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Abstract 
 

 
 There is increasing interest in producing energy from renewable biomass resources. 

These resources, however, tend to be highly variable in nature and this heterogeneity can 

complicate their effective utilization. Rapid prediction of energy and chemical characteristics of 

biomass could assist in optimizing its conversion to biofuel and bioenergy. Loblolly pine (Pinus 

taeda) is the most common woody biomass in the southern U.S. and the most promising 

renewable resource for bioenergy. Near infrared spectroscopy (NIR) has been of great interest as 

a rapid, cost-effective and nondestructive technique for quantitative and qualitative analyses. 

This research aims at developing NIR calibrations for rapid measurement of constituent and 

energy properties of biomass, which can be applicable to large-scale assessment of forest 

resource properties and consequently assist efficient process control of large-scale conversion of 

heterogeneous feedstock to energy outputs.  

         In particular, the objectives of this research were:  (1) develop NIR calibrations for 

prediction of lignin, extractives, ash, moisture content, and energy content (calorific value) of 

loblolly pine biomass; and (2) compare the NIR calibrations based on spectra from wood powder 

and chips and reveal the potential of calibrations based on a single spectrum per chip to predict 

the properties of loblolly pine. 

         The calibrations based on spectra of wood powder, averaged spectra per chip (25) and 

single spectrum per chip for constituents and calorific value were established. Good calibration
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were obtained based on spectra from powder with coefficients of determination (R2) of 0.93 

(SEC=0.28%) for lignin, 0.91(SEC=0.14%) for extractives, 0.85 (SEC=0.025) for ash, 0.96 

(SEC=0.32) for moisture, and 0.91 (SEC=0.05 MJ/kg) for calorific value. The calibrations based 

on averaged spectra per chip also presented good correlation with an R2 ranging from 0.8 to 0.9 

for composition and calorific value. Calibrations based on a single spectrum per chip gave an R2 

of 0.81 (SEC=0.4%) for lignin, 0.84(SEC=0.18%) for extractives, 0.72 (SEC=0.03) for ash, 0.87 

(SEC=0.33) for moisture, and 0.74 (SEC=0.34 MJ/kg) for calorific value.  

           The results indicate that for all properties in the current study, the calibrations based on 

spectra from the powder gave the highest R2 and relatively lower standard error. Furthermore, 

good correlations between measured and predicted values were also acquired from the 

calibrations based on averaged spectra per chip, exhibited a slightly lower R2. Although not as 

good as powdered or average chip tests, relatively strong calibrations were possible for even the 

single spectrum treatment when predicting chip properties. With RPD values ranging from 1.3 to 

2.9, the calibrations based on single spectrum per chip met the requirement for initial screening. 

The simplicity and rapidity of calibrations based on a single spectrum from a solid wood chip 

may outweigh the slightly greater precision achieved when analyzing ground, bulk samples. This 

study reveals that NIRS in combination with multivariate analysis has the potential to predict the 

bioenergy and chemical characteristics of biomass in an industrial conversion.  
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Chapter1 INTRODUCTION 

 

           With a growing concern of economic stability and environment issues, the use of 

renewable resource to replace fossil fuels has attracted great attention. Because they are clean 

burning, have lower net CO2 emission, have a short cycle of growing and are presumed 

sustainable, biomass energy has been attracting more and more attention worldwide (Kumar et 

al., 2009; Broek et al., 1996). After the bioconversion through direct combustion, biological and 

thermochemical processes, biomass can be utilized as three end-products: heat and power, 

transportation fuels such as ethanol, and chemical intermediates. The production of biofuel and 

generation of electrical power are currently the two main markets for bioenergy (Zhang et al., 

2010; Cantrell et al., 2008; McLaughlin et al., 1999). At present, biomass accounts for 14% of 

the world’s primary energy consumption and it is estimated that, by 2025, biomass sources will 

provide up to 30% of raw materials for the chemical industry, about 38% of the world’s direct 

fuel use and 17% of the world’s electricity (Kamm, 2007; Demirbas, 2000; Demirbas, 2001a). 

             Due to the rapid attainment of maturity and widespread availability in southern U.S., 

loblolly pine is developing as a promising renewable energy resource (Baker and Balmer, 1983; 

Sannigrahi et al., 2008). Consequently, the investigation of factors that influence the 

bioconversion of loblolly pine is becoming increasingly necessary. Quantity of specific chemical 

constituents and calorific value are the main characteristics of biomass thought to impact 

conversion of biomass to non-thermal energy products and could play an important role in 
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biological and thermochemical processes for conversion (Dinus, 2000; Ragland et al., 1991; 

Demirbas, 2004; Demirbas, 2001b). 

           The methods for measurement of chemical composition of wood are conventional wet 

chemical analyses, plus calorific value is obtained using a bomb calorimeter. These methods are 

cost prohibitive and time consuming, destructive, sample throughput limited and require specific 

sample preparation. Thus, there is a need for a rapid, reliable and cost effective method for 

measurement of properties of biomass. 

            Recently near infrared spectroscopy (NIR) combined with multivariate analysis has been 

demonstrated to be a rapid, cost effective and reliable method for measuring wood properties  

(Via et al., 2003; Taylor et al., 2008; Hein et al., 2010; So and Eberhardt, 2010; Poke et al., 

2007). Most of these studies were based on milled wood sample. Milling of samples is felt to 

improve results in these studies by overcoming a specific limitation inherent in the application of 

NIR diffuse reflectance mode in heterogeneous materials. Because NIR measurements are 

typically made over relatively small areas, irregularities in surface properties of woody material 

can lead to significant variation in results and a strong dependence on sample size (Yeh et al., 

2004). Nevertheless, in most biomass and bioenergy applications wood chips will likely be the 

main feedstock and the ability to effectively characterize them using NIR could lead to improved 

on-line and process control monitoring capabilities. The exclusion of the grinding step will also 

simplify the development of NIR calibrations for lab applications, provided accuracy of 

measurements can be maintained. 
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             Some studies have reported NIR calibrations of solid wood chips or strips and obtained 

encouraging results (Poke and Raymond, 2006; Jones et al., 2008; Jones et al., 2006; Kelley et 

al., 2004). However, the research mentioned above were all based on multiple, averaged spectra 

of solid wood chips or strips, to date nobody has investigated the NIR calibrations established 

from a single spectrum per chip. This situation might be more realistic in an online process in 

which chips were moving rapidly past an NIR sensing device that was providing real-time 

control information to a conversion system. 

           The objectives of this research were: (1) develop NIR calibrations for prediction of lignin, 

extractives, ash, moisture content, and energy content (calorific value) of loblolly pine biomass; 

and (2) compare the NIR calibrations based on spectra from wood powder and chips and reveal 

the potential of calibrations based on a single spectrum per chip to predict the properties of 

loblolly pine. 

             The present study seeks to develop the NIR calibrations based on wood powder and 

chips for a rapid, cost-effective measurement of chemical composition and energy content of 

loblolly pine, which could assist and optimize the biological, thermochemical processes and 

direct combustion of large-scale heterogeneous feedstock to energy outputs. 
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Chapter 2 LITERATURE REVIEW 

 

2.1 Introduction 

The characteristics of softwood especially loblolly pine wood are presented in the review. The 

chemical components, energy traits and the relationship between these two are reported. The 

relationship reveals the contribution of different composition to energy traits, which can lead to 

the efficient measurement and optimization of bioconversion process. Finally, the principle, 

instrument, limitation and application of near infrared spectroscopy and multivariate analysis are 

presented. 

2.2 Wood chemical composition 

Loblolly pine is the fastest growing and widely cultivated softwood pine species in the 

southeastern United States. Normally the major chemical components in wood contain 

carbohydrate (65-75%), lignin (18-35%) and minor components such as extractives, minerals, 

and trace components, which account for 4-10% of the dry biomass weight (Pettersen, 1984). 

The components studied in the current research were reviewed in detail. A good understanding 

of chemical components of wood facilitates a further study of wood energy outputs and 

utilization in different areas. 
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2.2.1 Lignin 

              Lignin is the third major component of the wood cell wall and acts as a cementing 

material bonding the cells together (Farmer, 1967). The word lignin is a derived name from the 

latin word lignum, meaning wood but is present in most non-wood plants (SjÖstrÖm, 1981). The 

basic structural unit of lignin molecule is the phenylpropane unit which is an aromatic ring with a 

three-carbon side chain (Farmer, 1967). Normally softwood and hardwood contain 26-32% and 

20-28% lignin respectively. Lignin is an amorphous polyphenolic polymer that is synthesized by 

coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, which is shown in Figure 2.1 and 

Figure 2.2 (Ragauskas et al., 2006; Pettersen, 1984). 

           White (1987) determined the lignin content of four species softwoods: Engelmann spruce 

(26.9%), Western redcedar (30.8%), Southern pine (26.8%) and Redwood (33.8%). Demirbas 

(2001) also reported lignin content of 32.5 and 21.89% for softwood and hardwood. So et al. 

(2012) measured lignin content from the extracted longleaf pine and the values ranged between 

26.6 and 31.5%. Via et al. (2007) measured Klason lignin content of longleaf pine at different 

tree heights and horizontal ring numbers, and the values ranged from 26.5 to 30.8%.  

            The lignin content of loblolly pine ranged from 24.1 to 32.63% as presented by        

Sykes et al. (2005) in which the lignin content was determined for different ring numbers and for 

earlywood and latewood. Ferraz et al. (2004) and Sannigrahi et al. (2008) also observed lignin 

content for loblolly pine of 28.2 and 29.4%, respectively.  
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 Figure 2.1. Precursors of lignin biosynthesis for softwood (SW) and hardwood (HW)                   

                     (Ragauskas et al., 2006) 
 
 
 
 

2.2.2 Extractives 

              In addition to polysaccharides and lignin, wood contains smaller amounts of 

components called extractives which can accounts for 4– 10% of the dry weight of normal wood 

species.  

               Extractives include many different kinds of organic compounds, such as tannins, starch, 

waxes, fats, proteins, phenolics, resins, essential oils, simple sugars and alcohols (Farmer, 1967). 

The extractives are mostly present in the heartwood while smaller amounts exist in the sapwood. 

Extractives protect wood against fungi and insect damage, can be a supply of energy reserves, 

and can be intermediates in tree metabolism. They also contribute to other properties of wood 

such as color, decay resistance, taste and flammability (Pettersen, 1984). 
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                      Figure 2.2. A partial structure of softwood lignin (PETTERSEN, 1984) 

 
 
 
           So et al. (2012) measured extractives content of 40 longleaf pine samples with a wide 

range from 0.0 to 20.6%. Extractives content ranging from 2.8 to 26.9% was presented by Kelley 

et al. (2004) with the measurement of extractives content of different tree, height, and growth 

ring combinations of loblolly pine. Via et al. (2007) determined extractives content of longleaf 

pine samples of different tree height and ring number and the values ranged from 1.7 to 30.5%. 

White (1987) also reported extractives content of four species softwoods: Engelmann spruce 
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(2.4%), Western redcedar (7.8%), Southern pine (5.4%) and Redwood (8.2%).  Shupe et al. 

(1997) observed the extractives content of innerwood and outerwood from five silviculturally 

different loblolly pine stands with the alcohol-benzene extractives content from 2.5 to 4.53% for 

outerwood and 5.23 to 6.98% for innerwood.  

2.2.3 Moisture content  

            Moisture content of wood is the amount of water contained in the wood sample, which 

can be expressed on dry basis or wet basis. Water can be held in wood by two ways: bound water 

and free water. Moisture content is calculated as the weight loss after drying, which is normally 

ranged between 8 to 14% on dry basis. Hearmon (1948) determined moisture content of 10% for 

Scots pine and ranged from 6.8 to 12% for Sitka spruce. Wood (1955) also reported moisture 

content ranged from 7.1 to 21.6% for Sitka spruce. Ragland et al. (1991) presented that fresh 

wood has a moisture content of 35-60% on a wet basis, dried wood used for fuel has a moisture 

content of 5-20%. 

2.2.4 Ash content  

           Ash content is the solid residual remaining after ignition of wood sample. The ash content 

of wood is measured by combustion a weighted sample in a crucible until all carbonaceous 

matter is gone (Farmer, 1967). Ash is a product of the minerals present in the structure of trees, 

such as calcium, potassium and magnesium (Pettersen, 1984). And the ash content can typically 

account for 0.2-2% of wood on dry basis.  

         Lestander and Rhén (2005) observed an ash content of 0.3 to 2.2% for Norway spruce 

samples. Etiégni (1991) found that ash yield decreased by approximately 45% as the combustion 

temperature increased from 538 to1093°C, while the metal content increased with the 
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temperature increased. Rhén et al. (2007) also presented that based on the different tree species, 

ash content was approximately 0.4-0.6% in stem wood, 2.5-3.5% in stem bark and 2.2-8.7% in 

foliage. McMillin (1969) reported that ash content of early wood was 0.43%, which decreased 

with distance from the pith, and increased with increases in rate of tree growth rate for loblolly 

pine. The ash content of latewood of loblolly pine was 0.39% that was unrelated to distance from 

pith, specific gravity and growth rate.  

2.3 Wood calorific value 

            The gross calorific value (GCV) or higher heating value (HHV) of a substance is defined 

as the amount of heat released by the combustion of a specific quantity of this substance after it 

have returned to the original pre-combustion temperature (normally at 25°C). The GCV 

subtracted by the latent heat of vaporization of water in the combustion substance becomes the 

lower heating value (LHV) (So and Eberhardt, 2010; Sheng and Azevedo, 2005). The GCV is 

measured in a bomb calorimeter, in which the combustion of the mixture of sample and oxidizer 

is initiated by an ignition device. After a complete combustion of the sample, the HHV is 

calculated with water in its liquid phase while LHV is calculated with water in vapor phase, 

which is calculated as the difference of heat of the sample and the product. GCV of biomass was 

found to relate to its proximate, ultimate analysis composition which can be calculated with a 

formula: HHV=-1.367+0.3137C+0.7009H+0.0318O (Sheng and Azevedo, 2005). The GCV of 

biomass was also considered related to the amount of fixed carbon: GCV=0.196(FC) +14.119 

(Demirbas, 1997).  

          GCV is a crucial property of biofuel and biomass because of the impact on utilization of 

any material as a fuel, so there have been a lot of studies focused on this energy trait. Gillon et al. 

(1997) determined the GCV of a wide variety of biomass including conifer, broadleaved trees, 
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shrubs, twigs, fern and grasses in which the value ranged from17.1 to 24.6 MJ/kg. GCV for a 

variety of biomass including leaf, corncob, straw, wood, stalk, hazelnut shell was also reported 

by Demibaş (2001b) and the value ranged from 17.8 to 21.53 KJ/g. 

            A lot of studies focused on the GCV of softwood and the relationship between GCV and 

the characteristics of biomass. Lestander and Rhén (2005) tested the GCV of stem and branch 

wood of 36-year-old Norway spruce samples and the values ranged from 20.2 to 21.7 KJ/g.  

           White (1987) reported GCV for four softwoods and four hardwoods which ranged from 

8600 to 9260 Btu/lb and from 8410 to 8880 Btu/lb, respectively. That study also found that 

softwoods generally have higher GCV values due to the higher resin and extractives content. 

         The similar results also reported by Jain (1992) with the determination of calorific value of 

26 hardwood species and 16 Pinus species on an ash-free dry-weight basis in which the calorific 

value ranged from 11.61 to 22.67 KJ/g for hardwoods and ranging from 16.91 to 23.35 KJ/g for 

softwoods.  Maranan and Laborie (2007) determined the calorific value between 18.71 and 19.68 

KJ/g for hybrid poplar wood, and the study also indicated that there was no relationship between 

GCV and the age and location of the population evaluated.  

          Singh and Kostecky (1986) tested the GCV of 10 tree species (6 softwoods and 4 

hardwoods) and different parts of the tree including stump, stem, branches, foliage, and bark. 

The results showed that the mean calorific values of oven-dry softwoods and hardwoods were 

20.178 and 19.146 MJ/kg, and the calorific values of different parts of tree were in descending 

order: treetop, branches, foliage, bark, stump and stem.  

         Kryla (1984) also measured the GCV of different species and different parts of softwood, 

in most cases the GCV from this study were slightly higher than those reported by Singh (1986) 
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and the order of GCV of different parts of the tree is almost the same with those reported by 

Singh (1986).  

         Nurmi (1997) investigated the influence of different species and different parts on GCV by 

measurement of Scots pine, Norway spruce, silver birch and black alder. This study showed that 

they were both significant factors for GCV, the conifers determined to have the highest GCV and 

crown material had a higher GCV than stems or whole tree material.  

2.4 Relationship between chemical composition and energy trait 

            Gross calorific value, which is one of the most important properties of biomass affecting 

utilization of material as a fuel, is highly dependent on the chemical components of biomass. 

Demirbaș (2001a) examined the chemical composition and calorific value of 14 biomass fuels 

including leaf, straw, softwood, hardwood, shell, bark, stalk and olive. The results showed that 

GCV had no obvious relationships with holocellulose, but there were good correlations between 

GCV and lignin contents and mathematical equations were also developed to calculate GCV 

from lignin content of biomass.  

            Similarly, based on the measurement of chemical composition and GCV of biomass 

samples, Demirbaș (2002) also obtained that moisture and ash generally decrease GCV, 

extractives make biomass more desirable as fuel, and there were no direct relations between 

GCV and holocellulose.  

            Based on the plot of regression coefficients of twenty longleaf pine samples, So and 

Eberhardt (2010) observed a strong relationship between GCV and extractives content and an 

weaker relationship between GCV and lignin content. So et al. (2012) also obtained a strong 

relation between GCV and extractives content based on the plot of regression coefficients of 40 

longleaf pine samples using both MIR and NIR. By determination of chemical components and 
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GCV of four hardwoods and four softwoods, White (1987) reported that GCV was correlated 

with lignin and extractives content.  

             The results above are consistent with the GCV of individual wood components. 

Rhén et al. (2007) found that on the basis of hydrogen of 6% of biomass, the calorific value were 

36.9-39.4 MJ/kg for extractives, 26.8 MJ/kg for lignin and 18.7-19.5 MJ/kg for cellulose. It was 

also found that owing to the inorganic components of ash, which has lower calorific values and 

may cause problems of higher deposits during burning, the biomass material with lower ash 

content are preferred in energy crops. Fuels characteristics of different biomass species were also 

presented by Demirbaș (2002) that cellulose and hemicelluloses have a GCV of 18.6 MJ/kg, 

lignin has a GCV ranging from 23.26 to 25.58 MJ/kg.  

           The GCV of holocellulose, extractives and lignin are also in accordance with their carbon 

content and other elemental composition, in other words, the GCV of biomass is consistent with 

the carbon content and other elemental composition of biomss. There has been a lot of research 

focused on the correlation between ultimate and proximate analyses of biomass and GCV.  

          Demirbaș (2004) found that carbon content and hydrogen content increased the GCV and 

oxygen and nitrogen decreased the GCV of biomass. The study also found that GCV relates to 

the oxidation state of the biomass in which carbon atoms generally dominate and overshadow 

small variations in hydrogen content.  

          Similarly, Annamalai et al. (1987) also demonstrated an empirical equation, which was 

originally developed to estimate the GCV of fossil fuels, can be used for accurately estimate the 

GCV of biomass fuels. The equation showed that the higher the carbon and hydrogen content are, 

the lower the oxygen content is and the higher the GCV will be.  
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           Sheng and Azevedo (2004) obtained a formula based on ultimate analysis that GCV has a 

positive correlation with C, H as well as O content which is on the contrast with the conclusion 

reported by Annamalai et al. (1987).  

2.5 Near infrared spectroscopy 

              Near infrared spectroscopy (NIR) is a rapid and nondestructive technique for 

quantitative and qualitative analyses in various industries. Historically, in 1800 the NIR region 

was discovered by Herschel who separated the electromagnetic spectrum with a prism and found 

out that the temperature increased towards and beyond the red near infrared region (Reich, 2005).  

            NIR refers to the region ranging from 12500 to 4000 cm-1 (800 to 2500 nm) of the 

electromagnetic spectrum. The absorption bands mainly arise from overtones and combination 

bands of fundamental vibrations which were generated by the molecular vibrations in the mid-

infrared region ranging from 4000 to 400 cm-1 (Bokobza, 2002). The near infrared radiation 

absorbed by a molecule give rise to vibrations of individual bonds in a manner of diatomic non-

harmonic oscillator, which is different from that of the fundamental vibrations in mid-infrared 

region modeled according to vibrations of the harmonic motions based on Hook’s law  

(Heigl et al., 2007).       

            The key issues determining the band occurrence and spectral properties such as frequency 

and intensity of NIR bands are anharmonicity and Fermi resonance (Reich, 2005). In wood, the 

C-H, O-H, N-H mainly account for the fundamental vibrations which produce a series of 

complex, broad and overlapping bands. These overtones and combination bands in the near-

infrared region are much weaker than the absorptions of the corresponding fundamental 

vibrations in the mid-infrared region (Borchert, 2003). 
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           NIR analyses can be carried out in transmission or diffuse reflection mode. While the 

former one requires a more specific sample preparation such as the KBr pellet made of milling 

sample or wood wafer of certain size by using microtome or razor blade, and the latter one 

involves a limitation of small penetration depth into the samples (Tsuchikawa et al., 2005; Yeh 

et al., 2005; Fackler et al., 2007; Poke and Raymond, 2006; Sykes et al., 2005). 

 

                   

                        
 

                                     

                                   (I) 

                                                                                                                           (II) 

                          Figure 2.3.The transmittance (I) and reflectance (II) mode of NIR (Murray and 
Cowe, 2004) 
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Figure 2.4.The configuration of NIR spectrometer (McClure, 1994) 

 

 
             In transmission mode, the sample is placed between the beam source and the detector, 

which measures the decrease in radiation intensity when the radiation is passing through the 

sample. For reflectance mode, the detector is located between the source and sample to measure 

the intensity of light reflected from the sample (Figure 2.3). In diffuse reflectance mode, the 

sample is illuminated by low-energy NIR radiation, according to the interaction between the 

radiation and chemical components of the sample, the radiation is transmitted through the sample, 

where it can be absorbed by the overtones and vibrational combinations of the analyte species in 

the sample, or scattered in the sample before some of them diffusely reflected back to the 

detector (Malin et al., 1999; McCarty et al., 2002). NIR reflectance spectra are recorded and 



 

16 
 

accessed by calculating log (1/R) which is normally used for ordinate as absorbance, where R is 

the ratio of the reflectance of the sample to that of a nonabsorbing standard 

 (Burns and Ciurczak, 1992).  

           Figure 2.4 presents the configuration of the NIR spectrometer which is normally 

composed of an energy source, monochromator, mirrors, sample presentation interface, 

reflectance detectors, transmittance detector and the control and analysis systems.  

          The light source is generally a tungsten halogen lamp or light emitting diodes (LEDs) 

(Bokobza, 2002). The light is first monochromated by a monochromator which is classified as 

filter and scanning type. In the scanning monochromator, a grating or a prism is applied to 

separate the individual frequencies of the radiation, and the filter monochromator is a wheel 

holding a number of absorption or interference filters (Nicolai et al., 2007).  

           The detectors most commonly used in NIR spectrometer include lead sulphide detectors 

(PbS) and lead selenide detectors (PbSe), silicon detectors, indium gallium arsenide detectors 

(InGaAs). Compared with other detectors, the PbS and PbSe are with higher detection capability 

and faster response speed, the silicon detectors are fast, sensitive and low cost, and the InGaAs 

detectors are most expensive, high sensitive and with good signal-to-noise performance and 

stability (Satoshi, 2002).  

      The application of NIR was started in the early 1950s in agricultural industry, then in 

1960s the utilization of multivariate analysis to NIR resulted in an increased acceptance of NIR 

in the food and agricultural industries (Schwanninger et al., 2011; So et al., 2004). Since the 

1980s, NIR associated with chemometrics and multivariate analysis led to an upsurge of interest 

in NIR in diverse areas of academic study and various industrial fields such as biology, 

pharmaceutical, pulp and paper industries (Burns and Ciurczak, 2001; Roggo et al., 2007; 
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Pasquini, 2003; Karoui and Baerdemaeker, 2007; Santos et al., 2005; Antti et al., 1996). There 

were also a number of studies evaluating the potential of NIR for measurement of biomass 

properties. 

            Mclellan (1991) observed desirable correlations between laboratory measured and NIR 

predicted results for a wide variety of biomass including 18 species fresh and senescent foliage 

(6 needle-leaved conifers and 12 broad-leaved deciduous) collected from 5 locations. The 

correlation coefficients of calibrations for nitrogen, lignin and cellulose were 0.98, 0.88 and 0.90, 

respectively. The analytical error was examined by the randomly selected duplicate samples 

measured by different labs which showed that the analytical errors of NIR analysis was 

dramatically lower than those of wet chemistry methods. The relative mean error of NIR method 

was 1.4% for nitrogen, 2.1% for lignin and 0.6% for cellulose, while for laboratory 

measurements ranged from 3.9-6.1% for nitrogen, 6.9-14.1% for lignin, and 4.3-5.1% for 

cellulose. An interlaboratory comparison was also made to test the precision and relative 

accuracy of using NIR and the wet chemistry analyzed in five different labs. The results showed 

that because of the existence of important biases between laboratory measurements, the 

substitution of standardized NIR procedures could improve the intercomparability of the results 

between studies. 

      Similarly, Fagan et al. (2011) established the NIR calibrations for two dedicated bioenergy 

crops. Samples of Miscanthus and two varieties of SRCW i.e. Tora and Karin were fertilized 

with different levels of waste water before harvesting, the bottom 1.5 m of the stem were 

harvested for the determination of moisture content, calorific value, ash content and carbon 

content and the collection of spectral data of 164 samples with NIR. The NIR spectral data were 

pretreated with different methods including multiplicative scatter correction (MSC), standard 
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normal variant (SNV), first and second derivatives and application of different spectral range 

from 400 to 2500 nm. Partial least squares regression (PLS) was applied for developing NIR 

calibrations and full cross-validation were used for confirming the calibrations. The coefficients 

of determination (r2) for calibrations of moisture content, calorific value, ash and carbon content 

were 0.99, 0.99, 0.58 and 0.88, respectively.  

              The chemical compositions of a diverse source of biomass were predicted by NIR 

calibrations reported by Kelley et al. (2004). Perennial crops (e.g., sugar cane, flax, sisal and 

hemp), pure fiber (e.g., cotton) and tropical monocotyledons (e.g., palm and banana) were 

subjected to a wide variety of extraction and chemical treatments before laboratory 

measurements and NIR analysis. NIR calibrations were constructed with PLS and confirmed for 

prediction precision using cross-validation. Good correlations between the measured and NIR 

predicted results were obtained for three major components, lignin, glucose and xylose with r 

ranging from 0.87 to 0.94, a weaker but promising results were presented for four minor sugars, 

mannose, galactose, arabinose and rhamnose with r ranging from 0.72 to 0.87.  

             The correlations between laboratory measured and NIR predicted chemical composition 

of longleaf pine were reported by So and Eberhardt (2010). Forty samples were collected from 

breast and mid height of 20 longleaf pine trees. The calibrations for extractives and lignin were 

developed by PLS then tested with a validation set. The results for extractives provided strong 

statistics with an r2 of 0.88 and 0.78 for the calibration and validation set, respectively and when 

employing only two principle components. A poorer result was found for lignin content with an 

r2 of 0.71 and 0.33 for calibration and validation set using 3 principle components. When 5 

principle components were used, the result was improved with r2 of 0.92 and 0.71 for calibration 

and validation set.     



 

19 
 

      Physical and mechanical properties of biomass were also measured by NIR.    

Hein et al. (2011) developed NIR calibrations for biomass products i.e. agro-based 

particleboards which were made of different contents of Eucalyptus and Pinus wood particles 

with sugar cane bagasse. The properties of modulus of elasticity (MOE), modulus of rupture 

(MOR), internal bond (IB), water absorption (WA24H) and thickness swelling (TS24H) after 

immersion for 24h were examined and the spectral data collected with NIR were pretreated with 

1st or 2nd derivatives prior to NIR calibration. The PLS calibrations presented satisfactory 

correlation between NIR spectral data and reference data with r2 of 0.70 for IB, 0.46 for MOE,  

0.74 for MOR, 0.72 for WA24H, and 0.82 for TS24H, respectively.  

         Density, MOR and MOE of longleaf pine samples were also predicted by NIR presented by 

Via (2003). Different parts of 10 longleaf pine trees were collected for conventional 

measurements and NIR prediction. Multiple linear regression (MLR) and principal component 

regression (PCR) were employed in calibration construction. The correlation between laboratory 

measurement and NIR prediction were good with the treatment of MLR, which with r2 of 0.76 

for density, 0.86 for MOE and 0.88 for MOR. With PCR the similar calibrations obtained if only 

wavelengths known to associate with lignin and cellulose were utilized. This study also revealed 

that MOE and MOR were poorly correlated with NIR spectral data in the pith wood region while 

density was strongly correlated, which may arise from the low range of variation in MOE and 

MOR in pith wood and the presentence of high amount of resinous extractives near the pith.  

          All these studies mentioned above illustrate that near infrared spectroscopy in combination 

with multivariate analysis is a powerful tool to predict the physical, mechanical, chemical and 

energy properties of the biomass. 
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2.6 The applications of NIR to biomass 

             Due to feedstock variation, the chemical, physical and energy characteristics of the 

biomass are crucial to process control. Rapid measurement of characteristics of biomass can be 

applicable to large-scale nondestructive forest resource properties assessment and consequently 

assist efficient process control for large-scale conversion of heterogeneous feedstock to energy 

outputs. In most cases of biomass industry, it is more practical to make a large number of 

biomass chip samples rather than milled samples screened which is a prerequisite for on-line and 

in-line monitoring. The exclusion of the grinding step will also simplify the development of NIR 

calibrations.  

          Nevertheless, there are few studies developing NIR calibrations for chip sample for 

biomass properties. Near infrared radiation can just penetrate to depths of several millimeters 

into the sample. The penetration depths are further dependent on the size and shape of the 

particles of the materials, the voids between the particles, and the arrangement of particles 

(Chang et al., 2001). For heterogeneous material such as wood, this small penetration depth may 

result in variation in the spectral signal and thus there is a strong dependence on sample size and 

preparation technique (Yeh et al., 2004). In spite of this limitation, there are still some 

investigations explore the calibrations based on solid wood chip or strip obtaining some 

encouraging results.  

         The properties of loblolly pine samples harvested from three plantations in Georgia were 

analyzed with NIR by Jones et al. (2005). Totally, radial strips of 120 loblolly pine trees were 

measured in terms of air-dry density, microfibril angle (MFA), and stiffness. NIR calibrations 

were established based on the averaged spectra of different sections of the wood strips and 

pretreated with the MSC, first and second derivative. The NIR calibrations with spectra 
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pretreated by MSC presented the best statistics overall for density, MFA and stiffness with r2 of 

0.83, 0.90 and 0.91, respectively. When tested by validation set, the calibration treated with 

second-derivative provided the best results with r2 of 0.81, 0.80 and 0.87 for density, MFA and 

stiffness. This study also demonstrated that the transfer of one sample from the prediction set to 

the calibration set greatly improved the accuracy of predictions and minimized the difference 

between mathematical treatments.  

         NIR calibrations for Eucalyptus delegatensis, Pinus radiate D. Don and loblolly pine wood 

generated from averaged spectra of wood strips for a variety of wood properties were reported by 

Schimleck et al. (2001, 2002, 2005). For Eucalyptus delegatensis, the NIR spectra were collected 

from the radial–longitudinal face of each sample which was also determined for density, MFA, 

EL and MOR. The original and second-derivative spectral data were analyzed by PLS for 

construction of NIR calibrations which were validated with a test set. The correlation between 

laboratory measurement data and NIR fitted data were good in all cases, with r2 of 0.93 for 

density, 0.77 for MFA, 0.90 for EL, and 0.78 for MOR, respectively. 

         A series of Pinus radiate D. Don samples were characterized in terms of density, MFA and 

EL. Fifty NIR spectra were obtained from radial/longitudinal face of each sample then averaged 

into one spectrum. The relationships were good in all cases, which were based on PLS and 

second-derivative spectral data, and coefficients of determination ranging from 0.68 for MFA 

through 0.82 for EL to 0.94 for density.  

         Similarly, air-dry density, MFA, stiffness and several tracheid morphological 

characteristics of the radial-transverse (RT) face and radial-longitudinal (RL) face of 20 loblolly 

pine samples were analyzed. NIR diffuse reflectance spectra obtained from the RL- and RT-faces 

of strips were converted to second derivative spectra and then were subjected to the modified 
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partial least squares regression. In general, calibrations based on spectra from RL-face provided 

the strongest statistics with r2 ranging from 0.86 to 0.97, exceptions were tracheid perimeter and 

tracheid radial and tangential diameters. Difference between the two set were small which reveal 

that either face could be used for NIR analysis. 

         Jones et al. (2008) compared the calibrations of basic specific gravity and lignin content 

based on the spectra obtained by using a variety of sampling options including whole-tree wood 

chips, core holes, core samples and drill shavings. Second derivative spectral data were analyzed 

by PLS to develop the calibrations. The results indicated that calibrations based on spectra from 

dried and green whole-tree chips (milled and intact) present the strongest statistics with r2 

ranging from 0.45 to 0.74 for basic specific gravity and from 0.50 to 0.73 for lignin. Similar 

results observed from milled increment cores, while poorer calibrations generated from intact 

increment cores. The other sampling options i.e. drill shavings produced errors that were too 

large for practical applications. 

       The chemical compositions of wood strips were also predicted with NIR by Jones et al. 

(2006). Seventeen loblolly pine of variable age representing seven sites were selected for the wet 

chemistry measurements including cellulose, hemicellulose, lignin (acid soluble and insoluble), 

arabinan, galactan, glucan, mannan, and xylan contents. NIR spectra were collected in 12.5 mm 

sections from the pre-record positions that represent wood close to the pith (juvenile wood), 

close to bark (mature wood) and the transition zone between juvenile and mature wood. The 

averaged spectra of fifty scans were converted to second derivative spectra analyzed by PLS 

regression. Calibrations were developed from full set of all 40 samples and split set of 28 

samples for calibration and 12 samples for prediction. For full set, calibrations of cellulose, 

glucan, mannan, xylan, insoluble, and total lignin content were desirable with r2 greater than 0.80. 
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The r2 of calibration for arabinan was 0.72 while for acid-solube lignin, hemicellulose and 

galactan were poorer with r2 ranging from 0.18 to 0.57. The results based on the calibration set 

with 28 samples were similar with that of full set with good r2 ranging from 0.75 to 0.98 for 

cellulose, glucan, mannan, xylan, insoluble, and total lignin content. A weaker r2 was also 

obtained for arabinan of 0.75 and for acid-solube lignin, hemicellulose and galactan ranging 

from 0.25 to 0.66. However, when the calibrations were validated by the prediction set, the r2 

were noticeably low which may be a consequence of the diverse origins of the samples in the test 

set. 

            However, the researches mentioned above all based on the averaged spectra of solid 

wood chips or strips, to date hardly one research investigate the NIR calibrations established 

from a single spectrum per chip of samples. 

2.7 Multivariate Analysis 

           Just as mentioned previously, the NIR technique was not widely applied until the 

utilization of multivariate analysis to NIR which resulted in an increased acceptance of this 

technique. Because of the highly overlapping spectra and difficult interpreting overtones, the 

application of multivariate analysis to NIR technique simplify the calculation of regression 

models and enable the interpretation of overtones. Multivariate data are data with many variables 

ranging from six to millions including factors and responses. And multivariate data analysis, 

including partial least squares (PLS) regression and principal component analysis (PCA), are 

involved to model factors and responses, find relationship between all factors and responses and 

extract useful information from multivariate data (Hair et al., 1995). 

           The principle of PCA is that the reduction of dimensionality of a data set that contain a 

large number of intercorrelated variables and meanwhile retain as much as possible of the 
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information of original data (Kemsley, 1996). The mechanism of PLS is to predict or analyze a 

set of dependent variables from a set of independent variables by extracting a set of orthogonal 

factors, called principal components,  from the independent variables (Abdi, 2007). PLS is a 

regression extension of PCA, with the former presents some advantages including: superior 

prediction results, fewer principal components, more readily interpreted loadings and better 

capability for handling nonlinearities (Wentzell and Montoto, 2003). Because of its merits, PLS 

has become a powerful tool applied to analyses of ultraviolet, NIR, chromatographic and 

electrochemical data (Haland and Thomas, 1988). 

             In PLS, the variation in X is X-scores called t, the variation in Y is Y-scores called u. 

The relationship between X and X-scores is described by X-loadings called p, while the 

corresponding relationship between Y and Y-scores is given by Y-loadings called q. The X-

decomposition is first influenced by the u1, which result in the calculation of the X-loadings that        

 

                        Figure 2.5. The arrow scheme for PLS regression (Westerhuis et al., 1998) 

 

termed as w (loading-weights). E and F represent the error matrices for the X-scores and Y-

scores, respectively. The arrow scheme for PLS regression is shown in Figure 2.5. The 
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interdependent u→t and t→u substitutions are repeated until convergence of t. The 

decomposition of X and Y can be described by the equations below (Esbensen, 2000; Maranan, 

2006; Yeniay and Göktaș, 2002).                             

                                   X=𝜮t·pT +E 

                                   Y=𝜮u·qT +F 

                                    B=w (pT w)-1qT 

                                            Y=X w (pT w)-1qT=XB 
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Chapter 3 RAPID PREDICTION OF CONSTITUENT COMPOSITION 
AND ENERGY TRAITS OF LOBLOLLY PINE WOOD USING NEAR 

INFRARED SPECTROSCOPY 

 

3.1 Abstract 

Near infrared spectroscopy (NIR) was applied to determine the extractives, lignin, ash, moisture, 

and calorific value of loblolly pine. Calibrations for these properties were established based on 

NIR spectra collected from milled sample and chip samples. The chip samples were further 

subdivided into groups including calibrations derived from multiple averaged spectra per chip 

(25) and a single spectrum per chip. Calibrations were developed from 2/3 of 72 total randomly 

selected samples using partial least squares (PLS) regression and a variety of pretreatments for 

raw spectral data, then validated using the remaining 1/3 of samples. Calibrations for all 

properties developed from milled samples showed the strongest correlation between laboratory 

measurement and NIR predicted values with coefficient of determination for calibrations (Rc
2) 

ranging from 0.85 to 0.96 for the calibration set, and for predictions (Rp
2) of from 0.56 to 0.89 

for the validation set. Properties were moderately predicted by the calibrations developed from 

multiple spectra per chip, achieving Rc
2 higher than 0.8 and Rp

2 varied from 0.4 to 0.77. Good 

results were also obtained from the calibrations based on a single spectrum per chip, achieving 

Rc
2 ranging from 0.72 to 0.87. Some properties, however, including ash, extractives and calorific 

value, were poorly predicted for the validation set with an Rp
2 of 0.33, 0.42, and 0.41, 

respectively. This study revealed the potential of NIR in combination with multivariate analysis 
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to predict the chemical composition and energy trait of loblolly pine wood in process control 

settings. 

3.2 Introduction 

           Economic stability, environmental issues and uncertain supplies of fossil fuels at both the 

national and global scale have resulted in an increased interest in finding an alternative source to 

fossil fuels (Orts et al., 2008). Because it is clean-burning, has lower net emission of CO2 into 

the atmosphere, and can be grown relatively quickly and sustainably biomass energy has been 

attracting more and more attention worldwide as a more desirable source of energy (Kumar et al., 

2009; Broek et al., 1996). As the only renewable organic resource that can fixes carbon dioxide 

in the atmosphere by photosynthesis, biomass has been extensively utilized worldwide, which 

accounts for approximately 14% of world’s primary energy consumption (Parikka, 2004; 

Demirbas, 2007). The conversion of biomass to liquid transportation fuels could significantly 

decrease world dependency on fossil fuel. As a primary energy source, biomass (43%) is just 

behind hydropower (51%) among renewable resources (Chum and Overend, 2001). Currently, 

over 3 percent of the total energy consumption in the U.S. is supplied by biomass, most resulting 

from industrial heat and steam production by the pulp and paper industry and electrical 

generation with forest industry residues and municipal solid waste (Perlack et al., 2005). It is 

also estimated that by 2025 resource will provide up to 30% of the raw material for the chemical 

industry, about 38% of the world’s direct fuel use, and 17% of the world’s electricity (Kamm, 

2007; Demirbas, 2000). As a result, there is a great need of high yield biomass production 
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systems and bioconversion technologies which can convert biomass into forms of bioenergy and 

chemicals usable in industry efficiently.  

             Biomass refers to all plant, plant-derived materials and animal manure including forest 

residues, wood product residues, agricultural field residues, processing waste, animal wastes, 

agricultural and woody crops grown for fuels (Simpkins, 2006; McKendry, 2002). Biomass is a 

stored source of solar energy which can be released by conversion though biological 

(biochemical) and thermochemical processes and direct combustion (Zhang et al., 2010). The 

conversion processes of biomass can produce three main kinds of end-products: heat and power, 

transportation fuels such as ethanol, and chemical intermediates. The production of biofuel and 

generation of electrical power are the two main markets for bioenergy (Cantrell et al., 2008; 

McLaughlin et al., 1999).  

           Currently, the biofuels industry of U.S. is primarily (95.6%) based on the conversion from 

corn to ethanol. However, because of the competing demands for corn in other industries, it is 

not possible that corn output can fulfill the future biofuel demand (Petrulis, et al., 1993). 

Furthermore, combustion is the most widely used process for biomass conversion and accounts 

for over 97% of bioenergy generation in the world. However, in many cases the limited 

availability and high costs are key problems for conversion of biomass to higher-valued 

bioenergy outputs such as transportation fuels and electrical power (Dornburg and Faaij, 2001; 

Zhang et al., 2010). As a result, sources of renewable biomass that are abundant, cost-effective 

and can be stored in large quantities are in demand. In particular, because of the large biological 

forestlands of U.S. (29.1-34.6 billion cubic feet per year), woody biomass is an important 

potential source of renewable biomass in the U.S. In particular, the energy produced from woody 
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biomass accounts for the majority of biomass energy (64%) currently produced, followed by 

municipal solid waste (24%), agricultural waste (5%) and landfill gases (5%) (Demirbas, 2007).  

            Loblolly pine is the most common and fast-growing forest species in the southern U.S., 

where it is dominant on about 29 million acres and constitutes over one-half of the standing pine 

volume (Schultz, 1999). It ranges across 14 states extending from southern New Jersey to central 

Florida and west to eastern Texas.  Loblolly pine is also an adaptable species that has been 

introduced on other continents (Baker and Balmer, 1983; Li et al., 1999). Because of its rapid 

growth and positive traits such as stem straightness and wood quality, loblolly pine wood has 

been accepted and widely used in forest products and some related industries. 

           Normally the major chemical components in wood contain carbohydrates (65-75%), 

lignin (18-35%) and minor components such as extractives, minerals, and trace components, 

accounting for 4-10% of the dry biomass weight. Each of the constituent has some impact on the 

bioconversion of biomass to some form of energy. Lignin is a heterogeneous biopolymer based 

on phenol propane units. It is difficult to dehydrate and is a residual product in current process 

used to convert biomass to ethanol. Some compounds of extractives such as tannins and 

phenolics interfere with activity of hydrolytic and fermentative enzymes in bioconversion even if 

present in low concentrations. Similarly, lower ash and moisture content is preferred because 

they also interfere with enzymatic and acid hydrolysis and decrease the carbohydrate content, 

respectively (Dinus, 2000). On the other hand, biomass of low moisture content and high carbon 

content is desirable for combustion of biomass into biopower. The variation of carbon content in 

biomass is reflected in variation of lignin and extractives content (Ragland and Aerts, 1991). As 

a result, the determination of relative concentrations of constituents influencing efficiency of 

biomass conversion, including extractives, lignin, ash and moisture, is crucial for designing and 
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optimizing the bioconversion of woody biomass to biofuel. Additionally, biomass, as a 

combustion resource has outstanding advantages including high volatility of fuel and high 

reactivity of both fuel and resulting char (Demirbas, 2004). Nevertheless, compared to fossil 

fuels, biomass fuels have relatively low heating values that arise from high moisture content and 

high oxygen content (Zhang et al., 2010). Consequently, it is also crucial to evaluate biomass 

feedstock for their combustion properties prior to conversion, among which the calorific value is 

of greatest significance. 

            The traditional methods for determination of chemical composition and calorific value of 

woody biomass are time and cost consuming, destructive and have limited sample throughput. 

Recently near infrared spectroscopy (NIR) has been demonstrated as a rapid, cost effective, 

reliably accurate method for measuring chemical components and energy trait of wood (So and 

Eberhardt, 2010; Via et al., 2007; Maranan, 2006; Poke et al., 2007). Sample preparation when 

employing NIR techniques has been found to significantly influence repeatability and precision 

of results. 

           Among studies using NIR to predict wood properties, most were based on samples of 

ground material. In production situations that might arise in a large-scale biomass energy 

conversion industry, however, feedstock are likely to arrive in chipped, rather than ground, form. 

It could be more practical in that situation to measure characteristics of unprocessed biomass 

chip samples for optimizing conversion processes instead of taking the time required to mill 

samples. The delay required for grinding and sample preparation might be lengthy enough to 

render the process unsuitable for control of continuous bioconversion processes. The exclusion 

of the grinding step will also simplify the development of NIR calibrations. There have been 

some studies having investigated NIR calibrations of solid wood chip or strip and obtained some 
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encouraging results (Poke and Raymond, 2006; Jones, et al., 2008;  Jones, et al., 2006; Kelley, et 

al., 2004).  

            These studies mentioned above were all based on multiple averaged spectra obtained 

from solid wood chips or strips and to date no one has investigated NIR calibrations based on a 

single spectrum per sample. For on-line, continuous conversion processes, however, large 

quantities of feedstock would likely be moving towards conversion reactors at high speeds, 

rendering it impractical to sample multiple spectra from a single entity. More likely, estimates of 

bulk properties will be derived from single samples of multiple chips, rather than multiple 

samples of single chips. It is important, therefore, to understand the potential differences in 

prediction capabilities of the two approaches. If the feedstocks are moving at a high rate of speed 

into the conversion process, it is also likely it will be necessary to predict bulk properties from 

relatively infrequent sampling. It will therefore be important to understand errors associated with 

predicting bulk properties from intermittently derived measurements on relatively small volumes 

of feedstock. The present study seeks to: 1) develop predictive models for chemical constituents 

of loblolly pine, including extractives, lignin, ash, calorific value and moisture, using NIR 

spectroscopy, and 2) compare the accuracy of calibrations based on the spectra of milled samples, 

averaged spectra per single chip, plus a single spectrum per chip. The goal is to understand the 

potential of infrequent NIR sampling of a continuous stream of feedstock material to reliably 

predict properties of loblolly pine that are of potential importance in its conversion to energy 

products.  
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3.3 Materials and methods   

3. 3. 1 Materials 

Sixty samples were obtained from the top and bottom of 30 loblolly pine trees that were 

harvested from 3 different places including Cusseta, GA (10 trees), Greenville, AL (10 trees) and 

Fort Gaines, GA (10 trees), and fourteen samples of mixed pine chips were obtained from a 

paper mill chip pile in Cottonton, AL. The tree samples were from a clean chipping operation, 

and each sample was taken as a single stem was sent through the chipper. A 10-inch PVC pipe 

topped with an elbow was inserted into the stream of chips, a portion of which were diverted into 

a bucket. This procedure was repeated twice for each stem, once while chips from the bottom 

portion of the stem were being blown into the van, and once while chips from near the top. All 

the samples were bagged separately, labeled, and received as wood chips of 1-4 g. The wood 

chips were air dried for one week under ambient conditions. Eight (8) chips for each sample 

were randomly selected for spectra collection with near-infrared spectroscopy (NIR) and the 

remaining wood chips were oven-dried at 105°C for 24h to determine moisture content. After 

spectra collection, the selected chips were milled to 20 mesh with a Marathon mill equipped with 

20 mesh screen plate, and the milled sample were also used to collect NIR spectra and 

subsequently oven-dried for moisture content. The milled samples were then kept under ambient 

conditions until wet chemistry analysis.  

3. 3. 2 Chemical Analysis 

The moisture content of dried chips and milled samples was determined as weight loss after 

drying at 105 ± 2°C for 24h using a convection oven. Wood meal samples were extracted with 

acetone in a Soxhlet apparatus for 6 h. The extracts were transferred to a small plate and 
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evaporated in a ventilation hood for 3h. The extracts were then concentrated at 40°C for 12 h in a 

vacuum drying oven. Extractive-free sample was treated with Klason method for measurement 

of acid insoluble lignin content. The sample was pre-hydrolyzed with 72% sulfuric acid at 30 °C 

water bath for 2 h and stirred every 15 min, then diluted to 4% H2SO4 and autoclaved at 121°C 

for 1h. The solid residue was filtered off, dried and weigh to calculate lignin content. Ash 

content was measured as the residue remaining after dry oxidation at 575 °C in muffle furnace. 

Moisture content was also determined to adjust the extractives, lignin and ash content to a dry 

weight basis and all the measurements were performed in duplicate.  

3.3.3 Calorific value analysis 

The calorific value was determined using a IKA oxygen bomb calorimeter C200. Pellets of 0.5g 

sample were prepared with a hand press, placed in the calorimeter and pressurized with oxygen, 

then the bucket filled with 2000ml 22°C water. Then the sample combustion was initiated an 

ignition device.  After the combustion, calorific value was read from the display. The calorimeter 

was calibrated with benzoic acid pellets. Moisture content was measured to adjust the calorific 

value to a dry weight basis and energy content determination was carried out in duplicate. 

3. 3. 4 NIR Analysis  

NIR spectra were acquired using a PerkinElmer spectrum model 400 (Perkin Elmer Co., 

Waltham, MA) FT-NIR spectrometer (Figure 3.1) operating in a diffuse reflection mode. The 

chip and milled samples were placed on the scanning window of approximately 0.8 cm in 

diameter and background correction was performed with a white disk. Thirty-two scans were 

averaged for every spectrum between 4000 and 10000 cm-1 at a resolution of 4 cm-1. The spectra 

of each milled sample were collected 3 times then averaged to one spectrum. For chip samples, 
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five points from both sides of each chip were randomly selected and for every point five spectra 

were collected. In total, 25 spectra were averaged for each chip.  

3. 3. 5 Multivariate Analysis 

           Approximately two-thirds of the samples were randomly selected to represent the NIR 

calibration set and one-third a validation set. Spectrum Quant+ 4.6.0 software was used for 

multivariate analysis. Because of the noise in the spectral measurements and experimental 

instrumentation, the effects of scatter and particle size, the raw NIR spectra were always 

complicated, broad and overlapping. So prior to modeling, spectral data were subjected to 

pretreatments including Savitzky-Golay smoothing and derivatives to reduce noise, and 

multiplicative scatter correction (MSC) and standard normal variate transformation (SNV) to 

remove the effect of baseline height and slope. 

           Savitzky-Golay smoothing and derivatives are algorithms performed using a polynomial 

regression on a range of values around each raw data point in a spectrum to estimate a spectral 

value free from noise. The derivatives of a spectrum are computed using Savitzky-Golay 

polynomials (Schwanninger et al., 2011; Savitzky and Golay, 1964). Figure 3.1 shows the 

difference between the spectra before and after 1st derivative processing with 49 smoothing 

points. 

             MSC, proposed by Geladi et al. (1985), uses linear regression of spectral variables to 

average replicate spectra and simultaneously corrects for both multiplicative and additive scatter 

effects. MSC based on correcting the scatter level of all spectra of a group of samples to the level 

of the average spectrum, each spectrum is fitted to the average spectrum as closely as possible 

using least squares (Isaksson and Naes, 1988). 
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 Figure 3.1 NIR spectra before and after 1st derivatives with 49 smoothing points 

 

 

For each digitized spectrum, the row vector xi, is fitted by regressing it against the average 

spectrum of the training set, m (Wold et al.,1998): 

xik=ai + bimk + eik 

The average training set spectrum has the elements: 

mk= N
xik∑  

before 

after 
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Then, from each row, xi, one subtracts the intercept (ai) and divides by the multiplicative 

constant (bi): 

xi,MSC=(xi-ai)/bi 

          SNV is a mathematical transformation of the log (1/R) spectra by calculation of the 

standard normal variation at each wavelength removes slope variation on an individual sample 

basis by subtracting the spectrum mean and scaling with the spectrum standard deviation (Barnes 

et al., 1989).  The algorithm is as follows, x is a row vector containing the original spectrum, xo 

is the mean of x (Guo et al., 1999): 

xij, SNV = 
(𝑥𝑖𝑗−𝑥𝑜)

�∑ (𝑥𝑖𝑗−𝑥𝑜)2𝑝
𝑖=1

𝑝−1

  

          Partial least-squares regression (PLS) was performed on preprocessed spectra to transfer a 

large number of original independent variables to a small number of factors (latent variables) that 

are linear combinations of original variables (Wold et al., 2001; Theodora and MacGregor, 1995). 

The calibration models consisted of these orthogonal variables with a maximum is 10. The 

number of principal components plays an important role in the development of calibrations. 

Exclusion of key components results in missing information while inclusion of excessive 

components leads to overfitting that the calibration represents not just the true correlation 

between reference data and predicted data but also random noise and individual features of the 

calibration set. The optimal number of principal component depends on the response of residual 

Y-variance with changing number of principal components (Kelley et al., 2004). Additional 

iterations were terminated when the addition of new factor did not substantially decrease the 

residual Y-variance. 
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           The coefficient of determination (R2) and standard error of calibration (SEC) were used to 

assess the calibration models. Standard error of prediction (SEP) was used to examine the 

accuracy of a calibration to predict a set of unknown samples that are different from the 

calibration set (Wu et al. 2011).  

R2 is calculated as: 

R2=1- ∑ (ŷ𝑖−𝑦𝑖)2𝑛
𝑖=1
∑ (𝑦𝑖−ȳ)2𝑛
𝑖=1

 

Where, ŷi and yi are the predicted and measured values of sample i, ȳ is the mean of the 

measurement values, and n is the sample size. 

SEC is calculated as: 

SEC=�∑ (𝑦𝑖−ȳ)2𝑛
𝑖=1
𝑛−1

 

Where, ȳ is the mean of the measurement values, yi is the measured value of sample i, 

n is the sample size.  

             A further evaluation of the performance of calibrations was assessed by RPD, which is 

the ratio of the standard deviation of reference data to the standard error of prediction (Williams 

and Sobering, 1993). An RPD value greater than 8 is good for process control, development and 

applied research, a value of 5-8 is adequate for quality control, a value of 2.5-5 is satisfactory for 

screening, while values more than 1.5 can be used for initial screening (Williams and Norris, 

2001).  
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                     Figure 3.2 PerkinElmer spectrum model 400 FT-NIR spectrometer 

 

 

3.4 Results and Discussions 

3. 4. 1 NIR spectra 

         The NIR spectra of 5 milled samples and 5 averaged spectra of chip samples are shown in 

Figure 3. 2. The pattern of these spectra were very similar except for the baseline differences. 

Spectra from the chip samples exhibited more severe than those of the powder, an expected 

result that is likely attributable to the heterogeneous reflection of light from the chip surface. 
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Figure 3.3 5 spectra (dotted line) and 5 averaged spectra of chip (solid line) of loblolly pine 
sample. 

 

           Several spectral peaks can be detected visually. The peak at 8250 cm-1 is assigned to the 

2nd overtone of C-H stretching vibration in cellulose (Michell and Schimleck, 1996).The 

absorption at 6825 cm-1 is due to the 1st overtone of O-H stretching vibration in lignin and 

hemicellulose (Schwanninger et al., 2011). Bands appearing at 5473-5984 cm-1 are associated 

with 1st overtone C-H stretching in cellulose, lignin, hemicellulose and 1st overtone C-H2 

stretching in cellulose (Schwanninger et al., 2011; Ali et al., 2001). The peak at 5185 cm-1 is 

attributed to a combination of O-H stretching vibration and O-H deformation of H2O (Sun et al., 

2011). Absorption at 4769 cm-1 is related to a combination of O-H and C-H deformation and O-

H stretching vibration in cellulose and xylan (Bassett et al., 1963). Bands at 4394 cm-1 and 4283 

cm-1 correspond to O-H stretching vibration and C-C stretching in cellulose and C-H stretching 

Wavenumber (cm-1) 

Ab
so

rp
tio

n 
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and C-H deformation in cellulose and hemicellulose respectively (Schwanninger et al., 2011; Ali 

et al., 2001). 

3. 4. 2 Calibrations of lignin content 

         The mean of lignin content of chipped and milled samples in the calibration set were 26.13 

and 25.94% and ranged from 23.9 to 27.8% and 24.2 to 27.6%, respectively. The validation set 

also presented a similar range from 24.5 to 27.9% and 24.55 to 27.44% with average value of 

26.2 and 26% (Table 3.1 and Table 3.2). These values were consistent with those reported by 

White (1987), who reported lignin content from 26.8 to 33.8% from four different softwoods. 

Figure 3.4 shows the correlation between laboratory-measured lignin content and the values 

predicted by calibrations using the spectra of milled sample (a), averaged spectra per chip (b), 

single spectrum per chip (c). The calibration based on milled sample with pretreatment of MSC 

plus a 1st derivative with 13 smoothing points over the frequency range from 4000 to 10000 cm-1 , 

and 4 principal components selected for the model, provided the strongest correlation with Rc
2 of 

0.93. When the validation set was used to evaluate this calibration, it also displayed good 

correlation with RP
2 of 0.64 and SEP of 0.39% (Table 3.3). This result is similar to the result 

obtained by Üner et al. (2011) with R2 of 0.909, SEC of 1.51% and SEP of 3.28% (w/w) by 

using a much larger reference data set ranging from 19.93 to 36.7%. These values are also 

consistent with those reported by So and Eberhardt (2010) using 5 principal components with Rc
2 

of 0.92, SEC of 0.34%, R P
2 and SEP of 0.71 and 0.83%, respectively.  

           The calibration based on averaged spectra per chip, with frequency range from 4000 to 

10000 cm-1, pretreated with MSC and 1st derivative plus 13 smoothing points, afforded Rc
2 of 

0.86, SEC of 0.33%, R P
2 and SEP of 0.55 and 0.53%, respectively (Table 3.3). Jones (2006) also 
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presented a similar calibration for 12.5×12.5 mm strip sample of loblolly pine with lignin content 

ranging from 25.84 to 30.86%, reporting Rc
2 of 0.85 (SEC=0.47%) and Rp

2 of 0.51 (SEP=1.26) 

with 4 principal components. The result for chip samples was not as desirable as the calibration 

based on milled samples. Variability in raw spectra were the likely cause for poorer results, the 

variation a product of the heterogeneous structure of intact wood materials, and this result was 

expected. Averaging 25 spectra for each chip tended to minimize the variation, but did not 

eliminate it.  

           By contrast, the calibration based on single spectrum per chip has increased limitations as 

explained earlier, so it is not unexpected that by using similar pretreatment (MSC plus a 1st 

derivative with 25 smoothing points in the frequency range 4000 to 10000 cm-1), a calibration 

with Rc
2 of 0.81, SEC of 0.4%, RP

2 of 0.6, SEP of 0.68% was obtained (Table 3.3). It is not as 

good as the calibrations developed using averaged spectra, especially the SEP and SEC were 

high, but the RPD of 2.1 was still satisfactory for initial screening. This result is comparable to 

that reported by Jones et al. (2008) in which the calibration for lignin content of solid wood with 

R2 of 0.70, SEC of 0.45%, SECV of 0.59%. They captured the spectra of chips by using a FOSS 

NIR Systems fitted with a large transport module and the same systems were also applied by 

Jonsson et al. (2004) for moisture content of wood chips. This method enables the on-line 

process control for a large amount of chip samples but it also has the same limitation of spectra 

from wood chips mentioned earlier. In addition, for all three calibrations, the R2 of the 

calibration set was higher than those of the validation set, and in reverse the standard error of 

validation set was higher than those of calibration set, which may partly arise from the fewer 

data points and narrower data range of validation set.  
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3. 4. 3 Calibrations of extractives content 

           The extractives content of loblolly pine chip and milled wood samples are presented in 

Table 3.1 and Table 3.2. The overall mean was 3.25 and 3.23% with a range from 2.19 to 4.09% 

and 2.4 to 4.02%, respectively, which corresponds to the values reported by Poke et al. (2004) 

with a mean value of 3.22% ranging from 3.03 to 3.37%. Figure 3.5 shows the calibrations for 

extractives content based on different spectral data.  

          Predicted and measured values of the milled samples were correlated with Rc
2 of 0.91, 

SEC of 0.14% using the spectral region from 4500 to 10000 cm-1 , MSC and 2nd derivative plus 

25 smoothing points (Table 3.4). RP
2 of 0.56 and SEP of 0.22% were obtained from the 

validation set.  Üner et al. (2011) also observed a consistent calibration for extractives content of 

Turkish pine with R2 of 0.8679 and SEC of 0.86% by using a wider reference data span from 

2.05 to 16.12%. 

      Pretreatment of averaged chip sampling spectra differed slightly from the milled 

preparation set, with MSC and 2nd derivative plus 9 smoothing points achieving maximum Rc
2 of 

calibration and prediction sets  of 0.86, SEC of 0.16%, RP
2 and SEP of 0.4 and 0.32%, 

respectively. Similar correspondence between calibration and prediction sets for extractives from 

averaged spectra were also reported by Poke and Raymond (2006) with R2 of 0.84 and SEC of 

1.37% for wood radial strip of 20 × 20 mm of Eucalyptus globulus. Kelley et al. (2004) also built 

the calibration for extractives based on averaged spectra collected from the surface of intact 

wood of loblolly pine using 4 principal components, the same R2 of 0.86 and a higher RMSEC of 

2.3% was obtained and it was partly due to the wider range of reference data from 2.8 to 26.9%.  
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      For the calibration based on single spectrum per chip, R2 and standard error of calibration 

and validation set were both not as good as those of the calibrations above (Table 3.4), which 

was predominantly due to the inhomogeneous material structure of chip sample just as 

mentioned earlier. Nevertheless the RPD value of 2.2 indicates that the calibration was still 

satisfactory for initial screening. Furthermore, it is noticeable that the correlation of the 

calibration based on single spectrum per chip is just slightly weaker, especially between the 

calibrations based on averaged spectra per chip and single spectrum per chip, however, the 

development of the latter is more simple and rapid than the former.  

3. 4. 4 Calibrations of ash content 

             The ash content of meal and chip sample for calibration and validation set had a similar 

range from 0.19 to 0.43% with a similar mean value around 0.3% (Table 3.1 and Table 3.2). The 

values are consistent with the values presented by Rhén et al. (2007) with ash content of 0.34% 

and 0.36% for stem wood of Norway spruce and Scots pine. Figure 3.6 shows the calibrations of 

ash content based on different spectral data. By using the pretreatment of 1st derivative plus 25 

smoothing points and 5 principal components, the calibration based on spectra from milled 

sample produced Rc
2 of 0.85, SEC of 0.025%, RP

2 and SEP of 0.61 and 0.037%, respectively 

(Table 3.5). The correlation coefficient was higher than that obtained by Maranan (2006) on 

hybrid poplar wood with Rc of 0.794, which may arise from a limited sample size and different 

pretreatment of spectral data.  

          For the calibration based on averaged spectra per chip,  measured and predicted ash 

content were correlated with Rc
2 of 0.80, SEC of 0.028% by using the spectral region from 4000 

to 10000 cm-1, 2nd derivative plus 37 smoothing points and 4 principal components (Table 3.5). 
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When the calibration was used to estimate ash contents for the validation set, RP
2 of 0.51 and 

SEP of 0.044% were obtained. It is noteworthy that the calibration based on spectra from milled 

sample was only slightly better than that based on averaged spectra per chip, which may be due 

to a larger population of chip sample was applied. The predicted and measured ash content 

correlated fairly with the calibration based on single spectrum per chip, with Rc
2 of 0.72, SEC of 

0.03% by using the pretreatment of 1st derivative plus 25 smoothing points and 4 principal 

components (Table 3.5). However, the measured and predicted value correlated poorly for 

validation set with RP
2 of 0.33, there is still a need for a wider range of samples to increase the 

correlation of prediction. 

3. 4. 5 Calibrations of moisture content 

           All samples were received as green chips with moisture content ranging from 44.1 to 

63.8%. There is a limitation of NIR applied to high moisture content samples that the presence of 

several strong and broad absorption bands arise from water may obscure spectral information 

derived from other components (Schimleck et al., 2003; Abrams et al., 1988). Schimleck et al. 

(2003) demonstrated that the calibrations based on spectra from dried wood with around 7% 

moisture content were superior to those developed using spectra from green wood. Therefore, in 

the current study, the determination of the chemical components was based on the samples after 

one week air-dried and the moisture content ranged from 6.7 to 12.22%.  

            Good correlations between measured and predicted moisture content were obtained from 

the calibrations based on spectra from milled sample, averaged spectra per chip and single 

spectrum per chip, which with Rc
2 ranging from 0.87 to 0.96, RP

2 ranging from 0.7 to 0.89 (Table 

3.6). The calibrations were comparable to those reported by Fagan et al. (2011) for two dedicated 
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bioenergy crops with R2 of 0.99. Hoffmeyer and Pedersen (1995) also presented a similar 

calibration for moisture content of Norway spruce. Additionally, it is noticeable that the SEC and 

SEP of calibrations based on chip sample were both lower than those based on the milled sample, 

which may arise from a larger population of chip sample and a wider range of moisture content 

of milled wood. The similar case was also illustrated by Üner et al. (2011) that higher SEP and 

SEC values were obtained from the data set with larger ranges. 

3. 4. 6 Calibrations of calorific value 

           The overall mean of calorific value of chip and milled sample was 19.28 and 18.64 MJ/kg, 

it varied from 18.2 to 20.7 MJ/kg and from 18.3to 18.9 MJ/kg, respectively (Table 3.7), which is 

similar to the range evaluated by Maranan and Loborie (2007) varied from 18.71 to 19.68 MJ/kg, 

and also corresponds to the values determined by So et al. (2012) ranged from 19.5 to 20.6 

MJ/kg. In contrast, a wider range from 17.05 to 24.59 MJ/kg was presented by Gillon et al. 

(1997) using different parts of plants including living leaves, needles, twigs, bark, leaf and 

needle litter. The correlations of calibration for calorific value based on spectra of milled sample 

(a), averaged spectra per chip (b), and single spectrum per chip (c) are shown in Figure 3.8. The 

calibration based on milled sample presented Rc
2 of 0.91 and SEC of 0.05 MJ/kg, which was 

pretreated with 2nd derivative plus 19 smoothing points in the spectral region of 4000-9000 cm-1. 

When the calibration was evaluated with validation set, RP
2 was 0.85 with SEP of 0.08 MJ/kg. 

The R2 for calibration and validation set are slightly higher while SEP is lower than those 

reported by Maranan and Loborie (2007), which correlated with Rc
2 of 0.82, RP

2 of 0.81and SEP 

of 0.12 MJ/kg. The lower SEP maybe arise from a narrower data range applied in the current 

study. With RPD value of 3.12, the calibration based on milled sample is satisfactory for 

prediction of calorific value.  
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         NIR predicted values based on the averaged spectra per chip correlated moderately with the 

measured values, by using 1st derivative plus 19 smoothing points and 5 principal components, 

Rc
2 of 0.87, SEC of 0.22 MJ/kg, RP

2 of 0.52 and SEP of 0.29 MJ/kg were obtained (Table 3.7). 

The R2 of calibration developed from single spectrum per chip was 0.74, when the calibration 

was evaluated with validation set, the RP
2 and SEP were 0.37 and 0.43MJ/kg, respectively. The 

calibration based on single spectrum may need more samples and wider data range to improve 

the quality of validation set with RP
2 of 0.37. And the RPD value of 1.3 also indicated that a 

larger population was needed to make the calibration good enough for initial screening. It should 

be noted that the range of reference data of milled sample was much narrower than that of chip 

sample, which results in the SEC and SEP for chip sample was several times of those of milled 

sample. The similar result was also illustrated by Üner (2011) that higher SEP and SEC values 

were obtained from the data set with larger concentration ranges.   
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3.5 Conclusions 

This study illustrates the potential of NIR to predict the constituent compositions and calorific 

value of loblolly pine wood. The calibrations based on spectra from milled wood, averaged 

spectra from single chip and single spectrum from single chip were compared. The best 

calibrations were all developed from milled samples with coefficient of determination (R2) 

values of 0.93 (SEC=0.28%) for lignin, 0.91 (SEC=0.14%) for extractives, 0.85 (SEC=0.025%) 

for ash content, 0.96 (SEC=0.32%) for moisture content, and 0.91 (SEC=0.05 MJ/kg) for 

calorific value, respectively. Furthermore, the calibrations for all these properties based on 

averaged spectra per chip are slightly better than those based on a single spectrum per chip. In 

addition, it also revealed strong calibrations were possible for even the single spectrum treatment 

when predicting chip properties. The simplicity and rapidity of calibrations based on a single 

spectrum from a solid wood chip may outweigh the slightly greater precision achieved when 

analyzing ground, bulk samples. However, the calibrations should be further developed with a 

wider range of samples to improve the accuracy prior to application in industry.  
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Table 3.1.Statistical summary of chemical composition and calorific value of chip sample for 
calibration set and validation set. 

Properties 
 

       
  

                        
    Min Max Mean SD n                        Min Max Mean SD n 
Lignin (%)   23.9 27.8 26.13 1.8 48     24.5 27.9 26.2 1.45 24 

  
Extractives 
(%) 

  2.19 4.09 3.25 0.72 48     2.42 3.97 3.19 0.68 24 
  

CV (MJ/kg)   18.2 20.7 19.2 0.57 48     18.42 20.65 19.36 0.56 24 
  

Ash (%) 
  

  0.19 0.43 0.3 0.093 48     0.22       0.43 0.31  0.08 24 

Moisture (%)   6.9 10 9.13 1.4 48     7.1 10 8.97 1.26 24 
Min, minimum value; Max, maximum value; SD, standard deviation of measurement; n, sample 
number; CV, calorific value. 

 

 

Table 3.2. Statistical summary of chemical composition and calorific value of milled sample 
for calibration set and validation set. 

Properties   
 

                 
    Min Max Mean SD n                      Min Max Mean SD n 
Lignin (%)   24.2 27.6 25.94 1.42 34   24.55 27.44    26 1.3 17 

  
Extractives 
(%) 

  2.4 4.02 3.23 0.82 34   2.4 4.0 3.24 0.77 17 
  

CV (MJ/kg)   18.3 18.9 18.61 0.31 34   18.3 18.8 18.67 0.25 17 
  

Ash (%)   0.19  0.41 0.29 0.086 34   0.24      0.39 0.31 0.073 17 
  
  Moisture (%)   6.7 12.22 9.11 1.76 34   7.25 12.2 9.4 1.64 17 

Min, minimum value; Max, maximum value; SD, standard deviation of measurement; n, sample 
number; CV, calorific value. 

 

 

Calibration set Validation set 

Calibration set Validation set 
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Figure 3.4 Correlation between the measured lignin content and the value predicted by 
calibrations using the spectra of milled sample (a), averaged spectra per chip (b), single 
spectrum per chip (c). 

 

Table 3.3. Summary of pretreatment methods and quality of the PLS calibrations for lignin 
content.  

Parameter Spectral 
region 
(cm-1) 

Treatment No. of 
PCs 

Rc
2 SEC 

 
Rp

2 SEP 
 

RPD 

Spectra of 
meal 

4000-
10000 

MSC 
1der13 

4 0.93 0.28 0.64 0.39 3.3 

Averaged 
spectra of 
chip 

4000-
10000 

MSC 
1der13 

6 0.86 0.33 0.55 0.53 2.7 

One 
spectrum 
of chip 

4000-
10000 

MSC 
1der25 

5 0.81 0.4 0.6 0.68 2.1 

 

 

 

(c) 
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Figure 3.5 Correlation between the measured extractives content and the value predicted 
by calibrations using the spectra of milled sample (a), averaged spectra per chip (b), single 
spectrum per chip (c). 

 

Table 3.4. Summary of pretreatment methods and quality of the PLS calibrations for 
extractives content.  

Parameter Spectral 
region 
(cm-1) 

Treatment No. of 
PCs 

Rc
2 SEC 

 
Rp

2 SEP 
 

RPD 

Spectra of 
meal 

4000-
10000 

MSC 
2der25 

3 0.91 0.14 0.56 0.22 3.5 

Averaged 
spectra of 
chip 

4000-
9000 

MSC 
2der9 

4 0.86 0.16 0.4 0.32 2.1 

One 
spectrum 
of chip 

4000-
10000 

2der49 4 0.84 0.18 0.42 0.3 2.2 

 

 

 

(c) 
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Figure 3.6 Correlation between the measured ash content and the value predicted by 
calibrations using the spectra of milled sample (a), averaged spectra per chip (b), single 
spectrum per chip (c). 

 

Table 3.5. Summary of pretreatment methods and quality of the PLS calibrations for ash 
content.  

Parameter Spectral 
region 
(cm-1) 

Treatment No. of 
PCs 

Rc
2 SEC 

 
Rp

2 SEP 
 

RPD 

Spectra of 
meal 

4000-
10000 

1der25 5 0.85 0.025 0.61 0.037 1.97 

Averaged 
spectra of 
chip 

4000-
10000 

2der37 4 0.80 0.028 0.51 0.044 1.9 

One 
spectrum 
of chip 

4000-
10000 

1der25 4 0.72 0.03 0.33 0.052 1.6 

 

               

 

(c) 
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Figure 3.7 Correlation between the measured moisture content and the value predicted by 
calibrations using the spectra of milled sample (a), averaged spectra per chip (b), single 
spectrum per chip (c). 

 

Table 3.6. Summary of pretreatment methods and quality of the PLS calibrations for 
moisture content.  

Parameter Spectral 
region 
(cm-1) 

Treatment No. of 
PCs 

Rc
2 RMSEC 

 
Rp

2 RMSEP 
 

RPD 

Spectra of 
meal 

4000-
8000 

1der5 5 0.96 0.32 0.89 0.45 3.6 

Averaged 
spectra of 
chip 

4000-
10000 

1der37 6 0.90 0.25 0.77 0.34 3.7 

One 
spectrum 
of chip 

4000-
9000 

1der37 7 0.87 0.33 0.70 0.43 2.9 

(c) 
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Figure 3.8. Correlation between the measured and the predicted calorific value by 
calibrations using the spectra of milled sample (a), averaged spectra per chip(b), one 
spectrum per chip (c). 

 

 

Table 3.7. Summary of pretreatment methods and quality of the PLS calibrations for 
calorific value. 

Parameter Spectral 
region 
(cm-1) 

Treatment No. of 
PCs 

Rc
2 SEC 

 
Rp

2 SEP 
 

RPD 

Spectra of 
meal 

4000-
9000 

2der19 3 0.91 0.05 0.85 0.08 3.12 

Averaged 
spectra of 
chip 

4000-
10000 

1der19 5 0.87 0.22 0.52 0.29 1.9 

One 
spectrum 
of chip 

4000-
10000 

1der37 6 0.74 0.34 0.37 0.43 1.3 

 

 

(c) 
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Table 3.8 Summary of pretreatment methods of calibrations for chemical composition and 
energy content based on spectra of meal, averaged spectra per chip, single spectrum per 
chip. 

properties spectra of meal averaged spectra per chip single spectrum per chip 

Lignin 4000-10000 cm-1 
MSC 1der13 

4000-10000 cm-1 
MSC 1der13 

4000-10000 cm-1 
MSC 1der25 

Extractives 4000-10000 cm-1 
MSC 2der25 

4000-9000 cm-1 
MSC 2der9 

4000-10000 cm-1 
2der49 

Ash 4000-10000 cm-1 
1der25 

4000-10000 cm-1 
2der37 

4000-10000 cm-1 
1der25 

Moisture 4000-8000 cm-1 
1der5 

4000-10000 cm-1 
1der37 

4000-9000 cm-1 
1der37 

CV 4000-9000 cm-1 
2der19 

4000-1000 cm-1 
1der19 

4000-10000 cm-1 
1der37 

CV, calorific value; MSC, multiplicative scatter correction; der, derivative. 
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Chapter 4 Conclusions and further studies 

4.1 Conclusions 

             The calibrations based on spectra from wood powder, averaged spectra per chip and 

single spectra per chip for chemical compositions and calorific value of loblolly pine were 

established. Good calibrations were obtained based on spectra from powder with coefficients of 

determination (R2) values of 0.93 (SEC=0.28%) for lignin, 0.91(SEC=0.14%) for extractives, 

0.85 (SEC=0.025) for ash, 0.96 (SEC=0.32) for moisture, and 0.91 (SEC=0.05 MJ/kg) for 

calorific value. With the RPD values ranged from 1.97 to 3.6, the calibrations were all satisfied 

for the initial screening. The calibrations based on averaged spectra per chip also presented good 

correlation with R2 ranging from 0.8 to 0.9 for chemical composition and calorific value. 

Calibrations based on single spectrum per chip gave R2 of 0.81 (SEC=0.4%) for lignin, 

0.84(SEC=0.18%) for extractives, 0.72 (SEC=0.03) for ash, 0.87 (SEC=0.33) for moisture, and 

0.74 (SEC=0.34 MJ/kg) for calorific value. 

              The results indicate that for all properties in the current study, the calibrations based on 

spectra from powder gave the highest R2. Furthermore, good correlations between measured and 

predicted values were also acquired from the calibrations based on averaged spectra per chip 

with slightly lower R2. It’s most encouraging that strong calibrations were possible for even the 

single spectrum treatment when predicting chip properties. However, when the calibrations 

based on single spectrum per chip were validated by prediction set, the correlations were
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disappointed for extractives, calorific value and ash with R2
p lower than 0.5. With the RPD 

values ranged from 1.3 to 2.9, the calibrations based on single spectrum per chip still meet the 

requirement for initial screening, which could facilitate large-scale forest resource properties 

assessment and consequently assist the efficient process control for large-scale conversion of 

heterogeneous feedstock to energy outputs. In most cases of biomass industry, it is more 

practical to make a large number of biomass chip samples screened rather than milled samples, 

which is a prerequisite for on-line and in-line monitoring. The simplicity and rapidity of 

calibrations based on a single spectrum from a solid wood chip may outweigh the slightly greater 

precision achieved when analyzing ground, bulk samples. This study reveals that NIRS in 

combination with multivariate analysis has the potential to predict the bioenergy and chemical 

characteristics of biomass in industrial conversion. 

4.2 Further studies 

           The results showed the potential of calibrations based on single spectrum per chip to 

predict the characteristics of biomass. However, the calibrations may need more samples with 

more variability to improve the prediction correlation and accuracy, which with relatively low 

Rp
2 and high standard error in the current study. Furthermore, more biomass species can be 

applied to make the calibrations more robust and powerful.  
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