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Abstract

As Mobile Ad hoc Networks (MANETs) continue to experience increasing popularity, several 

different  protocols  have  been proposed to  efficiently  transmit  data  among the  participating  nodes. 

These protocols have to be robust and flexible to respond to the dynamic topology and decentralized 

nature of MANETS. The Ad hoc On Demand Distance Vector (AODV) Routing Protocol is one of the 

most commonly used reactive protocols for routing information in MANETS. Even though AODV 

performs  well,  it  suffers  from several  shortcomings.  This  thesis  aims  to  modify  and  upgrade  the 

performance of  AODV. Two different schemes are proposed which improve upon different aspects of 

the standard AODV routing protocol. In the first scheme, the AODV protocol is improved by adding 

the Local Repair feature. In this protocol, intermediate nodes in existing paths try to find new paths to 

the destination in  the event  of  a  link breakage.  In  the second scheme, Next-hop Backup Route  is 

introduced. According to this scheme, once a path is established, every upstream node on an active 

route creates a backup path for its next-hop node. Thus, when link breakage happens, the upstream 

node can depend upon its backup node to forward the packet to the node that was previously its next-

hop.  Both  these  schemes  increase  the  number  of  data  packets  successfully  transmitted  to  the 

destination. 
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Chapter 1

Introduction 

In recent years, mobile computing has enjoyed an unprecedented rise in popularity which has 

largely been facilitated by the improvements in software and processing power of the devices. At the 

current pace of technological innovation, the majority of the world's population is expected to be online 

by 2025. [1] Whether it be laptops, tablets or phones, most wireless devices currently in use directly 

interact with humans and connect to the global Internet. In the future however, a significant number of 

wireless devices are expected to work with little or no human guidance and are expected to perform 

without necessarily connecting to the Internet [2]. These devices are expected to generate short lived 

networks just for immediate communication needs without any external intervention- in other words, 

an ad hoc network. An ad hoc network may be understood as the cooperative engagement of collection 

of  mobile  nodes  without  any  centralized  access  or  control  point  in  which  each  node  acts  as  a 

specialized router [2]. The IEEE 802.11 subcommittee defines an ad hoc network as a wireless network 

composed of  stations within mutual  communication  range of each other,  created in  a spontaneous 

manner and is limited only by temporal and spatial constraints [3]. They are supposed to interact using 

a dynamic network in which nodes join and leave arbitrarily. There are no restrictions on where the 

stations can be located with respect to each other and the network is expected to be self-starting. 

Ad  hoc  networks  may  be  used  for  several  personal  applications  like  conferencing,  home 

networking, embedded computing applications etc. Significant strides have already been made in the 

research, experimentation and deployment of autonomous or semi autonomous unmanned ground [4], 

air [5,6] and sea [7] vehicles. These vehicles and vehicle system are being used for both domestic and 

military applications and they use ad hoc networks to communicate among each other [6,7]. On an 
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industrial  scale,  these  networks  can  also  be  used  in  several  applications  like  search  and  rescue, 

agriculture, sensor based analysis and large scale transportation [2]. 

Ad hoc networks by their very nature help to address some issues that we currently face because 

of the way the Internet is structured. The evolution of Internet has been such that two devices that are 

in immediate wireless range of each other still have to use routers and switches at remote locations to 

forward  packets  between  each  other.  Ad  hoc  networks  may  be  able  to  change  this  by  directly 

connecting multiple wireless devices without the intermediate Internet. This will reduce the bandwidth 

consumption of the Internet  and also alleviate  some security  concerns.  If  both  the sender  and the 

receiver  are  in  immediate  vicinity  of  each  other,  then  it  becomes  difficult  to  compromise  the 

communication unless the attacker is the same physical space.  Ad hoc networks may be employed in 

campuses, companies and hospitals and may become the first choice for connecting devices that are 

near by. 

Most of these ad hoc networks cannot be dependent on the standard Internet routing protocols 

because they are not likely to be connected to the Internet all the time. Also, unlike regular Internet 

networks, ad hoc networks have several additional constraints involved like battery life, mobility and 

relatively lower processing power. The standard Internet routing protocols exhibit their least desirable 

behaviors when presented with a highly dynamic interconnection topology [2]. Therefore it becomes 

impractical to implement the same handful of standard routing protocols in such cases even in the 

presence of a viable Internet connection. To solve this problem, several different protocols have been 

designed for ad hoc networks. All these protocols have their own advantages and disadvantages and 

any particular choice of protocol is a judgment call based on the situation. 

It  is  important  to note that even though our intention is  to generate an ad hoc network for 

mobile nodes, these nodes will have to connect to the regular Internet too. For this reason, the standard 

network architecture is implemented on all these nodes. This includes the four layers of the TCP/IP 
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protocol  and  their  subsequent  functionalities.  The  only  change  however  is  at  the  layer  3  routing 

protocol. All the participating nodes have layer 3 IP addresses and assist each other in routing data 

packets. The layer 2 and layer 1 functionalities work exactly like on the regular Internet and help in 

transmitting the frames and data.  

A very popular ad hoc wireless protocol is the Ad Hoc On Demand Distance Vector (AODV) 

Protocol.  It  provides  quick  and  efficient  route  establishment  between  two  nodes  desiring 

communication. Several researchers have modified and upgraded the AODV depending on their needs. 

In our particular iteration, we modify the AODV protocol to make it more robust and adaptable for 

large number of nodes. 

1.1 Problem Statement

The goal of this research work is to implement two different schemes to improve the AODV 

routing protocol. In the first scheme, we study the impact of incorporating Local Repair mechanisms in 

the AODV routing protocol. In the second scheme, we add backup routes for every next-hop node in a  

path generated by the regular AODV protocol. 

1.2 Thesis Contributions 

The contribution of this work is to provide Local Repair and Next-hop Backup Route based 

improvements for the AODV routing protocol. The core algorithm of the AODV protocol is discussed 

in detail which is followed by the changes suggested by our improvements. Predictions are made for 

each of these improvements and compared to the simulation results run in network simulator ns-2.35. It 

is shown that both Local Repair and Next-hop Backup Route based improvements result in improving 
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the quality of the AODV protocol by increasing the number of successfully delivered packets and the 

packet delivery ratio. 

1.3 Organization of Thesis 

Chapter 2 introduces the reader to different types of traditional routing protocols and compares 

and contrasts them with each other. This is followed by a discussion on why regular routing protocols 

are  not  suitable  for  ad  hoc  networks.  Following  this,  a  discussion  of  the  Destination  Sequenced 

Distance  Vector  (DSDV) and  the  Dynamic  Source  Routing  (DSR)  protocols  is  presented.  This  is 

followed by a detailed discussion of the AODV Routing Protocol. 

Chapter 3 begins with a discussion of several improvements that have been done on the AODV 

protocol and justifies our choice of the two selected modifications.  

Chapter 4 describes the simulation environment in detail and explains how to implement and 

analyze the changes in the protocols. 

Chapter 5 presents the results of these improvements and compares them to predicted outcomes 

based on the changes in the algorithm. 

Chapter 6 concludes the thesis. 
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Chapter 2

Literature Review

The  TCP/IP  Internet  Protocol  suite  has  become  the  de  facto  standard  for  all  networking 

communications. Almost every networking device in use today supports TCP/IP. This protocol divides 

the  network  into  four  different  layers  and  defines  the  purpose  of  each  layer.  This  division  helps 

simplify the network as different protocols can address different issues at each layer [8].

Application Layer

Transport Layer

Internet Layer

Network Access Layer

Figure 2.1 TCP/IP Architecture Model

The Application Layer provides an interface between the software running on the computer and 

the network. It defines the services that applications might need. These services may vary depending 

upon the user's needs. For instance, some protocols may define the ability to transfer files while others 

may define the ability to render web pages [10]. Hyper Text  Transfer Protocol (HTTP),  Hypertext 

Markup Language (HTML), Post Office Protocol (POP), Simple Mail Transfer Protocol (SMTP) are 

examples of protocols that operate at this layer.

The Transport layer provides a logical connection between two hosts with functions such as 

reliable  delivery  of  data,  flow  control,  multiplexing  and  error-recovery  [10].  The  transport  layer 

protocols segment the incoming byte stream coming from the application layer and passes it down to 
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the Internet layer. Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the 

two main protocols that are run at this layer. The data unit at this layer is called a 'segment'. 

The Internet Layer undertakes the routing process, i.e., it delivers packets from one device to 

another. The Internet Protocol (IP), which is the foundation of the world wide web operates at this  

layer.  IP delivers the data packets from sender to receiver by using logical addressing and routing 

protocols  [9].  IP assigns  logical  addresses  to  all  participating  nodes  which  are  used  to  identify  a 

packet's source and destination. All IP packets have a header which contains information about the 

packet like source and destination addresses, packet length, upper layer protocol etc. The header and 

hence the packet depends upon the version of IP in use. Routers are used to analyze these data packets 

and forward them to appropriate destinations [11].  The two versions of IP currently in use are the 

Internet Protocol version 4 (IP v4) and the Internet Protocol version 6 (IP v6). The routing protocols 

dynamically  learn  about  groups of  addresses  in  the  network  and generate  routing tables.  Routing 

protocols also enable routers to broadcast its current information to all its neighbors. This process helps 

to calculate the best possible route to a given destination and to generate routing tables. Routing tables 

list all the networks that can be reached and the best route to that network.  To calculate the 'best route', 

different protocols use different algorithms and different metrics [10].  

The Network Access Layer defines the protocols and hardware required to  deliver  the data 

across the physical network. This layer provides services to the Internet Layer. Ethernet is the most 

common protocol at this layer. This layer defines the protocols for cabling, connectors, voltage levels, 

wireless frequency bands and physical addressing (MAC level) that are used to deliver data. It can be 

thought of as comprising of layer 2 link layer and layer 1 physical layer.  The data unit at this layer is  

called a frame. 
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2.1 Dynamic Routing Protocols in regular networks

Routers add routes to their routing table in three different ways. Directly connected routes are 

simply added based on their connection, static routes are predefined and dynamic routes are filled up 

by a routing protocol. This route table is then read by a routed protocol like IP to transmit the packets 

between different nodes. Routing protocols are a set of messages, rules and algorithms used by routers 

to learn the routes between different nodes and choose the best route for a particular node [12].  

The three main types of dynamic routing algorithms are distance vector, link state and balanced 

hybrid.  The Distance Vector algorithms are based on the Distributed Bellman-Ford algorithm [16]. 

According to this algorithm, the router learns about all the possible paths to a particular destination.  

Every path has an associated hop count with it. The router picks the path with the smallest hop count 

for transmitting data packets and the declares the next-hop on this path as the 'vector'. In essence, the  

router is oblivious to the data transmission beyond its next-hop. It only knows the number of hops it 

takes to reach the destination using a particular path. 

Figure 2.2 Information learned using Distance Vector Protocols [12] 
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In the above figure, Router R1 choses the Router R7 as its next-hop because it has the least hop 

count metric. Every router broadcasts information about every destination it can access and the hop 

count to that destination. Other routers receive this information and process it and edit their routing 

tables accordingly. Such broadcasts occur on a periodic basis thereby keeping the route information 

fresh and suitable for use. When a route becomes invalid, the routers declare the hop count metric as 

infinity and broadcast this information. Other routers then realize that this route has become defunct 

and remove it from their routing table. 

When  a  distance  vector  protocol  running  on a  particular  router  receives  an  update  from a 

neighboring router, it performs these six steps as enunciated by the Bellman-Ford algorithm [13]. 

1. Increments the metrics of the incoming routes in the advertisement. In the above example, when  

R6 receives a routing update from R8, it increments the hop count metric from 1 to 2 before 

broadcasting it any further. 

2. Compares the information in  the routing update to what  it  already has in its  routing table.  

Referring to the above example, lets say that R1 just has information about a 4 hop destination 

to R8 through R2. If it receives new information for the same destination, it compares it to the 

already existing 4 hop destination. 

3. If the new information is better than the one in the routing table, the information in the routing 

table  is  discarded  and  replaced  with  the  better  information.  If  a  router  supplies  R1  with 

information  to  reach  R8  that  is  better  than  the  existing  information  through  R2,  the  new 

information takes place of the old information. In our case, both R5 and R7 provide better  

routes than R2, hence the information through R2 is discarded. 

4. However, if a neighbor supplies information that is worse than already existing information, no 

action is taken. In the example, consider that R7 is discovered first and the routing table is 

updated with hop count 2. If later on, R2 and R5 are discovered,  both of which have higher hop 
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count than R7. These new routes are simply discarded. 

5. If the neighbors information is exactly the same, reset the timer for that entry in the routing 

table to indicate that the route is still fresh and capable to send packets. 

6. If a router receives information about a destination that has the same metric but a different next-

hop, it  would still  be added to the routing table provided it  does not exceed the maximum 

number of equal cost paths. If an R9 is discovered which establishes a two hop path to R8, then 

both the R7 and R9 paths are considered valid. 

The  Bellman-Ford  algorithm alone  does  not  satisfy  all  the  routing  needs.  Distance  Vector 

algorithms employ several corrective measures to improve convergence and to avoid routing loops and 

counting to infinity problems [14, 15].  To advertise changes in the route, triggered updates are used 

which require immediate broadcasts regardless of the periodic timer. Distance Vector algorithms have a 

propensity to form loops in the event of link breakage. In some cases, such loops can be avoided by 

limiting the Time to Live (TTL) on individual data packets. The TTL value is the maximum number of 

hops a data packet can travel before it becomes void.  For example, the Routing Information Protocol 

(RIP) protocol sets a hop count limit of 15 [13]. To solve the counting to infinity problem and the 

routing loops it generates, split horizon technique and hold-down timer are used. According to the split 

horizon technique, if a neighbor router sends a route to a router, the receiving router will not propagate 

this route back to the advertising router [14]. In the hold-down timer based correction, when a route 

entry goes down, it is frozen in the routing table for a predetermined 'hold-down time'. This way, the 

router will not pick up any stray values that may be transmitted by other routers for that particular 

destination [14].  

Link state protocols are based on Dijkstra's Shortest Path First (SPF) algorithm. In contrast to 
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distance vector algorithms, link state algorithms learn the complete topology of the network. Every 

router running the Link State algorithm has a picture of the complete network which it then uses to 

transmit data packets [17]. Link State algorithms generate and multicast Link State Advertisements 

(LSA). These LSAs are generated only when changes are made in the network and are processed only 

by  devices  which  are  running link  state  protocols.  Unlike  Distance  Vector  algorithms,  destination 

routers reply to the source routers using acknowledgements. As routers learn about routes from LSAs 

from other routers in the network, they create a topology of the complete network. This topology is 

represented  in  the  database  as  a  tree  which  is  used  to  calculate  the  minimum  delay  to  all  the 

destinations  in  the  network  [18].  Link  state  protocols  require  greater  memory  requirements  and 

processing power because they have to maintain a network table, link state database and a routing 

table. 

Hybrid  protocols  are  essentially  based  on  the  Distance  Vector  algorithm  but  heavily  use 

concepts from the Link State protocol algorithm [13]. Some of the most common hybrid protocols are 

Routing  Information  Protocol  version  2  (RIPv2),  Border  Gateway  Protocol  (BGP)  and  Enhanced 

Interior Gateway Routing Protocol (EIGRP). 

2.2 Routing Protocols for Ad hoc networks

Routing protocols that operate on regular networks have not been designed to create the self  

starting and decentralized networks thats are needed for ad hoc networks [2]. Most of these protocols 

exhibit their least desirable behavior when presented with highly dynamic interconnection topology as 

in ad hoc networks. It is important to note that the mobile nodes which form ad hoc networks may have 

much lesser processing power than most laptops or hand-held devices. Therefore, these new protocols 

should be able to reduce the computational burden without compromising on functionality. These new 
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protocols should also be able to display better convergence characteristics than regular protocols. Yet 

another consideration is that ad hoc networks for the most part work through the wireless medium. The 

problem of routing packets  in an ad hoc network may be considered essentially as the distributed 

version of the Shortest Path problem [20]. 

We assume our ad hoc network has the following characteristics [2]: 

1. All nodes are using IP as the routed protocol and they have IP addresses. These IP addresses are 

usually static private IP addresses. We cannot run the Address Resolution Protocol (ARP) or the 

Dynamic Host Configuration Protocol (DHCP) because we are not likely to be connected to the 

Internet. 

2. Not all the nodes are within each other's range. 

3. The nodes are mobile such that any particular node may or may not be in the range of some 

other  node. 

4. Nodes behave as routers and assist each other in the processing of delivering data packets. 

5. Even though some protocols can operate on unidirectional links, we assume all the links in our 

ad hoc network are bidirectional. 

6. Even though protocols can generate and work with multicast and multi-path routes, we focus 

only on unicast implementations of these protocols. 

When it comes to forwarding packets in ad hoc networks, two types of protocols are employed. 

Proactive or table driven protocols are those in which every node keeps track of all the destinations in  

the network. Thus, when a node needs to communicate with any destination, it can simply pick up that 

route from its routing table. The downside of implementing such protocols is that it needs too many 

control packets- both for periodic updates and also for responding to link breakages. Reactive protocols 

on the other hand acquire routing information only when it is needed. As a result, they only have to  
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maintain the routing tables for a short time. This helps in reducing the number of control packets but  

causes an increase in initial delay time as the protocol is trying to figure out the path. 

Ad hoc networks differ from regular networks in several different ways and these differences 

need to kept in mind when designing protocols for these ad hoc networks. Ad hoc networks do not 

generally support aggregation techniques like sub-netting or routing prefixes [2]. This makes it difficult 

to scale the network when new nodes are added. Also, the time for which a node stays at a particular 

location and the speed of the node negatively impacts the protocol performance.  The routing table 

entries in an ad hoc network change much faster than they do in regular networks [21]. Unlike regular 

networks,  the  nodes on an ad hoc network are almost  always operating on limited battery power. 

Therefore, a protocol which processes more number of packets will consume more power. There are 

several different physical layer wireless standards and speeds which makes it difficult to depend upon 

any one of them for transmitting packets over multiple hops. The forwarding process should therefore 

operate only on layer 3. Additionally, these new protocols expose the network to many more security 

threats.

Several  protocols  have  been  proposed  for  routing  packets  in  ad  hoc  networks.  All  these 

protocols  maintain  for  each  destination  a  preferred  neighbor  also  known  as  the  'next-hop'.  The 

destination node is identified in every data packet. When a node receives this packet, it forwards it to 

the  next-hop  for  that  particular  destination.  This  process  continues  until  the  packet  reaches  its 

destination. The generation and maintenance of routing tables differs from one protocol to another. 

Every protocols focuses on few constraints and based on these constraints attempts to find the optimal 

path from source to destination. These constraints may be the number of next-hops, bandwidth etc. 

Similar to regular networks, routing protocols for ad hoc networks can also be classified as either Link 

State or Distance Vector based. The differences between the link state and distance vector protocols are 

accentuated in ad hoc networks because of mobility, lower processing power and less storage space. 
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The Destination Sequenced Distance Vector (DSDV) Routing Protocol was proposed as an ad 

hoc network adaptation of the Distributed Bellman-Ford algorithm. This is a proactive protocol which 

performs decently when the number of nodes is neither very low nor very high. To resolve the issue of  

excessive control packets in proactive protocols, on demand protocols were introduced. The Dynamic 

Source Routing (DSR) protocol is one of the purest on demand protocols. Thereafter, the Ad hoc On 

Demand Distance Vector (AODV) Routing protocol was introduced which borrowed some ideas from 

DSR and created an on demand version of the DSDV. 

2.3 Destination Sequenced Distance Vector Routing Protocol

The DSDV routing protocol is basically an adaptive implementation of the modifications to the 

basic Bellman-Ford algorithm as specified by the Routing Information Protocol making it suitable for 

dynamic and self starting networks mechanisms as are required for ad hoc networks [19].  It addresses 

the looping problem presented by the Bellman-Ford algorithm in the face of link breakages and the 

resulting time dependent nature of interconnection topology describing the links between the mobile 

nodes. Looping happens in the Bellman-Ford algorithm because nodes are making decisions based on 

stale and hence incorrect information. This is normally resolved by using some form of inter-nodal 

coordination protocol [22]. This idea cannot be extended to ad hoc network environments because the 

nodes have absolutely no correlation between them and the topology is changing rapidly and arbitrarily.  

The motivation behind DSDV is to retain the simplicity of RIP yet make it suitable enough to avoid 

looping problems. This is by done by tagging each route table entry with a sequence number so that 

nodes can quickly distinguish stale routes from the new ones and avoid loop formation.  

The  basic  idea  behind  the  DSDV protocol  is  that  each  node  in  the  MANET periodically 

advertises its view of the interconnection topology with other mobile nodes within the network [19]. 
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This  protocol is able to generate and support the changing and arbitrary paths of interconnection. The 

DSDV protocol works perfectly in the absence of a base or central station but is also compatible to 

work in the presence of a base station. 

2.3.1 Protocol Overview

All packets are transmitted based on the routing tables stored at each node. These routing tables 

list all available destinations and the number of hops to each destination. Each route table entry is 

tagged with a sequence number that is originated by the destination node, which is the only new metric 

proposed in this protocol [19]. 

Each node periodically transmits updates to keep the information fresh. We assume that these 

periodic  updates  are  completely  independent  of  other  nodes.  Mobile  nodes  have  no  time 

synchronization  or  phase  relationship  of  update  periods  between  mobile  hosts.  In  addition  to  the 

periodic  updates,  new data  is  immediately  generated  and transmitted  whenever  a  route  change  is 

detected. Both layer 2 and layer 3 addresses are allowed in this protocol. 

Data is also kept about the length of the time between the arrival of the first and the arrival of 

the best route for each destination. Based on this, a decision may be made to delay advertising routes 

that are about to change. This prevents the advertisement of possibly unstable routes to reduce the 

number of rebroadcasts of the same destination number.

The figure below shows the movement of a node in an ad hoc network. The mobile host 1 

(MH1) moves from one position to another which necessitates the creation of new routes. 
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Figure 2.3 Movement of a node in an ad hoc network [19]

2.3.2 Route Advertisement

Each mobile node must advertise its routing table to each of its current neighbors. This advertisement 

should be made often enough so that all nodes have a record of the recent changes happening in the 

network. In addition to this, each mobile node agrees to relay data packets to other computers upon 

request [19]. 

2.3.3 Route Table Entry Structure

The data broadcast by each mobile computer will contain its new sequence number created by 

the transmitter, destination address, number of hops required to reach the destination, sequence number 

of information received regarding that destination as stamped by the destination. The header of this 

broadcast packet will contain the hardware address and (if appropriate) the network address of the 

mobile node transmitting it. Routes with more recent sequence numbers are always preferred as the 
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basis for forwarding decisions. If two paths have the same sequence number, the one with the smallest 

metric is used. Routes received in broadcast are also advertised by the receiver when it subsequently 

broadcasts its routing information after adding an increment of one hop to the metric. 

It  is  important  to note that wireless links are not always bidirectional.  Because of this,  the 

receiving node must check if  the transmitting node can also receive the packets,  thereby ensuring 

bidirectional connectivity. Whenever the routing information of a node changes, it immediately issues a 

rebroadcast. This imposes a requirement on the network to converge as soon as possible. However, if  

the speed of the nodes is too fast and their relative positions change too quickly, there can be a storm of 

broadcasts and rebroadcasts which will consume huge amounts of bandwidth [19]. 

2.3.4 Responding to Topology Changes

Because of the dynamic nature of mobile nodes, several nodes may have broken links or may 

generate new links at any given instant. The broken link may be detected from layer 2 protocol or may 

be inferred if no broadcasts have been received for a while. A broken link is described with a metric of  

infinity i.e. any value greater than the maximum allowed value. When a link to the next-hop is broken, 

any route through the next-hop is immediately assigned infinity as the next-hop metric and an updated 

sequence  number.  This  is  the  only  case  in  which  sequence  number  for  a  particular  destination  is 

generated by a mobile node other than the destination itself. This new sequence number is one greater 

than the previous sequence number of the destination. This new information is immediately disclosed 

in a broadcast routing information packet. Later on, if a node which has a direct path to this destination 

receives this packet with infinity metric, it checks if its direct path sequence number is the same or 

greater than that of  this infinity broadcast packet. If yes, then this triggers a route update broadcast  

indicating a new path to the destination[19]. 
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To reduce the congestion due to excessive control packets, DSDV defines two types- full dump 

and incremental  dump.  As the  name specifies,  a  full  dump will  carry  all  of  the  available  routing 

information where as an incremental dump will only transmit information that has changed since the 

full dump[19]. 

The tables 2.1 and 2.2 indicate the forwarding table for Mobile Host 4 (MH4) from the figure 2.3

Table 2.1 Forwarding table for MH4 before topology change [19]

Note that after the topology change, the number of hops from MH4 to MH1 changes from 2 to 3. All 

the sequence numbers also change because significant time has elapsed during the topology changes. 

Table 2.2 Forwarding table for MH4 after topology change [19]
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2.3.5 Route Selection Criteria

When a mobile node receives new routing information, that information is compared to the 

information  already  available  from previous  routing  information  packets.  Any route  with  a  better 

sequence number is used and the route with an older sequence number is discarded. If the new route 

has the same sequence number but better metric, the existing route is discarded or marked as less  

preferable.  The metrics for  routes chosen from the newly received broadcast  information are each 

incremented by one hop. Newly recorded routes are immediately advertised to its neighbors. Those 

routes with a more recent sequence number are scheduled for advertisement at a later time, which gives 

time for the newly formed routes to settle [19]. 

There  is  no  synchronization  between  different  nodes  and  all  nodes  transmit  packets 

independently. It may so happen that a node receives newer packets and keep on changing its route 

even though the destination has not moved. This is because when the node sees a higher sequence 

number, it changes its route regardless of the metric. After this if it sees a newer route with the same 

sequence number but with lower metric, it opts for this route. Every new metric is propagated to every 

mobile node in the neighborhood, which further propagates it to its neighbors and so on. This way, for 

every  change  in  sequence  number,  there  will  be  a  burst  of  transmissions.  A solution  around  this 

problem is to delay the advertisement of routes when a better metric is likely to show up. This way, the  

route with a later sequence number is available for use but does not have to be advertised immediately, 

unless it is a route to a previously unreachable destination. This adjustment will create two different 

routing tables- one for forwarding packets and the other to be advertised. 

Even though the DSDV protocol is becoming increasingly obsolete, some of the ideas presented 

in the DSDV protocol have been incorporated in other advanced protocols like AODV and others.  
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Perhaps the most significant contribution of DSDV protocol is the use of sequence numbers. Because 

of excessive rebroadcasts, DSDV performs very poorly as the mobility increases [22]. The throughput 

of DSDV is very low and the control overhead is very high when compared to reactive protocols [23]. 

However, DSDV performs well if the nodes move relatively slowly and when the topology changes are 

not huge [24]. Yet another advantage is that individual packets do not have to wait to start transmitting 

like in reactive protocols.  

2.4 Dynamic Source Routing Protocol

The Dynamic Source Routing protocol is a simple and efficient on demand routing protocol 

designed specifically for multi-hop ad hoc wireless networks with mobile nodes. Like most other ad 

hoc routing protocols, it is completely self organizing, self starting and doesn’t need any administration 

or control. The source takes over the responsibility of establishing the route before any packets are 

sent. Each data packet has in its header the complete list of all the nodes through which it is supposed 

to pass. This feature avoids the need for periodic updates and makes the routing trivially loop free. 

This protocol  is  made up two mechanisms-  Route Discovery and Route  Maintenance which work 

together [25]. Unlike DSDV, there is no need for up to date routing information through which the 

packets  are  forwarded.  Also,  the nodes that  forward or  overhear the packet  can cache the routing 

information for future use. The DSR reacts to changes in the links on only those nodes which currently 

form a part of its route. It is oblivious to link changes elsewhere in the network. 

Certain assumptions are undertaken when implementing the Dynamic Source Routing protocol 

[25]: 

1. All nodes in the ad hoc network are willing to participate fully in network protocols. 

2. The diameter of the network, i.e., the minimum number of hops required to transmit data from 
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one end to another of the network is usually small- between 5 to 10. 

3. The speeds with which the nodes move is moderate with respect to transmission latency and 

wireless transmission range of the underlying network hardware. 

4. Nodes may be able to enable promiscuous receive mode according to which hardware delivers 

the received packet to network driver software regardless of the MAC address. 

5. Only one IP address is allowed per node. 

Dynamic Source Routing does not use any periodic routing advertisements, link status sensing 

or  neighbor  detection  packets  nor  does  it  depend  on  any  underlying  protocols  to  provide  these 

functions. Both Route Discovery and Route Maintenance are performed on a purely on demand basis. 

Route Discovery is used only when a source needs to send a packet to a destination but does not 

already know a route to it.  Route Maintenance is  used by the source to detect if  the network has 

changed so that it can no longer use the route to the destination. If the source route is broken, the  

source can attempt to use any other routes it knows to the destination. If there are no alternate routes, it 

simply invokes Route Discovery once again. When all nodes needed for current communication have 

been discovered and all nodes are stationary with respect to each other, the number of overhead packets 

scales down to zero [25]. 

In response to a single route discovery, a node may learn and cache multiple routes to any 

destination. This allows the reaction to routing changes to be much more rapid because when one route 

fails, the source can try another cached route to the same destination. DSR also allows the use of  

unidirectional  links  to  be  used  when  necessary  to  improve  the  overall  performance  and  network 

connectivity in the system [25]. 
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2.4.1 Route Discovery

When a node originates a packet for a particular destination, it places in the header of the packet 

sequence of all the hops that the packet should follow. The source obtains a suitable source route by 

checking its route cache of routes previously learned. If however, there are no routes in this cache for  

the desired destination, it initiates a Route Discovery. 

Figure 2.4- Route Discovery example with node A as the initiator and node E as the target [25]

The above figure illustrates an example of the Route Discovery in which node A is trying to 

find a route to node E. The node A transmits a single local broadcast packet called the Route Request 

packet which is received by all the nodes within the wireless transmission range of A. Each Route  

Request message identifies the initiator and target of the Route Discovery and also contains unique 

Request ID which is determined by the initiator of the request. Each Route Request also contains a  

record listing the addresses of each intermediate node through which this request has been [26]. 

When another node receives the Route Request packet, if it is the target to the Route Discovery, 

it  returns the Route Reply to the Route Discovery initiator giving a copy of the accumulated route 

record from the Route Request. When the initiator receives this Route Reply, it caches this route in its 

route cache for use in sending subsequent packets to this destination. However, if the node receiving 

the Route Request recently saw another Route Request from this initiator bearing the same Request ID 

or if it finds that its own address is already listed in the route record of the Route Request packet, it  
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discards the request. If not, it appends its own address in the route record of the Route Request message 

and propagates it by transmitting it as a local broadcast packet with the same request ID [26]. 

The Route Reply can be sent in several different ways. In the above case, E can initiate Route  

Discovery  for  A to  find  a  return  path.  This  mechanism  is  beneficial  if  we  are  operating  with 

unidirectional links. In such as case, E piggybacks this Route Reply to its Route Request packet. Such a  

process can consume huge control overhead and is therefore best avoided. Therefore, we restrict the 

operation of DSR only to bidirectional links. Node E simply reverses the route record it finds in the 

Route Request packet originating from A and use it a source route on the packet carrying Route Reply 

[26]. 

Before initiating the Route Discovery, the sending node saves a copy in the local buffer called 

the Send Buffer. The send buffer packets have a timer associated with them. If the route for this packet 

is not found within this time, then it is simply dropped. This send buffer employs a First In First Out  

(FIFO) rule for all its packets. As long as the packet is in the buffer, the node initiates several attempts 

at Route Discovery. To reduce the overhead of control packets because of multiple Route Discovery 

attempts, we use exponential backoff to limit the rate at which Route Discovery packets are broadcast 

[25].  

2.4.2 Route Maintenance

Figure 2.5  Route Maintenance in DSR [25]

Each node transmitting the packet has a responsibility to confirm that the packet has been received by 
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the next-hop along the source route. Each node can retransmit the packet up to a certain number of 

times after which it completely gives up. In the above case, A is responsible for delivery to B, B to C 

and so on. B has to provide acknowledgement to A that it did indeed receive the packet, C to B, D to C  

and so on. This acknowledgement may be obtained either as an existing standard part of MAC layer or 

by  passive  acknowledgement,  i.e.,  B  overhears  C  trying  to  transmit  the  packet  to  D.  This 

acknowledgement  is  another  reason  why  it  is  better  to  have  bidirectional  links.  If  we  only  have 

unidirectional links, these acknowledgements will have to find a route back to the previous hop which 

further increases the control packets. If a node makes the maximum possible number of attempts to 

transmit the packet to the next-hop but still cannot do it, it initiates a Route Error message. In the above 

case, C initiates Route Error packet back to A indicating that the link C-D is broken. A suspends this 

broken link and then tries to find if it has any other route to E. It it does, it uses this route to transmit  

the packets, if not, it initiates another Route Discovery [26]. 

2.4.3 Additional Route Discovery and Route Maintenance features

 

When a node forwards or overhears information from other data or control packets, it saves this 

information for future use. This includes the source route in data packets, route record from Route 

Request packets and the route in Route Reply packets. 

If an intermediate node has a cached route to a destination, it  returns a Route Reply to the  

source. It appends its list of nodes to the destination to the sequence of nodes in the source route in the  

Route Reply packet. The only condition is that it does not contain there should be no common nodes 

among  the  nodes  in  the  source  route  and  those  in  the  intermediate  node  cache  other  than  the 

intermediate node itself. 

If there are multiple intermediate nodes which have a path to the destination, then they can all  

23



generate replies to the source and create a Route Reply storm. In the case shown in the figure, all the 

nodes from B-F have a path in its route cache for G. 

Figure 2.6 RREP storm in DSR protocol [25]

In such a case, individual nodes wait  for a random amount of time and overhear any route  

packets being sent from source to destination. If the route through this intermediate node has lesser 

number of hops compared to that in the source route of packets being sent to the destination currently,  

it sends its Route Reply to the source. 

The number of hop requests for the Route Request packets are also controlled. Initially, we try 

to find if the destination is near the node by setting a reasonable hop count like 5-10. If this does not 

work, a Route Request with no hop limit is sent. This scheme has also been employed with a gradual 

increase in the hop count for Route Request packets [25]. Such an approach decreases the number of 

control packets in the network. 

Route  maintenance  also  offers  several  features  that  help  in  increasing  the  efficiency  and 

delivering packets with lesser delay. The node may salvage the packet after returning RERR if it finds 

another route to the destination in its route cache. If nodes can overhear each other, then they cooperate 
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and shorten the route. This reduces the number of hops from the source to the destination and makes 

the route more robust. 

Compared to DSDV, DSR requires much lesser overhead as it  does not concern itself with 

maintaining routes to all the possible destinations. Every overhead packet needs processing power, 

therefore for mobile nodes which operate on limited battery power, DSR is much more preferable to 

DSDV [27]. DSR stores multiple routes to a destination and exploits the route cache feature very well 

by saving the route records from data packets and overhearing route records from other data packets 

[28]. This feature makes DSR very flexible and greatly increases the chance of packet delivery. Unlike 

other  protocols,  the  source  node  in  DSR  controls  the  packet  delivery  from  start  to  end  thereby 

enhancing accountability. 

2.5 Ad Hoc On-Demand Distance-Vector Routing Protocol

The AODV protocol may be considered as an on demand adaptation of DSDV protocol which 

also heavily borrows from the DSR protocol. It was specifically designed for ad hoc networks and 

provides  quick  and  efficient  route  establishment  between  nodes  desiring  communication  [29].  It 

establishes a path between the nodes with minimal control overhead and minimal route acquisition 

latency. 

Compared to the DSDV protocol, the AODV protocol is a significant improvement in several 

aspects. In DSDV, a single link breakage or a new neighbor can trigger system wide broadcasts. In 

AODV, if the link status does not effect the ongoing communication, no broadcast occurs. As a result in  

AODV, local impact only has local effects but in DSDV, local impact has global effects. In AODV, the 

only non local effects result from a distant source trying to use a broken link. Only those nodes that  
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have been using the broken link are intimated of its breakage, all other nodes are oblivious to it. 

AODV has several minimalist features which help in reducing the number of overhead packets 

significantly. It does not add any overhead to packets carrying the data and if the routes are not being 

used, they are simply discarded. This has the benefit of not having stale routes and also helps reduce  

control packets by avoiding route maintenance. AODV also minimizes the number of routes between 

any active source and destination to one. While it is possible to have more than one routes, the book 

keeping and route maintenance for each of these routes is a nontrivial matter. Also if multiple routes to 

the same source-destination pair have the same broken link, then the purpose of having multiple routes 

is simply defeated. Although AODV with multiple paths has been proposed [32], for our work we stick 

only to the single path implementation. The unicast AODV implementation can be extended to generate  

a multicast implementation just by making a few changes in the protocol [31]. All these features make 

AODV simple to implement and powerful and robust to respond to ad hoc networks. 

2.5.1 AODV Protocol overview 

AODV attempts to locate routes for a particular destination only when needed and the route is 

maintained only as long as necessary. It borrows the idea of sequence numbers from DSDV, which 

ensures  loop  freedom.  Every  node  maintains  a  monotonically  increasing  sequence  number  which 

increases  each time it  learns  of change in topology of its  neighborhood. These sequence  numbers 

ensure that the most recent route is selected whenever route discovery is executed. AODV utilizes only 

bidirectional links between neighboring nodes. This is the only aspect of the physical layer that AODV 

depends upon. AODV can perform both on wired and wireless media even though it is ideally designed 

for wireless media. Route tables are used to store the destination and next-hop IP address as well as 

destination sequence number. Additionally, for each destination, the node maintains a list of precursor 

nodes which route through it in order to reach the destination. This list is maintained for the purpose of 

route maintenance in the event of a link breakage. Each route table entry has a lifetime associated with  
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it which is updated whenever a route is used. If a route has not been used within its lifetime, it is  

expired. This makes sense because a route not being used is not being maintained which indicates that 

the nodes along the route most likely have moved. When a link breaks, Route Error messages are sent 

which provides for quick deletion of invalid routes. There is no additional overhead on data packets 

because it does not utilize source routing. 

2.5.2 Route Discovery

Route Discovery in AODV is a purely on demand process. The discovery cycle comprises of two parts- 

Route Request and Route Reply. When a node seeks a path, it generates a Route Request message, 

when another node receives it and sends a reply, Route Reply message is sent back. 

Route Discovery process may be described as follows: 

1. When a node seeks a route to a particular destination, it broadcasts a Route Request (RREQ) 

packet. 

2. Any node with a current route to the destination can unicast a reply back to the source node. 

This reply is sent as a Route Reply (RREP) packet. 

3. Route information is maintained by each node in its route table. 

4. Information obtained through RREQ and RREP is stored alongside other routing information in 

the same routing table. 

5. Stale routes can be eliminated by analyzing their sequence number. 

6. Routes with old sequence number are aged out of the system based on their lifetime. 

The first thing a node does when it wishes to send a packet is to check if its own route table has 

a current route to that node. If so, it  simply forwards the packet to the next-hop for that particular 

destination.  If  however,  there is  no valid  route  for  that  destination,  a  Route  Discovery  process  is  
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initiated. The source node creates an RREQ packet. This packet contains the following parameters: 

1. Source node's IP address 

2. Source node's sequence number 

3. Destination IP address 

4. Last known sequence number for the Destination

5. Broadcast ID 

6. Time To Live (TTL)

The Broadcast ID is incremented each time each time source node initiates an RREQ. Together the 

source node IP address and broadcast ID form unique identifier for the RREQ. Once the RREQ is 

generated, the source node broadcasts it and sets a timer to wait for a reply. 

When a node receives an RREQ, it performs these steps in a sequential manner: 

1. Check the Source IP and Broadcast ID pair to make sure if it did not already receive this packet 

earlier. Each node maintains a record of Source IP and Broadcast ID addresses for each RREQ 

it receives for a limited time. If this is a packet it has already received, it simply discards this  

packet and does nothing. 

2. If however, a particular node receives a RREQ packet for the first time, the node sets up a 

reverse route entry for the source node in its route table. This entry contains the source node's  

IP address and sequence number as well as number of hops to the node as well as the IP address 

of the neighbor from which next-hop was received. This is because the node should know how 

to forward the RREP if it is received later on. Once it does this, it increments the hop count in 

the RREQ and rebroadcasts its neighbors. 
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Figure 2.7 Reverse path formation in AODV [29]

In the above figure, we see an instantaneous picture of different Route Replies being generated 

for the source which is  trying to  find a route to D. Each of these reverse route entries is  

maintained for a specified amount of time. If there is no RREP within that time limit,  this  

reverse route entry is simply discarded to prevent stale routing information from lingering in the 

route table.  

3. A node can respond to an RREQ in one of two cases:

i. The node has an unexpired entry to the destination in its route table and the sequence number 

associated with this destination must be at least as great as that in the RREQ. This is to ensure  

that the path to the destination is at  least as fresh as the RREQ packet.  Such a mechanism 

prevents formation of loops. 

ii. The node is the destination. 

4. Once it is confirmed that a node can reply to the destination, it  sends back a unicast RREP 

packet to the source. 

5. If the RREQ is lost, the source node is allowed to retry broadcast of Route Discovery. After a 

certain  number  of  attempts,  we  stop  sending  RREQ  and  assume  that  the  destination  is 
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unreachable. This number of attempts is usually limited to 2 [31]. In the first attempt, we use a 

limited hop count by setting a lower TTL value. This is because we want to be able to find the  

destination without clogging the network with too many rebroadcasts of the RREQ packet. If 

this RREQ fails, we rebroadcast the packet with an increased TTL value. This process continues  

until the maximum number of retries is exhausted. When a route is established, the distance to 

the destination is recorded is recorded in the route table. Next time this same destination has to 

be accessed, the TTL value is set to what it was before plus a small increment. 

When a node determines that it can respond to an RREQ, it generates an RREP. This RREP varies  

slightly depending on which node is generating it. 

i. If the destination node is generating the RREP, it places its current sequence number in 

the packet,  initializes hop count to zero and places the length of time this route is valid 

in the RREP's lifetime field.

ii. If an intermediate node is generating the RREP, it places its record of the destination 

sequence number in the packet and sets the hop count equal to the distance from the 

destination. It also calculates the amount of time for which its route table entry for the 

destination will still be valid. 

In both these methods, the RREP is unicast towards the source node using the node from which it 

receives the RREQ as the next-hop. 

When an intermediate node receives an RREP, it sets up an forward path entry to the destination 

in its route table much like the reverse path entry with RREQ packets.  This entry contains the IP 

address of the destination and the IP address of the neighbor from which the RREP arrived and the hop 
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count to that destination. The distance from this intermediate node to the destination is hop count plus  

one. This forward path entry also has a lifetime which is set to lifetime contained in the RREP. Each  

time the route is used, its associated lifetime is updated. If the route is unused within the specified 

lifetime, it is simply deleted. After processing the RREP, the node forwards it to source. 

Figure 2.8 Forward path formation in AODV [29]

If a node receives a second RREP for/from the same destination, it checks if this new RREP has a 

better destination sequence number or smaller hop count than the one it previously processed. If yes, 

this new RREP is forwarded. In all other cases, these RREPs are simply dropped. This mechanism 

decreases the number of RREPs navigating towards the source and also keeps the routing information 

up to date. The source begins data transmission as soon as the first RREP is received and can update 

later if it finds a better route. 

2.5.3 Route Maintenance

The source nodes decides how long to maintain a particular route once it has been finalized.  

This route from the source to the destination is referred to as the active path. Movement of any routes 
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outside this active path does not impact the route maintenance. 

Several different scenarios arise for route maintenance.

1. If source node moves, we have to reinitiate Route Discovery. This is not such a big problem as 

it is likely that there will be an existing forward path to the destination from some of the nodes 

near the source node. 

2. When either the destination or an intermediate node moves, a Route Error (RERR) message is 

sent to the source node. This RERR message is initiated by the node upstream of the break. An 

upstream node is used to refer to a node that is closer to the source node. 

3. The Route Error packet lists each of the destinations that are now unavailable because of this 

breakage.  If  there is  at  least  one node between the upstream node and the destination,  the 

upstream node also broadcasts the packet in addition to unicasting it to the source. When the 

neighbors receive this RERR, they mark their route to the destination as invalid by setting the 

distance  to  the  destination  equal  to  infinity  and in  turn  propagate  the  RERR to  their  own 

precursor nodes, if any such nodes are listed for the destination in the route table. 

4. When the source node receives the RERR, it checks if it still needs Route Discovery. If yes,  

then it initiates it. 

5. Route entries with an infinity metric are not immediately deleted because they contain useful 

routing information with a  recent  destination time stamp. They expire in  roughly the same 

amount of time as do reverse routes formed during route discovery. Discarding current route 

information  even of  negative  variety  is  not  suggested  because  it  can  help  in  taking  some 

decisions later on. 

6. If a node receives a data packet destined for a node for which it does not have an active route, it  

creates a route error message for the destination node which is broadcast and also sent back to 

the source. In this way, the node has informed its upstream node that it should stop sending data 
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packets. 

2.5.4 Local Connectivity Management using Hello packets

Each time a node receives a broadcast from a given neighbor, it updates the lifetime associated with 

that neighbor in its routing table. If there is no entry for that neighbor in the routing table, the node 

creates one. If a node has not broadcast anything within the last hello interval, it can broadcast a Hello 

packet to its neighbors to inform them that it is still in its vicinity. Hello interval is defined as the 

maximum amount of time before the node can broadcast hello packet. This is usually set to 1 second. 

Hello message in an RREP message that contains node's IP address and current sequence number. It has 

TTL value of 1 thereby preventing it from being rebroadcast. Hello messages are incorporated so that 

AODV does not rely on any underlying protocols for connectivity information. 

AODV has emerged as a robust and powerful protocol to be used in ad hoc networks. Even 

though  there  are  cases  in  which  DSR performs  better  than  AODV,  AODV is  considered  a  better 

protocol because it scales well to large number of nodes [31]. Also, AODV performs better when nodes 

move more frequently [32]. The overhead packet consumption for a smaller number (20-100) of  nodes 

is much more for DSDV when compared to AODV [33]. Even though the choice of protocol depends a 

lot on the scenario which is defined by the number of nodes, speed, mobility etc, in most cases AODV 

performs better than AODV. 
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Chapter 3

Enhancements for the AODV Routing Protocol 

The  AODV routing  protocol  has  been enhanced,  optimized  and  improved in  several  ways 

depending upon various parameters. Some researchers have tried to focus on some intrinsic aspects of 

AODV like Local Connectivity  [37],  Local  Repair  [38,  41] and security where as others focus on 

external aspects like energy efficiency [39] and node density. 

AODV is expected to perform at varying speeds of nodes and varying pause times. The pause 

time here is defined as the time for which a particular node remains stationary after moving to a new 

destination. The greater the speed, the faster scenarios change and new routes need to be created. The 

lesser the pause time, the quicker the response has to be for finalizing new paths. 

There  are  several  metrics  with  which  we  measure  the  success  of  an  enhancement  or  an 

improvement of a routing protocol. Some improvements focus on increasing the number of packets 

delivered, some others focus on reducing the end to end delay time and some just focus on reducing the 

overhead. Depending on the scenario, one or more of these features may be more desirable. 

3.1 Scheme 1- Local Repair based improvement for the AODV Routing Protocol

In the regular AODV protocol, after a route has been established and been declared as an active 

route, if a link breakage happens, the node upstream of the break creates a Route Error message listing 

all the destinations which have become unreachable due to the break. If instead of sending an error 

message to the source node, if the upstream node attempts to repair the broken node itself, less number 

of data packets will be lost and the route may be restored with a lower overhead. Also, the source node 

is not at all bothered with another Route Discovery process. 
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Figure 3.1 Link breaks in an active route [40]

For smaller routes, Local Repair is not expected to show much advantages but for larger routes, 

especially with 10 or more than 10 hops, Local Repair is extremely beneficial. This is because in larger  

routes, the links are expected to break more often and if the intermediate nodes always keep sending 

Route Error packets to the source which in turn keeps initiating Route Discovery, huge number of 

control packets are consumed and the performance will deteriorate. 

Local Repair makes the node upstream of the break to attempt a repair of the route. This is done 

by broadcasting a Route Request with a TTL set to the last known distance of the destination plus an 

increment value. This TTL value is used with an assumption that the destination is not likely to be far  

away from where it was before the break. 

Figure 3.2 Intermediate node broadcasts RREQ packets [40]

This  node  increments  the  sequence  number  of  the  destination  in  the  RREQ  packet  by  1  before 

transmitting it. This prevents the nodes further upstream of this node from replying to the RREQ. Thus, 

this mechanism prevents loop formation. 

35



Figure 3.3 New route is being created after receiving RREP [40]

Note that this RREQ broadcast is done only once. If no node replies to this broadcast, the intermediate  

node simply sends a RERR back to the source node. 

There are several important features of the Local Repair improvement in the AODV Routing Protocol 

which need to be discussed: 

1. Local Repair helps increase the number of data packets that reach its destination. 

2. As the network size increases, it becomes more and more difficult for AODV to deliver packets 

to their destinations. The path length of these routes increases and and a single route may have 

multiple  points  of  breakage.  In  Local  Repair  based  AODV,  we  initiate  the  repair  from an 

intermediate node which is nearer to the destination than the source, hence routes are expected 

to get repaired quickly and with lesser overhead. 

3. Local Repair based AODV may cause longer paths to the destination than regular AODV. This 

is because the intermediate nodes do not change the source to intermediate node path at all. 

They try to generate a path from the intermediate node to the destination regardless of the 

destination's new position with respect to the source. There could be an example in which the 

destination is very close to the source but because of local Repair, packets may have to traverse 

a longer route path. The source will not know about the nearby destination until it receives a 
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RERR and performs a fresh Route Discovery. 

4. Local Repair AODV reduces the number of RREQ transmissions and therefore reduces the 

control overhead of the protocol. The ratio of number of all packets (RREQ, RREP and RERR) 

per data packet is lower for Local Repair AODV than for regular AODV.  

5.  The end to end delay for Local Repair AODV is expected to be much lower than that of regular  

AODV. This is because the in regular AODV, when a break happens, the RERR packet has to 

travel to the source and the source has to initiate a RREQ for the destination. This process takes 

much more time than Local Repair AODV in which an intermediate node transmits RREQ to 

initiate a route reconstruction. 

3.2 Scheme 2- Next-hop Backup based improvement for the AODV Routing Protocol 

Several backup based improvements have been proposed for AODV. The challenge with backup 

based routes is to avoid loops and keep the number of control packets in check. Multi-path AODV 

reduces overhead packets by about 20% and improves the end-to-end delay by more than a factor of 2 

[34]. Most of the backup schemes focus on generating a backup route for the source-destination pair. In 

our  case,  we propose  a  backup node  for  every  link in  the  active  route.  This  is  accomplished  by 

proposing two simple control packets which are used to identify the backup node. 

When a link breaks, the upstream node transmits the packet to this backup node which in turn 

transmits it to its ex next-hop.  To understand this scheme, please refer to the forward path set up in the 

regular AODV protocol.  When a source needs to  communicate  with a destination,  it  sends out an 

RREQ, this RREQ creates a reverse route as it progresses until we find a path to the destination or the 

the destination itself. When the destination is located, an RREP is unicast back to the source through all 
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the intermediate nodes. 

Figure 3.4 Node a locating a backup node x for a node b on its active path

In the above figure, there are n intermediate nodes i1 to in. The RREQ is sent along the path from source 

to  destination  and the  RREP is  sent  along the  path  from destination  to  source.  Consider  the  two 

intermediate nodes in the figure a and b. The node b is sending an RREP to a which it received either 

from the destination or from some other intermediate node that has route to the destination. 

According to our scheme, the moment node a receives this RREP, it tries to locate a backup 

node for the a-b link. It sends out a special packet called the Backup Route Request (BUREQ). This 

BUREQ is sent out only once, therefore it does not need any sequence numbers. This packet has a's IP 

address, b's IP address, destination IP and sequence number and a TTL of 1. Through this BUREQ, we 

are trying to locate a node x such that node x can become a backup node for a-b link. 

The Backup node establishment is undertaken as follows:  
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1. When a node receives this BUREQ, it checks the destination IP address and sequence number 

and checks its own route table to see if it has a route to this destination. If it has an active route  

to the destination, it drops this BUREQ packet. 

The node b itself gets this request and it drops the BUREQ packet because it has a direct path to 

the destination. 

2. If some other node receives the BUREQ and it does not have a path to the destination but has a 

path to b, it is eligible to be a backup node. 

3. All such nodes which are eligible to be a backup node reply with a Backup Reply (BUREP). 

These nodes add extra rows to their routing table declaring themselves as Backup nodes for a-b 

link. 

4. When node a receives the first BUREP, it registers this node as a Backup node for b. The node 

a adds this information to its routing table. 

When the primary link a-b gets broken, four cases may arise. 

Case 1: 

Check a's route table for a backup entry to b. If there is no entry, send RERR back to the source. 

Case 2: 

If there is a backup node listed in a's route table, send the packet to the backup node. This backup node 

receives the packet and checks its own routing table. The backup node will forward all the packets it  

receives for the destination to the node b. 

Case 3: 

The node a checks its routing table and forwards the packet to x. By now, the node x has moved away 

and the packet does not reach x. Node a sends a RERR back to the source. 
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Case 4: 

The packet reaches x but its route table entry has expired or become corrupted and it cannot send a 

packet to to b. Node x sends a RERR back to the source. 
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Chapter 4

Simulation

All  the simulations are done  using network simulator  2 (ns2).  ns2 provides support for TCP and 

routing over wired and wireless networks [44].  Once ns2 is downloaded and installed, it contains the 

C++ files for several different wired and wireless protocols from all the layers in its repository. To 

implement a particular simulation, we write a TCL file to select which protocols we want to use from 

this  ns2  collection.  The  TCL  file  is  implemented  on  a  scenario  file.  Scenarios  are  simulated 

environments generated by ns2. When the user supplies information like the number of nodes, the size 

of the room, simulation time etc, scenario files get generated. These scenario files can be saved and 

different protocols or protocol modifications can be run on them. This way, changes in the code can be 

measured and studied. 

4.1 Scenario file generation in ns2

In our case, we generate several scenario files to measure the performance of our protocols. It has been 

suggested that the average number of neighbor nodes should be maintained between 6-8 for better 

performance and scalability [35,40]. The area within which these nodes are allowed to navigate is 

referred to a the room size. This is described by the length and breadth of the enclosure within which  

the nodes can move freely. Keeping this in mind, we design our scenarios for different number of nodes 

as follows: 

No of nodes Room size 

10 500 x 500

50 1000 x 1000

100 1500 x 1500

175 2000 x 2000
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250 2500 x 2500
Table 4.1 Scenario generation for testing Local Repair AODV

In addition to the these parameters, we have provided a simulation time of 300s, pause time of 3s and 

the speed of nodes is set at 5m/s. 

However, for the Next-hop Backup Route based improvement, we keep the room size constant and the 

number of nodes limited. The room size is set to 1000 x 1000 and the number of nodes is increased 

from 10 to 100. This is done to minimize the number of multiple breakages. In the event of multiple 

breakages, even after the repair, the packet will have nowhere to go.  

No of nodes Room Size 

10 1000 x 1000

30 1000 x 1000

50 1000 x 1000

70 1000 x 1000

90 1000 x 1000

100 1000 x 1000 

Table 4.2  Scenario generation for testing Next-hop backup based improvement in AODV

4.2 TCL file specifications 

The individual aspects of the scenario implementation as described in the TCL file are listed as follows

Channel Wireless Channel

Propagation model Two Ray ground 

Network Interface type Wireless 

MAC layer 802.11 

Buffer type FIFO

Size of the buffer 50 packets 

Antenna type Omnidirectional
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Bandwidth of each node 1MHz

Packet size 1024 bytes

Data generation rate 512 kbps
Table 4.3 TCL file specifications 

The TCL file when run for a particular scenario generates two new files of the type 'trace' and 'nam'. 

These two files contain the information about the implementation of the protocol described in the tcl on 

the given scenario file. Individual details like the number of sent and received packets, end to end delay  

etc can all be extracted from these two files. 

4.3 AODV implementation on ns2

In the TCL file, when the user configures AODV, the pointer moves to start and this start moves 

to  command  function  of  the  AODV protocol.  The AODV protocol  then  gets  implemented  on the 

scenario file using the TCL file. Therefore, if we make changes in the AODV protocol, we will have to 

recompile  ns-2  and  rerun  the  TCL files  for  the  same  scenario.  The  TCL and  scenario  files  are 

considered as the 'front end' code where as the AODV files are considered 'back end' code. 

Before making any changes, it is important to note that the default AODV as provided by ns-2 

has  its  hello  packets  disabled.  The  user  must  enable  the  hello  packets  before  implementing  any 

enhancement or even running the regular AODV.  For every modification of AODV, the front end code 

stays the same whereas the backend code needs to be changed to implement any of our suggested 

improvements. 
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Chapter 5

Results

Scheme 1 – Local Repair based improvement for the AODV protocol

We  first  compare  the  Local  Repair  scheme  with  the  regular  AODV  protocol.  After  the 

incorporation  of  Local  Repair,  the  protocol  shows an average improvement  of  around 15 percent. 

Because these scenarios are randomly generated and their topology can vary immensely from scenario 

to scenario, the performance of the new protocol may differ significantly from scenario to scenario. 

Figure 5.1 Number of packets successfully delivered to destination

The above graph is obtained by calculating the aggregate of all the received packets in the network.  

AODV with Local Repair performs better because in Local Repair the nodes closer to destination than 

the source initiate route discovery and hence the path is resolved quickly. This results in less number of 

packets dropped. 
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Figure 5.2 Number of control packets

In regular AODV, RERR is initiated as soon as a link breakage is detected. This RERR travels back to  

the source which initiates a new route discovery. 

In AODV with Local Repair, RERR packets are eliminated in some cases as the intermediate node 

itself initiates a route discovery. Also, the Route Discovery from an intermediate node to the destination  

takes less number of control packets when compared to that from the source. 

In accordance with our expectations, the number of control packets for AODV with Local Repair are 

always less than that of regular AODV. 
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Figure 5.3 Packet Delivery Ratio

In AODV with Local Repair, the Packet Delivery Ratio is expected to increase as the Route repairs by 

intermediate  nodes  ensure  that  paths  stay  valid  and those  packets  that  leave  the  source  reach the 

destination. 

Once again, the number of control packets and the packet delivery ratio may vary significantly from 

scenario to scenario because of the random nature of our topologies. 
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Scheme 2- Next-hop Backup based improvement for AODV protocol

Figure 5.4 Number of packets successfully delivered to destination 

AODV with backup route can compensate for link breakages by using the backup node. Once 

the packet is back on the path, it follows its usual active route. Apart from this, all other parameters are  

same in AODV and AODV with next-hop backup.

Just  like  in  the  Local  Repair  case,  scenario  generation  in  Next-hop  Backup  Route  based 

improvement is also completely random. These random topologies will react differently in different 

cases. However, the Backup Route based improvement shows an average improvement of 10 percent 

when compared to the regular AODV. 
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Figure 5.5 Packet Delivery Ratio

In AODV with next-hop backup, when a link breaks, the protocol works out a patch for that link and 

the remaining part of the link works as it is. Thus, all those packets which are sent are more likely to be 

delivered than in the regular AODV. 
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Chapter 6

Conclusion

This  thesis  describes  two  different  schemes  which  can  be  applied  to  the  AODV Routing 

Protocol. We have shown that both AODV with Local Repair and AODV with Next-hop Backup Route 

improve the number of packets and the packet delivery ratio. 

Both Local Repair and Next-hop Backup Route based improvements make small changes in the 

operation of  AODV. In Local  Repair,  we force an intermediate  node to  perform Route  Discovery 

instead of the source node. In Next-hop Backup repair, we designate a backup node for a particular 

link. Packets are routed through this backup node when the link breaks. Both cases also have their 

disadvantages,  in Local Repair, we are missing out on simpler routes which may be found by the 

source and instead opting for routes from the intermediate node. In some cases, this might create an 

unnecessarily long path. However, in most cases Local Repair performs excellently and is definitely an 

improvement over regular AODV. In the next-hop based backup node repair,  we have to generate 

additional control packets and additional entries in the routing table. This does not necessarily slow 

down  the  route  generation  process  because  it  happens  after  the  active  route  has  been  created. 

Nonetheless, extra control packets are always a burden on the processor. 

Several  suggestions  can  be  made  for  future  work.  Perhaps  the  most  obvious  one  is  a 

combination of both these schemes. Another improvement would be to develop a protocol such that the 

nodes nearer to the source undertake Next-hop Backup Route based improvement whereas those closer 

to the destination can perform Local Repair. 
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Appendix 

Example of a TCL file: tcl file for 10 nodes 

set val(chan)           Channel/WirelessChannel    ;# channel type

set val(prop)           Propagation/TwoRayGround   ;# radio-propagation model
set val(netif)          Phy/WirelessPhy            ;# network interface type
set val(mac)            Mac/802_11                 ;# MAC type
set val(ifq)            Queue/DropTail/PriQueue    ;# interface queue type
set val(ll)             LL                         ;# link layer type
set val(ant)            Antenna/OmniAntenna        ;# antenna model
set val(ifqlen)         50                         ;# max packet in ifq
set val(nn)             10                         ;# number of mobilenodes
set val(rp)             AODV                       ;# routing protocol
set val(x) 1000    ;
set val(y) 1000    ;
set val(simtime) 200.0    ; #sim time
set val(sc) scen10 ;
#set val(em)       EnergyModel ;
#set val(ie)        200.0                         ;

set ftp1start 1;
set ftp2start 10;
set ftpend180;

#
# Initialize Global Variables
#
set ns_ [new Simulator]
set tracefd     [open 10.tr w]
$ns_ trace-all $tracefd

set namtrace [open 10.nam w]           ;# for nam tracing
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)
#$ns_ use-newtrace

# set up topography object
set topo       [new Topography]

$topo load_flatgrid $val(x) $val(y)

#
# Create God
#

set god_ [ create-god $val(nn) ]

$val(mac) set bandwidth_ 1.0e6 

$ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channelType $val(chan) \
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 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace OFF \
 -movementTrace OFF 
 #-energyModel $val(em) \
# -initialEnergy $val(ie) \
# -batteryModel RTBattery 
 

for {set i 0} {$i < $val(nn) } {incr i} {
set node_($i) [$ns_ node]
$node_($i) random-motion 0 ;# disable random motion

}

source $val(sc)

# Define node initial position in nam

for {set i 0} {$i < $val(nn)} {incr i} {

     $ns_ initial_node_pos $node_($i) 20
}

Agent/TCP set packetSize_ 512 ;

set agent1 [new Agent/TCP]
set app1 [new Application/Traffic/CBR]
set sink1 [new Agent/TCPSink]
$app1 set packet_size_ 1024;
$app1 set rate_ 512Kb ;

set agent2 [new Agent/TCP]
set app2 [new Application/Traffic/CBR]
set sink2 [new Agent/TCPSink]
$app2 set packet_size_ 1024;
$app2 set rate_ 512Kb ;

$app1 attach-agent $agent1

$ns_ attach-agent $node_(0) $agent1
$ns_ attach-agent $node_(6) $sink1
$ns_ connect $agent1 $sink1 

$app2 attach-agent $agent2

$ns_ attach-agent $node_(7) $agent2
$ns_ attach-agent $node_(9) $sink2
$ns_ connect $agent2 $sink2 

# 30 seconds of warmup time for routing
$ns_ at $ftp1start "$app1 start"
#$ns_ at $ftp2start "$app2 start"
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#
# Tell nodes when the simulation ends
#
for {set i 0} {$i < $val(nn) } {incr i} {
    $ns_ at $val(simtime) "$node_($i) reset";
}
$ns_ at $val(simtime) "stop"
$ns_ at $val(simtime).01 "puts \"NS EXITING...\" ; $ns_ halt"
proc stop {} {
    global ns_ tracefd
    $ns_ flush-trace
    close $tracefd
}

puts "Starting Simulation..."
$ns_ run
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AWK file used to calculate end to end delay 

BEGIN {

    seqno = -1;    

   droppedPackets = 0; 

   receivedPackets = 0; 

    count = 0;

}

{

    if($4 == "AGT" && $1 == "s" && seqno < $6) {

          seqno = $6;

    } 
else if(($4 == "AGT") && ($1 == "r")) {

           receivedPackets++;

   } else if ($1 == "D" && $7 == "tcp" && $8 > 512){

           droppedPackets++;            

  } 

    #end-to-end delay

    if($4 == "AGT" && $1 == "s") {

          start_time[$6] = $2;

    } else if(($7 == "tcp") && ($1 == "r")) {

        end_time[$6] = $2;

    } else if($1 == "D" && $7 == "tcp") {

          end_time[$6] = -1;

    } 

}

 
END {        
  
    for(i=0; i<=seqno; i++) {

          if(end_time[i] > 0) {
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              delay[i] = end_time[i] - start_time[i];

                  count++;

        }

            else

            {

                  delay[i] = -1;

            }

    }

    for(i=0; i<=seqno; i++) {

          if(delay[i] > 0) {

              n_to_n_delay = n_to_n_delay + delay[i];

        }         

    }

   n_to_n_delay = n_to_n_delay/count;

 

    print "\n";

   print "GeneratedPackets            = " seqno+1;

    print "ReceivedPackets             = " receivedPackets;

   print "Packet Delivery Ratio      = " receivedPackets/(seqno+1)*100
#"%";

    print "Total Dropped Packets = " droppedPackets;

    print "Average End-to-End Delay    = " n_to_n_delay * 1000 " ms";

    print "\n";

} 

57


