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Abstract

Over the last decade or so, a lot of interest has emerged in the field of functional data

analysis. This interest spans from a broad spectrum of fields such as brain imaging studies,

bio-metrics, genetics, e-commerce and computer science. Statistical tools, models and meth-

ods, whose strength is in recognizing this structural aspect of data are being discussed and

developed; ranging from functional linear regression, functional ANOVA, functional princi-

pal component analysis and functional outlier detection. In this work, we discuss statistical

methods for the functional logistic regression model; a model where the response is binary

and the covariate(s) functional. Essentially, we consider ways that allow for the parameter

estimator to be resistant to outliers, in addition to eliminating multicollinearity and high

dimensional problems; issues which are inherent with functional data. The methods include

robust techniques of estimating the parameter function for the model as well as diagnostic

measures to assess the fit of the model. Two estimation approaches are discussed; the first

one makes use of robust principal component estimation techniques and the second one uses

a robust penalization approach. Results from a simulation study and a real world example

are also presented to illustrate the performance of the proposed estimators.
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Chapter 1

Functional Data Analysis

1.1 Introduction

In the last decade, a substantial amount of attention has been drawn to the field of

functional data analysis; resulting in the development and generalization of many statistical

techniques to this type of data. Much work has been devoted to this field with publications

on functional regression models forthcoming from James (22), Cardot and Sarda (4); Müller

and StadtMüller (29); Escabias et al. (9); Ferraty and Vieu (13) to name just a few. Ramsay

and Silverman (34) present functional data ideas and statistical methods in their book which

gave impetus to the functional data analysis community. Interest has been from a broad

spectrum of fields such as biometrics, genetics, e-commerce and computer science. Statistical

tools, models and methods, whose strength is in recognizing this structural aspect of the data

have been discussed; ranging from functional linear regression, functional ANOVA, functional

principal component analysis and functional outlier detection. In fact, functional regression

methods have resulted in a re-look at some of the ways used to analyze longitudinal data.

There are many steps that arise in the analysis of functional data that differentiate it

from analysis approaches taken for non-functional data. An important aspect to understand

when it comes to functional data is primarily in observing properties of functional data.

The term ’functional’ is used to describe the intrinsic structure of the data; one thinks of

the observed data functions as whole entities and the analysis is based on these functions.

Naturally, the functional data is observed and recorded as discrete observations. However,

this data is viewed as having been generated by some function and so the analysis is made on

the function rather than viewing the data as a sequence of individual observations. Ramsay

and Silverman (34) discuss the details of the first steps in functional data analysis (FDA)
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which include data representation issues, data registration and plotting pairs of derivatives.

In this chapter, we look at some of the major concepts that are integral in FDA. In particular,

we explore issues on estimation of the observed function from the discrete time points.

1.2 Estimation of Smooth Functions

We have already established that whilst analysis in FDA is based on observed functions,

in practice the observed data is recorded as discrete observations. Therefore, for n obser-

vations, discrete recordings of (tij, Xij) pairs are made and Xij is viewed as a snapshot of

the function Xi(t) at time tj where i = 1, ..., n represents the number of observations and

j = 1, ..., ni represents the number of replicates for each observation. It’s important to note

that time is not the only continuum over which functional data can be recorded. Other

continua such as spatial, position and frequency may be involved and the continuum time is

being used loosely.

An initial step in FDA is the estimation of the function Xi(t) based on the observed

discrete points Xi(tj). We assume that the function Xi(t) is smooth and therefore possesses

one or more derivatives. Without the smoothness property, not much is gained by treating

the data as functional rather than multivariate. This smoothness property ensures that any

two adjacent data values Xi(tj) and Xi(tj+1) are unlikely to be very different from each

other and are linked together to a certain extent. To simplify notation for this chapter,

we will denote the function to be estimated as X(t) since the estimation of the functional

observation from the discrete data is done independently for each i. There are several issues

to consider in estimating the smooth function X(t) from the discrete observed data. The

actual recorded data might be far from being smooth due to the presence of measurement

error; the data might be sparsely sampled or few in number making it difficult to adequately

give a stable estimate of the function; the time points at which the data is recorded might

be unevenly spaced. All these and other issues call for techniques that work around these

specific problems with the sampled data.
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Since smoothness is a property that is essential for the function X(t), there is need to

consider smoothing techniques in estimating this function from the raw discrete data in the

presence of measurement error or noise. The observed discrete data is expressed as,

Xj = X(tj) + εj, j = 1, ..., ni, i = 1, ..., n,

where the measurement error εj causes a roughness to the observed data. One might choose

to filter out the noise or to alternatively leave the noise but ensure that the smoothness

property is met in the analysis of the results. An approach taken in this dissertation work

in estimating the smooth function, X(tj), is by way of some basis function.

By definition, a basis function system is a set of known functions, φk, that are mathemat-

ically independent from each other with the property that one can approximate arbitrarily

well any function by taking a linear combination of a sufficiently large number of these func-

tions. Therefore, the basis function approach represents a function X(t) (in L2(T )) in terms

of K known basis functions φk as,

X(t) =
K∑
k=1

ckφk(t),

= c
′
φ, (1.1)

where c and φ are column vectors of length K. Two important issues arise from this basis

representation of a function. One of the important issues is the choice of the basis function

system. The determination of the appropriate basis function system is based on the charac-

teristics that are inherent in the data. In general, Fourier basis functions are used to model

periodic data and B-spline basis is used for non-periodic data. Other basis choices such as

wavelets, trigonometric functions or even polynomial functions can also be used should that

be appropriate (Ramsay and Silverman (34)).
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A second important aspect in this representation is the determination of the dimension

of the expansion, K. An interpolation is achieved when K = ni. Therefore, K can be viewed

as a smoothing parameter, since the degree to which the data, Xj is smoothed is determined

by the number of basis functions. When an appropriate basis function system is selected

for the observed data, fewer basis functions are required to make a good approximation of

the function, i.e. the smaller K is. There are two opposing discussions when it comes to

choosing the number, K, of basis functions. On the one hand, the larger the K, the better

the fit. This is however, at the expense of fitting unnecessary noise that should ideally be

ignored. On the other hand, the smaller the K, the smoother the function (Ramsay and

Silverman (34)). The problem with this is that if K is made to be too small, then we risk

missing out on some important aspects of the functions that is being estimated. Therefore, a

trade-off between fit and smoothness is necessary. An assortment of algorithms exist for this

purpose; including methods such as cross-validation and generalized cross-validation (Craven

and Wahba (7)).

In order to estimate the coefficients of the linear expansion in (1.1), the ordinary least

squares criterion can be used. This criterion is expressed as,

SMSSE(X|c) =

ni∑
j=1

[
Xj −

K∑
k=1

ckφk(tj)

]2
= (X−Φc)T (X−Φc). (1.2)

From this, the estimate, ĉ, that minimizes SMSSE is ,

ĉ = (Φ
′
Φ)−1Φ

′
X.

This approach is appropriate when we assume the standard model for error, i.e. the errors,

εj are independently and identically distributed with mean zero and constant variance σε.

In the presence of non-stationary and/or autocorrelated errors, the weighted least squares
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fit would be more appropriate. Thus, the weighted least squares estimate is,

ĉ = (Φ
′
WΦ)−1Φ

′
WX,

where W is a symmetric positive definite matrix that incorporates the unequal weighting of

the errors.

The next section looks at a more powerful option for approximating discrete data by a

function. The shortcomings of using (weighted) least squares criterion is in that the degree

of smoothness is established in a discontinuous manner and better results can be established

with a roughness penalty.

1.3 Smoothing with Roughness Penalty

As discussed in the previous section, there are two competing objectives in function

estimation: good fit vs. smooth fit. The competing objectives can be viewed in terms of the

following statistical principle,

MSE = Bias2 + V ariance,

where MSE is the mean squared error; and bias and sampling variance are defined as,

Bias[X̂(t)] = X(t)− E[X̂(t)],

V ar[X̂(t)] = E[(X̂(t)− E[X̂(t)])2].

Whilst an unbiased estimate is desirable, when the standard error model is not met, the

high variance associated with the curve will result in a compromised MSE. Therefore, the

MSE might be drastically reduced by sacrificing some bias so as to reduce some sampling

variance. This is achieved by imposing some smoothness to the estimated curve. Therefore,

the roughness penalty makes explicit what is sacrificed in bias to achieve an improved MSE.
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The penalized residual sum of squares, defines the compromise of trading smoothness

for fit as,

PENSSE(X | c) = (X−Φc)TW(X−Φc) + λ× Pen(X(t)),

where c is the coefficient vector; Φ is the appropriate basis vector; W is a symmetric positive

definite matrix that incorporates the unequal weighting of the errors; λ is a smoothing

parameter that measures the rate of exchange between the fit to the data; and Pen(X(t)) is

a measure of the function’s roughness. The curvature of a function is usually used to quantify

the idea of the roughness of a function. Therefore, a natural measure of a function’s roughness

is given as,

Pen(X(t)) =

∫
T

[
X

′′
(s)
]2
ds

= c
′
Pc,

where

P =

∫
T

φ
′′
(s){φ′′

(s)}Tds,

is the roughness penalty matrix. Thus, the objective function being optimized becomes,

PENSSE(X | c) = (X−Φc)TW(X−Φc) + λ× c
′
Pc,

resulting in an estimate of the coefficient vector being,

ĉ = (Φ
′
WΦ + λP)−1Φ

′
WX.

When λ = 0, this reduces to the weighted least squares estimate. It can also be noticed

that as λ → ∞, and more weight is given to the roughness term, the estimated function
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approaches the standard linear regression; and as λ→ 0, the estimated function approaches

an interpolation of the data. The selection of λ can be achieved by cross-validation and

generalized cross-validation methods which will be discussed in more detail in later chapters

of this dissertation work.

1.4 Conclusion

In this chapter we introduced the concept of functional data and discussed some of the

pertinent issues in the field of functional data analysis. The rest of this work is organized

as follows. Chapter 2 gives some background to the functional logistic model and discusses

some of the estimation techniques in literature as well as making a case for the contribution

of this work. Chapter 3 explores the concept of robust principal component estimation which

is one of the results of this work. The estimation technique is developed and its performance

considered in a simulation study as well as with a real world example. Chapter 4 examines

and proposes a robust penalized approach to the estimation of the parameter function in the

functional logistic model, with simulation results and application to a real world example.

Chapter 5, studies diagnostic issues for the functional logistic model and discusses some

model validation methods, extending results from the standard logistic model. In the last

chapter, there is a discussion of other aspects of the functional logistic model that may be

explored as future work.
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Chapter 2

Functional Logistic Regression

2.1 Introduction

Ramsay and Silverman (34) discussed functional linear regression models, a case in which

the linear relationship between random variables and functions is explored. The different

models that can arise from this set-up include,

• A functional response and a scalar independent variable(s). In this model, the observed

values are of the form {Xij, Yi(t) : t ∈ T} for i = 1, ..., n, j = 1, ..., p and where T is the

support of the functional predictors. The relationship between the functional response

and scalar predictors can be formulated as,

Yi(t) =

p∑
j=1

Xijβj(t) + εi(t), i = 1, ..., n.

• A scalar response and a functional independent variable(s). The observed values in

this case are of the form {Xi(t), Yi} for i = 1, ..., n and this relationship formulated as

Yi =

∫
T

Xi(t)β(t)dt+ εi, i = 1, ..., n.

• A functional response and a functional independent variable(s). This last form occurs

when both the response and predictor are functional, i.e. {Xi(t), Yi(t)} for i = 1, ..., n.

The model is defined as,

Yi(t) =

∫
T

Xi(t)β(t)dt+ εi(t), i = 1, ..., n.
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Our work is focused on the functional logistic regression (FLR) model, where the re-

sponse is binary and the predictor(s) functional. Different approaches have been developed

in the estimation methods of the functional parameters of the functional logistic model.

Escabias et al. (9) discuss two approaches of parameter estimation that employ principal

component estimation. James (22) and Müller and StadtMüller (29) discuss the generalized

functional linear model and consider estimation methods for its parameters. These estima-

tion techniques, however, are not resistant to outliers and thus there is a need for some

robust estimation methods.

We focus on functional logistic regression in particular as there are some interesting

problems in FDA that could benefit from this model. In addition to modeling functional

covariates with binary responses, functional logistic regression is also useful for classification

methods. An increasing amount of research is focusing on functional logistic regression and

its application to functional Magnetic Resonance Imaging (fMRI) data. Ratcliffe et al. (36),

Reiss et al. (37), Escabias et al. (10), Leng and Müller (25) and Tian (41) are some examples

of work that deal with applications of the functional logistic model to a variety of areas

including fMRI data.

The presence of outliers in any data set is almost inevitable and their effect on the

model unquestionable. One school of thought proposes developing outlier detection methods

and using these to eliminate identified outliers when fitting the model. However, there are

many drawbacks to this approach. Firstly, there might be sample curves that are just at the

limit of outlyingness, and their removal from the data set might be too drastic an approach

to make. Over and above this, the process might need to be repeated before the data

set can be declared outlier-free. Secondly, there might be no consistency among different

researchers in the approaches taken to eliminate outliers and therefore, there is an element

of subjectivity. Lastly, making inferences from the model where data has been removed

causes problems in that regard due to the dependence between the ’good’ observations and

the ’bad’ observations (Victoria-Feser (44)). Therefore, robust estimation methods are more
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viable in that the effect of the outliers is minimized without removing them from the data

set. Whilst there has been some work that addressed estimation of the parameter function

for this model as cited above, to our knowledge there’s no contribution to the field as far

as robust estimation methods for this model is concerned. It is with this void in mind that

this dissertation work is dedicated to contributing to the field of functional data analysis by

proposing robust estimation methods for the functional logistic model.

2.2 The Model

We consider having independent functional covariates as X1(t), ..., Xn(t) where t ∈ T

and T is the support of the sample curves Xi(t), i = 1, 2, ..., n; and a random sample of

a binary response variable Y to be Y1, ..., Yn, that is Yi ∈ {0, 1}, i = 1, 2, ..., n. Then the

random variable Y is such that the observations,

Y ∼ Bernoulli(πi)

where πi is the probability of a positive response given Xi(t) which is given as,

πi = P (Y = 1 | {Xi(t) : t ∈ T})

=
exp{β0 +

∫
T
Xi(t)β(t)dt}

1 + exp{β0 +
∫
T
Xi(t)β(t)dt}

, i = 1, ..., n.

β0 is a real parameter and β(t) is a smooth function of t, of which both are unknown

parameters. The logit transformation is,

li = log

{
πi

1− πi

}
= β0 +

∫
T

Xi(t)β(t)dt, i = 1, ..., n. (2.1)
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This can be viewed in the more general sense as a generalized functional linear model with

the link as the logit function. In this work, we consider the no-intercept model (i.e. β0 = 0).

2.3 Estimation of Regression Parameters

Estimation of the parameters cannot be achieved by the usual method of maximum

likelihood [Ramsay and Silverman (34)] resulting in a different approach for these functional

data. In particular, we consider the functional covariates, Xi(t), and functional parameter,

β(t), as belonging to a finite-dimension space generated by the same (not necessarily) basis

{φj(t)}j∈N. We assume Xi(t) ∈ L2(T ) of squared integrable functions with the inner product,

〈f, g〉u =

∫
T

f(s)g(s)ds, ∀f, g ∈ L2(T ),

such that

Xi(t) =

KX∑
j=1

cijφj(t), i = 1, ..., n, (2.2)

where {φj(t)} is an appropriate basis which is selected to reflect the characteristics of the

data.

With this assumption, we are able to reconstruct the functional form of the functional

covariates from the observed discrete points using two different approaches. On the one

hand, if the functional covariate(s) is observed with some measurement error, then the ith

subject at the kth replication is

Xik = Xi(tk) + εi(tk), k = 0, 1, .., ni, i = 1, ..., n,

where ε(t) and X(t) are independent. In this case where the functional covariate is observed

with some noise, we use some least squares approximation approach to obtain the functional

11



form of the covariates by approximating the basis coefficient {cij} from the discrete observa-

tions. On the other hand, if the functional covariate(s) is observed without error, then the

ith subject at the kth replication is

Xik = Xi(tk), k = 0, ..., ni, i = 1, ..., n.

In this case, some interpolation method such as cubic spline interpolation can be used to get

the functional form of the predictors.

We also define,

β(t) =

Kb∑
k=1

bkϕk(t), (2.3)

where ϕk(t), k = 1, ..., Kb is a known basis function.

Since estimates for the basis coefficient {cij} can be found either by smoothing (as

discussed in Chapter 1) or interpolation, using the basis expansion of the covariates and

parameter function as defined in (2.2) and (2.3) in the regression model (2.1), the functional

logistic model reduces to a standard multiple logistic one,

li = β0 +

∫
T

Xi(t)β(t)dt

= β0 +

KX∑
j=1

Kb∑
k=1

cijψjkbk, i = 1, ..., n,

where ψjk =
∫
T
φj(t)ϕ

′

k(t)dt for j = 1, ..., KX , k = 1, ..., Kb; cij is the basis coefficient; β0 is an

unknown real parameter; bk is the unknown basis coefficient used to estimate the parameter

function β(t). In matrix form, this can be written as,

L = β01 +Cψb, (2.4)

where L= (l1, ..., ln)
′
, C= {cij}n×KX

, ψ = {ψjk}KX×Kb
, 1= (1, ..., 1)

′
and b = (b1, ..., bKb

)
′
.

12



Three different approaches of estimation can be discussed for this model (2.4). Firstly,

there is the maximum likelihood estimation (MLE) which results in unstable and inaccurate

estimators due to the higher collinear nature of the covariates. To deal with this shortcoming

of the MLE, the second approach of principal component estimation as discussed by Escabias

et al. (9) can be considered. Alternatively, a third approach is the penalized maximum like-

lihood estimation approach which is also explored in this work; and an empirical comparison

of the three approaches is given by way of a simulation study.

2.3.1 Maximum Likelihood Estimation

The FLR model in (2.4) is now in the same form as the standard logistic regression model

and, therefore, the maximum likelihood parameter estimates can be found. The responses,

Yi, are assumed to follow a Bernoulli(πi) distribution, such that the log-likelihood function

can be written as,

L(π;Y ) =
n∑
i=1

[
Yilog

(
πi

1− πi

)
+ log(1− πi)

]
. (2.5)

The derivative of this log-likelihood function w.r.t. πi is

∂L

∂πi
=

n∑
i=1

Yi − πi
πi(1− πi)

.

Using the fact that,

log

(
πi

1− πi

)
= li = β0 + C

′

iψb,
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together with the chain rule, the derivative of the log-likelihood w.r.t. β0 is,

∂L

∂β0
=

n∑
i=1

∂L

∂πi

∂πi
∂l

∂l

∂β0

=
n∑
i=1

Yi − πi
πi(1− πi)

× πi(1− πi)× 1

=
n∑
i=1

(Yi − πi).

Similarly, the derivative of the log-likelihood w.r.t. b is,

∂L

∂b
=

n∑
i=1

∂L

∂πi

∂πi
∂l

∂l

∂b

=
n∑
i=1

Yi − πi
πi(1− πi)

× πi(1− πi)×C
′

iψ

=
n∑
i=1

(Yi − πi)C
′

iψ.

Therefore the likelihood equations for model (2.4), are:

n∑
i=1

[Yi − πi] = 0. (2.6)

n∑
i=1

[
(Yi − πi)C

′

iψ
]

= 0. (2.7)

Since these equations are non-linear in the parameters of interest, β0 and b, an iterative

method is used to solve these equations and get estimates of the parameters. One such

method is the Newton-Raphson method which is used to solve these non-linear likelihood

equations,

X
′
(Y− π) = 0,
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where from (2.4), X=(1| Cψ ), Y= (Y1, ..., Yn)
′

and π = (π1, ..., πn)
′
. The approximated

parameter function estimate for our functional logistic model will then be,

β̂(t) =

Kb∑
k=1

b̂kϕk(t) (2.8)

= b̂
′
ϕ,

where ϕ is a known basis function and b̂ is the maximum likelihood estimate of the reduced

functional logistic model (2.4).

The estimation of the parameter function obtained using the maximum likelihood ap-

proach is not very accurate in the presence of highly correlated data. In fact, the design

matrix, Cψ in (2.4),has high correlation among its columns. Thus, there is a need to elimi-

nate multicollinearity in order to obtain a more reliable estimation of the parameter function,

β(t) in our functional model. One such approach is discussed by Escabias et al. (9) and uses

the idea of principal component estimation. Another well-known adapted approach which

we explore in this chapter is ridge estimation.

2.3.2 Principal Component Estimation

The reduced functional logistic model in (2.4) is considered and in order to deal with the

multicollinearity problem highlighted, the principal components (PCs) of the design matrix

Cψ are utilized instead. We let Z = {ξij}n×Kb
be the matrix of PCs of the design matrix,

such that

Z = CψV ,
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where V is a Kb×Kb matrix whose columns are the eigenvectors associated with the eigen-

values of the covariance matrix of Cψ. Then the model becomes,

L = β01 + Zγ, (2.9)

where γ = V
′
b. As with the MLE, the β(t) parameter function is then estimated as,

β̂(t) = b̂
′
ϕ,

where b̂ = V γ̂. A selected number of PCs are included in the model instead, so that (2.9)

becomes,

L(s) = β01
(s) + Z(s)γ(s), (2.10)

where s denotes the number of selected PCs retained in the model. The number of se-

lected PCs can be determined either by the cross-validation method or the generalized cross-

validation method. These and other methods for selecting the number of PCs are discussed

in greater detail in Chapter 3.

2.3.3 Ridge Estimation

A second approach that can be used to deal with the highly correlated covariates in

model (2.4), would be in the form of penalized maximum likelihood estimation. Le Cessie

and van Houwelingen (23), extended the ridge regression theory used in standard linear

regression to logistic regression. We adopt this approach to define a ridge estimator for the

reduced functional logistic regression model. In earlier work, Schaefer (39) also discussed

the ridge logit estimator to handle collinear data. In that work, the parameter estimator is
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given as,

β̂ν = (X
′
V X + νI)−1X

′
V Xβ̂MLE,

where β̂MLE denotes the maximum likelihood estimator of the parameter; X is the design

matrix; V is the diagonal matrix of MLEs of success probabilities; I is the identity matrix

and ν is the ridge parameter.

We consider the reduced functional logistic regression model (2.4) obtained by consid-

ering the functional observations, Xi(t), and the parameter function, β(t), as belonging to

the finite-dimensional space generated by the bases {φj(t)}KX
j=1 and {ϕk(t)}Kb

k=1, respectively.

Under this model, the log-likelihood function as stated earlier is,

L(π;Y ) =
n∑
i=1

[
Yilog

(
πi

1− πi

)
+ log(1− πi)

]
.

Using the approach discussed by Le Cessie and van Houwelingen (23), we consider the

log-likelihood function above with a penalty on the norm of b, the unknown parameter in

model (2.4) as,

Lν(π;Y ) = L(π;Y )− ν‖b‖2, (2.11)

where ‖b‖ =

(∑
k

b2k

) 1
2

. Thus, instead of maximization of the log-likelihood function(2.5),

the maximization is on Lν(π;Y ) with a penalty on the norm of b. In this case, ν controls

the shrinkage of the norm of the parameter b. When ν = 0, the solution will be the ordinary

MLE. As the ridge parameter, ν, approaches ∞, the bk’s tend to 0. As with the concept of

ridge regression, the idea is to introduce some bias so as to get a biased estimator but whose

variance is smaller than that of the unbiased estimator (MLE in this case). The choice of ν

would be such that MSE(β̂ν) < MSE(β̂MLE).
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Therefore the likelihood equations for model (2.11), are:

n∑
i=1

[Yi − πi] = 0.

n∑
i=1

[
(Yi − πi)C

′

iψ
]
− 2νb = 0. (2.12)

These likelihood equations, which are non-linear in the parameters, are solved by some

iterative method to obtain the ridge estimator, b̂
ν
. Much discussion on the choice of the

ridge parameter, ν, has been made and one approach is based on minimizing an estimate

of the prediction error of the model. Le Cessie and van Houwelingen (23) consider different

measures that quantify the prediction error. Such measures include,

(i) Classification Error (CE),

CE =


1 : Ynew = 1 and π̂new < 0.5

1
2

: π̂new = 0.5

0 : otherwise

(ii) Squared Error,

SE = (Ynew − π̂new)2.

(iii) Minus Log-Likelihood Error

ML = −{Ynewlog(π̂new) + (1− Ynew)log(1− π̂new)},

where Ynew denotes the response for a new observation and π̂new denotes the probability

that the response is positive for a new covariate Xnew(t). Other measures include use of

the cross-validation method and this criterion is the one we used in the simulation study
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presented in the next section. This is defined for the mean squared error as,

MSECV =
1

n

n∑
i=1

{Yi − π̂(−i)}2,

where π̂(−i) is the estimated probability of a positive response, when the model is fit without

the ith observation.

We compare the performance of each of these estimation methods discussed in this

section by way of a simulation study.

2.4 Simulation Study

The following steps were carried out in this simulation study in order to investigate

how the different estimation techniques discussed in the previous section compare in the

estimation of the parameters of the functional logistic regression model.

Step 1: Generate the simulated data.

(a) Generate n sample curves for the functional logistic model.

We generate 50 sample functional observations of a known stochastic process X(·) con-

sidered over the interval [0, 10] which has 21 equally spaced time points. We define this

stochastic process as X(t) = Z(t)+t/4+E where Z(t) is a zero mean Gaussian stochastic

process with covariance function C(s, t) = (1
2
) × (1

2
)80|s−t| and E is a Bernoulli random

variable with p = 0.1. This model is illustrated in Figure 2.1. To obtain the functional

form of these sample curves, we consider them to belong to the finite-dimensional space

generated by a cubic B-spline basis defined on equally spaced nodes on the [0, 10] inter-

val. We used the generalized cross-validation (GCV) method to determine the number

of basis functions (KX) to use as well as the smoothing parameter (λ) in the estimation

of the functional form of the covariate, X(t). The criterion is expressed as,

GCV (λ) =

(
n

n− df(λ)

)(
SSE

n− df(λ)

)
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Figure 2.1: 50 sample curves generated from the stochastic process X(t) = Z(t) + t/4 + E

where df(λ) =trace {Sφ,λ} is the equivalent degrees of measure and Sφ,λ is the projection

operator such that X̂ = Sφ,λX ; SSE is the residual sum of squares; and λ is the

smoothing parameter that measures the rate of exchange between the fit to the data.

The optimal number of basis was achieved at KX = 10 with λ = 2048, which is what

was used for all the replications.

(b) Select a parameter function.

The natural cubic spline interpolation of the parameter function sin(t+π/4) is selected.

The basis coefficients, b = (b1, ..., bKb
)
′

of the parameter function are known and used

to assess estimation techniques presented in this work.

(c) Generate the values of the response variable.

The probabilities are,

πi =
exp{li}

1 + exp{li}
,
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where li is as defined in (2.1), β0 is fixed at 0 and i = 1, .., n. The n values of the response

are obtained by simulating observations of a Bernoulli distribution with probabilities πi.

The reduced functional logistic model in (2.4) was fit with the coefficient matrix as the

covariate. The Hosmer-Lemeshow goodness of fit test was also carried out [Hosmer and

Lemeshow (20)], which confirmed validity of the model for the generated data.

Step 2: Obtain the approximated estimations for the parameter function.

(a) Use maximum likelihood estimation with the coefficient matrix as the covariate of the

logistic model.

(b) Perform PCA on the covariates in (2.4) and fit the logistic model with the retained s

PCs as the covariates.

(c) Use penalized maximum likelihood estimation with the coefficient matrix as the covari-

ate.

Small values of MSEB indicate better estimation when the three different estimation

techniques are compared.

All simulations were implemented using R [R Development Core Team (33)]. The pack-

ages fda[Ramsay et al. (35)], rrcov [Todorov (42)] and penalized [Goeman (17)] were partic-

ularly useful in obtaining the functional form of the data; performing principal component

estimation and penalized maximum likelihood estimation, respectively. The cross-validated

likelihood criterion was used to determine the optimal shrinkage parameter for the penalized

ML estimation.

The median estimates of β(t) for 250 simulations are shown in Figures (2.2) and (2.3),

illustrating how the estimates compared with the true estimates of the function parameter.

As is evident in the graphs, the ML estimation method does not give accurate estimates since

no consideration is taken for the multicollinearity issue that is inherent in the design matrix.
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Figure 2.2: Comparison of the median β(t) estimates for the three different techniques
against the true parameter function sin(t+ π/4).

Both the PC-based and penalized ML estimation approaches give more accurate results,

with the estimates of the parameter function being much closer to the true β(t) function.

This is especially evident when the mean β(t) estimates (results not shown) are used. The

median MSEB for each of the techniques is 2.1311 for MLE; 0.1762 for PC estimation; and

0.2934 for the ridge estimation.

2.5 Conclusion

In this chapter, we have introduced the FLR model and reviewed some of the estimation

methods discussed in literature. It has been shown that due to the formulation of the design

matrix of the FLR model developed in this work, the estimation of the parameter function,

β(t), is greatly affected by the presence of multicollinearity. Two approaches discussed to

minimize the collinear covariates were those of principal component estimation [Escabias

et al. (9)] and of penalized maximum likelihood estimation. These alternative approaches

provide more reliable estimates of β(t). These results are consistent with literature [Barker
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(a) (b)

(c)

Figure 2.3: Median β(t) estimates (a) Maximum Likelihood Estimation (b) Principal Com-
ponent Estimation and (c) Ridge Estimation

and Brown (2), Le Cessie and van Houwelingen (23), Escabias et al. (9) and Vágó and

Kemenéy (43)] and we conclude that estimation of the function parameter β(t) can be es-

tablished with better accuracy using principal component estimation or penalized maximum

likelihood estimation techniques. However, in the presence of outlying sample curves, there

is a need to consider robust estimation methods. In chapters 3 and 4, we turn our focus to

this by proposing robust methods for the functional logistic regression model.
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Chapter 3

Robust Principal Component Functional Logistic Regression

3.1 Introduction

Inherent with most functional data, and the estimation techniques discussed in this work,

is the fact that we are often dealing with highly correlated data, which poses problems in

parameter estimation resulting in estimations that might be far from accurate and unreliable.

The presence of functional observations that deviate from the overall pattern of the data,

creates additional inefficiencies in many procedures. In this work, we propose a robust

estimation approach for functional data with a binary response and functional covariates that

addresses these inadequacies. To our knowledge, there is no work that has been done in this

area of robust estimation for the functional logistic regression model. There are some robust

methods proposed for the functional linear regression model and for functional principal

component analysis. Boente and Fraiman (3), Gervini (15), Gervini (16), Bali et al. (1),

Sawant et al. (38) and Lee et al. (24) are examples of such work. This work is different from

these others in that it looks at robust methods for the functional logistic regression model,

for which no known robust approach has been proposed. However, functional outliers are

inevitable and therefore it is important that robust techniques for this model be developed.

The first approach taken in this chapter to develop robust estimators is that of us-

ing robust principal component estimation. The functional logistic model is reduced to a

standard multiple logistic model by approximating the functional covariates as a linear com-

bination of an appropriate basis [Ramsay and Silverman (34)]. This estimation approach of

the functional data results in collinear and (potentially) high dimensional data and there-

fore, an initial focus is the elimination of such problems. Some of the proposed approaches

in literature that eliminate these issues are by way of principal component estimation or
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ridge estimation as discussed in Chapter 2. However, in the presence of atypical curves,

these estimations are unstable and inaccurate. Febrero et al. (11) define a functional outlier

as that curve that has been generated by a stochastic process with a different distribution

than the rest of the curves, which are assumed to be identically distributed. This definition

appears to be all-encompassing as it refers to those curves that could be far away from most

of the curves; curves that have a different pattern from the rest or even those curves that

are atypical in some sub-interval of the period of interest. With real word data, outliers are

inevitable and this makes it necessary to develop robust estimators, of which we consider

robust estimation techniques using principal component estimation.

3.2 Estimation of X(t) and β(t)

We consider the functional covariates, Xi(t), and functional parameter, β(t), as belong-

ing to a finite-dimensional space generated by (not necessarily) the same basis {φj(t)}KX
j=1

and {ϕk(t)}Kb
k=1, respectively. We consider Xi(t) ∈ L2(T ) with the usual inner product, such

that

Xi(t) ≈
KX∑
j=1

cijφj(t), (3.1)

where φj(t), j = 1, ..., KX , is an appropriate basis, selected to reflect the characteristics and

main features of the data. As discussed in Chapter 1, the truncation lag, KX , is a parameter

that is selected based on the features and characteristics of the data. This determines the

dimension of expansion; the larger KX is, the better the fit to the data is. However, this can

result in problems of over-fitting and therefore capturing noise or variation in the data that

might be ignored. Smaller KX on the other hand, whilst being desirable should not be too

small such that there is a risk of overlooking important features of the data.

The selection of the basis system is an important aspect in functional data in that the

features that might be evident in the observed data should be adequately met by the selection
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of an appropriate basis system. A good basis system selection potentially results in a smaller

KX which means less computational time in estimating the functional covariate and ensuring

that the basis coefficients, cij, serve as interesting descriptors of the given data. In general,

the Fourier basis functions are used to model periodic data and the B-spline basis is used

for non-periodic data. However, this is by no means the status-quo and great consideration

needs to be made in this regard. Thus, with the assumption that Xi(t) belongs to the

Hilbert space, we are able to reconstruct the functional form of the functional covariates

from the observed discrete points using two different approaches - either by smoothing or

interpolating.

We also define the functional parameter,

β(t) =

Kb∑
k=1

bkϕk(t), (3.2)

where ϕk(t), k = 1, ..., Kb is a known basis function; and Kb is selected in such a way that

KX ≥ Kb. Since the estimate for the basis coefficient {cij} can be found either by smoothing

or interpolation, using the basis expansion of the covariates and parameter function as defined

in (3.1) and (3.2) in the regression model (2.1), the functional model reduces to a standard

multiple one,

li = β0 +

∫
T

Xi(t)β(t)dt

= β0 +

KX∑
j=1

Kb∑
k=1

cijψjkbk, i = 1, ..., n,

where ψjk =
∫
T
φj(t)ϕ

′

k(t)dt ; j = 1, ..., KX , k = 1, ..., Kb; cij is the basis coefficient; β0 is an

unknown real parameter; bk is the unknown basis coefficient used to estimate the parameter

function β(t). In matrix form, this can be written as,

L = β01 +Cψb, (3.3)

26



where L= (l1, ..., ln)
′
, C= {cij}n×KX

, ψ = {ψjk}KX×Kb
, 1= (1, ..., 1)

′
and b = (b1, ..., bKb

)
′
.

We develop the principal component estimation technique discussed in Escabias et al.

(9) further to cater for cases where there are functional outliers in the data. Due to the fact

that principal component estimation makes use of the eigen decomposition of the covariance

matrix of the design matrix, Cψ, the presence of outliers will greatly influence the PCs.

This sensitivity to outliers results in the first few PCs being attracted towards the outliers,

and therefore this approach might miss the main modes of variability of the rest of the

observations.

Our proposed approach uses robust PC estimation techniques that eliminate multi-

collinearity and reduces the effect of functional outliers, resulting in a more accurate esti-

mator in the presence of outliers. We use robust PCA methods on the covariate matrix

to obtain robust PCs which are used as the design matrix in the standard multiple logistic

model. Robust Principal Component Analysis, ROBPCA, by Hubert et al. (21) is one such

approach which uses projection pursuit and robust covariance estimation based on the Min-

imum Covariance Determinant (MCD) method. The MCD method is based on seeking an

h-subset of observations whose classical covariance matrix has the smallest determinant.

The three basic steps in ROBPCA are given in the following algorithm:

Input: Data matrix A = Cψn×Kb
where n is the number of observations and Kb

represents the initial number of variables.

Output: Robust PC scores Zn×k0 where k0 < Kb is the number of eigenvectors re-

tained.

1. A singular value decomposition (SVD) of the data is performed so as to project the

observations on the space spanned by themselves. This step is especially useful when

Kb ≥ n as it yields a huge dimension reduction.

2. A measure of outlyingness is defined for each data point. This is achieved by pro-

jecting all the points onto many univariate directions, v, and then determining the
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standardized distance of each projected point to the center of the data. The h(< n)

least outlying data points are determined and retained, where outlyingness is defined

as,

Out(ai) = maxv
| a′

iv − µ̂r |
σ̂r

, i = 1, ..., n,

where µ̂r and σ̂r are the univariate MCD based location and scale estimates for the pro-

jected data points, a
′

iv, respectively. The h data points are projected on the subspace

spanned by the first k0 eigenvectors of the sample covariance matrix of the h-subset.

3. The covariance matrix of the mean-centered data matrix, A∗n×k0 , obtained in the second

step using the MCD estimator is robustly estimated and PCA is applied on to the data

matrix.

We consider the functional logistic regression model as defined before in (2.1) where the

functional covariate is defined as (3.1), resulting in the standard multiple logistic regression

(3.3). We let Z(r) = {ξij}n×k0 be the matrix of robust PCs of the design matrix, s.t.

Z(r) = A∗V(r),

where A∗ is the design matrix as described in Step 3 of the ROBPCA algorithm; V(r) is a

Kb × k0 matrix whose columns are the eigenvectors associated with the eigenvalues of the

robust covariance estimation based on the MCD of A∗n×k0 , the mean-centered data matrix.

The logit transformation of the reduced functional logistic model becomes,

L
(s)
(r) = β

(s)
0 1 + Z

(s)
(r)γ

(s), (3.4)

where γ = V
′

(r)b and s is the number of retained PCs in the model.

The design matrix of this model is now void of collinear columns, and also because of

the robust approach taken to compute the PCs, the effect of outlying curves is minimized.
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Therefore, the estimate of the functional parameter is given by,

β̂(t) = b̂
′
ϕ,

where b̂ = V(r)γ̂.

3.3 Model Selection Issues

There are different criteria used in deciding which PCs should be included in the model.

The natural order is to include PCs based on the explained variability. There are other

criterion available as discussed by Hocking (19) and by Müller and StadtMüller (29) which

take into consideration the predictive ability of the PCs. In the simulation study carried

out in the next section, the simplistic natural order of explained variability is used to decide

which PCs to include in the model.

Another issue in model selection is the decision concerning the number of PCs to include

in the model. Some of the measures that can be used include the integrated mean squared

error of the β(t) parameter function (IMSEB). This is defined as,

IMSEB(s) =
1

T

∫
T

(β(t)− β̂(s)(t))2dt,

where β̂(s)(t) is the estimated parameter function for the logistic model with s PCs.

Another available measure is the mean squared error of β(t) parameters (MSEB), which

is defined as,

MSEB(s) =
1

Kb + 1

(
(β0 − β̂(s)

0 )2 + (β(t)− β̂(t)(s))2
)
,

where Kb is the number of basis functions, β̂
(s)
0 is the estimated intercept in the model with

s PCs and β̂(t)(s) is the estimated parameter function in the functional logistic model with s

PCs. The optimal model is selected as that model whose IMSEB or MSEB is the smallest. In
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the simulation study, we use the MSEB to determine s, the number of PCs to include in the

model. The PCs are then added based on the explained variability of each PC, starting with

the one with the largest explained variability until the optimal number of PCs is attained.

However, in the case of real data, both these methods cannot be obtained and therefore

more practical approaches are required. Escabias et al. (9) suggest the use of the estimated

variance of the estimated parameters which is defined as,

V ar(β̂(t)(s)) = V
(s)
(r)(Z

′(s)
(r) W

(s)
(r)Z

(s)
(r))
−1V

′(s)
(r) ,

where W
(s)
(r) = diag[π̂(s)(1 − π̂(s))], Z

(s)
(r) is the matrix of s robust PC scores from the design

matrix and V
(s)
(r) is the matrix whose columns are the eigenvectors associated with the eigen-

values of the robust covariance estimation based on the MCD of the design matrix. Escabias

et al. (9) suggested selecting the optimum number of PCs by plotting the estimated variance

against the number of PCs, s, and selecting s just before a significant increase in the esti-

mated variance. In the case where there are potentially multiple cases like this, the smallest

s is then selected. The percent of variance explained (PVE) is another alternative approach

to determine the number of PCs to retain in the model. In this case, PCs with eigenvalues

greater than 1.0 can be retained. In both these instances, the idea is to ensure that much of

the variability in the model is retained.

Another method is the cross validation (CV) method. Cross validation involves parti-

tioning the data into two sets; the first set known as the training set is used to determine a

predictive model whilst the second set, known as the test set is used to validate the predic-

tive model. The leave-one out cross validation method leaves out one observation and fits

the model with the remaining n − 1 observations. Prediction is then made for the left-out

observation using this model, and this procedure is repeated for all the observations. For
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the logistic model, this is defined as,

CV (s) =
1

n

n∑
i=1

(yi − π̂(s)
i,−i)

2,

where π̂i,−i indicates the predicted response with observation i missing from the predictive

model. An optimal number of PCs are selected as those with a minimum CV. The Informa-

tion Criterion (IC) method is another alternative. The IC can be viewed as a compromise

between the goodness of fit and the complexity of the model. The Akaike Information Cri-

terion (AIC) and Bayesian Information Criterion (BIC) are some of the widely used IC in

which case to select the optimal number of PCs, the IC is computed for varying s values and

the optimal s would then be chosen at the minimum.

3.4 Numerical Examples

In this section, we study the performance of our proposed estimation approach by way

of a simulation study, as well as applying the methodology to the Canadian Weather data.

We show the improved accuracy in the parameter function estimation in the case where

outliers are present.

3.4.1 Simulation Study

The following steps were carried out in this simulation study in order to investigate how

the proposed estimation technique performs and compares to other existing approaches in

the estimation of the parameter function of the functional logistic regression model. In the

first step to generate the data, the following were done,

(a) Generate n = 50 sample curves for the functional logistic model.

We generate 50 sample functional observations of a known stochastic process X(·) con-

sidered over the interval [0, 10] which has 21 equally spaced time slots. We define this
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Figure 3.1: 50 sample curves generated from the overlapping stochastic process Xi(t) =
ai1 + ai2t+Wi(t) and differentiated for each class of the response

process as,

Xi(t) = ai1 + ai2t+Wi(t)

Wi(t) =
10∑
r=1

bi1sin(
2π

10
rt) + bi2cos(

2π

10
rt)

where ai1 ∼ U [1, 4] or ai1 ∼ U [2, 4], ai2 ∼ N [1, 0.2] or ai2 ∼ N [1, 0.6], bi1, bi2 ∼ N [0, 1/r2].

This model is illustrated in Figure 3.1. Since the response is binary, the sample curves

are differentiated for the two classes. To obtain the functional form of these sample

curves, we consider them to belong to the finite-dimensional space generated by some

basis, where φ(t) is a cubic B-spline basis defined on equally spaced nodes on the [0, 10]

interval.

We used the generalized cross-validation (GCV) method to determine the number of

basis functions to use as well as to determine the smoothing parameter in estimating the
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functional covariate, X(t). The criterion is expressed as,

GCV (λ) =

(
n

n− df(λ)

)(
SSE

n− df(λ)

)

where df(λ) = trace {Sφ,λ} is the equivalent degrees of measure and Sφ,λ is the projec-

tion operator such that X̂ = Sφ,λX; SSE is the residual sum of squares; and λ is the

smoothing parameter that measures the rate of exchange between the fit to the data.

The minimization of GCV with respect to λ is achieved by doing a grid search of some

values of λ and selecting that λ with the minimum GCV value.

(b) The natural cubic spline interpolation of the parameter function sin(t+π/4) is selected

as the true β(t) function. The basis coefficients, b = (b1, ..., bKb
)
′

of the parameter

function are known and used to assess the estimation techniques presented in this work.

(c) The probabilities of a positive response (Yi = 1) given Xi(t) are,

πi =
exp{li}

1 + exp{li}
, i = 1, .., n

where li is as defined before in (3.3); and β0 is fixed at 0. The values of the response, Yi,

are obtained by simulating observations of a Bernoulli distribution with probabilities πi.

The second step involves contamination of the simulated data. We adopted the con-

tamination process as discussed by Fraiman and Muniz (14):

(i) Model 0: No Contamination

X(t) = a1 + a2t+W (t) is the generated data as discussed before.

(ii) Model 1: Asymmetric Contamination

Z(t) = X(t) + cM where c is 1 with probability q and 0 with probability 1 − q

and q = {0%, 5%, 10%, 15%, 20%} is the contamination level; M is the contamination

constant size taking a value of 25 and X(t) is as defined in Model 0.
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 3.2: Sampling curves for Model 1 - 4 at q = 5%

(iii) Model 2: Symmetric Contamination

Z(t) = X(t) + cσM where X(t), c and M are as defined before and σ is a sequence of

random variables independent of c that takes the values 1 and −1 with probability 0.5

(iv) Model 3: Partial Contamination

Z(t) = X(t) + cσM if t > T and Z(t) = X(t) if t < T , where T is a random number

generated from a uniform distribution on [0, 10]

(v) Model 4: Peak Contamination

Z(t) = X(t) + cσM if T ≤ t ≤ T + l and Z(t) = X(t) if t /∈ [T, T + l] where l = 2 and

T is a random number from a uniform distribution on [0, 10− l].
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Table 3.1: Median MSEB (standard error) for the estimation of the functional parameter
based on the optimum model for Model 1 and Model 2

Asymmetric Symmetric

Cont. (%) CPCA RPCA CPCA RPCA

0 0.1903 0.1935 0.1903 0.1935
(0.0216) (0.0217) (0.0216) (0.0217)

5 0.1970 0.1731 0.1995 0.1615
(0.0209) (0.0203) (0.10193) (0.0194)

10 0.1802 0.1780 0.1844 0.1728
(0.0186) (0.0175) (0.0176) (0.0177)

15 0.1795 0.1862 0.1798 0.1768
(0.0172) (0.0171) (0.0167) (0.0169)

20 0.1854 0.1824 0.1815 0.1769
(0.0167) (0.0168) (0.0160) (0.0165)

Table 3.2: Median MSEB (standard error) for the estimation of the functional parameter
based on the optimum model for Model 3 and Model 4

Partial Peak

Cont. (%) CPCA RPCA CPCA RPCA

0 0.1790 0.1839 0.1790 0.1839
(0.0216) (0.0217) (0.0216) (0.0217)

5 0.2929 0.2152 0.2866 0.2263
(0.0204) (0.0197) (0.0209) (0.0196)

10 0.2833 0.2416 0.3059 0.2554
(0.0207) (0.0192) (0.0200) (0.0194)

15 0.2806 0.2504 0.2879 0.2594
(0.0206) (0.0199) (0.0203) (0.0202)

20 0.2779 0.2787 0.2878 0.3070
(0.0205) (0.0209) (0.0201) (0.0196)

The effects of these different types of contamination are shown in Figure 3.2. The

reduced logistic model in (3.3) was fit with the coefficient matrix, Cψ, as the covariate. The

Hosmer-Lemeshow (20) goodness of fit test was also carried out, which indicated the model to

be valid for the generated data. In the final step, we obtained the approximated estimations

for the parameter function using the robust approach proposed (RPCA) in Section 3.2.

The approximated estimates are compared with the maximum likelihood estimate (MLE)

as well as the classical principal component estimate (CPCA) as discussed by Escabias et al.

(9). The MSEB is used to determine how many PCs to retain in the model, with small MBSE
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values indicating better estimation when these three different estimation techniques are com-

pared. All simulations were implemented using R (33). The packages fda (35) and rrcov

(42) were particularly useful in obtaining the functional form of the data and performing

principal component estimation, respectively.

The simulations were replicated 200 times and Tables 3.1 and 3.2 summarize the effect

of outliers on the median MSEB of the models. The median was used to reduce the influence

of the extreme observations. In most of the models, and especially so for Models 3 and

4, the proposed robust approach yields better results at the varying contamination levels.

It should be noted that though higher contamination levels (i.e. q = 15%, 20%) were also

attempted with similar consequences, high contamination levels for the logistic regression

model make it difficult to distinguish between the contaminated and the simulated data.

This would explain the breakdown of the estimations at these higher contamination levels.

The estimates for the ML approach were unstable and inefficient as expected, and the median

MSEB values are excluded from the tables.

Figure 3.3 shows the distribution of β̂0 for the principal component estimation methods

for the 5 different models at q = 5%. The true parameter value is 0 and there seems to be no

major difference in the distributions of this scalar parameter. Figure 3.4 , on the other hand,

shows the median estimates for the parameter function for the two PC estimation techniques,

CPCA and RPCA. In this instance, 4 PCs were retained in the regression models and the

median β(t) estimates compared for the robust and classical PCA approaches. 4 PCs were

retained as this was the typical (median) number of PCs retained for the optimal model

for both methods and for the different contamination models. The effect of contamination

is evident in that when there are no functional outliers (Model 0), the β(t) estimates are

no different as shown in Figure 3.4(a). However, the estimates deteriorate for the classical

PCA estimation techniques, even at q = 5% contamination. This is especially so with the

partial and peak contamination models. In this overlay comparison of the robust method

(RPCA) vs. the non-robust approach (CPCA), it can be seen that the robust estimation
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(a) Model 0 (b) Model 1

(c) Model 2 (d) Model 3

(e) Model 4

Figure 3.3: Side-by-side boxplots on the effect of outlier curves on maximum likelihood
estimate (MLE),classical PCA (CPCA) and robust PCA (RPCA) estimates of β0 at q = 5%
contamination

remains closer to the true simulated curve when compared with the non-robust approach of

PC estimation. Therefore, we obtain better parameter estimation results by making use of

the proposed method when there are outliers present in the data.
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(a) Model 0 (b) Model 1

(c) Model 2 (d) Model 3

(e) Model 4

Figure 3.4: Overlay comparison of the effect of outlier curves on classical PCR and robust
PCR when the first 4 PCs are included in the model at q = 5% contamination.

3.4.2 Canadian Weather Data Set

In their paper on modeling environmental data by functional principal component esti-

mation, Escabias et al. (10) used the Canadian weather data from Ramsay and Silverman

(34) to predict the risk of drought (Y = 1 for a station where there is no drought risk;
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Figure 3.5: The mean monthly temperatures for 23 Canadian weather stations used to
predict the risk of drought

Y = 0 for a station where there is drought risk) based on the monthly average temperatures

recorded over 12 months. The annual precipitations for each area were used to determine

whether an area had risk of drought or not. An area is said to have drought risk if the

precipitation along a year in that area is lower than the 25th percentile of the total annual

precipitation in the entire country.

There are 23 samples representing the weather stations, each with 12 mean monthly

temperatures recorded. Figure 3.5 shows the sample curves for the 23 weather stations with

an indication of the drought risk for each station. From this dataset, n1 = 9 stations have

drought risk and the rest, n2 = 14, do not have drought risk based on the precipitation

records. Due to the sinusoidal nature of the sample curves, the Fourier basis was used in the

approximation of the temperature function for each of the weather stations. The generalized

cross-validation method was used to determine the order of expansion for the functional

covariate of which 11 basis functions are used with a smoothing parameter, λ ≈ 0.0009.

We introduce an outlying sample curve by reducing all the temperatures for the Churchill

station by 10 degrees Celsius and slightly changing the pattern of the temperature curve by
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(a) Before (b) After

Figure 3.6: Churchill weather station’s temperatures are altered

stretching it by a factor of 0.675. The weather station was randomly selected. Figure 3.6

illustrates the effect of that shift and stretch on the original data. The AIC was used in order

to determine how many PCs to retain in the principal component-based methods. Table (3.3)

gives the details of the retained PCs for the classical principal component analysis (CPCA)

approach as well as our proposed robust principal component analysis (RPCA). In both

cases, the first three PCs were retained and both models have an AIC of 8. There is little

difference in the percent of variation explained (PVE) with the inclusion of these PCs in the

logistic model, all of the models having over 99% of variance explained.

Table 3.3: The model details for each estimation technique

Original Sample Contaminated Sample
Retained PCs AIC PVE Retained PCs AIC PVE

CPCA 1,2,3 8 99.62% 1,2,3 8 99.63%
RPCA 1,2,3 8 99.70% 1,2,3 8 99.72%

Due to multicollinearity issues, the maximum likelihood approach is not ideal in estimat-

ing the parameter function, β(t), of the functional logistic regression model for predicting

the risk of drought. Figure 3.7 shows the parameter estimate using maximum likelihood
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Figure 3.7: Parameter estimation without using principal component estimation

estimation. Figure 3.8 shows the function parameter estimates of β(t) using the two differ-

ent approaches of principal component estimation. In the absence of any outlying curves,

the non-robust and robust principal component estimations for the parameter function are

almost similar. The effect of contamination on the estimation of β(t) is quite noticeable

for the non-robust approach. The parameter estimate is distinctly different, and therefore

one would have a different interpretation when calculating the odds of drought for certain

seasons or time intervals. On the other hand, the presence of this outlying sample curve has

minimal effect on the proposed robust approach. The parameter function estimate remains

quite unchanged, as can be seen in Figure (3.9).

Table 3.4: Goodness of fit measures

Original Sample Contaminated Sample
Method AUC Z p-value AUC Z p-value

MLE 0.6476 -0.8869 0.3751 0.6672 -0.8152 0.4149
Classical PCA 0.6508 -0.6428 0.5204 0.6481 -1.0026 0.3161
Robust PCA 0.6587 -0.5862 0.5773 0.7125 -0.5259 0.5989

Goodness of fit measures were also conducted for the three different approaches as

summarized in Table (3.4). The measures provided are the area under the ROC curve
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(a) Before (b) After

Figure 3.8: Parameter estimation when Churchill weather station’s temperatures are shifted
and its effect on the principal component estimation methods

(a) Classical PCA (b) Robust PCA

Figure 3.9: CPCA vs RPCA when Churchill weather station’s temperatures are shifted

(AUC) as well as the goodness of fit statistic (Z) and its p-value. For the goodness-of-fit

test, the Le Cessie-van Houwelingen normal test statistic (Le Cessie and van Houwelingen
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(23)) for the unweighted sum of squared errors is used. This is defined as,

T̂r =
n∑
i=1

r̂2si
var(r̂2si)

,

where r̂si =
n∑
j=1

wij

{
yj − π̂j√
π̂j(1− π̂j)

}
and the wij’s are weights. All three approaches pro-

vide good fits (p-value > 0.05). The robust PCA approach has the highest area under the

ROC curves, especially in the presence of the outlying sample curve. These goodness-of-fit

measures indicate that the model that uses the robust approach has AUC of 0.7125 whilst

that which uses the non-robust approach has one of 0.6755. This is considered as excellent

discrimination by Hosmer and Lemeshow (20), an indication that the model based on the

robust PCs better predicts the risk of drought.

3.5 Conclusion

The objective in this chapter was to suggest a robust estimation technique for the func-

tional logistic regression model. The estimation of the functional parameter in this model

cannot be achieved by the regular method of maximum likelihood. Therefore, we approxi-

mate the functional observations and define the parameter function in a finite-dimensional

space generated by a known basis. This reduces the functional model to a multiple model, al-

beit with highly collinear covariates. The presence of multicollinearity and outliers causes the

maximum likelihood estimate from this multiple logistic model to be unstable and therefore,

unreliable.

Robust estimation methods for the functional logistic model are therefore an important

tool in estimation of the parameter function derived in this manner. In this work, we have

proposed an approach that makes use of robust principal component estimation, and essen-

tially reduces dimensionality and improves the estimation of the parameter function in the

presence of multicollinearity and outliers. From the simulation study, we have shown that in
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the presence of outliers, this approach results in better estimations for the parameter func-

tion, and subsequently better interpretation of the model. We also illustrated the improved

performance of the proposed method, by analyzing a real data set.
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Chapter 4

Robust Penalized Functional Logistic Regression

4.1 Introduction

In Chapter 3, we proposed an estimation technique that makes use of robust principal

component estimation. This method is shown to be a more reliable approach in estimating

the functional parameter in the functional logistic regression model, especially since it became

necessary to look at an approach that eliminated multicollinearity as the resulting design

matrix in the reduced standard logistic model was ridden with collinear columns. Even

though the use of a robust principal component estimation technique resulted in better

estimations for the model in the presence of outliers, the influence of outliers, however, is

still noticeable. This can be attributed to the fact that this approach still makes use of the

maximum likelihood estimation approach.

It has been shown that for the standard logistic model, the MLE is sensitive to outliers

[Hosmer and Lemeshow (20), Croux et al. (8), Carroll and Pederson (5), Pregibon (32)]. The

robustness properties for the MLE were analyzed in terms of the influence function. The

influence function (IF) of an estimator is an asymptotic approximation to the behavior of

that estimator when the sample contains a small fraction of identical outliers. An estimator

with an unbounded IF is non-robust since an infinitesimal model deviation causes the bias

to be arbitrarily large. The IF of the MLE for the standard logistic model is,

IF (y,x,β) = M−1(y − π(β
′
x))x,

where M is the Fisher information matrix, M = E[π
′
(βx)xx

′
]. Therefore, the MLE is

unbounded in x and bounded in y. In fact, the kind of outliers whose influence is large for
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the logistic model are such that either ‖ xi ‖→ ∞, yi = 1 and β
′
xi is bounded away from

∞ or ‖ xi ‖→ ∞, yi = 0 and β
′
xi is bounded away from −∞. In other words, extreme

values in the design space lead to a biased MLE. Moreover, it has also been shown that

mis-classification errors, i.e. errors in the response, lead to a biased MLE [Pregibon (32),

Copas (6)]. Therefore, there is a need to develop robust estimation methods that deal with

these issues.

There have been many approaches discussed in literature that look at ways to turn

the MLE into an estimate with bounded influence. Such methods involve techniques of

down-weighting high-leverage observations. In this chapter, we look at one such alternative

approach that is a Mallows-type estimate. We adopt the same estimation procedures as

before that reduce the functional logistic model to a standard logistic model by approx-

imating the functional covariate and the functional parameter as a linear combination of

some appropriate basis. A Huber-type loss function is then used to down-weight the high-

leverage observations and there is also a roughness penalty term to ensure that the estimated

parameter function, β̂(t), is smooth.

4.2 Estimation of X(t) and β(t)

We consider the functional covariates, Xi(t), and functional parameter, β(t), as belong-

ing to a finite-dimensional space generated by (not necessarily) the same basis. We consider

Xi(t) ∈ H (i.e. Hilbert space), such that,

Xi(t) ≈
KX∑
j=1

cijψj(t), (4.1)

where {ψj(t)}KX
j=1, is an appropriate basis that is selected to reflect the characteristics of the

data.
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We assume β(t) ∈ H and that the parameter is defined as a linear combination of a

cubic B-spline basis {φk(t)}Kb
k=1, such that,

β(t) =

Kb∑
k=1

bkφk(t),

where the order of expansion, Kb, is estimated either by cross-validation or generalized cross-

validation; and so that Kb ≤ KX . This results in the functional logistic model being reduced

to a standard logistic model,

πi = P (Yi = 1 | Xi(t) ∈ L2(T ))

=

exp

(
β0 +

KX∑
j=1

Kb∑
k=1

cijJjkbk

)

1 + exp

(
β0 +

KX∑
j=1

Kb∑
k=1

cijJjkbk

) , i = 1, ..., n, (4.2)

whose logit transformation is given by,

li = β0 +

KX∑
j=1

Kb∑
k=1

cijJjkbk, i = 1, ..., n,

L = β01 +CJb, (4.3)

where L= (l1, ..., ln)
′
; C= {cij}n×KX

; J = {Jjk}KX×Kb
with Jjk =

∫
T
ψj(t)φk(t)dt; 1=

(1, ..., 1)
′
; and b = (b1, ..., bKb

)
′
. In this reduced form, the maximum likelihood estimate

can be derived and the unknown parameters established using an iterative method such as

Newton-Raphson. The next section explains a robust penalization method that minimizes

the effect of outliers on the estimate, resulting in a smooth robust estimate for the functional

logistic model.
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4.3 Robust Penalized Maximum Likelihood Estimation

Cardot and Sarda (4), Goldsmith et al. (18) and Ogden and Reiss (30) have considered

penalization in the estimation of the functional logistic model or generalized functional lin-

ear model. The introduction of the penalty term in the maximization of the log-likelihood

function is to ensure that the smoothness property of the parameter function is met. This

regularization approach in the estimation of smooth functional estimates is common, espe-

cially with estimating the functional form of the predictor, X(t), as discussed in Chapter 1

and also in functional principal component analysis [Ramsay and Silverman (34)].

The general form of the penalized likelihood is,

Lλ(π;Y ) = L(π;Y )− λ× Pen(β(t)),

where L(π;Y ) is the log-likelihood function; λ is the smoothing parameter and Pen(β(t)) is

the penalty term that ensures that the parameter function is smooth. Cardot and Sarda (4)

considered a roughness penalty of the form ‖ ϕ(m)′

k b ‖2 where ϕk denotes the vector of all the

B-splines and ϕ
(m)
k the vector of derivatives of order m of all the B-splines for some integer

m. The GCV criterion is then used to determine the value of the smoothing parameter, λ.

Goldsmith et al. (18), on the other hand, proposed an automated way of deducing the

smoothing parameter in the penalty term. They considered the parameter function, β(t), as

the truncated power series spline basis expansion,

β(t) = b0 + b1t+

Kb∑
k=3

bk(t−Kk)+

where {Kk}Kb
k=3 are knots. They also considered the reduced functional model as a mixed

effects model with Kb − 2 random effects, {bk}Kb
k=3 ∼ N(0, σ2

b I). Therefore, the penalty term

is given as, 1
σ2
b
b

′
Db, where D is the penalty matrix and 1

σ2
b

is the smoothing parameter.
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Thus, the smoothing parameter is estimated as a variance component in the mixed effects

model.

We build on these ideas and propose a robust penalization method. It is important

to note that the penalized likelihood methods discussed above and such similar methods in

literature are sensitive to outlying observations. From (4.2), we denote the parameter vector

as γ = (β0,b
′
)
′
, and the covariate vector as ai = (1, {CJ}′i)

′
to simplify the notation. The

proposed estimator [RPMLE] is defined as,

γ̂ = arg max
γ

n∑
i=1

wi{yilog(πi) + (1− yi)log(1− πi)} −
λ

2
γ

′
D0γ, (4.4)

where πi is short for π(a
′
iγ; yi); λ is a smoothing parameter; wi are weights that might

depend on ai, yi or both; and D0 is the penalty matrix augmented by a leading column and

row of Kb + 1 zeros. When wi = 1,∀i and λ = 0, then (4.4) yields the maximum likelihood

estimator. We consider a Mallows class estimator (Mallows (26)), that addresses the problem

of outliers in the design space for the reduced functional logistic model. The main idea with

a Mallows-type estimator is to down-weight observations which have high leverage. In our

proposed robust estimator in (4.4), this is achieved by the following weighting scheme as

proposed by Stefanski (40),

wi = W (hn(xi)),

hn(x) =
[
(x− µ̂n)

′
Σ̂
−1
n (x− µ̂n),

] 1
2

with µ̂n and Σ̂n being a robust location vector and a robust dispersion matrix estimate of

the design matrix, respectively. W is a non-increasing function such that W (u)u is bounded.

We use the weight function corresponding to Huber’s Ψ’s, which is defined as,

Wk(u) = min

{
1,

k

| u |

}
,
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where k = 1.345 is a tuning constant. It is noted that while the Mallows-class estimator

can be less efficient than the usual logistic MLE, its bias can be smaller than that of the

MLE. Carroll and Pederson (5) were able to illustrate that in the case where the design has

extreme design points, selective down-weighting can lead to less biased estimates and this

decrease in bias together with the robustness property, may be worth the lower efficiency.

The estimation of the smoothing parameter, λ, can be achieved by cross-validation or

by the GCV method. The smoothness of the parameter function, β(t), is based on the idea

of the curvature of a function. This curvature is quantified as,

∫
T

{β ′′
(t)}2dt =

∫
T

Kb∑
k=1

bkφ
′′

k(t)φ
′′

k(t)bkdt

=

Kb∑
k=1

bkD(t)bk (4.5)

= b
′
Db (4.6)

where D(t) =
∫
T
φ

′′

k(t)φ
′′

k(t)dt is the smoother. The approximation of the smoother is possible

by means of a numerical quadrature scheme.

4.3.1 Details of the Estimation Technique

Iterative algorithms are usually used for the computation of M-estimators. Since the

likelihood equations for (4.4) are non-linear in the parameter of interest, γ, an iterative

method has to be used to solve these equations and get estimates of the parameters. A

modified scoring algorithm or Newton-Raphson method may be used to solve the non-linear

likelihood equations.
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To make use of the Newton-Raphson method, the gradient and hessian matrices are

required. We consider the likelihood function in (4.4) and consider that,

log(πi) = log

{
exp(a

′
iγ)

1 + exp(a
′
iγ)

}
,

= a
′

iγ − log(1 + exp(a
′

iγ)),

and similarly,

log(1− πi) = log

{
1

1 + exp(a
′

iγ)

}
= −log(1 + exp(a

′

iγ))

The likelihood function in (4.4) can then be re-written as,

L(γ; y) =
n∑
i=1

wi{yilog(πi) + (1− yi)log(1− πi)} −
λ

2
γ

′
D0γ

=
n∑
i=1

wi{yia
′

iγ − log(1 + exp(a
′

iγ)} − λ

2
γ

′
D0γ.

The first derivative (the gradient matrix) then becomes,

L
′
(γ; y) =

n∑
i=1

wi

{
yiai −

aiexp(a
′

iγ)

1 + exp(a
′

iγ)

}
− λγ ′

D0

=
n∑
i=1

wiai{yi − πi} − λγ
′
D0

= A
′
Wr− λγ ′

D0,

51



where r = y− nπ and W = diag(wi). The second derivative (the hessian matrix) becomes,

L
′′
(γ; y) =

n∑
i=1

−wi
{

(a
′
i)
2exp(a

′

iγ)(1 + exp(a
′

iγ)− (a
′
i)
2(exp(a

′

iγ))2

[1 + exp(a
′

iγ)]2

}
− λD0

=
n∑
i=1

−wi{(a
′

i)
2πi − (a

′

i)
2(πi)

2} − λD0

=
n∑
i=1

−wi{aiπi(1− πi)a
′

i} − λD0

= −A
′
V

1
2 WV

1
2 A− λD0,

where V =diag(nπi(1 − πi)). The derivation of the hessian matrix can be computationally

expensive and an approximation based on the gradient may be used instead. The Newton-

Raphson method leads to the iterative scheme,

γk+1 = γk + (A
′
V

1
2 WV

1
2 A + λD0)

−1(A
′
Wr− λγ ′

D0), (4.7)

in which case V and r are evaluated at γk. When all the weights are unity, i.e. wi = 1 ∀i

and λ = 0, then the above reiterative scheme simplifies to that of of the usual maximum

likelihood iterative procedure for γ̂. A grid search is done to obtain the optimal smoothing

parameter, λ, by way of the cross-validation method. This selection criteria is discussed in

the following section.

4.3.2 Tuning Parameter Selection

The influence of the penalty is based on the magnitude of the smoothing parameter,

which is non-negative. When λ = 0 then we have un-penalized estimates and thus, have

unbiased estimates where smoothness is not emphasized; whereas large values of λ indicate

that more weight is given on the smoothness of the estimate. Increasing the value of λ makes

the β(t) smoother and an optimum is reached by doing a grid search of λ. The smoothing

parameter, λ, is searched by varying it systematically and then monitoring the prediction
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error using techniques such as cross-validation. The factor 1
2

is used so as to get rid of a

factor 2 that occurs when the penalty is differentiated.

The leave-one out cross validation method leaves out one observation and fits the models

with the remaining n− 1 observations. Prediction is then made for the left-out observation

using this predictive model, and this procedure is repeated for all the observations. For the

logistic model, this is defined as,

CV =
1

n

n∑
i=1

(Yi − π̂i,−i)2,

where π̂i,−i corresponds to the predicted probability of a positive response given the predictor

with observation i missing from the predictive model. The CV is computed for a variety

of λ and an optimal smoothing parameter with a minimum CV is then selected. Another

option for exponential family models is minimization of the information criterion (IC). The

IC can be viewed as a compromise between the goodness of fit and the complexity of the

model. The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)

are some of the widely used ICs. To select the optimal smoothing parameter, a logarithmic

grid search on the non-negative penalty parameter λ is performed and IC computed. The

optimal λ is chosen at the minimum.

4.4 Numerical Examples

To display the robustness properties of the proposed estimator, we conduct a simulation

study and compare the robust approach discussed in this chapter with the existing maximum

likelihood estimate (MLE),

γ̂ = arg max
γ

n∑
i=1

{yilog(πi) + (1− yi)log(1− πi)} (4.8)
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as well as the penalized maximum likelihood estimate (PMLE),

γ̂ = arg max
γ

n∑
i=1

{yilog(πi) + (1− yi)log(1− πi)} −
λ

2
γ

′
D0γ. (4.9)

An application of the estimation method to a real data set is also explored and the results

discussed in this section.

4.4.1 Simulation Study

We use the same data generated in Chapter 3 for this simulation study. That is, we

generate 50 sample functional observations of a known stochastic process X(·) considered

over the interval [0, 10] which has 21 equally spaced time slots where the process is defined

as,

Xi(t) = ai1 + ai2t+Wi(t)

Wi(t) =
10∑
r=1

bi1sin(
2π

10
rt) + bi2cos(

2π

10
rt)

where ai1 ∼ U [1, 4] or ai1 ∼ U [2, 4], ai2 ∼ N [1, 0.2] or ai2 ∼ N [1, 0.6], bi1, bi2 ∼

N [0, 1/r2].

The functional predictor is estimated using a cubic B-spline basis expansion where the

order of expansion, KX , is determined by way of the GCV method. The true β(t) function

is taken to be sin(t+π/4) and the natural cubic spline of this used to get an approximation

of the function. Outlying sample curves are introduced for the stochastic process X(·) using

the model of Fraiman and Muniz (14) as discussed in Chapter 3. These are asymmetric

contamination (Model 1), symmetric contamination (Model 2), partial contamination (Model

3) and peak contamination (Model 4).

The smoothing parameter is determined by the cross-validation method. The Huber-

type weights makes use of the Mahalanobis distance, where the robust location and dispersion
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Table 4.1: Mean MSEB (standard error) for the estimation of the functional parameter, β(t),
for Models 2, 3 and 4

Model 2 Model 3 Model 4
Cont. (%) MLE PMLE RPMLE MLE PMLE RPMLE MLE PMLE RPMLE

0 26.3043 1.3211 0.5894 26.3043 1.3211 0.5894 26.3043 1.3211 0.5894
(9.5266) (0.5115) (0.1081) (9.5266) (0.5115) (0.1081) (9.5266) (0.5115) (0.1081)

5 20.5941 1.0453 0.5681 16.3381 0.9292 0.7444 20.5692 1.0591 0.5308
(12.7574) (0.3335) (0.1072) (6.2826) (0.2919) (0.3015) (6.9599) (0.3239) (0.0883)

10 8.1512 0.8327 0.4756 12.4196 0.8676 0.7055 18.2714 0.8676 0.6798
(3.6822) (0.2573) (0.0386) (4.9123) (0.2793) (0.2218) (4.7792) (0.2182) (0.2067)

15 4.3307 0.7522 0.4958 11.5515 1.0341 0.6168 17.0797 0.9183 0.6318
(2.9919) (0.2844) (0.0469) (4.7697) (0.3466) (0.1429) (4.4364) (0.2361) (0.1510)

20 3.7119 0.6544 0.4858 7.8925 0.8528 0.6115 17.5679 0.9504 0.6578
(4.4867) (0.2118) (0.0214) (3.3326) (0.2776) (0.1223) (5.1051) (0.2697) (0.1408)

estimates are both MCD-based. Table 4.1 summarizes the average of the MSEB measures

for the three estimation methods discussed in this chapter, i.e. the maximum likelihood

estimate (MLE), the penalized maximum likelihood estimate (PMLE) and our proposed

robust penalized approach (RPMLE). There is improved estimation with the inclusion of

the smoothing term, as expected and discussed by Cardot and Sarda (4) and Goldsmith

et al. (18). In the presence of outliers, however, our robust approach is a markedly better

estimator.

A comparison of our robust penalized estimation approach with the non-robust penalized

approach is shown in Figure (4.1). It is evident from this that, in the presence of outliers,

down-weighting these leverage points results in a more reliable estimate of the parameters

(with notable exception of high contamination levels for Model 1). Essentially, the effect of

the outlying curves is minimized in the estimation of the functional parameter, β(t), resulting

in a more reliable functional logistic model for the observed data.

4.4.2 Poblenou NOX Levels Data Set

This dataset was used by Febrero et al. (11) and is a collection of NOX emissions

in Poblenou, Barcelona (Spain) over a period of 115 days with recordings starting on 23

February and ending on 26 June, in 2005. Over that period of time, hourly measurements

of the NOX are recorded and therefore we split the whole sample of hourly measures in a
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 4.1: Comparison of the penalized method and robust penalized method at differing
contamination levels

dataset of functional trajectories of 24 h observations (each curve represents the evolution

of the levels in 1 day). There were twelve curves that contained missing data that were

excluded in the study.

We consider the functional logistic regression model where the functional predictor is the

functional trajectories of NOX levels over a 24 hour period with a binary response indicating

whether the day is a working day (Y = 1) or a non-working day (Y = 0). This data set is
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Figure 4.2: NOX emmission levels for non-working (top) and working (bottom) days

Figure 4.3: Functional form of the hourly trajectories with the outliers detected in the NOX

dataset

known to have outliers and a robust functional principal component method by Sawant et al.

(38) identified the outlying curves as shown in Figure 4.3. These outliers were identified for

the following five days 03/09, 03/11, 03/18, 04/29 and 05/02, all of which were working days.

The functional trajectories are estimated using a truncated Karhunen-Loeve decompo-

sition. We let
∞∑
k=1

λkψk(s)ψk(t) be the spectral decomposition of the covariance function,
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C(s,t), where λ1 ≥ λ2 ≥ · · · are the non-increasing eigenvalues associated with the orthonor-

mal eigen-functions ψ1(t), ψ2(t), · · · . We suppose Xi(t) ∈ L2(T ) and centered, then

Xi(t) =

KX∑
j=1

cijψj(t),

where ψj(t) are the first KX eigenfunctions of the smooth covariance function C(s, t) =

cov[Xi(s), Xi(t)] and cij =
∫
T
Xi(t)ψj(t)dt. The truncation lag, KX , is determined using a

99% cut-off of the percent variance explained (PVE). This is defined as,

PV E(KX) =

KX∑
p=1

λp

24∑
p=1

λp

,

where KX represents the minimum number of principal components needed to explain 99%

of the total variation in the model.

The estimated parameter function for the three methods discussed in this chapter are

shown in Figure (4.4). The pattern of the parameter is similar for all three methods with

slight differences for the late afternoon to early morning time interval (i.e. 18:00 hrs to 24:00

hrs and also between 01:00 hrs and 03:00 hrs). This difference is more pronounced for the

MLE and PMLE in the presence of outliers, which inevitably gives a different model inter-

pretation for those sub-intervals. Due to the down-weighting of high leverage observations,

the effect of outlying curves is minimized in our robust approach. It is interesting to note

that the affected sub-interval for the estimators is the same sub-interval where the functional

trajectories’ behave differently from the rest of the sample curves.

4.5 Conclusion

In this chapter we proposed a robust estimation approach that downweighs high leverage

points. This was achieved by reducing the functional logistic model by way of basis expansion.
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(a) PMLE (b) RPMLE

Figure 4.4: A comparison of the estimated β(t) with and without the 5 outliers for the
non-robust and robust penalized methods

The influence function for the maximum likelihood estimator for this reduced logistic model is

known to be unbounded in the x-direction. Therefore, functional observations whose pattern

differ from the rest of the observations, even in some sub-interval, greatly influence the

estimator. It was with this in mind that weights based on the design space were used together

with some regularization to impose the smoothness property of the estimated parameter.

The proposed robust penalized method is a Mallows-type estimator that uses Huber-

type weights to down-weight outliers in the x-direction by using the robust Mahalanobis

distance of the covariate. The penalty term makes use of the curvature of the parameter

function and ensures smoothness of the estimator. The Monte Carlo study showed the

increased efficiency in estimation by the robust penalized estimator. The same conclusion

was arrived at for a real world data example.
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Chapter 5

Diagnostic Methods for the Functional Logistic Model

5.1 Introduction

Often after fitting a model, one needs to assess the fit of the model before using it to

make any inference. For this to be done, it is imperative that there’s an understanding of

the model as well as the fitting procedure used. The idea is on assessing how good the fit is,

i.e. how well does the fit model describe the outcome. In this chapter, we adapt diagnostics

methods for the standard logistic model and extend these ideas to the functional logistic

model. We contribute to the diagnostics measures of this model.

Febrero-Bande et al. (12) proposed two statistics that measure the influence of each

curve on the functional slope of the functional linear model, with a scalar response and

functional predictor(s), when the principal components method was used in the estimation

of the model. Müller and Chiou (28) developed diagnostic measures for functional regression

models where the response was functional and the predictor was either multivariate vectors

or random functions by proposing residual processes. Malloy et al. (27) proposed a method

that extended the Box-Tidwell score test and involved construction of residual plots to detect

non-linearity of the functional predictor(s) in the functional generalized linear model which

has a scalar response and functional predictors. Our proposed diagnostic measures differ

from all this work in two primary aspects. Firstly, our measures are for the functional

logistic model which has a binary response and functional predictor(s). Secondly, we focus

on measures of goodness-of fit as well as measures to identify ill-fitting observations for the

model and/or observations that have a dominant influence in the fit of the model.

Pregibon (32) made a significant contribution on diagnostic measures for the standard

logistic model, by extending ideas from linear regression. We explore ways that these and
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other diagnostic methods can be adapted for data were the predictor is functional and the

response binary. We base our measures on the principal component based method discussed

in chapters 2 and 3. This methodology can be extended to other estimation methods and

we illustrate this by assessing the fit of the numerical examples analyzed in chapters 3 and

4.

5.2 Measures of Goodness-of-Fit

We consider the functional logistic model where the functional predictor, X(t) ∈ L2(T ),

defined on the closed interval T = [a, b] ⊂ R. We assume that the unknown parameter

function, β(t) ∈ L2(T ), and that both functions are represented as a linear combination of a

known basis, such that the probability of a positive response given the functional predictor is

given as in (2.4). As discussed in chapter 2, the maximum likelihood estimate of this model

is unstable and inefficient due to multicollinearity issues with the design matrix X = (1|Cψ).

Therefore, we consider the principal component based approach, where we let Z = {ξij}n×KX

be the matrix of PCs of the design matrix, such that Z = CψV , where V is a KX × KX

matrix whose columns are the eigenvectors associated with the eigenvalues of the covariance

matrix of Cψ. Then the logit model (2.4) becomes,

L(s) = β01
(s) + Z(s)γ(s), (5.1)

in matrix form, where γ = V
′
b and s denotes the number of principal components retained

in the model. The maximum likelihood estimate is then,

γ̂ = arg max
γ

n∑
i=1

yilog[π(ziγ; yi)] + (1− yi)log[1− π(ziγ; yi)]. (5.2)

Goodness-of-fit summary measures are useful in giving an indication of the fit of the

model. In order to asses the fit of the model, covariate patterns need to be considered. These

are distinct groupings of the covariates which we will denote by J . Therefore, should some
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subjects have the same values for the covariate, then J < n. The number of observations

with the same covariate pattern is denoted by mj for j = 1, ..., J such that
∑
mj = n. The

number of positive responses among the mj observations having the same covariate pattern

is also denoted by yj. And so the sum of yj would be the total number of observations with

the same covariate pattern having a positive response. Therefore, the maximum likelihood

estimate in (5.2) can be re-written as,

γ̂ = arg max
γ

J∑
j=1

yjlog[π(zjγ; yj)] + (mj − yj)log[1− π(zjγ; yj)]. (5.3)

We discuss two measures that can be used to measure the difference between the ob-

served and fitted values. We denote the fitted values as,

ŷj = mjπ̂j = mj

exp

{
β̂0 +

s∑
k=1

zjkγ̂k

}
1 + exp

{
β̂0 +

s∑
k=1

zjkγ̂k

} j = 1, ..., J.

The Pearson residual is defined as,

r(yj, π̂j) =
yj −mjπ̂j√
mjπ̂j(1− π̂j)

, j = 1, ..., J,

For the case that yj = 0, this reduces to,

r(yj, π̂j) = −√mj

√
π̂j

1− π̂j
,

whereas in the case that yj = mj, we have

r(yj, π̂j) =
√
mj

√
1− π̂j
π̂j
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This has the Pearson chi-square statistic that is based on it,

X2 =
J∑
j=1

r(yj, π̂j)
2. (5.4)

The deviance residual is defined as,

d(yj, π̂j) = ±
{

2

[
yjlog

(
yj

mjπ̂j

)
+ (mj − yj)log

(
mj − yj

mj(1− π̂j)

)]} 1
2

, j = 1, ..., J,

where the sign is determined by the sign of (yj −mjπ̂j). In the case of no positive response,

i.e. yj = 0, then

d(yj, π̂j) = −
{

2×mjlog

(
1

1− π̂j

)} 1
2

= −{2mj | log(1− π̂j) |}
1
2 ,

whereas, when all observations with that covariate pattern have a positive response, i.e.

yj = mj,

d(yj, π̂j) =

{
2×mjlog

(
1

π̂j

)} 1
2

= {2mj | log(π̂j) |}
1
2 .

The deviance is then the summary statistic based on the deviance residual and is given as,

D =
J∑
j=1

d(yj, π̂j)
2. (5.5)

Both these summary statistics are distributed as χ2 with degrees of freedom J− (s+1),

under the assumption that the fitted model is correct. The statistics measure the goodness

of the fit of the model; X2 measures the relative deviation between the observed and fitted

values, whilst D measures the disagreement between maxima of the observed and the fitted
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log likelihood functions. Large values would be an indication that the observations are poorly

accounted for by the model.

Graphical plots of these measures of goodness of fit can be used to allow for easier

detection of those observations that are ill-fitting to the model. A plot of the Pearson

residuals against standard normal quantiles is one such approach where deviations from a

linear pattern is an indication of the lack of goodness of fit. Other plots that can be utilized

are index plots of the residuals discussed against the observations or more commonly the

discussed residuals against the fitted values, i.e. rj vs. π̂j or dj vs. π̂j. Ill-fitting observations

would have large values for the residuals.

5.3 Regression Diagnostics

The diagnostic measures discussed in this section will assist in identifying which of

the observations are not well-explained by the model, or in pointing out those observations

having dominance in some aspect of the fit and quantifying their effect on the fit. The work

by Pregibon (32) was key in establishing the theoretical work that extended diagnostics

from the linear regression model to logistic regression. We seek to discuss these ideas for the

functional logistic model.

The analog of the projection matrix for the reduced functional logistic model (5.1) is

given by,

P = I−H

= I−U
1
2 Z(Z

′
UZ)−1Z

′
U

1
2 ,
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where U is an J × J diagonal matrix with the general element uj = mjπ̂j(1− π̂j) and H is

the hat matrix. A diagonal element from this hat matrix, hj, is therefore of the form,

hj = mjπ̂j(1− π̂j)z
′

j(Z
′
UZ)−1z

′

j

= uj × qj

where qj = z
′
j(Z

′
UZ)−1z

′
j. Pregibon (32) showed that, just as is the case with the linear

model, P is symmetric, idempotent and spans the residual space. Therefore, small values

of pjj detect extreme points in the design space. Diagnostic plots that would be useful

in identifying outlying and influential curves include the Pearson residual (rj), the deviance

residual (dj) as discussed in the last section as well as the diagonal elements of the projection

matrix (pjj).

Finally, we discuss diagnostic measures that look at the effect of infinitesimal model

perturbations on the model fit and therefore, quantify the effect of each observation (or subset

of observations) on the model fit. The diagnostic to measure the sensitivity of the estimated

parameter estimate in the reduced functional logistic model to infinitesimal perturbations of

all observations with the same covariate pattern is given by,

4γ̂j =
r2jhj

(1− hj)2

=
r2sjhj

1− hj
,

where rsj is the studentized Pearson residual which is defined as,

rsj =
rj√

1− hj
,

where rj is the Pearson residual. This measure, ∆γ̂j, is analogous to Cook’s distance for the

linear model. Peña (31) proposed a measure that differs from that of Cook’s measure for the

linear regression model. Unlike Cook’s Distance where the influence of an observation was
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determined by deleting the observation and measuring the influence of that on the predictors;

Peña’s measure looks at the influence of an observation based on how that observation is

being influenced by the rest of the data. In the case of the reduced functional logistic model,

the influence of the jth covariate pattern is measured as,

Pj =

(
ŷj − ŷj(−j)

)2
mjπ̂j(1− π̂j)

,

where ŷj(−j) is the predicted response when the jth covariate pattern is removed from the

sample.

If those observations with the jth covariate pattern are not well fit by the model, in-

finitesimal perturbations cause changes in the deviance and chi-square statistics discussed in

the previous section, which most often can be isolated to the residual components. To mea-

sure the effect of each covariate pattern on the model fit, the rate of change of the deviance

statistic and chi-square statistic can be approximated by,

∆Dj = d2j +
r2jhj

1− hj
,

and

∆X2
j =

r2j
1− hj

,

respectively. Those covariate patterns that are poorly fit by the model will be identified

by large values for ∆Dj and ∆X2
j . Similarly, those covariate patterns having the greatest

influence on the values of the estimated parameter are identified by large values for ∆γ̂j.

5.4 Numerical Examples

The diagnostic measures discussed in this chapter are applied to data sets that were

previously used in earlier chapters. The Canadian Weather data set with the outlier is fitted
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(a) ri vs. index (b) di vs. index

Figure 5.1: Index plots for the Canadian Weather data comparing residuals of the principal-
component based approaches

using the (robust) principal component based approach. The Poblenou NOX emission data

which has been identified to have have 5 outlying curves is fitted using a (robust) penalized

maximum likelihood approach. In both instances, we compute the diagnostic measures

and goodness-of-fit measures for the robust and the non-robust approaches discussed in

this dissertation work and by utilizing the two different estimation methods - the principal

component based estimation; and the penalized maximum likelihood based estimation.

5.4.1 Canadian Weather Diagnostics

This data set has 23 samples representing the weather stations, each with 12 mean

monthly temperatures recorded. Of these sample curves, n1 = 9 stations have drought risk

and the rest, n2 = 14, do not have drought risk. The functional logistic model from this

data set was used to predict risk of drought for these 23 locations based on the functional

temperature predictor. An outlier was introduced in this data set by shifting and stretching

a random curve.
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The classical principal component-based estimation, as explained in this chapter, as

well as our proposed robust principal component-based estimation technique discussed in

Chapter 3 are used to fit this data and their diagnostic measures compared. There were

no covariate patterns distinguished and so J = n. Figure (5.1) displays the index plots

for the two types of residuals discussed, i.e. Pearson residual and deviance residual. The

residuals in both instances are relatively small, indicating that both models are a good fit

of the data. On average, the robust PCA fit model has smaller residuals than the classical

PCA fit functional logistic model. The summary statistics that measure the appropriateness

of the fitted models were D = 2.8414 × 10−9 and X2 = 1.4207 × 10−9 for the fit that used

classical PCA approach, whilst the fit that used our proposed robust PCA method had

D = 8.6886× 10−10 and X2 = 4.344× 10−10 on 19 degrees of freedom in both cases.

The weather stations that were identified as having the higher residuals by both fits

are shown in Figure (5.2). The identified stations are Scheffervll, Bagottville, Kamloops,

Yellowknife and Resolute - the first two are classified as having no risk of drought whilst the

last 3 are identified as having risk of drought. However, it’s important to note that these

residuals are still relatively small and so the appropriateness of the fit is met.

The diagnostic measures ∆γ̂j, ∆X2
j and ∆Dj were evaluated and a summary of these

statistics plotted against hjj as shown in Figure (5.3). The values of these statistics are small

and therefore, we can conclude that there are no observations that are poorly fit or having

a great influence on the values of the estimated parameter. The temperature function for

Scheffervll (#7) has noticeably higher values for the non-robust model fit.

5.4.2 Poblenou NOX Emission Diagnostics

The Poblenou NOX example is considered as a functional logistic regression model

where the functional predictor is the functional trajectories of NOX levels over a 24 hour

period with a binary response indicating whether the day is a working day (Y = 1) or a

non-working day (Y = 0).
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(a) No drought risk (b) Drought risk

(c) All

Figure 5.2: Weather stations with the larger residuals shown as peaks in Figure (5.1)

The approach taken to fit this model was that of (robust) penalized maximum likelihood

as discussed in Chapter 4. With this example we demonstrate that the diagnostic methods

discussed in this chapter can be extended to other estimation approaches. Figure (5.4)

displays the index plots of the deviance residuals (dj) against the days for which the NOX

were recorded. There are several days with large values for the deviance residuals. Three
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(a) (b)

(c)

Figure 5.3: Diagnostic plots that show the influence of each observation on the different
diagnostic measures versus hii

noticeable days are 03/23(#27), 03/25(#29) and 05/16(#72) with deviance residuals above

10.

The summary statistics for the goodness of fit for the non-robust penalized approach

and the robust penalized approach were extremely large in both cases (p-value << 0.01).

Therefore, both models are poor fits of the data and drawing inferences on the odds of a

working day based on these hourly NOX emission levels would be inappropriate.
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(a) Non-Robust (b) Robust

(c) Overlay

Figure 5.4: Index plot of the deviance residuals for the NOX penalized maximum likelihood
fitted models

The diagnostic plots in Figure (5.5) also indicate the observations with the largest

influence on the parameter estimate as well as the diagnostic summaries. These observations

are consistent with those in the index plot.
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(a) (b)

(c)

Figure 5.5: Diagnostic plots that show the influence of each observation on the different
diagnostic measures versus hii for the NOX model
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Chapter 6

Conclusion

The aim of this dissertation work was to propose robust statistical methods for the

functional logistic model, which has functional predictors and a binary response. Whilst an

increasing amount of work has been directed in functional data analysis, we are not aware

of any work specifically looking at robust methods for the functional logistic model.

Firstly, we proposed a robust estimation technique that was principal component based.

Both the functional predictor and functional parameter were estimated using basis expansion,

where the order of expansion was determined by the generalized cross-validation method.

The reduced functional logistic model had multicollinearity issues that were eliminated by

robustly obtaining principal components that were used as the covariates in the model. The

estimated functional parameter was shown to be more efficient in a simulation study as well

as with an application to a real dataset.

Secondly, we proposed a Mallows-type estimator. This other robust estimation approach

made use of a penalization technique as well as down-weighting high leverage points. The

penalty term was introduced to ensure that the estimator retained the smoothness property

and it was based on the curvature properties of the β̂(t) function. Huber-type weights that

were based on the robust Mahalanobis distance of the covariate were used to minimize the

effect of those observations that were outliers in the design space. The proposed estimator

was shown to be better and more efficient in a simulation study and on real functional data

with outlying curves.

Lastly, we explored goodness-of-fit and diagnostic measures for the functional logistic

model. These measures were generalizations of widely-used and known diagnostics measures
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of the standard logistic model. We showed that some adaptions are necessary when deal-

ing with the functional logistic model and illustrated their usefulness and performance by

analyzing the fit of the real-world examples discussed in prior chapters.

6.1 Future Work

The robust estimation approaches proposed in Chapters 3 and 4 only considered outliers

in the design space. However, for the functional logistic model, outliers can be viewed as

either extreme sample curves in the design space or as mis-classification errors in the response.

The robust methods proposed, whilst resistant to outlying curves in the design space, are

not resistant to mis-classification errors. These errors occur when observations in the y = 0

class are recorded as being in y = 1 class, and vice versa. To simultaneously addresses

the problem of mis-classification as well as dealing with extreme observations in the design

space, consideration of a weight function of the form wi = wyi ·wxi where wyi denotes weights

for mis-classification problems and wxi denotes weights to down-weigh extreme data points

in the design space can be made for the robust penalized approach proposed in Chapter 4.

Croux et al. (8) showed that the breakdown point for the MLE is ≤ 2(p − 1)/n where p

indicates the number of predictors in the standard logistic model. The basis for the wxi is

therefore made from the hat matrix H = X(X
′
X)−1X

′
where X is the n × (p + 1) design

matrix for our reduced functional model. In particular, one can consider the Huber-type

weights

wxi = min

{
1,

2Kbn

hii

}
,

wyi = min

{
1, c

∣∣∣∣ yi − πi
[πi(1− πi)]

1
2

∣∣∣∣−1}

where c is a tuning constant that controls the degree of robustness.
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The estimation methods proposed in this dissertation work have taken an approach

that reduces the functional predictors into multivariate predictors by way of basis expan-

sion. Therefore, in both cases robust multivariate techniques were used. Zhang and Chen

(45) showed that the smoothing step in these approaches may result in some bias. A fully

functional approach would be ideal, especially in the case of the principal component ap-

proach. Escabias et al. (9)’s work contrasted a functional PCA approach with one that used

multivariate PCA techniques on a reduced functional logistic regression. Gervini (15) pro-

posed a fully functional approach for spherical PCA. Lee et al. (24) also recently proposed

an M-estimation type functional principal component analysis method. These methods re-

sult in robust principal functions that can be used as functional predictors in the functional

logistic model.

The nature of the functional logistic model, allows it to be used for classification purposes

where the data has two classes and the observations are functional. Robust functional

classification methods would be applicable in diverse fields where there are two or more

classes. The functional logistic model is part of the generalized functional linear model family.

Therefore, a broader focus on robust estimation methods for this family could be made.

Finally, the attraction to work with functional data stemmed from brain imaging studies

and the application of statistical methods and tools with functional Magnetic Resonance

Imaging (fMRI) data. An increasing amount of study and focus has emerged with brain

images and other neuro-imaging studies. In future work, a look at the application of these

functional statistical methods in dealing with this particular data will be a main focus.
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[11] M. Febrero, P. Galeano, and W. González-Manteiga. Outlier detection in functional data

by depth measures, with application to identify abnormal NOx levels. Environmetrics,

19:331 – 345, 2007.

[12] M. Febrero-Bande, P. Galeano, and W. González-Manteiga. Influence in the functional
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