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Abstract

A distribution center is ultimately in the business of shipping orders. Because every

customer’s experience is determined by how timely and accurately an order is received,

distribution centers should focus not only on how fast they process orders, but also on keeping

their operations synchronized and delivering orders on time. In traditional distribution

centers, including internet and catalog fulfillment systems, synchronization and economies

of scale are achieved with “waves.”

A wave is a large group of orders that are picked and packed together, sorted for individ-

ual customers, and shipped. Problems arise when those internal processes are not properly

coordinated. When operational parameters, such as number and timing of waves, are not

planned systematically, missed orders and upset customers are the result.

We present the first systematic investigation of wave planning in order fulfillment sys-

tems. We develop continuous fluid models of work content in an order fulfillment system,

in order to determine the optimal timing and number of waves with the goal of maximizing

service performance against a deadline-oriented metric.
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Chapter 1

Introduction

Within a supply chain, products need to be physically moved from the point of origin to

the point of consumption. During this process, order fulfillment centers receive product from

suppliers, store it for a certain period of time, and fulfill customer orders. In this context,

many production and distribution systems can be defined as order fulfillment systems.

Distribution centers (DCs) receive orders from geographically dispersed customers who

have increased expectations of getting their products at a desired level of quality and

promised time of delivery. With the growing success of e-commerce, distribution centers

often receive a large number of small orders which have to be fulfilled within very tight time

windows. From 1993 to 2007, smaller size shipments increased by around 107%∗. The result

of these trends has been more complex distribution centers and more tightly controlled order

fulfillment systems.

Today, the world’s newest and most successful companies, such as Amazon, Zappos, and

WalMart have increased competitiveness by offering better service promises. For example,

Amazon customers are familiar with this deadline-driven offer: “Want it delivered Monday,

July 11, 2013? Order it in the next 3 hours and 42 minutes, and choose One-Day Shipping

at checkout.” Amazon is taking its service one step further by investing billions to make

next-day delivery standard and same-day delivery an option (Manjoo, 2012). But, how

should DCs align their functions properly in order to fulfill orders in these deadline oriented

environments?

∗2007 Commodity Flow Survey.

1



In our research, we address the problem of controlling order flow within a DC which

operates in a deadline oriented environment. Our main purpose is to develop optimal flow

control policies for DCs to increase their service levels.

1.1 Order Flow in Distribution Centers

The basic flow of an order in a distribution center starts with receiving and put away.

Receiving is the activity of gathering products from suppliers. The put away process moves

products from receiving to designated storage locations. Because the flow is from suppliers

to the DC, these activities are usually called inbound operations. Once the products are

located in storage locations, they are available for outbound activities. These activities

mainly include order picking, accumulation, packing, and shipping.

Order picking, which involves gathering customer orders from storage locations, is the

major activity in most DCs. When multiple orders are picked in groups (batches), they must

be sorted based on destination. Because multiple customers may be assigned to the same

destination, an accumulation process is necessary. Accumulated orders are transferred to

packing and then to the shipping docks.

Among all fulfillment activities, order picking constitutes a significant portion of the

total warehouse operating expense (de Koster et al., 2006). Although automated picking

systems are also common (e.g. automated storage and retrieval systems, robotic picking),

the majority of DCs employ picker-to-parts systems (de Koster, 2004).

In picker-to-parts systems, pickers either pick orders individually (discrete picking) or in

batches. The term sort-while-pick is used when pickers pick multiple products simultaneously

and immediately sort them. The term pick-and-sort is used if sortation is after picking. From

an operational point of view, pickers are segregated into zones and in each zone, pickers may

either pick orders in a synchronized (pickers in different zones pick the same batch of orders

simultaneously) or progressive way (where an order is completed after sequential processing

in all zones).
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1.2 Wave Processing

Within a DC, picking orders in different ways has long been standard practice. One-size

and multi-size batch picking are common in practice, especially when the number of orders

(workload) is small. As daily workload increases, DCs require more complex processes. Daily

workload can also fluctuate significantly in complex fulfillment environments. In highly

complex systems, for example, maximum workload can even be more than twice the average

daily workload (van der Berg, 2010). As a consequence, operating characteristics of DCs

change dramatically (Table 1.1).

Table 1.1: Operating characteristics of DCs (Source: van der Berg, 2010).

Complexity Low Medium High
Number of operators ≤ 15 15-45 ≥ 45
Warehouse area (m2) ≤ 5, 000 5,000-15,000 ≥ 15, 000
Orders per day ≤ 1, 000 1,000-1,000 ≥ 5, 000
Warehouse area ≤ 5, 000 5,000-15,000 ≥ 15, 000
Separate picking areas 1 2-3 ≥ 4
Shipping pattern 1 wave 2-3 waves Individual
Fluctuating workload ≤ 50% ≤ 150% ≥ 250%

Orders can be picked in a single zone, representing the entire picking region, or in

multiple zones. DCs with medium or high complexity require multiple zones. When multiple

pickers in different zones pick for the same pool of orders simultaneously, order release is

controlled with waves. A wave is basically a set of orders grouped by some criteria and which

is released to the floor for processing at the same time. Attributes for grouping might be

a mode of transportation, a group of stores in retail, high priority orders, orders requiring

a specific type of value-added service, or even an individual customer if it orders in large

enough quantities.

A basic wave planning and control process involves creation, release, and monitoring.

In practice, wave planning is performed manually. Wave planners decide the criteria that

determine which orders to include in the wave. Creating waves of orders that are all shipping

via UPS, for instance, can ensure that those orders are ready when the trailers are scheduled
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for pick-up (Franco, 2006). Wave planners are also responsible for determining the size

of waves and releasing them to the floor. If the size (or length) of the wave is too large,

it combines tasks and increases pickers productivity; however, it may not be possible to

complete by the scheduled truck departure. On the other hand, if the workload is too small,

productivity of the pickers will be low, but more orders will be ready for shipment by their

deadline.

Most of the world’s leading warehouse management systems (WMS) providers, such

as SAP and Oracle, offer automatic wave management systems to alleviate inefficiencies of

human-based wave management (SAP Business Solutions, 2012; Oracle Warehouse Manage-

ment User’s Guide, 2012). Although these systems are able to monitor the progress of waves

dynamically, they lack the ability to prioritize orders when the wave length is longer than

two hours. As a consequence, wave planners usually release small waves manually, which

creates underutilized resources and does not guarantee completion time of a wave by its

deadline. Therefore, there is a need to develop policies that determine the number and size

of the waves, their release times, and their contents.

In practice, many DCs release waves sequentially. That is, a new wave does not be-

gin until all the orders in the current wave are completed. Sequential processing of non-

overlapping waves is sometimes referred as fixed wave systems (Bozer et al., 1988). When

orders are grouped in waves based on different attributes, fixed waves create an easily con-

trolled flow of work. For example, when destinations are sorted by distance from the DC

and placed into waves (more distant customers are in the first wave, to allow more time for

transportation; nearer customers are assigned to later waves), there is no need for additional

sortation. Because fixed waves require pickers (and packers) to wait until all others complete

their picks, it creates idleness. To prevent the potential idleness of workers, waves can over-

lap (called dynamic waves). Once the orders are dynamically sent downstream, they have to

be sorted out. A sortation system usually requires high investment, but more importantly,

it adds additional processing time.
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Cutoff Deadline Cutoff Deadline

Orders arriving in this cycle . . . are due by

this deadline

Day 0 Day 1

Figure 1.1: Orders arriving between consecutive cutoff times are due on the next deadline.

1.3 Next Scheduled Deadline Metric

Whether a DC employs discrete, batch, or wave picking, fulfillment processes should

be designed in such a way that customers receive their orders at the promised time. When

balancing internal operations and shipping deadlines, continuous processing versus a cyclical

transportation environment should be considered. Doerr and Gue (2011) show that it is

more important to make orders ready when the truck is on the shipping dock than it is to

minimize flow time. The authors propose a metric called Next Scheduled Deadline (NSD),

which measures the fraction of orders arriving during a specific 24-hour period that are

processed before a specific truck departure (Figure 1.1).

The 24-hour time window is defined by consecutive “cutoff times.” We define cycle to

specify the time interval between successive cutoff times. To manage customer expectations,

DCs publish “cutoff times” and promise to ship orders by a deadline when they are ordered

before that time. If a customer places his order after the cutoff time (i.e., after the current

cycle), he has no expectation that his order will ship that day (the order will be scheduled

to the next day’s deadline). If the order is placed before the cutoff time (i.e., before the

current cycle), the customer expects his order to be shipped the same day. The cutoff time

clarifies expectations and provides a measurable, customer-focused goal for DCs. When the

cutoff time is published, the fulfillment system’s objective is to ship all orders that arrive

between two consecutive cutoff times by the deadline (which is usually before a specific

truck departure). While an early cutoff time implies loss in revenues, a late cutoff time
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means too many disappointed customers. Consequently, the cutoff times should be set as

late as possible, while at the same time, minimizing compensations due to late deliveries.

Table 1.2 shows the cutoff times and the fastest delivery promises by the ten largest internet

retailers (Internet Retailer, 2013).

Table 1.2: The top ten largest U.S. internet retailers’ shipping policies
(Source: http://www.internetretailer.com/).

Companies Shipping frequency Cutoff time Compensation

1. Amazon.com Inc. Overnight 4:30 p.m. EST - Prime* Refund
6:45 p.m. EST - Non-prime Refund

2. Staples Inc. Overnight 5 p.m. EST N/A
3. Apple Inc. Overnight 3 p.m. local N/A
4. Walmart.com Next business day N/A N/A
5. Dell Inc. Next business day 5 p.m. local N/A
6. Office Depot Inc. Same day 10 a.m. local N/A
7. QVC (Liberty Corp.) Overnight 12 p.m. EST N/A
8. Sears Holding Corp. Overnight 7 p.m. EST N/A
9. Netflix Inc. Next business day N/A N/A
10. CDW Corp. Next business morning 5 p.m. EST N/A
* To increase customer loyalty, Amazon offers two-day free shipping to its prime customers and prioritize their

orders.

In addition to top ten internet retailers, many other companies publish their cutoff times

to attract customers and gain a competitive advantage. Amazon has taken its service one

step further by offering same day delivery with full refunds for late deliveries. In its recently

introduced local express delivery policy, Amazon states “When you order using Local Express

Delivery before certain cutoff times, your items will be delivered the same day. If the order

is placed after the deadline, your order will be delivered the next business day. For same day

delivery, you can usually order as late as the times below” (Amazon.com, 2013). Because

NSD counts the number of orders that arrive between two consecutive cutoff times and how

many of them are actually shipped, a 100% service performance can be achieved with an

optimal wave release policy which maximizes the NSD and properly determines the cutoff

times.

6
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1.4 Literature Review

The relevant literature can be classified under three main categories: (1) Research which

focuses on gaining competitive advantage by increasing customers’ experiences, (2) Studies

addressing the design and control of order fulfillment systems, and (3) Studies relevant to

fluid approximations to queueing networks.

The first group of studies addresses time-based competition of fulfillment systems in

which the quality of service (Shang and Liu, 2011) is driven by how timely and accurately

their orders are fulfilled. These works, in general, address delivery time quoting, pricing,

and capacity decisions with the goal of maximizing expected profit. Most of the studies in

this group focus on a uniform delivery time—delivery within a certain time window†, for all

customers. Because demand is driven by the lead time and the price, those studies focus

on finding profit maximizing strategies in time competitive environments. The fulfillment

system (generally a make-to-order company) selects a uniform delivery guarantee. When

the published delivery lead time is short, more customers are attracted which may result in

late delivery penalties. To reduce the risk of late completions, companies may publish longer

quotes which may cause customers to seek other competitors.

Chatterjee et al. (2002) present a two stage decision model to maximize the profit for a

company that quotes uniform delivery dates with incomplete information on real processing

time (which makes it hard to estimate future capacity levels). In the first decision step, the

capacity is not known and the delivery time is quoted by the company (e.g. the marketing

department) which affects the operating characteristics (i.e. the delays in the system) in the

second stage. The model considers an environment in which processing times and arrival

rates are stochastic and consequently the decisions should reflect the unpredictability of

new order arrivals and capacity. So and Song (1998) discuss the relation between delivery

time and capacity expansion decisions. The authors developed a mathematical model to

determine the optimal delivery time quote under fixed and expandable capacities.

†Examples include Pizza Hut’s 30 minutes delivery guarantee and FedEx’s 10:30 a.m. delivery guarantee
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Rao et al. (2005) developed a model for integrating demand and production planning,

which determines an optimal planning cycle and a corresponding guaranteed maximum pro-

duction lead time. Similar to the previous studies, the model optimizes the expected profit

by quoting a uniform guaranteed delivery time to all customers, however with a particular

focus on updating the production schedule in every fixed point in time. Different than above

studies, Duenyas and Hopp (1995) present a non-uniform delivery quote model in which the

only controllable variable is accepting or rejecting a customer order. The authors address

both finite and infinite capacitated single server queueing systems and demonstrate a control

policy with optimal sequencing rules.

The second group of studies focuses on fulfillment operations which mainly include

picking, packing, and shipping processes. de Koster et al. (2007) gives a survey of the design

and control of order picking systems. In practice, manual picker-to-part systems include

both discrete picking, in which orders are assembled one-by-one, and batch picking, in which

multiple orders are picked together. They define wave picking as a manual picker-to-part

method in which orders for a common destination are released simultaneously for picking.

When synchronous picking is performed within small regions of the DC (called zone picking),

release for zones is usually controlled with waves. Items in the orders are then consolidated

in an automated sortation area (Johnson and Meller, 2002).

Speaker (1975), Huffman (1988) and Frazelle and Apple (1994) define wave picking as

a special case of batch-zone picking, where pickers pick very large batches based not on the

number of items, but rather on a length of time. A comparison of different order picking

policies, including wave picking, is given by Petersen (2000).

Franco (2006) distinguishes between batch and wave picking and discusses drawbacks

of wave picking from an industrial perspective. When the DC releases waves, it may be

faced with the problem of sorting. To alleviate the sorting problem, DCs can use pick list

generation algorithms (Owyong and Yih, 2006).
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Some recent studies focus on an alternative policy called waveless picking (Bradley,

2007), in which orders are sent directly to picking upon arrival. Although applications differ

in details (Perry, 2007; Morris, 2008), the objective is to decrease the non-productive walking

of order pickers. Gilmore (2006) discusses and compares wave and waveless policies. Gallien

and Weber (2010) develop a mathematical model to control waveless operations in order to

maximize throughput.

As discussed in Chapter 2, our modeling approach is based on fluid approximation of

an order fulfillment system in which orders are released into waves. (Fluid models take the

advantage of heavy-traffic conditions in queueing models where it is reasonable to replace

discontinuities with continuos functions.) Exact queueing models are not appropriate for

a number of reasons: (1) DC environment is too complex to analyze with exact models.

Because wave policies imply queues and delays during or after the release times (i.e. rush

hour), exact queueing analysis of such cases is difficult even for the simplest assumptions.

(2) We are interested in systems with stationary and non-stationary arrivals. Arbitrary,

non-stationary processes are typically beyond the reach of exact queueing models (Gupta

et al., 2006). (3) The system dynamics and the performance measure we focus on cannot be

analyzed by pure queueing models.

The use of fluid approximations to queueing models has been investigated by many

researchers. The majority of studies have analyzed the behavior of queueing systems in

heavy-traffic conditions. We present only studies relevant to our work.

The first model was developed by Newell (1973) to approximate the stochastic behavior

of n-server service systems with a large n. Borovkov (1964, 1965) discussed limit theorems

for mass service as well as for large values of waiting times. Ridley et al. (2004) implemented

a fluid approximation to a priority call center in which the system receives time varying

arrivals. The authors investigate the effectiveness of the approximation by comparing it

with discrete event simulation.
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Liu and Whitt (2010) introduced a deterministic fluid model that serves as an approxi-

mation for the Gt/GI/st+GI many-server queueing model. The system has a single class of

time varying arrivals, general service time distribution (in parallel), time dependent number

of servers (st) and abandonment time distribution. The fluid model is intended to serve as

an approximation for the queueing model when both the number of servers and the arrival

rate are large, and then the system experiences occasional periods of significant overload-

ing. Such approximations are usually justified by many-server heavy-traffic (MSHT) limits

in which arrival rate and number of servers are increased with the same scaling factor (see

Pang and Whitt, 2008 for details).

Fluid models allow us to approximate the dynamics of a queueing system especially when

there is a fluctuating (non-stationary) arrival stream. A very detailed study on fluctuating

load was given by Gupta et al. (2006), in which system performance was studied under high

loads. The authors addressed the performance experienced by customers that arrived to the

system when it is in high or low load periods.

Perry and Whitt (2011) analyzed multi-class and pools in a series of papers. The

authors followed the same scaling methodology — using the standard many-server heavy-

traffic scaling; such that both arrival rate and the number of servers are scaled up by a factor

of n.

Ward and Bambos (2003) identified the stability of queueing networks with deadlines.

Each arriving job has a deadline, and a single server processes stationary arrivals under

first-come-first served discipline. The job abandons the system if it is not completed by its

deadline. The authors established stability conditions for this system.

More studies can be found in Dieker (2006) for fluid approximations and extremes

in queueing models, Kella and Whitt (1996) for structural properties of storage networks,

and Kella and Whitt (1998) and Whitt and Liu (2011) for very general queueing network

approximations with fluid models.
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This research contributes to the deadline oriented order fulfillment literature in two ways:

(1) Our research has an emphasis on organizing internal operations to maximize a service

objective. With the exception of Doerr and Gue (2011), previous research has focused on

traditional measures such as throughput, flow time, or work-in-process inventory. (2) We

know of no scientific studies that have investigated systematic wave planning in the presence

of deadline-oriented operations. Although wave picking is common in practice, there is still

a gap between practice and academic research. Most of the previous academic studies in

order picking have focused on efficient picking policies.

1.5 Problem Statement

Our research considers ways in which service performance is maximized by releasing the

flow of work optimally to follow on processes. To improve service performance, we propose to

explore wave release policies in a DC that operates against a daily deadline. We believe this

research is the first comprehensive study of wave planning in a distribution environment, and

certainly the first that addresses deadline-oriented operations. We begin with a distribution

environment in which the cutoff time is common for all customers and ask,

Problem 1. What is the optimal timing and number of waves in a DC that operates against

a single daily deadline?

Consider a DC that operates against a daily deadline (e.g. an internet retailer that

ships all orders overnight). An important operational decision for this system is when to

release orders to pickers. How should managers establish these times? Should they be

equally distributed through the day, or does another pattern provide better service? Does

the timing really matter from a customer service perspective? Our purpose is to answer

these and related questions, all with the goal of maximizing service against a daily deadline.

In our first research question, we address fulfillment systems in which both the arrival

process and the server capacity are known. When one of these quantities (or both) is
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uncertain, the utilization of the server becomes a random variable. What should be the

release times if the server’s utilization is unknown? What would be the expected NSD?

What is the risk of planning waves against low (or high) utilization? That is,

Problem 2. How should the timing and number of waves be determined when utilization of

the server is uncertain?

In the first two research questions, we address systems with a single order class. In

a more complex fulfillment environment, there are multiple order classes, corresponding to

customer groups receiving service at different frequencies. This can be interpreted in our

context as orders having different next scheduled deadlines, but the order fulfillment system

may choose to work any orders it likes in a wave.

Problem 3. What should be the timing and the content of waves to maximize service per-

formance across multiple classes of orders?

This problem is considerably more complex because we must address not only the timing

and the number of waves, but also the contents of waves. When a wave is released, it will

include orders for the most imminent departure, but may also include orders for future

deadlines. The advantage of doing so is obvious, but there is also a disadvantage. An order

being worked early consumes capacity that might otherwise be used for an upcoming more

urgent order. How to release orders into waves and when to release those waves must be

considered for an optimal solution to this problem.

1.6 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce

optimal wave release strategies for order fulfillment systems in which there is a single class

of orders. We present the optimal release times for single and multiple wave release systems,

and show how 100% service can be achieved by offering optimal cutoff times. We determine

the optimal number of waves when there is an associated fixed time component to waves.
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We also present the underlying assumptions behind our models and validation of the fluid

model via a discrete event simulation model in this chapter. The models in this chapter

constitute a foundation for analyzing more complex systems. In Chapter 3, we discuss how

to set release times when the workload is uncertain. We show how to adjust single and

multiple waves for a given density function of utilization. We also present a procedure to

adjust the wave release times and the cutoff time when the density function is only known

empirically. In Chapter 4, we introduce systems of multiple order classes in which there are

different deadlines every day. We first address a basic system with multiple order classes

and a single wave.We extend our discussion to multiple class, multiple wave systems and

present our solution approach. We illustrate the use of the models with numerical examples

and discuss how to implement those models in real applications. We offer conclusions and

directions for future work in Chapter 5.
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Chapter 2

Optimal Release Strategies for Order Fulfillment Systems with Deadlines

2.1 Introduction

Consider a DC that receives orders 24 hours a day, 7 days per week, serving a large

enough area to require multiple days of transport to distant customers. Each customer

receives service at the same frequency. We assume there is a single deadline such that each

arriving order is assigned to a constant next scheduled deadline (NSD) time within a day.

We assess the service performance of the DC with NSD.

The DC has a fixed capacity µ which depends on the workforce and which is sufficient

to process all arriving orders. Arriving orders accumulate in a buffer until the next wave

is released, at which time the quantity of orders in that wave decreases at rate µ until the

wave is complete. Upon completion of a wave, the server may go idle, or another wave can

be released. The release of a wave before completion of the current wave (overlapping) is

disallowed. While the server is working a wave, orders in the next wave accumulate, and the

cycle continues. Figure 2.1 illustrates the inventory graphs for this system when there are

three waves.

Without loss of generality, we assume a day starts (and ends) at a deadline. That is,

the start (and end) time of a day is equal to 0 (and 1). For now, we assume the cutoff times

are equal to deadlines.

The workload in a wave is determined by the time since the most recent wave was

released. For example, if orders arrive at constant rate of λ and there are three waves at times

0.3, 0.6, and 0.8 in a day of length 1, the workloads for each wave are (1−0.8)λ+(0.3−0)λ =

0.5λ, (0.6− 0.3)λ = 0.3λ, and (0.8− 0.6)λ = 0.2λ. The first wave consists of orders arriving

between the last wave from yesterday until midnight and orders arriving from midnight until
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di−1 diw1 w2 w3

λ −µ

Figure 2.1: A single class, three wave system. di indicates the deadline on day i; wj is the
release time for wave j.

the release of the first wave today. The objective is to determine wave release times that

maximize the fraction of orders completed by the deadline.

2.2 Single Wave Systems

Consider a single wave system with wave release time w1. Day 0 is effectively a “warm

up day.” Denote the release time of the wave by w1 and constant arrival rate by λ orders

per day. Then, w1λ orders arrive before the release on Day 0. The server finishes processing

in w1λ/µ time. Waves on all following days contain λ orders, so the server works ρ = λ/µ

of the time.

NSD in a single wave system is a function of release time w1, arrival rate λ, and server

capacity µ. By definition,

NSD =
# orders worked that arrived in the current cycle and completed before di

# orders that arrived in the current cycle
.

Because cycle defines unit length of day between successive cutoff times, the denominator

is λ. The numerator is more complicated. Each wave consists of orders that arrived the

previous day (but after the wave release, and therefore did not make the deadline) and

orders that arrived during the current day. (Recall that we assume cutoff times equal to

deadlines). Only the latter count toward NSD, but we assume the former must be worked
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before the current day’s work (i.e., we assume first-come, first-served discipline). Therefore,

the number of orders released today has two components: (1 − w1)λ orders from yesterday

and w1λ orders from today.

If the server finishes the wave before the deadline, then

NSD =
w1λ

λ
= w1. (2.1)

If the server finishes the wave after the deadline, only (1 − w1)µ orders are processed

before the deadline, of which (1− w1)λ do not count toward NSD because they arrived the

previous day. In this case,

NSD =
(1− w1)µ− (1− w1)λ

λ
=

(1− w1)(µ− λ)

λ
= (1− w1)

(
1

ρ
− 1

)
, (2.2)

where ρ = λ/µ.

The server finishes exactly at the deadline when w1 = 1− ρ; therefore,

NSD =

 w1, ρ ≤ 1− w1

(1− w1)(1/ρ− 1), ρ ≥ 1− w1.
(2.3)

and the maximum possible NSD occurs when w1 = 1− ρ, for any value of ρ.

Figure 2.2 illustrates how NSD changes with the release time w1 for three values of

utilization. We have just shown that

Proposition 2.1. For a system with a single wave, the optimal release time w∗1 = NSD∗ =

1− ρ.

The proposition confirms two points of intuition. First, the server should begin work

as late as possible in order to allow as many orders as possible to make it into the wave.

Second, the wave should finish exactly at the deadline.
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(a) ρ = 0.75.
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(b) ρ = 0.5.
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1

10.25
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(c) ρ = 0.25.

Figure 2.2: Different realizations of optimal w1.

Recall that NSD is defined as the fraction of orders arriving between two consecutive

cutoff times that finish by the next deadline. As Doerr and Gue (2011) note, NSD is merely

an accounting measure that can be manipulated by shifting the cutoff time; that is, it can

be increased by making the cutoff time earlier, or decreased by making it later. In neither

case do customers receive their orders any sooner or later. Nevertheless, the cutoff time can

serve at least two purposes; if it is published, the cutoff time establishes expectations for

customers (e.g., Amazon’s overnight delivery guarantee); if not, it can be used as an internal

metric to motivate workers (Doerr and Gue, 2011). For our purposes, an optimal cutoff time

is the latest possible time for which NSD is 100 percent. Proposition 2.1, then, suggests

Proposition 2.2. In a deterministic order fulfillment system with a single wave, the optimal

cutoff time equals the optimal wave release time w1 = 1− ρ.

2.3 Multiple Wave Systems

In practice, distribution centers typically use multiple waves per day—usually 2–6, de-

pending on the workload and number of destinations that must be accommodated. Our

model of a multi-wave system is built on the simple insight that the number of orders, or

load, in a wave is the product of the arrival rate λ and the time since the previous wave
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was released. (We require that waves consist of all orders available to be released.) Before

developing equations for a multi-wave system, we require two results.

Proposition 2.3. In an optimal solution, work on the final wave ends at the deadline.

Proof. Let wN be the last wave release time in an N -wave system. When the last wave ends

at the deadline, (1− wN)λ orders do not make the deadline and wNλ do. Therefore,

NSD =
wNλ

λ
= wN .

Now assume to the contrary of the proposition that there exists a feasible set of release

times such that wN does not finish at the deadline and the corresponding NSD ≥ wN . There

are two cases:

Case 1: Assume there is an optimal solution in which the final wave wN finishes ∆t

before the deadline (0 < ∆t < 1−wN), with NSD = x. Now, shift every wave release ∆t

to a later time. The system is still feasible, and now NSD = x+ ∆t, a contradiction.

Case 2: Assume there is an optimal solution in which the final wave wN finishes after

the deadline, such that NSD ≥ wN . Because the final wave finishes after the deadline, the

number of orders arriving today that make today’s deadline is the number worked before the

deadline (1 − w1)µ minus the number that arrived after the last wave in the previous day

(1− wN)λ. Therefore,

NSD =
(1− w1)µ− (1− wN)λ

λ
,

which can be rewritten as

NSD = wN +

(
1− w1

ρ

)
− 1. (2.4)

Because the server begins working at w1, the number of orders completed before the

deadline is no greater than (1−w1)µ, which must be less than total arrivals in a day λ. That
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is,

(1− w1)µ < λ

(1− w1)µ

λ
< 1

1− w1

ρ
< 1.

Substituting into Equation 2.4 implies NSD< wN , a contradiction.

Proposition 2.3 suggests that the level of unworked inventory at the end of each day

is the same, thus the optimal solution provides a stable workload among days. Should an

optimal solution provide a stable work-in-process inventory at the end of each day regardless

of the initial conditions? No: when the initial work content is greater than µ − w1(λ + µ),

the stability condition does not hold (see Appendix A).

In a system with multiple waves, it is possible that idleness exists between waves. How-

ever,

Proposition 2.4. In an optimal solution, the server is idle only between the deadline and

the first wave release on the following day.

Proof. Let w={w1, w2, ..., wN} be a set of feasible wave release times. Assume there exists

idle time ∆ti between consecutive waves wi and wi+1. It suffices to show that all ∆ti = 0.

During wave i, the server completes [(wi+1 −wi)−∆ti]µ orders. From Proposition 2.3,

we know there is no idle time between the end of the final wave and the deadline, so (1−wN)µ

orders are worked and contribute to NSD in wave N . NSD is the number of orders worked

today that arrived today, divided by the number that arrived today,

NSD =
[(w2 − w1)−∆t1 + (w3 − w2)−∆t2 + . . .+ (wN − wN−1)−∆tN−1 + (1− wN)]µ

λ

=
(1− w1 −

∑N−1
i=1 ∆ti)µ

λ
,
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which is highest when ∆ti = 0 for all i, and there is no idle time after the first wave release.

We are now ready to develop equations for optimal wave releases. Let 0 ≤ wmi ≤ 1 be

the time of the i-th wave on day m. Quantity λ(1−wm−1N ) orders arrive between the deadline

and midnight on day m− 1, and λwm1 orders arrive on day m before the first wave releases.

Therefore, the first wave on day m contains λ(1− wm−1N + wm1 ) orders. Because there is no

idle time between waves (Proposition 2.4), release times must satisfy the following system

of recursive equations.

λ(1− wm−1N + wm1 ) = µ(wm2 − wm1 ),

...

λ(wmn − wmn−1) = µ(wmn+1 − wmn ), (2.5)

...

λ(wmN − wmN−1) = µ(1− wmN ).

We use the RSolve function in Mathematica to solve for the optimal release times for

day m. In a steady state (limm→∞w
m
j ) for an N wave system,

wj =


j − 1

N
, for λ = µ

1− ρj − ρN+1

1− ρN
, for λ < µ.

(2.6)

Figures 2.3–2.5 show the optimal wave release times for different levels of utilization.

Each horizontal line corresponds to a different system, with the indicated number of waves.

Dots on the line correspond to optimal release times. Because there is no idle time between

waves (Proposition 2.4), the time of the first wave w1 does not change, but later wave times

adjust as the number of waves increases. In fact, Equations 2.5 suggest a relationship between
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Figure 2.3: Optimal wave release times: ρ = 0.5.
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Figure 2.4: Optimal wave release times: ρ = 0.75.
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Figure 2.5: Optimal wave release times: ρ = 0.95.
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consecutive release time intervals:

wn+1 − wn
wn − wn−1

= ρ,

which means that successively earlier wave lengths are 1/ρ larger. This can be seen in

Figures 2.3 and 2.4 especially.

Recall that only orders arriving after the final wave will not make the deadline, and

therefore NSD = wN . In the expression above, substituting N for j and simplifying gives

the optimal NSD for a system with N waves and utilization ρ,

NSD∗ = wN = 1− ρN(1− ρ)

1− ρN
. (2.7)

As expected, wN = 1−ρ when N = 1, and wN (and NSD) converges to 1 as the number

of waves N →∞. Figure 2.6 illustrates how NSD varies for systems with one to five waves.

As utilization increases, the maximum possible NSD decreases, converging eventually to

(N − 1)/N (Equation 2.6). The plot on the right shows how many hours before the deadline

the cutoff time should be set in order to achieve 100 percent NSD.
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Figure 2.6: Two perspectives on maximum possible NSD for different numbers of waves.

The plot illustrates that an aggressive service promise via a late cutoff time can be kept

only by increasing the number of waves, or by adding capacity (decreasing utilization), or
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both. The plot also shows that there is little marginal benefit to increasing the number of

waves beyond four or five.

2.4 Optimal Number of Waves

We have shown that the last wave release time wN and therefore NSD converges to 1 as

the number of waves N → ∞. Figures 2.3–2.5 show that there is little marginal benefit to

increasing the number of waves beyond four or five. From Equation 2.5, for j > 2, we have

λ(wj − wj−1) = µ(wj+1 − wj).

Rewriting this expression gives us the wave-size (or workload) ratio of consecutive waves:

Lj+1

Lj
=
λ

µ
= ρ,

where Lj denotes the workload of the j -th wave. More generally, the workload ratio of any

two waves in a system with multiple waves can be written as:

Lj+n
Lj

= ρn.

Wave size ratios depend on the assumption that processing rate is constant without

regard to the size of the wave. However, for many order picking systems, there is a fixed

time component to a wave. For example, in a manual picking system, workers must walk a

tour to gather items in the wave. Thus, the processing time is comprised of a fixed time T

to walk the tour and a variable processing time Lp that depends on the number of picks in

the wave L and the time p to make a single pick. The processing rate can be calculated by

dividing the total number of picks with the total time required to traverse the picking area
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and pick orders. When the number of orders in a wave is equal to L, the process rate is

µ(L) =
L

T + Lp
.

Modifying Equation 2.5 with µ(L),

T + pλ(1− wm−1N + wm1 ) = wm2 − wm1 ,
...

T + pλ(wmn − wmn−1) = wmn+1 − wmn , (2.8)

...

T + pλ(wmN − wmN−1) = 1− wmN .

We use the RSolve function in Mathematica to solve for the optimal release times for

day m and determine the steady state release times for an N -wave system. The right-hand

side of the above equations refers to the allowed time of a wave in order to complete the

work-content pλ(wmn − wmn−1) including the fixed time T (left-hand side). This observation

leads to:

Proposition 2.5. When processing rate is a function of walk time, pick time and wave size,

the optimal number of waves

N∗ =

⌊
1− λp
T

⌋
.

Proof. For a system with N -waves, the first wave is released at w1 = 1−NT − λp. Because

w1 ≥ 0, 1−NT − λp ≥ 0, and therefore the maximum number of waves is

N∗ =

⌊
1− λp
T

⌋
.
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Proposition 2.5 leads us to the plots in Figure 2.7, where we illustrate different levels

of picking volumes when T = 0.05 (i.e., 1.2 hours of total fixed time including operations in

picking, packing, and shipping).

2 4 6 8 10 12 14
Waves

0.6

0.7

0.8

0.9

NSD
λ p = 0 . 4

λ p = 0 . 6

λ p = 0 . 8

Figure 2.7: Change in NSD with respect to the number of waves when there is a fixed time
component associated with each release.

As λp increases, the optimal number of waves decreases. For example, when λp = 0.4,

the optimal number of waves is N∗ = 14 and maximum NSD=0.93. (However, there is little

marginal return beyond 5 waves). Suppose λp = 0.8, then the optimal number of waves is

only 4 and the maximum NSD is 0.77. In this case, workers either require more time to pick

items or must to pick more items, both resulting in longer processing times and therefore

fewer waves.

2.5 Validation of Fluid Approximation

In the previous sections, we assume a fluid model, which assumes a continuous stream

of work that flows into the system. In a typical order fulfillment setting, however, orders

arrive at discrete times. Therefore, we should determine when the fluid approximation is

valid. Fluid models as approximations to queueing systems have an extensive literature (see

especially Bernd S. et al., 2011; Dai, 1995; Dai and Jennings, 2003).
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Recall that, the accuracy of the fluid approximation improves as the arrival and service

rate or the number of servers becomes large (Section 1.4). The typical method of validating

a fluid approximation is to increase the number of servers and the corresponding arrival rate

while keeping the utilization constant (Pang and Whitt, 2008). The arrival rate of a system

with k servers is λk = kµ. We use a similar but different approach. Because our interest

is not the number of servers, but the length of the job (i.e., the service rate), we scale up

the service rate parameter µ and keep the number of servers constant, thereby maintaining

a constant utilization.

dwN

(a) 5 orders each of which takes
two hours of processing.

dwN

(b) 20 orders each of which takes
half hour of processing.

dwN

(c) Infinitely many number of or-
ders completed instantaneously.

Figure 2.8: Accuracy of the fluid approximation improves as orders become more indivisible.

Figure 2.8 illustrates the approach. In the leftmost example, the final wave of the day

begins two hours before the deadline, in a system with five workers. The final wave contains

five orders, each taking two hours to complete. The work content, then, is 10 order-hours.

The middle figure shows the same amount of work content spread among 20 orders, each

taking 30 minutes to complete. When the wave is released, 15 orders wait in the queue until

a server is free. The fluid model is a limiting case in which the work content is divided into

infinitely small portions, which are then completed in a continuous stream of output.

If the time to process an order is stochastic, we should expect that some orders will

finish after the deadline, and that the expected number of orders missing the deadline will

vary based on how the work content is modeled—or said another way, based on how long
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the expected processing time is with respect to the length of the final wave. By contrast,

the fluid model assumes work is deterministic and that all orders in the final wave make the

deadline. Is this a problem?

To answer this question, we simulated a three-stage order fulfillment system, corre-

sponding to the picking, packing, and shipping functions in a DC. To illustrate the point,

consider a fulfillment system in which each stage has twenty servers, representing workers in

those functions. We consider three levels of utilization: 0.5, 0.75, and 0.95. For a four wave

system, the lengths of the final waves are equal to 24× (1−w4) = 56 minutes, 2.78 and 5.27

hours for ρ = 0.5, 0.75, and 0.95, respectively.

The goal is to determine at what ratio of expected processing time to length of final

wave the fluid model breaks down, and whether common practice is typically less than that

ratio. We begin with a very long expected processing time of 1,024 minutes (17 hours),

then half the processing time in successive experiments until expected processing time is

just 1 minute. Processing time is divided equally among the three stages, and processing

times in each stage are exponentially distributed. We adjust the (exponential) arrival rate to

maintain the appropriate utilization. Runs last 30 simulated days, with 3 days of warm-up

and 25 replications. For each run, we compare the average simulated NSD with the fluid

model approximations, which were 96.7%, 88.6% and 78.1% for ρ = 0.5, 0.75, 0.95. We show

how to find wave release times and resulting NSD levels in Section 2.3.

Table 2.1 shows the results. As expected, the model performs very poorly when expected

processing time is longer than the length of the final wave (ratio greater than 1). When

the ratio is less than about 0.3, the fluid model approximation is within one percent of

the simulated value. The fluid model always overestimates NSD because it assumes full

utilization of the (single) server and deterministic service time. In the simulated (and a

real) system, the final wave sometimes finishes early, but NSD is no higher because no more

orders get processed before the deadline. However, sometimes the final wave finishes late

and orders fail to meet the deadline. NSD in this case is lower than predicted by the fluid
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Table 2.1: Validation of fluid model via simulation.

ρ = 0.50 ρ = 0.75 ρ = 0.95
Processing time E[NSD] error(%) ratio E[NSD] error(%) ratio E[NSD] error(%) ratio

3,072 1.8 94.8 53.9 2.6 85.9 18.4 3.2 74.9 9.7
1,536 8.4 88.2 26.9 13.2 75.3 9.2 12.8 65.9 4.9
768 29.5 67.1 13.5 37.4 51.2 4.6 37.2 40.9 2.4
384 60.9 35.8 6.7 63.0 25.6 2.3 62.7 15.4 1.2
192 79.4 17.2 3.4 79.4 9.2 1.2 74.1 3.9 0.6
96 88.8 7.9 1.7 86.6 1.9 0.6 78.0 0.1 0.3
48 93.8 2.9 0.8 88.3 0.2 0.3 78.1 0 0.2
24 96.2 0.5 0.4 88.4 0.2 0.1 78.1 0 0.1
12 96.6 0.1 0.2 88.5 0.1 0.1 78.1 0 0
6 96.7 0 0.1 88.5 0.1 0 78.1 0 0
3 96.7 0 0.1 88.5 0 0 78.1 0 0

model. In our experience, a ratio of average processing time to length of final wave of about

1/3 is realistic for most distribution environments.
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Chapter 3

Setting Wave Release Times in the Presence of Uncertainty

3.1 Introduction

In the previous chapter, we discussed how to set release times when the workload is

known. Most order fulfillment systems, however, experience workload fluctuations from day

to day. Some fluctuations are cyclical. Think of weekly patterns, such as peak workload on

Sunday as experienced by online retailers (Bates, 2012). Because of workload uncertainty,

planning operations based on an average daily workload results in poor performance. Work-

load can also fluctuate during the day as, for example, customers place orders in the morning

or after work.

Consider a DC that has been designed to accommodate a certain workload. There are

two potential consequences: (1) If the DC has to process significantly higher volumes, then

it will not finish all orders in time, resulting in lower NSD. (2) If the workload is lower, then

the system completes orders before the deadline, and labor resources are underutilized. In

addition to workload uncertainty, worker absenteeism and other causes of variable capacity

lead to uncertainty in utilization.

We have shown that wave release times (and the number of waves) can have a significant

impact on NSD for a given utilization level. But how should the release times be set when

utilization is uncertain? What is the risk of releasing waves too early or too late?
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3.2 The Case of a Single Wave

We start by describing how to adjust a single wave. For a fixed release time w1, we

showed that (Equation 2.3),

NSD =

 w1, ρ ≤ 1− w1

(1− w1)(1/ρ− 1), ρ ≥ 1− w1.

Figure 3.1 shows NSD as a function of utilization for three specific values of w1.

NSD

ρ
0

1

10.25

0.75

0.50

0.25

0.50 0.75

w1 = 0.75

w1 = 0.50

w1 = 0.25

Figure 3.1: Service performance versus utilization ρ, for three wave release times.

When w1 = 0.5, for example, NSD is at its maximum 50% for all values of ρ ≤ 0.5.

In such cases, the server would finish at or before the deadline, but there is no increase in

performance because all orders arriving after the release still miss the deadline. For ρ > 0.5,

performance on NSD drops off sharply because many orders in the wave finish after the

deadline. The curves illustrate that, in the presence of uncertainty in workload or capacity

(i.e., uncertain ρ), setting the release time too late (high w1) risks a significantly lower

performance on NSD if utilization is actually high, but setting it too early (low w1) limits

the highest possible NSD if utilization is actually low.

Consider two systems—one with a fixed utilization 0.5 and one with utilization dis-

tributed Uniform[0,1]. The optimal release time for the first system can be calculated from
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Proposition 2.1: w1 = 1− ρ = 0.5. To compute the maximum expected NSD in the second

case, we use Equation 2.3 with density function {f(ρ) = 1; 0 ≤ ρ ≤ 1}.

E[NSD] =

∫ 1

0

NSD(w1, ρ)f(ρ) dρ (3.1)

=

∫ 1−w1

ρ=0

w1f(ρ) dρ+

∫ 1

ρ=1−w1

(1− w1)

(
1

ρ
− 1

)
f(ρ) dρ

= (w1 − 1) loge(1− w1).

Taking the derivative and setting equal to zero,

d

dw1

E[NSD] = loge(1− w1) + 1 = 0,

which has solution

w1 = 1− 1

e
≈ 0.6321,

which is later than in the deterministic case. From Equation 2.3, maximum NSD for this

release time is approximately 0.6321, but expected NSD is (1− 1/e− 1) loge(1− 1− 1/e) =

1/e ≈ 0.3679. Expected NSD for w1 = 0.5 would have been 0.3466. This simple example

shows that releasing a single wave later than it otherwise would have been released improves

expected NSD.

3.3 Adjusting Multiple Wave Release Times

That uncertainty should lead to a later release time seems to violate the intuition that

a later release time is “riskier.” As we now show, it is not true that uncertainty of utilization

leads to a later optimal release time for the more practical case of multiple wave releases per

day.

To see why, consider the optimal wave release times for many values of ρ (call them

ρ̂). We can then compute expected NSD for each set of times, given a density of utilization

f(ρ). Because the observed utilization ρ may not equal the planned utilization ρ̂, we must
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develop expressions for NSD for two possible cases. If ρ < ρ̂, the last wave finishes early and

there is idleness between consecutive waves. Only orders arriving after the last wave miss

the deadline, so NSD = wN .

If ρ > ρ̂, the first wave does not finish before the release of the second; the second does

not finish before release of the third; and so on, and the last wave does not finish before the

deadline. From Equation 2.4,

NSD = wN +

(
1− w1

ρ

)
− 1.

From Proposition 2.3, we know w1 = 1− ρ̂. Therefore, ρ̂ = 1− w1 and

NSD =


wN , ρ ≤ 1− w1 = ρ̂

wN +

(
1− w1

ρ

)
− 1, ρ ≥ 1− w1 = ρ̂.

(3.2)

Figure 3.2 illustrates the relationship between planned utilization ρ̂ and observed utiliza-

tion ρ. Planning for a high utilization means an earlier first release time w1, and therefore a

lower maximum NSD; planning for low utilization allows a higher NSD if observed utilization

is less than planned, but increases the chance that observed utilization will exceed planned.

Which curve provides the highest expected NSD depends on the density of utilization f(ρ).

The curves in Figure 3.2 are easy to generate, and for a given f(ρ) we can easily integrate

them to compute expected NSD.

To illustrate the procedure, we assume utilization is distributed Uniform[0,1] and use

Equation 3.2 to compute NSD for many values of planned utilization ρ̂. Each curve in

Figure 3.3 is a piecewise-linear representation of expected NSD for 100 values of ρ̂. The

maximum point for a single wave system is E[NSD] = 0.3679, which equals the optimal

value of the single-wave model as expected. Release times for the best four-wave solution

are w1 = 0.32, w2 = 0.597, w3 = 0.785, and w4 = 0.913, which produce E[NSD] = 0.855.

Had we used the deterministic solution for ρ = 0.5, release times would have been w1 =

0.5, w2 = 0.767, w3 = 0.9, w4 = 0.967, with E[NSD] = 0.813. In other words, adjusting
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Figure 3.2: Each curve shows how NSD changes for different levels of observed utilization
with respect to planned utilization.

release times for the uncertain utilization increases expected NSD by 4.2 percent. Table 3.1
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Figure 3.3: Maximum expected NSD achieved when release times are adjusted to earlier
times.

shows the percent improvement in expected NSD by adjusting the release times for other

numbers of waves.
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Table 3.1: Adjusting release times in the presence of workload uncertainty improves expected
NSD.

Number of waves 1 2 3 4 5 6 7 8
E[NSD|ρ=0.5] (%) 34.7 67.9 77.5 81.3 83.0 83.9 84.3 84.5

E[NSD] (%) 36.8 68.4 79.8 85.5 88.9 91.2 92.7 93.9
Improvement (%) 2.1 0.4 2.3 4.3 5.9 7.3 8.4 9.4

0.2 0.4 0.6 0.8                0.95
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NSD
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Figure 3.4: Ten different levels of planned utilization for the case study (left) and corre-
sponding average NSD (right).

3.4 An Empirical Procedure to Adjust Release Times

In previous section, we showed how to adjust release times for a known density function

of utilization. In practice, of course, the density is unknown, so variability of utilization must

be handled in another way. Here we describe an empirical procedure to increase expected

performance on NSD, given historical utilization data. (We used 80 day workload and

shipment data of an industrial DC to analyze the variability of utilization).

First, we generate performance curves for many levels of planned utilization, as in

Figure 3.2. Each curve corresponds to a different set of release times and tells what NSD

would be for any value of observed utilization. Next, for each value of planned utilization

(and its associated curve) we simply record what NSD could have been for each day in the

data set. The planned utilization giving the highest average NSD gives us the best set of

release times.

The left plot in Figure 3.4 shows curves corresponding to ten different levels of planned

utilization. Data points on the bottom correspond to the observed utilization for each day
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in the data set. The right plot shows average NSD for the ten levels of planned utilization.

The highest value of NSD is 80.4%, which corresponds to a planned utilization of 80% and

release times w1 = 0.200, w2 = 0.424, w3 = 0.690, and w4 = 0.841.

As expected, the best value of planned utilization when accounting for variability of

utilization is greater than the average utilization in the historical data. Higher planned

utilization means earlier wave releases and a reduced chance that the final wave will not

finish before the deadline.

3.5 Setting the Cutoff Time

To this point we have assumed that the cutoff time equals the deadline, which is hardly

realistic if the cutoff time is to be published to customers. How should a cutoff time be

established such that orders make the deadline “almost always?”

Note that all orders arriving after the final wave will miss the deadline, so the cutoff

time should be no later than wN , but setting it earlier than wN means the final wave contains

orders not due at the upcoming deadline. We conclude, then, that the cutoff time should

equal wN . Why not release the final wave earlier to get a headstart on the final orders

arriving for the next deadline?

Define the cutoff time setback to be the time between the cutoff time and the deadline.

The left plot in Figure 3.5 shows daily performance on NSD for the data set when release

times are set according to ρ̂ = 0.8 and the cutoff time is equal to wN , for a setback of 3.8

hours.

All customer requests were met on 53 of the 80 days, or 66.3% of the time, which is

analogous to Type 1 service in inventory theory. The same policy yields a fill rate (Type 2

service) of 97.24%. The plot on the right shows Type 1 and Type 2 service levels for different

levels of ρ̂. In each case, the cutoff time is set to the new final release time wN .
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Figure 3.5: Performance results when the cutoff time is adjusted. On the left, NSD for
each of the 80 days in the data, sorted from high to low. On the right, Type 1 and Type 2
performance for different levels of cutoff time setback.

3.6 Adjusting The Number of Waves

Proposition 2.5 shows how to determine the optimal number of waves for a given uti-

lization ρ. When ρ is uncertain, N becomes uncertain and determining an optimal policy is

more difficult.

Consider a fulfillment system in which planned utilization is less than observed utiliza-

tion. High utilization implies releasing fewer waves; however, Equation 2.6 suggests more

waves to achieve the same level of NSD. As a consequence, there is a risk of releasing more

waves and missing some portion of the orders. Our objective is to determine the number of

waves for a fulfillment system in which the utilization is uncertain.

We first consider a system with a single wave release. As in Section 2.4, the fixed time

component is T . If the server completes the wave before the deadline, then the wave will

be completed at w1 + λ/µ + T . Because the wave is completed before the deadline, w1λ

orders count toward NSD, and NSD = w1. If the server finishes the wave after the deadline,

(1 − w1 − T )µ orders are processed, of which (1 − w1)λ do not count toward NSD. In this
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case,

NSD =
(1− w1 − T )µ− (1− w1)λ

λ

=
(1− w1)(µ− λ)

λ
− T

ρ

= (1− w1)

(
1

ρ
− 1

)
− T

ρ
.

Consequently,

NSD =


w1, ρ ≤ 1− w1 − T

(1− w1)

(
1

ρ
− 1

)
− T

ρ
, ρ ≥ 1− w1 − T

which is maximized when w∗1 = 1− ρ−T . As expected, the optimal release time is now

T earlier and as it increases, the wave should be released earlier, resulting in a lower NSD.

When the workload is uncertain, the expected NSD can be calculated from

E[NSD] =

∫ 1

0

NSD(w1, ρ, T )f(ρ) dρ. (3.3)

To find the optimal release time of a single wave, we take the derivative of the above expres-

sion with respect to w1 and set it equal to zero.

To illustrate the procedure, consider the following example. Assume that the server’s

utilization is distributed Uniform[0,1]. What is the improvement in expected NSD when the

release time of a single wave is adjusted based on the fixed time wave component? Using

the above equation,

E[NSD] =

∫ 1

0

NSD(w1, ρ, T )f(ρ) dρ

=

∫ 1−w1−T

ρ=0

w1 dρ+

∫ 1

ρ=1−w1−T

[
(1− w1)

(
1

ρ
− 1

)
− T

ρ

]
dρ

= (w1 + T − 1)log

[
w1 + T − 1

T − 1

]

and E[NSD] is maximized when
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w∗1 =

(
1− 1

e

)
(1− T ).

When ρ is uncertain, the adjusted release time is always later than what it would

otherwise be: w1 ≥ 1− ρ̂−T . We find the expected NSD by inserting w∗1 into Equation 3.3:

E[NSD|w∗1] =
1− T
e

.

The expected NSD is a linear function of T for the optimal value of w∗1. Figure 3.6

shows that releasing a single wave later than it otherwise would have been released improves

expected NSD.

E@NSD w = H1 - 1 �eL H1 - TLD

E@NSD w = H1 - 1 �eLD
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0.35

E@NSDD

Figure 3.6: Expected NSD considering only uncertainty (bottom curve) and expected NSD
considering both uncertainty and the fixed time component (top curve).

For the above example, although considering the fixed time component does not produce

significant improvement (1.21%) when we account for multiple stages (e.g. packing and

shipping), it produces more than 3.5%.

Now, consider a multiple wave system. A lower server utilization suggests releasing

more waves (limρ→0N
∗ = 1/T ). A higher utilization, on the other hand, implies fewer

waves. What should be the optimal number of waves when the utilization is uncertain?

38



As before, when waves are completed before the deadline NSD = wN , otherwise the

pickers process µ(1 − w1 − NT ) many orders, of which λ(1 − wN) of them arrive after the

last release and thus do not count toward NSD. The resulting NSD is [µ(1 − w1 − NT ) −

λ(1− wN)] = wN + (1− w1 −NT )/ρ− 1. Consequently,

NSD =


wN , ρ ≤ 1− w1 −NT = ρ̂

wN +
1− w1 −NT

ρ
− 1, ρ ≥ 1− w1 −NT = ρ̂.

(3.4)

For given values of w1, wN , we can calculate NSD; however, for different values of ρ, the

number of waves N changes. To determine the optimal N that maximizes expected NSD,

we follow a similar but slightly different procedure than the one in Section 3.3. The steps of

the procedure are

(1) For a given T and f(ρ), determine ρ̂ = E[ρ]. Determine N = b(1− ρ̂)/T c.

(2) Use the recursive system given in Equation 2.8 to determine w1, wN and NSDN .

(3) Insert w1, wN∗ into Equation 3.4 and use it in the following steps.

(4) Calculate the loss `(ρ) associated with releasing N waves.

(4.1) Calculate down-side loss `d(ρ):

For ρ ≤ ρ̂ evaluate Equation 2.8 and determine resulting NSDd,

`d(ρ) = NSDd − NSDN .

(4.2) Calculate up-side loss `u(ρ):

For ρ ≥ ρ̂, repeat (3) and determine resulting NSDu,

`u(ρ) = NSDN − NSDu.

(4.3) When the actual utilization is ρ, total loss `(ρ) = `d(ρ) + `u(ρ).

(5) Determine expected NSD and expected loss of using N waves.

(5.1) Expected NSD:

E[NSD|N ] =

∫ 1

ρ=0

NSD(w1, wN , ρ)f(ρ)dρ.
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(5.2) Expected loss of using N waves:

E[`|N∗] =

∫ 1

ρ=0

`(ρ)dρ.

(6) Calculate expected NSD after expected loss E[NSD|N ]− E[`|N ].

(7) While N > 0, decrement N by one and go to step 2.

(8) Select the N∗ that produces the maximum E[NSD].

We illustrate the procedure with the following example. Assume that the utilization is

distributed Uniform[0,1] and T = 0.1. Proposition 2.5 suggests N = b(1 − 0.5)/0.1c = 5.

When ρ = 0.5, the first and the last release times are w1 = 0, w5 = 0.8 resulting in NSD=0.8.

Suppose that observed utilization is lower than planned, to say ρ = 0.25. Although the

maximum number of waves should beN∗ = b(1−0.25)/0.1c = 7, because the number of waves

were decided based on the planned utilization, the number of waves would still be five. A

lower observed utilization, however, suggests different release times: w1 = 0.25, w5 = 0.8664

(NSD=86.6%). Consequently, there will be a 6.64% loss in NSD due to releasing five waves,

but not adjusting the release times (downside loss).

Now suppose that observed utilization ρ = 0.75. The maximum number of waves should

be N∗ = b(1 − 0.75)/0.1c = 2. The resulting NSD would be 0.536. Because the maximum

number of waves is two, releasing five waves must produce a lower NSD. When there are five

waves, total fixed time is 50% of the day, resulting in late completion of the waves (because

remaining capacity will not be enough to complete the waves before the deadline). Releasing

five waves will produce an NSD equal to 0.397. The loss in NSD due to planning for low

utilization is 0.536-0.397=0.139 (upside loss).

If the planned utilization is equal to observed utilization (ρ̂ = ρ = 0.5), then there

would be no loss in NSD. For all other values of ρ, there is either downside or upside loss

which needs to be considered. We calculate the loss for each value of ρ with increments of

0.1 (Figure 3.7).
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Figure 3.7: Loss associated with using N waves.

In Figure 3.7, for data points where ρ ≤ ρ̂, there would be a potential increase if release

times were adjusted. In this case, releasing more waves decreases the loss (more orders will

be completed). When observed utilization is higher than planned, there are too many waves

and therefore the picking density is low (due to excessive fixed time in operations). As a

result, the last wave (in this example, the fifth wave) will be completed after the deadline

and NSD will be lower than a system with fewer waves. Taking the expectation of `(ρ), we

calculate the expected loss of releasing a certain number of waves. Subtracting each loss from

its expected NSD value, we determine the optimal number of waves that maximizes NSD. For

our example max{E[NSD|N = j]−E[`|N = j]} = max{0, 0.228, 0.267, 0.279, 0.454} = 0.454

when N∗ = 5. Recall that we have assumed T = 0.1 which means 2.4 hours per wave. In a

more realistic fulfillment system, the total fixed time in all processes is no longer than two

hours. If we assume T = 2 hours, then Proposition 2.5 suggests releasing (1−0.50)/0.083 = 6

waves. The solution for a six wave system suggests w1 = 0 and w6 = 0.837. In this case, the

expected NSD E[NSD|N = 6, T = 2 hours] = 0.433. Following the procedure given above,

the expected NSD is maximized when N∗ = 2. Release times for two wave system are w1 = 0

and w2 = 0.502 which produce E[NSD] = 0.621 (18.8% higher than a six wave system).
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In the above example, we assume a known density function for the server’s utilization

and demonstrate the use of our procedure to adjust the number of waves. In practice, the

density function is not known, therefore, historical utilization distribution should be used to

determine the optimal number of waves. The procedure, in this case, will be slightly different

than the one we present above (summation is required instead of integration). Nevertheless,

we can use the approach given in Section 3.4 to determine the expected NSD and insert it

into the Step 5 in the above procedure.
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Chapter 4

Wave Release Strategies for Systems with Multiple Order Classes

4.1 Introduction

Our first and second research questions address systems with a single class of orders.

That is, the DC ships all customer orders at the same time. In many order fulfillment

environments, there are multiple deadlines per day. Different deadlines may be the result of

multiple delivery modes. For example, a retailer may have a deadline for FedEx, UPS, and

even one or more LTL carriers. Some retailers, on the other hand, may control their own

shipment operations. Customers farther from the DC may have earlier deadlines (to allow

for timely deliveries); customers located closer to the DC may be assigned to later deadlines.

Consider a DC that processes three different order classes with three waves (Figure 4.1).

d1 d2 d3

3

1

2

w1

3

1

2

w2

3

2

1

w3

Figure 4.1: A three-class, three wave system.
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Each class has a different deadline di, i ∈ {1, 2, 3}. When a wave is released, it includes the

most imminent orders, but may also include orders for future deadlines. (For waves 1 and 2,

the most imminent orders are class 1 orders, having a deadline d1.) Should waves release all

classes of waiting orders, or release only the most imminent ones? When should the waves

be released, and what should be the content of the waves? In this chapter, our objective is

to determine the optimal timing and mixture of waves in multiple order class, multiple wave

systems.

Before specifying an initial model, we need to define a “system NSD,” which accounts

for all order classes. Because there are multiple classes of orders (deadlines), each class has

its particular NSD:

NSDi =
# class i orders that arrived in the current cycle and completed before di

# class i orders that arrived in the current cycle
,

i ∈ {1, . . . , K}. Because the time between successive deadlines is one day, the denominator

is λi. Therefore, the total workload in a K class system is L =
∑K

i=1 λi. The numerator

depends on multiple factors: the number of order classes K; arrival rates λi, i ∈ {1, . . . , K},

deadlines di, i ∈ {1, . . . , K} and the number of waves N . When those parameters and

variables are defined, the system NSD can be written as a weighted combination of each

NSDi:

NSD =
1

L

( K∑
i=1

λiNSDi

)
. (4.1)

We use Equation 4.1 throughout this chapter to calculate system NSD. (Hereafter, NSD

denotes the system NSD.) The server’s utilization is equal to the total workload divided by

the total processing capacity µ:

ρ =

K∑
i=1

λi

µ
=
L

µ
.
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For now, we assume that the cutoff time of each order class is equal to its deadline and that

completed orders are instantaneously ready for shipment. In a system with K order classes,

waves complete some classes before their deadlines and some after their deadlines. Releasing

multiple order classes in waves reflects realistic operations. In practice, pickers pick orders

from all classes in their picking tours. Consequently, waves include multiple order classes

that are processed together.

4.2 Single Wave Systems With Multiple Order Classes

Our approach is similar to the one given in Section 2.2. Because there is a single wave,

all orders accumulated between the release times of two consecutive days constitute the total

workload. That is, the server processes orders of all classes in a single wave.

The simplest problem is to determine a single wave release time when there are two

order classes with deadlines d1 and d2. The first deadline d1 represents the earliest deadline

in a day, followed by the second deadline d2. Without loss of generality, we assume d2 = 1.

When should the single wave be released to maximize system NSD?

We denote the completion time of a single wave by f1. When the wave is released, there

are λi many class i orders of which λi(1− w1) arrived in the previous day and λiw1 arrived

in the current day. The total number of orders at time w1 is equal to the sum of orders from

all classes:
∑K

i=1 λi = L. The server starts working at a rate of µ and completes the wave at

f1 = w1 +
L

µ

= w1 + ρ. (4.2)

What is the system NSD if the wave is completed after d1, or d2? The answer depends

on its release time. For a two class, single wave system, there are five possible cases.

Case 1. The wave is released before the first deadline and completes all work before the

first deadline.
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Figure 4.2 illustrates this case. All orders from both classes are released at w1. The total

number of orders released is equal to λ1 + λ2. With a rate µ, the server starts processing

d2 d2d1w1 f1

λ1
+ λ2

Figure 4.2: Case 1: w1 < d1 and f1 < d1.

orders of both classes and completes the wave at f1 = w1 + (λ1 +λ2)/µ. Because f1 < d1, all

orders within the wave are completed and only orders that arrived after the release do not

count toward NSDi. The number of orders that arrive after the release is equal to λi(di−w1).

Then,

NSD1 = 1− λ1(d1 − w1)

λ1

= 1− (d1 − w1). (4.3)

NSD2 = 1− λ2(d2 − w1)

λ2

= 1− (d2 − w1). (4.4)

From Equation 4.1, the system NSD is

NSD =
λ1

λ1 + λ2
NSD1 +

λ2
λ1 + λ2

NSD2

= (1 + w1)−
λ1d1 + λ2d2
λ1 + λ2

. (4.5)
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Case 2. The wave is released before the first deadline but completed at d1 < f1 < d2

(Figure 4.3).

d2 d2d1w1 f1

λ1
+ λ2

Figure 4.3: Case 2: w1 < d1 and d1 < f1 < d2.

Because d1 < f1, λ1/(λ1 +λ2)µ(d1−w1) many class 1 orders will be completed by d1. Again

λ1(d1 − w1) many of those do not count toward NSD. NSD for class 1 is

NSD1 =

λ1
λ1 + λ2

µ(d1 − w1)− λ1(d1 − w1)

λ1

=

(
µ

λ1 + λ2
− 1

)
(d1 − w1). (4.6)

Because the server completes the work before the second deadline (f1 < d2), NSD for class

2 is same as in Equation 4.4. Therefore,

NSD =
λ1

λ1 + λ2

(
µ

λ1 + λ2
− 1

)
(d1 − w1) +

λ2
λ1 + λ2

[
1− (d2 − w1)

]
. (4.7)

Case 3. The wave is released before the first deadline and completed after the second

deadline (Figure 4.4).

Because class 2 orders are completed after d2, we simply replace d1 in Equation 4.6 with d2

to calculate

NSD2 =

(
µ

λ1 + λ2
− 1

)
(d2 − w1). (4.8)
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d2 d2d1w1 f1

λ1
+ λ2

Figure 4.4: Case 3: w1 < d1 and f1 > d2.

The system NSD is:

NSD =
λ1

λ1 + λ2

(
µ

λ1 + λ2
− 1

)
(d1 − w1) +

λ2
λ1 + λ2

(
µ

λ1 + λ2
− 1

)
(d2 − w1)

=
µ
[
λ1(d1 − w1) + λ2(d2 − w1)

]
(λ1 + λ2)2

. (4.9)

Case 4. The wave is released after the first deadline and the server completes the work

before the second deadline (Figure 4.5).

d2 d2d1 w1 f1

λ1
+ λ2

Figure 4.5: Case 4: w1 > d1 and f1 < d2.

The server processes classes simultaneously, and we assume that the instantaneous comple-

tion rate is proportional to the arrival rates of classes; however, now all class 1 orders miss
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their deadline. Because f1 ≤ d2, the system NSD can be written from Equation 4.4:

NSD =
λ2

λ1 + λ2
NSD2

=
λ2

λ1 + λ2

[
1− (d2 − w1)

]
. (4.10)

Case 5. The wave is released after the first deadline and the server completes the work after

the second deadline (Figure 4.6).

d2 d2d1 w1 f1

λ1
+ λ2

Figure 4.6: Case 5: w1 > d1 and f1 > d2.

Using Equation 4.8, the system NSD is:

NSD =
λ2

λ1 + λ2
NSD2

=
λ2

λ1 + λ2

(
µ

λ1 + λ2
− 1

)
(d2 − w1). (4.11)

To demonstrate how each class NSD changes with respect to the single wave release

time, consider the following example. Suppose there are two order classes having arrival

rates λ1 = λ2. The first and the second class of orders have deadlines d1 = 0.5, d2 = 1.

The processing capacity of the server µ = (λ1 + λ2)/ρ, where ρ = 0.5. Using NSD functions

for each class, we obtain the piecewise functions of NSD1 and NSD2. Figure 4.7 shows each

class NSD (and the resulting system NSD) with respect to wave release time w1.

49



0.2 0.4 0.6 0.8 1.0
w1

0.1

0.2

0.3

0.4

0.5

NSD

NSD       

NSD       1

NSD       2

Figure 4.7: Change in the system NSD in a two class, single wave system.

Figure 4.7 shows the change in system NSD when ρ = 0.5. As expected, the function

of NSD2 is the same as in single class, single wave systems. When w1 < 1 − ρ, the server

completes fewer number of class 2 orders by d2. On the other hand, when w1 > 1 − ρ,

the server completes the wave after d2, which produces lower NSD2. Consequently, NSD2 is

maximized when w1 = 1− ρ. Although releasing the wave at w1 = 0.5 maximizes NSD2, all

class 1 orders would be missed by d1, which results in NSD1 = 0. What should be the single

wave release time to maximize system NSD?

Figure 4.7 shows that the system NSD is maximized when w1 ≤ 1 − ρ. Although the

system NSD does not change when w1 ≤ 0.5, each class NSD is affected by the release

time. For example, when w1 = 0.3, NSD1 < NSD2 and when w1 = 0.2, NSD1 > NSD2.

Consequently, the optimal release time depends on the importance of high NSD for each class.

If the classes are equally important, then the optimal single wave release time w1 = 0.25.
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Combining equations 4.5–4.11, we define the system NSD as a piecewise function of

release time w1:

NSD =



(1 + w1)− λ1d1 + λ2d2
λ1 + λ2

, if f1 ≤ d1
λ1

λ1 + λ2

(
µ

λ1 + λ2
− 1

)
(d1 − w1) +

λ2
λ1 + λ2

[
1− (d2 − w1)

]
, if w1 ≤ d1 < f1 ≤ d2

µ
[
λ1(d1 − w1) + λ2(d2 − w1)

]
(λ1 + λ2)2

, if d2 < f1, w1 ≤ d1
λ2

λ1 + λ2

[
1− (d2 − w1)

]
, if f1 < d2, w1 > d1

λ2
λ1 + λ2

(
µ

λ1 + λ2
− 1

)
(d2 − w1), if f1 > d2, w1 > d1

(4.12)

Equation 4.12 is composed of continuous linear pieces forming a polygonal curve. Each

piece forms a linear segment, and the system NSD is maximized at one of the extreme points

of the segments. As a consequence, we can decompose the problem into distinct linear

programming (LP) sub-problems. The maximum system NSD can be found by solving each

sub-problem and then choosing the w1 that maximizes the system NSD.

When there are more than two classes of orders, the number of subproblems increases.

Fortunately, the structure of the problem allows us to generalize results of a single class

system (Section 2.2) and develop the system NSD function for single wave systems with

more classes. In a system with K order classes, for example, when the server completes the

wave before the deadline di, only orders that arrive after the release do not count toward its

NSD, and

NSDi = 1− (di − w1).

When the server completes the single wave after the deadline di, we know that

NSDi =
µ(di − w1)(λi/L)− λi(di − w1)

λi

=
λi
[
(µ/L)(di − w1)− (di − w1)

]
λi

= (di − w1)

(
1

ρ
− 1

)
.
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If the server starts processing the wave after di, non of the class i orders count toward

its NSD, thus NSDi = 0. As a consequence,

NSDi =


1− (di − w1), if the wave completes before di

(di − w1)

(
1

ρ
− 1

)
, if the wave starts before di and completes after di

0, otherwise

and the system NSD for a single wave system is equal to
∑K

i=1 λiNSDi/L.

4.3 Multiple-Class, Multiple-Wave Systems

When there is a single wave and multiple classes, the wave releases orders from all classes.

Therefore a single wave is a mixture of all classes and each class comprises some proportion

of the wave based on its arrival rate. In practice, distribution centers typically have multiple

customer classes whose orders must be processed together (to achieve economies of scale in

operations) within multiple waves. The server may process single or many classes in a wave.

That is, an individual wave may be dedicated to a single class or to a composition of multiple

classes. There are two limiting situations: (1) Each wave is dedicated to a single class —a

class exclusive wave policy, in which orders of a single class comprise the total workload of a

wave. (2) Compositions of waves are based purely on the arrival rates of classes — a pure mix

wave policy. The number of orders from class i in a wave is equal to the workload of the wave

times the proportion of total arrivals of class i to the total daily load. These two policies

can be classified under a more general policy — a mixture policy, in which compositions of

classes in waves are decision variables. We are interested in optimal mixture policies. This

problem involves multiple order classes, each having a different deadline, and multiple waves

per day. Because wave releases are common across order classes, they must be established

to maximize multiple objectives. Further, each wave must have an optimal composition of

classes which maximizes the system NSD. What should be the timing and the content of
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multiple waves to maximize the system NSD? This problem is considerably more complex

because we must address not only the timing of waves, but also which available orders to

release in each wave.

4.3.1 A Two-Class, Two-Wave Order Release System

We start by defining a simple version of the multiple-class multiple-wave system in

which there are two classes and two waves (K = 2, N = 2). Arrival rates and deadlines of

the classes are λ1, λ2 and d1, d2 such that d1 ≤ d2. Without loss of generality, we assume

d2 = 1.

Two quantities are of interest: (1) the unworked inventory from the previous cycle,

and (2) the orders that arrive within the current cycle. Recall that the cycle of a class is

determined by the length of a unit time between two consecutive deadlines. Class 1 orders

that arrive after the last release and before d1 in the previous cycle form the unworked

inventory for this class. (Similarly, class 2 orders that arrive after the last release and before

d2 form class 2’s unworked inventory.) Figure 4.8 illustrates the unworked inventory from

previous cycles and the total number of orders that arrive in the current cycle before the

first release of the day.

In Figure 4.8, the amount of unworked class 1 inventory depends on the release time of

the last wave. Because w2 is the last wave before d1, the unworked inventory for class 1 is

equal to λ1(d1−w2). For class 2 orders, the unworked inventory by d2 is equal to λ2(d2−w2).

The total number of orders that arrive within the current cycle before the first release is a

function of the first release time w1. Together with the unworked inventory, orders that

arrive within the current cycle define the work content of a wave.

Although releasing all unworked inventory first is a guarantee for satisfying absolute

business requirements (e.g., if an order misses a deadline, the DC should ship the order by

the second deadline), because workers are indifferent to which order they process, there may

be orders which will not be completed even after a couple or more deadlines. (We discuss
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d1 d2 d1 d2w2 w2w1

Class 1 and 2 orders from
their previous cycles

Class 1 and 2 orders arrived
in the current day

Current cycle
for class 1 orders

Previous cycle
for class 1 orders

Current cycle
for class 2 orders

Previous cycle
for class 1 orders

Day 0 Day 1 Day 2

Figure 4.8: A wave is comprised of orders from their previous cycles (unworked inventory)
and orders that arrive in the current day.

the implications of different sequencing rules in Section 4.3.2). Consequently, the unworked

inventory can be distributed to the waves to ship more orders that arrive in their current

cycle.

Define yij as the fraction of unworked inventory of class i orders released in wave wj. If

w2 ≤ d1, then the amount of unworked class 1 inventory released in wave j is λ1(d1−w2)y1j;

otherwise, λ1(d1 − w1)y1j. We write similar expressions for class 2 unworked inventory:

unworked inventory for class 2 in the second wave is equal to λ2(d2−w2)y21 and λ2(d2−w2)y22.

The number of class 1 orders that arrive in their current cycle is equal to λ1(1−d1+w1). The

number of class 2 orders that arrive in their current cycle is analogous: λ2(1−d2+w1) = λ2w1.

We are now ready to write the necessary conditions for a two-class, two-wave system.

Let xij be the number of class i orders that arrive in their current cycle and are released in
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wave j (0 ≤ xij). Because the total number of class i orders is λi(1− di + w1), we have the

following condition for the first wave: xi1 ≤ λi(1− di + w1), i = 1, 2. For the second wave,

we have xi2 ≤ λi(w2 − w1), i = 1, 2. The second wave must start after the server completes

the total work in the first wave, so w2 ≥ f1. Because we do not know which wave is the last

one before a specific deadline, we denote the release time of a wave before d1 by wι. Then,

completion time of the first wave

f1 =


w1 +

x11 + λ1(d1 − w2)y11 + x21 + λ2(d2 − w2)y21
µ

, if wι = w2

w1 +
x11 + λ1(d1 − w1)y11 + x21 + λ2(d2 − w2)y21

µ
, otherwise.

We allow the second wave to be completed after d2. We also require the condition to release

all unworked inventory in waves, or
∑2

j=1 yij = 1, i = 1, 2. Finally, wave release times should

satisfy 0 ≤ wj ≤ 1, j = 1, 2.

The necessary conditions for a feasible solution are relatively easier to define, but the

objective function is more challenging. By definition, if the first wave is completed before d1,

then all orders of class 1 that arrive in the current cycle count toward its NSD. This quantity

is, then, equal to x11. If f1 > d1, then only some proportion of class 1 orders will be completed

by the deadline. The first wave includes class 1 orders both from the previous cycle and the

current cycle: x11 and λ1y11(d1−w1), respectively. When f1 > d1, the number of class 1 orders

completed by d1 is equal to µ(d1−w1)λ1/(λ1+λ2). Assuming that the server randomly selects

which order to process (i.e. the server is indifferent to orders of unworked inventory and

orders that arrive in the current cycle), the number of class 1 orders that arrive in the current

cycle and are completed by d1 is equal to x11
[
µ(d1−w1)λ1/(λ1 +λ2)

]
/
[
x11 +λ1y11(d1−w1)

]
.

For convenience, we denote the number of class i orders that account for their NSD in

wave j by nij. Simplifying terms, the number of class 1 orders completed by d1 when f1 > d1

is

n11 =
x11(d1 − w1)

ρ[x11 + y11(d1 − w1)]
.
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Similarly, if f2 ≤ d1, the number of class 1 orders completed in wave 2 is x12; otherwise

(wι = w2)

n12 =
x12(d1 − w2)

ρ[x12 + y12(d1 − w2)]
.

Let us now consider class 2 orders. If the first wave completes before the second deadline

(f1 ≤ d2, but not necessarily w1 ≤ d1), then all class 2 orders count toward its NSD which

is equal to x21; otherwise

n21 =
x21(d2 − w1)

ρ[x21 + y21(d2 − w1)]

many class 2 orders count toward its NSD. Finally suppose that the server completes the

second wave by d2. Because all class 2 orders that arrive in the current day and are ready

by their deadline, x22 many of them count toward its NSD. On the other hand, if f2 > d2,

then

n22 =
x22(d2 − w2)

ρ[x22 + y22(d2 − w2)]

many class 2 orders count toward its NSD. The completion time of wave 2 is analogous to

f1:

f2 =


w2 +

x12 + λ1(d1 − w2)y12 + x22 + λ2(d2 − w1)y22
µ

, if wι = w2

w2 +
x12 + λ1(d1 − w1)y12 + x22 + λ2(d2 − w2)y22

µ
, otherwise.

Then, we have the following expression for the number of class i orders that are processed

in wave j which count toward the system NSD:

nij =


xij, if fj ≤ di

xij(di − wι)
ρ[xij + yij(di − wι)]

, otherwise
(4.13)

for i = 1, 2 and j = 1, 2. Note that variables nij are conditional expressions and we need to

introduce new binary variables to the objective function in order to handle these expressions.

Finally, we require the last wave to be completed before the release of the next day’s first
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wave. That is f2 ≤ 1 + w1. Consequently, we formulate the problem as follows:

max NSD =

2∑
i=1

2∑
j=1

nij

2∑
i=1

λi

s.t. x11 ≤ λ1(1− d1 + w1)

x21 ≤ λ2(1− d2 + w1)

x12 ≤ λ1(w2 − w1)

x22 ≤ λ2(w2 − w1)

y11 + y12 = 1

y21 + y22 = 1

f1 ≤ w2

f2 ≤ 1 + w1

w2 ≤ 1

0 ≤ wj j = 1, 2

0 ≤ xij i = 1, 2; j = 1, 2

0 ≤ yij i = 1, 2; j = 1, 2

Example. Suppose that there are two classes of orders with stationary arrival rates λ1 =

λ2. Assume the last deadline is at d2 = 1. For different deadlines of d1 and utilization levels

of ρ, what is the optimal system NSD for these systems?

The variables of interest are {w1, w2, x11, x12, x21, x22, y11, y12, y21, y22} which can be de-

termined by solving the above problem. Using Mathematica’s NMaximize function, we

solve for the variables that maximize the system NSD for a two-class, two-wave system. A

detailed discussion on the optimization methodology is given in Section 4.3.2. Each point in

Figure 4.9 illustrates a solution for the system NSD with given d1 and ρ values.
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Figure 4.9: Solutions for a two class, two wave system (λ1 = λ2).

As expected, system NSD improves as the utilization decreases. When deadline d1 is

early, the server cannot process many class 1 orders on time, and system NSD is low. This

observation suggests that

Observation 1. Setting a common deadline for all customer classes improves system NSD.

What would be the potential improvement in system NSD if the DC were able to change

the deadlines? For example, if class 1 orders have a deadline at noon (d1 = 0.5) and the DC

is able to set the deadlines, the system NSD will be improved by 16.6% and 7.2% when there

is a common deadline (for ρ = 0.5 and ρ = 0.75). Although improvements are significant,

Observation 2. There is a little marginal benefit to having a common deadline when uti-

lization is high.

This can be seen especially when ρ = 0.95. Because the system is heavily loaded, the

server is able to complete fewer class 1 and class 2 orders by d1 and d2. When d1 is early,

releasing class 2 orders in the first wave results in fewer completed class 1 orders by d1, which

produces a lower system NSD. Consequently, the first wave must be class exclusive. What
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should be the content of the second wave? Should it be class exclusive, or should it include

some class 1 orders?

Denote the percentage of class i orders in wave j by cij. Then,

cij =
xij + λi(di − wι)yij

2∑
i=1

[xij + λi(di − wι)yij]
. (4.14)

Figures 4.10–4.12 illustrate the optimal timing of waves and mixtures of classes for different

values of ρ. The horizontal axis indicates different values of d1. Green and blue bars show

the proportions of class 1 and class 2 orders, respectively; and dark (and light) bars indicate

the proportions in wave 1 (and wave 2).

The first pairs of bars in the figures show the solutions when d1 = 0.1. When ρ = 0.5,

the solution allocates only class 1 orders to the first wave and only class 2 orders to the

second wave (a class exclusive wave policy). However, as utilization increases, the solution

also allocates class 1 orders to the second wave (the first pairs of bars in Figures 4.11 and

4.12). Why does the solution allocate more class 1 orders to the second wave? An increased

utilization implies a later wave completion, consequently the solution allocates more class 1

orders to the second wave in order to complete more class 1 orders in the first wave by d1.

For ρ = 0.5, the solution produces the same release times and the contents of waves for

all d1 ≤ 0.3; however, the resulting system NSD improves as the first deadline is set to a

later time. When d1 > 0.3, the number of class 2 orders in the first wave and the number

of class 1 orders in the second wave start to increase—suggesting more homogeneous waves.

We also observe that the solution produces more homogeneous waves as the deadlines get

closer for higher values of utilization. When d1 = d2, the solution proposes a pure mix wave

policy for ρ = 0.5. Consequently,

Observation 3. When d1 is early, the solution suggests class exclusive waves and as d1

approaches d2, the solution suggests more homogeneous waves.
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Figure 4.10: Timing of waves and class mixtures when ρ = 0.50.
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Figure 4.11: Timing of waves and class mixtures when ρ = 0.75.

0
1

(%)

d1

100

75

50

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

w
2
=

0
.5
6

w
1
=

0
.1
2

w
2
=

0
.7
9

w
1
=

0
.3
8

w
2
=

0
.7
6

w
1
=

0
.3

w
2
=

0
.6
3

w
1
=

0
.2
1

w
2
=

0
.6

w
1
=

0
.1
4

w
2
=

0
.4
6

w
1
=

0
.1

w
2
=

0
.4

w
1
=

0
.0
6

w
2
=

0
.3

w
1
=

0

w
2
=

0
.2

w
1
=

0

w
2
=

0
.0
7

w
1
=

0

Figure 4.12: Timing of waves and class mixtures when ρ = 0.95.
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For other values of ρ, the waves have nearly the same number of class 1 and class 2

orders when d1 = d2. This is because the first wave contains only orders that arrive in the

current cycle and all unworked inventory from the previous cycles is released in the second

wave (i.e., the solution produced y11 = y21 = 0). As a result, the first wave release time is

later than the one in single class systems (e.g. the release time of the first wave in a single

class system is equal to 0.25 when ρ = 0.75, but the solution found the first release time as

w1 = 0.27).

Setting Cutoff Times

We have one remaining question corresponding to the service level: How many hours

before the deadline(s) should the cutoff time(s) be set in order to guarantee all customer

orders are shipped by their deadlines?

In single class systems with deterministic arrival and processing rates, we first assumed

the cutoff time is equal to the deadline. Analytical solutions produce maximum NSD, and

by setting cutoff time equal to the last wave release time, we show that all customers who

place their orders before the cutoff time receive their orders by the next deadline. That is,

service level (which is analogous Type 1 service in inventory theory) is 100% when cutoff

time is equal to the last release time. Because NSD counts the number of orders that arrived

in the current cycle and shipped by its deadline, NSD is also 100% when cutoff time is set

optimally. Therefore, maximizing NSD is the same as achieving the latest possible cutoff

time for single class systems.

Consider multiple-class systems. Denote cutoff time of class i by ci. Recall that NSDi

is defined as the fraction of class i orders that arrived between successive cis and completed

before di . To this point, we have assumed that ci = di. Numerical solution of the analytical

model determines wave release times and their contents which maximize NSDi. Does setting

cutoff times equal to the last wave release times produce 100% service level?
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Suppose there are two-class, two-wave release system in which λ1 = λ2, d1 = 0.8, d2 = 1.

When ρ = 0.75%, release times for this system are w1 = 0.26, w2 = 0.66, which are completed

at f1 = 0.66, and f2 = 1. The resulting system NSD is equal to 66%. If cutoff times are

equal to deadlines (c1 = d1; c2 = d2), then service level is also equal to 66%.

If there is a common cutoff time for both classes which is set to w2, then all class 2

customers receive their orders by d2, thus service level for class 2 customers is equal to

100%. If class 1 orders would have the same cutoff time, then all class 1 orders in the first

wave would be completed by d1; however, too few class 2 orders in the second wave would

be completed by their deadline. That is, class 1 customers would have a service level which

is less than 100%. If the cutoff time were equal to w1, then all class 1 and class 2 customers

who place their orders before c = w1 would receive their orders on time; however, because

the cutoff time for class 2 customers is early, they must wait longer for their orders.

Now, suppose there is a unique cutoff time for each class. When cutoff times are equal to

the last wave release times completed before the deadlines, all class 1 and class 2 customers

receive their orders by d1 and d2, therefore service level is equal to 100%. Then, for our

example, c1 = 0.26, and c2 = 0.66. Table 4.1 shows the sets of cutoff times that guarantee

100% service level for different values of d1.

Table 4.1: Cutoff times for different deadlines d1 in a two class, two wave system (λ1 = λ2).

ρ = 0.50 ρ = 0.75 ρ = 0.95
d1 c1 c2 c1 c2 c1 c2
0.1 0 0.10 0 0.10 0 0.07
0.2 0 0.20 0 0.20 0 0.20
0.3 0 0.20 0.02 0.30 0 0.30
0.4 0 0.20 0.10 0.40 0.06 0.40
0.5 0 0.20 0.18 0.50 0.14 0.14
0.6 0.10 0.33 0.26 0.60 0.14 0.14
0.7 0.20 0.45 0.29 0.29 0.21 0.21
0.8 0.31 0.61 0.25 0.66 0.3 0.3
0.9 0.50 0.825 0.25 0.25 0.38 0.38
1 0.83 0.83 0.70 0.70 0.56 0.56
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Because solutions of the analytical model determine wave release times (and their con-

tents) without regard to the cutoff times (i.e. cutoff times are not decision variables in

the model), they do not produce optimal cutoff times. That is, maximizing system NSD is

not same as achieving the latest possible cutoff times when there are multiple order classes.

Cutoff times in Table 4.1 can be used to establish lower bounds for optimal cutoff times;

however, a model that produces optimal cutoff times is significantly more complicated and

will be the subject of future research.

4.3.2 Systems with More Classes and Waves

In this section, we extend two-class, two-wave systems to more general systems in which

there are K different types of customers whose orders are released in N waves. Because

the number of waves in a typical application is usually less than six and we are interested

in systems with a reasonable number of deadlines (i.e. transportation modes), we focus on

systems with up to six classes and six waves.

Our objective is to find a vector of variables {w1, w2, . . . , wN , c11, . . . , cij, . . . , cKN} that

maximizes system NSD. Recall that the number of class i orders in wave j that count toward

the system NSD is defined by nij in Equation 4.13. Because variables nij are conditional

expressions, we introduce a new binary variable zij:

zij =

 1, if fj ≤ di

0, otherwise

for all i ∈ {1, . . . , K} and j ∈ {1, . . . , N}. That is, variables zij indicate if wave j is completed

before or after deadline i. Incorporating zij into Equation 4.13, the system NSD function
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may be written as follows:

NSD =

K∑
i=1

N∑
j=1

[
xij

(
zij +

(1− zij)(di − wι)
ρ(xij + yij(di − wι))

)]
K∑
i=1

λi

. (4.15)

Generalizing our findings in a two class, two wave system, we determine the following

necessary conditions. First, the number of class i orders that arrive in its current cycle and

released in wave j should not be greater than the number of orders accumulated until the

first wave release time w1. That is, the solution decides how many class i orders to release

and therefore the wave is selective. This condition should also hold for following waves.

Consequently, we have

xi1 ≤ λi(dK − di + w1) i ∈ {1, . . . , K}, (4.16)

xij ≤ λ2(wj − wj−1) ∀i ∈ {1, . . . , K}, ∀j ∈ {2, . . . , N}. (4.17)

A second set of constraints is required to allocate unworked inventories (from the previous

day) to the waves. Defining continuous variables yij, we have

N∑
j=1

yij = 1 ∀i ∈ {1, . . . , K}. (4.18)

In practice, Equation 4.18 implies absolute business requirements such as shipment guar-

antee by the “second scheduled deadline;” however, because pickers pick orders in a mixed

sequence, all orders may still not be ready by their deadline. (We discuss the implications

of order sequencing below.)

Recall that the wave contents are determined by the unworked inventory from the previ-

ous cycles and the number of orders that arrive in the current cycle. For all j ∈ {2, . . . , N},
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the completion times of wave j

fj = wj +

K∑
i=1

[
xij + λi(wj − wj−1)yij

]
µ

.

The expression for f1 is more complicated. As we showed in a two-class, two-wave system, the

first wave contains yi1 of class i orders from its previous cycle. We do not know which is the

last wave before di, so we denote the last wave release time before a specific deadline by wι.

The total number of orders released in the first wave is then equal to
∑K

i=1

[
xi1+λi(di−wι)yi1

]
and the first wave’s completion time

f1 = w1 +

K∑
i=1

[
xi1 + λi(di − wι)yi1

]
µ

.

The optimal solution requires that each wave must be released after the completion of the

previous one (non-overlapping waves). Therefore,

fj ≤ wj+1 ∀j ∈ {1, . . . , N − 1}, (4.19)

fN ≤ 1 + w1 j = N, (4.20)

We allow the server to complete the last wave after the last deadline. (Recall that we have

assumed that the last deadline dK = 1, which defines the current day.) The last wave of the

current day should then be released before 1. Then,

wN ≤ 1. (4.21)

Together with the non-negativity of variables, necessary conditions 4.16–4.21 lead to the

following optimization problem for a K class, N wave system:
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maximize NSD =

K∑
i=1

N∑
j=1

[
xij

(
zij +

(1− zij)(di − wι)
ρ(xij + yij(di − wι))

)]
K∑
i=1

λi

subject to xi1 ≤ λi(dK − di + w1) ∀i ∈ {1, . . . , K}, j = 1

xij ≤ λi(wj − wj−1) ∀i ∈ {1, . . . , K}, ∀j ∈ {2, . . . , N}
N∑
j=1

yij = 1 ∀i ∈ {1, . . . , K}

fj ≤ wj+1 ∀j ∈ {1, . . . , N − 1}

fN ≤ 1 + w1 j = N

wN ≤ 1

zij ∈ {0, 1} ∀i ∈ {1, . . . , K}, ∀j ∈ {1, . . . , N}

0 ≤ wj j ∈ {1, . . . , N}

0 ≤ xij i ∈ {1, . . . , K}; j ∈ {1, . . . , N}

0 ≤ yij i ∈ {1, . . . , K}; j ∈ {1, . . . , N}

The model has linear and nonlinear constraints and a nonlinear objective function including

binary variables and non-convexities in the continuous variables (we discuss this issue below);

therefore it falls into a class of nonlinear optimization problems with binary variables.

Although writing expressions for the constraints is relatively easy, because we do not

know which wave is the last wave before a certain deadline, it is more challenging to write

the objective function. We develop an algorithm in Visual Basic for Applications that

evaluates all possible cases and generates the whole problem for a given number of classes

and waves. Because nonlinearities imply many local maxima, solving problems optimally is

difficult (if not impossible). Consequently, we choose a meta-heuristic solution algorithm to

search for the optimal values of variables that maximize the system NSD. We present the

solution approach and validation of the model below.
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Optimization Methodology

Before presenting the proposed optimization method, it is useful to explore the structure

of K class, N wave problems. These problems have multiple variables which form a polytope

in 3(NK + 1) dimensions. In addition to nonlinearities of variables, due to dependency

between variables, we expect the objective function to be nonlinear and non-convex. Note

that the objective function surface is not known in advance; however we can characterize it

by generating many random solutions. For example, Figure 4.13 illustrates the surface of

the objective function in a two class, two wave system in which λ1 = λ2 and d1 = 0.5, d2 = 1.

0.0

0.1

0.2

0.3
w1

0.3

0.4

0.5

w2

0.2

0.4

0.6

System

NSD

Figure 4.13: Admissible pairs of (w1, w2) indicate that the objective function surface is
non-convex.

To expose the structure of the objective function, we generate more than 2,300 admis-

sible pairs of release times (w1, w2) and plot them with the corresponding objective value.

For this problem, we observe that the objective function is non-convex. Although this obser-

vation does not imply that any other problem has the same non-convexity, due to an added

complexity of the mixture of classes in waves, we expect the objective functions of more

complicated problems to be both nonlinear and non-convex.
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We use a meta-heuristic called differential evolution (DE), which was first introduced by

Storn and Price (1995) to optimize problems with a real-valued, non-differentiable, multi-

modal objective functions with nonlinear constraints. Because the method searches on a

search space, it does not guarantee optimality; however, our test results showed that differ-

ential evolution is an appropriate method for multiple-class, multiple-wave problems. (We

discuss the details of the method in Appendix B.)

Model Validation

The analytical models assume a fluid model in which discrete arrivals are represented as

a continuous stream of work. Consequently, we must validate the solutions before addressing

systems with more classes and waves.

We represent the fulfillment system as a three-stage queueing network, corresponding

to the picking, packing, and shipping processes. We assume each stage has twenty servers.

For the validation experiment, we simulate systems with two classes and two waves at a

utilization level of 0.5. Orders arrive to the system according to a Poisson process with rate

λ1 = λ2 = 1 order per minute and processing times of workers are distributed exponentially

with a rate of five minutes. We choose the relatively simple case of two waves and two classes

because it is much easier to interpret the results than it would be for more complex cases.

An arrival to the system triggers a number of logical decisions to determine if it will be

released in the next wave or not. Suppose that an order arrives in the current day before

the first release time. It is assigned to the queue of the first wave. If the arrival occurs after

the first and before the second wave release time, it is assigned to the second wave queue.

Otherwise, the order waits in the release queue until the first release in the following day.

Because each class has a different cycle regulated by its deadline, the amount of unworked

inventory must be handled carefully. For class 2 orders that arrive after the last wave, y21

percent of them must wait until the first release and y22 percent of them must wait until the

second release in the following day. For convenience, denote the arrival time of an order in
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the current day by tA. Delay time of a class 2 order is equal to w1 +d2− tA, if it arrived after

w2 and assigned to the first wave in the following day. (The delay time is w2 + d2− tA if the

order is assigned to the second wave in the next day.) When a class 1 order arrives after w2,

another decision is required. If tA ≤ d1, then it is assigned to the first wave on the next day;

otherwise it is assigned to the next day’s first or second wave release queues. Once orders

are released in waves, they are sequentially processed in picking, packing and shipping.

The analytical models assume the server randomly selects which order to process. That

is, the server is indifferent to the arrival times of orders. Figure 4.14 demonstrates the

realization of this assumption.

w1 d1

Current cycle
inventory

Unworked
inventory

−µ

Figure 4.14: Analytical models assume the server randomly selects orders.

In Figure 4.14, the server completes the first wave after d1 and some unworked class 1

inventory will not be processed by its (second) deadline. In practice, because pickers pick

orders both from the previous and the current cycles in the same picking tour, there may

be remaining unworked inventory at d1. Further, the amount of unworked and current cycle

inventories are only known at the time of release. In simulation, each order arrival changes

the number of orders in the release queue and because we do not know which cycle (and wave)

the order should be assigned to preserve the class weights, it is not possible to maintain the

class weights in waves. Consequently, we use first-come, first served (FCFS) and last-come,

first served (LCFS) sequencing policies to set bounds on the expected system NSD.

In the FCFS policy, the server processes the orders as they appear in the queue. On the

other hand, the orders that arrive in the current cycle are worked first in the LCFS policy. In
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both policies, the server has the same processing capacity; however, each rule may result in

different system NSD. (Because the wave content is divided into two parts, the starting time

of the second part can be thought as a sub-wave.) Figure 4.15 illustrates the implications of

these two policies.

w1 d1

Current cycle
inventory

Unworked
inventory

−µ

(a) FCFS policy results in lower system NSD.

w1 d1

Current cycle
inventory

Unworked
inventory

−µ

(b) LCFS policy results in higher system NSD.

Figure 4.15: Different sequencing rules result in different simulated average system NSD.

When the FCFS policy is used, the server can only start the orders that arrive in the

current cycle after completing all unworked inventory. All unworked inventory is completed

by d1 (100% of orders are guaranteed for delivery by the second deadline); however, because

the server completes the current cycle inventory after d1, there are too many class 1 orders

that will not be ready by the deadline. Consequently, the average system NSD will be lower

than the expectation. When orders are processed based on the LCFS policy, the server

completes more current cycle orders, therefore the average system NSD will be higher than

the expectation. (In this case, the DC should not promise a guarantee for the second day

delivery.) In Figures 4.14–4.15, we ignored the presence of cutoff times. Because cutoff times

correspond to the wave release times which are completed by the deadlines, when they are

set optimally, FCFS and LCFS policies should produce the same service level (i.e., the plots

above will be irrelevant).

In each simulation run, we gradually increased the first deadline d1 and kept the second

deadline d2 = 1. We insert the output of the analytical model (release times and yij values)

as an input to the simulation model. Runs last seven simulated days, with 30 replications.
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Figure 4.16: Model validation results with simulation when ρ = 0.5.

We verified the simulation model by first comparing the average utilization level of each

stage with our expectation, and then inserting arbitrary release times to observe how system

NSD changes. The average utilization of the workers was observed close to our expectation.

As expected, different release times resulted in lower average daily system NSD. To validate

the model, we compare the simulated average daily system NSD with the results of numerical

solutions in each run. In Figure 4.16, the circular points correspond to the system NSD found

by the solution of the analytical model for each value of d1. Lower and upper bounds (found

by applying FCFS and LCFS rules) are shown with horizontal notches. We observe that the

expected system NSD is within its bounds, suggesting that the model valid.

Numerical Examples

To justify the solution method and explore the underlying characteristics of more com-

plex systems, we conduct a numerical analysis. Because the number of order classes and

wave releases in most applications is at most six, we limit the experiment to the systems

with fewer than six classes and six waves.
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We first test the performance of the optimization method by transforming multiple class

systems into single class systems. That is, we set all deadlines equal to one while all other

parameters remain unchanged. For each problem, we investigated three different utilization

levels. There are 108 problems total.

Closed form solutions for single class, multiple wave systems are available (Section 2.3),

and we use Equation 2.6 to assess the performance of the search method for each set of

problems. Table 4.2 summarizes the performance of the solution method.

Table 4.2: Summary of performance metrics.

Utilization level
ρ = 0.5 ρ = 0.75 ρ = 0.95

Num of % of Solns Max Avg % of Solns Max Avg % of Solns Max Avg
Waves Optimal Gap Gap Optimal Gap Gap Optimal Gap Gap

2 100% 0% 0% 40% 5.76% 3.74% 40% 2.98% 2.74%
3 100% 0% 0% 40% 0.70% 0.62% 40% 1.01% 0.71%
4 80% 1.43% 1.43% 40% 2.09% 0.75% 40% 1.13% 0.67%
5 80% 2.35% 1.52% 60% 1.74% 1.20% 40% 0.35% 0.31%
6 60% 2.15% 1.24% 60% 2.02% 1.67% 60% 0.49% 0.41%

In Table 4.2, we solve six problems for a given utilization level and number of classes.

Columns labeled with “% of Solns Optimal” represent the percentage of the solutions in

which the method found the optimal solution. The method performs better when utilization

is equal to 0.5; however, the percentage of problems for which the method produced optimal

solutions appears to be only 13.3%. Although the method produced an optimal solution

only for a small percentage of the test problems, the average gap between the numerical and

the analytical methods is about 1.14%.

Example. Suppose each class has the same arrival rate λi = λi+1, i ∈ {1, . . . , 5}, and

the total processing capacity is equal to µ =
∑6

i=1 λi/ρ where ρ = 0.5, 0.75, 0.95. We

assume that deadlines are equally distributed through the unit length of time. That is,

di = i/6, i ∈ {1, . . . , 6}. Figure 4.17 shows the numerical results of the analytical models.

In Figure 4.17, each data point illustrates a system NSD found by solving the corre-

sponding problem with K classes and N waves. The system NSD for each value of ρ is shown
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Figure 4.17: Numerical solutions of analytical models.

with a different color. We measure the computational time in seconds. The method solves

a problem in less than a minute on average (41.8 seconds); however, the computational time

increases as the number of classes and waves increases. (We observe that the computational

time does not significantly change for different values of utilization.) When K = 6, N = 6,

the method obtained the solution in more than four minutes. Table 4.3 shows the details of

computational times for each problem.

Figure 4.17 led us to a number of observations: (1) When utilization increases, it impacts

the system NSD. The impact of high utilization on system NSD is most significant when

there is a single class of orders or when there is a single wave. (2) System NSD improves as

the number of waves increases. As in single class systems, we observe that system NSD is

improved as the number of waves increases, without regard to the number of classes. The

maximum system NSD is observed when there is a single class of orders and the number of

waves is six. On the other hand, the system NSD is minimum when there are six classes and
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Table 4.3: Computational times in seconds.

Number of waves
Num. of classes 2 3 4 5 6 ρ

2
7.9 15.7 19.9 21.2 25.9 0.5
8.0 14.3 18.5 19.8 28.2 0.75
9.9 16.1 17.7 17.3 23.8 0.95

3
11.0 20.0 30.9 57.5 74.1 0.5
11.0 22.9 32.1 64.6 81.1 0.75
12.6 17.1 27.8 56.1 83.7 0.95

4
16.5 35.3 69.2 96.8 124.3 0.5
20.6 26.8 67.4 132.2 123.6 0.75
17.1 30.3 61.9 120.9 93.2 0.95

5
55.6 48.6 76.8 140.2 221.8 0.5
47.4 48.9 74.6 134.5 242.5 0.75
42.1 47.2 79.4 111.2 247.5 0.95

6
48.5 72.8 106.3 143.4 209.8 0.5
45.5 93.1 113.4 184.7 223.5 0.75
43.6 78.4 95.6 169.9 274.5 0.95

a single wave, which suggests that, (3) Systems with multiple deadline should compensate

with more wave releases.

4.4 Implications for Practice

The results of multiple-class, multiple-wave problems suggest implications for practice.

When there are multiple classes, many factors affect service performance, including the

timing of waves and their contents. Increasing the number of waves seem to improve system

NSD.

The solutions of single class systems suggest that the first wave should be released at

w1 = 1− ρ. Although the server is busy ρ of the time, the first wave release time should be

set to a different time in multiple-class systems. This observation implies possible idleness

of workers between completion and release times of waves. That is, the workers may go idle

in order to improve the system NSD. Managers would have to think carefully how to use

this time productively, perhaps with replenishment or other necessary operations.
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In an order fulfillment system that must fulfill orders of multiple classes, deadlines

may significantly impact service performance. We have assumed deadlines that are evenly

distributed throughout the day. What would the system NSD be if the deadlines were close

to midnight? What should be the wave release times and contents? Should we expect later

cutoff times in this case?

Earlier deadlines imply an earlier first wave release, and when deadlines are closer to

midnight, waves should be released later. We observe that system NSD improves when

deadlines are close together and set as late as possible. Late wave release times and deadlines

close to midnight also imply later cutoff times. Consequently, DCs may offer late cutoff times

to their customers while maintaining an acceptable level of system NSD.

The numerical results of the analytical models show that a wave should contain more

orders of a particular class if that wave is the closest wave to the deadline of that class.

When deadlines are closer, the waves should contain the same amount of orders from classes.

The sequence of picks in waves also affects the system NSD. Releasing late orders first

guarantees second day delivery, but it results in lower system performance. When pickers pick

the most imminent orders first, it will produce a higher next day fulfillment rate; however, if

an order is not delivered by its first promised deadline, then it may also not be ready for the

shipment by the second deadline. Managers should consider the tradeoff between absolute

business requirements and marketing promises.
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Chapter 5

Conclusions & Future Research

To attract more customers and increase the market share, order fulfillment systems offer

aggressive service promises. That kind of offer can put pressure on DCs in their fulfillment

operations. The purpose of this dissertation is to increase customer service by improving or-

der releases with optimal timing of waves. In this dissertation, we present the first systematic

investigation of wave planning in deadline-oriented order fulfillment systems.

Contribution 1. We propose the first fluid model for a single-class, multiple-wave system

that operates against a daily deadline.

Systems with a single order class have correspondence in industry, especially in internet

retailing where DCs promise overnight deliveries. We showed that properly timed waves

should be smaller as the deadline approaches, rather than of uniform size, as intuition might

suggest. The service performance can be increased by adding more waves, but there is a

marginal benefit to increasing the number of waves beyond four or five. The optimal number

of waves is based on both the pick density and the fixed time component of waves, and there

should be fewer waves when the fixed time component is long. The optimal policy provides a

more stable workload as well as more tractable flow of work. Maximum service performance

can be achieved by setting the cutoff time equal to the latest release time.

Contribution 2. We determined the optimal number and timing of waves in the presence

of workload uncertainty.

We addressed daily workload fluctuations which may be the result of natural demand

variability or the result of internal workforce variability. We discussed how to adjust wave

76



release times and the number of waves to minimize the risk of workload exceeding capacity.

In the presence of workload uncertainty, we showed that sacrificing a little from the maximum

achievable service level hedges against a drastic drop in performance if utilization is high.

While the release time of a single wave is later than what it would otherwise be, multiple

waves should be released earlier to maximize expected NSD. We discussed the implications

of wave release times on the cutoff times. We showed that the cutoff time should be no

later than the last release time. Setting the cutoff time as late as possible is important for

improving the service promise.

Contribution 3. We showed how to establish the timing and contents of waves in order

fulfillment systems with multiple order classes.

We extended our single class systems to multiple class systems in which customers are

grouped into ordering clusters, and each cluster receives service at a different frequency. We

modeled the problem as a nonlinear optimization problem and used a heuristic method to

search for optimal solutions. We justified the mathematical models with discrete event sys-

tem simulation. We presented numerical examples of multiple-class, multiple-waves systems

and discussed the implications of the results.

The methods in this dissertation rely on certain assumptions. To determine maximum

system NSD, we have assumed that cutoff times are equal to deadlines. Although this

assumption maximizes system NSD, resulting cutoff times are not optimal. Future research

should consider cutoff times as decision variables and determine optimal cutoff times. We

disallowed release of a wave if the server is busy. Although this assumption alleviates the

need for additional sortation systems and makes the control of flow easier, it requires pickers

to wait until all others complete their processing. To increase the productivity of workers,

DCs might release waves dynamically, in which case waves are allowed to overlap and there

is a requirement for sortation. Future research should address dynamic wave releases so that
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worker productivity will be as high as possible and fulfillment operations are designed to

maximize service performance.

The validation experiments of multiple-class, multiple-wave systems showed that sys-

tem NSD could be improved by implementing a more general policy. Future research should

develop more powerful models which consider the tradeoff between absolute business require-

ments and marketing promises. Future research should also consider fluctuating work-force

levels in order fulfillment systems. An important issue is to determine an optimal work-force

level. New models are needed to determine the minimum required (hourly) work-force levels

that guarantee an acceptable level of service for systems that release orders in waves.

Our research should be of interest to practitioners in at least two ways. First, it helps

the workers to clearly articulate the service to be delivered. This is likely to help fulfillment

systems control the gap between customer expectations and actual performance. Second, it

allows DCs to utilize guaranteed delivery as a powerful marketing strategy. Although wave

planning is offered by some commercial WMS providers, they do not determine the optimal

number of waves nor the optimal release times. Our research could be used by WMS vendors

or consultants for better operational planning.
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Appendix A
Feasibility and Stability Conditions

A set of wave releases is feasible if each wave can be completed before the next one
begins. Let N be the number of waves in a day, and let wi denote the time of the i-th
wave release time everyday. The first wave on day 1 is at w1

1. The wave is composed of all
orders accumulated until that time, which is equal to λ(w1

1− 0). The first wave is completed
at w1

1 + λ(w1
1 − 0)/µ. The completion time of the first wave should be less than w1

2 to be
feasible. The second wave which releases all orders accumulated within [w1

1, w
1
2], is feasible

if the first one completes before the second wave. The feasibility condition for wave two is
then w1

1 + λ(w1
2 − w1

1)/µ ≤ w1
2. Similar expressions can be written for the rest of waves on

day 1. On day two, the first wave does not only release orders that arrive that day, but also
releases the unworked orders from the first day. The workload of the first wave on day 2
should satisfy w2

1 +λ(1−w1
N +w2

1)/µ ≤ w2
1 (the length of a day is represented as the interval

of [0,1]). On day m, we have the following expressions for feasibility:

wm1 +
λ(1− wm−1N + wm1 )

µ
≤ wm2 , i = 1,

wmi +
λ(wmi − wmi−1)

µ
≤ wmi+1, 1 < i < N,

wmN +
λ(wmN − wmN−1)

µ
≤ 1, i = N.

(A.1)

Any system that satisfies Equations A.1 is feasible.
Stability conditions for queueing models can be found in Dai (1999). In our context,

the system is stable if work-in-process inventory remains at a constant level for a given
initial fluid level. We start with no beginning inventory, I(0)=0. The server does not work
on the orders that arrived after wN . Total number of orders that arrive between the last
release and the end of the first day is λ(1 − wN). For an N wave system, the last wave
has the following workload: λ(wN − wN−1). The last wave may or may not finish at one,
but works on µ(1 − wN) orders. If the last wave completes the work on the second day,
{λ(wN − wN−1) − µ(1 − wN) > 0. Otherwise there will be zero work left from the interval
[wN−1, wN ]. Then work-in-process inventory at end of day 1 is equal to

I1 = λ(1− wN) + max{λ(wN − wN−1)− µ(1− wN), 0}.

For the second day, work-in-process inventory is equal to

I(2) =I(1) + max{λ(wN − wN−1)− µ(1− wN), 0}
=λ(1− wN) + 2

(
max{λ(wN − wN−1)− µ(1− wN), 0}

)
.
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We define WIP for day m as:

I(m) =Im+1 + max{λ(wN − wN−1)− µ(1− wN), 0}
=λ(1− wN) +m

(
max{λ(wN − wN−1)− µ(1− wN), 0}

)
.

Note that, in a steady state limm→∞ I(m) = λ(1−wN) only if λ(wN −wN−1) = µ(1−wN),
otherwise the system is feasible but not stable.

Now, we establish the stability condition when I(0) 6= 0. Because the first wave has
λw1+I(0) orders to process before the first release of the next day, this quantity should not
exceed the available capacity:

w1 +
λw1 + I(0)

µ
≤1,

I(0) ≤µ− w1(λ+ µ).
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Appendix B
Comparison of Search Methods and Details of Differential Evolution

We solve multiple class, multiple wave system problems with Mathematica’s built
in function NMaximize. The function provides a number of search algorithms including
direct search methods such as Nelder-Mead, differential evolution, simulated annealing, and
random search (Mathematica Tutorial, 2013).

Although Storn (1996) showed that differential evolution is an appropriate method for
solving real-valued, non-differentiable, multi-modal objective functions with non-linear con-
straints, we first run preliminary tests to assess the performance of the method. The purpose
of the preliminary tests is twofold: selecting the best method for our purpose, and assess
the quality of the selected method. We test nine problems to compare the performances of
different numerical methods: differential evolution, simulated annealing, Nelder-Mead, and
random search. Note that Mathematica’s built-in function NMaximize supports all these
methods, therefore we test each one by specifying the method within the function.

Based on the problem structure, NMaximize chooses which method to use automatically;
however, it also lets users to select a specific method (and its parameters) for their purposes.
We start by running a number of preliminary tests to assess the performance of candidate
optimization methods given in NMaximize. (Note that there are other possible heuristic
methods such as particle swarm optimization which is not included in the function.) We
compare the candidate methods as follows. We first transformed multiple class problem into
a single class system by setting a common deadline (d1 = d2 = . . . = dK) and then comparing
the results with analytical solutions. During the preliminary tests, we assume 2–4 waves and
test the performance of the methods at three levels of utilization: ρ = 0.5, 0.75, 0.95. We
limit computational time with 600 seconds.

Because our first task is to select an appropriate method, we use the default parameter
sets of the methods during the preliminary tests. (Method specific parameters can be found
in Mathematica Tutorial, 2013.) The results of the preliminary test are given in Table B.1
in which best solutions are shown with asterisks.

Table B.1 suggests that differential evolution is an appropriate method for the problems
we address. Simulated annealing (SA) performed very poorly when compared to the other
methods (especially when N = 3 and as utilization increases). Although random search (RS)
finds the optimal solutions for all values of utilization when N = 2, this method did not find
any solution within the specified time limit for N > 2.

Differential evolution attempts to find global solution by executing three main routines:
mutation, recombination, and selection. The first step is to generate an initial solution
which requires D dimensions to define the variables. (For a K class, N wave system, it
requires N(3K + 1) dimensions.) In this step, randomly generated points between their
bounds constitute an initial feasible solution S. The value of the objective function in the
initialization step is denoted by f1.
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Table B.1: Comparison of objective function values in the preliminary run.

ρ Waves Analytical (%) DE (%) SA(%) NM(%) RS(%)
2 83.3 83.3∗ 83.3∗ 83.3∗ 83.3∗

0.5 3 92.9 92.9∗ 32.2 91.4 -
4 96.7 96.7∗ 96.7∗ 96.7∗ -
2 67.9 67.9∗ 55.2 67.9∗ 67.9∗

0.75 3 81.8 81.3∗ 31.6 79.7 -
4 88.4 88.4∗ 87.6 88.4∗ -
2 53.7 53.6 40.0 52.6 53.7∗

0.95 3 69.9 69.5∗ 35.3 69.5∗ -
4 78.1 78.0∗ 77.8 77.8 -

After specifying the control parameters (explained below) and generating the initial
solution, the algorithm executes its routines to search the solution space. The algorithm
iteratively repeats cycles of routines until it is terminated by stopping criteria. By default,
these criteria are based on both the convergence of variables and objective function value in
the successive iterations. We force the algorithm to terminate if the objective value difference
between two consecutive iterations is less than 10−6 or the computational time is greater than
600 seconds.

Because differential evolution uses sets of solutions in each generation, it requires a
population size parameter Ps. In each generation, a population size of Ps is maintained.
We denote the ith solution in generation G by SiG. A mutation routine is executed in the
next step. Note that the set of solutions SiG, i ∈ Ps contains vectors of variables xiG. For
each target vector i, mutation operator first selects three random points: xuG, xwG, and xzG.
Then the operator generates trial vector xTG based on the selected points. This calculation
is done by adding the scaled down (by a factor α) difference of the two vectors to the first
one: xTG = xuG⊕α× [xwG− xzG] (operators “⊕” and “×” denote vectorial summation and
scalar multiplication operators). Because mutation operation replaces all points (as a vector)
in the solution by new points in each generation, it expands the solution space. Mutation
routine generates the trial vector and with the crossover routine, the algorithm replaces some
part of the target vector with this new vector. To crossover, a uniform generated random
variable u is compared with the crossover constant pc. If u < pc, then recently generated trial
vector replaces the target vector after the crossover point uPs. Note that DE uses operators
similar to the genetic algorithm, however its computational power comes from the ability
to replace all points in the solution with new points in each generation. The last routine is
the selection which actually is a greedy approach to replace the solution. In the routine, the
generated vector is replaced with the existing one only if it produces a feasible and a better
solution, otherwise it preserves the existing vector (we denote the existing vector by xjG−1).
Pseudo-code for the differential evolution is given in Figure B.1.

The structure of the algorithm in NMaximize is basically same as general DE algorithm;
however default control parameters in the function are different. Storn and Price (1995) and
Liu and Lampinen (2005) recommended the following control parameters for the algorithm:
Ps = 10D, pc ∈ [0.8, 1], α ∈ [0.5, 1]. (Recall that, D = N(4K + 1) for the problems we
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Require: D, Ps, pc, α
1: Initialize xj1 randomly between its bounds (xLj1, x

U
j1)

2: Set the initial feasible solution: S ← S01

3: Evaluate the objective function f1
4: repeat
5: for i = 1, i ≤ Ps, i+ + do
6: Generate a population SiG
7: Randomly select three distinct points in SiG: xuG, xwG, xzG
8: Determine a trial point with mutation: xTG = xuG ⊕ α× (xwG − xzG)
9: Find a cross over point:

10: Generate a uniform random variable u ∼ U [0, 1]
11: if u ≤ pc then
12: Cross over point index i = u
13: end if
14: Determine the candidate solution SC and evaluate its objective value fC
15: if xjG, j ∈ N is not feasible then
16: Penalize fC by setting xjG = xjG−1

17: else
18: if fC is greater than fi then
19: Update the solution: S ← SC
20: end if
21: end if
22: end for
23: until Termination criterion is met.
24: return S = {w1, . . . , wN , x11, . . . , xKN , y11, yKN}

Figure B.1: Differential Evolution Pseudo-code

address.) Ursem and Vadstrup (2003) claimed that using pc = 0.2, F = 0.35 results in faster
convergence.

The preliminary results in Table B.1 indicate that DE performed worst for systems in
which there are three waves at utilization levels ρ = 0.75, 0.95. Consequently, we decide to
tune the control parameters of the method and hopefully improve the results. NMaximize

chooses the same population size as in Storn and Price (1995) and Liu and Lampinen (2005)
with different crossover and scale factors: pc = 0.5, α = 0.6. Although these two parameters
are chosen differently, because the performance of the differential evolution algorithm is more
sensitive to the choice of scaling constant than to the choice of crossover constant (Storn and
Price, 1995; Storn and Price, 1997), we particularly focus on tuning the parameter α.

We adjust the parameter α ∈ [0.1, 1] with increments of 0.1 in the algorithm. Other
parameters remained unchanged during the tuning process. We measured how much the
method deviates from the optimal objective value (in percentage) at different levels of α. We
observed that the mean squared percentage error is minimized when α = 0.6. Consequently,
we decide to preserve the control parameter α equal to 0.6 for larger problems.
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