLAIN 

 

ABSTRACT 

Quantifying the impact of long-term agricultural land use on soil organic C (SOC) 

is important to farmers and environmental policy makers. Land use and management 

affect SOC levels and the magnitude of change depends on tillage practices, soil 

characteristics, climate and other factors. We measured stocks of SOC under 

conventional tillage (CvT) row cropping (5-40 years), conservation tillage (CsT) row 

cropping (5-30 years), and pasture (10-60 years) in 87 fields distributed in the Southern 

Piedmont and Coastal Plain Major Land Resource Areas of Alabama, Georgia, South 

Carolina, North Carolina, and Virginia. Across locations, total organic C (TOC) followed 

the order: pasture (38.9 Mg ha-1) > CsT (27.9 Mg ha-1) > CvT (22.2 Mg ha-1). Variation 

in TOC was explained by management (41.6%), clay content (5.2%), mean annual 

temperature (1.0%), and mean annual precipitation (0.1%).  Higher soil clay content and 

precipitation, and slightly cooler temperatures contributed to higher TOC. Management 

affected TOC primarily at the soil surface (0-5 cm). All soil C fractions were strongly 

correlated across a diversity of soil types and management systems (r from 0.85 to 0.96). 

Our results agree with a threshold value of 2 for stratification ratio of C fractions to 

distinguish previously degraded soils with improved soil quality from degraded soils. 



 

 2

                                                

However, stratification ratio as an indicator of soil quality needs further evaluation, 

especially with respect to determining adequate depth of sampling for calculations and its 

relationship with other physical, biological and chemical measurements of soil quality. 

The on-farm measurements of carbon stocks reported in this study complement research 

station’s data and contribute to lessen the dearth of information of carbon stocks under 

pasture lands in the southeastern USA.1

 
Abbreviations: ASD, aggregate-size distribution; CMIN24, potential C mineralization in 24 d; CsT, 
conservation tillage row cropping; CvT, conventional tillage row cropping; GPS, Geographical Positioning 
System; MLRA, Major Land Resource Areas; MWD, mean-weight diameter; NT, no-tillage; PET, 
potential evapotranspiration; POM, particulate organic matter; SCAS, Spatial Climate Analysis Service; 
SMBC, soil microbial biomass C; SOC, soil organic C; SOM, soil organic matter; TOC, total organic C. 
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INTRODUCTION 

A great research effort has been invested to estimate C sequestration in crop lands 

of the USA (Lal et al., 1998). Despite this effort, it is difficult to make comparisons 

among management systems or across regions, because some reports lack bulk density 

information, unequal soil depths have been sampled, or different analytical procedures 

have been used. Furthermore, most experiments have been conducted on relatively flat 

terrain where C losses by erosion are low. A known limitation for comparing C stocks 

among agricultural systems is the dearth of information from pasture lands, which 

occupies significant arable land (Census of Agriculture, 2002). Therefore, more research 

is needed to better characterize potential soil organic C (SOC) sequestration, especially 

with regard to the diversity of soil types and management in the Southern Piedmont and 

Coastal Plain Major Land Resource Areas (MLRA). 

The long history of exhaustive tillage and subsequent soil erosion has depleted 

SOC in the southeastern USA. Soil tillage buries residues, disrupts macroaggregates, 

increases aeration, and stimulates microbial breakdown of SOC (Reeves, 1997). With 

sound soil and crop management, the warm and humid climate with a long growing 

season allows for high cropping intensity and biomass production; which translates into 

high potential for photosynthetic C fixation and soil C sequestration (Reeves and 

Delaney, 2002). Increasing SOC is appealing because it has a critical role in soil quality 

and has significant potential to cost-effectively attenuate detrimental effects of rising 

atmospheric CO2 and other greenhouse gasses on global warming and climate change 

(Lal, 1997; Follett, 2001; West and Post, 2002; Sperow et al., 2003).  
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Franzluebbers (2005) compiled published data comparing conventional tillage 

versus no-tillage (NT) systems in the Southeastern USA. From those data within the 

Piedmont and Coastal Plain MLRA, SOC was 21.1 ± 5.9 Mg ha-1 under CvT and 24.4 ± 

6.9 Mg ha-1 under NT. Of the 52 comparisons, 46 had absolute values of SOC greater 

under NT than CvT. The middle 50 % of observations in ranked order had SOC 

sequestration rates (NT-CvT) from 0.02 to 0.39 Mg ha-1 year-1. Recent SOC sequestration 

estimates from CsT management systems in other regions of the USA include: 0.48 ± 

0.59 Mg C ha-1 yr-1 in the central USA (Johnson et al., 2005), 0.30 ± 0.21 Mg C ha-1 yr-1 

in the southwestern USA (Martens et al., 2005), and 0.27 ± 0.19 Mg C ha-1 yr-1 in the 

northwestern USA and western Canada (Liebig et al., 2005). Lal et al. (1998) assumed a 

value of 0.5 Mg C ha-1 yr-1 for the entire USA. From an earlier analysis that did not 

include many of the observations now available, Franzluebbers and Steiner (2002) 

outlined a geographical area in North America having the highest SOC sequestration 

potential with adoption of CsT that included the central USA and upper southeastern 

USA regions. Clearly, adoption of CsT in the Piedmont and Coastal Plain regions has the 

potential for a high rate of SOC sequestration. 

Under similar macroclimatic and soil conditions, the less disturbed the soil, the 

more C accumulation. The increase in C content in less disturbed soil is attributed to 

slower decomposition, due to a microclimate in the surface residue layer that is less 

favorable for microbial activity. Jenny (1941) quantitatively related temperature and 

precipitation with soil N on grasslands. Soil organic C is closely related to total soil N. At 

constant temperature, SOC increased logarithmically with increasing precipitation, the 

rate depending on temperature. If precipitation were constant, SOC declined 
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exponentially with increasing temperature. Franzluebbers and Steiner (2002) compiled 

111 pairs of observations from NT and CvT across the USA and Canada and concluded 

that the greatest potential for CsT systems to sequester SOC was found in climate regions 

with a mean annual precipitation-to-potential evapotranspiration (PET) ratio of 1.1 to 1.4. 

Total SOC content provides no information of the C fraction dimensions. Soil 

organic matter (SOM), which is estimated to contain 50 to 58 % C (Nelson and Sommers, 

1982) is a complex mixture of organic compounds with different turnover times 

(Christensen, 2001). A distinction among SOM fractions is conceptual and any 

distinction is merely convenient for modeling of SOC dynamics (Skjemstad et al., 1998). 

Since the turnover of SOM is a biological process that depends not only on the chemical 

composition of the substrate but also on the nature of its association with mineral 

particles (soil structure), methods have been developed to isolate fractions according to 

size and density of individual soil particles or aggregates (Christensen, 2001). A fraction 

called particulate organic matter (POM) by Cambardella and Elliot (1992) has been 

recognized as preferentially depleted when soil management changes from low 

disturbance to high disturbance (e.g., pastures to croplands or no-till to CvT agriculture). 

Particulate organic matter is an uncomplexed fraction of SOM composed of particulate 

(>0.05 mm), partly decomposed plant and animal residues, fungal hyphae, spores, root 

fragments and seeds. It is also suggested that this fraction is the epicenter for microbial 

activity and as such an important agent in the formation of macro-aggregates. It is a 

transitory fraction between litter (fast turnover) and mineral-associated SOM (slow 

turnover). 
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We hypothesized that relevant information on the effect of land use and tillage on 

SOC sequestration in the Piedmont and Coastal Plain could be gained by measuring 

stocks of SOC under three common management systems (CvT row cropping, CsT row 

cropping, and pasture) on farms in Alabama, Georgia, South Carolina, North Carolina, 

and Virginia. Our objectives were to (i) quantify the magnitude and consistency of 

change in SOC stocks due to management, (ii) determine the effect of climate and soil 

texture on SOC stocks, and (iii) isolate SOC fractions with depth to better understand the 

effects of long term management. 

 

MATERIALS AND METHODS 

Site Characteristics and Sampling Procedures 

The Southern Piedmont and Coastal Plain MLRAs extend along most of the 

southeastern USA (USDA-NRCS, 1997). Mean annual temperature ranges from 14 °C in 

the north to 20 °C in the south. Mean annual precipitation typically exceeds 1000 mm, 

but is more than 1400 mm along the coastlines and in the western section. Dominant soils 

of both MLRAs are Ultisols (e.g. Kanhapludults, Kandiudults, Hapludults, Paleudults) 

with loamy to clayey textured argillic and/or kandic horizons, mesic to thermic 

temperature regimes, udic moisture regime, and a kaolinitic or mixed mineralogy. Most 

Piedmont soils are residual, developed on rolling landscapes (peneplains) and well 

drained, at least moderately permeable, and reside at 100 to 400 m above mean sea level. 

Although most of the land was once cultivated, much of it has been converted to pine 

(Pinus sp.), hardwoods, and pasture. Cash crops include soybean [Glycine max (L) 

Merr.], corn (Zea mays L.), cotton (Gossypium hirsutum L.), wheat (Triticum aestivum 
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L.) and to a lesser extent tobacco (Nicotiana tabacum L.). In contrast, Coastal Plain soils 

are formed from unconsolidated fluviomarine sediments, and located at 25 to 200 m 

above mean sea level. Land is dedicated to cash crops such as cotton, peanut (Arachis 

hypogaea L.), corn and soybean. Timber production and livestock farming are important 

in the Coastal Plain, and pastures are used mostly for beef cattle. 

Sites for this investigation were chosen with the help of District Conservationists 

from the Natural Resources Conservation Service (NRCS) and/or local University 

Extension Service personnel. A total of 30 locations on farms in the Piedmont and 

Coastal Plain MLRAs of Alabama, Georgia, South Carolina, North Carolina and Virginia 

were sampled between January 2004 and April 2005. Three sites (3-5 ha each) differing 

in land use and tillage management were sampled from the same soil map unit (order II 

NRCS soil surveys) at a particular location. Because soils were sampled within the same 

map unit, it is inferred that drainage class, slope, and soil texture were similar across the 

three sites at each location, ensuring that land use and tillage management were the 

primary factors influencing SOC. However, it is recognized inclusions can and do occur 

within map units. Three management systems were investigated: (1) CvT cropland, 

defined as a system with inversion tillage that buried crop residue. Common practices 

included moldboard or chisel plowing (primary tillage) and disking prior to seedbed 

preparation (secondary tillage). (2) CsT cropland, consisting of minimum soil inversion 

with >30 % residue cover on the surface. Farms that incorporated cover crops (e.g., oats) 

in the rotation were preferentially sampled. No-tillage and strip-tillage practices were 

common. (3) Pastures consisting of perennial grass species that were grazed or hayed. 

Sites were long-established under a particular management, i.e., 5-40 years under CvT, 5-
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30 years under CsT, and 10-60 years under pasture. The 30 locations (5 states x 2 

MLRAs x 3 replicate farms) were evenly distributed along the study area. Three locations 

fell outside the Coastal Plain polygon (Atlantic Coastal Flatwoods), but these were 

included since soils are also found on the Coastal Plain (Fig. 1). 

Previous to sampling, sites were evaluated to determine representative areas; 

obvious sources of unusual variability were avoided. On each site, 8 randomized soil core 

samples (5cm diameter, 20 cm depth) were composited. At the time of sampling, 

information was collected on crop management history and positions were determined 

with a Geographical Positioning System (GPS). Climate data (precipitation and 

temperature) were obtained by matching the site’s coordinates with data (30 year 

normals) from the Spatial Climate Analysis Service (SCAS, 2005). 

Sample Preparation and Laboratory Analyses 

Soil cores were cut at 0-5, 5-12.5 and 12.5-20 cm, and air dried. Oven dry bulk 

density was determined for each depth by calculating mass per unit volume. Air dry 

samples were then gently crushed and passed through a 4.75 mm screen. Stones (>4.75 

mm) were removed from soil samples. A sub-sample was oven dried (105 ºC, 24 h) to 

obtain a correction factor and express analytical results on an oven-dried basis. 

Particulate organic C (POC), soil microbial biomass C (SMBC), and mineralized 

C (CMIN) were determined with a procedure similar to Franzluebbers et al. (2000a). 

Duplicate sub-samples (35 and 65 g for 0-5 and 5-20 cm depths, respectively) were 

moistened to 50 % water-filled pore space and incubated at 25±1 ºC in 1 L canning jars 

containing vials with 10 mL of 1.0 M NaOH to absorb CO2, and small vials containing 

water to maintain humidity. Alkali traps were replaced at 3 and 10 d, and removed at 24 d 



 

for C mineralization determination. Carbon dioxide evolved was determined by titration 

of alkali with 1.0 M HCl. At 10 d, one sub-sample was removed, fumigated with 

chloroform and incubated separately for another 10 d under the same conditions to 

determine the flush of CO2 representing microbial biomass C according to the equation 

(Voroney and Paul, 1984): 

Eq. [1]
cfumigated

-1
2 /ksoil) kg CCO mg(SMBC −=  

where kc = 0.41. The particulate organic fraction was determined on the fumigated sub-

samples at the end of the 10 d incubation period. Sub-samples were shaken in 100 mL of 

0.1 M Na4P2O7 for 16 h; the suspension diluted to 1 L with distilled water and allowed to 

settle for 5 h, when clay content was determined with a hydrometer. The soil suspension 

was then passed through a 0.053-mm screen and the retained sand-sized material 

transferred to a drying bottle and weighed after oven drying at 55 ºC for 72 h. Soil C was 

determined on this fraction. 

For soil C, 25 g subsamples were finely grand (<250 µm) on an apparatus similar 

to Kelley (1994). Determinations followed the dry combustion method of Nelson and 

Sommers (1982) using a LECO® carbon analyzer. Each batch contained 49 samples; 

precision and accuracy were calculated by duplicate analysis on 10 % of the samples and 

by introducing a LECO® Reference Standard and a check soil in each batch. Calculated 

errors were <5 %, therefore it was not necessary to repeat analysis on any batch. It was 

assumed that total C was equivalent to organic C, as these are acid soils without 

carbonates. 

Dry-stable and water-stable aggregate distribution were determined on the 0-5 cm 

samples following a procedure similar to Franzluebbers et al. (2000b). Dry-stability was 
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determined by placing a 100 g soil sample on the uppermost of a set of sieves (20 cm 

diameter), shaking for 1 minute at Level 6 on a scale of 0-10 on a vibrating CSC 

Scientific Sieve Shaker (Catalogue no. 18480, CSC Scientific, Fairfax, VA), and 

weighing soil retained on the 1.0, 0.25, and 0.053 mm screens and that passing the 0.053 

mm screen. 

Water-stable aggregate distribution was determined by placing the same soil 

sample used for dry-stable aggregate distribution on the uppermost of two sieves (17.5 

cm diameter with openings of 1.0 and 0.25 mm), immersing directly in water, and 

oscillating for 10 min (20 mm stroke length, 31 cycles min-1). After the 10 minute period, 

the two sieves were removed and oven dried (55 ºC, 24h). Water containing soil passing 

the 0.25 mm screen was poured over a 0.053 mm screen and the soil washed with a 

gentle stream of water. The soil retained was then transferred into a drying tray with a 

small stream of water. The <0.053 mm fraction was calculated as the difference between 

initial soil weight and summation of the other fractions. All fractions were oven dried at 

55 ºC until constant mass. Mean-weight diameter of both dry- and wet-stable aggregates 

was calculated by summing the products of aggregate fraction weight and mean diameter 

of aggregate classes. 

Calculation of SOC Stocks 

The SOC concentrations were converted to mass per unit area for a fixed depth 

(0-20cm) by calculating the product of concentration, bulk density, and thickness. To 

account for variation in soil mass between samples, “equivalent soil depths” were 

calculated following the method described by Ellert and Bettany (1995). Additional 



 

thickness of the subsurface layer required for attaining equivalent soil mass was 

computed as follows: 

b

surfsoilequivsoil
add

mhaMM
T

ρ

2
,,    0001.0)( −∗−

=  Eq. [2]

where: 

Tadd = additional thickness of layer being adjusted required to attain the 

equivalent soil mass (m) 

Msoil, equiv = mass of heaviest layer (Mg ha-1) 

Msoil, surf = mass of layer being adjusted (Mg ha-1) 

ρb = bulk density of layer being adjusted (Mg m-3) 

Calculation of Stratification Ratio 

Franzluebbers (2002) defined stratification ratio as a soil property at the soil 

surface divided by the same soil property at a lower depth, such as the bottom of the 

tillage layer. Stratification ratios were calculated from soil properties at 0–5 cm depth 

divided by those at 12.5-20 cm depth. 

Statistical Analysis 

After examination of laboratory results, one location in North Carolina was 

considered an outlier. The location was known to be geographically situated on the 

Atlantic Flat Woods MLRA, but at the time of sampling a decision was made to include 

the observations in the Coastal Plain cluster. The main reason for declaring the location 

as an outlier was its exceptionally high C content on the 0-20 cm layer (122-169 Mg ha-1) 

compared to the other 14 locations in the Coastal Plain (14-47 Mg ha-1). Furthermore, 

initial statistical analyses showed that inclusion of this location misrepresented 
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comparisons between the Piedmont and Coastal Plain, and quadrupled standard errors by 

management in the Coastal Plain when compared to similar management in the 

Piedmont. Therefore, only 87 sites (29 locations) out of the 90 sampled sites (30 

locations) were included in the reported statistical analyses. 

Soil properties were analyzed for variance (one-way ANOVA) using PROC GLM 

in SAS (SAS 9.1, 2003 SAS Institute Inc., Cary, NC) with MLRA, locations nested 

within MLRA and management as independent variables, and soil properties as 

dependent variables. When indicated, an analysis of covariance (ANCOVA) with clay as 

covariable was performed to account for the effect of clay content on SOC. The effect of 

mean annual temperature and annual precipitation on C was analyzed using PROC 

RSREG to test for the significance (P=0.05) of climate variables and examine the 

structure of the estimated response surface. 

 

RESULTS AND DISCUSSION 

Soil Organic C Stocks 

Pasture and CvT soils tended to have lower bulk densities than CsT soils (0-20 

cm) so that an additional 0-9.4 cm layer (avg. = 2.4 cm) was required to attain the 

equivalent soil mass. However, total organic C (TOC) calculated on an equal mass basis 

(i.e., adjusted using Eq. 2) did not change the comparative values in relation to TOC on 

an equal volume basis. Variation in TOC was explained by management (41.6%), clay 

content (5.2%), mean annual temperature (1.0%), and mean annual precipitation (0.1%).  

Higher soil clay content and precipitation, and slightly cooler temperatures contributed to 

higher TOC. 
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Total organic C in the 0-20 cm layer was affected by MLRA (i.e., 32.2 and 27.0 

Mg ha-1 in the Piedmont and Coastal Plain, respectively, P≤0.002), and by management 

(i.e., 38.9, 27.9 and 22.2 Mg ha-1 under pasture, CsT and CvT, respectively, P≤0.001). 

The interaction between MLRA and management was not significant. These C stock 

calculations agree well with published data. From Franzluebbers (2005), C stocks for the 

Piedmont and Coastal Plain averaged 24.4 and 21.1 Mg ha-1 in CsT and CvT systems, 

respectively (18 cm average depth). Data on SOC stocks under pasture are scarce, yet our 

results agree well with the 37.8 and 35.3 Mg ha-1 reported by Franzluebbers et al. (2000) 

and Fesha et al. (2002) for long term pastures (20 cm depth) in the Piedmont of Georgia 

and in the Coastal Plain of Alabama, respectively. The use of conservation tillage and 

pastures should be considered an effective strategy for restoring C stocks in agricultural 

systems in these MLRAs. There is a direct relationship between SOC and SOM; 

restoration of higher levels of SOM is crucial for improvement of soil structure, soil 

fertility and crop production, and would ensure long-term sustainability of agricultural 

production. Furthermore, increasing SOC is a sink for atmospheric CO2, and therefore a 

way to mitigate potentially detrimental effects of greenhouse gasses. 

Surface (0-20 cm) texture of Coastal Plain soils was mostly sand, loamy sand or 

sandy loam; while texture of Piedmont soils was mostly sandy loam, sandy clay loam or 

clay (Fig. 2). When clay was included as a covariate, the difference in SOC between 

MLRAs was not significant (P=0.9), while differences in TOC among management 

systems remained significant (P≤0.0001). Clay content explained 35 % of TOC 

variability in CsT systems, 33 % in CvT systems, and only 7 % under pastures (Fig. 3). 

All sampled soils except two were upland, well drained Ultisols, the exception were 
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upland Alfisols (Aquic Haploxeralfs and Ultic Hapludalfs) in the Coastal Plain of 

Alabama and Virginia, respectively (Appendix 1). Most of these soils are highly 

weathered with clay mineralogical suites dominated by kaolinite, hydroxyl interlayered 

vermiculite, gibbsite and iron oxides. Greater clay concentration could improve water 

relations, and therefore, soil fertility to allow greater input of C, resulting in overall 

greater SOC. The mechanism by which clay particles stabilize SOC has not been well 

elucidated. Some research indicates that the clay mineralogy may influence the 

mechanisms for C stabilization. For example, in soils with kaolinitic mineralogy, the 

interaction between positive charges associated with oxides and negative charges of clay 

minerals formed strong aggregates that can physically protected organic matter (van 

Veen et al., 1984). In soils with mixed or smectitic mineralogy, organic matter may act as 

the primary binding agent for soil aggregates where the negative surface charges of soil 

organic matter and clay minerals are mutually bound to positively charged polyvalent 

metal cations (Edwards and Bremner, 1967). In contrast, Wattel-Koekkoek et al. (2001) 

concluded that the total amount of organic C in the clay-size fraction was independent of 

the clay mineralogy. 

Mean annual temperature and precipitation influence C stocks at the regional 

scale (Jenny, 1941; Franzluebbers and Steiner, 2002). With clay content as a covariate, 

temperature (P≤0.0001) and precipitation (P≤0.03) significantly affected TOC (Fig. 4). 

The combined effect of temperature and precipitation explained 35 % of the variation in 

TOC. Mean annual temperature had a more marked effect on TOC than mean annual 

precipitation. At constant precipitation, TOC increased with decreasing temperature; and, 

at constant temperature, TOC increased with increasing precipitation. 
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Soil Organic C Fractions 

Pastures contained significantly greater TOC than cropland (0-5 cm) (1.9 times 

greater than CsT and 3.1 times greater than CvT), but there were no differences among 

management systems at lower depths (5-20 cm). A similar management effect was 

observed for POC, SMBC, and CMIN (Fig. 5). Pastures and CsT had minimal soil 

disturbance that allowed soil C fractions to accumulate at the surface. Above-ground 

residues would have decomposed more slowly than incorporated residues, because 

minimal contact with the soil would have increased drying/rewetting and reduced 

interactions with soil fauna and microbes. Average concentration of TOC, POC, SMBC 

and CMIN within the surface 20 cm followed the order: pasture > CsT > CvT (12.3 vs 

8.3 vs 6.7 g kg-1, P≤0.0001, LSD=1.3 for TOC; 7.6 vs 5.2 vs 4.1 g kg-1, P≤0.0001, 

LSD=1.0 for POC; 0.45 vs 0.29 vs 0.23 g kg-1, P≤0.0001, LSD=0.04 for SMBC; 0.39 vs 

0.22 vs 0.17 g kg-1, P≤0.0001, LSD=0.04 for CMIN). Franzluebbers and Stuedemann 

(2002) found similar results comparing long-term pastures with long-term CsT in the 

Piedmont of Georgia. Greater TOC, POC, SMBC, and CMIN under pastures compared 

with croplands could have been due to a variety of factors, including greater overall rate 

of photosynthetic activity resulting in greater C inputs throughout the year (because of 

the growth capabilities of perennial versus annual plant species), and less C exported via 

cattle production compared with grain harvest. The POC-to-TOC ratio decreased with 

soil depth in pasture and CsT, but remained fairly constant in CvT. There were no 

statistical differences in POC-to-TOC between management systems (data not shown). 

Across all management systems, depths of sampling and soils of the Piedmont 

and Coastal Plain, there was a strong relationship among all SOC fractions (Table 1). The 
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relationship between TOC and POC (TOC = 0.36+1.02 POC; R2=0.80, n=261) indicates 

that C accumulation in this warm and humid region was largely due to increases in the 

POC fraction; i.e., for every unit of TOC accumulated, 62% consisted of POC. 

Franzluebbers and Stuedemann (2002) reported 57% POC for every unit of TOC under 

long-term pastures in the Southern Piedmont. 

Potential C mineralization during 24 d (CMIN) decreased with depth and showed 

significant difference between management systems (in the order pasture > CsT > CvT) 

(Fig. 5d). The response in CMIN was similar to those observed for SMBC and was 

strongly related to all soil organic C (Table 1). At the 0-5 cm depth, C mineralization 

under pasture doubled that of CsT and almost quadrupled that of CvT. Carbon 

mineralization rates decreased with increasing depths and followed the order pastures > 

CsT > CvT. Greater C mineralization under pastures suggests that less disturbed systems 

(perennial species, no tillage) have increased the potential biological activity of soil 

organic matter compared with cultivated land.  

In soils of the Piedmont, Franzluebbers (1999) observed an inverse relationship 

between C mineralization and soil clay content; i.e., the clay fraction in soils protected 

soil organic matter from decomposition. In our study, the relationship between CMIN and 

clay was not significant. 

Aggregate Stability 

Mean-weight diameter (MWD) and aggregate-size distribution (ASD) of dry soil 

at a depth of 0-5 cm was not different among management systems. However, there was a 

significant impact of management (P<0.001) on MWD and ASD in water, with 

treatments following the order: pasture > CsT > CvT (Fig. 6). Comparing dry to wet 
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ASD, changes occurred mainly among large macroaggregates (1000-4750 µm). Pasture 

soils withstood disruptive forces during wet sieving more than cropland soils, with CsT > 

CvT. Large macroaggregates under CsT were 24% of the whole soil with dry sieving and 

17% with wet sieving, while the same aggregate-size class was 22% with dry sieving and 

10% with wet sieving in CvT. Disruption of macroaggregates with wet sieving increased 

the <53 µm aggregate-size class, i.e., silt and clay-size microaggregates. In pasture soils, 

disruption occurred in the 53-250 µm aggregate-size class, resulting in an increase in the 

<53 µm aggregate-size class. Our procedure for determining dry or wet MWD did not 

differentiate between true aggregates and large sand particles that were retained on the 

screens and therefore the stability of macroaggregates was more reflective of changes in 

soil structure induced by management. 

We did not determine C contents of aggregate-size classes, but the fact that C 

contents were in the order: Pasture > CsT > CvT (Fig. 5), would suggest that SOC was a 

major binding agent of large macroaggregates in these soils. Tisdall and Oades (1982) 

proposed a model that described microaggregates bound together into macroaggregates 

by microbial- and plant-derived polysaccharides, as well as roots and fungal hyphae. 

Reduction in aggregation has been associated with loss of SOC with cultivation (Beare et 

al., 1994, Six et al., 2000).  

Slaking, or structural degradation in water, was most prominent in soil under 

CvT. Dispersed soil particles can seal pores, reduce infiltration, and cause water runoff. 

Soil structural degradation has been associated with physical disturbance and continual 

exposure of new soil to wet-dry cycles and to a change in soil micro-climatic conditions 

that increases SOM decomposition (Paustian et al., 1997; Balesdent et al., 2000). In 
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contrast, CsT and pasture systems not only avoid these negative effects, but promote 

plant root and fungal hyphae proliferation, responsible for macroaggregate formation 

(Beare et al., 1993). Resistance of soil to structural degradation is particularly important 

under the climatic conditions of the Piedmont and Coastal Plain where intense storms are 

common during the summer. 

 Clay content explained 77% of the variation in MWD of dry aggregates, but only 

26% of the variation in MWD of wet aggregates (Fig. 7). Total organic C explained 

minimal variation in MWD of dry aggregates and 21% of the variation in MWD of wet 

aggregates. These data indicated that clay-sized particles played a major role in holding 

dry aggregates together, but that TOC was more important in wet aggregates. Shaw et al. 

(2003) found that Fe oxides play a more significant role in clay aggregation than soil 

organic matter in Rhodic Paleudults. Yet, soil organic matter has a significant role for 

reducing clay dispersion in these highly weathered southeastern USA soils (Shaw et al., 

2002). Electrostatic attraction would occur among oxides and 1:1 clay minerals. 

Electrostatic attraction are at maximum in close proximity. Wetting the soil produces ion 

hydration and swelling draws water in between clay platelets, pushing them apart and 

reducing electrostatic attraction. Clay (phyllosilicates and oxides) and organic matter are 

binding agents of soil aggregates (Tisdall and Oades, 1982; Kemper and Rosenau, 1984). 

Management systems that maximize TOC would help maintaining favourable soil 

structure in the southeastern USA. 

Soil Organic C Stratification Ratio 

Stratification ratio of SOC fractions (e.g., TOC, POC, SMBC and CMIN) differed 

(P≤0.0001) among management systems, and was 4.2-6.1 under pastures, 2.6-4.7 under 
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CsT, and 1.4-2.8 under CvT (Fig. 8). Stratification of SOC fractions is common in natural 

ecosystems, where high stratification reflects relatively undisturbed soils. Franzluebbers 

(2002) suggested that stratification ratio of SOC fractions could be used as a simple 

diagnostic tool to identify land management strategies for restoring critical soil functions, 

and that among diverse soils, TOC stratification ratio might be a better indicator of soil 

quality than total TOC content of the entire plow layer. Stratification > 2 are interpreted 

as an indicator of undisturbed soil condition or of improved quality on previously 

degraded soils. Greater TOC stratification ratio in pastures and CsT than in CvT was a 

consequence of TOC accumulation at the soil surface, which would have a positive effect 

on erosion control, water infiltration and nutrient conservation. In the Southeastern U.S., 

the warm-humid climate is a limiting factor for SOC accumulation. Therefore, the 

determination of TOC content may not be the best indicator of improved soil quality 

when comparing across diverse soil groups. These data supported the proposed threshold 

stratification ratio of 2 (i.e., most ratios under CvT were ≤ 2, while they were ≥ 2 under 

CsT and pasture). 

The depths we used for calculation of stratification ratios (i.e., 0-5 and 12.5-20.3) 

were similar to those used by Franzluebbers (2002) in south-central Texas, Alberta and 

British Columbia. In northeastern Ohio, Jarecki et al. (2005) used the depths 0-5 and 10-

20 cm and reported stratification ratios < 2 on a field with 14 years of no-tillage corn. 

They attributed this low value to the fact that corn root-derived C contributed more C to 

SOC than stover-derived C. In other regions, the indicator may need definition of depths 

for calculations. In southwestern Spain, SOC at 0–5 and 5–10 cm divided by that at 10–

25 cm resulted in stratification ratio of SOC between CsT and CvT that was not 
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significantly different (Moreno et al., 2006). When the 25–40 cm soil layer was used for 

the denominator, stratification ratios were >2 for CsT and significantly greater than for 

CvT. 

Stratification ratio of TOC was related to wet MWD (Fig. 9a). Although 

significant variation occurred (R2=0.20), stratification ratio of TOC under CvT was <2 

and lowest wet MWD (< 1.0) occurred under CvT. Higher values of wet MWD would be 

desirable, because they indicate soil structural integrity during heavy rainfall events. 

There was also a significant response of stratification ratio of TOC with years under CsT 

(Fig. 9b). Lowest values occurred during the first 5 years and the response reach a 

maximum about 10 years after switching from CvT to CsT. Even under long-term CsT 

(i.e., 30 years), the surface layer (0-5 cm) was the zone of concentrated TOC. Although 

Loveland and Webb (2003), after a review of the literature, suggested that there was little 

quantitative evidence of a threshold for SOC, stratification ratio of SOC fractions may 

provide a new conceptual framework for evaluating the importance of SOC on soil 

functions related to aggregation, water-use efficiency, and nutrient cycling. 

 

SUMMARY AND CONCLUSIONS 

On-farm measurements of C stocks in the Piedmont and Coastal Plain 

complemented research station data under cultivated systems and much-needed 

quantitative information of SOC stocks under pastures. Total organic C in the 0-20 cm 

layer was greatest under pasture, intermediate under CsT, and least under CvT (38.9, 27.9 

and 22.2 Mg ha-1, respectively, P<0.001).  
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All SOC fractions were strongly correlated (r>0.84) across a diversity of soils and 

management. The relationship between TOC and POC indicated that SOC accumulation 

in this warm and humid region was largely composed of increases in the POC fraction; 

i.e., for every unit of TOC accumulated 0.62 consisted of POC. Climate (mainly 

temperature) and soil texture influenced SOC stocks within well-drained upland soils. 

Cooler climate and finer textures resulted in higher SOC.  

Management affected SOC primarily at the soil surface (0-5 cm). Stratification 

ratio of SOC fractions was in the order: pasture > CsT > CvT. Results supported the 

proposed threshold value for stratification ratio of 2 to distinguish soils with improved 

soil quality from degraded soils. However, stratification ratio as an indicator of soil 

quality needs further evaluation, especially with respect of determining adequate depth of 

sampling for calculations and its relationship with other physical, biological and chemical 

measurements of soil quality. 

Policies that promote sod-based or forage rotations and conservation tillage will 

lead to significant SOC sequestration throughout the Piedmont and Coastal Plain, 

resulting in improved soil quality, plant productivity and the potential for mitigating 

global warming. 

 

ACKNOWLEDGEMENT 

We thank USDA-ARS-National Soil Dynamics Laboratory and Auburn 

University for financial support of this research, and the Universidad Nacional de 

Asunción in Paraguay for supporting the first author during his Ph.D. studies at Auburn 

University. The help provided by District Soil Conservationists of the Natural Resources 



 

 22

Conservation Service and by the staff of the Virginia Cooperative Extension Service to 

locate sites for on-farm sampling in the states of AL, GA, SC, NC and VA is greatly 

appreciated. Thanks are extended to Ms. Kimberly Freeland for her assistance during 

sample preparation, Ms. Peggy Mitchell and Mr. Steven Knapp for their support during 

laboratory analyses, and Dr. Juan Rodriguez for his guidance during sample preparation 

and for conducting C analyses on all samples. 



 

 23

REFERENCES 

Balesdent, J., C. Chenu, and M. Balabane. 2000. Relationship of soil organic matter 

dynamics to physical protection and tillage. Soil Tillage Res. 53, 215-230. 

Beare, M.H., B.R. Pohland, D.H. Wright, and D.C. Coleman. 1993. Residue placement 

and fungicide effects on fungal communities in conventional and no-tillage soils. Soil 

Sci. Soc. Am. J. 57:392-399. 

Beare, M.H., P.F. Hendrix, and D.C. Coleman. 1994. Water-stable aggregates and 

organic matter fractions in conventional-and no-tillage soils. Soil Sci. Soc. Am. J. 

58:777–786. 

Blevins, R.L., W.W. Frye, M.G. Wagger, and D.D. Tyler. 1994. Residue management 

strategies for the Southeast. p. 63-76. In J.L. Hatfield and B.A. Stewart (eds.) Crops 

Residue Management. Lewis Publishers, Boca Raton, FL. 

Cambardella, C.A., and E.T. Elliott. 1992. Particulate soil organic-matter changes across 

a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56:3, 777-783. 

Census of Agriculture, 2002. U.S. Department of Agriculture. National Agricultural 

Statistics Service. Washington, DC. Available at http://www.nass.usda.gov/Census 

_of_Agriculture, verified 5 Dec 2005. 

Christensen, B. T. 2001. Physical fractionation of soil and structural and functional 

complexity in organic matter turnover. Europ. J. Soil Sci. 52, 345-353.  

Edwards A.P. and J.M. Bremner. 1967. Microaggregates in soils. J.Soil Sci. 18, 64–73. 

http://www.nass.usda.gov/Census _of_Agriculture
http://www.nass.usda.gov/Census _of_Agriculture


 

 24

Ellert, B.H., and J.R. Bettany. 1995. Calculation of organic matter and nutrients stored in 

soils under contrasting management regimes. Can. J. Soil Sci. 75:529-538. 

Fesha, I.G., J.N. Shaw, D.W. Reeves, C.W. Wood, Y. Feng, M.L. Norfleet, and E. van 

Santen. 2002. Land use effects on soil quality parameters for identical soil taxa. In: 

van Santen, E. (Ed.), Making Conservation Tillage Conventional: Building a Future 

on 25 Years of Research, Special Report No. 1. Alabama Agric. Expt. Stn., Auburn 

Univ., pp. 233-238. 

Follett, R. F. 2001. Soil management concepts and carbon sequestration in cropland soils. 

Soil Tillage Res. 61:77-92.  

Franzluebbers, A.J. 1999. Potential C and N mineralization and microbial biomass from 

intact and increasingly disturbed soils of varying texture. Soil Biol. Biochem. 

31:1083-1090. 

Franzluebbers, A.J., J.A. Stuedemann, H.H. Schomberg, and S.R. Wilkinson. 2000a. Soil 

organic C and N fractions under long-term pasture management in the Southern 

Piedmont USA. Soil Biol. Biochem. 32:4, 469-478. 

Franzluebbers, A.J., S.F. Wright, and J.A. Stuedemann. 2000b. Soil Aggregation and 

Glomalin under Pastures in the Southern Piedmont USA. Soil Sci. Soc. Am. J. 64:3, 

1018-1026. 

Franzluebbers, A.J., J.A. Stuedemann, and S.R. Wilkinson. 2001. Bermudagrass 

management in the Southern Piedmont USA. I. Soil and residue carbon and sulfur. 

Soil Sci. Soc. Am. J. 65:834-841 



 

 25

Franzluebbers, A.J., 2002. Soil organic matter stratification ratio as an indicator of soil 

quality. Soil Tillage Res. 66, 95-106. 

Franzluebbers, A.J., and J.L. Steiner. 2002. Climatic Influences on Soil Organic Carbon 

Storage with No Tillage. p. 71-86. In J.M. Kimble, R. Lal, and R.F. Follett (ed.) 

Agricultural Practices and Policies for Carbon Sequestration in Soil. Lewis 

Publishers. 

Franzluebbers, A.J. and J.A. Stuedemann. 2002. Particulate and non-particulate fractions 

of soil organic carbon under pastures in the Southern Piedmont USA. Environ. Pollut. 

116, S53-S62.  

Franzluebbers, A.J. 2005. Soil organic carbon sequestration and agricultural GHG 

emissions in the southeastern USA. Soil Tillage Res. 83:120-147. 

Jarecki, M.K., R. Lal, and R. James. 2005. Crop management effects on soil carbon 

sequestration on selected farmers' fields in northeastern Ohio. Soil Tillage Res. 

81:265-276 

Jenny, H. 1941. Factors of Soil Formation. McGraw-Hill. New York, NY. 281 pp. 

Johnson, J.M.F., D.C. Reicosky, R.R. Allmaras, T.J. Sauer, R.T. Venterea, and C.J. Dell. 

2005. Greenhouse gas contributions and mitigation potential of agriculture in the 

central USA. Soil Tillage Res. 83:73-94. 

Kemper, W.D., and R. Rosenau. 1984. Soil cohesion as affected by time and water 

content. Soil Sci. Soc. Am. J. 48:1001–1006. 



 

 26

Kelley, K.R. 1994. Conveyor-belt appartatus for fine grinding of soil and plant materials. 

Soil Sci. Soc. Am. J. 58:144-146. 

Lal, R. 1997. Residue management, conservation tillage and soil restoration for 

mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res. 43:81-107. 

Lal, R., J.M. Kimble, R.F. Follett, and C.V. Cole. 1998. The Potential of U.S. Cropland 

to Sequester Carbon and Mitigate the Greenhouse Effect. Ann Arbor Press, Chelsea 

MI. 128 pp. 

Liebig, M.A., J.A. Morgan, J.D. Reeder, B.H. Ellert, H.T. Gollany, and G.E. Schuman. 

2005. Greenhouse gas contributions and mitigation potential of agricultural practices 

in northwestern USA and western Canada. Soil Tillage Res. 83:25-52. 

Loveland, P. and J. Webb. 2003. Is there a critical level of organic matter in the 

agricultural soils of temperate regions: a review. Soil Tillage Res. 70:1, 1-18.  

Martens, D.A., W. Emmerich, J.E.T. McLain, and T.N. Johnsen, Jr. 2005. Atmospheric 

carbon mitigation potential of agricultural management in the southwestern USA. 

Soil Tillage Res. 83:95- 119. 

Moreno, F., J.M. Murillo, F. Pelegrin, and I.F. Giron. 2006. Long-term impact of 

conservation tillage on stratification ratio of soil organic carbon and loss of total and 

active CaCO3. Soil Tillage Res. 85:86-93. 

Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter. 

p. 539-579. In A.L. Page, R.H. Miller, and D.R. Keeney (ed.) Methods of soil 



 

 27

analysis, Part 2: Chemical and microbiological properties. Soil Science Society of 

America. 

Paustian, K., H.P. Collins, and E.A. Paul. 1997. Management controls on soil carbon. p. 

15–49. In E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems. CRC 

Press, Boca Raton, FL. 

Reeves, D.W. 1997. The role of soil organic matter in maintaining soil quality in 

continuous cropping systems. Soil Tillage Res. 43:131-167. 

Reeves, D.W., and D.P. Delaney. 2002. Conservation rotations for cotton production and 

carbon storage. p. 344-348. In E. van Santen (ed.) Making Conservation Tillage 

Conventional: Building a Future on 25 Years of Research, Proc. 25th Ann. Southern 

Conserv. Tillage Conf. Sustainable Agric., Auburn AL, 24-26 June 2002. 

SCAS. 2005. Spatial Climate Analysis Service, Oregon State University, 

http://www.ocs.oregonstate.edu/prism/, created 4 Feb 2004, accessed 1 Nov 2005. 

Shaw, J.N., C.C.Truman, and D.W. Reeves. 2002. Mineralogy of eroded sediments 

derived from highly weathered Ultisols of central Alabama. Soil and Tillage Res. 68: 

59-69. 

Shaw, J.N., D.W. Reeves, and C.C. Truman. 2003. Clay mineralogy and dispersibility of 

soil and sediment derived from Rhodic Paleudults. Soil Sci. 168: 209-217. 

Six, J., K. Paustian, E.T. Elliot, and C. Combrink. 2000. Soil Structure and Organic 

Matter: I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. 

Soil Sci. Soc.  Am. J. 64:681-689. 



 

 28

Skjemstad, J. O., Janik, L. J., and Taylor, J. A. 1998. Non-living soil organic matter: what 

do we know about it? Australian Journal of Experimental Agriculture 38, 667-680.  

Sperow, M., M. Eve, and K. Paustian. 2003. Potential soil C sequestration on U.S. 

agricultural soils. Climatic Change 57:319-339. 

Tisdall, J.M., and J.M. Oades. 1982. Organic matter and water-stable aggregates in soils. 

J. Soil Sci. 33:141–163. 

USDA Agricultural Handbook 296. 1997. USDA Natural Resources Conservation 

Service, National Soil survey Center, Lincoln, Nebraska. Available at ftp://ftpfc.sc. 

egov.usda.gov/NSSC/Ag_Handbook_296/ 296b.pdf, verified 5 Dec 2005. 

van Veen, J.A., Ladd, J.N., Frissel, M.J., 1984. Modelling C and N turnover through the 

microbial biomass in soil. Plant and Soil 76, 257-274. 

Voroney, R.P., and E.A. Paul. 1984. Determination of kC and kN in situ for calibration of 

the chloroform fumigation-incubation method. Soil Biol. Biochem. 16:9–14. 

Wattel-Koekkoek, E.J.W., P.P.L. van Genuchten, P. Buurman, and B. van Lagen. 2001. 

Amount and composition of clay-associated soil organic matter in a range of 

kaolinitic and smectitic soils. Geoderma 99:27-49. 

West, T.O., and W.M. Post. 2002. Soil organic carbon sequestration rates by tillage and 

crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 66:1930-1946. 

ftp://ftpfc.sc. egov.usda.gov/NSSC/Ag_Handbook_296/ 296b.pdf
ftp://ftpfc.sc. egov.usda.gov/NSSC/Ag_Handbook_296/ 296b.pdf


 

 29

Table 1.  Pearson correlation coefficients among carbon fractions. (*** indicates 

highly significant, P≤0.0001). 

 TOC POC SMBC CMIN 

Total organic carbon (TOC) - *** *** *** 

Particulate organic carbon (POC) 0.90 - *** *** 

Soil microbial biomass carbon (SMBC) 0.95 0.85 - *** 

Carbon mineralized in 24 days (CMIN) 0.94 0.85 0.96 - 
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II. RELATING SOIL ORGANIC CARBON IN PIEDMONT PASTURES TO 

LANDSCAPE, ELECTRICAL CONDUCTIVITY AND REMOTE SENSING 

DATA 

 

ABSTRACT 

Landscape characteristics could affect soil organic C (SOC) sequestration in 

pastures, yet the field-scale spatial distribution of SOC in pastures has been relatively 

uninvestigated. Our objective was to determine the relationship between SOC and 

secondary data in two Southern Piedmont pastures. Geo-referenced SOC, soil texture, 

field-scale electrical conductivity (EC) and terrain attribute (TA) data were collected on 

two 5.5-ha grazed pastures; one near Watkinsville, GA (Typic Kanhapludults) and the 

other near Gold Hill, AL (Rhodic Kanhapludults). Near infrared (NIR), red and green 

reflectance data were obtained from aerial photographs. Elevation and slope explained 

26% of SOC variability at Watkinsville, while elevation and the normalized difference 

vegetation index (NDVI) explained 63% of SOC variability at Gold Hill. Ordinary 

kriging, multiple linear regression (MLR) and artificial neural networks (ANN) were 

used to produce SOC maps. In Watkinsville, prediction efficiency with ANN (PE = 49%) 

was four times greater than with the second best method (kriging), and in Gold Hill (PE = 

62%) was 1.5 greater than the second best method (MLR). Factor analysis of multivariate
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 TA, EC and remote sensing (RS) data followed by fuzzy k-means clustering of scores 

identified four clusters in Watkinsville, and three clusters in Gold Hill. Soil organic C 

was statistically different (P≤ 0.01) among clusters at both sites, and its variability was 

explained by elevation, slope, compound topographic index (CTI), and NIR and red 

reflectance. Easily obtainable secondary data (i.e., TA, EC and RS) were significantly 

related to SOC variability and could be used to enhance SOC maps. Using ANN for SOC 

mapping would be appealing when complex non-linear relationships exist. 

2

 
Abbreviations: ANN, artificial neural networks; ARS, Agricultural Research Service; CIR, color  infrared; 
CTI, compound topographic index; DEM, digital elevation model; EC, electrical conductivity; FPI, 
fuzziness performance index; GIS, geographic information system; GPS, global positioning system; MLR, 
multiple linear regression; NCE, normalized classification entropy; NDVI, normalized difference 
vegetation index; NIR, near infrared; NRCS, Natural Resource Conservation Service; PE, prediction 
efficiency; PLANC, plan curvature; PROFC, profile curvature; R, red; RMSE, root-mean square error; RS, 
remote sensing; RSV, relative structural variability; SOC, soil organic carbon; TA, terrain attributes; VIF, 
variance inflation factor. 
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INTRODUCTION 

The Southern Piedmont Major Land Resource Area has a total land area of 16.7 

Mha. It extends from northern Virginia to eastern Alabama, occupying 34, 38, 35, 29 and 

9% of the land area in Virginia, North Carolina, South Carolina, Georgia and Alabama, 

respectively. Most of this land was once cultivated to row crops, but much has reverted to 

mixed stands of pine and hardwoods, and monoculture pine production; the expansion of 

major cities has incorporated land for residences and associated urban development 

(USDA-NRCS, 1997). Currently, large acreage of pasture supporting cattle-grazing 

production systems exists in the Southern Piedmont (Census of Agriculture, 2002). 

Soil organic C plays a critical role in soil quality and has potential to cost-

effectively mitigate detrimental effects of rising atmospheric CO2 and other greenhouse 

gas emissions on global warming and climate change (Lal, 1997; Reeves, 1997). 

Evaluation of SOC distribution in pastures at scales comparable to farm management 

units, which encompass heterogeneous soils and different landforms, has been relatively 

uninvestigated. Since SOC influences soil quality and plant productivity, it is of interest 

to characterize its spatial distribution for optimizing agricultural inputs (e.g., manures and 

fertilizers) and to assess how management practices might alter its distribution. 

Moreover, understanding the relationship between SOC and landscape variability will be 

necessary to upscale SOC stocks from field-scale to physiographic region. 

The influence of topography on soil properties has long been recognized. Jenny 

(1941) proposed a conceptual model of soil formation with topography as a state factor. 

Our understanding of the relationship between topography and soil properties improved 

with the advent of Geographic Information Systems (GIS) and Global Positioning System 
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(GPS). Variables describing topography are known as terrain attributes (TA), and are 

derived from a digital elevation model (DEM). Moore et al. (1993) and Florinski et al. 

(2002) listed mathematical expressions for calculating several TA (e.g., elevation, slope, 

aspect, plan and profile curvature).  

The relevance of any particular TA on soil properties often depends on the overall 

landform shape and the redistribution processes operating on the landscape (Pennock, 

2003). Martz and De Jong (1991) found that soil erosion on a small Canadian prairie 

watershed was directly related to the catchment area, except on the midslope where 

erosion was directly related to steepness. Epipedon SOC generally increases with 

convergent landscape character, due to soil deposition and difference in net 

mineralization. Florinsky et al., (2002) defined zones of accumulation, dissipation and 

transit based on profile (PROFC) and plan (PLANC) curvatures. Basically, concave 

curvatures (PROFC and PLANC < 0) result in accumulation, convex curvatures (PROFC 

and PLANC > 0) result in dissipation; and transit zones (no net change) occur when 

PROFC and PLANC are of opposite sign. Moore et al. (1993), Gessler et al. (2000), and 

Terra et al. (2004) found strong relationships between the Compound Topographic Index 

(derived from specific catchment area and slope) and SOC (r from 0.48 to 0.88). Mueller 

and Pierce (2003) reported high correlation between SOC and elevation (r from -0.68 to -

0.77).  

Although many studies have shown strong TA-SOC relationships, care must be 

taken when interpreting relationships, especially in farm-scale studies where management 

plays an important role (Bergstrom et al., 2000). For example, higher contents of SOC at 

the toeslope may be attributed to the effect of topography (accumulation zone), or to the 
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fact that it is the zone in the field where animals congregate in response to management 

routines and hence higher level of organic C input from cattle deposition, which also 

increase fertility and subsequent forage growth. As indicated by Young and Hammer 

(2000), Jenny’s “factor” approach holds better at the regional scale than at the field-scale. 

The sampling intensity required to produce reliable SOC estimation is related to 

its spatial variability. Variation in SOC may occur on a finer spatial resolution than can 

be detected with a sampling protocol because of sampling costs. Therefore, secondary 

data correlated with SOC are sometimes necessary to more accurately characterize field-

scale SOC variability. Besides TA, more easily measured soil properties have been used 

as secondary spatial information to characterize field-scale SOC distribution. Field-scale 

soil EC is among the most useful and easily obtained measures that depicts soil spatial 

variability. Rhoades et al. (1989) formulated mathematical models relating EC to soil 

properties. Basically, EC is a function of soil salinity, saturation percentage, water 

content and bulk density. Water holding capacity and bulk density are closely associated 

with soil texture. Temperature also affects EC, since electrolytic conductivity increases at 

an approximate rate of 1.9% per degree centigrade (Corwin and Lesch, 2003).  

Geo-referenced in situ estimates of EC can be made at the field scale using either 

of two types of sensors, contact sensors that measure resistance and non-contact sensors 

that rely on electromagnetic induction; measurements from both sensors were strongly 

correlated with laboratory measurements of EC (Corwin and Lesch, 2003). It is also 

possible to indirectly relate EC to SOC. Studies have shown significant correlation 

coefficients, e.g. r = -0.36 (Johnson et al., 2001), r = -0.42 (Johnson et al., 2003), and r = 
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-0.42 (Terra et al., 2004). Ronnie et al. (2003) found positive correlation (r=0.55) on 

Histic Humaquepts of the North Carolina Coastal Plain. 

Remote sensing data are another source of secondary spatial data. Crop and bare 

soil spectral responses can be related to crop productivity and surface soil properties. 

Chen et al. (2000) developed a relationship between surface (0-15 cm) SOC 

concentration and image intensity values from an aerial photograph using a logarithmic 

linear equation (R2 = 0.93) on a Georgia Coastal Plain field. Recently, Sullivan et al. 

(2005) reported high correlation (r = -0.78) between spectral response remotely sensed by 

the IKONOS satellite and surface (0-15 cm) SOC of tilled soils in an Alabama Coastal 

Plain field. Soil organic C was negatively correlated with reflectance, because increasing 

SOC concentration has a darkening effect that reduces the amount of reflected energy. 

Soil organic C was detected in the visible and NIR regions of the spectrum, where the 

relationship was linear or curvilinear (Henderson et al., 1992). We hypothesize that RS 

imagery may play a role in aiding detection of SOC variability in pastures through the 

relationship between SOC and forage growth conditions, since the latter has been shown 

to be highly correlated with RS data (Yang and Everitt, 2002; Blackmer and Shepers, 

1996). High sunlight absorption in the red (R, 600-700 nm) would be indicative of high 

chlorophyll concentration, and high reflectance in the NIR (750-1350 nm) has been 

shown to be directly related to green leaf density (Knipling, 1970). 

In general, soil properties vary continuously over the landscape; contiguous 

samples would be most similar and not independent. Geostatistics provide the means to 

analyze spatial dependence among soil samples through variography and kriging or co-

kriging interpolation (Goovaerts, 1999). High resolution secondary information such as 
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TA, EC and RS could be used to give greater detail to less extensive soil measurements 

like SOC (Bishop and McBratney, 2001). With today’s advances in geo-referenced 

sensor technology, the amount of easily obtainable ancillary information has been 

steadily increasing. Multivariate statistical procedures exist to reduce dimensionality and 

weigh data relevancy. Specifically, principal components and principal factor analyses, 

respectively, may be combined with unsupervised classification methods or cluster 

analyses to group similar areas on a landscape (Fraisse et al., 2001; Terra et al., 2004; 

Sullivan et al., 2005). 

 Multiple linear regression constitutes a less intensive technique to relate SOC and 

ancillary data (e.g., Moore et al., 1993), but the non-linearity in the relations presents 

problems. During recent years, artificial neural networks (ANN) have developed as a 

flexible mathematical tool capable of handling complex non-linear relationships between 

inputs and output. There have been an increasing number of studies applying ANN to 

SOC prediction (Levine and Kimes, 1997; Ingleby and Crowe, 2001; Somaratne et al., 

2005). In ANN, several transfer functions accommodate the nonlinearity of the input-

output relationship. The desired relationship is “learned” by repeatedly presenting 

examples of the desired input-output relationship to the network, and adjusting the model 

coefficients (i.e., the weights) to get the best possible agreement between the observed 

values and those predicted by the model (Demuth et al., 2005). 

Piedmont pastures constitute a good arena for studying landscape effects on SOC, 

because of the relatively undisturbed condition of the soil surface. Our hypothesis was 

that SOC distribution was related to landscape form, and the prediction of SOC may be 

improved by incorporating more easily obtainable secondary data. Therefore, the 
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objectives of this study were to (i) characterize SOC spatial distribution, (ii) evaluate 

various techniques for estimating SOC, and (iii) determine the relationship between SOC 

and easily obtainable secondary data in two Southern Piedmont pastures. 

 

MATERIALS AND METHODS 

Site Characteristics 

 Two pastures (about 5.5 ha each) were selected for this research. One was owned 

by the Agricultural Research Service (ARS) and located near Watkinsville in northeast 

Georgia (83º27’20”W, 33º51’51”N), and the other was a farmer-owned site near Gold 

Hill in east-central Alabama (85º31’5”W, 32º42’59”N). Mean annual temperature at both 

locations was about 16 ºC. Mean annual precipitation was 1250 mm in Watkinsville, and 

1450 mm in Gold Hill. Both fields were long-term (>30 years) grazed pastures. The 

Watkinsville field is dominated by bermudagrass (Cynodon dactylon L.) with minor 

contributions from tall fescue (Lolium arundinaceum Schreb.) and annual ryegrass 

(Lolium multiflorum Lam.). Grazing was with Angus cattle (cows and cow/calf pairs) 

periodically during the year to consume available forage. The Gold Hill field was 

dominated by tall fescue, with some contribution from dallisgrass (Paspalum dilatatum 

Poir.), bermudagrass and bahiagrass (Paspalum notatum Fluegge). Grazing was with 

Herefords cattle to consume available forage. Before pasture establishment, fields were 

cultivated with annual crops and managed with conventional tillage; agricultural terraces 

remained. These fields were selected because of their variability in surface soil texture, 

upland topography, and because they were representative of large areas of the Southern 

Piedmont Major Land Resource Area. 
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 Soils in the Watkinsville field included Cecil and Pacolet series (fine, kaolinitic, 

thermic Typic Kanhapludults). These soils were formed in material weathered from 

gneiss, were well-drained, acidic, and contained argillic and kandic horizons. The surface 

horizon (Ap) was a sandy loam to sandy clay loam texture, and subsurface horizons were 

sandy clay loam, clay loam or clay textured. The argillic horizons were sandy clay loam, 

clay loam or clay. Slopes ranged from 2 to 10%. 

Soils in the Gold Hill field belonged to the Gwinnett series (fine, kaolinitic, 

thermic Rhodic Kanhapludults). These soils were formed in intermingled basic 

crystalline materials (mainly amphibolite), were well-drained, acidic, and contained 

argillic and kandic horizons. The surface horizon texture was sandy loam to gravelly 

sandy loam. The argillic horizons were clay loam or clay. Slopes ranged from 2 to 15%. 

Elevation and EC Data Collection 

 An elevation survey was conducted in November 2003 at the Watkinsville field 

and in May 2005 at the Gold Hill field. At each field, a Trimble 4600 L.S. Surveyor Total 

Station (Trimble Navigation, LTD, Sunnyvale, CA)1 was mounted on an all-terrain 

vehicle. The vehicle traveled in transects spaced approximately 8-m apart at an 

approximate speed of 4 km h-1, recording GPS location and elevation every second. The 

vehicle pulled a VERIS 3100 sensor cart (Veris Tech., Salina, KS)1, which recorded EC 

every second at 0 to 30 cm and 0 to 90 cm. Soil moisture during surveys was near field 

capacity. A second survey of EC was conducted at the Watkinsville field in October 

 
1 Reference to trade or company name is for specific information only and does not imply approval or 
recommendation of the company by Auburn University or the USDA to the exclusion of others that may be 
suitable. 



 

2004. Elevation and EC sample density were 1100 readings ha-1 at Watkinsville and 1900 

readings ha-1 at Gold Hill. 

Digital Elevation Modeling and Terrain Attribute Computation 

 A 5-m digital elevation model (DEM) was generated for each field using a finite 

difference interpolation technique in ArcInfo (ver. 9.0, 2004, ESRI, Redlands, CA). The 

DEM was used to derive primary terrain attributes from tools in ArcGIS (ver. 9.0, 2004, 

ESRI, Redlands, CA), which included maximum downhill slope (%), profile curvature 

(m-1) relating convexity or concavity of the surface in the direction of the slope, plan 

curvature (m-1) relating convexity or concavity in the direction perpendicular to the slope, 

flow direction, and flow accumulation. Secondary terrain attributes (e.g. catchment area 

and compound topographic index) were derived from flow accumulation and slope, 

respectively (Moore et al., 1993): 

Fa area  cellCA ⋅=  Eq. [1]
( )

100 / Slp
Fa  dim cellSCACTI ⋅

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ln

tan
ln

β
 Eq. [2]

 

where: CA = catchment area, Fa = flow accumulation, CTI = compound topographic 

index, SCA = specific catchment area, cell dim = x or y cell dimension, β = slope in 

degrees, Slp = slope in percentage.  

EC Mapping 

 48

Isotropic exponential semivariogram models were fit to EC data using GS+ (ver. 

7.0, 2005, Gamma Design Software, Plainwell, MI). The nugget was a small portion of 

the semivariance (<10%), indicating strong spatial dependence. High R2 (>0.95) of 

isotropic models to semivariance data were indicative of a high goodness of fit. Electrical 



 

conductivity was interpolated to a 5-m grid using kriging with weights based on 

semivariogram models. 

Remote Sensing Data 

 A color infrared (CIR) aerial photograph (1-m spatial resolution) of the 

Watkinsville field acquired on January 1999 was obtained from the Natural Resource 

Conservation Service (NRCS). A CIR aerial photograph (0.15-m spatial resolution) of the 

Gold Hill field acquired in January 2005 was obtained from the City of Auburn. The 

Gold Hill photograph was resampled to 1-m using ArcGIS. Digital counts from both 

photographs, representing the spectral reflectance for each pixel, were derived using 

ERDAS Imagine (Leica Geosystems GIS and Mapping, Atlanta, GA). The digitized 

images had three bands: Band 1 was NIR reflectance (maximum sensitivity ≈ 730 nm), 

Band 2 was red reflectance (650 nm), and Band 3 was green reflectance (550 nm). 

Because differences in spectral sensitivity may offer increased information through the 

use of a spectral index (Flowers et al., 2003), the Normalized Difference Vegetation 

Index (NDVI) was calculated as: 

Eq. [3]NDVI = (NIR –R)/(NIR+R) 

where NIR = near infrared band, R = red band. 

Soil Sampling and Laboratory Analyses 

 At the Watkinsville field, 82 soil samples were collected from the geo-referenced 

center of 25 m grids in November 2003. After preliminary soil analyses an additional 16 

samples were collected to improve variogram structure. Five subsamples (one at the grid 

point and four within a 2-m radius) were obtained using a 2.5 cm diameter soil core at 0-

20 cm depth and composited to make 98 samples. At the Gold Hill field, 90 soil samples 
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were collected from the geo-referenced center of 25 m regular grids in May 2005. Three 

subsamples within a 2-m radius of the grid point were obtained using a 5-cm diameter 

soil core and composited. 

 Soils were air dried, gently crushed and passed through a 2-mm screen. Gravel 

(>2 mm) was removed. A sub-sample was oven dried to obtain a correction factor and to 

express analytical results on an oven-dried basis. Subsamples (25 g) were ground (<250 

µm) and SOC was determined by dry combustion (Nelson and Sommers, 1982) using a 

LECO® CN-2000 carbon analyzer (Leco Corporation, St. Joseph, MI). Precision and 

accuracy were calculated by duplicate analysis on 10% of samples. 

 Particle size distribution was determined with the pipette method following soil 

organic matter removal with hydrogen peroxide and dispersion with sodium 

hexametaphosphate (Kilmer and Alexander, 1949). 

Data Analysis 

 Ancillary data (i.e., TA, EC, RS) were overlaid and data spatially coinciding with 

soil sampling locations were extracted using ERDAS. A modified jackknifing method 

was used to split the data set into training (80% of data) and validation (20%) subsets. 

Points located near the boundary of the field were forced into the training set. Remaining 

points were randomly assigned to either of the two subsets. The training set was used to 

create a model, which was then used to estimate validation values, thus providing an 

independent assessment of the prediction quality. 

 Three approaches for mapping SOC were evaluated: i) Ordinary kriging, ii) 

Multiple linear regression, and iii) Artificial neural networks. 



 

Ordinary Kriging 

Log transformation of SOC previous to semivariogram analysis was conducted 

for the Watkinsville data to reduce skewness closer to zero; data were back-transformed 

to original values for reporting. Contour maps of semivariogram surfaces were created to 

assess anisotropy. Semivariogram models were described with three parameters: the 

range or distance where two observations become uncorrelated, the sill or maximum 

variance of the observations (as a function of separation distance), and the nugget which 

represents micro-scale variability and measurement error (Goovaerts, 1998). Relative 

structural variability (RSV) was used as an indicator of the proportion of spatially 

structured variability (Mueller and Pierce, 2003): 

Eq. [4]RSV = (sill-nugget)/(sill)*100 

All semivariogram modeling was performed with GS+ (ver. 7.0, 2005, Gamma Design 

Software, Plainwell, MI). Soil organic C data were surfaced to 5-m grids using block 

kriging on a 5x5 local grid. 

Multiple Linear Regression 

Multiple linear regression (PROC REG, SELECTION = Stepwise; SLENTRY = 

0.05; SLSTAY = 0.05) relating SOC to ancillary data (TA, EC, RS) was performed in 

SAS (ver 9.1, 2003 SAS Institute Inc., Cary, NC). Multicolinearity was assessed with 

intercept adjusted variance-inflation factors (VIF option).  

Artificial Neural Networks  

Artificial neural networks were developed in MATLAB (ver 6.1, 2001, The 

MathWorks, Inc., Natick, MA). The ANN technique provides flexible mathematical 

structures capable of identifying complex non-linear relationships between input and 
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output data sets. A feed-forward back-propagation ANN was created using built-in 

functions of the neural network toolbox of MATLAB. Figure 1 shows the network 

architecture used, consisting of interconnected processing elements arranged in layers: (i) 

an input layer containing the input variables (i.e. location coordinates, TA, EC, RS), (ii) a 

hidden layer of neurons associated with the tan-sigmoid transfer function, and (iii) an 

output layer with the purelin (linear) transfer function. The tan-sigmoid function 

produced values from -1 to +1 and the linear output layer allowed the network to produce 

values outside this range. Each layer was connected by weights determined through a 

learning algorithm; the Levenberg-Marquardt or trainlm. A training set consisting of the 

inputs and known outputs was presented to the network. The network calculated the 

prediction error and the learning algorithm used this to modify weights. This procedure 

was repeated using all the data in the training set until a convergence criterion was met, 

e.g., error converged at zero. Thus, parameters were automatically estimated from the 

input data and desired response by means of the training algorithm.  

The type of network in Fig. 1 has been recommended as a general function 

approximator (Demuth et al., 2005), since it can approximate any function equally well 

given sufficient neurons in the hidden layer (we used 5 neurons). Data were pre-

processed before presenting to the network by data normalization (zero mean and unity 

standard deviation) and principal component analysis. The principal component analysis 

1) orthogonalized components of the input vectors, producing uncorrelated variables, 2) 

ordered resulting orthogonal components so that those explaining the largest variation 

came first, and, 3) eliminated those components that contributed little to variation 

(Khattree and Naik, 2000). A similar network architecture and training algorithm was 
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used by Somaratne et al. (2005) for predicting SOC across different land-use patterns and 

by Melesse and Hanley (2005) for a CO2 flux simulation study. 

Factor Analysis 

 The Watkinsville multivariate dataset contained 15 variables and the Gold Hill 

multivariate dataset contained 13 variables (Table 5). To minimize correlation between 

variables, factor analyses were performed. This technique developed groups of variables 

so that correlation within a group was enhanced and correlation between groups was 

minimized. Each factor represented a new variable (latent variable) that could be used as 

an independent variable in multiple linear regressions (Mallarino et al., 1999; Khattree 

and Naik, 2000). Factor analysis (principal component method and Varimax orthogonal 

rotation) was performed with SAS. Regression analysis evaluated the relationships 

between latent variables and SOC. 

Cluster Analysis 

 Factor scores correlated with SOC were used in a clustering procedure (Fraisse et 

al., 2001; Terra et al., 2004). Clusters were created by unsupervised classification with 

the Management Zone Analyst software (Fridgen et al., 2004) using fuzzy k-means 

clustering. Fuzzy clustering allowed partial membership of pixels to multiple classes. The 

minimum number of clusters was set at two and the maximum at six. Other parameters 

were set as suggested by Fridgen et al. (2004): measure of similarity = Mahalanobis 

(because variables had unequal variances and non-zero covariance); fuzziness exponent = 

1.5; maximum number of interactions = 300 and convergence criteria = 0.0001.The 

optimum number of clusters was decided by evaluating the two performance indices 

developed by the software, the fuzziness performance index (FPI) and the normalized 



 

classification entropy (NCE), as well as consideration of the within zone SOC variance 

reduction (Fraisse et al., 2001).  

Model Validation 

 The validation data set was used to asses accuracy and precision of all predictions. 

The root-mean-square error (RMSE) and the prediction efficiency (PE) (Mueller and 

Pierce, 2003) were used as a measure of prediction quality: 

n
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where  is the measured value, is the predicted value, n is the total number of 

observations, MSE is the square of RMSE, and MSE

iy iŷ

avg is the MSE obtained by using the 

average field values. 

 

RESULTS AND DISCUSSION 

Correlation between Ancillary Variables and Soil organic C 

There were no significant differences in SOC, clay, and sand contents (0-20 cm) 

between training and validation sets in either field, but differences between fields were 

highly significant (Table 1). The Watkinsville field had lower mean SOC (0.70 g kg-1) 

compared to Gold Hill (1.21 g kg-1). Surface soil texture ranged from sandy loam to clay 

in both fields, but mean clay content was 8 g kg-1 less at Watkinsville than at Gold Hill. 

Correlation coefficients among ancillary variables, clay and SOC are shown in 

Table 2. Correlation between any two variables between fields was not consistent, 
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suggesting differences in intrinsic variability of soil properties, historical artifacts, and/or 

management differences. In the Watkinsville field, only two terrain attributes (elevation 

and slope) were correlated with SOC. Negative correlation was expected, because SOC 

tends to accumulate at lower elevations and decreases on steeper slopes due to erosion. 

Elevation and slope had the strongest correlation with SOC in the Gold Hill field as well, 

but correlation was positive. Concentration of SOC was greater in the upper portion of 

the field where surface soil texture was finer. The Gold Hill field had some steep slopes, 

but the soil was well protected by dense pasture coverage. 

In Gold Hill, a positive correlation between SOC and EC also existed, although 

there was likely not a causal mechanism explaining this correlation. Electrical 

conductivity has a fundamental relationship with soil texture and water content. Both, 

clay and water content (not shown) were highly correlated with SOC and EC (Table 2). A 

positive correlation of SOC with NIR (r=0.25) and negative correlation with red (r=-0.28) 

and green (r=-0.27) bands of the aerial photograph were also detected. High reflectance 

in the red was indicative of low chlorophyll concentration, and high reflectance in the 

NIR has been shown to be directly related to green leaf density (Knipling, 1970). 

Geostatistical analyses 

No spatial pattern in SOC was evident in Watkinsville (Fig. 2). Semivariogram 

analysis indicated weak spatial structure, with the range of spatial correlation < 70 m and 

RSV of 50%. The isotropic semivariogram model had high R2 (0.8), but cross validation 

showed poor agreement between estimated and observed values (Table 3). Therefore, 

kriged values had high error variance. 



 

 56

At Gold Hill, SOC increased from south to north (Fig. 2). Geostatistical analyses 

were conducted on raw data since deviations from normality were small. Semivariogram 

analysis indicated strong spatial structure of SOC, with the range of spatial correlation > 

250 m and RSV of 86% (Table 3). An isotropic semivariogram was used, because there 

was not significant anisotropy judged by a semivariogram surface (data not shown). 

Ordinary kriging was appropriate on this data set. Mueller and Pierce (2003) suggested 

that strong correlation (r ≥ 0.70) was necessary for a covariable to be used in cokriging. 

From our data, elevation was the only ancillary variable meeting this requirement (Table 

2), but cokriging did not enhance SOC prediction, as indicated by greater MSE in cross 

validation compared with ordinary kriging (Table 3). Regression kriging, a method that 

combines a linear regression model with kriging of the regression residuals (Odeh et al., 

1995), was not appropriate because residuals did not exhibit spatial dependence (data not 

shown). Parameters presented in Table 3 are within the range of published data. From 9 

spatial studies of SOC concentration, the range was 40 to 300 m, with 160 m on average, 

and RSV was 50 to 100 %, with 55% on average (McBratney and Pringle, 1999). 

Multiple Linear Regression 

 Regression models explained 26% of SOC variability in Watkinsville and 63% in 

Gold Hill (Table 4). There was not significant correlation between independent variables 

as indicated by very low variance inflation factors of the selected model variables. 

Elevation was a key contributor to SOC variation in both fields, although it was 

negatively correlated with SOC in Watkinsville and positively correlated with SOC in 

Gold Hill. Soil at low topographic positions in Gold Hill had a sandier epipedon formed 

from alluvial sediments, which explained the low SOC concentration. The second 
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variable in the regression models was slope in Watkinsville and NDVI in Gold Hill. 

Other studies found significant relationship between terrain attributes and SOC. For 

example, More et al. (1993) used wetness index, stream power index and aspect as 

predictors of SOC with R2 of 0.48. Gessler et al. (2000) explained SOC variability with a 

combination of slope and log flow accumulation (R2=0.80), or with compound 

topographic index as the only regressor (R2=0.78). Florinsky et al. (2002) reported 

significant influence of elevation, slope, plan, and profile curvatures with R2 of 0.37. 

Terra et al. (2005) reported the significant effect of elevation, slope, compound 

topographic index, EC, water table depth, sand and silt content on explaining SOC 

variation. Terra et al. (2005) also reported that elevation and slope became non 

significant when sampling intensity changed from a 9 x 18 m grid to a 34 x 36 m grid. 

 Although the contribution of NDVI to explain SOC variability in Gold Hill was 

small, it was highly significant in the model (P=0.0007). The NDVI has been widely 

measured as an indicator of plant stress and was positively correlated with crop yield 

(Shanahan et al., 2001; Yang and Everitt, 2002). In our study, it was likely that better 

grass growth indicated by higher NDVI values is associated with higher SOC (better 

plant growth conditions) in the surface soil. 

Factor Analyses 

There were various degrees of correlation among ancillary variables, e.g., 

between compound topographic index and ln catchment area, surface and deep EC, and 

aerial photograph bands. Degree of correlation varied with field (Table 2). Therefore, 

factor analysis was appropriate to circumvent the problems created by correlated 

variables and to facilitate the interpretation of complex relationships. Factor loadings, the 
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first six eigenvalues of the correlation matrix, and cumulative variances for each field are 

shown in Table 5. Highest loadings for each factor (in bold) and the variable with highest 

influence on a particular factor (latent variable) are also reported. Two or more variables 

grouped in a latent variable suggest a common factor that made them vary together within 

a site. Signs of the factor loadings indicate how these variables relate when representing 

the common factor. Variables with large (positive or negative) factor loadings were more 

likely to represent a common factor (Mallarino et al., 1999). Although there is no rule for 

deciding what is large, in our case, decisions were easy because some loadings were 

clearly distinguishable from the rest. We used factor analysis to form groups of correlated 

variables and define latent variables that represented the groups. Then we used these 

latent variables in stepwise multiple regression analyses to explain SOC (Table 6). 

In Watkinsville, Factors 1, 3, 4, and 5 were chosen by a stepwise multiple linear 

regression relating factors to SOC (Table 6). The latent variable derived from Factor 1 

represented field-scale EC (Table 5). The negative sign of the latent variable EC with 

SOC indicated that historical erosion probably exposed clayey subsoil with low SOC. 

The latent variable derived from Factor 3 represented soil wetness, indicating that areas 

in the field which collect water leads to higher SOC. Factors 4 and 5 were related to 

elevation and slope, respectively. Coefficient signs indicated that SOC accumulated at 

low topographic positions with less steep terrain. 

In Gold Hill, Factors 1, 2, 5 and 6 were chosen by the stepwise multiple linear 

regression procedure (Table 6). The latent variable derived from Factor 1 represented 

elevation (Table 5), which had the greatest contribution to the model. The positive sign 

indicated a direct relation between elevation and SOC. The latent variables derived from 
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Factors 2 and 6 (aerial imagery) indicated that favorable conditions for pasture growth 

were associated with zones of SOC accumulation. Factor 5 reflected EC, which was 

related to soil texture. 

Soil organic C Maps 

Maps of SOC using different methods are shown in Figures 3 and 4. Generally, all 

models underestimated SOC. Watkinsville maps created with MLR had very low PE and 

high RMSE. There was a slight improvement of PE using kriging compared with MLR, 

but the best performance was obtained with ANN.  

Gold Hill maps were of higher quality than Watkinsville maps. Kriging and MLR 

produced similar RMSE and PE, but ANN had the highest PE of 62% (50% higher than 

with other methods). At both sites, ANN was also the best predictor of the variance of 

actual observations, i.e., the range of SOC. Mueller and Pierce (2003) obtained a PE of 

60% for SOC produced with kriging and regression with terrain attributes (northing, 

elevation, slope, plan, and profile curvatures) of cropland in Michigan. On cropland in 

Alabama, Terra et al. (2004) obtained a PE of 63% with kriging and 41% with regression 

using terrain attributes (elevation, slope, and compound topographic index), EC, water 

table depth, and clay and sand content. Clay and sand content was not used as regressors 

in this study, because the objective was to evaluate how more easily obtainable and less 

expensive ancillary variables (i.e., terrain attributes, electrical conductivity, and aerial 

photograph data) might perform as SOC predictors.  

 Comparing map qualities or goodness of fit between prediction techniques was 

informative. The feed-forward back-propagation ANN outperformed kriging and MLR at 

both study sites. A more comprehensive study would be required to determine the 
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optimum list of variables for the training of neural networks in predicting SOC 

concentrations. In future work, it would be important to evaluate the effect of individual 

variables and their sensitivity in the model. 

Cluster Analyses 

Cluster analysis was used to group areas in the field with similar characteristics. 

Variables used for cluster analyses were latent variables correlated with SOC (Table 7). 

The complete data set (training plus validation) was used. The fuzzy k-means procedure 

created classes that were discernible, but not completely be attributed to a particular 

latent variable (Fig. 5, Table 7). While the performance indices (FPI and NCE) did not 

clearly point to an optimal solution, reducing within-zone SOC variance was also used 

(Fraisse et al., 2001). The four clusters in Watkinsville were created using Factors 2, 3, 4, 

and 5, representing the latent variables of aerial photograph data, wetness condition, 

elevation, and slope, respectively. The two clusters in Gold Hill were created using 

Factors 1 and 6, representing the latent variables of elevation and NIR (the first band on 

the aerial photograph), respectively.  

 Analysis of variance (Proc Mixed) detected significant differences (P≤0.05) 

among clusters in both fields. At Watkinsville, the highest SOC concentration was in the 

cluster with relatively high compound topographic index (wetness index). This was 

probably the zone in the field where plants had less water constraint during the growing 

season and therefore produced and returned more biomass to the soil. Although there 

were no statistical differences among the other clusters, lowest SOC concentration was in 

the cluster occupying steepest slopes, likely representing the zone in the field with 

greatest previous erosion. At Gold Hill, highest SOC concentration was in the cluster 
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delimited by high elevation and lowest concentration in the cluster delimited by low 

elevation. In this particular field, soil at higher elevation had finer texture and although 

this area had some steep slope, the soil was well protected by a dense pasture biomass. 

The cluster with medium SOC was delimited by high NIR reflectance, indicative of 

active growing plant biomass. 

 

SUMMARY AND CONCLUSIONS 

 There could be causal effects that explain the relationship between SOC and 

terrain attributes, but relationships between SOC and EC, or between SOC and RS were 

considered indirect. Indirect relationships should not preclude their importance as easily 

obtainable ancillary variables capable of depicting field scale soil variability. Regardless 

of the analytical procedure used, TA, field-scale EC, and RS explained SOC variability. 

Therefore they can be used to enhance SOC maps. Factor analysis followed by multiple 

linear regression helped define the most influential variables on SOC at a field scale. 

Artificial neural networks are flexible mathematical structures that were able to 

identify non-linear relationships between input and output data sets. This technique 

produced better prediction of SOC than other methods (kriging and MLR). A weakness 

of the ANN was their specificity for the fields we studied. 

The quantitative technique for cluster definition was appealing, because it 

objectively delineated homogeneous soil units, and therefore, would reduce sampling 

costs to characterize SOC changes in time without sacrificing precision. 
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Table 1.  Summary statistics and significance test for SOC, clay and sand 

concentrations (dag kg-1) (0-20 cm) in the training and validation data from Watkinsville, 

GA and Gold Hill, AL. 

 
Watkinsville (W) Gold Hill (GH) Variable Statistics Training Validation Training Validation

Minimum and Maximum 0.43~1.49 0.47~1.10 0.54~1.95 0.71~1.83 
Mean 0.70 0.70 1.21 1.27 
Standard Deviation 0.19 0.15 0.31 0.30 
Number of samples (n) 78 20 72 18 
P>F (Ho: train = validation) 0.90 0.48 

SOC 
dag kg-1

P>F (Ho: W = GH) <0.0001 

Minimum and Maximum 5.8~44.5 9.3~42.1 10.2~47.5 21.3~40.6 
Mean 21.6 21.2 29.6 30.3 
Standard Deviation 9.7 9.9 7.4 5.8 
P>F (Ho: train = validation) 0.87 0.71 

Clay 
dag kg-1

P>F (Ho: W = GH) <0.0001 

Minimum and Maximum 39.4~76.5 40.6~74.1 26.04~77.9 35.9~58.9 
Mean 59.9 60.9 47.8 46.5 
Standard Deviation 9.5 10.2 9.6 7.1 
P>F (Ho: train = validation) 0.71 0.60 

Sand 
dag kg-1

P>F (Ho: W = GH) <0.0001 
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Table 2.  Pearson linear correlation coefficients between ancillary variables and 

SOC concentration (dag kg-1) (0-20 cm) at the Watkinsville, GA (n=78), and Gold Hill, 

AL (n=72), sampling sites, P≤0.05. 

  
Site/ 
Var† Eleva Slope Plan Prof CTI lnCA ECs1 ECd1 ECs2‡ ECd2 NIR Red Green Clay 

Watkinsville              
Eleva 1              
Slope -0.45 1             
Plan NS* NS 1            
Prof -0.23 NS -0.22 1           
CTI NS -0.24 -0.55 NS 1          
lnCA NS NS -0.62 NS 0.92 1         
ECs1 NS NS NS NS NS NS 1        
ECd1 NS NS 0.26 -0.23 -0.26 NS 0.83 1       
ECs2 NS NS 0.34 -0.26 -0.25 NS 0.71 0.83 1      
ECd2 NS NS 0.31 -0.31 -0.31 -0.27 0.69 0.93 0.88 1     
NIR NS NS NS NS NS NS NS -0.25 -0.27 -0.24 1    
Red NS NS NS NS NS NS -0.24 -0.34 -0.34 -0.32 0.68 1   
Green NS NS NS NS NS NS -0.23 -0.33 -0.32 -0.33 0.74 0.95 1  
Clay NS NS 0.27 NS NS NS 0.42 0.43 0.55 0.44 NS NS NS 1 
SOC -0.26 -0.27 NS NS NS NS NS NS NS NS NS NS NS NS 
Gold Hill              
Eleva 1              
Slope 0.64 1             
Plan 0.37 NS 1            
Prof -0.39 -0.26 -0.27 1           
CTI -0.54 -0.39 -0.58 0.42 1          
lnCA -0.31 NS -0.57 0.35 0.91 1         
ECs1 0.45 0.25 NS NS NS NS 1        
ECd1 0.51 0.40 NS NS NS NS 0.57 1       
NIR NS 0.35 NS NS NS NS NS 0.28 ND~ ND 1    
Red NS NS NS NS NS NS NS NS ND ND NS 1   
Green NS NS NS NS NS NS NS NS ND ND 0.35 NS 1  
Clay NS NS NS 0.28 NS NS 0.46 NS ND ND NS -0.28 -0.31 1 
SOC 0.71 0.50 NS NS -0.29 NS 0.43 0.36 ND ND 0.25 -0.28 -0.27 0.35 
 

*NS = Not significant at P≤0.05 level 
~ND = No data 
†Variables: Eleva = Elevation; Plan = Plan curvature; Prof = Profile curvature; CTI = Compound 
topographic index; lnCA = natural log of Catchment area; ECs = Electrical conductivity 0-30 cm; ECd = 
Electrical conductivity 0-90 cm; NIR = Near infrared; SOC = Soil Organic Carbon 
‡In watkinsville EC was measured in two occasions 
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Table 3.  Isotropic semivariogram model parameters for SOC (dag kg-1) (0-20 cm) 

at Watkinsville, GA (n=78) and Gold Hill, AL (n=72) sites. 

 
Kriging Cross Validation 

Data set Model† Range
(m) Nugget Sill RSV‡

(%) R2

MSE§ R2

Watkinsville 
SOC Exp 68 0.031 0.061 50 0.80 0.03 0.04 

Gold Hill 
SOC Sph 257 0.015 0.107 86 0.99 0.03 0.69 

Gold Hill 
SOC x Elev¶ Gau 293 0.001 2.010 100 0.99 1.21 0.68 

† Exp = Exponential, Sph = Spherical, Gau = Gaussian. 
‡ RSV = Relative structural variability, defined in the text. 
§ MSE = Mean Square Error, defined in the text. 
¶ Elev = Elevation. 
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Table 4.  Stepwise regression parameters relating soil organic C to ancillary 

variables, partial and model R2 values, intercept adjusted variance inflation factors (VIF), 

and significant test for the Watkinsville, GA and Gold Hill, AL sites. 

Site Parameter Estimate Partial R2 Model R2 VIF P>F 

Intercept 10.401   0.00 <0.0001 
Elevation -0.034 0.19 0.19 1.26 <0.0001 Watkinsville 
Slope -0.043 0.07 0.26 1.26 <0.0001 

Intercept -7.267   0.00 <0.0001 
Elevation 0.0393 0.56 0.56 1.01 <0.0001 Gold Hill 
NDVI† 1.200 0.07 0.63 1.01 0.0007 

†NDVI = Normalized difference vegetation index, defined in the text. 
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Table 5.  Factor loadings for the first six factors, eigenvalues, cumulative 

contribution of explained variance, for the Watkinsville, GA and Gold Hill, AL dataset. 

Latent variable interpretive names, based on the highest loading factors (in bold) are also 

provided. 

Variable / parameter† Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 

Watkinsville       
X coordinate 0.12 -0.06 -0.06 0.96 0.07 0.02 
Y coordinate -0.11 0.11 -0.02 0.22 0.05 0.09 
Elevation 0.09 0.00 -0.15 -0.88 -0.26 -0.15 
Slope 0.10 0.04 -0.08 0.23 0.96 -0.01 
Plan curvature 0.13 0.05 -0.38 -0.01 -0.09 -0.16 
Profile curvature -0.09 0.03 0.21 0.12 -0.01 0.95 
CTI -0.17 -0.01 0.94 -0.02 -0.23 0.12 
Ln Catchment area -0.14 -0.02 0.95 0.07 0.12 0.12 
ECs 2003 0.88 -0.08 -0.02 -0.04 0.05 0.03 
ECd 2003 0.95 -0.09 -0.16 0.00 0.03 -0.07 
ECs 2004 0.89 -0.20 -0.05 0.08 0.02 -0.02 
ECd 2004 0.94 -0.10 -0.18 0.03 0.04 -0.09 
Near Infra Red reflectance -0.04 0.67 0.02 -0.10 0.04 -0.02 
Red reflectance -0.18 0.97 -0.03 -0.03 0.01 0.02 
Green reflectance -0.13 0.97 -0.01 0.00 0.01 0.01 
Eigenvalue 4.38 2.72 2.36 1.83 0.98 0.75 
Cumulative variance 0.29 0.47 0.63 0.75 0.82 0.87 
Latent variable†† EC Photo Wetness Elevation Slope Prof. Curv.

Gold Hill       
X coordinate -0.17 -0.21 -0.01 0.92 -0.09 -0.05 
Y coordinate 0.94 -0.06 -0.07 -0.08 0.16 0.10 
Elevation 0.92 0.03 -0.16 -0.12 0.16 0.05 
Slope 0.53 0.06 -0.05 -0.26 0.13 0.16 
Plan curvature 0.20 0.06 -0.33 -0.04 0.06 0.02 
Profile curvature 0.00 -0.09 0.18 0.04 0.03 0.02 
CTI -0.23 -0.05 0.93 0.06 -0.06 -0.02 
Ln Catchment area -0.01 -0.04 0.96 -0.05 -0.02 0.06 
ECs 0.29 -0.09 -0.07 -0.09 0.92 0.06 
ECd 0.34 0.08 -0.04 -0.36 0.35 0.05 
Near Infra Red reflectance 0.13 0.14 0.04 -0.04 0.06 0.97 
Red reflectance 0.02 0.99 -0.05 -0.09 -0.02 -0.01 
Green reflectance -0.04 0.96 -0.03 -0.11 -0.06 0.18 
Eigenvalue 4.18 2.27 2.13 1.01 0.81 0.76 
Cumulative variance 0.32 0.50 0.66 0.74 0.80 0.86 
Latent variable†† Elevation Photo Wetness X Coord. EC NIR 
† ECs = electrical conductivy at 0-30 cm depth 
 ECd = electrical conductivity at 0-90 cm depth 
 CTI = Compound Topographic Index 
††Latent variable names: EC = electrical conductivity, Photo = aerial photograph reflectance in the red and 
green bands, Wetness = indicative of soil water holding capacity, Prof. Curv. = profile curvature, X Coord 
= easting coordinade, NIR = near infrared reflectance. 
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Table 6.  Stepwise regression relating SOC (dag kg-1) (0-20 cm) to factor scores 

(latent variables), partial and model R2 values, and significant test on the training set of 

the two study sites. 

Site Parameter† Estimate Partial R2 Model R2 P>F 

Intercept 0.70   <0.0001 
Factor 1 (EC) -0.03 0.03 0.03 0.0657 
Factor 3 (Wetness) 0.07 0.10 0.13 0.0023 
Factor 4 (Elevation) 0.06 0.09 0.22 0.0019 

Watkinsville 

Factor 5 (Slope) -0.07 0.13 0.35 0.0002 

Intercept  1.22   <0.0001 
Factor 1 (Elevation) 0.20 0.60 0.60 <0.0001 
Factor 2 (Photo) -0.06 0.02 0.62 0.0567 
Factor 5 (EC) 0.06 0.03 0.65 0.0076 

Gold Hill 

Factor 6 (NIR) 0.06 0.02 0.67 0.0349 
† Latent variable names are given in parenthesis: EC = electrical conductivity, Wetness = indicative of soil 
water holding capacity, Photo = aerial photograph reflectance in the red and green bands, NIR = near 
infrared reflectance. 
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Table 7.  Pearson linear correlation coefficients between factor scores and SOC 

concentration (dag kg-1) (0-20 cm) at the Watkinsville, GA (n=98) and Gold Hill, AL 

(n=90) sites, P≤0.05. 

Factor Watkinsville† Gold Hill†

1 NS 0.73 (Elevation) 
2 -0.26 (Photo) NS 
3 0.28 (Wetness) NS 
4 0.21 (Elevation) NS 
5 -0.31 (Slope) NS 
6 NS 0.25 (NIR) 
7 NS NS 
8 NS NS 
9 NS NS 

† Latent variable names are given in parenthesis: Photo = aerial photograph reflectance in the red and green 
bands, Wetness = indicative of soil water holding capacity, NIR = near infrared reflectance. 



 

 
Fig. 1. Architecture of a single-hidden layer feed-forward back-propagation artificial 

neural network. P = input variable; W = weight; b = prediction error; nh= hidden layer of 

networks; no = output layer. 
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Fig. 3. Soil organic C Maps (0-20 cm) and map quality indices for Watkinsville using: 

(a) Kriging, (b) Multiple Linear Regression (MLR) with raw data, (c) MLR with factor 

scores, and (d) Artificial Neural Networks (ANN). Measured versus predicted 

comparisons were done on the validation set. RMSE = Root mean squared error; PE = 

Prediction efficiency (defined in the text). 
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Fig. 4. Soil organic C Maps (0-20 cm) and map quality indices for Gold Hill using: (a) 

Kriging, (b) Multiple Linear Regression (MLR) with raw data, (c) MLR with factor 

scores, and (d) Artificial Neural Networks (ANN). Measured versus predicted 

comparisons were done on the validation set. RMSE = Root mean squared error; PE = 

Prediction efficiency (defined in the text). 
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III. SIMULATING FIELD-SCALE SOIL ORGANIC CARBON DYNAMICS 

USING EPIC 

 

ABSTRACT 

Simulation models integrate our understanding of soil organic C (SOC) dynamics and are 

useful tools for evaluating impacts of crop management on soil C sequestration; yet, they 

require local calibration. Our objectives were to calibrate the Environmental Policy 

Integrated Climate (EPIC) model, and evaluate its performance for simulating SOC 

fractions, as affected by landscape and management system. An automatic parameter 

optimization procedure was used to calibrate the model against results from a site-

specific experiment in central Alabama. Model performance in predicting corn (Zea mays 

L.) and cotton (Gossypium hirsutum L.) yields and SOC dynamics was evaluated on 

different landscapes of a Coastal Plain soil (Typic, Oxyaquic and Aquic Paleudults) 

during the initial adoption of conservation tillage (5 years). Model performance was 

statistically evaluated with regression and Mean Squared Deviations (MSD). Simulated 

yield explained 88% of measured yield variation, with greatest disagreement between 

measurements and simulations at the sideslope position and least disagreement in the 

drainageway. Simulation of SOC fractions explained about 7, 27 and 41% of the total 

variation in the data for microbial biomass C (MBC), slow humus C (SHC) and total 

organic C (TOC), respectively. Lowest errors on TOC simulations (0-20 cm) were found
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on the sideslope and in the drainageway. We concluded that the automatic 

parameterization was successful, although further work was needed to fine tune the SHC 

and MBC fractions, and to improve EPIC predictions of SOC dynamics with 

depth.Overall, EPIC was sensitive to spatial differences that resulted from landscape 

positions in the driving variables. With correct parameterization, EPIC would be a 

valuable tool for simulating field-scale SOC dynamics affected by short-term 

management decisions.3

 
Abbreviations: CT, conventional tillage; CTm, conventional tillage + manure; EPIC, Environmental 
Policy Integrated Climate; FAST, Fourier amplitude sensitivity test; FHP, fraction of humus in passive 
pool; GIS, geographical information system; GLUE, generalized likelihood uncertainty estimation; HI, 
harvest index; IM; inequality of means; LC; lack of correlation; MBC, microbial biomass C; MSD, mean 
squared deviation; MUSLE, modified universal soil loss equation; NT, no tillage; NTm, no tillage + 
manure; NU; non unity of slopes; PHU, potential heat units; POC, particulate organic C; RUE, radiation 
use efficiency; SA, sensitivity analysis; SHC, slow humus C; SHWT, seasonal high water table; SOC, soil 
organic C; SOM, soil organic matter; TOC, total organic C; UA, uncertainty analysis; USLE, universal soil 
loss equation. 



 

INTRODUCTION 

The balance between primary production and decomposition of soil organic mater 

(SOM) determines the amount of organic C stored in soils. The study of complex 

mechanisms and interactions, by which soil use and management practices affect the 

nature and concentration of SOC, is best approached by field experimentation coupled 

with simulation models. During recent years, SOM simulation models have integrated 

our understanding of SOC dynamics and have consequently become tools for evaluating 

SOC sequestration and projecting future impacts of management practices on 

environmental quality and climate change (Rosenberg et al., 1999).  

Soil organic matter, containing 50 to 58% C, is a complex mixture of organic 

compounds with different turnover time (Nelson and Sommers, 1982). There is no simple 

analytical technique for qualifying and quantifying SOM fractions. In fact, the distinction 

between fractions is conceptual and convenient for modeling SOC dynamics. Molina and 

Smith (1998) listed 33 SOC simulation models, most of which were process-based and 

multi-compartmental. Soil organic C is subdivided into several pools with unique 

characteristics and decomposition rates that follow first-order kinetics. Carbon additions 

from crop residues or animal manures are successively transferred into different pools 

varying in stability. The multi-compartmental structure of these models provides 

flexibility and the ability to accommodate control variables (e.g. water content, 

temperature, erosion). The fundamental equation of C flux between pools is of the form 

(Polyakov and Lal, 2004): 

hkmpC
t

soil +−=
∂
∂C  [1]
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where Csoil = concentration of organic C in soil; t = time; k = first-order decomposition 

coefficient; m, p = correction factors for soil temperature and moisture; h = additional 

rate (independent of decomposition rate), such as erosion, deposition or net primary 

production. 

A special issue of Geoderma (Volume 81, 1997) reported the performance of nine 

SOM models across 12 long-term data sets. The Century model (Parton et al., 1987; 

1994) successfully simulated SOM across a variety of land use and climates and was 

among the models that consistently produced low errors and showed the lowest overall 

bias (Kelly et al., 1997; Smith et al., 1997). Century classifies SOC into three pools based 

on the rate of mineralization and turnover. First, the labile pool represents easily 

mineralizable compounds along with microbial and fungal biomass that generally 

comprises about 5-15% of the total SOC and has a turnover rate of month to years. 

Second, the slow pool, which represents recently added residues, comprises 20-40% of 

the total SOC with turnover time of several decades. Third, the stable or recalcitrant pool, 

comprises the remaining 60-70% and has turnover time of hundreds to thousands of 

years. 

EPIC, developed in the early 1980s, is a process-based model capable of 

describing interactions among climate, soil and management at a subwatershed scale (1 to 

100 ha). The acronym initially stood for the Erosion Productivity Impact Calculator, as it 

was designed to estimate erosion impacts on crop productivity throughout the USA 

(Williams, 1990). Later, evolution of the model with incorporation of functions to 

simulate environmental processes related to water quality and SOC sequestration, merited 

its name change to the Environmental Policy Integrated Climate model. The EPIC model 
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is flexible in handling a wide array of crop rotations, management systems, and 

environmental conditions, and has been tested in numerous environments. A 

comprehensive description of development and application of EPIC was presented by 

Gassman et al. (2004). The original C cycling routine in EPIC was relatively simple and a 

function of soil N levels, but EPIC v3060 received major modification of its C routine 

with concepts derived from the Century model. Detailed description of new C and N 

algorithms can be found in Izaurralde et al. (2001; 2006). 

Model parameters are best determined by experimentation, but spatial variability, 

measurement errors and budget constraints for field experiments often make it necessary 

to estimate or modify parameters through calibration. A common calibration approach 

consists of adjusting model parameters to minimize deviations between simulated and 

observed values. Manual calibration is subjective and time-consuming, but automated 

iterative procedures have been developed (Eckhardt and Arnold, 2001; Zhai et al., 2004; 

Wang et al., 2005). Sensitivity analysis, which provides insight into the relative 

importance of each parameter in determining model performance can be used to identify 

key parameters to be optimized. Recently, Wang et al. (2005) performed a sensitivity 

analysis on EPIC v3060. They adjusted corn yield and SOC related parameters using an 

automatic parameter optimization procedure. Parameters of major importance were: 

difference of soil water content at field capacity and wilting point, biomass-energy ratio, 

potential heat units, harvest index, fraction of organic C in microbial biomass, fraction of 

humus in the passive pool, and microbial decay rate coefficient. 

The newly modified EPIC v3060 is expected to perform well under a range of 

environmental and management conditions, but further calibration and validation studies 
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are needed. A challenging aspect of site-specific modeling is to account for the transfer of 

relevant components within and between landscapes. Most process models consider soil 

losses, but do not account for gains or deposition (Pennock and Frick, 2001; Polyakov 

and Lal, 2004). The inability of most models to account for soil deposition may impair 

them from detecting management impacts on SOC at cumulative landscape positions. 

Since its establishment in 2000, a site-specific experiment at E.V. Smith research 

center (Shorter, Alabama) has provided information on the nature and sources of 

variation in soil properties and crop productivity, as well as soil-landscape relationships 

(Terra et al., 2004; 2005). Soil properties, field operations, crop yield, and weather data 

have been documented. This experiment provides a valuable arena for calibrating SOC 

simulation models for the Southern Coastal Plain Major Land Resource Area, which 

makes up the major portion of agricultural lands in the southeastern USA. The 

experiment also provides a unique opportunity to evaluate short-term changes in SOC 

during the transition to conservation management on degraded Ultisols. To date, there 

have been no studies of the ability of EPIC v3060 to accurately simulate within-field 

variability of SOC, and no calibration study of EPIC v3060 has been performed in the 

Coastal Plain. Our objective was to calibrate EPIC v3060 against results from a site-

specific experiment in the Coastal Plain of Alabama and to test model performance in 

predicting SOC dynamics at different landscape positions. The calibration process 

focused primarily on the crop growth and C modules. 
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MATERIALS AND METHODS 

EPIC Model Description 

 EPIC was designed to simulate field-scale crop yield and SOC dynamics. It 

operates on a daily time-step and can perform long-term simulations (hundreds of years) 

on watersheds up to 100 ha. Twelve plant species can be modeled simultaneously 

allowing inter-crop, cover-crop mixtures, and/or similar scenarios to be simulated. The 

model can account for tillage effects on surface residue, soil bulk density, mixing of 

residue and nutrients in the surface layer, wind and water erosion, hydrology, soil 

temperature and heat flow, C, N, and P cycling, fertilizer and irrigation effects on crops, 

pesticide fate, and economics (Williams, 1990). Simulations are driven by daily weather 

(input or simulated) including temperature, radiation, precipitation, relative humidity and 

wind speed. Daily crop growth is simulated from solar radiation and modified by stress 

factors (e.g., water, temperature, nutrients, and pests). 

 In EPIC v3060, SOC and N are split into the same three pools as in the Century 

model (labile, slow and recalcitrant). Carbon and N can also be leached or lost in gaseous 

forms. Crop residues (including roots) and manure added to the soil are split into two 

compartments (metabolic and structural) based on lignin and N contents. The basic 

difference between Century and the new C cycling routine in EPIC v3060 are: i) within 

EPIC, leaching of organics is estimated by equations that use a linear partition coefficient 

and soil water content to calculate movement as modified by sorption; while in Century, 

monthly water leached below the 30-cm depth is modified by soil texture; ii) C 

transformation rates are based on temperature and water content calculated with 

equations originally built in EPIC; iii) the surface litter fraction in EPIC has a slow 
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compartment in addition to the metabolic and structural litter components in Century; 

and, iv) in EPIC, lignin concentration is modeled as a function of plant age, whereas in 

Century it is modeled as a function of annual precipitation. Apart from the four aspects 

mentioned, EPIC does not account for soil deposition, while Century does (Polyakov and 

Lal, 2004). According to R.C. Izaurralde (personal communication), EPIC provides an 

estimate of soil deposition within the watershed. Soil deposition is obtained by 

calculating the difference in soil erosion estimated from two equations, the Universal Soil 

Loss Equation (USLE) and the modified USLE (MUSLE). The latter implicitly accounts 

for depositional processes that occur in the watershed. 

Field Background 

 We used data from the “Site-Specific Agriculture and Landscape Dynamics” 

experiment, conducted at the Auburn University E.V. Smith Research and Extension 

Center in central Alabama (32.4°N 85.9°W, ~68 m above MSL). Background of the 

experimental site and results obtained during the first three years was provided by Terra 

et al. (2004; 2005). Briefly, the experiment was started in 2000 on a 9-ha field that had 

approximately 30 years of previous row cropping; mostly cotton, and conventional soil 

tillage with moldboard or chisel plowing and disking. Soils were predominantly fine and 

fine-loamy, kaolinitic, thermic Typic and Aquic Paleudults. Experimental treatments 

consisted of two tillage systems (conventional and conservation) with and without annual 

application of dairy manure in a corn (Zea mays L.) –cotton (Gossypium hirsutum L.) 

rotation (both phases of the rotation present each year). The conservation system 

consisted of no-tillage (NT) with non-inversion in-row subsoiling and a winter cover crop 

mixture of white lupin (Lupinus albus L.), crimson clover (Trifolium incarnatum L.), and 
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fodder radish (Raphanus sativus L.) prior to corn and a mixture of black oat (Avena 

strigosa Schreb.) and rye (Secale cereale L.) prior to cotton. Sunn-hemp (Crotalaria 

juncea L.) cover crop was included between corn and the rye-oat cover crop since 2003. 

Conventional tillage (CT) did not include cover crops, but winter weeds were not 

controlled. Treatments were established in 6.1-m x 240-m strips crossing the landscape in 

a randomized complete block design with six replications (Fig. 1). 

Model Inputs 

Weather, soil and management input files were prepared to conduct 5-year simulations, 

from January 2001 to December 2005. 

Weather 

A daily weather file of maximum and minimum temperature, precipitation, 

radiation, relative humidity, and wind speed was established from weather data collected 

at the experimental station as part of the Auburn University Mesonet (AWIS, 2005). 

EPIC provided several options for estimating evapotranspiration with the Hargreaves 

method chosen (Hargreaves and Samani, 1985). Monthly mean air temperature, solar 

radiation, and total precipitation during the study period are shown in Fig. 2. During the 5 

years of simulation, the site received 1215 mm of annual precipitation and 17.7 °C of 

mean annual air temperature. 

Soil 

 Three major soil landscapes were identified based on previous work (Terra et al., 

2004; 2005). The summit position was an elevated area (70.2 m) of relatively flat 

topography (0-2% slopes) dominated by well-drained soils (Typic Paleudults) with sandy 

surface and a deep (>150 cm) seasonal high water table (SHWT). The sideslope position 
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(2-6% slopes) was eroded and had an exposed argillic horizon (Typic Paleudults). A 

concave drainageway occupied the lowest elevation in the field (68.3 m) with more 

poorly drained soil (SHWT = 0.5 to 1m) (Aquic Paleudults) and that accumulated eroded 

sediment from upslope areas resulting in relatively high SOC. These three soil landscapes 

were identified as Clusters 2, 3 and 4 by Terra et al. (2005). Model simulations were 

conducted in these areas, because they typified the landscape variability of the site and 

region. 

Soil properties data used for model calibration and validation were from samples 

collected in 2001, 2003 and 2005. In 2001 and 2003, an average of 10 soil surface (0-30 

cm) samples was collected per landscape position and treatment. In addition, a set of 36 

surface (0-20 cm) samples that comprised the three soil landscapes and four treatments 

(CT, NT, CT + manure, and NT + manure) was collected in 2005 (Fig. 1). The model 

was initialized with soil surface inputs based on data collected in 2001 for the CT 

treatment. Other soil properties for different horizons were obtained from soil profiles 

described and sampled in 2005 (Fig. 1). Selected soils properties used for model 

initialization are shown in Table 1. Carbon fractions were determined for model 

evaluation on the 2005 soil samples; i.e., microbial biomass C (MBC), particulate organic 

C (POC) and TOC. We assumed that the POC fraction corresponded to the SHC fraction 

in EPIC. 

Brief descriptions of the analytical procedures follow. Six soil cores were taken at 

each sampling location. Soil cores were cut at 0-5 and 5-20 cm, and air dried. Bulk 

density was determined for each depth by calculating oven dry mass per unit volume. Air 

dry samples were then gently crushed and passed through a 4.75 mm screen. Particulate 



 

organic C and MBC were determined with a procedure similar to Franzluebbers et al. 

(2000). Sub-samples were moistened to ~50 % water-filled pore space and incubated at 

25±1 ºC in 1 L canning jars containing vials with 10 mL of 1.0 M NaOH to absorb CO2, 

and small vials containing water to maintain humidity. After 10 d, the sub-sample was 

removed, fumigated with chloroform for 1 d, and then incubated for an additional 10 d 

under the same conditions to determine the flush of CO2 representing MBC according to 

the equation (Voroney and Paul, 1984): 

[2]
cfumigated

-1
2 /ksoil) kg CCO mg(SMBC −=  

where kc is an efficiency factor of 0.41.  

Carbon dioxide evolved was determined by titration of the alkali with 1.0 M HCl. 

The particulate organic fraction was determined on the same sub-sample at the end of 21 

d of incubation. Soil was shaken in 100 mL of 0.1 M Na4P2O7 for 16 h; the suspension 

was then diluted to 1 L with distilled water and allowed to settle for 5 h, and clay content 

was determined with a hydrometer. The soil suspension was then passed through a 0.053-

mm screen and the retained sand-sized material transferred to a drying bottle and 

weighed after oven drying at 55 ºC during 72 h. Soil C was determined on this fraction. 

For TOC, 25 g subsamples were finely ground and measurements followed the dry 

combustion method of Nelson and Sommers (1982) using a LECO® CN-2000 analyzer 

(Leco Corporation, St. Joseph, MI). Precision and accuracy were calculated by duplicate 

analysis on 10% of the samples. 

On soil profile samples, particle size distribution was determined with the pipette 

method following SOM removal with hydrogen peroxide and dispersion with sodium 

hexametaphosphate (Kilmer and Alexander, 1949). In-situ saturated hydraulic 
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conductivity was measured with a compact constant head permeameter (Ksat Inc, 

Raleigh, NC). Water content at field capacity (−33 kPa) and permanent wilting point 

(−1500 kPa) were determined on soil cores taken from 0-5 and 5-20 cm depth with values 

for deeper depths estimated by EPIC. 

Landscape characteristics (e.g., watershed area, slope length and gradient) were 

obtained with ArcGIS (ver. 9.0, 2004, ESRI, Redlands, CA). 

Crop Management 

Tillage, planting, fertilization, harvesting and other operation dates and fertilizer 

amounts were based on experimental records. Corn in 2001, 2003 and 2005 was fertilized 

at planting with 56, 45 and 30 kg ha-1 of N, P2O5 and K2O, respectively. At the V6-V8 

stage, another application of 112 kg ha-1 of N was made. Cotton in 2002 and 2004 was 

fertilized at planting with 100, 45 and 56 kg ha-1 of N, P2O5 and K2O, respectively. The 

CT and NT with manure treatments (i.e., CTm and NTm) received dairy bedding manure 

at an approximate rate of 10 Mg ha-1 yr-1 (dry basis) prior to cover crop planting. Overall, 

manure composition on dry weight basis for C, N, P, and K, averaged over 5 years, was 

280 g kg-1, 10.5 g kg-1, 2.8 g kg-1 and 3.3 g kg-1, respectively. Cover crops on the NT 

treatment were fertilized to compensate for residual nutrients that NTm treatments 

received from dairy manure applications. 

Model Calibration 

 The calibration process on the SOC and crop growth modules used data from the 

CT treatment on the summit landscape position (Fig. 1). Since the summit position was a 

relatively stable and level to convex area at the upper part of the field, it was assumed 

that a steady-state condition considered necessary for initializing the simulation was 
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reached in this area under long-term CT. Even though evaluation of the C module was of 

primary interest, accurate modeling of crop yield would be required for correct 

quantification of C additions and their subsequent transformations (Izaurralde et al., 

2006).  

A sensitivity analysis (SA) was performed to assess the relative importance of 

crop growth and soil parameters. Based on Wang et al. (2005), the following crop growth 

parameters were included: a) biomass-energy ratio (WA), defined as the potential growth 

rate per unit of intercepted photosynthetically active radiation; b) harvest index (HI) or 

ratio of economic yield to above-ground biomass; c) Water stress-harvest index (PARM 

3), representing the fraction of the growing season when water stress affects harvest 

index; and d) Soil Conservation Service curve number index (PARM 42), which 

regulates the effect of potential evapotranspiration on runoff volume. Different from 

Wang et al. (2005), we did not include the potential heat unit parameter, because it was 

estimated as the accumulation of daily mean air temperature above the plant’s base 

temperature (10ºC for cotton and 8 ºC for corn) from planting to maturity. 

Soil parameters included for sensitivity analysis were: a) fraction of humus in 

passive pool (FHP); b) microbial decay rate coefficient (PARM 20); and c) a coefficient 

that adjusts microbial activity in the topsoil (PARM51). Wang et al. (2005) included 

FHP, PARM20 and FBM (fraction of organic C in the microbial biomass pool) in their 

SA and found that FBM was not influential. For that reason and because we had 

analytical data to estimate FBM we did not include this parameter. We included 

PARM51 because we were interested in evaluating EPIC’s ability to simulate vertical 



 

distribution of SOC. Table 2 lists parameters included in the SA, their ranges, and 

sources. 

Sensitivity Analysis 

The SA identified relevant parameters for subsequent optimization. The procedure 

ascertained how variation in EPIC outputs was apportioned to different sources of 

variation related to the parameters. We used the extended FAST method (Saltelly et al., 

1999; Ratto et al., 2001). This method is model independent, and allows the 

determination of not only the main effect of input parameters, but also the total effect of 

each parameter in combination with all others (i.e., interactions). 

The extended FAST was based on the estimation of fractional contribution from 

each input parameter to the variance of the model output. The main effect or first order 

sensitivity index (Si) represented the average output variance reduction that could be 

achieved, if the parameter (Xi) were fully known and fixed (Saltelly et al., 1999): 

[3]
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where Si is the first order sensitivity index,  is the expected reduction of 

total output variance, if the true value of X
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i were known, and VY is the output variance. 

 The total sensitivity index (STi) for Xi was defined as the average output variance 

that would remain as long as Xi stayed unknown, and collected in one single term all the 

interactions involving Xi
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where STi is the total sensitivity index, is the expected output variance that 

would remain unexplained if X

)]|([ iXYVE −

i were unknown, but all other parameters were known, 

(  indicates all the parameters but XiX − i). 

Estimation of the pair Si, STi would be important to determine, if the overall 

impact of the parameter Xi on Y were through its main effect or through interaction with 

other parameters. 

 In general, the SA involved four steps: a) selection of a range for each input 

parameter (Table 2); b) generation of 1500 parameter sets from the ranges specified in the 

first step (using a triangular distribution); c) evaluation of the model for each parameter 

set; and d) calculation of sensitivity indices. The second and fourth steps were performed 

using the public domain software SIMLAB (ver. 2.2, 2003, Joint Research Center, 

European Commission). The third step was facilitated by i-EPIC (ver. 1.1, 2005, CARD, 

IA), a public domain software that managed input and output of multiple EPIC 

simulations within a single database. We first conducted the SA for crop growth 

parameters and then SA for SOC parameters. 

Uncertainty Analysis 

After the most influential parameters were identified by the SA, another array of 

1500 parameter sets was generated, and their respective simulations were conducted. The 

uncertainties associated with EPIC outputs were estimated with the GLUE technique of 

Beven and Binley (1992). On the basis of comparing predicted and observed responses, 

each parameter set was assigned a likelihood of being an accurate simulator of the 

system. For our purposes, likelihood was defined as: 
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where X is the observation vector, N is the total number of simulations, MSDi is the 

mean squared deviation for the ith model run, and min(MSD) is the minimum MSD. The 

MSD was calculated as: 
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where Yi and Xi are predicted and observed values, respectively. The likelihood measures 
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Weighted likelihood measures had a sum of 1 and yielded a relative probability of 

acceptability for the parameter sets (Beven, 1993). From this, the uncertainty estimation 

was performed by computing the model output cumulative distribution and the prediction 

quantiles. Weighted likelihood measures were calculated using the public domain 

software GLUEWIN (ver. 1.0, 2001, Joint Research Center, European Commission). 

Determination of Parameter Values 

 At the conclusion of the uncertainty analyses, multi-objective functions were 

defined for crop yields and C pools, respectively as: 
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where )|( cottonYL iθ and )Y|(L corniθ are the average cotton (2002 and 2004) and corn (2001, 

2003 and 2005) yield likelihood weights, respectively; and )|( TOCL iθ , )|( POCL iθ , and 

)|( MBCL iθ  are the TOC, POC, and MBC likelihood weights, respectively; calculated 

using Eq. 7. 

 The largest Fyields and Fcarbon among the 1500 measurements were identified and 

the corresponding set of parameter values were used as the calibrated parameters for the 

site. 

Model Validation 

 The validation process focused on the crop growth and C modules using data 

corresponding to the three landscape positions (summit, sideslope and drainageway) with 

the four treatments; i.e., CT, NT, CTm, and NTm. 

Statistical Evaluation of Model Performance 

 The agreement between simulated (Y) and observed (X) values after model 

calibration was assessed with a combination of the following criteria: a) linear regression 

of simulated to observed values that had intercept not significantly different from zero 

and slope not significantly different from unity, and b) MSD and its components. 

The MSD was simply the sum of squared deviations between X and Y, divided by 

the number of observations (Eq. 6). On perfect equality, with Y=X, MSD=0. The MSD 

statistic was partitioned into three components (Kobayashi and Salam, 2000; Gauch et al., 

2003): a) inequality of means, 

2)( YXIM −=  [10]
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If the slope b=1, then IM>0 if and only if the intercept a≠0; b) non unity mean square, 

defined as 

[11]
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where b is the slope of the least-squares regression of Y on X and XX n −= . 

Measures the degree of rotation of the regression line, NU>0 if and only if b≠1; and, c) 

lack of correlation mean s

xn

quare, 
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where r2 is the square of the correlation and YYy nn −= , LC>0 if and only if r2≠1. 

 

RESULTS AND DISCUSSION 

Model Calibration 

Sensitivity Analysis 

 Scatter plots for parameter values and selected output variables are shown in Fig. 

3. Clearly, WA and HI were directly related to corn and cotton yields. Also, FHP and 

PARM20 were the most influential parameters on TOC. Other parameters (e.g., PARM3 

and PARM42, and PARM51) had unclear effects on model outputs. Scatter plot diagrams 

were good for preliminary assessment, but interaction effects among parameters could 

not be assessed. 

 The extended FAST sensitivity indices for crop yield and SOC parameters are 

shown in Tables 3 and 4, respectively. The first order index for a particular parameter 

indicates the expected amount of variance that would be removed from the total output 

variance, if the true value of that parameter were known. Therefore it shows the relative 
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importance of an individual parameter. For cotton and corn, WA and HI explained >99% 

of the output variance. For the C module, FHP and PARM20 explained most of the 

variance; FHP was the most influential parameter for SHC, while PARM20 was for MBC 

and TOC. First order indices were consistent with scatter plot diagrams.  

The total order index for a particular parameter (Xi) represents the expected 

amount of output variance that would remain unexplained if Xi, and only Xi, is left free to 

vary over its uncertainty range assuming all other parameters are known. Indicates those 

parameters that are not important, neither singularly or in combination with others 

(interaction effect); therefore, all parameters having low total index can be fixed to any 

value within their range of uncertainty. Total order indices for parameters of the crop 

growth module were similar to first order indices, indicating no interaction. However, 

total order indices for the C module underline an interaction effect among PARM51 and 

the other parameters affecting MBC. 

 According to the SA, parameters WA and HI for corn, WA and HI for cotton, and 

the three parameters for the C module (FHP, PARM20 and PARM51) were chosen as the 

most influential on model outputs. Parameter selection for the crop growth and SOC 

modules agreed with Wang et al. (2005). 

Uncertainty Analysis 

Distribution of predicted average crop yields (corn and cotton) and SOC fractions 

(MBC, SHC, TOC) are shown in Fig. 4. The height of the bars is given by the sum of 

likelihood weights of model runs. Distributions were approximately normal. Observed 

crop yields, except corn in 2005, were within the 90% CI of simulated values. Overall, 

EPIC simulated cotton yield effectively with differences between observed and predicted 
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yields of 53 and -29 kg ha-1 in 2002 and 2004, respectively. Simulation of corn yield was 

not as good as with cotton, with differences between observed and predicted yields of -

552, 120 and -1941 kg ha-1 in 2001, 2003 and 2005, respectively. There was a dry period 

at the time of corn silking and pollination in 2005 that could have reduced actual corn 

yield, but that was not accounted for by EPIC. Guerra et al. (2004) pointed out that EPIC 

tended to overestimate low yields, especially under conditions of pronounced water 

stress. In spite of the poor agreement between observed and predicted average yield in 

2005, all simulated crop yields fell within the range of observed yields (minimum and 

maximum observed yields are not shown). 

In 2005, measured MBC and TOC were within the 90% CI of simulated values 

but SHC was not. EPIC simulated values for MBC and TOC on the 0-20 cm layer were 

67 and 157 kg ha-1, respectively, lower than measured values. Simulated values for SHC 

were 1860 kg ha-1 lower than measured values. Initialization of SHC (controlled by the 

FHP parameter) posed a problem, because of the complex analytical method needed to 

characterize this C fraction (Izaurralde et al., 2006). We assumed that our analytical 

results for POC were related to SHC, but this may not have been true. Carbon dating with 

13C or long-term soil incubation techniques has been used to characterize SHC (Paul et 

al., 1995). 

Parameter Estimation 

 From the uncertainty analysis and the use of aggregated likelihood functions for 

crop yields and SOC fractions (Eq. 8 and 9), the values for each parameter were set at 

32.42 kg ha-1 MJ-1 for WA and 0.50 for HI in corn and 13.00 kg ha-1 MJ-1 for WA and 
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0.54 for HI in cotton. Parameter values for the C module were set at 0.32 for FHP, 0.32 

for PARM20, and 0.49 for PARM51. 

 The value for WA was consistent with reports in the literature. Sinclair and 

Muchow (1999) summarized 11 studies on radiation use efficiency (RUE) in corn at 

different locations around the world and found a great deal of consistency (16 to 17 kg 

ha-1 MJ-1), which converted into values of WA of 32 to 34 kg ha-1 MJ-1. Wang et al. 

(2005), using a similar EPIC calibration procedure in a corn field of south central 

Wisconsin, reported WA as 35.4 kg ha-1 MJ-1. Our value for HI of corn was close to 

values reported in many agronomic trails across 9 states in the USA (Kiniry et al., 1997) 

and the value of 0.48 reported by Wang et al. (2005). The value for WA in cotton was 

similar to the average of three cotton cultivars (14.43 kg ha-1 MJ-1) reported by Rosenthal 

and Gerik (1991). The value determined for HI in cotton was higher than the average HI 

measured in our study field (0.32), but we expected a higher value to reflect minimal 

stress and allow the crop to attain its yield potential, which was not the condition in the 

field experiment. 

Non-hydrolysable C has been considered the extractable fraction most closely 

related to the passive SOC pool (Wang et al., 2005), represented by the parameter FHP. 

The FHP value we identified was lower than the average value of 0.51 reported by Paul 

et al. (1997) for non-hydrolysable C in a cultivated soil profile of the central USA. The 

value for PARM 20, which can be related to the potential transformations of the various 

C pools, was higher than the value of 0.13 identified by Wang et al. (2005). This could be 

related to a climate effect, since the warmer and more humid conditions in this study 

would favor an increase in C transformation rates. The value for PARM51 was half the 
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default value for this parameter in EPIC (Izaurralde et al., 2006). Overall, the automatic 

calibration procedure succeeded in identifying the most influential parameters and their 

values for our experimental site. 

Model Validation 

Crop Yields 

 Measured and simulated yields are compared in Fig. 5. In 2001, first year 

treatments were imposed, neither tillage systems nor manure application impacted 

measured crop yields. Two possible explanations exist; it was a dry year with corn 

receiving 441 mm of rain during the growing period (Fig. 2) and it was the first year of 

no tillage and manure application (following decades of conventional tillage). EPIC 

reproduced variations among landscape positions, but mostly underestimated measured 

yields. 

The effect of tillage system on measured cotton yields was apparent in 2002. This 

was the driest year for cotton, receiving only 354 mm during the growing season. Water 

use efficiency was maximized under NT resulting in higher yield than under CT, 

especially at summit positions with sandy and well drained soils and at the sideslope 

where less infiltration occurs due to runoff. EPIC underestimated yield and failed to 

adequately show the difference between tillage systems and landscape positions. Manure 

application did not have a clear effect on either measured or simulated yields. 

Corn received 774 mm of rain during the growing season in 2003 (wettest year). 

There were only small differences in measured corn yields among management systems 

and landscape positions. The greatest difference between tillage systems occurred at the 

drainageway. Perched water over compacted subsoil under CT at the drainageway 
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reduced yield. EPIC underestimated corn yields, especially at the summit and sideslope 

positions, but simulated a positive NT effect. There was no clear effect of manure 

application on measured or simulated corn yields. 

The best fit between measured and simulated yields occurred in 2004. The effect 

of landscape position on cotton yield was well simulated. In 2005, EPIC overestimated 

corn yield at the summit and sideslope, but adequately simulated yield at the 

drainageway. Although the amount of rainfall received by the crop (435 mm) was similar 

to that in 2001, the driest period happened when corn was at the stage of silking, and 

pollination, which are critical stages for corn grain development. The driest period most 

likely affected the crop at summit and sideslope positions, because soil would have less 

water holding capacity than the drainageway position. 

Overall, 48% of the simulated yields were within 20% of measured yields (60 

simulations were run). Simulated yield explained 88% of the variation in measured yield 

(Fig. 6). However, the regression had a slope of 0.74 and an intercept of 0.77, which were 

significantly different from 1 and 0, respectively. EPIC has been characterized as a model 

that reproduces accurately long-term mean yields, but may be inaccurate for reflecting 

year-to-year variability (Kiniry et al., 1995). Greater disagreement between simulated and 

measured yields occurred in very wet or very dry years, suggesting the model needs 

further adjustments on parameters controlling soil hydrology and water use by plants 

Mean Squared Deviations of Crop Yields 

 Mean squared deviations of crop yield and its components as affected by 

management and landscape position are shown in Fig. 7. Lowest MSDs were found in the 

drainageway, followed by the summit and sideslope positions. Within a particular 
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landscape position, the greatest MSD occurred with manure application. The highest 

contributing component of MSD was different at different landscape positions. At the 

summit position, lack of correlation between measured and predicted yield was the major 

component of MSD. Equality between measured and predicted means was greatest at the 

summit position. At the sideslope position, the major component of MSD was difference 

in unity of the slope of the regression between measured and predicted yield, although 

lack of correlation was also important. Although lowest MSD was at the drainageway 

position, the major component of MSD in this area was inequality of means. 

 Kobayashi and Salam (2000) introduced the MSD approach to distinguish the 

source of error in simulation models. They claimed that MSD and its components were 

better suited to the X-Y comparison than regression and easier to interpret than 

regression. The main objective in evaluating model performance should be to compare 

predicted with measured values, rather than fitting of the model to measurements. The 

three MSD components were additive (all constituents of the MSD) and provided further 

insight into model performance. For example, the MSD values indicated that more 

emphasis needs to be placed on parameters that control rate of soil and nutrient loss on 

sloping landscapes, in addition to the hydrology parameters mentioned before. 

Soil Organic C Fractions 

Measured and simulated fractions of SOC are presented in Figs. 8, 9 and 10. 

There was good agreement between measured and EPIC simulated MBC at 0-5 cm. 

However, at 5-20 and 0-20 cm depths, EPIC overpredicted MBC (Fig. 8) and did not 

estimate variations due to tillage. Most probably at 5-20 cm depth, the substrate for 

microbial activity was lower in NT and NTm than in CT and CTm, because residues were 
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left on the surface. There is need for a better adjustment of modeled vertical distribution 

of MBC, a fact generally overlooked in model reports. The analytical method used to 

characterize MBC was similar to the method of Jenkinson and Powlson (1976), which 

was suggested by Izaurralde et al. (2006) as an appropriate method to initialize the MBC 

fraction in EPIC. Adjustment of other model parameters is suggested, rather than altering 

MBC methods. 

Simulations of SHC were mostly lower than measured POC1 at 0-5 cm (Fig. 9). 

At the 5-20 cm depth, differences between measured and simulated values were small, 

but EPIC did not estimate variations due to tillage adequately. Higher SHC at lower 

depths of CT and CTm soils was expected, because tillage operations mix residues into 

lower depths. A possible explanation for the disagreement between measured and 

simulated SHC may have been that the analytical procedure used (POC) was not 

necessarily the fraction simulated by EPIC. In addition to define a protocol for SHC 

determination, more calibration work is needed for sound estimations of SHC. 

The best agreement between measured and simulated SOC fractions was obtained 

for TOC at a depth of 0-20 cm (Fig. 10). Accuracy in estimation of TOC at the 0-20 cm 

depth has been the strength of Century (Kelly et al., 1997; Pennock and Frick, 2001). 

Simulations of TOC at the 0-20 cm layer were satisfactory at the sideslope position, but 

poorer at the summit and drainageway positions. EPIC appeared to accurately simulate 

SOC mineralization in the drier sideslope, but overestimated mineralization in the moister 

drainageway position under CT and underestimated mineralization under NT. These 

 
1 As a remainder, we analyzed soils for particulate organic C (POC) and assumed this fraction represents 
the slow humus C (SHC) in the EPIC model. 
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results underscore the need for further calibration work to make the newly modified EPIC 

(v3060) more accurately account for vertical distribution of SOC fractions. 

Mean Squared Deviations of Soil Organic Fractions at the 0-20 cm Depth 

 The MSD for each landscape position was calculated to evaluate how well EPIC 

had captured the spatial-temporal dynamics of SOC fractions (i.e., MBC, SHC and TOC) 

at different positions (Fig. 11). Most of the error associated with the prediction of MBC 

was associated with inequality of means, followed by the lack of correlation. Slope of the 

regression between measured and simulated values was close to unity (small NU error). 

The largest discrepancy between measured and simulated SOC fractions was 

noted for SHC, especially at the sideslope position. Inequality of means accounted for 

most of the variation in SHC at the three landscape positions. Error due to lack of 

correlation was small at all landscape positions. 

Largest MSD for TOC was at the drainageway and smallest at the sideslope. 

Although there was good agreement between measured and simulated TOC means (very 

small IM error), correlation between measured and simulated values was poor (LC was 

the largest component of MSD). 

Overall, simulations of SOC fractions explained about 7, 27 and 41% of the total 

variation in MBC, SHC and TOC, respectively. EPIC simulated up to 91% of total 

variation in soil C at uniform landscape and management conditions in Izaurralde et al. 

(2005). 

Temporal Changes in Total Organic C 

 Comparison between simulated and measured temporal changes in TOC is shown 

in Fig. 12. Data from 2001 and 2003 were from intensive sampling of the 0-30 cm depth. 
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Data from 2005 were assembled with the 0-20 cm surface sampling and the 20-30 cm 

depth from profile description. Addition of dairy manure and conservation tillage 

practices increased TOC but measured C stocks at the 0-30 depth of these degraded soils 

are still low. EPIC tended to overestimate TOC, but mimicked variations with time. 

Izaurralde et al. (2006) reported EPIC overpredictions at low TOC and suggested that 

continued development of the model is needed. Fifteen of the 36 simulations were within 

the standard error of measured means. Best agreement between simulation and 

measurements was obtained on the sideslope and in the drainageway, with the CT 

treatments. The reason why EPIC did not perform well on the summit is not clear; we 

suggest that parameters controlling water runoff and soil erosion should be included in 

future calibration works. In addition, model overestimation on the NT treatments 

suggests that parameters controlling residue transformation rates need further 

investigation. 

 

SUMMARY AND CONCLUSIONS 

 Automatic parameter optimization procedures can be applied to EPIC. Our results 

suggest that when research results are not available, the integration of meaningful ranges 

of parameters and a numerical optimization routine have the potential to identify crop and 

SOC parameter values accurately. 

 Simulated crop yields were lower than measured crop yields in most years. 

However, temporal management effects on crop yields were adequately simulated. 

Greater disagreement between simulated and measured yields occurred in the wettest and 
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in the driest season, suggesting EPIC needs further adjustments on parameters controlling 

soil hydrology and water use by plants. 

 As tested, EPIC accurately explained the variability of total organic C (0-20 cm) 

on the calibration year. However, agreement between measured and simulated microbial 

biomass C and slow humus C was poor; we suggest that more research is needed to 

define methods for their analytical determination and their estimation in EPIC, especially 

with respect to SHC. 

 Further studies are needed to improve EPIC predictions of SOC dynamics with 

depth. Parameters regulating root distribution and residue decomposition with depth 

should be considered during the calibration process. 

 Overall, EPIC was sensitive to spatial differences that resulted from landscape 

positions in the driving variables. With correct parameterization, EPIC would be a 

valuable tool for simulating field-scale SOC dynamics affected by short-term 

management decisions. 
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Table 1. Selected soil input data used in the 5-year (2001-2005) simulations 

Summit         
Layer Depth (m) 0.05 0.20 0.30 0.46 1.04 1.42
Bulk Density (Mg m-3) 1.59 1.65 1.55 1.36 1.36 1.37
Wilting Point (m3 m-3) 0.11 0.11 0.11 0.14 0.15 0.15
Field Capacity (m3 m-3) 0.18 0.18 0.18 0.31 0.32 0.30
Sand (da kg-1) 58.37 54.50 53.72 44.90 41.85 45.16
Silt  (da kg-1) 19.97 26.83 24.63 21.60 20.02 16.24
Clay  (da kg-1) 21.66 18.67 21.65 33.50 38.13 38.60
Soil organic C (da kg-1) 0.70 0.53 0.53 0.33 0.28 0.26
Saturated Conductivity (mm h-1) 1.20 1.20 1.20 1.48 0.15 0.15

  
Sideslope       

Layer Depth (m) 0.05 0.20 0.28 0.46 0.80 1.00
Bulk Density (Mg m-3) 1.64 1.60 1.37 1.40 1.37 1.35
Wilting Point (m3 m-3) 0.09 0.09 0.13 0.17 0.19 0.19
Field Capacity (m3 m-3) 0.20 0.20 0.32 0.33 0.34 0.35
Sand (da kg-1) 59.53 50.00 41.21 37.96 35.18 32.45
Silt  (da kg-1) 18.20 28.00 25.87 23.45 21.55 22.38
Clay  (da kg-1) 22.27 22.00 32.92 38.59 43.27 45.17
Soil organic C (da kg-1) 0.58 0.47 0.32 0.28 0.27 0.27
Saturated Conductivity (mm h-1) 6.25 6.25 1.68 0.20 0.08 0.08

  
Drainageway       

Layer Depth (m) 0.05 0.20 0.40 0.62 0.98 1.20
Bulk Density (Mg m-3) 1.58 1.69 1.44 1.46 1.34 1.30
Wilting Point (m3 m-3) 0.05 0.05 0.08 0.14 0.18 0.20
Field Capacity (m3 m-3) 0.18 0.18 0.27 0.32 0.35 0.36
Sand (da kg-1) 62.90 57.07 52.66 40.92 31.46 28.27
Silt  (da kg-1) 21.23 30.13 34.31 28.08 22.44 19.31
Clay  (da kg-1) 15.87 12.80 13.03 31.00 46.10 52.42
Soil organic C (da kg-1) 0.76 0.55 0.38 0.29 0.31 0.31
Saturated Conductivity (mm h-1) 1.96 1.96 3.19 3.33 0.17 0.07
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Table 2. EPIC parameters included in the sensitivity analyses. 

Parameter Description Range 

Yield related   

30-45 (corn)† 
WA Biomass-energy ratio (kg ha-1 MJ-1)

11-20 (cotton)‡ 

0.45-0.60 (corn)† 
HI Harvest index 

0.30-0.60 (cotton)§ 

PARM3 Water stress-harvest index 0.3-0.7† 

PARM42 SCS curve number index 0.5-2.0† 

Soil organic C related   

FHP Fraction of humus in passive pool 0.3-0.9† 

PARM20 Microbial decay coefficient 0.05-1.50† 

PARM51 Microbial activity, top layer 0.1-1.0§ 
†Wang et al. (2005) 
‡Rosenthal and Gerik (1991) 
§EPIC default range 



 

 117

Table 3. First and total sensitivity indices for crop yield related parameters. 

First order indexes Total order indexes Parameter Cotton Corn Cotton Corn 
WA for Corn 0.00 0.51 0.01 0.50 
HI for Corn 0.00 0.49 0.01 0.47 
WA for Cotton 0.37 0.00 0.36 0.01 
HI for Cotton 0.62 0.00 0.60 0.01 
Parm3 0.00 0.00 0.01 0.01 
Parm42 0.00 0.00 0.01 0.01 
 
 
Table 4. First and total sensitivity indices for SOC related parameters. 

First order indexes†  Total order indexes† Parameter MBC SHC TOC  MBC SHC TOC 
FHP 0.30 0.77 0.25  0.25 0.75 0.26 

Parm20 0.63 0.23 0.73  0.60 0.24 0.70 
Parm51 0.08 0.00 0.02  0.14 0.01 0.03 

†MBC, microbial biomass C; SHC, slow humus C; TOC, total organic C 
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Fig. 1. Experiment layout. Black area at the north was not included in the simulations 

(explained in the text). East-west rectangles represent strips with different treatments; 

gray shading in the background represents the three landscape positions; triangles 

indicate 2005 soil sampling locations and the three circles show locations where soil 

profiles were described. 

 118



 

Pr
ec

ip
ita

tio
n 

(m
m

)

0

100

200

300

400

500

600

M
ea

n 
ai

r t
em

pe
ra

tu
re

 (º
C

)

or
 s

ol
ar

 ra
di

at
io

n 
(M

J 
m

-2
 d

-1
)

0

10

20

30

40

2001 2002 2003 2004 2005

441 354 774 564 435

Corn Cotton Corn Cotton Corn

Precipitation during crop growth
Mean air temperature
Solar radiation

mm

 
Fig. 2. Monthly total precipitation, mean air temperature and solar radiation for 2001-

2005. Total rainfall during crop growth is shown with white numbers on black bars. 
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Fig. 3.  Scatter plots of model parameters vs. model outputs (cotton yields, corn yields 

and total organic C). WA = Biomass-energy ratio, HI = Harvest index, PARM 3 =Water 

stress-harvest index, PARM 42 = The Soil Conservation Service curve number index, 

FHP = Fraction of humus in passive pool, PARM 20 = Microbial decay rate coefficient, 

PARM51 = coefficient that adjusts microbial activity in the top soil. 
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Fig. 4. Probability distribution of predicted crop yields and soil organic C fractions. The 

5% and 95% quantiles are shown as vertical dotted lines; the mean of predictions over the 

1,500 simulations is represented by a vertical solid line, and the corresponding measured 

value is shown as a vertical dashed line. 
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Fig.5. Measured and simulated yields affected by landscape position and treatment. CT 

= conventional tillage; NT = no tillage; CTm = conventional tillage + manure; NTm = no 

tillage + manure. 
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Fig. 6. Comparison of simulated and measured average yields of corn and cotton during 

the period 2001-2005. The slope and intercept of the regression line were significantly 

different from 1 and 0, respectively. 
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Fig. 7. Comparison of mean squared deviations (MSD) among 12 simulations of crop 

yields over a 5-year period on three landscape positions. MSD components explained in 

the text. LC = lack of correlation; NU = non unity mean square; IM = inequality of 

means; CT = conventional tillage; NT = no tillage; CTm = conventional tillage + manure; 

NTm = no tillage + manure. 
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Fig. 8. Measured and simulated soil microbial biomass C affected by landscape positions 

and treatments (2005 data) at 0-5, 5-20 and 0-20 cm depths. CT = conventional tillage; 

NT = no tillage; CTm = conventional tillage + manure; NTm = no tillage + manure. 
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Fig. 9. Measured and simulated slow humus C affected by landscape positions and 

treatments (2005 data) at 0-5, 5-20 and 0-20 cm depths. CT = conventional tillage; NT = 

no tillage; CTm = conventional tillage + manure; NTm = no tillage + manure. 
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Fig. 10. Measured and simulated total organic C affected by landscape positions and 

treatments (2005 data) at 0-5, 5-20 and 0-20 cm depths. CT = conventional tillage; NT = 

no tillage; CTm = conventional tillage + manure; NTm = no tillage + manure. 
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Fig. 11. Comparison of mean squared deviations (MSD) among 4 simulations of 

microbial biomass C, slow humus C and total organic C (0-20 cm) at the end of 5 years. 

MSD components explained in the text. LC = lack of correlation; NU = non unity mean 

square; IM = inequality of means. 
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Fig. 12. Measured and simulated total organic C affected by landscape positions and 

treatments (0-30 cm) in 2001, 2003 and 2005. CT = conventional tillage; NT = no tillage; 

CTm = conventional tillage + manure; NTm = no tillage + manure.
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IV. APPENDIX.  Sampling sites within the Southern Piedmont and Coastal Plain and information related to land use and 

management, soil taxonomy, laboratorial analysis results and climate. 

Soil Organic C fractions# 
Longitude Latitude MLRA† State Use‡ Location Rotation§ Soil Taxonomy Nº 

Years BD¶ 
TOC POC CMIN  SMBC

Sand Clay Pcp. †† Tmp. ‡‡

          Mg m-3 -- dag kg-1 --- mg kg-1 --- -- dag kg-1 -- mm ºC 

86.50               

               

             

              

             

              

                

                

                

             

                

               

               

                

               

34.21 CP AL CsT Andalusia CO-RY-CO-
RY-PE-CO 

Plinthic 
Kandiudults 11 1.39 1.5 1.0 466.4 444.0 88.9 6.1 1558 17.8

86.51 34.21 CP AL Pas Andalusia Grazed Pasture Plinthic 
Kandiudults 20 1.39 1.1 0.8 369.4 361.1 88.5 6.1 1560 17.7

86.52 34.21 CP AL CvT Andalusia CO-RY-PE-
RY 

Plinthic 
Kandiudults 20 1.44 1.0 0.7 395.8 404.0 83.4 10.3 1562 17.8

86.06 34.21 CP AL CvT Samson PE-CO/SmG Typic 
Kandiudults 20 1.53 1.1 0.7 416.8 454.3 77.0 15.8 1489 18.4

86.03 34.21 CP AL Pas Elba Grazed pasture Typic 
Kandiudults 20 1.39 1.6 1.0 646.4 602.0 76.4 14.2 1487 18.5

86.03 34.21 CP AL CsT Elba PE-CO/SmG Typic 
Kandiudults 9 1.43 1.4 0.9 565.2 501.1 78.4 9.9 1487 18.5

85.43 34.21 CP AL Pas Opelika Hayed Pasture Aquic 
Haploxeralfs 
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40 1.37 1.2 0.8 503.4 418.4 78.3 8.0 1380 17.2

85.43 34.21 CP AL CsT Opelika CO/RY Aquic 
Haploxeralfs 20 1.53 0.8 0.5 349.9 303.2 79.5 9.4 1380 17.2

85.43 34.21 CP AL CvT Opelika CO Aquic 
Haploxeralfs 40 1.65 0.7 0.5 289.5 234.8 83.2 9.0 1380 17.2

83.98 34.21 CP GA CsT Sylvester CO-CO-
PE/WF 

Plinthic 
Kandiudults 6 1.66 0.9 0.5 401.7 345.4 85.8 8.2 1283 18.5

83.91 34.21 CP GA CvT Sylvester PE-CO/WF Plinthic 
Kandiudults 30 1.61 1.1 0.6 401.1 378.4 87.2 6.8 1256 18.6

83.95 34.21 CP GA Pas Sylvester Grazed pasture Plinthic 
Kandiudults 20 1.66 0.9 0.5 291.8 294.4 89.1 5.7 1269 18.5

82.94 34.21 CP GA CsT Douglas CO-RY or 
WH-PE 

Plinthic 
Kandiudults 29 1.51 2.0 1.8 654.7 729.9 89.7 4.6 1260 18.7

82.93 34.21 CP GA CvT Douglas PE-CO/WF Plinthic 
Kandiudults 10 1.48 2.0 1.8 725.8 783.8 88.4 5.1 1260 18.7

82.94 34.21 CP GA Pas Douglas Grazed pasture Plinthic 
Kandiudults 20 1.38 2.4 1.9 888.4 893.9 85.8 6.0 1260 18.7

 



 

Soil Organic C fractions# 
Longitude Latitude MLRA† State Use‡ Location Rotation§ Soil Taxonomy Nº 

Years BD¶ 
TOC POC CMIN  SMBC

Sand Clay Pcp. †† Tmp. ‡‡

          Mg m-3 -- dag kg-1 --- mg kg-1 --- -- dag kg-1 -- mm ºC 

82.12               

              

              

              

              

              

              

             

              

       

              

                

                

                

                

                

                

               

34.21 CP GA CsT Millen CO-WH-SO-
RY-CO 

Plinthic 
Kandiudults 11 1.49 1.5 1.0 541.5 502.6 85.7 6.5 1160 17.7

82.20 34.21 CP GA Pas Midville Grazed Pasture Plinthic 
Kandiudults 10 1.51 1.3 0.8 475.8 435.5 76.9 13.0 1163 17.7

82.20 34.21 CP GA CvT Midville CO Plinthic 
Kandiudults 14 1.47 1.2 0.7 431.4 378.6 72.0 16.4 1159 17.8

83.63 34.21 P GA CvT Madison CO Rhodic 
Kanhapludults 40 1.39 1.9 1.1 616.9 584.8 65.4 20.7 1222 16.3

83.57 34.21 P GA CsT Madison SG-SO Rhodic 
Kanhapludults 10 1.34 2.2 1.5 781.8 726.3 67.7 17.7 1211 16.4

83.56 34.21 P GA Pas Madison Grazed pasture Rhodic 
Kanhapludults 20 1.43 1.9 1.3 698.4 668.7 69.9 15.8 1211 16.4

82.91 34.21 P GA Pas Centerville Grazed pasture Typic 
Kanhapludults 40 1.43 1.4 0.9 528.7 514.1 70.9 14.5 1277 15.9

82.91 34.21 P GA CsT Centerville CO Typic 
Kanhapludults 5 1.48 1.1 0.6 375.9 436.8 73.2 13.3 1277 15.9

82.94 34.21 P GA CvT Centerville CO Typic 
Kanhapludults 15 1.43 1.2 0.6 399.8 494.8 71.7 14.1 1254 15.8

84.05 34.21 P GA CvT Locust Grove WH or OA Typic 
Kanhapludults 10 1.35 1.9 1.1 544.9 718.8 72.3 13.3 1246 16.1

84.19 34.21 P GA CsT Locust Grove WH-CO-OA Typic 
Kanhapludults 10 1.37 1.6 0.9 444.2 586.8 79.2 10.6 1266 16.1

84.20 34.21 P GA Pas McDonough Grazed pasture Typic 
Kanhapludults 11 1.41 1.3 0.8 410.6 513.0 85.7 7.8 1266 16.1

81.40 34.21 CP SC CvT Barnwell MI Plinthic 
Kandiudults 26 1.50 0.9 0.5 290.3 380.7 90.4 6.0 1202 18.1

81.38 34.21 CP SC Pas Barnwell Hayed Pasture Plinthic 
Kandiudults 20 1.52 1.0 0.6 326.7 450.7 88.7 6.6 1202 18.1

81.38 34.21 CP SC CsT Barnwell CO Plinthic 
Kandiudults 10 1.64 0.9 0.5 222.4 359.1 88.5 6.2 1204 18.1

81.22 34.21 CP SC CsT Olar SO-CO Typic 
Kanhapludults 20 1.58 1.1 0.7 352.1 465.2 87.5 6.9 1210 18.0

81.12 34.21 CP SC CvT Bamberg PE-CO Typic 
Kanhapludults 20 1.54 1.4 0.8 403.3 513.9 84.5 7.3 1221 17.8

81.10 34.21 CP SC Pas Bamberg Grazed pasture Typic 
Kanhapludults 20 1.50 2.0 1.0 524.9 728.1 83.1 7.4 1221 17.8
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Soil Organic C fractions# 
Longitude Latitude MLRA† State Use‡ Location Rotation§ Soil Taxonomy Nº 

Years BD¶ 
TOC POC CMIN  SMBC

Sand Clay Pcp. †† Tmp. ‡‡

          Mg m-3 -- dag kg-1 --- mg kg-1 --- -- dag kg-1 -- mm ºC 

80.40                

              

              

              

            

              

             

           

             

       

              

              

      

34.21 CP SC CsT Harleyville CO-SO Aquic 
Paleudults 18 1.56 1.8 1.0 428.1 645.7 78.6 9.0 1257 17.9

80.50 34.21 CP SC Pas Harleyville Grazed Pasture Aquic 
Paleudults 20 1.49 2.5 1.4 611.1 914.6 73.3 12.3 1242 18.2

80.54 34.21 CP SC CvT St. George CO Aquic 
Paleudults 20 1.46 2.5 1.5 701.3 990.2 72.9 12.7 1242 18.0

82.99 34.21 P SC Pas Westminster Grazed Pasture Typic 
Kanhapludults 20 1.35 2.2 1.4 672.6 944.2 66.9 20.3 1361 15.6

83.01 34.21 P SC CsT Westminster WH-SO-WF-
SO-WH-MI 

Typic 
Kanhapludults 7 1.37 1.9 1.2 648.5 810.4 67.6 19.8 1368 15.4

83.04 34.21 P SC CvT Westminster WH-SO Typic 
Kanhapludults 20 1.46 1.5 0.9 596.2 659.3 67.5 20.0 1368 15.4

81.24 34.21 P SC CsT Chester SmG-CO or 
MI 

Typic 
Kanhapludults 23 1.40 2.2 1.5 840.6 916.6 71.4 14.1 1204 15.9

81.24 34.21 P SC CvT Chester VE Typic 
Kanhapludults 30 1.32 3.0 2.0 1101.3 1347.1 68.1 13.3 1204 15.9

81.24 34.21 P SC Pas Chester Grazed pasture Typic 
Kanhapludults 30 1.40 2.7 1.7 946.5 1185.5 65.1 13.5 1204 15.9

81.12 34.21 P SC Pas Rock Hill Grazed pasture Typic 
Kanhapludults 20 1.59 1.6 1.0 595.6 773.5 60.6 18.2 1219 16.2

81.14 34.21 P SC CsT Rock Hill CO Typic 
Kanhapludults 14 1.59 1.2 0.6 339.3 448.0 66.5 16.8 1214 16.1

81.15 34.21 P SC CvT Rock Hill CO Typic 
Kanhapludults 15 1.58 1.1 0.5 250.3 363.8 75.0 12.1 1213 16.1

77.23 34.21 CP NC CsT Greenville SO-WH-CO-
SO 

Typic 
Quartzipsamm

t
10         

       

1.49 1.5 0.8 392.8 548.2 81.6 7.0 1246 16.0

77.21 34.21 CP NC CvT Greenville TO-CO-PE
Typic 
Quartzipsamm

t
20         

      

1.45 1.4 0.8 433.9 629.3 82.5 6.2 1246 16.0

77.21 34.21 CP NC Pas Greenville Grazed pasture 
Typic 
Quartzipsamm

t
20         

                

              

            

1.43 1.2 0.7 394.3 593.2 82.4 6.0 1246 16.0

77.83 34.21 P NC CsT Littleton PE-WH-CO Typic 
Kanhapludults 14 1.40 1.6 0.9 517.6 805.9 77.9 7.4 1162 14.5

77.83 34.21 P NC CvT Littleton CO-PE Typic 
Kanhapludults 14 1.46 1.7 1.1 599.5 887.0 64.8 17.2 1162 14.5

77.82 34.21 P NC Pas Littleton Grazed Pasture Typic 
Kanhapludults 11 1.41 2.1 1.6 779.4 1037.5 51.0 27.6 1160 14.5
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Soil Organic C fractions# 
Longitude Latitude MLRA† State Use‡ Location Rotation§ Soil Taxonomy Nº 

Years BD¶ 
TOC POC CMIN  SMBC

Sand Clay Pcp. †† Tmp. ‡‡

          Mg m-3 -- dag kg-1 --- mg kg-1 --- -- dag kg-1 -- mm ºC 

80.73             

             

             

             

              

                

              

            

            

              

              

              

             

              

            

             

              

34.21 P NC CsT Cleveland CO-SO-WH-
SO 

Typic 
Kanhapludults 12 1.39 1.7 1.3 592.9 751.4 40.9 33.7 1142 14.4

80.73 34.21 P NC Pas Cleveland Grazed pasture Typic 
Kanhapludults 12 1.40 2.1 1.5 670.0 934.3 47.9 28.7 1142 14.4

80.55 34.21 P NC CvT China Grove WH-SO Typic 
Kanhapludults 70 1.36 2.4 1.5 780.9 1041.8 53.8 26.1 1117 14.9

79.70 34.21 P NC CsT Reidsville
OR+CL-CO-
RY+VH+CL-
OA+CL 

Typic 
Kanhapludults 12 1.36 2.0 1.2 696.6 928.0 61.4 21.8 1172 14.3

79.70 34.21 P NC Pas Reidsville Grazed Pasture Typic 
Kanhapludults 18 1.47 1.2 0.7 405.5 509.8 71.9 14.7 1172 14.3

79.70 34.21 P NC CvT Reidsville VE Typic 
Kanhapludults 18 1.60 0.9 0.5 204.5 289.7 78.4 9.6 1172 14.3

79.02 34.21 CP NC CvT Lumber 
Bridge CO Typic 

Kandiudults 20 1.50 1.3 0.6 303.8 388.5 80.2 7.2 1215 16.2

79.03 34.21 CP NC CsT Lumber 
Bridge CO-CO/RY Typic 

Kandiudults 5 1.31 2.7 1.7 727.3 958.0 71.0 8.7 1215 16.2

79.05 34.21 CP NC Pas Lumber 
Bridge Hayed pasture Typic 

Kandiudults 10 1.29 2.3 1.5 621.3 863.1 64.2 16.1 1210 16.4

79.08 34.21 P VA Pas Gladys Grazed pasture Typic 
Kanhapludults 20 1.43 1.6 1.1 506.5 688.8 64.0 17.6 1127 13.1

78.90 34.21 P VA CvT Brookneal TO Typic 
Kanhapludults 26 1.59 0.9 0.5 308.3 395.1 63.0 19.2 1135 13.4

78.88 34.21 P VA CsT Brookneal SO Typic 
Kanhapludults 10 1.60 1.3 0.8 517.2 564.2 62.2 16.6 1135 13.3

77.91 34.21 P VA CsT Powhatan CO-SO-SmG Typic 
Kanhapludults 5 1.57 1.2 0.7 443.1 512.1 58.8 18.7 1117 13.6

77.89 34.21 P VA Pas Powhatan Grazed Pasture Typic 
Kanhapludults 20 1.35 2.4 2.6 830.1 997.4 42.8 20.2 1104 13.6

77.96 34.21 P VA CvT Powhatan TO Typic 
Kanhapludults 5 1.25 2.9 4.0 887.3 1118.7 26.1 29.9 1096 13.6

77.90 34.21 P VA Pas Culpeper Grazed pasture Typic 
Hapludults 40 1.25 2.8 3.7 849.5 1045.8 17.6 39.3 1100 13.0

77.90 34.21 P VA CsT Culpeper CO-WH-SO Typic 
Hapludults 12 1.32 2.4 2.3 839.9 973.5 37.4 31.6 1100 13.0
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Soil Organic C fractions# 
Longitude Latitude MLRA† State Use‡ Location Rotation§ Soil Taxonomy Nº 

Years BD¶ 
TOC POC CMIN  SMBC

Sand Clay Pcp. †† Tmp. ‡‡

          Mg m-3 -- dag kg-1 --- mg kg-1 --- -- dag kg-1 -- mm ºC 

78.22              

             

              

                

                

             

              

              

            

              

              

             

              

              

              

              

              

              

34.21 P VA CvT Somerset SO-WH-SO Rhodic 
Kandiudults 20 1.34 2.1 1.2 824.2 892.3 51.2 20.9 1142 12.9

76.75 34.21 CP VA Pas Montross Grazed Pasture Typic 
Hapludults 30 1.39 1.6 0.7 650.0 677.3 60.1 13.4 1115 14.3

76.72 34.21 CP VA CsT Mt. Holly SmG/SO-CO Typic 
Hapludults 10 1.49 1.3 0.5 469.1 446.4 64.5 11.9 1120 14.2

76.72 34.21 CP VA CvT Mt. Holly SmG/SO-CO Typic 
Hapludults 30 1.59 1.0 0.4 368.9 339.6 74.0 8.9 1120 14.2

77.11 34.21 CP VA Pas Quinton Hayed grass Typic 
Hapludults 60 1.59 1.0 0.5 404.7 391.6 77.9 7.6 1135 14.4

77.19 34.21 CP VA CvT New Kent CO-WH-SO Typic 
Hapludults 3 1.46 1.3 1.2 487.2 479.5 57.3 16.7 1131 14.3

77.17 34.21 CP VA CsT Mechanicsville CO-WH-SO Aquic 
Hapludults 15 1.35 1.8 1.5 793.5 650.2 41.0 21.2 1131 14.3

77.00 34.21 CP VA CsT Spring Grove CO-WH-SO Ultic 
Hapludalfs 15 1.41 1.5 1.2 697.7 544.0 39.8 21.9 1173 14.7

77.04 34.21 CP VA Pas Spring Grove Grazed pasture Ultic 
Hapludalfs 25 1.61 1.0 0.7 475.2 412.1 54.3 18.5 1166 14.7

77.01 34.21 CP VA CvT Spring Grove CO-WH-SO Ultic 
Hapludalfs 25 1.64 1.3 0.8 509.8 596.5 65.6 16.1 1166 14.7

85.44 34.21 P AL CvT Lafayette VE Rhodic 
Kanhapludults 15 1.54 1.6 1.0 543.3 716.1 61.6 21.6 1389 16.5

85.44 34.21 P AL Pas Lafayette Grazed pasture Rhodic 
Kanhapludults 40 1.43 1.8 1.1 685.5 878.2 65.9 18.1 1389 16.5

85.44 34.21 P AL CsT Lafayette CO Rhodic 
Kanhapludults 10 1.58 1.2 0.7 457.3 598.6 70.1 15.1 1389 16.5

85.44 34.21 P AL Pas Lafayette Hayed pasture Typic 
Kanhapludults 30 1.65 1.1 0.6 426.3 557.8 73.8 12.4 1389 16.5

85.44 34.21 P AL CvT Lafayette VE Typic 
Kanhapludults 15 1.68 1.0 0.5 341.9 458.7 72.1 12.8 1389 16.5

85.43 34.21 P AL CsT Lafayette CO Typic 
Kanhapludults 10 1.70 1.0 0.5 340.9 463.2 73.7 12.0 1389 16.5

85.44 34.21 P AL CvT Lafayette VE Typic 
Kanhapludults 15 1.60 1.5 0.9 505.5 548.9 72.2 12.8 1389 16.5

85.40 34.21 P AL CsT Lafayette CO Typic 
Kanhapludults 10 1.68 1.3 0.8 387.0 410.8 77.5 10.4 1393 16.5
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Soil Organic C fractions# 
Longitude Latitude MLRA† State Use‡ Location Rotation§ Soil Taxonomy Nº 

Years BD¶ 
TOC POC CMIN  SMBC

Sand Clay Pcp. †† Tmp. ‡‡

          Mg m-3 -- dag kg-1 --- mg kg-1 --- -- dag kg-1 -- mm ºC 

85.40                34.21 P AL Pas Lafayette Hayed pasture Typic 
Kanhapludults 30 1.69 1.1 0.7 282.3 328.3 82.5 8.1 1393 16.5

 

†Major Land Resource Areas: CP = Coastal Plain, P = Southern Piedmont. 
‡Soil Use/Management: CvT = Conventional Tillage Row Crops, CsT = Conservation Tillage Row Crops, Pas = Pastures (Hayed or Grazed). 
§ CL = clover, CN = corn, CO = cotton, MI = millet, OA = oats, OR = orchad, PE = peanut, RY = rye, SG = sorghum, SmG = small grains, SO = soybean, TO = tobacco, VE = vegetables, VH = 
vetch, WF = winter fallow, WH = wheat. 
¶Bulk density. 
#TOC = total organic C, POC = particulate organic C, CMIN = C mineralized in 24-d, SMBC = soil microbial biomass C. 
††Mean annual precipitation (30-y normals). 
‡‡Mean annual temperature (30-y normals). 
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