
Local Repair and Next-hop Backup Route Based improvements
in AODV Routing Protocol for Mobile Ad Hoc Networks

by

Mohammed Rizwan Adil

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 3, 2013

Keywords: Improvements in on demand reactive routing protocols,
AODV Routing Protocol, Local Repair, Next-hop Backup

Copyright 2013 by Mohammed Rizwan Adil

Approved by

Thaddeus Roppel, Chair, Associate Professor, Electrical and Computer Engineering
Prathima Agrawal, Samuel Ginn Distinguished Professor, Electrical and Computer Engineering

Chwan-Hwa “John” Wu, Professor, Electrical and Computer Engineering

Abstract

As Mobile Ad hoc Networks (MANETs) continue to experience increasing popularity, several

different protocols have been proposed to efficiently transmit data among the participating nodes.

These protocols have to be robust and flexible to respond to the dynamic topology and decentralized

nature of MANETS. The Ad hoc On Demand Distance Vector (AODV) Routing Protocol is one of the

most commonly used reactive protocols for routing information in MANETS. Even though AODV

performs well, it suffers from several shortcomings. This thesis aims to modify and upgrade the

performance of AODV. Two different schemes are proposed which improve upon different aspects of

the standard AODV routing protocol. In the first scheme, the AODV protocol is improved by adding

the Local Repair feature. In this protocol, intermediate nodes in existing paths try to find new paths to

the destination in the event of a link breakage. In the second scheme, Next-hop Backup Route is

introduced. According to this scheme, once a path is established, every upstream node on an active

route creates a backup path for its next-hop node. Thus, when link breakage happens, the upstream

node can depend upon its backup node to forward the packet to the node that was previously its next-

hop. Both these schemes increase the number of data packets successfully transmitted to the

destination.

ii

Acknowledgments

Every treasurable moment of my graduate school career has been shared with many people. It

has been a great privilege to spend the last couple of years at Auburn University, and the people here

will always remain dear to me.

My first debt of gratitude must go to my advisor Dr. Thaddeus Roppel. He patiently provided

the vision, encouragement and advice I needed to complete my thesis. Being a strong and supportive

advisor, he has always given me freedom to pursue independent work.

Special thanks to my committee members Dr. Prathima Agrawal and Dr. Chwan-Hwa “John”

Wu for their support, guidance and valuable suggestions. Their guidance has served me well and I owe

them my heartfelt appreciation.

I am deeply grateful to Ms. Marcia Boosinger and Ms. Claudine Jenda for providing me with

Graduate Assistantship and financial aid.

My friends in US, India and other parts of the world were sources of joy and support. Special

thanks to Swathi Dumpala, Mustafa Shihab and Rathan Raj.

I wish to thank my family back in India for their love and support. I am forever indebted and

grateful to them for everything they did for me. Most importantly, I would like to thank God for

blessing me with such great friends and family and for making things fall in place.

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Figures . vi

List of Tables . vii

1 Introduction . 1

 1.1 Problem Statement . 3

 1.2 Thesis Contribution . 3

 1.3 Organization of Thesis . 4

2 Literature Review . 5

 2.1 Dynamic Routing Protocols in regular networks . 7

 2.2 Routing Protocols for Ad hoc networks . 10

 2.3 Destination Sequenced Distance Vector Routing Protocol . 13

 2.3.1 DSDV Protocol Overview. 14

 2.3.2 Route Advertisement . 15

 2.3.3 Route Table Entry Structure .. 15

 2.3.4 Responding to topology changes . 16

 2.3.5 Route Selection Criteria . 18

 2.4 Dynamic Source Routing Protocol . 19

 2.4.1 Route Discovery in DSR . 21

 2.4.2 Route Maintenance in DSR . 22

iv

 2.4.3 Additional Route Discovery and Route Maintenance features in DSR 23

 2.5 Ad Hoc On Demand Distance Vector Routing Protocol . 25

 2.5.1 AODV Protocol Overview . 26

 2.5.2 Route Discovery in AODV . 27

 2.5.3 Route Maintenance in AODV . 31

 2.5.4 Local Connectivity using Hello packets in AODV . 33

3 Enhancements for the AODV Routing Protocol . 34

 3.1 Scheme 1- Local Repair based improvement for AODV . 34

 3.2 Scheme 2- Next-hop Backup based improvement for AODV . 38

4 Simulation . 41

5 Results . 44

6 Conclusion . 49

References. 50

Appendix . 53

v

List of Figures

Figure 2.1 TCP/IP Architecture Model . 5

Figure 2.2 Information learned using Distance Vector protocols . 7

Figure 2.3 Movement of a node in an ad hoc network . 15

Figure 2.4 Route Discovery example with node A as the initiator and node E as the target 21

Figure 2.5 Route Maintenance in DSR . 22

Figure 2.6 Route Reply storm in DSR . 24

Figure 2.7 Reverse path formation in AODV . 29

Figure 2.8 Forward path formation in AODV . 31

Figure 3.1 Link breaks in an active path . 35

Figure 3.2 Intermediate node sends out RREQ packets . 35

Figure 3.3 Intermediate node receives new reply and generates new active path 36

Figure 3.4 Node a locating 'a' backup node 'x' for a node 'b' on it's active path 38

Figure 5.1 Number of packets successfully delivered to destination 44

Figure 5.2 Number of control packets . 45

Figure 5.3 Packet delivery Ratio . 46

Figure 5.4 Number of packets successfully delivered to destination 48

Figure 5.5 Packet Delivery Ratio . 49

vi

List of Tables

Table 2.1 Forwarding table for node MH4 before change in topology 17

Table 2.2 Forwarding table for node MH4 after change in topology 17

Table 4.1 Scenario generation for testing Local repair AODV . 41

Table 4.2 Scenario generation for testing Next-hop backup based improvement in AODV 42

Table 4.3 TCL file specifications . 42

vii

Chapter 1

Introduction

In recent years, mobile computing has enjoyed an unprecedented rise in popularity which has

largely been facilitated by the improvements in software and processing power of the devices. At the

current pace of technological innovation, the majority of the world's population is expected to be online

by 2025. [1] Whether it be laptops, tablets or phones, most wireless devices currently in use directly

interact with humans and connect to the global Internet. In the future however, a significant number of

wireless devices are expected to work with little or no human guidance and are expected to perform

without necessarily connecting to the Internet [2]. These devices are expected to generate short lived

networks just for immediate communication needs without any external intervention- in other words,

an ad hoc network. An ad hoc network may be understood as the cooperative engagement of collection

of mobile nodes without any centralized access or control point in which each node acts as a

specialized router [2]. The IEEE 802.11 subcommittee defines an ad hoc network as a wireless network

composed of stations within mutual communication range of each other, created in a spontaneous

manner and is limited only by temporal and spatial constraints [3]. They are supposed to interact using

a dynamic network in which nodes join and leave arbitrarily. There are no restrictions on where the

stations can be located with respect to each other and the network is expected to be self-starting.

Ad hoc networks may be used for several personal applications like conferencing, home

networking, embedded computing applications etc. Significant strides have already been made in the

research, experimentation and deployment of autonomous or semi autonomous unmanned ground [4],

air [5,6] and sea [7] vehicles. These vehicles and vehicle system are being used for both domestic and

military applications and they use ad hoc networks to communicate among each other [6,7]. On an

1

industrial scale, these networks can also be used in several applications like search and rescue,

agriculture, sensor based analysis and large scale transportation [2].

Ad hoc networks by their very nature help to address some issues that we currently face because

of the way the Internet is structured. The evolution of Internet has been such that two devices that are

in immediate wireless range of each other still have to use routers and switches at remote locations to

forward packets between each other. Ad hoc networks may be able to change this by directly

connecting multiple wireless devices without the intermediate Internet. This will reduce the bandwidth

consumption of the Internet and also alleviate some security concerns. If both the sender and the

receiver are in immediate vicinity of each other, then it becomes difficult to compromise the

communication unless the attacker is the same physical space. Ad hoc networks may be employed in

campuses, companies and hospitals and may become the first choice for connecting devices that are

near by.

Most of these ad hoc networks cannot be dependent on the standard Internet routing protocols

because they are not likely to be connected to the Internet all the time. Also, unlike regular Internet

networks, ad hoc networks have several additional constraints involved like battery life, mobility and

relatively lower processing power. The standard Internet routing protocols exhibit their least desirable

behaviors when presented with a highly dynamic interconnection topology [2]. Therefore it becomes

impractical to implement the same handful of standard routing protocols in such cases even in the

presence of a viable Internet connection. To solve this problem, several different protocols have been

designed for ad hoc networks. All these protocols have their own advantages and disadvantages and

any particular choice of protocol is a judgment call based on the situation.

It is important to note that even though our intention is to generate an ad hoc network for

mobile nodes, these nodes will have to connect to the regular Internet too. For this reason, the standard

network architecture is implemented on all these nodes. This includes the four layers of the TCP/IP

2

protocol and their subsequent functionalities. The only change however is at the layer 3 routing

protocol. All the participating nodes have layer 3 IP addresses and assist each other in routing data

packets. The layer 2 and layer 1 functionalities work exactly like on the regular Internet and help in

transmitting the frames and data.

A very popular ad hoc wireless protocol is the Ad Hoc On Demand Distance Vector (AODV)

Protocol. It provides quick and efficient route establishment between two nodes desiring

communication. Several researchers have modified and upgraded the AODV depending on their needs.

In our particular iteration, we modify the AODV protocol to make it more robust and adaptable for

large number of nodes.

1.1 Problem Statement

The goal of this research work is to implement two different schemes to improve the AODV

routing protocol. In the first scheme, we study the impact of incorporating Local Repair mechanisms in

the AODV routing protocol. In the second scheme, we add backup routes for every next-hop node in a

path generated by the regular AODV protocol.

1.2 Thesis Contributions

The contribution of this work is to provide Local Repair and Next-hop Backup Route based

improvements for the AODV routing protocol. The core algorithm of the AODV protocol is discussed

in detail which is followed by the changes suggested by our improvements. Predictions are made for

each of these improvements and compared to the simulation results run in network simulator ns-2.35. It

is shown that both Local Repair and Next-hop Backup Route based improvements result in improving

3

the quality of the AODV protocol by increasing the number of successfully delivered packets and the

packet delivery ratio.

1.3 Organization of Thesis

Chapter 2 introduces the reader to different types of traditional routing protocols and compares

and contrasts them with each other. This is followed by a discussion on why regular routing protocols

are not suitable for ad hoc networks. Following this, a discussion of the Destination Sequenced

Distance Vector (DSDV) and the Dynamic Source Routing (DSR) protocols is presented. This is

followed by a detailed discussion of the AODV Routing Protocol.

Chapter 3 begins with a discussion of several improvements that have been done on the AODV

protocol and justifies our choice of the two selected modifications.

Chapter 4 describes the simulation environment in detail and explains how to implement and

analyze the changes in the protocols.

Chapter 5 presents the results of these improvements and compares them to predicted outcomes

based on the changes in the algorithm.

Chapter 6 concludes the thesis.

4

Chapter 2

Literature Review

The TCP/IP Internet Protocol suite has become the de facto standard for all networking

communications. Almost every networking device in use today supports TCP/IP. This protocol divides

the network into four different layers and defines the purpose of each layer. This division helps

simplify the network as different protocols can address different issues at each layer [8].

Application Layer

Transport Layer

Internet Layer

Network Access Layer

Figure 2.1 TCP/IP Architecture Model

The Application Layer provides an interface between the software running on the computer and

the network. It defines the services that applications might need. These services may vary depending

upon the user's needs. For instance, some protocols may define the ability to transfer files while others

may define the ability to render web pages [10]. Hyper Text Transfer Protocol (HTTP), Hypertext

Markup Language (HTML), Post Office Protocol (POP), Simple Mail Transfer Protocol (SMTP) are

examples of protocols that operate at this layer.

The Transport layer provides a logical connection between two hosts with functions such as

reliable delivery of data, flow control, multiplexing and error-recovery [10]. The transport layer

protocols segment the incoming byte stream coming from the application layer and passes it down to

5

the Internet layer. Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the

two main protocols that are run at this layer. The data unit at this layer is called a 'segment'.

The Internet Layer undertakes the routing process, i.e., it delivers packets from one device to

another. The Internet Protocol (IP), which is the foundation of the world wide web operates at this

layer. IP delivers the data packets from sender to receiver by using logical addressing and routing

protocols [9]. IP assigns logical addresses to all participating nodes which are used to identify a

packet's source and destination. All IP packets have a header which contains information about the

packet like source and destination addresses, packet length, upper layer protocol etc. The header and

hence the packet depends upon the version of IP in use. Routers are used to analyze these data packets

and forward them to appropriate destinations [11]. The two versions of IP currently in use are the

Internet Protocol version 4 (IP v4) and the Internet Protocol version 6 (IP v6). The routing protocols

dynamically learn about groups of addresses in the network and generate routing tables. Routing

protocols also enable routers to broadcast its current information to all its neighbors. This process helps

to calculate the best possible route to a given destination and to generate routing tables. Routing tables

list all the networks that can be reached and the best route to that network. To calculate the 'best route',

different protocols use different algorithms and different metrics [10].

The Network Access Layer defines the protocols and hardware required to deliver the data

across the physical network. This layer provides services to the Internet Layer. Ethernet is the most

common protocol at this layer. This layer defines the protocols for cabling, connectors, voltage levels,

wireless frequency bands and physical addressing (MAC level) that are used to deliver data. It can be

thought of as comprising of layer 2 link layer and layer 1 physical layer. The data unit at this layer is

called a frame.

6

2.1 Dynamic Routing Protocols in regular networks

Routers add routes to their routing table in three different ways. Directly connected routes are

simply added based on their connection, static routes are predefined and dynamic routes are filled up

by a routing protocol. This route table is then read by a routed protocol like IP to transmit the packets

between different nodes. Routing protocols are a set of messages, rules and algorithms used by routers

to learn the routes between different nodes and choose the best route for a particular node [12].

The three main types of dynamic routing algorithms are distance vector, link state and balanced

hybrid. The Distance Vector algorithms are based on the Distributed Bellman-Ford algorithm [16].

According to this algorithm, the router learns about all the possible paths to a particular destination.

Every path has an associated hop count with it. The router picks the path with the smallest hop count

for transmitting data packets and the declares the next-hop on this path as the 'vector'. In essence, the

router is oblivious to the data transmission beyond its next-hop. It only knows the number of hops it

takes to reach the destination using a particular path.

Figure 2.2 Information learned using Distance Vector Protocols [12]

7

In the above figure, Router R1 choses the Router R7 as its next-hop because it has the least hop

count metric. Every router broadcasts information about every destination it can access and the hop

count to that destination. Other routers receive this information and process it and edit their routing

tables accordingly. Such broadcasts occur on a periodic basis thereby keeping the route information

fresh and suitable for use. When a route becomes invalid, the routers declare the hop count metric as

infinity and broadcast this information. Other routers then realize that this route has become defunct

and remove it from their routing table.

When a distance vector protocol running on a particular router receives an update from a

neighboring router, it performs these six steps as enunciated by the Bellman-Ford algorithm [13].

1. Increments the metrics of the incoming routes in the advertisement. In the above example, when

R6 receives a routing update from R8, it increments the hop count metric from 1 to 2 before

broadcasting it any further.

2. Compares the information in the routing update to what it already has in its routing table.

Referring to the above example, lets say that R1 just has information about a 4 hop destination

to R8 through R2. If it receives new information for the same destination, it compares it to the

already existing 4 hop destination.

3. If the new information is better than the one in the routing table, the information in the routing

table is discarded and replaced with the better information. If a router supplies R1 with

information to reach R8 that is better than the existing information through R2, the new

information takes place of the old information. In our case, both R5 and R7 provide better

routes than R2, hence the information through R2 is discarded.

4. However, if a neighbor supplies information that is worse than already existing information, no

action is taken. In the example, consider that R7 is discovered first and the routing table is

updated with hop count 2. If later on, R2 and R5 are discovered, both of which have higher hop

8

count than R7. These new routes are simply discarded.

5. If the neighbors information is exactly the same, reset the timer for that entry in the routing

table to indicate that the route is still fresh and capable to send packets.

6. If a router receives information about a destination that has the same metric but a different next-

hop, it would still be added to the routing table provided it does not exceed the maximum

number of equal cost paths. If an R9 is discovered which establishes a two hop path to R8, then

both the R7 and R9 paths are considered valid.

The Bellman-Ford algorithm alone does not satisfy all the routing needs. Distance Vector

algorithms employ several corrective measures to improve convergence and to avoid routing loops and

counting to infinity problems [14, 15]. To advertise changes in the route, triggered updates are used

which require immediate broadcasts regardless of the periodic timer. Distance Vector algorithms have a

propensity to form loops in the event of link breakage. In some cases, such loops can be avoided by

limiting the Time to Live (TTL) on individual data packets. The TTL value is the maximum number of

hops a data packet can travel before it becomes void. For example, the Routing Information Protocol

(RIP) protocol sets a hop count limit of 15 [13]. To solve the counting to infinity problem and the

routing loops it generates, split horizon technique and hold-down timer are used. According to the split

horizon technique, if a neighbor router sends a route to a router, the receiving router will not propagate

this route back to the advertising router [14]. In the hold-down timer based correction, when a route

entry goes down, it is frozen in the routing table for a predetermined 'hold-down time'. This way, the

router will not pick up any stray values that may be transmitted by other routers for that particular

destination [14].

Link state protocols are based on Dijkstra's Shortest Path First (SPF) algorithm. In contrast to

9

distance vector algorithms, link state algorithms learn the complete topology of the network. Every

router running the Link State algorithm has a picture of the complete network which it then uses to

transmit data packets [17]. Link State algorithms generate and multicast Link State Advertisements

(LSA). These LSAs are generated only when changes are made in the network and are processed only

by devices which are running link state protocols. Unlike Distance Vector algorithms, destination

routers reply to the source routers using acknowledgements. As routers learn about routes from LSAs

from other routers in the network, they create a topology of the complete network. This topology is

represented in the database as a tree which is used to calculate the minimum delay to all the

destinations in the network [18]. Link state protocols require greater memory requirements and

processing power because they have to maintain a network table, link state database and a routing

table.

Hybrid protocols are essentially based on the Distance Vector algorithm but heavily use

concepts from the Link State protocol algorithm [13]. Some of the most common hybrid protocols are

Routing Information Protocol version 2 (RIPv2), Border Gateway Protocol (BGP) and Enhanced

Interior Gateway Routing Protocol (EIGRP).

2.2 Routing Protocols for Ad hoc networks

Routing protocols that operate on regular networks have not been designed to create the self

starting and decentralized networks thats are needed for ad hoc networks [2]. Most of these protocols

exhibit their least desirable behavior when presented with highly dynamic interconnection topology as

in ad hoc networks. It is important to note that the mobile nodes which form ad hoc networks may have

much lesser processing power than most laptops or hand-held devices. Therefore, these new protocols

should be able to reduce the computational burden without compromising on functionality. These new

10

protocols should also be able to display better convergence characteristics than regular protocols. Yet

another consideration is that ad hoc networks for the most part work through the wireless medium. The

problem of routing packets in an ad hoc network may be considered essentially as the distributed

version of the Shortest Path problem [20].

We assume our ad hoc network has the following characteristics [2]:

1. All nodes are using IP as the routed protocol and they have IP addresses. These IP addresses are

usually static private IP addresses. We cannot run the Address Resolution Protocol (ARP) or the

Dynamic Host Configuration Protocol (DHCP) because we are not likely to be connected to the

Internet.

2. Not all the nodes are within each other's range.

3. The nodes are mobile such that any particular node may or may not be in the range of some

other node.

4. Nodes behave as routers and assist each other in the processing of delivering data packets.

5. Even though some protocols can operate on unidirectional links, we assume all the links in our

ad hoc network are bidirectional.

6. Even though protocols can generate and work with multicast and multi-path routes, we focus

only on unicast implementations of these protocols.

When it comes to forwarding packets in ad hoc networks, two types of protocols are employed.

Proactive or table driven protocols are those in which every node keeps track of all the destinations in

the network. Thus, when a node needs to communicate with any destination, it can simply pick up that

route from its routing table. The downside of implementing such protocols is that it needs too many

control packets- both for periodic updates and also for responding to link breakages. Reactive protocols

on the other hand acquire routing information only when it is needed. As a result, they only have to

11

maintain the routing tables for a short time. This helps in reducing the number of control packets but

causes an increase in initial delay time as the protocol is trying to figure out the path.

Ad hoc networks differ from regular networks in several different ways and these differences

need to kept in mind when designing protocols for these ad hoc networks. Ad hoc networks do not

generally support aggregation techniques like sub-netting or routing prefixes [2]. This makes it difficult

to scale the network when new nodes are added. Also, the time for which a node stays at a particular

location and the speed of the node negatively impacts the protocol performance. The routing table

entries in an ad hoc network change much faster than they do in regular networks [21]. Unlike regular

networks, the nodes on an ad hoc network are almost always operating on limited battery power.

Therefore, a protocol which processes more number of packets will consume more power. There are

several different physical layer wireless standards and speeds which makes it difficult to depend upon

any one of them for transmitting packets over multiple hops. The forwarding process should therefore

operate only on layer 3. Additionally, these new protocols expose the network to many more security

threats.

Several protocols have been proposed for routing packets in ad hoc networks. All these

protocols maintain for each destination a preferred neighbor also known as the 'next-hop'. The

destination node is identified in every data packet. When a node receives this packet, it forwards it to

the next-hop for that particular destination. This process continues until the packet reaches its

destination. The generation and maintenance of routing tables differs from one protocol to another.

Every protocols focuses on few constraints and based on these constraints attempts to find the optimal

path from source to destination. These constraints may be the number of next-hops, bandwidth etc.

Similar to regular networks, routing protocols for ad hoc networks can also be classified as either Link

State or Distance Vector based. The differences between the link state and distance vector protocols are

accentuated in ad hoc networks because of mobility, lower processing power and less storage space.

12

The Destination Sequenced Distance Vector (DSDV) Routing Protocol was proposed as an ad

hoc network adaptation of the Distributed Bellman-Ford algorithm. This is a proactive protocol which

performs decently when the number of nodes is neither very low nor very high. To resolve the issue of

excessive control packets in proactive protocols, on demand protocols were introduced. The Dynamic

Source Routing (DSR) protocol is one of the purest on demand protocols. Thereafter, the Ad hoc On

Demand Distance Vector (AODV) Routing protocol was introduced which borrowed some ideas from

DSR and created an on demand version of the DSDV.

2.3 Destination Sequenced Distance Vector Routing Protocol

The DSDV routing protocol is basically an adaptive implementation of the modifications to the

basic Bellman-Ford algorithm as specified by the Routing Information Protocol making it suitable for

dynamic and self starting networks mechanisms as are required for ad hoc networks [19]. It addresses

the looping problem presented by the Bellman-Ford algorithm in the face of link breakages and the

resulting time dependent nature of interconnection topology describing the links between the mobile

nodes. Looping happens in the Bellman-Ford algorithm because nodes are making decisions based on

stale and hence incorrect information. This is normally resolved by using some form of inter-nodal

coordination protocol [22]. This idea cannot be extended to ad hoc network environments because the

nodes have absolutely no correlation between them and the topology is changing rapidly and arbitrarily.

The motivation behind DSDV is to retain the simplicity of RIP yet make it suitable enough to avoid

looping problems. This is by done by tagging each route table entry with a sequence number so that

nodes can quickly distinguish stale routes from the new ones and avoid loop formation.

The basic idea behind the DSDV protocol is that each node in the MANET periodically

advertises its view of the interconnection topology with other mobile nodes within the network [19].

13

This protocol is able to generate and support the changing and arbitrary paths of interconnection. The

DSDV protocol works perfectly in the absence of a base or central station but is also compatible to

work in the presence of a base station.

2.3.1 Protocol Overview

All packets are transmitted based on the routing tables stored at each node. These routing tables

list all available destinations and the number of hops to each destination. Each route table entry is

tagged with a sequence number that is originated by the destination node, which is the only new metric

proposed in this protocol [19].

Each node periodically transmits updates to keep the information fresh. We assume that these

periodic updates are completely independent of other nodes. Mobile nodes have no time

synchronization or phase relationship of update periods between mobile hosts. In addition to the

periodic updates, new data is immediately generated and transmitted whenever a route change is

detected. Both layer 2 and layer 3 addresses are allowed in this protocol.

Data is also kept about the length of the time between the arrival of the first and the arrival of

the best route for each destination. Based on this, a decision may be made to delay advertising routes

that are about to change. This prevents the advertisement of possibly unstable routes to reduce the

number of rebroadcasts of the same destination number.

The figure below shows the movement of a node in an ad hoc network. The mobile host 1

(MH1) moves from one position to another which necessitates the creation of new routes.

14

Figure 2.3 Movement of a node in an ad hoc network [19]

2.3.2 Route Advertisement

Each mobile node must advertise its routing table to each of its current neighbors. This advertisement

should be made often enough so that all nodes have a record of the recent changes happening in the

network. In addition to this, each mobile node agrees to relay data packets to other computers upon

request [19].

2.3.3 Route Table Entry Structure

The data broadcast by each mobile computer will contain its new sequence number created by

the transmitter, destination address, number of hops required to reach the destination, sequence number

of information received regarding that destination as stamped by the destination. The header of this

broadcast packet will contain the hardware address and (if appropriate) the network address of the

mobile node transmitting it. Routes with more recent sequence numbers are always preferred as the

15

basis for forwarding decisions. If two paths have the same sequence number, the one with the smallest

metric is used. Routes received in broadcast are also advertised by the receiver when it subsequently

broadcasts its routing information after adding an increment of one hop to the metric.

It is important to note that wireless links are not always bidirectional. Because of this, the

receiving node must check if the transmitting node can also receive the packets, thereby ensuring

bidirectional connectivity. Whenever the routing information of a node changes, it immediately issues a

rebroadcast. This imposes a requirement on the network to converge as soon as possible. However, if

the speed of the nodes is too fast and their relative positions change too quickly, there can be a storm of

broadcasts and rebroadcasts which will consume huge amounts of bandwidth [19].

2.3.4 Responding to Topology Changes

Because of the dynamic nature of mobile nodes, several nodes may have broken links or may

generate new links at any given instant. The broken link may be detected from layer 2 protocol or may

be inferred if no broadcasts have been received for a while. A broken link is described with a metric of

infinity i.e. any value greater than the maximum allowed value. When a link to the next-hop is broken,

any route through the next-hop is immediately assigned infinity as the next-hop metric and an updated

sequence number. This is the only case in which sequence number for a particular destination is

generated by a mobile node other than the destination itself. This new sequence number is one greater

than the previous sequence number of the destination. This new information is immediately disclosed

in a broadcast routing information packet. Later on, if a node which has a direct path to this destination

receives this packet with infinity metric, it checks if its direct path sequence number is the same or

greater than that of this infinity broadcast packet. If yes, then this triggers a route update broadcast

indicating a new path to the destination[19].

16

To reduce the congestion due to excessive control packets, DSDV defines two types- full dump

and incremental dump. As the name specifies, a full dump will carry all of the available routing

information where as an incremental dump will only transmit information that has changed since the

full dump[19].

The tables 2.1 and 2.2 indicate the forwarding table for Mobile Host 4 (MH4) from the figure 2.3

Table 2.1 Forwarding table for MH4 before topology change [19]

Note that after the topology change, the number of hops from MH4 to MH1 changes from 2 to 3. All

the sequence numbers also change because significant time has elapsed during the topology changes.

Table 2.2 Forwarding table for MH4 after topology change [19]

17

2.3.5 Route Selection Criteria

When a mobile node receives new routing information, that information is compared to the

information already available from previous routing information packets. Any route with a better

sequence number is used and the route with an older sequence number is discarded. If the new route

has the same sequence number but better metric, the existing route is discarded or marked as less

preferable. The metrics for routes chosen from the newly received broadcast information are each

incremented by one hop. Newly recorded routes are immediately advertised to its neighbors. Those

routes with a more recent sequence number are scheduled for advertisement at a later time, which gives

time for the newly formed routes to settle [19].

There is no synchronization between different nodes and all nodes transmit packets

independently. It may so happen that a node receives newer packets and keep on changing its route

even though the destination has not moved. This is because when the node sees a higher sequence

number, it changes its route regardless of the metric. After this if it sees a newer route with the same

sequence number but with lower metric, it opts for this route. Every new metric is propagated to every

mobile node in the neighborhood, which further propagates it to its neighbors and so on. This way, for

every change in sequence number, there will be a burst of transmissions. A solution around this

problem is to delay the advertisement of routes when a better metric is likely to show up. This way, the

route with a later sequence number is available for use but does not have to be advertised immediately,

unless it is a route to a previously unreachable destination. This adjustment will create two different

routing tables- one for forwarding packets and the other to be advertised.

Even though the DSDV protocol is becoming increasingly obsolete, some of the ideas presented

in the DSDV protocol have been incorporated in other advanced protocols like AODV and others.

18

Perhaps the most significant contribution of DSDV protocol is the use of sequence numbers. Because

of excessive rebroadcasts, DSDV performs very poorly as the mobility increases [22]. The throughput

of DSDV is very low and the control overhead is very high when compared to reactive protocols [23].

However, DSDV performs well if the nodes move relatively slowly and when the topology changes are

not huge [24]. Yet another advantage is that individual packets do not have to wait to start transmitting

like in reactive protocols.

2.4 Dynamic Source Routing Protocol

The Dynamic Source Routing protocol is a simple and efficient on demand routing protocol

designed specifically for multi-hop ad hoc wireless networks with mobile nodes. Like most other ad

hoc routing protocols, it is completely self organizing, self starting and doesn’t need any administration

or control. The source takes over the responsibility of establishing the route before any packets are

sent. Each data packet has in its header the complete list of all the nodes through which it is supposed

to pass. This feature avoids the need for periodic updates and makes the routing trivially loop free.

This protocol is made up two mechanisms- Route Discovery and Route Maintenance which work

together [25]. Unlike DSDV, there is no need for up to date routing information through which the

packets are forwarded. Also, the nodes that forward or overhear the packet can cache the routing

information for future use. The DSR reacts to changes in the links on only those nodes which currently

form a part of its route. It is oblivious to link changes elsewhere in the network.

Certain assumptions are undertaken when implementing the Dynamic Source Routing protocol

[25]:

1. All nodes in the ad hoc network are willing to participate fully in network protocols.

2. The diameter of the network, i.e., the minimum number of hops required to transmit data from

19

one end to another of the network is usually small- between 5 to 10.

3. The speeds with which the nodes move is moderate with respect to transmission latency and

wireless transmission range of the underlying network hardware.

4. Nodes may be able to enable promiscuous receive mode according to which hardware delivers

the received packet to network driver software regardless of the MAC address.

5. Only one IP address is allowed per node.

Dynamic Source Routing does not use any periodic routing advertisements, link status sensing

or neighbor detection packets nor does it depend on any underlying protocols to provide these

functions. Both Route Discovery and Route Maintenance are performed on a purely on demand basis.

Route Discovery is used only when a source needs to send a packet to a destination but does not

already know a route to it. Route Maintenance is used by the source to detect if the network has

changed so that it can no longer use the route to the destination. If the source route is broken, the

source can attempt to use any other routes it knows to the destination. If there are no alternate routes, it

simply invokes Route Discovery once again. When all nodes needed for current communication have

been discovered and all nodes are stationary with respect to each other, the number of overhead packets

scales down to zero [25].

In response to a single route discovery, a node may learn and cache multiple routes to any

destination. This allows the reaction to routing changes to be much more rapid because when one route

fails, the source can try another cached route to the same destination. DSR also allows the use of

unidirectional links to be used when necessary to improve the overall performance and network

connectivity in the system [25].

20

2.4.1 Route Discovery

When a node originates a packet for a particular destination, it places in the header of the packet

sequence of all the hops that the packet should follow. The source obtains a suitable source route by

checking its route cache of routes previously learned. If however, there are no routes in this cache for

the desired destination, it initiates a Route Discovery.

Figure 2.4- Route Discovery example with node A as the initiator and node E as the target [25]

The above figure illustrates an example of the Route Discovery in which node A is trying to

find a route to node E. The node A transmits a single local broadcast packet called the Route Request

packet which is received by all the nodes within the wireless transmission range of A. Each Route

Request message identifies the initiator and target of the Route Discovery and also contains unique

Request ID which is determined by the initiator of the request. Each Route Request also contains a

record listing the addresses of each intermediate node through which this request has been [26].

When another node receives the Route Request packet, if it is the target to the Route Discovery,

it returns the Route Reply to the Route Discovery initiator giving a copy of the accumulated route

record from the Route Request. When the initiator receives this Route Reply, it caches this route in its

route cache for use in sending subsequent packets to this destination. However, if the node receiving

the Route Request recently saw another Route Request from this initiator bearing the same Request ID

or if it finds that its own address is already listed in the route record of the Route Request packet, it

21

discards the request. If not, it appends its own address in the route record of the Route Request message

and propagates it by transmitting it as a local broadcast packet with the same request ID [26].

The Route Reply can be sent in several different ways. In the above case, E can initiate Route

Discovery for A to find a return path. This mechanism is beneficial if we are operating with

unidirectional links. In such as case, E piggybacks this Route Reply to its Route Request packet. Such a

process can consume huge control overhead and is therefore best avoided. Therefore, we restrict the

operation of DSR only to bidirectional links. Node E simply reverses the route record it finds in the

Route Request packet originating from A and use it a source route on the packet carrying Route Reply

[26].

Before initiating the Route Discovery, the sending node saves a copy in the local buffer called

the Send Buffer. The send buffer packets have a timer associated with them. If the route for this packet

is not found within this time, then it is simply dropped. This send buffer employs a First In First Out

(FIFO) rule for all its packets. As long as the packet is in the buffer, the node initiates several attempts

at Route Discovery. To reduce the overhead of control packets because of multiple Route Discovery

attempts, we use exponential backoff to limit the rate at which Route Discovery packets are broadcast

[25].

2.4.2 Route Maintenance

Figure 2.5 Route Maintenance in DSR [25]

Each node transmitting the packet has a responsibility to confirm that the packet has been received by

22

the next-hop along the source route. Each node can retransmit the packet up to a certain number of

times after which it completely gives up. In the above case, A is responsible for delivery to B, B to C

and so on. B has to provide acknowledgement to A that it did indeed receive the packet, C to B, D to C

and so on. This acknowledgement may be obtained either as an existing standard part of MAC layer or

by passive acknowledgement, i.e., B overhears C trying to transmit the packet to D. This

acknowledgement is another reason why it is better to have bidirectional links. If we only have

unidirectional links, these acknowledgements will have to find a route back to the previous hop which

further increases the control packets. If a node makes the maximum possible number of attempts to

transmit the packet to the next-hop but still cannot do it, it initiates a Route Error message. In the above

case, C initiates Route Error packet back to A indicating that the link C-D is broken. A suspends this

broken link and then tries to find if it has any other route to E. It it does, it uses this route to transmit

the packets, if not, it initiates another Route Discovery [26].

2.4.3 Additional Route Discovery and Route Maintenance features

When a node forwards or overhears information from other data or control packets, it saves this

information for future use. This includes the source route in data packets, route record from Route

Request packets and the route in Route Reply packets.

If an intermediate node has a cached route to a destination, it returns a Route Reply to the

source. It appends its list of nodes to the destination to the sequence of nodes in the source route in the

Route Reply packet. The only condition is that it does not contain there should be no common nodes

among the nodes in the source route and those in the intermediate node cache other than the

intermediate node itself.

If there are multiple intermediate nodes which have a path to the destination, then they can all

23

generate replies to the source and create a Route Reply storm. In the case shown in the figure, all the

nodes from B-F have a path in its route cache for G.

Figure 2.6 RREP storm in DSR protocol [25]

In such a case, individual nodes wait for a random amount of time and overhear any route

packets being sent from source to destination. If the route through this intermediate node has lesser

number of hops compared to that in the source route of packets being sent to the destination currently,

it sends its Route Reply to the source.

The number of hop requests for the Route Request packets are also controlled. Initially, we try

to find if the destination is near the node by setting a reasonable hop count like 5-10. If this does not

work, a Route Request with no hop limit is sent. This scheme has also been employed with a gradual

increase in the hop count for Route Request packets [25]. Such an approach decreases the number of

control packets in the network.

Route maintenance also offers several features that help in increasing the efficiency and

delivering packets with lesser delay. The node may salvage the packet after returning RERR if it finds

another route to the destination in its route cache. If nodes can overhear each other, then they cooperate

24

and shorten the route. This reduces the number of hops from the source to the destination and makes

the route more robust.

Compared to DSDV, DSR requires much lesser overhead as it does not concern itself with

maintaining routes to all the possible destinations. Every overhead packet needs processing power,

therefore for mobile nodes which operate on limited battery power, DSR is much more preferable to

DSDV [27]. DSR stores multiple routes to a destination and exploits the route cache feature very well

by saving the route records from data packets and overhearing route records from other data packets

[28]. This feature makes DSR very flexible and greatly increases the chance of packet delivery. Unlike

other protocols, the source node in DSR controls the packet delivery from start to end thereby

enhancing accountability.

2.5 Ad Hoc On-Demand Distance-Vector Routing Protocol

The AODV protocol may be considered as an on demand adaptation of DSDV protocol which

also heavily borrows from the DSR protocol. It was specifically designed for ad hoc networks and

provides quick and efficient route establishment between nodes desiring communication [29]. It

establishes a path between the nodes with minimal control overhead and minimal route acquisition

latency.

Compared to the DSDV protocol, the AODV protocol is a significant improvement in several

aspects. In DSDV, a single link breakage or a new neighbor can trigger system wide broadcasts. In

AODV, if the link status does not effect the ongoing communication, no broadcast occurs. As a result in

AODV, local impact only has local effects but in DSDV, local impact has global effects. In AODV, the

only non local effects result from a distant source trying to use a broken link. Only those nodes that

25

have been using the broken link are intimated of its breakage, all other nodes are oblivious to it.

AODV has several minimalist features which help in reducing the number of overhead packets

significantly. It does not add any overhead to packets carrying the data and if the routes are not being

used, they are simply discarded. This has the benefit of not having stale routes and also helps reduce

control packets by avoiding route maintenance. AODV also minimizes the number of routes between

any active source and destination to one. While it is possible to have more than one routes, the book

keeping and route maintenance for each of these routes is a nontrivial matter. Also if multiple routes to

the same source-destination pair have the same broken link, then the purpose of having multiple routes

is simply defeated. Although AODV with multiple paths has been proposed [32], for our work we stick

only to the single path implementation. The unicast AODV implementation can be extended to generate

a multicast implementation just by making a few changes in the protocol [31]. All these features make

AODV simple to implement and powerful and robust to respond to ad hoc networks.

2.5.1 AODV Protocol overview

AODV attempts to locate routes for a particular destination only when needed and the route is

maintained only as long as necessary. It borrows the idea of sequence numbers from DSDV, which

ensures loop freedom. Every node maintains a monotonically increasing sequence number which

increases each time it learns of change in topology of its neighborhood. These sequence numbers

ensure that the most recent route is selected whenever route discovery is executed. AODV utilizes only

bidirectional links between neighboring nodes. This is the only aspect of the physical layer that AODV

depends upon. AODV can perform both on wired and wireless media even though it is ideally designed

for wireless media. Route tables are used to store the destination and next-hop IP address as well as

destination sequence number. Additionally, for each destination, the node maintains a list of precursor

nodes which route through it in order to reach the destination. This list is maintained for the purpose of

route maintenance in the event of a link breakage. Each route table entry has a lifetime associated with

26

it which is updated whenever a route is used. If a route has not been used within its lifetime, it is

expired. This makes sense because a route not being used is not being maintained which indicates that

the nodes along the route most likely have moved. When a link breaks, Route Error messages are sent

which provides for quick deletion of invalid routes. There is no additional overhead on data packets

because it does not utilize source routing.

2.5.2 Route Discovery

Route Discovery in AODV is a purely on demand process. The discovery cycle comprises of two parts-

Route Request and Route Reply. When a node seeks a path, it generates a Route Request message,

when another node receives it and sends a reply, Route Reply message is sent back.

Route Discovery process may be described as follows:

1. When a node seeks a route to a particular destination, it broadcasts a Route Request (RREQ)

packet.

2. Any node with a current route to the destination can unicast a reply back to the source node.

This reply is sent as a Route Reply (RREP) packet.

3. Route information is maintained by each node in its route table.

4. Information obtained through RREQ and RREP is stored alongside other routing information in

the same routing table.

5. Stale routes can be eliminated by analyzing their sequence number.

6. Routes with old sequence number are aged out of the system based on their lifetime.

The first thing a node does when it wishes to send a packet is to check if its own route table has

a current route to that node. If so, it simply forwards the packet to the next-hop for that particular

destination. If however, there is no valid route for that destination, a Route Discovery process is

27

initiated. The source node creates an RREQ packet. This packet contains the following parameters:

1. Source node's IP address

2. Source node's sequence number

3. Destination IP address

4. Last known sequence number for the Destination

5. Broadcast ID

6. Time To Live (TTL)

The Broadcast ID is incremented each time each time source node initiates an RREQ. Together the

source node IP address and broadcast ID form unique identifier for the RREQ. Once the RREQ is

generated, the source node broadcasts it and sets a timer to wait for a reply.

When a node receives an RREQ, it performs these steps in a sequential manner:

1. Check the Source IP and Broadcast ID pair to make sure if it did not already receive this packet

earlier. Each node maintains a record of Source IP and Broadcast ID addresses for each RREQ

it receives for a limited time. If this is a packet it has already received, it simply discards this

packet and does nothing.

2. If however, a particular node receives a RREQ packet for the first time, the node sets up a

reverse route entry for the source node in its route table. This entry contains the source node's

IP address and sequence number as well as number of hops to the node as well as the IP address

of the neighbor from which next-hop was received. This is because the node should know how

to forward the RREP if it is received later on. Once it does this, it increments the hop count in

the RREQ and rebroadcasts its neighbors.

28

Figure 2.7 Reverse path formation in AODV [29]

In the above figure, we see an instantaneous picture of different Route Replies being generated

for the source which is trying to find a route to D. Each of these reverse route entries is

maintained for a specified amount of time. If there is no RREP within that time limit, this

reverse route entry is simply discarded to prevent stale routing information from lingering in the

route table.

3. A node can respond to an RREQ in one of two cases:

i. The node has an unexpired entry to the destination in its route table and the sequence number

associated with this destination must be at least as great as that in the RREQ. This is to ensure

that the path to the destination is at least as fresh as the RREQ packet. Such a mechanism

prevents formation of loops.

ii. The node is the destination.

4. Once it is confirmed that a node can reply to the destination, it sends back a unicast RREP

packet to the source.

5. If the RREQ is lost, the source node is allowed to retry broadcast of Route Discovery. After a

certain number of attempts, we stop sending RREQ and assume that the destination is

29

unreachable. This number of attempts is usually limited to 2 [31]. In the first attempt, we use a

limited hop count by setting a lower TTL value. This is because we want to be able to find the

destination without clogging the network with too many rebroadcasts of the RREQ packet. If

this RREQ fails, we rebroadcast the packet with an increased TTL value. This process continues

until the maximum number of retries is exhausted. When a route is established, the distance to

the destination is recorded is recorded in the route table. Next time this same destination has to

be accessed, the TTL value is set to what it was before plus a small increment.

When a node determines that it can respond to an RREQ, it generates an RREP. This RREP varies

slightly depending on which node is generating it.

i. If the destination node is generating the RREP, it places its current sequence number in

the packet, initializes hop count to zero and places the length of time this route is valid

in the RREP's lifetime field.

ii. If an intermediate node is generating the RREP, it places its record of the destination

sequence number in the packet and sets the hop count equal to the distance from the

destination. It also calculates the amount of time for which its route table entry for the

destination will still be valid.

In both these methods, the RREP is unicast towards the source node using the node from which it

receives the RREQ as the next-hop.

When an intermediate node receives an RREP, it sets up an forward path entry to the destination

in its route table much like the reverse path entry with RREQ packets. This entry contains the IP

address of the destination and the IP address of the neighbor from which the RREP arrived and the hop

30

count to that destination. The distance from this intermediate node to the destination is hop count plus

one. This forward path entry also has a lifetime which is set to lifetime contained in the RREP. Each

time the route is used, its associated lifetime is updated. If the route is unused within the specified

lifetime, it is simply deleted. After processing the RREP, the node forwards it to source.

Figure 2.8 Forward path formation in AODV [29]

If a node receives a second RREP for/from the same destination, it checks if this new RREP has a

better destination sequence number or smaller hop count than the one it previously processed. If yes,

this new RREP is forwarded. In all other cases, these RREPs are simply dropped. This mechanism

decreases the number of RREPs navigating towards the source and also keeps the routing information

up to date. The source begins data transmission as soon as the first RREP is received and can update

later if it finds a better route.

2.5.3 Route Maintenance

The source nodes decides how long to maintain a particular route once it has been finalized.

This route from the source to the destination is referred to as the active path. Movement of any routes

31

outside this active path does not impact the route maintenance.

Several different scenarios arise for route maintenance.

1. If source node moves, we have to reinitiate Route Discovery. This is not such a big problem as

it is likely that there will be an existing forward path to the destination from some of the nodes

near the source node.

2. When either the destination or an intermediate node moves, a Route Error (RERR) message is

sent to the source node. This RERR message is initiated by the node upstream of the break. An

upstream node is used to refer to a node that is closer to the source node.

3. The Route Error packet lists each of the destinations that are now unavailable because of this

breakage. If there is at least one node between the upstream node and the destination, the

upstream node also broadcasts the packet in addition to unicasting it to the source. When the

neighbors receive this RERR, they mark their route to the destination as invalid by setting the

distance to the destination equal to infinity and in turn propagate the RERR to their own

precursor nodes, if any such nodes are listed for the destination in the route table.

4. When the source node receives the RERR, it checks if it still needs Route Discovery. If yes,

then it initiates it.

5. Route entries with an infinity metric are not immediately deleted because they contain useful

routing information with a recent destination time stamp. They expire in roughly the same

amount of time as do reverse routes formed during route discovery. Discarding current route

information even of negative variety is not suggested because it can help in taking some

decisions later on.

6. If a node receives a data packet destined for a node for which it does not have an active route, it

creates a route error message for the destination node which is broadcast and also sent back to

the source. In this way, the node has informed its upstream node that it should stop sending data

32

packets.

2.5.4 Local Connectivity Management using Hello packets

Each time a node receives a broadcast from a given neighbor, it updates the lifetime associated with

that neighbor in its routing table. If there is no entry for that neighbor in the routing table, the node

creates one. If a node has not broadcast anything within the last hello interval, it can broadcast a Hello

packet to its neighbors to inform them that it is still in its vicinity. Hello interval is defined as the

maximum amount of time before the node can broadcast hello packet. This is usually set to 1 second.

Hello message in an RREP message that contains node's IP address and current sequence number. It has

TTL value of 1 thereby preventing it from being rebroadcast. Hello messages are incorporated so that

AODV does not rely on any underlying protocols for connectivity information.

AODV has emerged as a robust and powerful protocol to be used in ad hoc networks. Even

though there are cases in which DSR performs better than AODV, AODV is considered a better

protocol because it scales well to large number of nodes [31]. Also, AODV performs better when nodes

move more frequently [32]. The overhead packet consumption for a smaller number (20-100) of nodes

is much more for DSDV when compared to AODV [33]. Even though the choice of protocol depends a

lot on the scenario which is defined by the number of nodes, speed, mobility etc, in most cases AODV

performs better than AODV.

33

Chapter 3

Enhancements for the AODV Routing Protocol

The AODV routing protocol has been enhanced, optimized and improved in several ways

depending upon various parameters. Some researchers have tried to focus on some intrinsic aspects of

AODV like Local Connectivity [37], Local Repair [38, 41] and security where as others focus on

external aspects like energy efficiency [39] and node density.

AODV is expected to perform at varying speeds of nodes and varying pause times. The pause

time here is defined as the time for which a particular node remains stationary after moving to a new

destination. The greater the speed, the faster scenarios change and new routes need to be created. The

lesser the pause time, the quicker the response has to be for finalizing new paths.

There are several metrics with which we measure the success of an enhancement or an

improvement of a routing protocol. Some improvements focus on increasing the number of packets

delivered, some others focus on reducing the end to end delay time and some just focus on reducing the

overhead. Depending on the scenario, one or more of these features may be more desirable.

3.1 Scheme 1- Local Repair based improvement for the AODV Routing Protocol

In the regular AODV protocol, after a route has been established and been declared as an active

route, if a link breakage happens, the node upstream of the break creates a Route Error message listing

all the destinations which have become unreachable due to the break. If instead of sending an error

message to the source node, if the upstream node attempts to repair the broken node itself, less number

of data packets will be lost and the route may be restored with a lower overhead. Also, the source node

is not at all bothered with another Route Discovery process.

34

Figure 3.1 Link breaks in an active route [40]

For smaller routes, Local Repair is not expected to show much advantages but for larger routes,

especially with 10 or more than 10 hops, Local Repair is extremely beneficial. This is because in larger

routes, the links are expected to break more often and if the intermediate nodes always keep sending

Route Error packets to the source which in turn keeps initiating Route Discovery, huge number of

control packets are consumed and the performance will deteriorate.

Local Repair makes the node upstream of the break to attempt a repair of the route. This is done

by broadcasting a Route Request with a TTL set to the last known distance of the destination plus an

increment value. This TTL value is used with an assumption that the destination is not likely to be far

away from where it was before the break.

Figure 3.2 Intermediate node broadcasts RREQ packets [40]

This node increments the sequence number of the destination in the RREQ packet by 1 before

transmitting it. This prevents the nodes further upstream of this node from replying to the RREQ. Thus,

this mechanism prevents loop formation.

35

Figure 3.3 New route is being created after receiving RREP [40]

Note that this RREQ broadcast is done only once. If no node replies to this broadcast, the intermediate

node simply sends a RERR back to the source node.

There are several important features of the Local Repair improvement in the AODV Routing Protocol

which need to be discussed:

1. Local Repair helps increase the number of data packets that reach its destination.

2. As the network size increases, it becomes more and more difficult for AODV to deliver packets

to their destinations. The path length of these routes increases and and a single route may have

multiple points of breakage. In Local Repair based AODV, we initiate the repair from an

intermediate node which is nearer to the destination than the source, hence routes are expected

to get repaired quickly and with lesser overhead.

3. Local Repair based AODV may cause longer paths to the destination than regular AODV. This

is because the intermediate nodes do not change the source to intermediate node path at all.

They try to generate a path from the intermediate node to the destination regardless of the

destination's new position with respect to the source. There could be an example in which the

destination is very close to the source but because of local Repair, packets may have to traverse

a longer route path. The source will not know about the nearby destination until it receives a

36

RERR and performs a fresh Route Discovery.

4. Local Repair AODV reduces the number of RREQ transmissions and therefore reduces the

control overhead of the protocol. The ratio of number of all packets (RREQ, RREP and RERR)

per data packet is lower for Local Repair AODV than for regular AODV.

5. The end to end delay for Local Repair AODV is expected to be much lower than that of regular

AODV. This is because the in regular AODV, when a break happens, the RERR packet has to

travel to the source and the source has to initiate a RREQ for the destination. This process takes

much more time than Local Repair AODV in which an intermediate node transmits RREQ to

initiate a route reconstruction.

3.2 Scheme 2- Next-hop Backup based improvement for the AODV Routing Protocol

Several backup based improvements have been proposed for AODV. The challenge with backup

based routes is to avoid loops and keep the number of control packets in check. Multi-path AODV

reduces overhead packets by about 20% and improves the end-to-end delay by more than a factor of 2

[34]. Most of the backup schemes focus on generating a backup route for the source-destination pair. In

our case, we propose a backup node for every link in the active route. This is accomplished by

proposing two simple control packets which are used to identify the backup node.

When a link breaks, the upstream node transmits the packet to this backup node which in turn

transmits it to its ex next-hop. To understand this scheme, please refer to the forward path set up in the

regular AODV protocol. When a source needs to communicate with a destination, it sends out an

RREQ, this RREQ creates a reverse route as it progresses until we find a path to the destination or the

the destination itself. When the destination is located, an RREP is unicast back to the source through all

37

the intermediate nodes.

Figure 3.4 Node a locating a backup node x for a node b on its active path

In the above figure, there are n intermediate nodes i1 to in. The RREQ is sent along the path from source

to destination and the RREP is sent along the path from destination to source. Consider the two

intermediate nodes in the figure a and b. The node b is sending an RREP to a which it received either

from the destination or from some other intermediate node that has route to the destination.

According to our scheme, the moment node a receives this RREP, it tries to locate a backup

node for the a-b link. It sends out a special packet called the Backup Route Request (BUREQ). This

BUREQ is sent out only once, therefore it does not need any sequence numbers. This packet has a's IP

address, b's IP address, destination IP and sequence number and a TTL of 1. Through this BUREQ, we

are trying to locate a node x such that node x can become a backup node for a-b link.

The Backup node establishment is undertaken as follows:

38

1. When a node receives this BUREQ, it checks the destination IP address and sequence number

and checks its own route table to see if it has a route to this destination. If it has an active route

to the destination, it drops this BUREQ packet.

The node b itself gets this request and it drops the BUREQ packet because it has a direct path to

the destination.

2. If some other node receives the BUREQ and it does not have a path to the destination but has a

path to b, it is eligible to be a backup node.

3. All such nodes which are eligible to be a backup node reply with a Backup Reply (BUREP).

These nodes add extra rows to their routing table declaring themselves as Backup nodes for a-b

link.

4. When node a receives the first BUREP, it registers this node as a Backup node for b. The node

a adds this information to its routing table.

When the primary link a-b gets broken, four cases may arise.

Case 1:

Check a's route table for a backup entry to b. If there is no entry, send RERR back to the source.

Case 2:

If there is a backup node listed in a's route table, send the packet to the backup node. This backup node

receives the packet and checks its own routing table. The backup node will forward all the packets it

receives for the destination to the node b.

Case 3:

The node a checks its routing table and forwards the packet to x. By now, the node x has moved away

and the packet does not reach x. Node a sends a RERR back to the source.

39

Case 4:

The packet reaches x but its route table entry has expired or become corrupted and it cannot send a

packet to to b. Node x sends a RERR back to the source.

40

Chapter 4

Simulation

All the simulations are done using network simulator 2 (ns2). ns2 provides support for TCP and

routing over wired and wireless networks [44]. Once ns2 is downloaded and installed, it contains the

C++ files for several different wired and wireless protocols from all the layers in its repository. To

implement a particular simulation, we write a TCL file to select which protocols we want to use from

this ns2 collection. The TCL file is implemented on a scenario file. Scenarios are simulated

environments generated by ns2. When the user supplies information like the number of nodes, the size

of the room, simulation time etc, scenario files get generated. These scenario files can be saved and

different protocols or protocol modifications can be run on them. This way, changes in the code can be

measured and studied.

4.1 Scenario file generation in ns2

In our case, we generate several scenario files to measure the performance of our protocols. It has been

suggested that the average number of neighbor nodes should be maintained between 6-8 for better

performance and scalability [35,40]. The area within which these nodes are allowed to navigate is

referred to a the room size. This is described by the length and breadth of the enclosure within which

the nodes can move freely. Keeping this in mind, we design our scenarios for different number of nodes

as follows:

No of nodes Room size

10 500 x 500

50 1000 x 1000

100 1500 x 1500

175 2000 x 2000

41

250 2500 x 2500
Table 4.1 Scenario generation for testing Local Repair AODV

In addition to the these parameters, we have provided a simulation time of 300s, pause time of 3s and

the speed of nodes is set at 5m/s.

However, for the Next-hop Backup Route based improvement, we keep the room size constant and the

number of nodes limited. The room size is set to 1000 x 1000 and the number of nodes is increased

from 10 to 100. This is done to minimize the number of multiple breakages. In the event of multiple

breakages, even after the repair, the packet will have nowhere to go.

No of nodes Room Size

10 1000 x 1000

30 1000 x 1000

50 1000 x 1000

70 1000 x 1000

90 1000 x 1000

100 1000 x 1000

Table 4.2 Scenario generation for testing Next-hop backup based improvement in AODV

4.2 TCL file specifications

The individual aspects of the scenario implementation as described in the TCL file are listed as follows

Channel Wireless Channel

Propagation model Two Ray ground

Network Interface type Wireless

MAC layer 802.11

Buffer type FIFO

Size of the buffer 50 packets

Antenna type Omnidirectional

42

Bandwidth of each node 1MHz

Packet size 1024 bytes

Data generation rate 512 kbps
Table 4.3 TCL file specifications

The TCL file when run for a particular scenario generates two new files of the type 'trace' and 'nam'.

These two files contain the information about the implementation of the protocol described in the tcl on

the given scenario file. Individual details like the number of sent and received packets, end to end delay

etc can all be extracted from these two files.

4.3 AODV implementation on ns2

In the TCL file, when the user configures AODV, the pointer moves to start and this start moves

to command function of the AODV protocol. The AODV protocol then gets implemented on the

scenario file using the TCL file. Therefore, if we make changes in the AODV protocol, we will have to

recompile ns-2 and rerun the TCL files for the same scenario. The TCL and scenario files are

considered as the 'front end' code where as the AODV files are considered 'back end' code.

Before making any changes, it is important to note that the default AODV as provided by ns-2

has its hello packets disabled. The user must enable the hello packets before implementing any

enhancement or even running the regular AODV. For every modification of AODV, the front end code

stays the same whereas the backend code needs to be changed to implement any of our suggested

improvements.

43

Chapter 5

Results

Scheme 1 – Local Repair based improvement for the AODV protocol

We first compare the Local Repair scheme with the regular AODV protocol. After the

incorporation of Local Repair, the protocol shows an average improvement of around 15 percent.

Because these scenarios are randomly generated and their topology can vary immensely from scenario

to scenario, the performance of the new protocol may differ significantly from scenario to scenario.

Figure 5.1 Number of packets successfully delivered to destination

The above graph is obtained by calculating the aggregate of all the received packets in the network.

AODV with Local Repair performs better because in Local Repair the nodes closer to destination than

the source initiate route discovery and hence the path is resolved quickly. This results in less number of

packets dropped.

44

Figure 5.2 Number of control packets

In regular AODV, RERR is initiated as soon as a link breakage is detected. This RERR travels back to

the source which initiates a new route discovery.

In AODV with Local Repair, RERR packets are eliminated in some cases as the intermediate node

itself initiates a route discovery. Also, the Route Discovery from an intermediate node to the destination

takes less number of control packets when compared to that from the source.

In accordance with our expectations, the number of control packets for AODV with Local Repair are

always less than that of regular AODV.

45

Figure 5.3 Packet Delivery Ratio

In AODV with Local Repair, the Packet Delivery Ratio is expected to increase as the Route repairs by

intermediate nodes ensure that paths stay valid and those packets that leave the source reach the

destination.

Once again, the number of control packets and the packet delivery ratio may vary significantly from

scenario to scenario because of the random nature of our topologies.

46

Scheme 2- Next-hop Backup based improvement for AODV protocol

Figure 5.4 Number of packets successfully delivered to destination

AODV with backup route can compensate for link breakages by using the backup node. Once

the packet is back on the path, it follows its usual active route. Apart from this, all other parameters are

same in AODV and AODV with next-hop backup.

Just like in the Local Repair case, scenario generation in Next-hop Backup Route based

improvement is also completely random. These random topologies will react differently in different

cases. However, the Backup Route based improvement shows an average improvement of 10 percent

when compared to the regular AODV.

47

Figure 5.5 Packet Delivery Ratio

In AODV with next-hop backup, when a link breaks, the protocol works out a patch for that link and

the remaining part of the link works as it is. Thus, all those packets which are sent are more likely to be

delivered than in the regular AODV.

48

Chapter 6

Conclusion

This thesis describes two different schemes which can be applied to the AODV Routing

Protocol. We have shown that both AODV with Local Repair and AODV with Next-hop Backup Route

improve the number of packets and the packet delivery ratio.

Both Local Repair and Next-hop Backup Route based improvements make small changes in the

operation of AODV. In Local Repair, we force an intermediate node to perform Route Discovery

instead of the source node. In Next-hop Backup repair, we designate a backup node for a particular

link. Packets are routed through this backup node when the link breaks. Both cases also have their

disadvantages, in Local Repair, we are missing out on simpler routes which may be found by the

source and instead opting for routes from the intermediate node. In some cases, this might create an

unnecessarily long path. However, in most cases Local Repair performs excellently and is definitely an

improvement over regular AODV. In the next-hop based backup node repair, we have to generate

additional control packets and additional entries in the routing table. This does not necessarily slow

down the route generation process because it happens after the active route has been created.

Nonetheless, extra control packets are always a burden on the processor.

Several suggestions can be made for future work. Perhaps the most obvious one is a

combination of both these schemes. Another improvement would be to develop a protocol such that the

nodes nearer to the source undertake Next-hop Backup Route based improvement whereas those closer

to the destination can perform Local Repair.

49

References

[1] E. Schmidt and J. Cohen, “Introduction” in The New Digital Age: Reshaping the future of
people, nations and business, 1st ed, Knopf, 2013, pp. 3-13

[2] C. E. Perkins, Ad Hoc Networking, Illustrated Ed. C.E. Perkins, University of Michigan,
Addison-Wesley 2001, pp. 1-28

[3] IEEE Standard for Information Technology- Telecommunications and Information Exchange
Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,"
IEEE Std 802.11-1997 ,445, 1997

[4] S. Mahan, Self driving car test. Internet: http://www.google.com/about/jobs/lifeatgoogle/self-
driving-car-test-steve-mahan.html, [Jun. 15, 2013]

[5] K.P. Valavanis, Unmanned Aerial Vehicles. Springer, 2011

[6] J. Horgan, “Unmanned flight: The drones come home”. National Geographic.[Online]. 223(3).
Available: http://ngm.nationalgeographic.com/2013/03/unmanned-flight/horgan-text, [Jun. 15
2013]

[7] R. Bloss, “By air, land and sea, the unmanned vehicles are coming”, Industrial Robot: An
International Journal, vol 34, no. 1, pp. 12-16

[8] T. Socolofsky, and C. Kale, A TCP/IP Tutorial, IETF RFC 1180, January 1991;
http://tools.ietf.org/pdf/rfc1180.pdf

[9] Information Sciences Institute, University of Southern California, Intenet Protocol- DARPA
Internet Protocol Specification, IETF RFC 791, September 1981;
http://tools.ietf.org/pdf/rfc791.pdf

[10] W.Odom, Interconnecting Network Devices 1, Cisco Press, 2013

[11] A. Tannenbaum and D. Wetheral, Computer Networks, Prentice Hall, October 2010

[12] W.Odom, Interconnecting Network Devices 2, Cisco Press, 2013

[13] R. Deal, Cisco Certified Network Associate Study Guide, Mc-Graw Hill Osborne, 2003

[14] C. Hedrick, Routing Information Protocol, IETF RFC 1058, June 1988;
http://tools.ietf.org/html/rfc1058

[15] G. Malkin, RIP Version 2, IETF RFC 2453, November 1998; http://tools.ietf.org/html/rfc2453

[16] D. Bertsekas and R Gallager, Data Networks, Prentice Hall, 2nd ed, 1992

[17] McQuillan, John M., "The Birth of Link-State Routing,"Annals of the History of Computing,
IEEE , vol.31, no.1, pp.68,71, Jan.-March 2009

[18] McQuillan, J.M.; Richer, I.; Rosen, E., "The New Routing Algorithm for the
ARPANET,"Communications, IEEE Transactions on , vol.28, no.5, pp.711,719, May 1980

[19] C. Perkins and P. Bhagwat, Highly Dynamic Destination-Sequenced Distance-Vector (DSDV)
Routing for Mobile Computers,Proc. ACM SIGCOMM Symp. Comm., Architectures and

50

http://www.google.com/about/jobs/lifeatgoogle/self-driving-car-test-steve-mahan.html
http://www.google.com/about/jobs/lifeatgoogle/self-driving-car-test-steve-mahan.html
http://tools.ietf.org/html/rfc2453
http://tools.ietf.org/html/rfc1058
http://tools.ietf.org/pdf/rfc791.pdf
http://tools.ietf.org/pdf/rfc1180.pdf
http://ngm.nationalgeographic.com/2013/03/unmanned-flight/horgan-text

Protocols, pp. 234-244, Sept. 1994

[20] Schwartz, M.; Stern, T.E., "Routing Techniques Used in Computer Communication
Networks,"Communications, IEEE Transactions on, vol.28, no.4, pp.539,552, Apr 1980

[21] P. Patnaik and R. Mall, Fundamentals of Mobile Computing, Prentice Hall of India, 2010

[22] Gandhi, S.; Chaubey, N.; Tada, N.; Trivedi, S., "Scenario-based performance comparison of
reactive, proactive & Hybrid protocols in MANET," Computer Communication and
Informatics (ICCCI), 2012 International Conference on , vol., no., pp.1,5, 10-12 Jan. 2012

[23] Morshed, M.M.; Ko, F.I.S.; Dongwook Lim; Rahman, M.H.; Mazumder, M.R.R.; Ghosh, J.,
"Performance evaluation of DSDV and AODV routing protocols in Mobile ad hoc Networks,"
New Trends in Information Science and Service Science (NISS), 2010 4th International
Conference on , vol., no., pp.399,403, 11-13 May 2010

[24] Rahman, J.; Hasan, M.A.M.; Islam, M.K.B., "Comparative analysis the performance of AODV,
DSDV and DSR routing protocols in wireless sensor network,"Electrical & Computer
Engineering (ICECE), 2012 7th International Conference on , vol., no., pp.283,286, 20-22
Dec. 2012

[25] Johnson, D.; Maltz, D.; Broch, J.; DSR: The Dynamic Source Routing Protocol for Multi-Hop
Wireless Ad Hoc Networks, Mobile Computing, edited by Tomasz Emilienski and Hank
Korth, Kluwer Academic Publishers, 1996

[26] D. Johnson, D. Maltz and Y. Hu, The Dynamic Source Routing protocol for mobile ad hoc
networks for IP v4, IETF RFC 4728, February 2007; http://datatracker.ietf.org/doc/rfc4728/

[27] Karthikeyan, N.; Bharathi, B.; Karthik, S., "Performance analysis of the impact of broadcast
mechanisms in AODV, DSR and DSDV," Pattern Recognition, Informatics and Medical
Engineering (PRIME), 2013 International Conference on, vol., no., pp.144,151, 21-22 Feb.
2013

[28] Sharma, N.; Rana, S.; Sharma, R.M., "Provisioning of Quality of Service in MANETs
performance analysis & comparison (AODV and DSR)," Computer Engineering and
Technology (ICCET), 2010 2nd International Conference on , vol.7, no., pp.V7-243,V7-248,
16-18 April 2010

[29] Perkins, C.E.; Royer, E.M., "ad hoc on-demand distance vector routing," Mobile Computing
Systems and Applications, 1999. Proceedings. WMCSA '99. Second IEEE Workshop on, vol.,
no., pp.90,100, 25-26 Feb 1999

[30] C. Perkins., E Royer.; and S. Das, ad hoc On-Demand Distance Vector Routing. IETF RFC
3561, http://www.ietf.org/rfc/rfc3561.txt

[31] Kanthe, Ashok M.; Simunic, Dina; Prasad, Ramjee, "Comparison of AODV and DSR on-
demand routing protocols in mobile ad hoc networks," Emerging Technology Trends in
Electronics, Communication and Networking (ET2ECN), 2012 1st International Conference on
, vol., no., pp.1,5, 19-21 Dec. 2012

[32] Bouhorma, M.; Bentaouit, H.; Boudhir, A., "Performance comparison of ad hoc routing
protocols AODV and DSR,"Multimedia Computing and Systems, 2009. ICMCS '09.
International Conference on, vol., no., pp.511,514, 2-4 April 2009

51

http://www.ietf.org/rfc/rfc3561.txt
http://datatracker.ietf.org/doc/rfc4728/

[33] Tomar, G.S.; Sharma, T.; Bhattacharyya, D.; Tai-hoon Kim, "Performance Comparision of
AODV, DSR and DSDV under Various Network Conditions: A Survey," Ubiquitous
Computing and Multimedia Applications (UCMA), 2011 International Conference on , vol.,
no., pp.3,7, 13-15 April 2011

[34] Marina, M.K.; Das, S.R., "On-demand multipath distance vector routing in ad hoc networks,"
Network Protocols, 2001. Ninth International Conference on , vol., no., pp.14,23, 11-14 Nov.
2001

[35] Royer, E.M.; Melliar-Smith, P.M.; Moser, L.E., "An analysis of the optimum node density for
ad hoc mobile networks,"Communications, 2001. ICC 2001. IEEE International Conference
on , vol.3, no., pp.857,861 vol.3, 2001

[36] Rehmani, M.; Doria, S., and Senouci, M., A tutorial on the implementaiton of ad hoc On
Demand Distance Vector (AODV) Protocol in Network Simulator (NS-2), Internet.
http://arxiv.org/pdf/1007.4065.pdf [Jun 21, 2013]

[37] Singh, J.; Singh, P.; Rani, S., "Enhanced Local Repair AODV (ELRAODV)," Advances in
Computing, Control, & Telecommunication Technologies, 2009. ACT '09. International
Conference on , vol., no., pp.787,791, 28-29 Dec. 2009

[38] Naidu, P.P.; Chawla, M., "Enhanced ad hoc on demand Distance Vector Local Repair Trial for
MANET," Information and Communication Technologies (WICT), 2011 World Congress on ,
vol., no., pp.212,216, 11-14 Dec. 2011

[39] Lu Ding; Li Wan, "Improvement Suggestions to the AODV Routing Protocol," Wireless
Networks and Information Systems, 2009. WNIS '09. International Conference on , vol., no.,
pp.370,372, 28-29 Dec. 2009

[40] Lee, S., Belding-Royer, E., and Perkins, C., “Scalability study of the ad hoc on demand
distance vector routing protocol” International Journal of Network Management, vol.13,
no.,pp. 97-114. 2003

[41] Pan, M.; Sheng-Yan Chuang; Sheng-De Wang, "Local repair mechanisms for on-demand
routing in mobile ad hoc networks," Dependable Computing, 2005. Proceedings. 11th Pacific
Rim International Symposium on , vol., no., pp.8 pp.,, 12-14 Dec. 2005

52

http://arxiv.org/pdf/1007.4065.pdf

Appendix

Example of a TCL file: tcl file for 10 nodes

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(netif) Phy/WirelessPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) Queue/DropTail/PriQueue ;# interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 50 ;# max packet in ifq
set val(nn) 10 ;# number of mobilenodes
set val(rp) AODV ;# routing protocol
set val(x) 1000 ;
set val(y) 1000 ;
set val(simtime) 200.0 ; #sim time
set val(sc) scen10 ;
#set val(em) EnergyModel ;
#set val(ie) 200.0 ;

set ftp1start 1;
set ftp2start 10;
set ftpend180;

#
Initialize Global Variables
#
set ns_ [new Simulator]
set tracefd [open 10.tr w]
$ns_ trace-all $tracefd

set namtrace [open 10.nam w] ;# for nam tracing
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)
#$ns_ use-newtrace

set up topography object
set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

#
Create God
#

set god_ [create-god $val(nn)]

$val(mac) set bandwidth_ 1.0e6

$ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channelType $val(chan) \

53

 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace OFF \
 -movementTrace OFF
 #-energyModel $val(em) \
-initialEnergy $val(ie) \
-batteryModel RTBattery

for {set i 0} {$i < $val(nn) } {incr i} {
set node_($i) [$ns_ node]
$node_($i) random-motion 0 ;# disable random motion

}

source $val(sc)

Define node initial position in nam

for {set i 0} {$i < $val(nn)} {incr i} {

 $ns_ initial_node_pos $node_($i) 20
}

Agent/TCP set packetSize_ 512 ;

set agent1 [new Agent/TCP]
set app1 [new Application/Traffic/CBR]
set sink1 [new Agent/TCPSink]
$app1 set packet_size_ 1024;
$app1 set rate_ 512Kb ;

set agent2 [new Agent/TCP]
set app2 [new Application/Traffic/CBR]
set sink2 [new Agent/TCPSink]
$app2 set packet_size_ 1024;
$app2 set rate_ 512Kb ;

$app1 attach-agent $agent1

$ns_ attach-agent $node_(0) $agent1
$ns_ attach-agent $node_(6) $sink1
$ns_ connect $agent1 $sink1

$app2 attach-agent $agent2

$ns_ attach-agent $node_(7) $agent2
$ns_ attach-agent $node_(9) $sink2
$ns_ connect $agent2 $sink2

30 seconds of warmup time for routing
$ns_ at $ftp1start "$app1 start"
#$ns_ at $ftp2start "$app2 start"

54

#
Tell nodes when the simulation ends
#
for {set i 0} {$i < $val(nn) } {incr i} {
 $ns_ at $val(simtime) "$node_($i) reset";
}
$ns_ at $val(simtime) "stop"
$ns_ at $val(simtime).01 "puts \"NS EXITING...\" ; $ns_ halt"
proc stop {} {
 global ns_ tracefd
 $ns_ flush-trace
 close $tracefd
}

puts "Starting Simulation..."
$ns_ run

55

AWK file used to calculate end to end delay

BEGIN {

 seqno = -1;

 droppedPackets = 0;

 receivedPackets = 0;

 count = 0;

}

{

 if($4 == "AGT" && $1 == "s" && seqno < $6) {

 seqno = $6;

 }
else if(($4 == "AGT") && ($1 == "r")) {

 receivedPackets++;

 } else if ($1 == "D" && $7 == "tcp" && $8 > 512){

 droppedPackets++;

 }

 #end-to-end delay

 if($4 == "AGT" && $1 == "s") {

 start_time[$6] = $2;

 } else if(($7 == "tcp") && ($1 == "r")) {

 end_time[$6] = $2;

 } else if($1 == "D" && $7 == "tcp") {

 end_time[$6] = -1;

 }

}

END {

 for(i=0; i<=seqno; i++) {

 if(end_time[i] > 0) {

56

 delay[i] = end_time[i] - start_time[i];

 count++;

 }

 else

 {

 delay[i] = -1;

 }

 }

 for(i=0; i<=seqno; i++) {

 if(delay[i] > 0) {

 n_to_n_delay = n_to_n_delay + delay[i];

 }

 }

 n_to_n_delay = n_to_n_delay/count;

 print "\n";

 print "GeneratedPackets = " seqno+1;

 print "ReceivedPackets = " receivedPackets;

 print "Packet Delivery Ratio = " receivedPackets/(seqno+1)*100
#"%";

 print "Total Dropped Packets = " droppedPackets;

 print "Average End-to-End Delay = " n_to_n_delay * 1000 " ms";

 print "\n";

}

57

