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ABSTRACT 

Computational modeling of contact between rough surfaces has attracted a great deal of 

attention due to the developing technological needs of industry.  Most of the early models of rough 

surface contacts assumed a cylindrical or spherical/ellipsoidal shape for the asperities on the 

surfaces.  Due to high memory space and computational time requirements, researchers use 

simplified geometries to model the asperities or peaks on rough surfaces.  Recent works tried to use 

a sinusoidal shape for asperities to improve the previous models.  The sinusoidal geometry gives a 

better prediction of asperity interaction, especially for heavily loaded contacts.  The effect of 

adjacent asperities is considered in sinusoidal contacts by using a symmetric boundary condition.  

Also, most of the multiscale contact models for rough surfaces use the Fourier series or Weierstrass 

profile to transform a rough surface to combination of sine and cosine functions.  Therefore, it 

seems more reasonable to use a sinusoidal shape for asperities. 

In the current work, the transient effect of creep and stress relaxation in contact between 

sinusoidal surfaces is studied using FE simulations.  A three-dimensional sinusoidal asperity is 

created, and is modeled in contact with a rigid flat surface.  The material of the sinusoidal surface is 

modeled as elasto-plastic, bi-linear isotropic hardening solid.  The Garofalo formula is used in the 

current work to model the transient behavior of creep and stress relaxation.  Two load steps are 

used in commercial software ANSYS (version 13.0) to model the effect of creep and stress 

relaxation.  The first load step is static deformation or the stress build-up stage that is used to 

pressurize the asperity by the rigid flat surface.  The second load step is the transient process during 

which creep and stress relaxation occur.  To verify the model, the results for the purely elastic and 

elasto-plastic cases (without the creep and stress relaxation effects) are compared to the previous 

works in the literature. 

Transient results under both constant displacement (stress relaxation) and constant force 

(creep) boundary conditions are presented and discussed.  A parametric study is done to analyze the 

effect of the different material and geometrical properties and also the Garofalo constants on the 
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transient results.  In the end, empirical equations are developed for both contact area and contact 

pressure based on the FEM results.  The empirical equations are dependent on the surface 

separation, aspect ratio, and the Garofalo formula constants.  In the contact area and contact 

pressure results for stress relaxation, a critical interference or surface separation was found that the 

contact area and contact pressure showed different behaviors above and below this value.  The 

aspect ratio rate, ( )λδτδ /∆ , is introduced as a parameter that is independent from the height of the 

asperity during the stress relaxation process.  This rate can be used in a multiscale contact model for 

rough surfaces to predict the real contact area as a function of time.   
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cr  creep dependent parameter 
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JGH  from model by Johnson et al. [2] 
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CHAPTER 1 

 INTRODUCTION 

The topic of contact between surfaces has been popular to researchers for many years.  

There exists many works on modeling the contact of surfaces starting around 1888 by Hertz [3] 

(originally developed to model optical contacts).  All engineering surfaces are rough to some degree, 

therefore it is important to develop a model for the contact between rough surfaces.  The main goal 

in modeling the contact between rough surfaces is to find a simple closed form solution for the real 

contact area.  Most tribological effects such as friction, wear, adhesion, and electrical and thermal 

contact resistance are dependent on the real contact area between two contacting surfaces.  

Creep and stress relaxation are time dependent phenomenon which cause changes in the 

stress and strain in a material over time.  For contacting surfaces, creep and stress relaxation cause 

changes in the contact area and contact pressure between surfaces as time passes.  Stress relaxation 

refers to the stress relief of a material under constant strain condition (Fig. 1.1a), and creep describes 

how strain in a material changes under constant stress condition (Fig. 1.1b).  Any material can 

experience creep if certain conditions are met.  It could be metals at high temperatures, polymers at 

room temperatures, and any material under the effect of nuclear radiation.  Although there is no 

recovered creep strain or reversible behavior under normal operating conditions, elastic 

deformations are still recovered.  The goal of this thesis is to model the effect of creep and stress 

relaxation in contact between sinusoidal surfaces.     
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The change in contact area due to creep is considered as the reason why static friction 

changes over time, and why the dynamic friction is dependent on velocity [4-6].  The previous works 

on the creep effect in contact between surfaces used a cylindrical [4, 7-10] or spherical [1, 11, 12] 

geometry for the asperities.  In this work, a sinusoidal geometry is developed and analyzed which is 

believed to be a more realistic geometry.  The interaction between adjacent asperities, which is 

ignored in most previous works, is considered by assuming a sinusoidal asperity.  Two kinds of 

boundary conditions are used in the current work to model the time dependent deformations: (i) 

constant displacement boundary condition (stress relaxation) and (ii) constant force boundary 

condition (creep).  The hyperbolic sine function also known as the Garofalo formula is used to 

model the effect of the creep and stress relaxation [1].  The results for the contact area and contact 

pressure as they change over time are presented and discussed.  Empirical equations are developed 

by fitting to the FEM results.  These empirical equations can be put in a multiscale model to obtain 

the real contact area for a specific surface in contact as a function of time.  This real contact area can 

Fig. 1.1 Change in the stress and strain in a material due to (a) stress relaxation, and (b) creep  

 

(a) (b) 
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be used to obtain a prediction for the time dependent static friction or the velocity dependent 

dynamic friction between surfaces. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction 

Most of the previous models on the contact between rough surfaces assume a spherical 

shape [13-20] or ellipsoidal shape [21-23] for the geometry of the asperities on the surfaces.  Archard  

[14] used a stacked model of spherical asperities and showed that although the relation between the 

contact area and load for a single asperity is nonlinear, by using a multi-scale model this relation 

becomes linear.  

More recent models consider a sinusoidal shape for the asperities because it seems to model 

the geometry of real surfaces better, especially for heavily loaded contacts [24-28].  It is shown for 

two-dimensional sinusoidal surfaces [26] and three-dimensional sinusoidal surfaces [27] that the 

average contact pressure increases past the conventional hardness, H , limit of yS3 ⋅  obtained by 

assuming spherical geometries [29].  Several works have shown experimentally measured contact 

pressures much higher than three times the yield strength ( yS3 ⋅ ) [30, 31].  Furthermore, the 

interaction between adjacent asperities is addressed by using a sinusoidal geometry with accurate 

boundary conditions which is overlooked in works based on spherical asperities.  Also, most of the 

models consider the multi-scale nature of surface roughness by using a Fourier series or Weierstrass 

profile [25, 32-34], and since these series use superimposed harmonic waves, it is logical to use a 

sinusoidal shape instead of a spherical shape in modeling the asperities. 

The first models on the contact between rough surfaces using sinusoidal shaped asperities 

were mostly on the purely elastic contact.  The elastic contact of two-dimensional sinusoidal surfaces 

was first solved by Westergaard [24].  Johnson et al. (JGH) [2] presented two asymptotic solutions 
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for the elastic contact of three-dimensional sinusoidal surfaces, but no analytical solution is available 

for the entire load range.  Jackson and Streator [34] developed an empirical equation based on the 

JGH data [2] for the whole range of loading from early contact to complete contact.   

When two surfaces come into contact, it is primarily the peaks or asperities that carry the 

load and make the contact.  Therefore, the small contact area caused by the asperities carries very 

high pressures, and plastic deformations are practically inevitable in most cases of contact between 

metallic rough surfaces.  Gao et al. [26] considered plastic deformations in their sinusoidal contact 

model.  They modeled a two-dimensional elastic-perfectly plastic sinusoidal contact using the finite 

element method (FEM).  Krithivasan and Jackson [27] and Jackson et al. [28] considered both elastic 

and elasto-plastic contacts in three- dimensions in their work, and presented empirical equations for 

the contact area as a function of contact pressure for the whole range of contact.  Their equations 

are used to verify the current model in the next sections.  

One of the important stages in contact between surfaces is when “complete contact” 

happens.  The definition of complete contact between rough surfaces depends on the specific case 

and geometry of the surfaces in contact.  In contact between sinusoidal surfaces, it is defined as the 

state in which sinusoidal surfaces have completely flattened out and there is no gap in between the 

surfaces.  The average pressure (including both contacting and non-contacting regions) that causes 

complete contact is an important parameter used to interpret the results, and is denoted by ∗p . 

Recent works extended the asperity contact models by including both normal and tangential 

loading [35], and loading and unloading [36-38].  However, the transient behavior of asperities under 

loading such as creep and stress relaxation has been neglected in these works.  There have been a 

few works on the computational modeling of the creep [11, 12] and stress relaxation [1] effect in the 

contact between surfaces but their concentration has been mostly restricted to a single spherical 

asperity contact.  Most of the earlier models on the effect of the creep in contact between asperities 

have assumed a rigid spherical punch indenting an elasto-plastic flat surface [39-43]. 
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Different effects in contact between rough surfaces such as the dwell-time dependent rise in 

static friction [5, 44], the velocity dependent dynamic friction [6-9] or friction lag and hysteresis [45] 

can be explained by the creep theory.   Many experimental studies concerning the increase of friction 

with dwell time are published i.e. [46-50].  Malamut et al. [44] studied the effect of dwell time on the 

static friction coefficient due to creep for spherical contacts.   

The creep behavior depends on the temperature and stress level to which the material is 

exposed, and depends noticeably on the time duration of application of these conditions.  The 

change in the real contact area between two solids due to time of stationary contact is the main 

motivation for modeling the creep and stress relaxation effects.   

The current analysis uses the same geometry used in Johnson et al. [2] and Krithivasan and 

Jackson [27] in order to compare the results in this paper to their works.  The sinusoidal geometry is 

described by: 























−=

λ
πy

λ
πxΔh 2cos2cos1

 
                                                                                                     (2.1)  

where h  is the height of the sinusoidal surface, ∆  is the amplitude of the sinusoidal surface, and λ  
is the wavelength of the sinusoidal surface. The contour plot of the sinusoidal surface is shown in 

Fig. 2.1. 
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Quarter Used in FE Model 

Fig. 2.1 Contour plot of the three-dimensional sinusoidal surface geometry  
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2.2 Elastic Sinusoidal Contact of Single Asperity 

As mentioned before, Johnson et al. [2] developed asymptotic solutions for contact area of a 

perfectly elastic contact of three-dimensional sinusoidal shaped surfaces.  In their work, p  is defined 

as the average pressure on the surface (considering both contacting and non-contacting regions), and 
*p  is defined as the average pressure that when applied to the surface causes complete contact. *p is 

given as: 

ΔfEπ2p* ′=                                                                                                                                 (2.2) 

where ∆  is the amplitude of the sinusoidal surface, f  is the frequency or reciprocal of the asperity 

wavelength, λ , and E ′  is the equivalent elastic modulus which is given by: 

2

2
2

1

2
1 111

EEE
νν −

+
−

=
′

 
                                                                                                                       (2.3)    

11,νE  and 22 ,νE  are the elastic modulus and Poisson’s ratio of the contacting surfaces. 

The flat surface is considered to be rigid in this work: ( )∞→2E  , and Eq. (2.3) reduces to: 

2
1

1 ν−
=′ E

E                                                                                                                                    (2.4) 

The Johnson et al. [2] solutions are applicable when ∗<< pp  i.e. at the early stages of contact, and 

when p  approaches *p   ∗→ pp  i.e. near the complete contact. The equations are given as shown: 

∗<< pp  :           
3/2

*21 8
3)(












=

p
p

f
AJGH π

π                                                                                      (2.5)   
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*pp →   :           






















−−= *22 1

2
311)(

p
p

f
AJGH π

  
                                                                            (2.6) 

Jackson and Streator [34] developed an empirical equation based on the experimental and numerical 

data provided by Johnson et al. [2], linking Eqs. (2.5) and (2.6): 

for 8.0* <
p
p

 
:          

04.1

*2

51.1

*1 )(1)( 









+


























−=

p
pA

p
pAA JGHJGH                                                       (2.7) 

for 8.0* ≥
p
p  :        2)( JGHAA =                                                                                                       (2.8) 

 

2.3 Elasto-Plastic Sinusoidal Contact of Single Asperity 

Three-dimensional elasto-plastic contact between sinusoidal surfaces has been investigated 

by Krithivasan and Jackson [27] and Jackson et al. [28].  They showed that for the elasto-plastic 

contact, complete contact occurs much earlier (at the lower pressures) than elastic contact.  Jackson 

et al. [28] presented an empirical equation for calculating the average pressure, *
epp  , that causes 

complete contact for the elasto-plastic case. The equation is given below: 

( )

5/3

*

*

7/4
11









+∆∆

=
c

ep

p

p
                                                                                                                  (2.9) 

where c∆ is the analytically derived critical interference, and is given by:  

f
e

E
S y

c

ν

π

3/2

3
2

′
=∆                                                                                                                        (2.10) 
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Jackson and Krithivasan’s [27] empirical equation for the contact area versus contact 

pressure for the elasto-plastic case is given by: 

( ) ( )
04.1

*2

51.1

*
1 













+




























−=

ep
JGH

ep
p p

pA
p
pAA                                                                                      (2.11) 

where pA  is given by 

d1
d

2

y

d1
1

c
p λ

4CS
p3.

2
A

2A
++



















=                                                                                                      (2.12) 

In the above equation, cA  is the critical contact area for the sinusoidal contact based on spherical 

contacts [19], and is given by: 

2

28
2












′
=

EΔf

CS
π

A y
c                                                                                                                        (2.13)           

where the constant C  is related to the Poisson’s ratio by:  

( )ν..C 7360exp2951=                                                                                                                      (2.14) 

The value of the constant d  in Eq. (2.12) is given by: 

2

1

d

yS
Edd 









 ∆′
=

λ
                                                                                                                           (2.15)   

where, 8.31 =d  and 11.02 =d  are constants which are obtained empirically by curve-fitting to FEM 

results.  
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In the current work, Eq. (2.11) is used to confirm the first load step or stress build-up stage 

of the finite element model (before creep and stress relaxation initiate at 0=t ). 

 

2.4 Average Surface Separation in Sinusoidal Contacts  

In many applications that require tight tolerances such as sealing and lubricated bearings, it is 

important to be able to predict the surface separation between contacting surfaces.  The average 

separation also determines the volume of the space trapped between two surfaces which is a very 

important parameter in lubricated surfaces.  Little work has been done to characterize the surface 

separation or gap between sinusoidal surfaces as a function of load.  In Fig. 2.2, surface separation 

between a sinusoidal asperity and a rigid flat surface in two-dimensions is shown.  The average 

surface separation before the contact is equal to the amplitude of the sinusoidal asperity, ∆=g , (Fig. 

2.2a), and during the contact the average surface separation is less than the amplitude, ∆<g , (Fig. 

2.2.b).  Johnson et al. [2] developed two asymptotic solutions for the average surface separation, g , 

as a function of contact pressure, p , for the elastic case.  These solutions are for early contact 
*pp << and nearly complete contact *pp →  situations.  These two asymptotic solutions are given in 

Eqs. (2.16) and (2.17) (note that the normalized variables ∗
=

p
pPe  and 

∆
=

gG  are used in the 

equations). 

1Pe << :           ( ) ( )[ ] ( )e
2/3

e
2

1 P124lnP3π
2
11G ⋅++−=                                                                     (2.16) 

 1Pe →  :         [ ]5/2
e

3/2

22 P1
2
3

15π
16G −






=                                                                                      (2.17) 
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Their asymptotic solutions are based on the elastic Hertz contact theory for early contact 

and the crack theory for near complete contact conditions.  In this work, empirical equations are 

provided based on the FE simulations that can approximately predict the average surface separation 

for both elastic and elastic-plastic sinusoidal contacts over a wide range of material properties and 

over the whole range of contact.  

Fig. 2.2 Rigid flat and the sinusoidal asperity (a) before contact and (b) during 

contact where surface separation, amplitude and the wavelength of the sinusoidal 

asperity are shown schematically 
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2.5 Creep and Stress Relaxation Effects in Single Asperity Contacts 

For analyzing the creep and stress relaxation behavior of materials, usually two different 

approaches have been used in the literature.  The first one is a mathematical approach based on a 

combination of springs and dashpots [51] to model the transient effect and the second approach is 

based on the experimental results to relate different creep parameters using empirical formulas [1, 

11, 12].  In this work, the second approach is considered.  Some of the empirical equations that are 

used in creep and stress relaxation modeling are listed as follows: 

Power law [52, 53]                                      n
cr B σε ′=&                                                                 (2.18)        

Exponential Law [52, 53]                           ( )βσexpBεcr ′′=&                                                           (2.19)                         

Garofalo Law [53, 54]                               σ)(CsinhCε 2
n

1cr =&                                                      (2.20)                      

Strain Hardening [52, 53]                         T
C

C
cr

C
cr eC

4
32

1
−

= εσε&                                                     (2.21)             

Modified Time Hardening [52, 53]            
1)(C
etσC

ε
3

T
C

CC
1

cr

4
32

+
=

−

                                                   (2.22) 

In the above equations, crε  is the creep component of the strain, σ  is the nominal stress in 

the material, T  is the temperature, and the constants iC  )41( −=i , B′ , B ′′ , and β  are creep 

parameters which are obtained by curve-fitting to the results of an accurate creep experiment.  It is 

suggested in [54] that the power creep law is only applicable to low stresses, and for high stresses the 

exponential creep law gives better predictions.  In addition, it is sometimes hard to distinguish 

experimentally between power and exponential creep laws.  Therefore, the Garofalo creep law [54] 

was introduced which reduces to the power law for low stresses and to the exponential law for high 

stresses.  

In modeling the transient deformation in contact between single asperities, two boundary 

conditions are usually used: Constant interference (i.e. relaxation) and constant force (i.e. creep).  
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Some works [11, 12] employed a constant normal force, and others employed constant interference 

[1] boundary conditions.  In the rest of this section as an example of each boundary condition, a 

summary of the two works by Goedecke and Mock [1] and Brot et al. [11] is given. 

The stress relaxation behavior of an elastic-perfectly plastic hemispherical asperity in fully 

plastic contact with a rigid flat surface by Goedecke and Mock [1], is discussed here.  It should be 

mentioned that the “creep” and “stress relaxation” terms are used in this work interchangeably.  

Fully plastic contact means that the material has reached the yield criteria everywhere in the contact 

area. 

We can write the following equation for the total strain tensor, totε  , which can be separated 

into the creep, plastic and elastic strain tensors: 

elplcrtot εεεε &&&& ++=                                                                                                (2.23)                

In the creep (stress relaxation) process, the elastic strain, elε& , decreases in favor of the creep 

strain, thus reducing the total stress to elC εσ :=  with C  being the elasticity tensor1.  It is sufficient 

to formulate the uniaxial creep law, ( )σε cr& , where crε  and σ  denote the equivalent strain and stress 

(von Mises stress), respectively.  Using the Garofalo creep law with this model, as presented by 

Goedecke and Mock [1], two distinct phases of creep (stress relaxation) can be distinguished.  The 

asperity creeps with an accelerated creep rate in the first phase, but in the second phase the asperity 

creeps with a much slower rate and no significant contact area change can be seen.  It should be 

noted that the inclusion of a time- or temperature-dependent material creep law is straightforward as 

long as the hyperbolic sine dependence on stress is retained.  In this case, the constant 1C  becomes a 

time- and temperature-dependent function, ( )TtC ,1 , and can be included trivially in the equations 

describing the asperity behavior. 

                                                             
1 In this notation, the colon (:) marks a reduction of the full tensor grade by 2; i.e., a multiplication of a tensor of the 
fourth grade with a tensor of the second grade yields a tensor of second grade. 
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As mentioned before, in this model (Goedecke and Mock [1]) the contact between a 

hemispherical asperity and a rigid flat is under a fixed interference boundary condition, δ , (see Fig. 

2.3). It is assumed that 1=n  in the Garofalo formula (Eq. 2.20) which corresponds to Persson’s 

creep theory [10]:   

)sinh( 21 σε CCcr =&                                                                                                                         (2.24) 

 

 

The creep constant 1C  in the Garofalo formula shows the characteristic time scale in the 

creep process, and the results are presented with respect to this scaled time: 

H
EC

ttt 1
1/ ==τ                                                                                                                            (2.25)     

 

 

Fig. 2.3 A hemispherical asperity with 
radius, R , before and after loading, 
showing the contact radius, a , the 
displacement,  δ , and the load, F . 
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             Table 2.1 Overview of the parameter ranges used for FE simulation [1] 

Run No.           Varied parameter                               Range 
1                              Reference                                mmR 1= , GPaE 200= , 33.0=υ ,  

                                                                                MPaY 400=σ , )10( 14
1

−−= sC ,                                                 

                                                                                       YC σ/102 = , cδδ 100=  

2                              Radius R                                                   mm101.0 −  

3                          Interference δ                                               cc δδ 60025 −  

4                        Poisson’s Ratio υ                                              38.028.0 −  

5                         Yield stress Yσ                                            MPa2000200 −  

6                       Young’s Modulus E                                          GPa30070 −  

7                    MCL parameters 1C , 2C                          153
1 1010 −−− −= sC , YC σ/1552 −=  

 

   



17 
 

(a) 

  (b) 
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Fig. 2.4 Relaxation of force (solid line) and evolution of contact area (dashed line) with respect to 

normalized creep time in a (a) logarithmic and (b) conventional scale. 
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In Fig. 2.4 the contact force, F , and the contact area, A , dependence on τ  for reference 

parameters (set number 1 in Table 2.1) are shown.  It can be seen that the contact area after an initial 

rise of about 7%, remains nearly constant.  The contact force, on the other hand, shows a steep 

initial reduction and a slowing creep rate as time increases. 

The finite element simulations include two steps: (i) Displacing the rigid flat to reach a 

predefined interference, δ , as shown in Fig. 2.3, and then, (ii) Stress relaxation occurs at this fixed 

interference.  The Jackson and Green [19] formulas for elasto-plastic hemispherical contact can be 

used to obtain the state of the sphere before creep initiates (Step (i)).  Using the Garofalo creep Eq. 

(2.24) and considering the fact that the total strain is constant at 0ε  because of the fixed interference 

boundary condition, the following equation can be obtained for the contact area as it changes in 

time due to creep. 

( )



















+−−−−≈ ξtCCarctanh

EC
2εν)2(11AA(t) 21

2
00                                                                    (2.26) 

where 0A  is the initial contact area before creep starts, and ξ  is an integration constant.  So a time 

evolution law for the change in contact area A∆  is 

{ }[ ])pτ(t)pexp(arctanh)p,c(p21
A

δ),ΔA(C
A

δ),CΔA(t,
2121

0

2

0

2 +−−=                                                      (2.27) 

where  

( )[ ] 1
221 )exp(parctanh2)p,c(p −=                                                                         (2.28) 

to set 00)ΔA(t == . 1p  and 2p  are the fit parameters and their values for the example material 

properties listed in Table 2.1 are given as: 

5271 ±=p    and   3
2 10)4.01( −×±−=p                                                                                           (2.29) 
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The pressure rate or relaxation rate for the second step (ii) is obtained from the following equation 

∑
=

−=
2

1

)sinh()(
i

ii pApp α&                                                                                    (2.30) 

The iA  and iα  are dependent on input parameters such as the fixed interference, δ , the asperity 

radius, R , etc., and are obtained by curve fitting to accurate numerical or experimental results. 

Extending Eq. (2.30): 

( ) ( )pApAp 2211 sinhsinh αα +=− &                                                           (2.31) 

where the constants iA  and iα  are obtained using the following empirical equations: 
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010.0001.0

019.0035.0
076.0933.2

21
2

1
YCEC

A
A

σ                                           (2.32) 





















±
±
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±
±
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03.085.0
02.057.0

23.043.3
14.043.01

2
2

1
YC

H
σ

α
α                                                                             (2.33) 

 

The second case that is considered here is creep under the constant force boundary 

condition as described by Brot et al. [11].  In reference [11], a polymeric bio-material is used to 

model the single hemispherical asperity, and they also used a simplified form of the modified time 

hardening law (Eq. 2.22) for their model because it predicts the experimental results for polymers 

very well. Since bio-materials are used over a narrow range of temperatures, the temperature 

dependency can be ignored. Therefore, by substituting the simplified from of Eq. (2.22) into a sum 

of the different components of the strains (Eq. 2.23) gives:  

32
1

CC
crelastic tC

E
σσεεε +=+=                                                                                                      (2.34) 
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The above equation is called the simplified modified time hardening law (MTH) where E  is the 

linear elastic modulus of the polymer and the parameter 1C  is defined as: 

)1( 3

1
1 +

=
C

CC                                                                                                                                 (2.35) 

Brot et al. [11] found the following equations for the creep displacement and creep contact 

area using Eq. (2.34), and by performing a parametric analysis to study the effect of the various 

variables obtained: 

( ) ( )
)03.071.0( 3+









=

C

r
rcrcr t

ttt ωω                                                                                                         (2.36) 

( ) ( )
)03.071.0(

2

3 +









=

C

r
rcrcr t

ttRCtA ωπ                                                                                                 (2.37) 

In the above equations ( )tcrω  and ( )tAcr  are the time dependent creep displacement and creep 

contact area, respectively.  It should be noted that ( )rcr tω  is the creep displacement at a convenient 

reference time rt , R  is the radius of the hemispherical asperity, 2C  and 3C  are constants that are 

calculated by curve fitting to the experimental results.  As shown by the equations, Brot et al. [11] 

found a linear relation between the area evolution ( )tAcr  and interference ( )tcrω .  

In this work, the time dependent deformation of a sinusoidal asperity under the constant 

interference (stress relaxation) and the constant force (creep) boundary conditions are modeled 

using FE simulations. In the next section, it is shown how this model is implemented in ANSYS.  
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CHAPTER 3 

METHODOLOGY 

 

3.1 Introduction 

The finite element method that is used to model the effect of stress relaxation and creep in 

single asperity contact is discussed in this chapter.  Firstly, the model for the static deformation or 

the stress build-up stage is developed and explained in detail.  The results in this stage are compared 

to previous works in the literature to verify the model.  Next, the model is extended to include the 

effect of the stress relaxation and creep.  The rigid flat surface is displaced or loaded to a predefined 

value, and transient results for both constant force and constant displacement boundary conditions 

are presented and discussed. 

 

3.2 Modeling and Simulation of the Static Deformation Step (Load Step 1) 

The three dimensional sinusoidal geometry with a wavelength of λ , and amplitude of ∆  is 

shown in Fig. 3.1.  Due to the symmetry that exists in the sinusoidal geometry of the asperity, only 

one quarter of this geometry is used in the finite element method.  
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The three-dimensional sinusoidal surface is generated in the commercial software 
TMANSYS 13.0 package using APDL coding.  APDL is the acronym of “ANSYS Parametric Design 

Language” which is an alternative to the GUI (Graphical User Interface) to perform modeling in 

ANSYS.  Since generating a sinusoidal asperity via GUI in ANSYS is very tedious, we used APDL 

instead.   

The steps that are used to create the sinusoidal asperity in ANSYS are shown in Fig. 3.2.  

First, the keypoints are developed using Eq. (2.1) (Figure 3.2a).  Then using these keypoints, the 

Fig. 3.1 Three-dimensional plot of the sinusoidal surface  

Δ /λ =B : Aspect ratio Employing the Symmetry 
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lines are formed between them (Figure 3.2b).  After that, using every four lines, small areas are 

created.  Combining all of these small areas together, the sinusoidal surface is created (Figure 3.2c).  

Finally, this sinusoidal surface cuts a rectangular prism block to create the sinusoidal asperity (Figure 

3.2d).   

Solid186, which is a 20-node brick element, is used for the meshing of entire volume of the 

sinusoidal asperity.  Hexahedral elements are used and the “sweep” option is implemented to mesh 

the sinusoidal asperity.  By performing a mesh convergence for different numbers of elements, it 

was observed that a total number of 52,802 elements gives reasonable results.  The rigidity of the flat 

surface is acquired by using a single element to mesh this surface (this method is used in current 

work), or we can use an elastic modulus value for the rigid flat surface which is several orders of 

magnitude higher than the one used for the sinusoidal asperity.  Next, the sinusoidal asperity is put 

into contact with a rigid flat surface.  Conta174 and Targe170 elements are used to form the contact 

pair to model interaction between the surfaces.  The “augmented Lagrange method” is used as the 

algorithm of contact model.  The normal penalty stiffness is set to 100, and the penetration 

tolerance is set to 0.01 in the contact model. 
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The boundary conditions which are used for the sinusoidal geometry and the rigid flat 

surface are listed below:  

1) Zero displacement is applied in the normal direction of all of the side surfaces of the 

sinusoidal geometry due to the symmetric boundary condition.  The bottom surface is 

constrained in all directions.   

Fig. 3.2 The steps to create the sinusoidal asperity: (a) creating the keypoints, 

(b) creating the lines, (c) creating the sinusoidal surface, and (d) adding volume 

to the sinusoidal surface 

(a) (b) 

(c) (d) 
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2) The rigid flat can only displace in the z direction i.e. the displacement in the x and y 

directions and the rotation about all of the axes are held to zero.  Contact between the 

sinusoidal asperity and the rigid flat is accomplished by applying a displacement on the rigid 

flat surface or by inserting a constant force in the z direction on the flat surface depending 

on if transient behavior under a constant displacement boundary condition (stress relaxation) 

or under a constant force boundary condition (creep) is considered. 

The meshed sinusoidal geometry and the rigid flat along with the boundary conditions used 

for the side and bottom surfaces are shown in Fig. 3.3. 

  

 

 

 

 

Rigid surface only displaces 
in the z direction 

Side surfaces are constrained 
in the normal directions 

(symmetric B.C.) 

Bottom surface is 
constrained in all directions 

Fig. 3.3 The element plot of the sinusoidal asperity and the rigid flat including 

the boundary conditions that are used for the geometry 



26 
 

In the first load step, the sinusoidal geometry should be pressurized. There are two ways to 

do this which depends on the boundary condition under which the time dependent deformations are 

considered.  If the transient case under a constant force boundary condition (creep) is considered 

then a predefined force should be applied to the rigid surface, and if constant displacement 

boundary condition (stress relaxation) is considered then the rigid surface should be displaced 

toward the sinusoidal surface to a predefined value.  This occurs before any time steps are taken. 

By determining the contact status and contact pressure of each node during post-processing, 

the total number of nodes in contact is obtained from the nodal solution for incremented values of 

displacement.  The ratio of the number of nodes in contact to the total number of nodes over the 

surface gives the real area of contact normalized by the apparent or nominal area of contact.  The 

average surface separation is also obtained by averaging over the contact gap of non-contacting 

nodes.  It should be noted that the effect of the boundary nodes is considered in averaging. 

The results in the first load step are equivalent to the static deformation investigated by 

Johnson et al. [2] for the elastic case and Krithivasan and Jackson [27] for the elasto-plastic case.  

The FEM results of the current model for the static deformation stage are compared with these 

works for validation. 

 

 

3.3 Verification of the Model Accuracy (Elastic Case) 

Verification of the model accuracy is achieved by comparing the FEM results for the elastic 

case with the Johnson et al. data [2] and the Jackson and Streator fit [34] (Fig. 3.4).  In order to 

compare our results for the elastic case with the work by Jackson and Streator [34], the same 

material and geometrical properties are chosen for the sinusoidal asperity. For the elastic case, 

GPaE 200=  and 3.0=υ (these values are for a steel type material) are used in the FE model. 



27 
 

 

 

 

As it is shown in Fig. 3.4, the FEM data differs from the empirical Eqs. (2.7 & 2.8) by an 

average error of 5%, but appears to compare better with the data provided by Johnson et al [2]. 
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Fig. 3.4 Comparison of the elastic FEM contact area results with JGH data 

and Jackson-Streator empirical equation 
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3.4 Verification of the Model Accuracy (Elasto-plastic Case) 

The elasto-plastic results are also compared to the empirical equation developed by 

Krithivasan and Jackson (KJ) [27].   The material of the sinusoidal surface for the elasto-plastic case 

is assumed to be bi-linear isotropic hardening solid with an elastic modulus, E , of GPa200 , 

Poisson’s ratio, υ , of 30. , yield strength, yS , of GPa1  and a tangent modulus, TE , of 2% of the 

elastic modulus, E .  This low value of TE  has been shown to have a negligible effect on the results 

(the results are applicable to the cases of elastic-perfectly plastic materials).  The hardening was used 

to help enhance convergence.  The contact area results versus contact pressure in comparison with 

the Eq. (2.11) are shown in Fig. 3.5.  In Fig. 3.5, the FEM data differs from the empirical Eq. (2.11) 

by an average error of 4%. 
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Fig. 3.5 Comparison of the elasto-plastic FEM contact area results with empirical 

equation provided by Krithivasan and Jackson 
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Also, the FEM surface separation results for both the elastic and elasto-plastic cases are 

obtained, and the elastic results are compared to the JGH data [2].  Empirical equations for both the 

elastic case and elasto-plastic case are also developed. 

 

3.5 Surface Separation Results for the Elastic Case 

Finite element results for the normalized average surface separation, G , for the elastic case 

are shown in Fig. 3.6.  The numerical results developed by JGH [2] along with their asymptotic 

solutions are also shown.  The following empirical equation is developed for the elastic case which is 

also shown in Fig. 3.6. 

( )5/2
eP1G −=                                                                                                                                (3.1) 

 

eP  

 

Fig. 3.6 Comparison of the FEM elastic results for average surface separation 

(shown by circles) with the JGH data (shown by crosses) and the new fit given by 

Eq. (3.1) (shown by solid line) 
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In Fig. 3.6, the FEM data differs from the empirical Eq. (3.1) by an average error of 3.4%.  This 

shows that the elastic FEM results agree well with the JGH data [2].  In the next section, the model 

is extended to consider the plastic deformation, as well. 

 

3.6 Surface Separation Results for the Elasto-plastic Case 

Using the same material properties as in section 3.4, the average surface separation results 

for different values of aspect ratio, λ/∆ , and yield strength, yS , values are shown in Figs. 3.7 and 

3.8. 

 

 

 

MPap,  

 

Fig. 3.7 The FEM elasto-plastic results for average surface separation for various 

yield strengths 
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It should be noted that the results in Figs. 3.7 and 3.8 are not normalized so that the differences 

between the different cases can be more easily discerned.  Similar to Eq. (3.1) for the elastic case, an 

empirical fit is now introduced for the elasto-plastic case and follows the same general form, except 

that the 
*

epp
p  is to the power of a varying quantity which also depends on *

epp
p  , 

'E
S y , and B .  Here 

additional normalized variables are also introduced as *
ep

ep p
pP = , 

'E
S y

y =ε , and 
cB

BB =* .  The 

empirical Eq. is:  

( )( )5/2APA
ep

2ep1P1G +−=                                                                                                                     (3.2) 

MPap,  

 

Fig. 3.8 The FEM elasto-plastic results for average surface separation for various 

aspect ratios 
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where 1A  and 2A  are given by 

( )*
1 B0.08lnA −=                                                                                                                            (3.3) 

( ) ( )
2
1- 0.99+1-B

15
1A 1B0.410.44*

2
* −=

 
                                                                            (3.4) 

 

Eqs. (3.2-3.4) differ from the FEM data by an average 3.8% (Fig. 3.9) in the range of 
34 101.91069.5 −− ⋅≤≤⋅ yε  and 23 10510 −− ⋅≤≤ B .  This range is comparable to the values typically 

encountered on the asperities of metallic rough surfaces, but was limited by the finite element 

methodology.  It is difficult to obtain results outside of this range due to problems with obtaining 

solution convergence and having an adequate mesh density.  It should be mentioned that as *B  

approaches 1, Eq. (3.2) becomes identical to Eq. (3.1) for the perfectly elastic case. 
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As shown, the FE model results agree with both the previous elastic and elasto-plastic empirical 

models [27, 28, 34] for the static case.  The next step is to install the transient effects (stress 

relaxation and creep) into the FE model.   

 

 

 

epP  

Fig. 3.9 The comparison of FEM elasto-plastic results for average surface 

separation (shown by small circles) with the new fit given by Eq. (3.2) (shown by 

solid line). 
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3.7 Modeling and Simulation of the Stress Relaxation and Creep Effects (Load Step 

2) 

When the first load step or “static deformation” stage is completed, the second load step 

begins and the effect of stress relaxation and creep are studied.  In ANSYS, the time is set to zero at 

the beginning of the second load step which is now transient, and the creep effect is activated. 

There are several built-in empirical equations in ANSYS that can be employed to investigate 

the stress relaxation and the creep behavior of materials.  In this work, the Garofalo equation 

(hyperbolic sine power creep law) is used.  The built-in Garofalo equation in ANSYS is given below 

which has a few extra terms not given in Eq. (2.20): 

[ ] /TCC
21cr

43 eσ)Csinh(Cε
~~~~ −=&                                                                                                            (3.5)    

In this equation, 1
~C , 2

~C , 3
~C , and 4

~C  are all constants.  Here, a constant temperature is assumed, and 

TCeCC /~

11
4

~ −=  which results in Eq. (3.5) reducing to Eq. (2.20).  In the creep theory by Persson [10], 

the exponential relation for creep is presented as the high-stress limit case of his theory and a linear 

formula is presented as the low stress limit.  Following Persson’s idea, it is assumed 1Cn 3 ==
~  in 

Eqs. (2.20) and (3.5) which can be seen as a good quasi-static approximation to Persson’s creep law.  

This assumption is a minor limitation for high stress creep because a change in the creep parameter 

22
~~ CnC =′  has the same effect as a change in the exponent n  or 3

~C .  So, the final form of 

σ)sinh(CCε 21cr =&  is used in the stress relaxation and creep analysis where the strain rate depends on 

the stress level and the two constants 1C  and 2C .  The Garofalo constant 2C  determines how 

sensitive the creep or relaxation rate is to the absolute stress value, i.e., how much faster the material 

creeps or relaxes due to higher local stress.  The constant 1C  defines the characteristic time scale 

1/1 C∝τ  and is used to normalize the time when analyzing the results.  Although neglected in this 

work, in reality, 1C  usually varies exponentially with the temperature, T , i.e. ( )kTQCC cr /exp11 −′= , 
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where crQ  is the activation energy for creep.  All results are presented using this non-dimensional 

scaled time. 

*
1

epp
ECt=τ                                                                                                                                        (3.6) 

In Goedecke and Mock’s work [1], hardness, H , has been used in the normalized time expression 

(Eq. 2.25)  instead of *
epp .  In this work, *

epp  is a more logical choice than hardness, H , since 

hardness is essentially meaningless in sinusoidal contacts [27, 28, 55]. 

As mentioned before, two boundary conditions are considered for modeling the time 

dependent deformations.  A typical simulation for stress relaxation or creep takes approximately 1 

day on a 3.4 GHz Intel® Core™ i7-200 assuming 500st =  for the second load step. 
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CHAPTER 4 

RESULTS 

 

4.1 Introduction 

In this section the contact area and contact pressure results of the stress relaxation and creep 

model built in ANSYS are presented and discussed.  As stress relaxation or creep happens, the stress 

distribution in the loaded asperity starts to reduce over time which causes an increase in the contact 

area.  For the constant force boundary condition (creep), the sinusoidal asperity will continue to 

flatten with time until the stress relaxes.  In contrast, for the constant displacement boundary 

condition (stress relaxation), the contact force will decrease over time until the stress has relaxed.  A 

parametric study is performed to study the effects of different parameters on the contact area and 

contact pressure results.  Finally, empirical equations are developed based on the transient contact 

area and contact pressure results while including stress relaxation and creep. 

 

4.2 Stress Relaxation Results 

In this section, the stress relaxation of the sinusoidal asperity which is pressurized by the 

displacement of the rigid flat surface in the first load step is studied.  During the second load step 

the rigid flat surface displacement is kept constant (Fig. 4.1), and the contact area and contact 

pressure are monitored as a function of time.  The material and geometrical properties that were 

used in the previous sections along with the creep parameters given in Table 4.1 are used to obtain a 

benchmark set of results. 
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The normalized contact area, 2/ λA , and contact pressure, */ eppp , results versus time for the 

reference properties are shown in Fig. 4.2.  It can be seen that the contact area and contact pressure 

have a steep initial increase and decrease, respectively.  As time passes, the normalized contact area, 
2/ λA , reaches to 1 (complete contact) with a gradually decreasing rate, and the contact pressure goes 

asymptotically to zero (it’s not shown in Fig. 4.2).   

 

 

 

δ  

Fig. 4.1 Plot of the three-dimensional sinusoidal asperity and the rigid flat surface 

under constant displacement boundary condition  

The rigid flat surface 
will displace toward 

the sinusoidal asperity 

The sinusoidal 
asperity 
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Table 4.1 Reference properties 

GPa1S0.3,νGPa,200E y ===  

y2
13

1 10/SC,s10C == −−  

1δ/Δ =  

0.02Δ/λ =  

 

 

 

 

In the rest of this section, a parametric study is performed to analyze the effect of different 

parameters on the stress relaxation results.  The ranges of variation of different material and 

geometrical parameters including the constants of the Garofalo equation are given in Table 4.2. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Time τ

 C
on

ta
ct

 P
re

ss
ur

e 
p av

e/p
* ep

 &
 C

on
ta

ct
 A

re
a 

A
/ λ

2

 

 

FEM results for contact pressure

FEM results for contact area

Fig. 4.2 The FEM results for the contact area and contact pressure versus 

time for reference properties 
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Table 4.2 Overview of the parameter ranges used for the FE simulations (constant 
displacement B.C.) 

Parameter Range 

Average surface separation 0.5664/Δg0.0147 o ≤≤  
Aspect ratio  0.04Δ/λ0.01 <<   

Poisson’s ratio 0.4ν0.3 <<  

Yield strength  GPa4SGPa1 y <<  

Elastic modulus  GPa200EGPa100 <<  

Garofalo constants 21,CC  
y2y

13
1

15 15/SC5/S,s10Cs10 <<<< −−−−  

 

The results for the change of contact area and contact pressure over time for different values 

of average surface separations which correspond to the rigid surface displacements equal to 

5.1,25.1,125.1,1,875.0,75.0,5.0/ =∆δ  are shown in Figs. 4.3-4.5.  In these results, only the initial 

average surface separation (initial penetration) is varied and the properties in Table 4.1 are used for 

other parameters. 
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As it is shown in Fig. 4.3, stress relaxation causes the contact pressure to reduce with time 

for different surface separations which is in agreement with the definition of creep relaxation.  It can 

be seen that for the surface separation values equal to or more than approximately 0.21/Δg0 ≈  which 

corresponds to 1/ =∆δ , the contact pressure goes asymptotically to zero.  However, for surface 

separations less than this value, the contact pressure reduces to a nonzero value.  Also, for low 

surface separations or high loads, the time rate change of contact pressure is more than that at high 

surface separations or low loads. 
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go/∆=0.0147 (δ /∆=1.500)

Fig. 4.3 The FEM results for contact pressure versus time for 

different surface separations (penetrations) 



41 
 

 

 

 

The change of contact area over a relatively short period of time 0.02τ0 ≤≤  for different 

surface separations (penetrations) is shown in Fig. 4.4.  The contact area increases with time which 

again agrees with the definition of the stress relaxation.  The contact area for the surface separations 

equal to or below approximately 0.21/Δg0 ≈  )1/( =∆δ  increases with time until complete contact 

occurs )1/( 2 =λA .  Although for surface separations higher than this value the contact area increases 

with time towards an asymptote lower than the complete contact area, and the complete contact 

condition isn’t achieved.  In Fig. 4.5, the contact area results over a longer duration of time are 

shown ( 3τ0 ≤≤ ). Surprisingly, the contact area results for surface separations higher than 

approximately 0.21/Δg0 ≈  )1/( =∆δ  or low loads reduce to very small values after an initial increase.  

It seems that the sinusoidal asperity starts to lose its contact from the rigid flat surface.  This 
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Fig. 4.4 The FEM results for the contact area versus time for different surface 

separations (penetrations) over a short duration of time  
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behavior doesn’t occur for the surface separations lower than 0.21/Δg0 ≈ .  Also, for lower surface 

separations the time rate change of contact area is higher than that for higher surface separations. 

 

 

 

So, it seems that the approximate surface separation 0.21/Δg0 ≈  (penetration equals to 

1/ =∆δ ) acts like a critical value for this case.  Both the contact area and contact pressure behave 

differently above and below this critical value.  For surface separations below this critical value, there 

is a sudden increase in the contact area within a very small normalized time after which complete 

contact is acquired ( 1/ 2 =λA ).  For surface separations higher than this value, complete contact 

cannot be achieved.  Instead, after an initial increase, the contact area decreases with time to a very 

small value (Fig. 4.5).  
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Fig. 4.5 The FEM results for the contact area versus time for different surface 

separations (penetrations) over a longer duration of time 
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Likewise, contact pressure decreases with time and asymptotically approaches zero for 

surface separations higher than 0.21/Δg0 ≈  (penetrations lower than 1/ =∆δ ), but for surface 

separations below than 0.21/Δg0 ≈  (penetrations higher than 1/ =∆δ ), the contact pressure doesn’t 

go to zero, and instead decreases asymptotically to a finite value (Fig. 4.3).  This behavior is expected 

since the creep strain is similar to the plastic strain i.e. it conserves the volume [56] i.e. Poisson’s 

ratio equal to 0.5  )5.0( =crν .  Consider that, at low surface separations or high loads the compressed 

volume is equal to or greater than the vacant volume that exists between the sinusoidal surface and 

the rigid flat after the penetration (Fig. 4.6).  In other words, for surface separations higher than the 

critical surface separation, the material has enough space to fill into and to relax its stress completely.  

However, for lower surface separations, the compressed volume exceeds the void volume and there 

isn’t complete stress relief, and the contact pressure approaches a nonzero value. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 The arrows show how the deformed material displaces to the void 

volume between the sinusoidal asperity and the rigid flat 
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In Fig. 4.7, the change of normalized contact area and contact pressure with time is shown 

for different values of yield strength.  The penetration for all cases is the same ( 1/ =∆δ ).  All of the 

other properties are the same as Table 4.1 except the yield strength which is changing.  The value of 

the initial contact area and contact pressure for each curve is different because yield strength also 

affects the first load step or stress build-up stage.  Although, they each initiate from different points, 

the contact area and especially contact pressure curves show the same trend for different yield 

strength values.  For the contact pressure results, the curves for the different yield strengths overlap 

after the initial times.  Also, it can be seen that for lower values of yield strength, we have higher 

contact area which is expected since lower value of yield strength let the material to deform 

plastically more easily, and it causes higher contact area. 
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Fig. 4.7 The FEM results for the contact area and pressure versus time for different 

yield strength, yS , values 
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The constant, 2C , in the Garofalo equation is varied in Figs. (4.8-4.10) for a specific 

penetration ( 1/ =∆δ ), and all the other properties are held constant and are the same as the 

reference properties (Table 4.1).  It should be noted that for each value of yield strength in Figs. (13-

15) all of the curves start from one point because the Garofalo constant, 2C , doesn’t affect the first 

load step or stress build-up stage.  It can be seen for higher values of 2C , that the rate of contact 

area and contact pressure change is higher (see Fig. 4.8). This was already expected because 2C  

shows how much faster the material relaxes or creeps under the high stresses.  

  

 

 

In Fig. 4.9, the yield strength is set to GPa2 .  In this case all of the contact area curves for 

different 2C  values start from a smaller value than the GPaS y 1=  case.  As mentioned earlier, for a 
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Fig. 4.8 The FEM results for the contact area and pressure versus time for different 

Garofalo constant, 2C , values ( GPaS y 1= ) 
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predefined penetration, 1=∆/δ , lower values of yield strength, yS , let the material to flow more 

easily under the stress due to yielding and increase the contact area.  The initial contact pressure is 

also lower for a material with GPaS y 2=  than a material with GPaS y 1= , if all of the other 

properties are held constant. 

 

 

 

In Fig. 4.10, the yield strength is set to GPa4 .  It can be seen that in this case the contact 

pressure and contact area starts from a smaller value than the case with yield strengths GPaS y 1=  

and GPaS y 2= .  Nonetheless, the effect of the Garofalo constant 2C  appears to be similar for all 

three yield strengths, yS . 
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Fig. 4.9 The FEM results for the contact area and pressure versus time for different Garofalo 

constant, 2C , values ( GPaS y 2= ) 
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The results for different values of the Garofalo constant 1C  are given in Fig. 4.11.  These 

results show that changing  1C  within the given range in Table 4.2 doesn’t affect the contact area 

and contact pressure results noticeably.  This is because the creep time, τ , is proportional to 1C  
according to Eq. (3.6).  It means that for lower values of 1C , it takes more time to have the same 

change in contact area and contact pressure.  In Fig. 4.11, the creep time for all the cases is 

st 500max = , and as the 1C  values decrease, there is no change in the trend of results, but the results 

become denser within lower values of normalized time, τ .  Lines 1, 2, and 3 show when the results 

end for different cases of 5
1 10C −= , 4

1 10C −= , and 3
1 10C −= , respectively. 
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Fig. 4.10 The FEM results for the contact area and pressure versus time for different Garofalo 

constant, 2C , values ( GPaS y 4= ) 
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The elastic modulus is also changed within the given range in Table 4.2 in the Fig. 4.12.  The 

initial point, like the yield strength case, is different for each value.  For the same penetration of 

1=∆/δ , the material with the higher elastic modulus creates higher contact pressure and contact 

area values.  This behavior is exactly opposite of the case with yield strength.  The contact pressure 

results collapse while the contact area results stays separated. 
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Fig. 4.11 The FEM results for the contact area and pressure versus time for different Garofalo 

constant, 1C , values 
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Results are also generated for two values of Poisson’s ratio and are given in Fig. 4.13.  Here, 

again like the elastic modulus and yield strength cases, the starting point is different for each case.  

The change of the Poisson’s ratio has a considerable effect on the starting point of each curve, and 

the results show that the contact area has a higher dependence on the Poisson’s ratio than the 

contact pressure.  It can be seen that higher values of the Poisson’s ratio create higher contact area 

and contact pressures for a specific penetration of 1=∆/δ . 
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Fig. 4.12 The FEM results for the contact area and pressure versus time for different 

elastic modulus, E  
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Finally, the aspect ratio, λ/∆ , which is the only geometrical property, is changed in Fig. 4.14 

within a very small range as given in Table 4.2.  The constant displacement 1/ =∆δ  is the same for all 

cases.  Again, in this case, the starting point is different for different aspect ratios.  As it is shown in 

Fig. 4.14, the aspect ratio has a significant influence on the contact area.  It can be seen that the 

lower change in contact area )A(AA τcr 0−=  is obtained for a higher value of aspect ratio, λ/∆ .  This 

is because a larger aspect ratio, λ/∆ , increase 0A  and hence, reduces the stress levels during the 

stress relaxation phase.  It is apparent from Fig. 4.14 that the normalized contact pressure results 

overlap for this case. 
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Fig. 4.13 The FEM results for the contact area and contact pressure versus time for 

different Poisson’s ratio, ν  
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Fig. 4.14 The FEM results for the contact area and pressure versus time for different 

aspect ratios, λ/∆  
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4.3 Empirical Equations for the Stress Relaxation Case 

Due to the high number of parameters which affect the stress relaxation results, developing 

a general relation that considers the effects of all of these parameters is very difficult.  For simplicity, 

the variation of material properties isn’t considered in developing empirical equations in this work.  

The material properties are the same as the reference properties )1,3.0,200( GPaSGPaE y === ν .  

However, the empirical equations consider the effect of the Garofalo constants, 1C  and 2C , the 

aspect ratio of the sinusoidal asperity, λ/∆ , and the average surface separation, ∆/0g , between the 

rigid flat and the sinusoidal asperity.   

Since the aimed application of this study is to investigate the effects of stress relaxation and 

creep in static friction, the maximum time for consideration of the contact area and contact pressure 

change can be estimated for practical purposes.  It is assumed an asperity with a wavelength λ  equal 

to mm1 , with an interaction time of s5  would be achieved for a speed of roughly m/s102v 4−×= , 

which compares favorably with the literature [9].  Therefore, the empirical equations for the 

variation of contact area and contact pressure are considered within a time period of 5 seconds (

s5tmax = ). Therefore, the stress relaxation (creep) can be considered responsible for the time-

dependent dry friction of certain metallic materials. 

 

4.3.1 Empirical Fit for Contact Area  

According to the trend of contact area results, a power equation is used to fit the results.  

This relation is given in Eq. (4.1). 

b

0

0τ

0

cr aτ
A

)A(A
A

ΔA
=

−
=                                                                                                                (4.1) 
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where τ),Cf(gA oτ 2,/,/ λ∆∆= , a  and b  are constants which are functions of surface separation, 

∆/og , aspect ratio, λ/∆ , and Garofalo constant, 2C , and 0A  is given in Eq. (2.11).  Note that 

0AA =  in Eq. (2.11). 

For aspect ratio 0.02Δ/λ =  and Garofalo constant y2 10/SC = , the change of contact area over 

the initial contact area for different surface separations, ∆/og , is shown in Fig. 4.15.  Empirical Eq. 

(4.1) is fit to the FEM data, and these curve-fits are also shown in Fig. 4.15. 
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Fig. 4.15 The FEM results and corresponding curve-fits for the normalized contact 

area change for different surface separations, ∆/og  
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The average error between the FEM data and the curve-fits is 5.88 %.  The empirical formulas for 

constants a  and b  are given as  

( ) 4.026/Δg4.001|a 0.1332
010SC0.02,Δ/λ y2

−= −
==                                                                                     (4.2) 

( ) 0.1727/Δg102|b 5.692
0

6
SC0.02,Δ/λ y2

+×= −−
== 10                                                                                     (4.3) 

For a Garofalo constant of y2 10/SC =  and a surface separation of 0.21/Δg0 ≈ , the change of 

contact area over the initial contact area for different aspect ratio, λ/∆ , values is shown in Fig. 4.16 

along with the fit Eq. (4.1). 

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

1.5

Normalized Time τ

N
or

m
al

iz
ed

 C
ha

ng
e 

in
 C

on
ta

ct
 A

re
a,

  ∆
A

cr
/A

0

 

 

FEM results for ∆/λ=0.01

FEM results for ∆/λ=0.02

FEM results for ∆/λ=0.03

FEM results for ∆/λ=0.04
Empirical fit (Eq. 4.1)

Fig. 4.16 The FEM results and corresponding curve-fits for the normalized contact 

area change for different aspect ratios, λ/∆  
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The average error between the FEM data and the curve-fits is 3.7 %.  The empirical formulas for 

constants a  and b  are given as  

( ) 10SC0.02,Δ/λ
-1.023

10SC y2y2
|a0.5471Δ/λ0.01|a === +−=                                                                               (4.4)                                             

( ) 10SC0.02,Δ/λ
-2.2376

10SC y2y2
|b0.0202Δ/λ103.2|b ==

−
= +−×=                                                                      (4.5)            

In the above equations the parameters 10SC0.02,Δ/λ y2
a ==|  and 10SC0.02,Δ/λ y2

b ==|  can be calculated from 

Eqs. (4.2 and 4.3). 

Finally, for an aspect ratio of 0.02Δ/λ =  and a surface separation of 0.2113/Δg0 = , the change 

of contact area over the initial contact area for different 2C  values is shown in Fig. 4.17.  Empirical 

Eq. (4.1) is fit to the FEM data, and these curve-fits are also shown in Fig. 4.17. 
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The average error between the FEM data and the curve-fits is 3.2 %.  The empirical formulas for 

constants a  and b  are given as  

( ) 10SC
-0.207

y2 y2
|a0.5103SC0.822a =++−=                                                                                      (4.6) 

( ) 10SC
-1

y2 y2
|b0.1754SC1.754b =+−=                                                                                           (4.7) 
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Fig. 4.17 The FEM results and corresponding curve-fits for the normalized contact 

area change for different, 2C , values 
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In the above equations the parameters 10| =y2SCa  and 10| =y2SCb  can be calculated from Eqs. (4.4 and 

4.5). 

As mentioned before, the constants in the contact area equation are dependent on the 

Garofalo constant, 2C , surface separation, ∆/0g , and aspect ratio, λ/∆ .  If contact area at a specific 

normalized time, τ , for a specific value of Garofalo constant 2C , specific geometry (aspect ratio, 

λ/∆ ), and for a surface separation, ∆/0g , is desired, Eqs. (4.2-4.7) can be used.  First, using the 

given surface separation, ∆/0g , Eqs. (4.2 and 4.3) are used to calculate 10SC0.02,Δ/λ y2
a ==|  and  

10SC0.02,Δ/λ y2
b ==| .  Then these constants and the given aspect ratio, λ/∆ , will be substituted into Eqs. 

(4.4 and 4.5) to calculate 10| =y2SCa  and 10| =y2SCb .  Finally, these new constants with the given 

Garofalo constant, 2C , are substituted into Eqs. (4.6 and 4.7) to calculate the final a  and b  

constants.  Putting these final constants in Eq. (4.1), the contact area at any time, τ , can be 

calculated.  Note that great care should be taken in using these equations outside of the ranges 

considered in this work. 

 

4.3.2 Empirical Fit for Contact Pressure 

According to the trend of contact pressure results, a two term power law is used to fit the 

contact pressure results.  This function is given in Eq. (4.8) and has four empirical constants 

,,, cba ′′′ and d ′ . 

db

0

τ0

0

cr τcτa
p

p-p
p
pΔ ′′ ′+′==                                                                                            (4.8) 
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For a Garofalo constant of y2 10/SC =  and a surface separation of 21.0/ ≈∆og , the change of 

contact pressure over its initial value 
0

τ0

0 p
pp

p
pΔ −

=  for different aspect ratios, λ/∆ , is shown in Fig. 

4.18.  Empirical Eq. (4.8) is used to fit to the FEM data, and these curve-fits are also shown in Fig. 

4.18. 

 

 

 

The average error between the FEM data and the curve-fits is 0.48%.  The empirical formulas for 

constants ,,, cba ′′′ and d ′  are given as  
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Empirical fit (Eq. 4.8)

Fig. 4.18 The FEM results and corresponding curve-fits for the normalized contact 

pressure change for different aspect ratios, λ/∆  
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( ) 23.14 Δ/λ980|a 1.18
10SC0.21,/Δg y20

−=′ ==                                                                                                (4.9) 

( ) 0.3166Δ/λ105.6|b 8.71211
10SC0.21,/Δg y20

+×−=′ ==                                                                                (4.10) 

( ) 23.75Δ/λ1031|c 1.201
10SC0.21,/Δg y20

+−=′ ==                                                                                      (4.11) 

( ) 0.3027Δ/λ105.7|d 6.648
10SC0.21,/Δg y20

+×−=′ ==                                                                                  (4.12) 

 

For an aspect ratio of 0.02Δ/λ =  and a Garofalo constant of y2 10/SC = , the normalized 

change of contact pressure for different surface separations, ∆/og , values is shown in Fig. 4.19.  

Empirical Eq. (4.8) is fit to the FEM data, and these curve-fits are also shown in Fig. 4.19.   
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Empirical fit (Eq. 4.8)

Fig. 4.19 The FEM results and corresponding curve-fits for the normalized contact pressure 

change for different surface separations, ∆/0g  
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The average error between the FEM data and the curve-fits is 0.51%. 

The empirical formulas for constants  ,,, cba ′′′ and d ′  are given as  

( ) 10SC0.21,/Δg
0.4

010SC y20y2
|a29.239 /Δg-54.45|a === ′++=′                                                                  (4.13) 

( ) 10SC0.21,/Δg
-4.7

0
6

10SC y20y2
|b0.008 /Δg105|b ==

−
= ′+−×=′

                                                                     
(4.14)                                         

( ) 10SC0.21,/Δg
0.315

010SC y20y2
|c39.595 /Δg64.61|c === ′+−=′                                                                    (4.15) 

( ) 10SC0.21,/Δg
-4.5

0
6

10SC y20y2
|d0.003 /Δg103|d ==

−
= ′+−×=′

                                                                    
(4.16) 

 

In the above equations the parameters 10SC0.21,/Δg y20
a ==′ | , 10SC0.21,/Δg y20

b ==′ | , 10SC0.21,/Δg y20
c ==′ | , and 

10SC0.21,/Δg y20
d ==′ |  can be calculated from Eqs. (4.9-4.12). 

Finally, For an aspect ratio of 0.02Δ/λ = , and surface separation of 0.2113/Δg0 = , the 

normalized change of contact pressure for different 2C  values is shown in Fig. 4.20.  Empirical Eq. 

(4.8) is fit to the FEM data, and these curve-fits are also shown in Fig. 4.20.  
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The average error between the FEM data and the curve-fits is 0.51%. 

The empirical formulas for constants ,,, cba ′′′ and d ′ are given as below 

( ) 10SC
-0.25

y2 y2
|a74.735SC-132.9a =′++=′                                                                                    (4.17) 

( ) 10SC
-0.776

y2 y2
|b0.383SC2.289b =′+−=′                                                                                         (4.18) 

( ) 10SC
-0.236

y2 y2
|c78.345SC134.9c =′+−=′                                                                                   (4.19) 
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FEM results for C2=15/Sy
Empirical fit (Eq. 4.8)

Fig. 4.20 The FEM results and corresponding curve-fits for the normalized contact pressure 

change for different, 2C , values 
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( ) 10SC
-0.688

y2 y2
|d0.443SC2.16d =′+−=′                                                                                        (4.20) 

 

In the above equations the parameters 10| =′
y2SCa , 10| =′

y2SCb , 10| =′
y2SCc , and 10| =′

y2SCd  can be calculated 

from Eqs. (4.13-4.16). 

As mentioned before, the constants in contact pressure equation are dependent on the 

Garofalo constant, 2C , surface separation, ∆/0g , and aspect ratio, λ/∆ .  If contact pressure at a 

specific normalized time, τ , for a specific value of Garofalo constant 2C , specific geometry (aspect 

ratio, λ/∆ ), and for a surface separation, ∆/0g , is desired, Eqs. (4.9-4.20) can be used.    First, using 

the given aspect ratio, λ/∆ , Eqs. (4.9-4.12) are used to calculate 10SC0.21,/Δg y20
a ==′ | , 10SC0.21,/Δg y20

b ==′ |

, 10SC0.21,/Δg y20
c ==′ | , and 10SC0.21,/Δg y20

d ==′ | .  Then these constants and the given surface separation, 

∆/0g , will be substituted into Eqs. (4.13-4.16) to calculate 10| =′
y2SCa , 10| =′

y2SCb , 10| =′
y2SCc , and 

10| =′
y2SCd .  Finally, these new constants and the given Garofalo constant, 2C , are substituted into 

Eqs. (4.9-4.12) to calculate the final ,,, cba ′′′ and d ′  constants.  By putting these final constants 

into Eq. (4.8), the contact pressure at any time, τ , can be calculated.  Note that great care should be 

taken in using these equations outside of the ranges considered in this work. 

In the next section a brief discussion is given about the dependency of the contact area and 

contact pressure results on the base height of the asperity. 
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4.4 Base Height-dependency of the Stress Relaxation Results 

Two cases are modeled in ANSYS in order to investigate the effect of the base height on the 

contact area and contact pressure results.  The same properties given in Table 4.1 are used here 

except for the initial surface separation which is set to 15.0/0 ≈∆g .  For the first case (a), a height 

equal to 20 times the amplitude is selected, and for the second case (b), this height is doubled.  The 

finite element mesh of these two cases are shown in Fig. 4.21. 

 

 

 

 

The von Mises stress distribution at time 0=τ  before the stress relaxation process happens 

are shown in Fig. 4.22 for both cases.  It can be seen that the von Mises stress for the two cases are 

similar with a small difference due to the deformation of the substrate.  It can be seen from Fig. 4.22 

that the maximum von Mises stress in case (a) is GPa1.326 , and for case (b) is GPa1.332 .  In case 

(a) (b) 

Fig. 4.21 The element plot of the sinusoidal asperity for a case with the (a) smaller 

height, and the case with the (b) doubled height 
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(b), in order to have the same initial surface separation, 0.15/Δg0 ≈ , higher value for the 

displacement of the rigid flat surface is inserted, and that’s why the initial von Mises stress is higher 

for this case. 

 

 

 

 

 

 

The stress relaxation results for contact area and contact pressure for cases (a and b) are 

shown in Figs. 4.23 and 4.24.  It can be seen that the contact area and contact pressure results start 

to show different trends after some threshold of normalized time.  Therefore, it shows that the 

contact area and contact pressure results are dependent on the height of the asperity. 

Fig. 4.22 The von Mises stress plot (in MPa) for case with the (a) smaller height, and 

the case with the (b) doubled height 

(a) (b) 
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Fig. 4.23 Contact area results for the case with the (a) smaller height, and the case 

with the (b) doubled height 

Fig. 4.24 Contact pressure results for case with the (a) smaller height, and the case 

with the (b) doubled height 
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To better correlate these results, the rate of aspect ratio, ( )δtλδΔ/ ⋅ , versus normalized contact 

pressure, ( ) ( )ττ */ eppp , is calculated using the contact area and contact pressure results and is shown 

in Fig. 4.25.  This is based on the idea that the rate of creep strain is proportional to the pressure 

which corresponds to the Garofalo creep law.  As an approximation, the change in the asperity 

amplitude should be proportional to the creep strain rate.  This rate represents the permanent 

change in the shape of the sinusoidal asperity due to creep strain.  From Fig. 4.25, It can be seen that 

these two cases show similar trends which is very interesting, and it declares that the aspect ratio 

rate, ( )δtλδΔ/ ⋅ , which is an important parameter in a multiscale model for creep (stress relaxation), is 

independent from the asperity height.   
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Fig. 4.25 The aspect ratio rate results for the case with the (a) smaller height, and the 

case with the (b) doubled height 
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The previously presented contact area and contact pressure results for various Garofalo 

constant values, 2C , surface separations, ∆/0g , and aspect ratios, λ/∆ ,  are used to obtain results 

for the normalized amplitude rate, ( )δtΔδΔ/ ⋅0 , which are shown in Figs. (4.26-4.28), respectively.   

The results for the rate of aspect ratio are obtained by three steps: 

1. The contact area and contact pressure in each time step is substituted into Eq. 2.11 to 

calculate the complete contact pressure, *
epp , as a function of time. 

2. The aspect ratio in each time step can be calculated, using the *
epp  results, from Eq. 2.9. 

3. The rate of the aspect ratio can be easily calculated using the aspect ratio results along with 

the finite difference method. 

In Figs. (4.26-4.28) the aspect ratio rate is normalized by 01000 ∆⋅ , where 0∆  is the initial 

aspect ratio. 
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Fig. 4.26 The normalized amplitude rate results for the different values of Garofalo constant, 2C  
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In Fig. 4.26, it can be seen that as the Garofalo constant 2C  increases, the absolute value of 

the amplitude rate, ( )δtλδΔ/ ⋅ , is higher.  It means that higher values of the Garofalo constant, 2C , 

cause larger changes in the amplitude of the asperity which agrees with the definition of  2C .  Also, 

for all the cases, the absolute value of the amplitude rate decreases with time. 

 

 

 

 

The results for the normalized amplitude rate for different aspect ratios are shown in Fig. 

4.27.  The results in Fig. 4.27 show that for higher values of aspect ratio, λ/∆ , the absolute values of 

the amplitude rate are higher. 
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Fig. 4.27 The normalized amplitude rate results for the different values of 

aspect ratio, λ/∆  
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The amplitude rate results for different values of the surface separation, ∆/og , are given in 

Fig. 4.28.  It can be seen that for different surface separations, the range of normalized contact 

pressure isn’t the same.  As the surface separation, ∆/og , decreases, the initial contact pressure is 

higher, and the absolute value of the initial amplitude rate, ( )δtλδΔ/ ⋅ , should be higher.  However, it 

can be seen that for surface separations lower than 21.0/ ≈∆og ( 1/ =∆δ  ), the initial amplitude rate 

decreases instead of increasing.  
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Fig. 4.28 The normalized amplitude rate results for the different values of 

surface separation, ∆/og  
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4.5 Creep Results 

In the sections 4.3 and 4.4, the time dependent deformation under constant displacement 

boundary condition (stress relaxation) was considered, and empirical equations for the contact area 

and contact pressure as a function of time were developed.   

Transient behavior of the sinusoidal asperity under the constant force boundary condition 

(creep) is investigated in this section as it is shown schematically in Fig. 4.29.  In this case the 

sinusoidal asperity is pressurized in the first load step by applying a force on the rigid flat surface.  It 

should be noted that the (average) contact pressure is constant in this case during the transient 

process, and only the contact area is changing over time.  The same geometry and mesh as the case 

with constant displacement boundary condition are used here, but instead of displacement, the 

constant force is applied on the rigid flat surface.   

 

 

F  

Fig. 4.29 Plot of the three-dimensional sinusoidal asperity under constant force 

boundary condition 

The sinusoidal 
asperity 

The rigid flat 
surface 
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The results for the normalized contact area versus normalized creep time for a reference 

normal load, GPap 8.0= , are shown in Fig. 4.30.  Here, the applied force is normalized by the 

apparent contact area, 2λ , resulting in the average pressure p .  The same material and geometrical 

properties and Garofalo constants used in Table 4.1 are employed.  As expected, the contact area 

increases with time until the complete contact is reached, after which the contact area plateaus at 
2λ=A .  It is clear that for this case the average contact pressure will be constant and equal to 

GPap 8.0= , and it doesn’t change with time. 

 

 

 

A parametric study is performed to analyze the effect of different parameters on the creep 

results. The ranges of parameters considered are given in Table 4.3. 
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Fig. 4.30 The FEM results for the contact area versus time for reference 

parameters, and contact pressure, GPap 8.0=  
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          Table 4.3 Overview of parameter ranges used for FE simulations (constant force B.C.) 

Parameter Range 

Normal load (average pressure) GPap 20 ≤≤  
Aspect ratio  0.02Δ/λ0.01 <<   

Garofalo constant 2C  yy /SC/S 155 2 <<  

 

In Fig. 4.31, the normalized contact area results for different constant normal loads, which are 

changed within the range given in Table 4.3 are shown. 
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Fig. 4.31 The FEM results for the contact area versus time for different 

constant contact loads 
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It can be seen from Fig. 4.31 that as the load increases, the initial contact area is higher.  

Also, the change in contact area due to creep is faster for higher values of the normal load, and the 

complete contact condition is achieved at earlier times.   

For the case with GPap 8.0= , the contact area results for the different values of the Garofalo 

constant, 2C , are shown in Fig. 4.32.   

 

 

The contact area results show that the rate of change of contact area is much faster for 

higher values of the Garofalo constant, 2C , and the complete contact condition is reached sooner.  

It should be noted that all curves for this case start from the same point because the Garofalo 

constant, 2C , doesn’t affect the first load step. 
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Fig. 4.32 The FEM results for the contact area versus time for different 

Garofalo constants, 2C  
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Also, the aspect ratio of the sinusoidal asperity is varied within the range of Table 4.3, and 

the contact area results are shown in Fig. 4.33.  Convergence and element distortion problems made 

it difficult to solve cases for higher aspect ratios. 

 

 

 

4.6 Comparison between the Stress Relaxation and Creep Results  

Contact area and contact pressure results for the creep under the constant force, F , and 

stress relaxation under the displacement, δ , that causes the same value of the contact force before 

the transient process, are compared to each other.  The von Mises stress distribution for both cases 

(a) and (b) before the transient process is shown in Fig. 4.34.  The maximum von Mises stress for 

both cases is the same and equal to GPa227.1 .  The same material and geometrical properties and 
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Fig. 4.33 The FEM results for the contact area versus time for different 
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creep parameters given in Table 4.1 are used for both cases.  It can be seen that the contact area 

results for these two cases follow different trends (Fig. 4.35).  The trend can be explained by the fact 

that the asperity in case (a) is always under a constant average pressure that causes the complete 

contact eventually to happen.  However, in case (b), the average contact pressure decreases with 

time and goes asymptotically to zero when the asperity stress completely relaxes.  Therefore, the 

contact area change in case (b) is much smaller than that experienced in case (a).  The average 

contact pressure results are also shown for both cases (Fig. 4.36).  It can be seen that the contact 

pressure in case (a) is constant, but, in case (b) the contact pressure decreases with time. 

 

 

 

(a) (b) 

Fig. 4.34 The von Mises stress (MPa) plot for the asperity under (a) constant force, 

and (b) constant displacement boundary conditions 
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Fig. 4.35 Contact area results for the case under (a) constant force (creep), and the 

case under (b) constant displacement (stress relaxation) boundary conditions 
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Fig. 4.36 Contact pressure results for the case under (a) constant force (creep), and 

the case under (b) constant displacement (stress relaxation) boundary conditions 
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CHAPTER 5 

CONCLUSIONS 

In this work, the time dependent deformation of a three-dimensional elasto-plastic 

sinusoidal asperity in contact with a rigid flat surface under both constant displacement (stress 

relaxation) and constant force (creep) boundary conditions were investigated assuming a hyperbolic 

sine creep law.  A numerical model was generated using the commercial finite element software 

ANSYS 13.0.  The numerical model was verified by comparing the elastic and elasto-plastic results 

to previous works in the literature.  The input constants of Garofalo creep formula were selected for 

an iron-like material.  The contact area and contact pressure results for a reference set of properties 

were obtained.  The trend of the stress relaxation results were reasonable as contact area increased 

with time, and contact pressure decreased over time.  In the case of creep, contact pressure was 

constant over time.  A parametric study was performed to study the effect of different material and 

geometrical properties, and creep constants on the contact area and contact pressure results.  It 

should be noted that the material and geometrical properties affect both the initial static 

deformation stage and the transient step, but the creep parameters (Garofalo constants) only affect 

the second load step or the transient step.  It was seen that the creep parameter, 1C , doesn’t affect 

the normalized results, but since it is used in normalizing the time, it causes the range of results to 

compress or expand over different periods of the normalized time.  The results showed that the 

stress relaxation consists of two phases.  The first phase consisted of a fast increase and decrease in 

contact area and contact pressure, respectively.  In the second phase, the stress relaxation process 

slowed considerably. 

Dimensionless expressions were empirically derived for the change of contact area and 

contact pressure.  A power law equation was used for the change of contact area over its initial 

value, and for the contact pressure a two term power law was used.  In developing these empirical 

equations, the reference material properties were used.  Therefore, the empirical equations are only 

dependent on the aspect ratio, λ/∆ , Garofalo constant, 2C , and surface separation, ∆/0g .  The 
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errors in the numerical fits are fairly low (less than 4% for the contact area fits and less than 1% for 

the contact pressure fits) which suggest that the fits are reasonable.  Transient results for the case 

solved with the constant force boundary condition (creep) are also obtained.  A brief parametric 

study was also performed for this boundary condition.  Unfortunately, for the case with the constant 

force boundary condition (creep), it is difficult to obtain results for high loads, and also for high 

values of aspect ratio due to convergence issues.  Also, a case has been considered to compare the 

transient results for the constant force (creep) and constant displacement (stress relaxation) 

boundary conditions.  The results showed that the contact area and contact pressure change with 

time for these two cases follow different trends.  The aspect ratio rate, ( )λδτδ /∆ , was obtained from 

the contact area and contact pressure results for the stress relaxation. It was shown that this quantity 

is independent from the base height of the sinusoidal asperity.  This rate can be used in a multiscale 

contact model to predict the real contact area between rough surfaces as a function of time.   
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 APPENDICES 

APPENDIX A 

“APDL” CODE USED FOR MODLING THE EFFECT OF STRESS RELAXATION 

 

!--------------- FE Model of Elasto-Plastic Sinusoidal Asperity       ----------------------! 

!---------------    in Contact with the Rigid Flat Surface under Time Dependent      ----------------------! 

!---------------    Deformation Including Stress Relaxation and Creep  ----------------------! 

 

! LENGTH UNIT: mm 

/prep7                           ! PREPROCESSOR  

ET, 1, SOLID186          ! SOLID186 (20-NODE BRICK ELEMENT) 

ET, 2, TARGE170        ! TYPE 2 = 4-NODE TARGET ELEMENT 

ET, 3, CONTA174        ! TYPE 3 = 4-NODE CONTACT ELEMENT 

KEYOPT, 2, 2, 1           ! CONSTRAINTS OF NODES ON TARGET SURFACE DEFINED    

                                       BY USERS 

KEYOPT, 3, 5, 1           ! CLOSE INITIAL GAP BETWEEN CONTACT AND TARGET  

                                       SURFACES 

KEYOPT, 3, 10, 2        ! NORMAL CONTACT STIFFNESS IS UPDATED EACH ITERATION 
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!------------------------- MATERIAL PROPERTIES ---------------------------! 

! THE MATERIAL OF THE SINUSOIDAL SURFACE IS ASSUMED ELASTO-PLASTIC, BI- 

LINEAR ISOTROPIC HARDENING SOLID   

MP, EX, 1, 200E3            ! ELASTIC MODULUS [N/(mm^2)]  

MP, NUXY, 1, 0.3           ! POISSON'S RATIO  

TB, BISO                        ! BILINEAR ISOTROPIC MATERIAL MODEL 

TBDATA, 1, 1e3             ! YIELD STRESS  [N/(mm^2)] 

TBDATA, 2, 4e3             ! TANGENT MODULUS [N/(mm^2)]  

TB, CREEP, 1, , , 8         ! USING GAROFALO LAW FOR CREEP 

TBTEMP, 0                    ! DOESN’T AFFECT THE RESULTS 

TBDATA, 1, 1E-3, 1E-2, 1, 0     

                                        ! CREEP CONSTANTS c81, c82, c83, c84 OF GAROFALO LAW 

*SET, N, 56                    ! NUMBER OF NODES IN X AND Y DIRECTIONS 

*DIM, XX, ARRAY, N  ! ARRAY OF NODES IN X DIRECTION 

*DIM, YY, ARRAY, N   ! ARRAY OF NODES IN Y DIRECTION 

*SET, DELTA, 0.02       ! AMPLITUDE [mm] 

*SET, LAMBDA, 1        ! WAVELENGTH IN X AND Y DIRECTIONS [mm] 

*SET, DEPTH, 30*DELTA   

                                      ! DEPTH OF THE SUBSTRATE [mm] 

*SET, DELXY, LAMBDA/(N-1) 

                                       ! THE MESH INTERVAL IN THE X AND Y DIRECTIONS [mm] 
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*SET, PI, 3.1415926D0   

*SET, PENE, -0.02        ! PENETRATION OF RIGID FLAT INTO THE SINUSOIDAL  

                                        SURFACE [mm] 

*DO, I, 1, N                  

*SET, XX(I), LAMBDA/2/(N-1)*(I-1) 

                                      ! NODAL COORDINATE IN THE X DIRECTION [mm]    

*SET,YY(I), LAMBDA/2/(N-1)*(I-1) 

                                      ! NODAL COORDINATE IN THE Y DIRECTION [mm]    

*ENDDO   

*DIM, ZZ, ARRAY, N, N 

                                      ! SINUSOIDAL SURFACE HEIGHT MATRIX   

*DO, I, 1, N                  ! CALCULATING THE SINUSOIDAL SURFACE HEIGHT AT THE  

                                        DISCRETE NODES            

*DO, J, 1, N 

*SET, ZZ(I,J) , DELTA*( 1 - COS(2*PI*XX(I))*COS(2*PI*YY(J)) ) + DEPTH    

*ENDDO   

*ENDDO   

*DO, I, 1, N                 ! CREATING THE KEY POINTS ON THE SINUSOIDAL SURFACE 

*DO, J, 1, N 

K, (I-1)*N + J, XX(I), YY(J), ZZ(I,J)    

*ENDDO   
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*ENDDO   

*DO, J, 1, N               ! CONNECTING THE NEIGHBORING KEY POINTS ALONG Y  

                                    AXIS TO FORM THE LINE ELEMENTS 

*DO, I, 1, N-1   

L, (J-1)*N + I, (J-1)*N + I + 1  

*ENDDO   

*ENDDO   

 

*DO, I, 1, N-1        ! CONNECTING THE NEIGHBORING KEYPOINTS ALONG X AXIS  

                                 TO FORM THE LINE ELEMENTS 

*DO, J, 1, N 

L, (I-1)*N + J, (I-1)*N + J + N  

*ENDDO   

*ENDDO   

 

*DO, I, 1, N-1       ! CREATING AREA ELEMENT THROUGH THE NEIGHBORING LINE 
ELEMENTS   

*DO, J, 1, N-1   

LSEL, S, LOC, X, XX(I) - 1/8*DELXY, XX(I+1) + 1/8*DELXY  

LSEL, R, LOC, Y, YY(J) - 1/8*DELXY, YY(J+1) + 1/8*DELXY  

AL, ALL  



89 
 

ALLSEL   

*ENDDO   

*ENDDO   

CM, SINUSOIDAL, AREA  

                               ! CREATING THE SINUSOIDAL SURFACE BY COMBINING ALL OF  

                                 THE SMALL AREAS 

BLC4, 0, 0, LAMBDA/2, LAMBDA/2, 2*DEPTH 

                              ! CREATING A BLOCK OF THE VOLUME: LAMBDA/2 X LAMBDA/2 X  

                                2*DEPTH 

VSBA, 1, SINUSOIDAL, SEPO, DELETE 

                               ! USE THE SINUSOIDAL SURFACE TO SPLIT THE BLOCK INTO TWO 

VDELE, 3, 3, , 1    ! DELETING THE UPPER PART OF THE BLOCK 

 

!-------------------------GENERATING THE RIGID FLAT SURFACE---------------------------! 

WPOFFS, , , DEPTH + 2*DELTA  

                             ! ALIGNING THE WORKING COORDINATE SYSTEM WITH THE  

                               PEAK OF THE SINUSOIDAL WAVINESS RECTING, 0, LAMBDA/2,  

                               0, LAMBDA/2         

RECTING, 0, LAMBDA/2, 0, LAMBDA/2 

                             ! CREATING THE RECTANGULAR SURFACE OF LAMBDA/2 X  

                              LAMBDA/2 BY TWO CORNERS! 
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NUMCMP, AREA            ! RESORT THE AREA LABEL 

NUMCMP, NODE          ! RESORT THE NODAL LABEL 

NUMCMP, ELEM           ! RESORT THE ELEMENT LABEL 

NUMCMP, KP                 ! RESORT THE KEYPOINT LABEL 

NUMCMP, LINE             ! RESORT THE LINE LABEL 

NUMCMP, VOLU           ! RESORT THE LINE LABEL 

 

!-------------------------MESHING---------------------------! 

! RIGID FLAT 

LESIZE, 1,,, 1                   ! MESHING TARGET SURFACE WITH ONLY ONE TARGE170  

                                           ELEMENT       

LESIZE, 2,,, 1 

LESIZE, 3,,, 1 

LESIZE, 4,,, 1 

ASEL, S,,, 1 

TYPE, 2                       ! SELECT TARGE170   

AMESH, ALL              ! MESHING AREA  

ESURF, ALL, REVERSE   ! REVERSE NORMAL DIRECTION OF ELEMENT TARGE170 

ALLSEL 

NSEL, S, , , 1                ! CREATE A PILOT NODE ON THE RIGID FLAT  

CM, PILOT, NODE    
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ALLSEL                                                  ! DIVID FOUR VERTICLE LINE ELEMENT INTO 10  

                                                                   SUBELEMENTS 

LESIZE, 2*(N-1)*N + 8 + 1 ,,, 10, 10 

LESIZE, 2*(N-1)*N + 8 + 2 ,,, 10, 10 

LESIZE, 2*(N-1)*N + 8 + 3 ,,, 10, 10 

LESIZE, 2*(N-1)*N + 8 + 4 ,,, 10, 10 

ASEL, ALL                                                ! SELECT ALL AREAS 

ASEL, U, AREA, , (N-1)*(N-1) + 2           ! UNSELECT BOTTOM SURFACE 

ASEL, U, AREA, , (N-1)*(N-1) + 3           ! UNSELECT FOUR LATERAL SURFACES 

ASEL, U, AREA, , (N-1)*(N-1) + 4 

ASEL, U, AREA, , (N-1)*(N-1) + 5 

ASEL, U, AREA, , (N-1)*(N-1) + 6 

ASEL, U, AREA, , 1                                  ! UNSELECT THE RIGID FLAT AREA 

CM, SINUSOIDAL, AREA                      ! CREATING AREA COMPONENTS FOR THE  

                                                                   AREAS ON SINUSOIDAL SURFACE 

LSLA, S                                                     ! SELECT LINES CONSTAINED IN THE CURRENT  

                                                                   AREA SET 

LESIZE, ALL, , , 1                                    ! DIVIDE THE LINE ELEMENTS ON THE  

                                                                  SINUSOIDAL SURFACE INTO ONE SUBDIVISION 

ALLSEL 

VSWEEP, 1                                          ! MESHING THE ONLY VOLUME THROUGH SWEEP  
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!-------------------------CONTACT PAIR CREATION---------------------------! 

! CONTACT SURFACE 

ASEL, S, AREA, , SINUSOIDAL  ! SELECT ALL THE AREA ELEMENTS ON THE  

                                                        SINUSOIDAL SURFACE 

 

NSLA, S, 1                                    ! SELECT ALL THE NODES ATTACHED TO THE  

                                                      AREAS IN THE CURRENT SET 

TYPE, 3                                        ! SELECT CONTA174 

MAT, 1                 

ESLN, S, 0                                    ! SELECT ALL THE ELEMENT ATTACHED TO THE  

                                                      AREAS 

ESURF                                         ! LAYING ELEMENT CONTA174 ON THE MESHED TOP  

                                                      SURFACE 

ALLSEL 

REAL, 1                                       ! CREATE A PILOT NODE ON THE RIGID FLAT  

TYPE, 2 

TSHAP, PILO 

N, 1E7 ,0, 0, 0        

E, 1E7 

NSEL, S , , , 1E7                         ! SELECT THE NEWLY CREATED NODE 

CM, PILOT, NODE   
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ALLSEL  

 

!-------------------------SOLUTION SOLVER---------------------------! 

/SOL                                         ! SOLUTION PROCESSOR  

                                                   ! FIRST LOAD STEP - STATIC ELASTO-PLASTIC CONTACT 

                                                   ! BOUNDARY CONDITIONS     

DA, (N-1)*(N-1) + 2, UZ, 0       ! BOTTOM SURFACE 

DA, (N-1)*(N-1) + 2, UX, 0  

DA, (N-1)*(N-1) + 2, UY, 0  

DA, (N-1)*(N-1) + 3, UY, 0         ! SIDE SURFACES PERPENDICULAR TO Y AXIS 

DA, (N-1)*(N-1) + 4, UY, 0  

DA, (N-1)*(N-1) + 5, UX, 0        ! SIDE SURFACES PERPENDICULAR TO X AXIS 

DA, (N-1)*(N-1) + 6, UX, 0  

 

D, PILOT, UZ, PENE                 ! MOVE PILOT NODE (RIGID FLAT) ALONG 0I + 0J +  

                                                       PENE K 

D, PILOT, UX, 0  

D, PILOT, UY, 0  

D, PILOT, ROTX, 0                     ! NO ROTATION    

D, PILOT, ROTY, 0    

D, PILOT, ROTZ, 0  
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! OPTIONS OF SOLVER 

ANTYPE, 4                                    ! PERFORMS TRANSIENT ANALYSIS 

TRNOPT, FULL                            ! TRANSIENT ANALYSIS OPTIONS: FULL METHOD  

                                                        (DEFAULT) 

LUMPM, 0                                      ! USE ELEMENT-DEPENDENT DEFAULT MASS  

                                                         MATRIX FORMULATION (DEFAULT) 

NLGEOM, 1                                  ! INCLUDE LARGE-DEFLECTION (LARGE ROTATION)  

                                                         EFFECTS 

OUTRES, ALL,-10                         ! WRITE UP TO 10 EQUALLY SPACED SOLUTIONS 

KBC, 0                                            ! RAMPED LOADING 

RATE, OFF                                   ! EXCLUD THE CREEP STRAIN RATE (NO CREEP) 

NCNV, 2                                        ! TERMINATE THE ANALYSIS, BUT NOT THE  

                                                        PROGRAM EXECUTION 

TIME, 1e-3                                     ! SIMULATION TIME OF FIRST LOAD STEP 

   

LSWRITE, 1                                   ! WRITE FIRST LOAD STEP - STATIC ELASTIC-PLASTIC  

                                                         CONTACT TO A FILE      

! SECOND LOAD STEP 

! BOUNDARY CONDITIONS 

DKDELE, PILOT, ALL                 ! DELETE CONSTRAINTS ON THE PILOT APPLIED IN  

                                                          THE FIRST LOAD STEP 
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D, PILOT, UZ, PENE      ! POSITION OF RIGID FLAT IS HELD AT Z = PENE 

D, PILOT, UX, 0  

D, PILOT, UY, 0  

D, PILOT, ROTX, 0    

D, PILOT, ROTY, 0    

D, PILOT, ROTZ, 0   

! OUTRES, ERASE        

OUTRES, ALL, -10        

RATE, ON                         ! INCLUDE THE CREEP STRAIN RATE   

TIME, 0.01                         ! SIMULATION TIME OF SECOND LOAD STEP 

  

LSWRITE, 2                      ! WRITE SECOND LOAD STEP - STATIC ELASTIC-PLASTIC  

                                            CONTACT TO A FILE 

! THIRD LOAD STEP 

! BOUNDARY CONDITIONS 

DKDELE, PILOT, ALL    ! DELETE CONSTRAINTS ON THE PILOT APPLIED IN THE  

                                             FIRST LOAD STEP 

D, PILOT, UZ, PENE      ! POSITION OF RIGID FLAT IS HELD AT Z = PENE 

D, PILOT, UX, 0  

D, PILOT, UY, 0  

D, PILOT, ROTX, 0    
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D, PILOT, ROTY, 0    

D, PILOT, ROTZ, 0   

!OUTRES, ERASE        

OUTRES, ALL, -10   

TIME, 0.1                           ! SIMULATION TIME  

LSWRITE, 3                       ! WRITE THIRD LOAD STEP - STATIC ELASTIC-PLASTIC  

                                             CONTACT TO A FILE 

! FOURTH LOAD STEP 

! BOUNDARY CONDITIONS 

DKDELE, PILOT, ALL    ! DELETE CONSTRAINTS ON THE PILOT APPLIED IN TEH  

                                             FIRST LOAD STEP 

D, PILOT, UZ, PENE       ! POSITION OF RIGID FLAT IS HELD AT Z = PENE 

D, PILOT, UX, 0  

D, PILOT, UY, 0  

D, PILOT, ROTX, 0    

D, PILOT, ROTY, 0    

D, PILOT, ROTZ, 0   

OUTRES, ERASE       

OUTRES, ALL, -10   

TIME,   1                            ! SIMULATION TIME  

LSWRITE, 4                       ! WRITE FOURTH LOAD STEP - STATIC ELASTIC-PLASTIC  
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                                                CONTACT TO A FILE 

! FIFTH LOAD STEP 

! BOUNDARY CONDITIONS 

DKDELE, PILOT, ALL       ! DELETE CONSTRAINTS ON THE PILOT APPLIED IN THE 

                                                 FIRST LOAD STEP  

D, PILOT, UZ, PENE          ! POSITION OF RIGID FLAT IS HELD AT Z = PENE 

D, PILOT, UX, 0  

D, PILOT, UY, 0  

D, PILOT, ROTX, 0    

D, PILOT, ROTY, 0    

D, PILOT, ROTZ, 0   

OUTRES, ERASE         

OUTRES, ALL, -10   

TIME,   10                                  ! SIMULATION TIME  

LSWRITE, 5                               ! WRITE FIFTH LOAD STEP - STATIC ELASTIC-PLASTIC  

                                                     CONTACT TO A FILE 

! SIXTH LOAD STEP 

! BOUNDARY CONDITIONS 

DKDELE, PILOT, ALL           ! DELETE CONSTRAINTS ON THE PILOT APPLIED IN  

                                                       THE FIRST LOAD STEP 

D, PILOT, UZ, PENE             ! POSITION OF RIGID FLAT IS HELD AT Z = PENE 
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D, PILOT, UX, 0  

D, PILOT, UY, 0  

D, PILOT, ROTX, 0    

D, PILOT, ROTY, 0    

D, PILOT, ROTZ, 0   

OUTRES, ERASE         

OUTRES, ALL, -10   

TIME,   100                             ! SIMULATION TIME  

LSWRITE, 6                            ! WRITE SIXTH LOAD STEP - STATIC ELASTIC-PLASTIC  

                                                  CONTACT TO A FILE 

! SEVENTH LOAD STEP 

! BOUNDARY CONDITIONS 

DKDELE, PILOT, ALL       ! DELETE CONSTRAINTS ON THE PILOT APPLIED IN THE  

                                                FIRST LOAD STEP 

D, PILOT, UZ, PENE          ! POSITION OF RIGID FLAT IS HELD AT Z = PENE 

D, PILOT, UX, 0  

D, PILOT, UY, 0  

D, PILOT, ROTX, 0    

D, PILOT, ROTY, 0    

D, PILOT, ROTZ, 0   

OUTRES, ERASE         
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OUTRES, ALL, -10   

TIME,   500                          ! SIMULATION TIME  

LSWRITE, 7                         ! WRITE SEVENTH LOAD STEP - STATIC ELASTIC-PLASTIC  

                                                CONTACT TO A FILE 

LSSOLVE, 1, 7, 1                 ! SOLVE 


