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Abstract 

 

 

 This thesis provides an analysis of how communication among robots improves search 

performance in a multi-robot search and rescue scenario. Mobility models have been used to 

represent the movement patterns in vehicular and mobile ad-hoc networks. As more and more 

collaborative robotics applications employ the use of these models, there is a need for them to be 

better suited for practical applications, and communications is imperative for these operations. 

Along with exploring the advantages of communications between the mobile robots, this thesis 

also gives an overview of an optical flow algorithm to aid in robot navigation. This algorithm 

was designed to be used in a busy environment which holds a lot of moving obstacles. The 

traditional mobility models have been changed a little with the inclusion of obstacles to suit the 

experiments and need of collaborative robotics applications. The key results of this thesis are that 

incorporating communications between the robots reduces the time taken for target detection by 

a considerable value. The results also explore the change in the time taken to reach the target 

with change in a set of parameters, like the number robots, number of obstacles, sensor range. 

The results of the optical flow process show a disparity map generated by the robot, which helps 

it in analyzing the environment it is a part of, and decide its next move accordingly. 
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CHAPTER 1 

 

INTRODUCTION 

 

          A mobile robot is basically a machine that has an on-board computer, and can 

move around to accomplish certain tasks. Cooperative mobile robotics involves a group 

of mobile robots, teaming up to perform and achieve a set of goals.  

          “The first real research on search and rescue robot began in the aftermath of the 

Oklahoma City bombing in 1995”[2]. Robots made their first appearance in actual human 

search and rescue operation on September 12, 2001, “Mankind’s largest push to develop 

robots arguably began in the days immediately following the 9/11 terrorist attacks, when 

shoebox-size “PackBots” made by iRobot Corporation (best known for its semi-

autonomous Roomba vacuum cleaner) were used to ensure the stability of rubble piles 

before first responders started their search for survivors at New York’s World Trade 

Center site” [1]. These robots were of different sizes and performed various different 

tasks. Sources say that these robots actually discovered more than 2 percent of the 

victims, on that day [3]. It was then that collaborative robotics became established as a 

separate field of study.  
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Collaborative robotics can benefit greatly from the incorporation of wireless 

communications. It enables collaborative path planning and navigation. The use of a 

collaborative system constitutes a highly efficient solution, particularly for difficult tasks. 

Collaborative robotics has many advantages: Costs can be reduced, Throughput times can 

be reduced and processes can be simplified. 

          One of the applications of collaborative robotics is load sharing. This involves two 

robots sharing the load of a certain work. The use of multiple robots can be more 

economical than deploying a single heavy-duty robot [4]. Various experiments in the past 

have proved this very point. References [5, 6] describe how a collaborative system of 

robots outperformed many single robot systems designed to perform the same task. They 

also state that a multiple robot system also helps in efficient localization if the robots are 

communicating or exchanging information with each other.  

This thesis addresses the importance of collaborative robotics and how communication 

between the robots can effectively reduce the target detection time, while improving 

localization and obstacle avoidance. Vision based navigation is also discussed in the 

thesis.  

          Applications of vision-based systems widely range from object recognition [7], 

obstacle avoidance [8], navigation [9], to global localization [10] and SLAM. In the 

present research, a group of robots are all working together based on a cooperative 

distributed protocol called SARA, which is an acronym for Search and Rescue 

Algorithm.  

SARA incorporates the concepts of a relatively new area of collaborative robotics [11]. 

This algorithm works on tackling the several smaller problems like communication 
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between the robots, path planning, obstacle avoidance, target detection. There has been a 

constant effort to improve SARA by incorporating vision in the algorithm. This particular 

protocol has passed through several phases of modifications from the base version, by 

addition of new features, removing the defective pieces of the system and also enhancing 

the performance of the existing parts. Currently, the primary focus would be to perform 

simulations on vision induced and mutually communicating robots. Another very 

important factor of SARA would be effective exploration of the search area within a 

shorter span of time. The designed algorithm should have the ability to explore most parts 

of the search area in as minimum time as possible. This can be achieved if the robots 

working collaboratively could communicate with each other through a common medium 

to get a proper knowledge of the region explored by each robot and then decide their next 

individual move.  

          The work described in this thesis proposes the use of a specially-tailored 

communication model in the Manhattan mobility model to perform Search and Rescue 

operations. It compares the target detection, obstacle avoidance abilities in the Manhattan 

mobility model for with and without communications, compares the performance of 

robots with and without sensors. There is also another part of the thesis that proposes an 

optical flow algorithm to aid in robot navigation.   

          Mobility models represent the movement of mobile nodes, and how their location, 

velocity and acceleration change over time. They have been widely implemented in 

vehicular ad-hoc networks (VANETs) and mobile ad-hoc networks (MANETs). The 

Manhattan mobility model is a specific model that decides the next move in a 
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probabilistic pattern and changes the direction of the nodes travelling in a particular 

direction at the junctions.  

          The question arises, “Why incorporate communications in an already existing 

model?” Since the study in the thesis addresses the Manhattan mobility model being used 

for collaborative robotics, where each robot is performing the task autonomously, 

communication between the robots serves to reduce the time taken for target detection 

and also collision avoidance.  

          Analysis in this work introduces modifications to the standard model including 

incorporating obstacles and enabling communication between the mobile robots. These 

changes are made to make the conventional model more suited for the platform of 

collaborative robotics.  

          Optical flow is described as the apparent motion of the brightness pattern in the 

image sequence [12]. To make search algorithms more practical to use, we need to 

consider a busy environment where there are dynamic obstacles. In an environment with 

dynamic obstacles, the robot needs to be able to understand the pattern of the motion of 

the obstacles and should be able to avoid any sort of collisions. Optical flow proves 

useful in such an environment as it provides the robot with a disparity map, i.e., a 3 

dimensional map of the change in the environment from a previously perceived 

environment. The simulations shown in the thesis show how such an algorithm can be 

implemented in vision based robotics. 

          The remainder of the thesis is organized as follows. Chapter 2 is an overview of the 

relevant literature. Chapter 3 describes the hardware, the experimental setup for running 

the simulations in the thesis. Chapter 4 explains the implementation and analysis of the 
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communication model. Chapter 5 describes the process of optical flow, disparity map 

generation and the algorithm implemented to aid in robot navigation. The results are 

explained in Chapter 6. Conclusions and scope for future work is discussed in Chapter 7.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 
Part 1: Optical flow 

          Optical flow is defined as the apparent motion of brightness pattern in an image 

sequence [12]. It is also defined as the process of estimating the motion/velocity field 

from the spatial and temporal variations of image brightness using computer vision 

techniques [15]. Optical flow deals with the estimation of the displacement field in two 

subsequent images. Scientists in the field of computer vision have been working for more 

than two decades with optical flow algorithms. These algorithms are used in applications 

ranging from simple motion detection in surveillance cameras to complex applications of 

gesture controlled gaming like Microsoft Kinect, in anti-collision systems built into cars 

etc. All these systems demand highly resolved accurate data that is processed in real time 

with real time speeds for quick decision making. 

          Optical flow theory/algorithms are based on grey value constancy and smoothness 

assumptions. All previous works show some treatment of these assumptions. The optical 

flow algorithms define energy associated with each pixel in an image. When two images 

are given, optical flow algorithms try to find the disturbance associated with second 

image with reference to the first image by minimizing the energy difference between 
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corresponding pixels in the two images. Most optical flow algorithms are different with 

respect to their energy definition. 

          Lucas-Kanade method [16] and the Horn-Schunck method [12] are among the first 

methods used for optical flow determination. Lucas-Kanade method assumes that the 

velocity ( u(ux,uy) ) of pixels in a given neighborhood is constant. This assumption is used 

in minimizing the error associated with the square of the difference between the 

brightness/pixel values at corresponding neighborhoods in two images. This result in an 

over-determined system which is iteratively solved to find the displacement associated 

with the second image compared to the first image. Iteration process is similar to the 

Newton-Raphson iteration technique.   
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where, I(x,y) denotes the distribution of the brightness values in the images and sub-

scripts 1 and 2 denote image 1 and image 2 respectively, (2wx + 1) and (2wy + 1) denote 

the width of the neighborhood in the x and y direction respectively, and (0,0) denote the 

center of the neighborhood. 

          Horn et al.[12] introduced a global method to determine the optical flow between 

two images.  They introduced a global smoothing term for the first time.  They argued 

that any object in the image has a finite size, and when moving, all pixels in a 

neighborhood move with similar velocities.  Thus the introduced smoothness term 

assumes that the flow of the brightness pattern in the whole image is smooth.  They 

showed that to solve for the optical flow in images two constraints are needed, one is the 

given by the brightness constancy assumption and the second is provided by the 

smoothness term.  The Horn-Schunck method results in Equation 2. 
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Here, I(x,y,t) denotes the distribution of brightness in the image,   is the spatial 

differential, It is the time derivative of the brightness distribution, ux and uy are the 

velocity components in x and y directions respectively, and λ is the smoothness term. 

Though the Horn-Schunck method helped in tackling the aperture problem, the direction 

and magnitude of motion cannot be determined by a single oriented unit[17]. The use of 

the smoothness assumption is bound to inaccuracies when there are discontinuities in the 

flow.  Study by Barron et. al.[18] proved that the Horn-Schunck method is sensitive to 

noise.  

          Effect of smoothness was later studied by Nagel et al.[19] In their study they agree 

on the importance of the global smoothness constraint with Horn-Schunck but to counter 

the effect of discontinuities Nagel introduced an oriented smoothing constraint.  Oriented 

smoothness constraint restricts variation of the displacement vector only when the gray 

value variation is small.  

          Researchers have done comparative performance studies on these optical flow 

techniques. Fuse et al.
 
[20] studied the comparative performance of the gradient-based 

optical flow techniques and presented their short comings. Faisal et al [21] investigated 

the implementation of the optical flow technique presented by Brox et al. [22] They 

concluded that this method gave an accurate result from only 2 input images. In BOS 

experiments we investigate for instantaneous flow properties which essentially have an 

instantaneous image to compare with the reference image, thus we chose to work with the 

method described by Brox et al. [22] 
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          Let the brightness pattern in an image be denoted by I(x,y,t). Optical flow 

algorithms are based on the following assumptions:
  

- Surfaces in the image are flat. 

- Illumination is uniform over the imaged area. 

2.1) Brightness (grey value) constancy: 

           This states that any given point in the pattern will have the same brightness 

even when moved from one location to the other in the imaged scene. 

)1,,(),,(  tvyuxItyxI                                                                                     (3) 

The above equation can be simplified by expanding the RHS using the Taylor series 

and ignoring the higher order terms. 
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Horn et.al[1] argue that the above equation gives the velocity/movement component 

in the direction of the brightness gradient, but fails for directions perpendicular to 

them. This can be tackled using an appropriate background for in the BOS 

experiments.  Lucas and Brox find the assumption good only when image changes 

linearly along the displacements and Pappenberg et.al[23] argued that the algorithms 

using the assumption fail when there is a local or global change in the brightness.  All 

insist on other constraints for the optical flow algorithms to applicable to more 

general situations. 

 

 



 10 

2.2) Gradient constancy: 

          As mention by Brox and Pappenberg any slight change in the brightness locally 

or globally can result in large discrepancies.  The gradient of the grey level values 

will remain constant in case of these changes. 

)1,,(),,(  tvyuxItyxI                                                                                (6) 

2.3) Smoothness Assumption: 

          Anandan [24] states that use of smoothness constraint is to minimize the error 

associated with the velocity field by using the reliable displacements to determine the 

less reliable neighbors. In a general scenario neighboring points in a scene either 

move together or have influence on each other except where there are occlusion or 

sharp discontinuities, like shocks in a flow. Brox suggests use of the piecewise 

smooth assumption instead. 

          From the above discussions the energy of the deviation field measured in a small 

region of interest from the grey value constancy and the gradient constancy is given by: 

  
22

)()1,,()()1,,( tyxItvyuxItyxItvyuxIEd      (7) 

where,   is the weight function. The energy for the smoothness term is given by: 

  .
22
dXvuEs                                                                                                      (8) 

where,  
tyx  ,,  

          Black et. al.[26] showed that the use of quadratic function in energy estimation 

resulted in unreliable results in areas with multiple motions. To show this they considered 

an example sequence of images with fragmented occlusion (figure 1a). In this example 

the man is moving behind the plant from right to left resulting in fragmented occlusion.  
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Figure 1b shows the constraints obtained from solving the brightness constraints in this 

example using least square regression model. Trying to satisfy the constraints results in 

wrong motion (white cross), whereas the gray crosses are the correct motion. 

 

Figure 2.1: Image sequence with fragmented occlusion. (a) First image, (b) Constraint lines. 

Instead of a quadratic function a convex function ( )( 2s ) is defined. Where, 

  222   ss                                                                                                               (9) 

Thus the modified data term is given by: 

  
22

)()()()( XIwXIXIwXIEd                                                   (10) 

where, 
'),,( tyxX   and 

')1,,( vuw   and the modified smoothness term is given by: 

   .
22

dXvuEs                                                                                                (11) 

Now the total energy is given by: 

E = Ed + αEs                                                                                                                                                                               (12)                                                                                                                                                     
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where, α is the regularizing parameter. Now minimizing the energy terms give the 

displacement field obtained from subsequent images. A numerical approach to the 

problem is described in Brox[9] 

2.4)  Multiscale approach: 

          Use of the constant gray level assumption and the expansion of the terms using the 

Taylor expansion is given in Eq. 5: 

0 tyx IvIuI                                                                                                               (5) 

The small displacements assumption in expanding the gray value constancy results in the 

above equation. Thus use of optical flow algorithms for the flow analysis in a sequence of 

images has a limitation on the maximum measurable displacement. To cope with this 

limitation Anandan [24] suggested a multiscale/hierarchical approach to the problem. The 

method suggests to start with the lowest resolution images and then go to increasingly 

resolved images. At the lowest resolution displacements are calculated and these are used 

at the next higher resolution to warp the first image and then calculate the displacements 

again. This is done till the highest resolved images and the displacements from all states 

are added to get the final displacement values. For many down-sampling approaches it is 

customary to use a factor 0.5, but efficient results are found with higher factors. 

Part 2: Communication model 

2.5) Co-operative robotics:  

          Cooperative robotics is that field of mobile robotics that deals with the study of 

multiple autonomous robots “working together” to perform some task that is either too 

difficult or impossible for a single robot to perform while acting alone. It combines the 

disciplines of computer science, electrical engineering, and artificial intelligence. These 
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tasks can be anything from a simple task to box-pushing [27], exploration [28], area 

mapping [29], fire-fighting [30]. Fully autonomous and cooperative robots remain an 

unrealized goal for researchers worldwide [3].  

          Liu and Wu [31] put forward that using multiple cooperating robots has several 

advantages over single-robot systems. These advantages include greater efficiency, a 

wider defined task domain, inherent parallelism, and distributed sensing. Also, investing 

on a number of cheap “off-the-shelf” robots can be less expensive than one large, 

custom-made robot [32]. Since these robots would be used in several search tasks, such a 

tactic would be beneficial when a failed robot can never be retrieved.  

          The major development in the field of cooperative robotics began in 1989. Asama 

et. al. [33] present ACTor-based Robots and Equipments Synthetic System (ACTRESS) 

which is a distributed multi-robot system designed for maintenance tasks in nuclear 

power plants. The autonomous components of this system are termed “robotors” and can 

be mobile robots or any component that has at least two basic functions: 1) the ability to 

sense surroundings, make decisions, and act on these decisions and 2) the ability to 

communicate to other robotors for purposes of cooperation and interference avoidance. 

ACTRESS is shown in simulation with the cooperative task of two mobile robots pushing 

boxes to the sides of a room.  

          Cooperative robotics can be divided into two broad areas of research, Swarm 

robotics and Intentional cooperation [34]. The swarm-type approach deals with a large 

number of lower-level robots that are performing tasks independently and are normally 

unaware of each other’s actions. Tasks proposed for swarm robots usually have a parallel 

nature such as collecting rock samples on Mars and sorting mail. Cooperation in this type 
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of robotics occurs due to the statistical result of a large number of repeated actions. The 

goal of swarm robotics is to design the control laws of each robot such that, many simple 

interactions with the environment produces a globally desirable behavior. On the other 

hand, intentional co-operation deals with a limited number of higher-level robots that are 

aware of the actions of the other robots in the same network. Each robot also uses the 

information received from the neighboring robots to make its own best decision for its 

next move [35]. Task examples for this type of cooperative robotics are moving furniture, 

building space stations. In this approach, cooperation can be imbibed in the robots both 

locally and globally, unlike just globally for swarm robotics.  

2.6) Communication in Cooperative robotics:  

          Communication among the robots is essential for cooperative behavior among the 

robots. It is that area of research in robotics which is developing extensively. Performing 

experiments with inter-robot communication is a common topic of research in 

cooperative robotics [27, 28].  

          Fukuda and Nakagawa [36] introduced the idea of a dynamically reconfigurable 

robotic system (DRRS) which allows a robot to autonomously reconfigure its parts based 

on the goals of a specific task while communicating with its neighbors.  DRRS consists 

of robotic “cells” which communicate with each other and can approach, detach, and 

combine themselves in different ways depending on task definition and allowable 

workspace.  

          Communication in cooperative robotics can basically be divided into two types, 

Explicit communication and implicit communication [28].  Explicit communication is 

when the robot is trying to communicate to an external agent, or the environment. 
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Example of such a communication would be radio transmissions. Implicit communication 

is when the robots are communicating mutually to understand the progress of the task or 

to understand the factors affecting the task. Example of implicit communication would be 

when two robots are performing a task together, and one robot realizes the task is done 

and stops, because the last bit of the task was performed by the other robot. This mutual 

understanding between the robots is implicit communication.   

          Dadios and Maravillas [35] use implicit communication in a team of two soccer 

playing robots. Fuzzy logic and an overhead camera are used for navigation. Fuzzy logic 

helps in the decision making for the robots. The overhead camera is used by both robots 

for implicit communication, but the robots are not allowed to explicitly communicate 

with each other. In simulation the robots are able to effectively pass and shoot the ball 

into a goal in the presence of opposing team members represented by stationary 

obstacles.  

          Asama et. al. [33] use explicit communication by putting laptops, equipped with 

wireless modems, on each mobile robot. This allows large amount of information like 

global maps, to be processed. Simsarian and Matarić [27] use explicit communication by 

equipping two box-pushing robots with radio communication.  

          After deciding what kind of communication to use, the next question would be, 

“what is the optimum amount of communication for a particular task?” Arkin et. al. [37], 

Matarić et. al. [27]  in their experiments address this statement. They conduct a set of 

experiments for no communication and simple communication and compare it to see the 

behavioral state of robotic system. Similar experiments are performed in this thesis, 

results of which are shown in Chapter 6. 
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2.7) Search and Rescue operations in Cooperative robotics 

          Search and rescue robotics has been a very big part of the applications of 

cooperative robotics. As already discussed in Chapter 1, “The first real research on search 

and rescue robot began in the aftermath of the Oklahoma City bombing in 1995” [2]. 

Robots made their first appearance in actual human search and rescue operation on 

September 12, 2001, “Mankind’s largest push to develop robots arguably began in the 

days immediately following the 9/11 terrorist attacks, when shoebox-size “PackBots” 

made by iRobot Corporation (best known for its semi-autonomous Roomba vacuum 

cleaner) were used to ensure the stability of rubble piles before first responders started 

their search for survivors at New York’s World Trade Center site” [1]. These robots were 

of different sizes and performed various different tasks. Sources say that these robots 

actually discovered more than 2 percent of the victims, on that day [3]. Even after this, 

there have been a lot of attempts made  in the area of search and rescue. Jennings et. al. 

[38] present two large robots searching for and “rescuing” warehouse-like boxes. Here, 

the robots are randomly looking for the target in an obstacle free environment. Vainio et. 

al. [39] present a control architecture for a group of underwater search-and-destroy 

robots. In all these experiments, we see that time is a very important factor in search and 

rescue operations. The results of this thesis shows an analysis of how time taken to 

complete the search task is influenced by change in other simulation parameters in the 

experiments.  

2.8) Mobility models 

          In this thesis we discuss how communication can affect the performance of a single 

mobility model. Mobility models are typically used to simulate and analyze routing 
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protocols and network analysis in VANETs and MANETs and to represent the movement 

of mobile users, and how their location, velocity and acceleration change over time. Such 

models are frequently used for simulation purposes when new communication or 

navigation techniques are investigated. A mobile ad-hoc network (MANET) is a self-

configuring infrastructure-less network of mobile devices connected by wireless. Each 

device in a MANET is free to move independently in any direction, and will therefore 

change its links to other devices frequently. Each must forward traffic unrelated to its 

own use, and therefore be a router. Such networks may operate by themselves or may be 

connected to the larger Internet. 

          A Vehicular Ad-Hoc Network (VANET) is a technology that uses moving cars 

(robots in our case) as nodes in a network to create a mobile network. VANET turns 

every participating car into a wireless router or node, allowing cars approximately 100 to 

300 metres of each other to connect and, in turn, create a network with a wide range. As 

cars fall out of the signal range and drop out of the network, other cars can join in, 

connecting vehicles to one another so that a mobile Internet is created.  
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Figure 2.2) Classification of mobility models 

          The Manhattan mobility model is a common type of VANET. These mobility 

models when incorporated in robotics can be used for various cooperative tasks like 

search and rescue. The mobility model that is most important in this thesis is the 

Manhattan mobility model. In this model, the direction of nodes is decided 

probabilistically at every street intersection. In the Manhattan model, the mobile node is 

allowed to move along the horizontal or vertical streets on the urban map. More about 

this model is discussed in Chapter 5. 

2.9) Simulation Environments 

          Simulations are the most important tools in any wireless networks research or 

robotics. Simulations are highly preferred in this type of study as the models are easier to 

replicate and analyze with simulations than with actual experiments. Current simulators 

are lagging in modeling essential characteristics of the real world [40], [41]. When 

deploying mobile nodes, real-world experiments are rare.  
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          For most simulations testbeds are used for wireless research. Testbeds need to be 

able to provide means for programming the devices, they need to be able to house actual 

fully operating robots, they should be able to allow accurate motion, should be available 

for access online to remote users and also help in easy collection of experimental data. 

The simulation tools used for most simulations are MATLAB or the NS2-network 

simulator 2. NS2 is a very prominent simulation tool which also allows for the design of 

testbeds and helps simulate a very high number of nodes. It provides substantial support 

for simulation of TCP, routing, and multicast protocols over wired and wireless (local 

and satellite) networks [42].  

           Another simulation testbed available is MiNT[43] which is a miniature 802.11 

testbed. It focuses on reducing the area required for a multihop 802.11 testbed. It 

achieves mobility through the use of antennas mounted on Lego Mindstorm robots, 

tethered to a PC running the applications where the robot mobility is limited. The ORBIT 

[44] testbed provides a remotely accessible 64-node indoor grid with 1m spacing, that can 

emulate mobility. User code is run on PCs, which are dynamically bound to radios. The 

The Mirage testbed [45] is different from all the other testbeds. It uses resource allocation 

in a sensor net testbed as a target to explore new models of resource allocation. 
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CHAPTER 3 

LABORATORY SETUP AND ROBOT ARCHITECTURE 

The work presented in this thesis is one of the many collaborative robotics projects done 

in the CRR (Cooperative Robotics Research) lab at Auburn University. This chapter 

provides a detailed explanation of both, the hardware and software parts of the robots and 

the experimental setup used to run the simulations. It gives a brief overview of the robot 

architecture and explains the functionality of the robotic nodes. The robots described in 

this chapter have already been used to demonstrate the use of ad-hoc routing networks 

and are a part of few other projects that can be found on [13]  

3.1) Laboratory Setup:  

              The laboratory setup includes a team of three identical robots working in a 

collaborative manner to explore the search area which is the third floor of the Broun Hall 

building at Auburn University. The functionality includes on-board processing, mobility 

and wireless capability. These robots are all operating on ROS [14] and are moving 

around this particular search area using a map to find the target while avoiding any static 

or dynamic obstacles that may be encountered along the run. The robots have the 

capability of building the map as they progress in the search environment, or an already 

updated map can be inbuilt in the system.  
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Figure 3.1: The map (a) being generated by the robot, the map (b) inbuilt in the system. 

The stationary target is set through the software for every run, and the robots all start out 

from the same point in search of the target. These robots use 12 V sealed lead acid 

batteries for operation and are capable of motion at the maximum rate of 0.5 m/sec.  

 

Figure 3.2: Team of robots exploring 3
rd

 floor of Broun Hall, Auburn University 

3.2) Robot Architecture:  

          The architecture of the robot is constituted of four main parts: chassis, drive and 

control system, vision system and power system. 
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Figure 3.3: The robot control architecture 

 

3.2.1) Chassis:  

          The chosen build for the bots is from Zagros Microcontrollers. It consists of 3 

plastic platforms each having a diameter of 16 inches to house the various components 

that go on the bot. The first level houses the laptop which is basically the brain of the 

robot. The second platform is the vision sensor platform, which houses a Kinect™ 

sensor. The third level is the base platform that provides housing for the motors, gyro and 

all the other components that help in processing the motion of the robot.  

3.2.2) Drive and control system:  

 

Figure 3.4: The drive and control system 

          The drive system consists first of the wheels. The robot has 4 wheels, 2 castor 

wheels for stability and 2 main differential drive wheels for movement. There are 2 
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differential drive motors attached to each wheel and 2 encoders for the motors to 

determining the speed of the robot by counting the number of ticks per second. Next is 

the Arduino Mega microcontroller, it handles all of the low level drive train operations 

and is responsible for communicating with the laptop over the USB port. It relays the 

encoder and gyro raw signals to the laptop.  The laptop is then continuously running a 

dual PID loop (one for each motor) to drive the motors at a specified linear and angular 

velocity.  The control loop calculates PWM values that are serially sent back to the 

Arduino to then control the speed of the motors.   It also consists of an ADXRS 300 

degrees/sec Gyro sensor which measures the angular velocity around an axis. There is 

also a L298 N based motor driver board which is responsible for driving the motors. It 

has a 12 V direct connection to it.  

3.2.3) Vision system:  

 

Figure 3.5: Vision system, Kinect™ sensor 

          The vision system used in these bots, is the XBOX 360 Kinect™. It has an RGB 

camera and an infrared camera. The infrared projector projects a grid-like infrared 

pattern. The infrared camera detects the distortion in the pattern and generates a depth 

image to see how far the objects are from the Kinect™. The laptop has the ability to make 

a point cloud from the depth image generated using the software ROS. A horizontal slice 
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of the point cloud is then taken, which would almost resemble a laser scan to help with 

the mapping and navigation for the robot. The laptop also has a node that uses the wheel 

encoder counts and the rate of the gyro to keep track of the odometry measurement. 

Using a known map of the 3rd floor of Broun Hall, the point cloud of what the XBOX 

Kinect™ sees, and the odometry measurement , the robot can pretty accurately estimate 

its location on the 3rd floor of Broun Hall.  Once the robot localizes itself, it can 

autonomously drive to another point in the hallway by continuing to combine the 

odometry and point cloud inputs. 

          The ROS (robot operating system) [14] allows the robot software to be designed in 

a modular fashion.  The computation is divided into a set of independently running nodes, 

where each node is like a separate application on the laptop.  ROS also allows for the re-

use of code in the research community by providing a standard for how robots are to be 

defined such as; is left the positive or negative turn direction. In this way, newly 

developed navigation algorithms also can be easily ported to a variety of robots without 

having to make the code specific to each robot. 

3.2.4) Power System:  

          Each robot derives its main power from a 7 AH, 12 V sealed lead-acid battery. The 

raw battery voltage is distributed to the motors and electronics with switching, fusing, 

and regulation as needed.  The laptop uses its own internal battery for power. 
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CHAPTER 4 

OPTICAL FLOW 

4.1) Objectives:  

1) Implement a new obstacle avoidance method for mobile robot navigation in a 

busy environment using optical flow. 

2) Locate survivors and victims using specialized sensors, provide 2-way 

audio/visual communication for rescue teams, cooperatively plan search paths. 

3) Enhance the ability of a team of wirelessly-connected mobile robots to find a 

target, using vision as a primary sensory modality  

The simulation environment is same as stated before, and the robots are assumed to be 

moving in a staccato fashion, i.e. each robot first takes a picture of the environment, then 

moves a few steps, examines the environment, and takes a new picture. It then processes 

both the pictures taken through the Brox algorithm to create a disparity map.  

4.2) Disparity Map: 

          A disparity map shows the apparent pixel difference or motion between a pair of 

stereo images. When we close our eyes, and open each eye once at a time, we notice that 

the objects that are close to us will appear to jump a significant distance while objects 

further away will move very little. That motion is called the disparity. In a pair of images 

derived from stereo cameras, we can measure the apparent motion in pixels for every 

point and make an intensity image out of the measurements.
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Figure 4.1: Top: Left and Right stereo images Bottom: Disparity map of stereo images 

The above picture implies that the objects in the foreground are brighter, denoting greater 

motion and lesser distance. 

 

Figure 4.2: The flowchart for creating a disparity map 

Image 1 is the left image and Image 2 is the right image. 
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4.2.1) Image Rectification:  

          Image rectification is a transformation process used to project two-or-more images 

onto a common image plane. It corrects image distortion by transforming the image into a 

standard coordinate system. It is used in stereo vision to simplify the problem of finding 

matching points between images. In stereo image processing, a problem that must be 

addressed is the correspondence problem. This is the difficulty in finding the 

corresponding point related to the first image in the second image in the stereo image 

pair. This can be solved, if the line of sight of the two images is aligned to be coplanar, so 

that the search is simplified to one dimension - a horizontal line parallel to the baseline 

between the cameras. Furthermore, if the location of a point in the left image is known, it 

can be searched for in the right image by searching left of this location along the line, and 

vice versa. Image rectification is an equivalent alternative to perfect camera alignment. 

Image rectification is usually performed regardless of camera precision due to 

impracticality or impossibility of perfectly aligning cameras or perfectly aligned cameras 

may become misaligned over time. 

                                  

 

Figure 4.3: Search space before (1) and after (2), the rectification process  
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Steps involved in the process of image rectification:  

1) Read Stereo image pair.  

2) Collect interest points from each image.  

3) Find putative point correspondences  

4) Remove outliers using geometric constraint  

5) Remove outliers using epipolar constraint. 

6) Rectify images.  

7) Generalize the rectification process. 

4.2.2) Matching and Filtering:  

          The two rectified images are then matched and filtered to find the area of 

movement. Matching of images is done by first obtaining the pixel wise differences in 

both the images and then finding the point correspondences between both the images 

along with the corner detection. Then, the correspondences between the points are 

selected and the matched points are retrieved from both the images.  Image filtering is 

useful for many applications, including smoothing, sharpening, removing noise, and edge 

detection. A filter is defined by a kernel, which is a small array applied to each pixel and 

its neighbors within an image. Filters are applied in either the spatial domain or the 

frequency domain. Within the frequency domain, a filter is applied to an image by 

multiplying the FFT of that image by the FFT of the filter. When the FFT of an image is 

multiplied by the FFT of a filter to perform convolution, this process is known as 

windowing. This process described above helps reduce the noise in the image. And 

finally the rectified images without the noise are ready for the disparity function 
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Figure 4.4: Input images, Point correspondences and matching between the images. 

 

Figure 4.5: Disparity Map, with window size 5. The darker areas show maximum 

movement 

4.3) Simulation flowchart : 

 

Figure 4.6:Simulation Flowchart for the optical flow process 
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          The above flowchart describes the optical flow process implemented in the thesis.  

Gray scaling of the input images is done to reduce the pixel values of the images 

captured. This helps in faster simulation of data, and also helps eliminating the unwanted 

data in the images. The number of iterations is decided on the size of the images being 

processed. Gaussian rescaling is done to eliminate all the noise in the images and to 

eliminate most of the unwanted data before processing it through the Brox algorithm. Up-

sampling the velocity facilitates the study of movement in the stereo images captured.  
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CHAPTER 5 

 

MANHATTAN MOBILITY MODEL AND COMMUNICATION 

MODEL 

 
          Due to extensive research in the field of wireless ad-hoc networks, there is a lot of 

importance being given to mobility models in wireless networks. Mobility models are of 

two types: traces and synthetic models [46]. Traces are real life models which have a 

number of nodes and really long observation periods, and are very tough to be modeled. 

Synthetic models on the other hand attempt to realistically represent mobile nodes 

without using traces. In these models changes in the parameters can occur in realistic 

time frames.  

5.1) Manhattan mobility model:  

          A very important part of this thesis is the Manhattan mobility model. The 

communication model designed in this thesis is suited for the Manhattan mobility model 

and analyzes the increase in the efficiency of the performance of this particular model 

after communications are incorporated in the model. This model works on the principle 

that follows: The direction of nodes is decided probabilistically at every street 

intersection. In the Manhattan model, the mobile node is allowed to move along the 

horizontal or vertical streets on the urban map. 

          Junction is the point of intersection of two perpendicular grid lines. In this model, 

each node, in our case robot, which is moving in a particular direction, chooses a random 

direction along the grid when a junction is encountered and keeps moving in the chosen
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direction until it reaches the next junction. Figure 5.1 shows an example topography of 

the movement of nodes for Manhattan Mobility Model with nine nodes. The map is used 

to define the path of movement for the robots. Figure 5.2 shows us the movement pattern 

of the robots in this model, where, each line represents a single-lane road. Robot 

movement occurs along the direction shown by the arrows. 

 

Figure 5.1: Depiction of the movement of the nodes using Manhattan mobility model 

 

Figure 5.2: Travelling pattern of a robot using Manhattan mobility model 

          From Figure 5.2, it can be seen that the robots can move along the vertical and 

horizontal streets, and when the junction is encountered, i.e., the intersection of a 

horizontal and vertical street, the robot can choose to go either right, left, up or down 
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with a certain probability. The probability of going straight is 0.5 and the probability of 

going either left or right is 0.25. The robots are initially assumed to be placed randomly at 

the junctions and the movement of a single robot, is decided one street at a time. A few 

changes have been made to the conventional model to well suit the search and rescue 

operation experiments. The robots all start at the same point from the middle of the 

search grid, and obstacles, sensor range and communication between the robots have 

been added to the model. 

5.2) Simulation model fundamentals: 

5.2.1) Target Detection: The robots are all made to start from the mid-point of the 

search grid, and are exploring the search area using the basic Manhattan mobility model. 

A random target is generated at every run. A simple target detection technique is 

employed where the robot matches the coordinates of the next step to the target 

coordinates and the target is detected. When expanded sensor range is employed, the 

robots match the coordinate of the target in the window of the sensor range and if the 

coordinates happen to be in that window range, the target is detected. 

5.2.2) Obstacle avoidance: A basic obstacle avoidance algorithm is used. If a node 

encounters an obstacle, along its path to the next coordinate, the robot retreats back to its 

previous position and a new coordinate and speed is assigned to it. The same procedure is 

employed even with the use of expanded sensor range. The robots also communicate the 

positions of the obstacles encountered along their path to the neighboring robots when the 

simulation is run with the communication model. 

5.2.3) Communication: The robots are allowed to communicate with each other. 

Communication involves a broadcast of the explored area of a single robot i.e., each grid 
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point that has been visited by each robot is broadcast to every other robot in the network. 

This greatly reduces redundancy of the search area. This information can be used to build 

a global map of the environment from each robot’s local map. 

5.2.4) Collision avoidance: For the practical application of the simulations designed, the 

robots need to be able to avoid any form of collision with either the obstacles or with 

neighboring robots. The nodes need to be aware of the positions of the neighboring 

robots and avoid collisions while staying within the communication range of the repelling 

robot. This also helps distinguish between obstacles and other robots. This is done with 

the help of attractive and repulsive forces between the nodes. Each robot is simulated to 

be circular in shape and has a circular repulsion zone around it. For a robot not in the 

repulsion zone of other robots, the next coordinate and speed is randomly generated 

coordinate and assigned. For those robots that are lying within each others’ repulsion 

zones, the speed and direction are calculated as follows: 

          A circular region centered on a robot with a radius of ‘r’ is considered as the 

repulsion region of that robot. If a robot is within one or more repulsion regions of other 

robots, then it will calculate its movement vector based on the repulsion force(s), instead 

of based on the random movement vector. 

          Let  be the repulsive force induced from i to j iteration t and be 

the movement of robot j at time (t-1), regardless of whether it is due to random 

movement or repulsion forces. The movement vector of j at iteration t is:  

 

5.2.5) Boundary conditions: the behavior of the robots at the boundaries is also a very 

important part of the thesis. The boundaries are blocked in the initial part of the 
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simulation code for the robot to avoid it. A robot which can go outside the set boundary is 

probabilistically restricted from making a movement during that iteration thus keeping it 

at the same position. 

5.3) Simulation model developed 

           

 

Figure 5.3: Closer look at the travelling pattern of a robot using Manhattan model 

          From figure 5.3, it is seen that in this model the robot chooses its next direction 

probabilistically when a junction is encountered. The nodes are initially assumed to be 

randomly placed at street intersections. The movement of a single robot is decided one 

street at a time. To start with, each node has an equal probability of choosing any of the 

streets leading from its initial location. After a node begins to move in the chosen 

direction and reaches the next street intersection, the subsequent street in which the node 

will move is chosen probabilistically. The robot is allowed to move in the same direction 

or change directions at the junctions. If the robot can continue to move in the same 

direction, the probability is 0.5, the probability is 0.25 when the robot has the chance of 

turning to the east/north, west/south, depending on the direction of the previous 

movement. If the robot has only one option to move (this occurs when the robot reaches 

any of the four corners of the network), then the node has no other choice except to 

explore that option. 
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          The simulation flowchart for the model designed in this thesis is shown in figure 

5.4 

 

Figure 5.4: Simulation flowchart for the Manhattan mobility model used in the 

thesis 

5.4) Communication model developed:  

          For the basic communication model developed, the search grid is developed, and 

the number of robots and obstacles are initialized. A random target is placed in the grid, 

and the robots all start from a common point to explore the search area. The individual 

robots travelling in a particular direction look one step ahead in the direction of travel and 

if that coordinate is not the target, not an explored point, and not an obstacle, it continues 

moving in that particular direction, and sets the flag to 0.5, which specifies an explored 

coordinate according to our simulation. Otherwise, when it has to change the direction, it 

looks for free neighbors in another direction, if there are none, it goes to a previously 

explored neighbor. It checks all neighbors in clockwise succession for first free neighbor, 
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if none is free, takes a random previously explored coordinate. There must be at least one 

of these, or else robot is trapped, but it can't be since at worst it could back track its path. 

This way we avoid the robot getting trapped within its own explored neighbors. Different 

flag values are assigned for target detection, explored cell, communication and obstacle.  

The flowchart for the simulation model is shown in figure 5.5: 

 

 

Figure 5.5: Flowchart of the communication model developed. 

          The figure 5.5 shows the basic flowchart of the communication model developed, 

but there are many other conditions that are to be considered along the path of travel of 

the robot. For example, the robot also checks for the boundary condition every iteration 

and plans its next step accordingly. Also, the checking of the neighboring vacant cells is 

done in a clockwise pattern, if all the immediate neighboring cells are occupied.  

 

 



 38 

5.4.1) Sensor range:  

          The range of view of a single robot without the incorporation of expanded sensor 

range would be the next immediate cell in its direction of movement. When expanded 

sensor range is applied, the field of view of the robot changes to all the 8 neighboring 

grid cells of the robot. The range of view is shown in Figure 5.6 

 

 

Figure 5.6a): Range of view of the robot with one-step look-ahead 

 

Figure 5.6b)Range of view of the robot with expanded sensor range of 2 

          From Figure 5.6b) we see that the robot’s view with expanded sensor range is the 

same irrespective of the direction in which the robot is moving. Also with a small sensor 

range value of 2, we see the difference in the search area covered by each robot, therefore 

giving a clear picture of how the efficiency of the simulation increases with sensor range 

and communication.
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CHAPTER 6 

 

RESULTS 

 
Part 1: Optical Flow 

 

6.1) Simulation setup:  

 

          As discussed in Chapter 5, the output for the optical flow process is a disparity map 

of stereo images, captured by the robot moving in a staccato manner. We simulated our 

results using the MATLAB R2011B simulator. The simulation environment is the same 

as described in Chapter 3 of the thesis. The robot uses an inbuilt map to move around in 

the environment. Once it is on the experimental field, it captures the images through a 

Microsoft Kinect installed on it, or through an inbuilt camera of the laptop mounted on 

the bot. These images are immediately processed through the algorithm, and the disparity 

map is created, through which the robot can decide its next move.  

 

6.2) Result:  

          Example input images are shown in Figure 6.1: 
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Figure 6.1: The input images a) at the starting point, b) after progressing a few steps. 

          In the above images the distance moved by the robot is clearly noticeable. After 

processing the images through the optical flow process and the Brox algorithm, the 

output observed is shown in figure 6.2:  

 

Figure 6.2: The output of optical flow, the disparity map 
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1) The first image in the first row of the result shows the first input/reference image 

captured by the robot. The second image in the first row shows the gray scale image of 

the second input image. The blacked out portion of the image highlights the area not 

common to the reference image. The third image in the first row is just the gray scale 

image of the second input image. 

2) The second row of the image show the superposition of the downsampled images at 

various stages of the optical flow process. Downsampling of the velocity in both the 

images helps in understanding the flow of motion in the environment.  

3) Results/disparity maps from the optical flow process are shown in the third row. 

Disparity measured in the x direction and the y direction are shown in the first two 

images of the third row. The lighter gray areas are the areas where there is minimum or 

no motion. Gray levels increase with the amount of motion in the scene, i.e., black means 

the maximum motion has occurred. The third image shows the total measured disparity. 

Timing the measured disparity gives the speed at which the robot sees these changes. 

Having the disparity in these three different domains helps the robot in getting a proper 

three dimensional picture of the environment and the relative movement occurring in its 

field of view, thereby enabling it to avoid static and dynamic obstacles.  

 

Part 2: Communication Model for Robot Collaboration 

          In most of the applications of Collaborative Robotics, communication between the 

robots is imperative. When the Manhattan mobility model, which is usually used in 

VANET’s, is applied to robotic nodes, slight variation in it is needed to ensure practical 

application. Since this thesis aims at implementing the particular mobility model in a 
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search and rescue environment, three very important features are introduced in the 

simulations: obstacles, inter-robot communication and expanded sensor range. A detailed 

explanation of the sensor range is given in Chapter 5.  

          This part of the chapter provides an analysis of how communication affects the 

performance of the robots using MATLAB simulations. Communication of the already 

visited coordinates and position of obstacles on the search grid are the most essential data 

communicated between the robots.  

6.3) Simulation Setup 

          The simulator used to perform the simulations is MATLAB R2011b. The robots 

used for the practical application of these simulations are same as described in Chapter 3 

of the thesis. The grid size for the simulations can be altered according to the 

requirements. A number of robots ranging from 1-10, are deployed on the search 

area/experimental grid of size 51 by 51, and the searching algorithm is used to detect the 

target, while avoiding any obstacles encountered along the search path. The number of 

obstacles can be varied from 0-600. The simulation is halted when one robot reaches the 

target or if the number of iterations reaches a maximum count.  

6.4) Simulation Parameters:  

 Parameters  Value 

Simulator MATLAB R2011b 

Area/Grid size 51 x 51, 10x10 

Number of Robots 1-15 

Speed 5cm/sec 

Number of obstacles 0-600 
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Sensor Range 1-10 

Number of Runs 100 

 

Table 6.1: Simulation Parameters 

The parameters varied for the simulations are:  

1) Continuous communication vs No communication 

2) Number of nodes  

3) Grid Size 

4) Number of obstacles 

5) Sensor range 

6.5) Results and Analysis:  

          All the above parameters are varied for different experiments and the graphs are 

plotted to show the change in the characteristics.  

6.5.1) Varying the communication intervals:  

          All of the simulation results are a comparative study for “with communication” vs 

“without communications.” The simulation is carried out for 100 runs, and for every 10 

runs, the comparative graphs are plotted.  

          The following parameters were set to get the results. 
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Parameter Value 

Number of robots 3 

Number of obstacles 0 

Grid size/area of exploration 10x10 

 

Table 6.2: Simulation parameters set for varying communication intervals. 

 

 

Figure 6.3: Histogram plotted for number of attempts in running the code to the number of 

steps taken for target detection. 

          The intervals of communication are varied to see how much communication is 

needed between the robots to efficiently avoid obstacles and detect the target within a 

minimum amount of time. From the literature and practical applications so far, ideally, 

this should help reduce the time to detect the target, as lesser time is spent in exploring 

the area, and the same search area is repeated a fewer number of times by each robot. 
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           From figure 6.3 it is seen that the average time taken for target detection is 

reduced by about 80% with continuous communication. 

 

6.5.2) Varying the number of robots:  

          From the previous section, the effect communication has on the time taken to 

detect the target, can be noted. The next step would be incorporation of obstacles.  

The parameters changed for part a and part b are:  

Parameter Value 

Grid size/Area of exploration 51x51 

Number of obstacles 20, 40 

Number of robots 1-10 

Sensor range 5 

 

Table 6.3: Simulation parameters set for varying the number of robots 

a)        With One-step look-ahead: 

          From the literature, it is known that having obstacles in the search environment has 

a significant effect on the number of steps taken to find the target. The time taken to 

reach the target increases, since in this scenario the robot retreats to a previous position, 

and recalculates a new position once it encounters an obstacle.  
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Figure 6.4: Graph showing the change in the number of steps taken for target detection 

with change in the number of robots with one-step look-ahead. 

          From Figure 6.4, the number of obstacles is kept constant at 20. It can be seen that 

as the number of robots is increasing the time taken to detect the target decreases both 

with communications and without communications. This is because the search area is 

now being explored by many robots, and therefore the area of search for each individual 

robot decreases along the way.  It is also noted that the number of steps taken to locate 

the target is reduced by a narrow margin when the simulations are run with continuous 

communication among the robots. This is because, with continuous communication, the 

robots are aware of the position of obstacles and also the position of the other robots in 

the network, therefore avoiding repetition of searching the same grid cells.  

          Since there is not much difference in the time taken to detect the target, between 

continuous communication and no communication, another very important factor, ‘sensor 

range’ is introduced in our simulations.  
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b) Expanded Sensor range:  

          Vision sensors in robots have always been used for collaborative robotics 

applications. In the simulations that follow, sensor range is shown to have a significant 

effect on the performance of the system. The robots are all assumed to have a 360 degree 

vision, i.e., a sensor range of 5, means the robot can see 5 grid cells ahead from all 4 sides 

and corners of itself.  

 

Figure 6.5: Graph showing the change in the number of steps taken for target detection 

with change in the number of robots, with sensor range 5. 

          The number of obstacles while performing this simulation is set to 40. From figure 

6.5, the significant reduction in the time taken for target detection can be noticed, when 

communication between robots is employed. When sensor range is increased in this 

simulation, a larger number of grid cells is being searched by an individual robot at a 

particular time. Therefore, this ensures more information being shared over the robotic 

network for each step taken by individual robots. With a 360 degree vision in the robot, 

the robot can locate the position of obstacles and neighboring robots, and also 

communicate this information over the network all at once. All this information when 
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communicated in the network ensures the robot can understand the search area better and 

faster therefore, enabling the robots to reach the target faster.  

6.5.3) Varying the sensor range:  

          From the above section, it can be deduced that when the simulations are run with 

the increased sensor range, there is a significant effect on the time taken to detect the 

target. 

The parameters changed for this simulation are:  

Parameter Value 

Area/grid size 51x51 

Number of robots 5 

Number of obstacles 20 

 

Table 6.4: Simulation parameters for change in sensor range 

 

 

 

Figure 6.6) Graph plotted for number of steps taken to reach target with change in sensor 

range. 
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          From figure 6.6, it can be noted that the number of steps taken to detect the target 

is reduced when the sensor range of the robot is increased by a smaller value. This is 

because more amount of information about the search area is being shared by the robotic 

network. But, it is also noticeable that, once the value of the sensor range increases to a 

higher value, there is not much difference in the number of steps taken by the robot with 

communication and without communication-this can be explained by understanding that 

as the ratio of the grid size or the area of exploration to the ratio of the sensor range of 

each individual robot decreases each of the robots understands the search environment by 

themselves, irrespective of the communications between them. 

          A very important conclusion that can be made from this simulation experiment is 

that the performance of the robots when communicating among them depends 

significantly on the ratio of sensor range to exploration area.  

 

6.5.4) Varying the number of obstacles:  

          From section 6.5.2, it is presumed that the incorporation of obstacles has a weighty 

effect on the number of steps taken to complete the search task. From figure 6.4 and 6.5, 

it can be seen; that as the number of robots increases, the number of steps to find the 

target both with no communication and with continuous communication between nodes 

significantly decreases. This can be credited to the fact that every time an obstacle is 

encountered, the robot moves back to its original position and recalculates a new 

coordinate, as already discussed in the previous section. 
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The parameters set for this simulation are:  

Parameter Value 

Grid size/area of exploration 51x51 

Number of robots 5,10 

 

Table 6.5: Simulation parameters set for varying the number of obstacles 

 

Figure 6.7) Graph plotted for number of steps taken by 5 robots to reach target with 

varying the number of obstacles. 

          For this simulation, the number of robots was kept constant at 5, and the number of 

obstacles is increased from 5 to 50 on steps of 5.  In this section we try to look at how the 

communication model performs when the obstacles are increased. As the number of 

obstacles increase, when no communication is employed between the robots, the steps to 

find the target increase linearly. This is due to the fact that the other robots are also seen 

as obstacles and thus there is a lot of redundancy in search area. With communication 

between nodes, the time to finish the search task increases initially and then there is a 

sudden drop at 20 obstacles, and again a linear increase when more than 20 obstacles are 



 51 

introduced. This is endorsed to the fact that more obstacles mean more reiterations and 

thus more steps taken before the target is found.  

          To examine the sudden dip in the graph at 20 obstacles, another set of simulations 

were run with the same ratio of obstacles to robots, and similar results were obtained.  

 

Figure 6.8: Graph plotted for number of steps taken by 10 robots to reach target by varying 

the number of obstacles. 

          Owing to the sequential search nature of the Manhattan mobility model, the sudden 

dip in the graph can be attributed to the fact that each search grid has its optimum ratio of 

number of robots to the number of obstacles, where it is ideal for the particular 

communications model implemented in the Manhattan Mobility model to perform its 

best.  

          For the above simulation, the number of robots is kept constant at 10, therefore we 

see a dip at 40 obstacles. Thus we see, From Figure 6.7 and figure 6.8, that the optimum 

ratio of number of robots to the number of obstacles is 0.25 for the grid size of 51x51.  
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6.5.5) Varying the number of robots and the number of obstacles to maximum 

values 

          From the previously discussed sections, the effects that varying the number of 

robots, number of obstacles, sensor range has on the performance of the communication 

model are understood clearly. But, the maximum number of robots, maximum number of 

obstacles, maximum sensor range that a particular grid size can handle would be a critical 

finding in this thesis.  

 

Figure 6.9: Graph plotted for number of steps to number of obstacles for extreme values of 

number of robots, obstacles 

          The above simulation was run in a grid size of 51x51, and ‘with communications’ 

between the robots. For a grid size of 51x51, from the above simulation it can be seen 

that the maximum number of obstacles the grid can handle for the performance of the 

communication model is 600. Once the number of obstacles is increased for more than 

600, it is seen that for most runs, the robots are trapped by the obstacles, Therefore, 

making it impossible for the robots to find the target. The simulation halts when such a 

condition is encountered.  
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          The case is similar for the number of robots too. Once the number of robots is 

increased to more than 15, most of the robots do not get to move after the initial step, as 

there are already other robots in the calculated positions, or they are surrounded by 

obstacles which obstruct their search path. From figure 6.6, it is already concluded that 

the maximum sensor range this particular communication model can handle would be 10. 

Once the sensor range is increased to a higher value, there wouldn’t be any change in the 

number of steps taken regardless of the amount of inter-robot communication. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

          This thesis demonstrates the working of an optical flow algorithm as well as 

proposes the opportunity of applying communications to the conventional Manhattan 

mobility model for cooperative search and rescue using robots. The experiments involve 

a group of collaborative robots searching for a target. Various parameters are varied: the 

number of robots, inter-robot communication interval, grid size, the number of obstacles 

and the sensor range of the robots. 

7.1 Conclusions: 

7.1.1) Optical flow:  

          The optical flow algorithm implemented shows us how the robot can perform 

search and rescue operations in a busy environment with mobile targets and obstacles. 

From the results it can be deduced that the output of the optical flow process is a disparity 

map that helps analyze the absolute change in the environment by giving the ‘move’ in 

the environment along the initial velocity, final velocity and the time axis. This gives the 

robot a three dimensional view of the scene, which it can use to decide its next move 

efficiently.  

7.1.2) Communication model: 

          The communication model implemented on the famous Manhattan mobility model 

is simulated with and without communication and obstacle avoidance. 
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          Simulation results presented in this work suggest that with a simple obstacle 

avoidance algorithm and inter-robot communication, the robots demonstrate major 

improvement in completing the task of locating the target compared with no inter-robot 

communication. 

          Increasing the number of robots displayed obvious results. There is an inverse 

relationship between the number of robots and the number of steps for completion of the 

task.  Results indicate that inter-robot communication considerably reduces the time 

taken to complete a cooperative search task in the same model. Also, in the absence of 

communication, the number of steps taken to reach the target is considerably reduced 

when sensor range is increased. And, with communications, increasing the sensor range 

further reduces the number of steps taken to reach the target.  Also since power for the 

robots is a major restriction for the robots, the results obtained from the simulations serve 

to be of great use. 

          In the communication experiments, the communication interval was varied from 

continuous to none. In all cases, the sets of experiments using communication, and 

therefore cooperation, outperformed the no communication runs in terms of time for task 

completion.  

          The results also show that, as obstacles are introduced in the search environment 

the time taken for completing the search task increases, as compared to the simulation 

result of no obstacles. Also, as the number of obstacles increase, the time taken for target 

detection also increases, but there is an optimum ratio of number of robots to the number 

of obstacles for which the communication model performs its best. With the help of the 

simulations this ratio for a 51x51 grid size was found to be 0.25.  
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          From the simulation results it is also noted that the maximum number of obstacles 

a 51x51 sized area of exploration can handle, is 600, after which the robots get stuck 

among obstacles and the simulation is halted. The maximum sensor range the grid can 

handle was known to be 10, after which it wouldn’t make a difference in the performance 

irrespective of the communication between the robots. The maximum number of robots 

the search area can handle was found to be 15, after which most of the robots are not able 

to move after their initial position, and the simulation is halted.  

The next section presents some suggestions for future work. 

7.2 Suggestions for Future Work: 

1) Implement the mobility model, the communication model, optical flow algorithm on 

CRR laboratory’s mobile robots. 

2) Consider the use of cognitive radios for inter-robot communication. 

3) Implement the communication model for mobile targets and mobile obstacles. 

4) Implement the optical flow process using input images of a higher pixel range as 

compared to the VGA input images used.  
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