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Abstract

Fractional derivatives can be used to model time delays in a diffusion process. When

the order of the fractional derivative is distributed over the unit interval, it is useful for

modeling a mixture of delay sources. In some special cases distributed order derivative can

be used to model ultra-slow diffusion. In the fist part of the thesis, we extend the results

of Baeumer and Meerschaert [3] in the single order fractional derivative case to distributed

order fractional derivative case. In particular, we develop the strong analytic solutions of

distributed order fractional Cauchy problems.

In this thesis, we also study the asymptotic behavior of the trace of the semigroup of

a killed relativistic α-stable process in any bounded R−smooth boundary open set. More

precisely, we establish two-term estimates of the trace with an error bound of e2mtt(2−d)/α.

When m = 0, our result reduces to the result established by Bañuelos and Kulczycki for

stable processes given in [7].
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Chapter 1

Introduction

In this chapter, we give an introduction to Cauchy problems and relativistic α−stable

processes.

1.1 Cauchy problems

Cauchy problems ∂u
∂t

= Lu model diffusion processes and have appeared as an essential

tool for the study of dynamics of various complex stochastic processes arising in anomalous

diffusion in physics [39, 50], finance [21], hydrology [11], and cell biology [46]. Complexity

includes phenomena such as the presence of weak or strong correlations, different sub-or

super-diffusive modes, and jump effects. For example, experimental studies of the motion

of macromolecules in a cell membrane show apparent subdiffusive motion with several si-

multaneous diffusive modes (see [46]). When L = ∆ =
∑

j ∂
2u/∂x2

j , Cauchy problem is a

tradition diffusion equation.

Traditional diffusion represents the long-time limit of a random walk, where finite vari-

ance jumps occur at regularly spaced intervals. Eventually, after each particle makes a series

of random steps, a histogram of particle locations follows a bell-shaped normal density. The

central limit theorem of probability ensures that this same bell-shaped curve will eventually

emerge from any random walk with finite variance jumps, so that this diffusion model can

be considered universal. The random walk limit is a Brownian motion, whose probability

densities solve the diffusion equation.

The fractional Cauchy problem ∂βu/∂tβ = Lu with 0 < β < 1 models anomalous

sub-diffusion, in which a cloud of particles spreads slower than the square root of time.

The ”particles” might be pollutants in ground water, stock prices, sound waves, proteins
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crossing a cell boundary, or animals invading a new ecosystem. When L = ∆, the solution

u(t, x) is the density of a time-changed Brownian motion B(E(t)), where the non-Markovian

time change E(t) = inf{τ > 0;D(τ) > t} is the inverse, or first passage time of a stable

subordinator D(t) with index β.

The process B(E(t)) is the long-time scaling limit of a random walk [31, 32], when the

random waiting times between jumps belong to the β-stable domain of attraction. Roughly

speaking, a power-law distribution of waiting times leads to a fractional time derivative in

the governing equation. Recently, Barlow and C̆erný [9] obtained B(E(t)) as the scaling limit

of a random walk in a random environment. More generally, for a uniformly elliptic operator

L on a bounded domain D ⊂ Rd, under suitable technical conditions and assuming Dirichlet

boundary conditions, the diffusion equation ∂u/∂t = Lu governs a Markov process Y (t)

killed at the boundary, and the corresponding fractional diffusion equation ∂βu/∂tβ = Lu

governs the time-changed process Y (E(t)) [36].

In some applications, waiting times between particle jumps evolve according to a more

complicated process, which cannot be adequately described by a single power law. A mixture

of power laws leads to a distributed-order fractional derivative in time [16, 28, 29, 30, 34, 41].

An important application of distributed-order diffusions is to model ultraslow diffusion

where a plume of particles spreads at a logarithmic rate [34, 47]. This thesis considers

the distributed-order time-fractional diffusion equations with the generator L of a uniformly

bounded and strongly continuous semigroup in a Banach space. Hahn et al. [22] discussed

the solutions of such equations on Rd, and the connections with certain subordinated pro-

cesses. Kochubei [25] proved strong solutions on Rd for the case L = ∆. Luchko [27] proved

the uniqueness and continuous dependence on initial conditions on bounded domains. Meer-

schaert et al. [37] established the strong solutions of distributed order fractional Cauchy

problems in bounded domains with Dirichlet boundary conditions.
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When L is the generator of a uniformly bounded and continuous semigroup on a Banach

spaces, Baeumer and Meerschaert [3] showed that the solution of

∂βu/∂tβ = Lu

is analytic in a sectorial region. A similar problem has been considered in the literature on

a purely analytic level, without a probabilistic interpretation of the subordination represen-

tation: see, for example, Prüss [44, Corollary 4.5] . The case of a single fractional order was

also considered by Bazhlekova [10]. In this thesis, we extend the results of Baeumer and

Meerschaert [3] to distributed order fractional diffusion case. Our proofs work for operators

L that are generators of uniformly bounded and continuous semigroups on Banach spaces.

Our result for this case is given in chapter 3.

In the next few paragraphs we introduce basic facts about relativistic stable processes.

1.2 Relativistic stable processes

In Ryznar [45] Green function estimates of the Schödinger operator with the free Hamil-

tonian of the form

(−∆ +m2/α)α/2 −m,

were investigated, where m > 0 and ∆ is the Laplace operator acting on L2(Rd). Some

of these estimates (see Lemma 2.13 below) and (essentially the same) proof in Bañuelos

and Kulczycki (2008) can be used to provide an extension of the asymptotics in [7] to the

relativistic α stable processes for any 0 < α < 2.

An Rd-valued process with independent, stationary increments having the following

characteristic function

Eeiξ·X
α,m
t = e−t{(m

2/α+|ξ|2)α/2−m}, ξ ∈ Rd
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is called relativistic α-stable process with mass m. We assume that sample paths of Xα,m
t

are right continuous and have left-hand limits a.s. If we put m = 0 we obtain the symmetric

rotation invariant α−stable process with the characteristic function e−t|ξ|
α
, ξ ∈ Rd. We refer

to this process as standard α−stable process. The infinitesimal generator of Xα,m
t is m −

(m2/α − ∆)α/2, which is a non-local operator. Note that when m = 1, this infinitesimal

generator reduces to 1− (1−∆)α/2. Thus the 1−resolvent kernel of the relativistic α−stable

process Xα,1
t on Rd is just the Bessel potential kernel. When α = 1, the infinitesimal

generator reduces to the so-called free relativistic Hamiltonian m−
√
−∆ +m2. The operator

m−
√
−∆ +m2 is very important in mathematical physics due to its application to relativistic

quantum mechanics. For the rest of the thesis we keep α,m and d ≥ 2 fixed and drop α,m

in the notation, when it does not lead to confusion. Hence from now on the relativistic α-

stable process is denoted by Xt and its standard α− stable counterpart by X̃t . We keep this

notational convention consistently throughout the paper, e.g., if pt(x − y) is the transition

density of Xt then p̃t(x− y) is the transition density of X̃t.

Brownian motion has characteristic function

E0eiξ·Bt = e−t|ξ|
2

, ξ ∈ Rd

Let α = 2β. Ryznar showed that Xt is subordinated to Brownian motion. Let Tβ(t), t > 0,

denote the strictly β-stable subordinator with the following Laplace transform

E0e−λTβ(t) = e−tλ
β

, λ > 0. (1.1)

Let θβ(t, u), u > 0, denote the density function of Tβ(t). Then the process BTβ(t) is the

standard symmetric α-stable process.

Ryznar [45, Lemma 1] showed that we can obtain Xt = BTβ(t,m), where Tβ(t,m) is

a positive infinitely divisible process with stationary increments with probability density
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function

θβ(t, u,m) = e−m
1/βu+mtθβ(t, u), u > 0.

Transition density of Tβ(t,m) is given by θβ(t, u − v,m). Hence the transition density

of Xt is given by

p(t, x) = emt
∫ ∞

0

1

(4πu)d/2
e
−|x|2
4u e−m

1/βuθβ(t, u)du (1.2)

Then p(t, x, y) = p(t, x− y). Since the transition density is obtained from the characteristic

function by inverse Fourier transform, it follows that p(t, x) is a radially symmetric decreasing

function and that

p(t, x) ≤ p(t, 0) ≤ emt
∫ ∞

0

1

(4πu)d/2
θβ(t, u)du = emtt−d/α

ωdΓ(d/α)

(2π)dα
(1.3)

where ωd = 2πd/2

Γ(d/2)
is the surface area of the unit sphere in Rd. For A ⊂ Rd we define the first

exit time from A by τA = inf{t ≥ 0 : Xt /∈ A}.

Let D ⊂ Rd be a domain.

We set

rD(t, x, y) = Ex[p(t− τD, XτD , y); τD < t] (1.4)

and

pD(t, x, y) = p(t, x, y)− rD(t, x, y) (1.5)

for any x, y ∈ Rd, t > 0. For a nonnegative Borel function f and t > 0, let

PD
t f(x) = Ex[f(Xt) : t < τD] =

∫
D

pD(t, x, y)f(y)dy

be the semigroup of the killed process acting on L2(D), see, Ryznar [45, Theorem 1].

Let D be a bounded domain (or of finite volume). Then the operator PD
t is a Hilbert-

Schmidt operator mapping L2(D) into L∞(D) for every t > 0. This follows from (1.3), (1.4),

and the general theory of heat semigroups as described in [18]. It follows that there exists
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an orthonormal basis of eigenfunctions {ϕn : n = 1, 2, 3, · · · } for L2(D) and corresponding

eigenvalues {λn : n = 1, 2, 3, · · · } of the generator of the semigroup PD
t satisfying

λ1 < λ2 ≤ λ3 ≤ · · ·

with λn →∞ as n→∞. By definition, the pair {ϕn, λn} satisfies

PD
t ϕn(x) = e−λntϕn(x), x ∈ D, t > 0.

Under such assumptions we also have

pD(t, x, y) =
∞∑
n=1

e−λntϕn(x)ϕn(y) (1.6)

In this thesis we are interested in the behavior of the trace of this semigroup defined by

ZD(t) =

∫
D

pD(t, x, x)dx. (1.7)

Because of (1.6) we can write (5.9) as

ZD(t) =
∞∑
n=1

e−λnt
∫
D

ϕ2
n(x)dx =

∞∑
n=1

e−λnt. (1.8)

We denote d-dimensional volume of D by |D|. It is shown in [7] that for any open set

D with finite volume, it holds that

lim
t→0

td/αZ̃D(t) = C1|D|, C1 =
ωdΓ(d/α)

(2π)dα
(1.9)

This is closely related to the growth of the eigenvalues of P̃D
t . Let N(λ) be the number

of eigenvalues {λj} of P̃D
t which do not exceed λ, it follows from the classical Tauberian
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theorem (see for example [20], p.445 Theorem 2) that

lim
λ→∞

λ−d/αN(λ) =
C1|D|

Γ(1 + d/α)
(1.10)

This is the analogue for killed stable processes of the celebrated Weyl’s asymptotic

formula for the eigenvalues of the Laplacian. We will prove later in (2.38) that similar

formula is true for relativistic stable processes.

Definition 1.1. The boundary, ∂D, of an open set D in Rd is said to be R−smooth if for

each point x0 ∈ ∂D there are two open balls B1 and B2 with radii R such that B1 ⊂ D,B2 ⊂

Rd\(D ∪ ∂D) and ∂B1 ∩ ∂B2 = x0.

The asymptotic for the trace of the heat kernel when α = 2 (the case of the Laplacian

with Dirichlet boundary condition in a domain of Rd), have been extensively studied by

many authors. The van den Berg [49] result states that under the R− smoothness condition

when α = 2,

∣∣∣∣ZD(t)− (4πt)−d/2
(
|D| −

√
πt

2
|∂D|

)∣∣∣∣ ≤ Cd|D|t1−d/2

R2
, t > 0. (1.11)

For domains with C1 boundaries the result

ZD(t) = (4πt)−d/2
(
|D| −

√
πt

2
|∂D|+ o(t1/2)

)
(1.12)

was proved by Brossard and Carmona [13]. The asymptotic behavior for the trace of killed

symmetric α−stable processes, α ∈ (0, 2), for an open bounded set with R−smooth boundary

was given in [7] ∣∣∣∣Z̃D(t)− C1|D|
td/α

+
C2|∂D|t1/α

td/α

∣∣∣∣ ≤ C3|D|t2/α

R2td/α
(1.13)
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where C1, C2, and C3 are some constants depending on d, α,X. In [8], the authors proved

that, for any bounded Lipschitz domain D, Z̃D(t) satisfies

td/αZ̃D(t) = C1|D| − C2Hd−1(∂D)t1/α + o(t1/α) (1.14)

where C1, C2 are some constants depending on d, α and Hd−1(∂D) denote the (d−1) dimen-

sional Hausdorff measure of ∂D.

In the second part of the thesis we obtained the second term in the asymptotics of ZD(t)

for bounded open set with R−smooth boundary. Our result is inspired by result for Trace

estimates for stable processes by Bañuelos and Kulczycki [7].

1.3 Outline of Dissertation

This dissertation is divided into two more or less independent parts. The first part is

dedicated to finding strong analytic solution of distributed order fractional Cauchy prob-

lems. Whereas the second part is more concerned with finding two-term trace estimate of

relativistic α−stable processes on bounded R−smooth open set.

Chapter 2 consists of preliminary mathematical material, which serves the purpose of

setting up the vocabulary and the framework for the rest of the dissertation. In Section

2.1 we discuss the basic facts of traditional diffusion model and shows that the solution

of a diffusion equation is a density of a Brownian motion. Section 2.2 and Section 2.2.2

discusses fractional calculus. We give a generator form, Caputo, and Riemann-Liouville

form of fractional derivative with some simple examples. In Section 2.4 we state a defining

property of a semigroup. There we give all of the results on a semigroup we shall use in

the proof our main results in chapter 3. Finally in Section 2.5 we present the basic facts

about relativistic α-stable process. There we give all of the results on a relativistic stable

process we shall use in the proof of our main result for such process in chapter 4. We also
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give our first result in proposition 2.9, which is the analogue for relativistic stable process of

the celebrated Weyl’s asymptotic formula for the eigenvalues of the Laplacian.

In chapter 3 we state and prove our two main results about distributed order time

fractional Cauchy problems. Our proofs work for operators L that are generators of uni-

formly bounded and continuous semigroups on Banach spaces. This chapter describes work

contained in paper [40].

Chapter 4 discusses a trace estimates for relativistic stable process on open bounded

domain with R−smooth boundary. There we state and proof our main result. Similar result

is obtained for stable process in [7].

Chapter 5 is the last chapter and discusses a basic facts about sum of two independent

stable processes. So far we are only able to find the first term asymptotic expansion of trace

of such process. I am still looking in finding the best estimate for the trace on R−smooth

boundary domains and then extend to Lipschitz domains if possible.
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Chapter 2

Preliminaries

In this chapter, we summarize some results from fractional calculus and relativistic

α−stable processes. We mainly focus on trandional diffusion model, fractional diffusion

models and relativistic α−stable processes. Results in the following sections are mainly

adapted from [33], [42] and [43].

2.1 Diffusion Model

The traditional model for diffusion combines elements of probability, differential equa-

tions, and physics. A random walk provides the basic physical model of particle motion.

The central limit theorem gives convergence to a Brownian motion, whose probability den-

sities solves the diffusion equation. We start with a sequence of independent and identically

distributed (iid) random variables Y1, Y2, · · · that represent the jumps of a randomly selected

particle. The random walk

Sn = Y1 + Y2 + · · ·+ Yn

gives the location of that particle after n jumps. Next we recall the well-known central limit

theorem, which shows that the probability distribution of Sn converges to a normal limit.

Here we sketch the argument in the simplest case, using Fourier transforms. For complete

proof of the central theorem and to see the same normal limit governs a somewhat broader

class of random walk (see [33], Theorem 3.5 and 4.5).
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Let F (x) = P[Y ≤ x] denote the cumulative distribution function (cdf) of the jumps,

and assume that the probability density function (pdf) f(x) = F ′(x) exists. Then we have

P[a ≤ Y ≤ b] =

∫ b

a

f(x) dx

for any real numbers a < b. The moments of this distribution are given by

µl =

∫ ∞
−∞

xlf(x) dx

The Fourier transform (FT) of the pdf is

f̂(k) = E[e−ikY ] =

∫ ∞
−∞

e−ikxf(x) dx

The FT is closely related to the characteristic function E[eikY ] = f̂(−k). If the first two

moments exist, a Taylor series expansion ez =
∑∞

n=0
zn

n!
leads to

f̂(k) =

∫ ∞
−∞

(
1− ikx+

1

2!
(−ikx)2 + · · ·

)
f(x) dx = 1− ikµ1 −

1

2
k2µ2 + o(k2) (2.1)

since
∫
f(x) dx = 1. Here o(k2) denotes a function that tends to zero faster than k2 as k → 0.

For a formal proof of (2.1) (see [33], p.7).

Suppose µ1 = 0 and µ2 = 2, i.e., the jumps have mean zero and variance 2. Then we

have

f̂(k) = 1− k2 + o(k2)

as k → 0. The sum Sn = Y1 + Y2 + · · ·+ Yn has FT

E[e−ikSn ] = E
[
e−ik(Y1+Y2+···+Yn)

]
= E

[
e−ikY1

]
E
[
e−ikY2

]
· · ·E

[
e−ikYn

]
= E

[
e−ikY

]n
= f̂(k)n

11



and so the normalized sum n−1/2Sn has FT

E
[
e−ikn

−1/2Sn
]

= f̂(n−1/2k)n

=

(
1− k2

n
+ o(n−1)

)n
→ e−k

2

(2.2)

since the general fact that (1 + (r/n) + o(n−1))n → er as n → ∞ for any r ∈ R (see [33],

p. 7). The limit

e−k
2

= E
[
e−ikZ

]
=

∫ ∞
−∞

e−ikx
1√
4π
e−x

2/4 dx

using the standard formula from FT tables [48, p. 524]. The continuity theorem for FT [33,

p. 8] yields the traditional central limit theorem (CLT):

n−1/2Sn =
Y1 + · · ·+ Yn√

n
⇒ Z (2.3)

where ⇒ indicates convergence in distribution. The limit Z in (2.3) is normal with mean

zero and variance 2.

An easy extension of this argument gives convergence of the rescaled random walk:

S[ct] = Y1 + Y2 + · · ·+ Y[ct]

gives the particle location at time t > 0 at any time scale c > 0. Increasing the time scale

c makes time to go faster. The long-time limit of the rescaled random walk is a Brownian

motion: As c→∞ we have

E
[
e−ikc

−1/2S[ct]

]
=

(
1− k2

c
+ o(c−1)

)[ct]

=

[(
1− k2

c
+ o(c−1)

)c ] [ct]
c

→ e−tk
2

(2.4)

where the limit

e−tk
2

= p̂(k, t) =

∫ ∞
−∞

e−ikxp(x, t) dx

12



is the FT of a normal density

p(x, t) =
1√
4πt

e−x
2/4t

with mean zero and variance 2t. Then the continuity theorem for FT implies that

c−1/2S[ct] ⇒ Zt

where the Brownian motion Zt is normal with mean zero and variance 2t.

Clearly the FT p̂(k, t) = e−tk
2

solves a differential equation

dp̂

dt
= −k2p̂ = (ik)2p̂. (2.5)

If f ′ exists and if f, f ′ are integrable, then the FT of f ′(x) is (ik)f̂(k) [33, p. 8]. Using this

fact, we can invert the FT on both sides of (2.5) to get

∂p

∂t
=
∂2p

∂x2
(2.6)

This shows that the pdf of Zt solves the diffusion equation (2.6). The diffusion equation

models the spreading of a cloud of particles. The random walk Sn gives the location of a

randomly selected particle, and the long-time limit density p(x, t) gives the relative concen-

tration of particles at location x at time t > 0.

More generally, suppose that µ1 = E[Yn] = 0 and µ2 = E[Y 2
n ] = σ2 > 0. Then

f̂(k) = 1− 1

2
σ2k2 + o(k2)

leads to

E
[
e−ikn

−1/2Sn
]

=

(
1− σ2k2

2n
+ o(n−1)

)n
→ exp(−1

2
σ2k2)
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and

E
[
e−ikc

−1/2S[ct]

]
=

(
1− σ2k2

2c
+ o(c−1)

)[ct]

→ exp(−1

2
tσ2k2) = p̂(k, t). (2.7)

This FT inverts to a normal density

p(x, t) =
1√

2πσ2t
e−x

2/(2σ2t)

with mean zero and variance σ2t. The FT solves

dp̂

dt
= −σ

2

2
k2p̂ =

σ2

2
(ik)2p̂

which inverts to

dp

dt
=
σ2

2

∂2p

∂x2
(2.8)

This form of the diffusion equation shows the relation between the dispersivity D = σ2/2

and the particle jump variance. Apply the continuity theorem for FT to (2.7) to get random

walk convergence:

c−1/2Sn ⇒ Zt

where Zt is a Brownian motion, normal with mean zero and variance σ2t.

In many applications, it is useful to add a drift: vt+ Zt has FT

E
[
e−ik(vt+Zt)

]
= exp(−ikvt− 1

2
tσ2k2) = p̂(k, t),

which solves

dp̂

dt
=

(
−ikv +

σ2

2
(ik)2

)
p̂

Invert the FT to obtain the diffusion equation with drift:

∂p

∂t
= −v ∂p

∂x
+
σ2

2

∂2p

∂x2
(2.9)
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This represents the long-time limit of a random walk whose jumps have a non-zero mean

v = µ1 [33, p. 9].

2.2 Fractional Derivatives

The concept of differentiation operator D = d/dx is familiar to all who have stud-

ied elementary calculus. And for suitable function f , the nth derivative of f, denoted by

Dnf(x) = dnf(x)/dxn is well defined-provided n is a positive integer. In 1695, L’ Hôpital

inquired of Leibniz what meaning could be ascribed to Dnf(x) is n were a fraction. Since

that time the fractional calculus has drawn the attention of many famous mathematicians,

such as Euler, Laplace, Fourier, Abel, Liouville, and Laurent. But it was not until 1884 that

the theory of generalized operators achieved a level in its development suitable as a point of

departure for the modern mathematician. By then the theory had been extended to include

operators Dv, where v could be rational or irrational, positive or negative, real or complex.

In the past few years fractional calculus appeared as an important tool to deal with anoma-

lous diffusion processes. An anomalous diffusion process can be visualized as an ant in a

labyrinth where the average square of the distance covered by the ant is 〈x2(t)〉 ∝ t2β where

β is a phenomenological constant; for β = 1/2 we have the ordinary diffusion processes. A

more physical approach of anomalous diffusion processes has several applications in many

field such as diffusion in porous media or long range correlation of DNA sequence.

2.2.1 Generator Form

The generator form of the fractional derivative for 0 < β < 1 is given by

dβf(x)

dxβ
=

∫ ∞
0

[f(x)− f(x− y)]
β

Γ(1− β)
y−β−1 dy. (2.10)

[33, see p. 30], where Γ(β) =

∫ ∞
0

e−xxβ−1 dx is a gamma function.
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For continuously differentiable and bounded function integrate by parts with u = f(x)−

f(x− y) to get the caputo form

dβf(x)

dxβ
=

1

Γ(1− β)

∫ ∞
0

f ′(x− y)y−β dy =
1

Γ(1− β)

∫ ∞
0

d

dx
f(x− y)y−β dy (2.11)

Take the derivative outside the integral to get the Riemann-Liouville form

(
d

dt

)β
f(x) =

1

Γ(1− β)

d

dx

∫ ∞
0

f(x− y)y−β dy (2.12)

For 1 < β < 2 we can write the generator form

dβf(x)

dxβ
=
β(β − 1)

Γ(2− β)

∫ ∞
0

[f(x)− f(x− y) + yf ′(x)]y−β−1 dy. (2.13)

Integrate by parts twice to get the Caputo form for 1 < β < 2 :

dβf(x)

dxβ
=

1

Γ(2− β)

∫ ∞
0

d2

dx2
f(x− y)y1−β dy (2.14)

Move the derivative outside to get the Riemann-Liouville form for 1 < β < 2 :

(
d

dt

)β
f(x) =

1

Γ(2− β)

d2

dx2

∫ ∞
0

f(x− y)y1−β dy (2.15)

In general, Caputo’s definition can be written as

dβf(x)

dxβ
=

1

Γ(n− β)

∫ ∞
0

dn

dxn
f(x− y)yn−1−β dy, (n− 1 < β < n). (2.16)

and the Riemann-Liouville form as

(
d

dt

)β
f(x) =

1

Γ(n− β)

dn

dxn

∫ ∞
0

f(x− y)yn−1−β dy (n− 1 < β < n). (2.17)
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Example 2.1. Let f(x) = eλx for some λ > 0, so that f ′(x) = λeλx. Using the Caputo

form for 0 < β < 1, a substitution u = λy, and the definition of gamma function Γ(β) =∫∞
0
e−xxβ−1 dx, we get

dβ

dxβ
[eλx] = λβeλx

which agrees with the integer order case. Using the Riemann-Liouville form we get

(
d

dt

)β
[eλx] = λβeλx

which agrees with the Caputo. In this case, both forms lead to the same result.

2.2.2 Distributed Order Fractional Derivatives

In this section, we give an equivalent form of Caputo and Riemann-Liouville form for a

function defined on a nonnegative real line.

For a function u(t, x), the Caputo fractional derivative [15] for t ≥ 0, is defined as

∂βu(t, x)

∂tβ
=

1

Γ(1− β)

∫ t

0

∂u(r, x)

∂r

dr

(t− r)β
for 0 < β < 1. (2.18)

For 0 < β < 1, its Laplace transform is given by

∫ ∞
0

e−st
∂βu(t, x)

∂tβ
ds = sβũ(s, x)− sβ−1u(0, x) (2.19)

where ũ(s, x) =
∫∞

0
e−stu(t, x)dt. For 1 < β < 2, ∂

βu(t,x)
∂tβ

has Laplace transform sβũ(s, x) −

sβ−1u(0, x)− ∂
∂t
u(0, x) and incorporates the initial condition in the usual way as the regular

derivative. The distributed order fractional derivative is

D(µ)u(t, x) :=

∫ 1

0

∂βu(t, x)

∂tβ
µ(dβ), (2.20)

where µ is a finite Borel measure with µ(0, 1) > 0.
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For a function u(t, x) continuous in t ≥ 0, the Riemann-Liouville fractional derivative

of order 0 < β < 1 is defined by

(
∂

∂t

)β
u(t, x) =

1

Γ(1− β)

∂

∂t

∫ t

0

u(r, x)

(t− r)β
dr. (2.21)

Its Laplace transform ∫ ∞
0

e−st
(
∂

∂t

)β
u(t, x) ds = sβũ(s, x). (2.22)

The main advantage of Caputo’s approach is that the initial conditions for fractional

differential equations with Caputo derivates take on the same form as for integer-order

differential equations, i.e. contain the limit values of integer-order derivatives of unknown

functions at the lower terminal t = 0.

Example 2.2. Let f(t) = 1 for t ≥ 0 and f(t) = 0 for t < 0. Then f ′(t) = 0 for t 6= 0, so the

Caputo fractional derivative is zero. In fact, the Caputo fractional derivative of a constant

function is always zero, just like the integer order derivative. But the Riemann-Liouville

derivative is not. For t > 0 and 0 < β < 1, use (2.21) to get

(
d

dt

)β
f(t) =

1

Γ(1− β)

d

dt

∫ t

0

1(t− y)−β dy

=
1

Γ(1− β)

d

dt

∫ t

0

u−β du

=
x−β

Γ(1− β)
6= 0.

If u(·, x) is absolutely continuous on bounded intervals (e.g., if the derivative exists

everywhere and is integrable) then the Riemann-Liouville and Caputo derivatives are related

by

∂βu(t, x)

∂tβ
=

(
∂

∂t

)β
u(t, x)− t−βu(0, x)

Γ(1− β)
. (2.23)

The Riemann-Liouville fractional derivative is more general, as it does not require the first

derivative to exist. It is also possible to adopt the right-hand side of (2.23) as the definition of
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the Caputo derivative, see for example Kochubei [25]. Hence we adopt this as our definition

of Caputo derivative in this paper. Then the (extended) distributed order derivative is

D(µ)
1 u(t, x) :=

∫ 1

0

[(
∂

∂t

)β
u(t, x)− t−βu(0, x)

Γ(1− β)

]
µ(dβ), (2.24)

which exists for u(t, x) continuous, and agrees with the usual definition (2.20) when u(t, x)

is absolutely continuous.

2.3 Time-fractional Diffusion

In this section we will outline the stochastic model for time-fractional diffusion. For

additional details and precise mathematical proofs see [33, chapter 4].

Distributed order fractional derivatives are connected with random walk limits. For

each c > 0, take a sequence of i.i.d. waiting times (J cn) and i.i.d. jumps (Y c
n ). Let Xc(n) =

Y c
1 + · · · + Y c

n be the particle location after n jumps, and T c(n) = J c1 + · · · + J cn the time

of the nth jump. Suppose that Xc(ct) ⇒ A(t) and T c(ct) ⇒ Dψ(t) as c → ∞, where the

limits A(t) and Dψ(t) are independent Lévy processes. The number of jumps by time t ≥ 0

is N c
t = max{n ≥ 0 : T c(n) ≤ t}, and [35, Theorem 2.1] shows that the continuous time

random walk (CTRW) Xc(N c
t )⇒ A(Eψ(t)), where

Eψ(t) = inf{τ : Dψ(τ) > t}. (2.25)

A specific mixture model from [34] gives rise to distributed order fractional derivatives:

Let (Bi), 0 < Bi < 1, be i.i.d. random variables such that P{J ci > u|Bi = β} = c−1u−β, for

u ≥ c−1/β. Then T c(ct)⇒ Dψ(t), a subordinator with E[e−sDψ(t)] = e−tψ(s), where

ψ(s) =

∫ ∞
0

(e−sx − 1)φ(dx). (2.26)
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Then the associated Lévy measure is

φ(t,∞) =

∫ 1

0

t−βν(dβ), (2.27)

where ν is the distribution of Bi. An easy computation gives

ψ(s) =

∫ 1

0

sβΓ(1− β)ν(dβ) =

∫ 1

0

sβµ(dβ). (2.28)

Here we define µ(dβ) = Γ(1 − β)ν(dβ). Then, Theorem 3.10 in [34] shows that c−1N c
t ⇒

Eψ(t), where Eψ(t) is given by (2.25). The Lévy process A(t) defines a strongly continuous

convolution semigroup with generator L, and A(Eψ(t)) is the stochastic solution to the

distributed order-fractional diffusion equation

D(µ)
1 u(t, x) = Lu(t, x), (2.29)

where D(µ)
1 is given by (2.24) with µ(dβ) = Γ(1− β)ν(dβ). The condition

∫ 1

0

1

1− β
ν(dβ) <∞ (2.30)

is imposed to ensure that µ(0, 1) < ∞. Since φ(0,∞) = ∞ in (2.26), Theorem 3.1 in [35]

implies that Eψ(t) has a Lebesgue density

gEψ(t)(x) =

∫ t

0

φ(t− y,∞)PDψ(x)(dy). (2.31)

Note that Eψ(t) is almost surely continuous and nondecreasing.

The CTRW model provides a physical explanation for fractional diffusion. A power law

jump distribution with P[Y c
n > x] = Cx−α leads to a fractional derivative in space ∂α/∂xα

of the same order. A power law waiting time distribution P[J cn > t] = Bt−β leads to a

fractional time derivative ∂β/∂tβ of the same order. Long power-law jumps reflect a heavy
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tailed velocity distribution, which allows particles to make occasional long jumps, leading to

anomalous super-diffusion. Long waiting times model particle sticking and trapping, leading

to anomalous sub-diffusion:

B(Ect) ' B(cβEt) ' cβ/2B(Et).

where B is a Brownian motion. Since β < 1, the density of this process spreads slower that

a Brownian motion. For detailed discussion see for example [33].

2.4 Semigroup

This section will serve as a basic introduction to semigroups of linear operators. In

general, semigroups can be used to solve a large class of problems commonly known as

evolution equations. These types of equations appear in many disciplines including physics,

chemistry, biology, engineering, and economics. A semigroup is a family of linear operator

on a Banach space. A Banach space X is a complete normed vector space. That is, if fn ∈ X

is a Cauchy sequence in this vector space, such that ||fn−fm|| → 0 as m,n→∞, then there

exists some f ∈ X such that ||fn − f || → 0 as n→∞ in the Banach space norm.

Definition 2.3. Let X be a Banach space. A family of linear operators {Tt : t ≥ 0} from

X into X is called a semigroup if

(i) T (0) = I, (I is the identity operator on X).

(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0 (the semigroup property).

We say that T (t) is uniformly bounded if ||T (t)f || ≤M ||f || for all f ∈ X and all t ≥ 0.

If T (tn)f → T (t)f in X for all f ∈ X whenever tn → t then the operator T is strongly

continuous. It is easy to check that {T (t); t ≥ 0} is strongly continuous if T (t)f → f in

X for all f ∈ X as t → 0. A strongly continuous, bounded semigroup is also called a C0

semigroup.
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For any strongly continuous semigroup {T (t); t > 0} on a Banach space X we define

the infinitesimal generator as

Lf = lim
t→0+

T (t)f − f
t

in X (2.32)

meaning that ||t−1(T (t)f − f)− Lf || → 0 in the Banach space norm. The domain D(L) of

this linear operator is the set of all f ∈ X for which the limit in (2.32) exists. The domain

D(L) is dense in X, and L is closed, meaning that if fn → f and Lfn → g in X then

f ∈ D(L) and Lf = g (see, for example Corollary I.2.5 in [42]).

Theorem 2.4. Let T (t) be a C0 semigroup. There exists a constant a ≥ 0 and M ≥ 1 such

that

||T (t)|| ≤Meat for 0 ≤ t <∞.

Proof. See, for example, Pazy [42, Theorem I.2.2].

Corollary 2.5. If T (t) is a C0 semigroup then for every f ∈ X, t→ T (t)f is a continuous

function from R+ (the nonnegative real line) into X.

Proof. See, for example, Pazy [42, Theorem I.2.3].

Theorem 2.6. Let T (t) be a C0 semigroup and let L be its infinitesimal generator. Then

(i) For f ∈ X,
∫ t

0
T (s)fds ∈ D(L) and

L

(∫ t

0

T (s)fds

)
= T (t)f − f

(ii) For f ∈ D(L), T (t)f ∈ D(L) and

d

dt
T (t)f = LT (t)f = T (t)Lf

Proof. See, for example, Pazy [42, Theorem I.2.4].
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2.5 Basic Facts of Relativistic Stable Process

In this section we assemble the basic notation and facts of relativistic stable process that

will be used in the sequel. We also give a proof to some simple lemmas and propositions.

Next we introduce some notations. For x ∈ Rd, let δD(x) denote the Euclidean distance

between x and ∂D and the ball in Rd center at x and radius r, {y : |y − x| < r} will be

denoted by B(x, r). Define

ψ(θ) =

∫ ∞
0

e−vvp−1/2(θ + v/2)p−1/2dv, θ ≥ 0,

where p = (d+α)/2.We putR(α, d) = A(−α, d)/ψ(0), whereA(v, d) = (Γ((d−v)/2))/(πd/22v|Γ(v/2)|).

Let ν(x), ν̃(x) be the densities of the Lévy measures of the relativistic α−stable process and

the standard α−stable process, respectively. These densities, are given by

ν(x) =
R(α, d)

|x|d+α
e−m

1/α|x|ψ(m1/α|x|) (2.33)

ṽ(x) =
A(−α, d)

|x|d+α
(2.34)

We need the following estimate of the transition probabilities of the process Xt which

is given in ([26], Lemma 2.2): For any x, y ∈ Rd and t > 0 there exist constants c1 > 0 and

c2 > 0,

p(t, x, y) ≤ c1e
mt min

{
t

|x− y|d+α
e−c2|x−y|, t−d/α

}
(2.35)

We will use the fact([14], Lemma 6) that if D ⊂ Rd is an open bounded set satisfying a

uniform outer cone condition, then P x(X(τD) ∈ ∂D) = 0 for all x ∈ D. For the open

bounded set D we will be denoted by GD(x, y) the Green function for the set D equal to

GD(x, y) =

∫ ∞
0

pD(t, x, y)dt, x, y ∈ Rd
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and for any such D the expectation of the exit time of the processes Xt from D is given by

the integral of the Green function over the domain. That is,

Ex(τD) =

∫
D

GD(x, y)dy.

Now we state a simple lemma about the upper bound of rD(t, x, y), which is an analogue

of [7, Lemma 2.1.] for stable processes.

Lemma 2.7. Let D ⊂ Rd be an open set. For any x, y ∈ D we have

rD(t, x, y) ≤ c1e
mt

(
t

δd+α
D (x)

e−c2δD(x) ∧ t−d/α
)

Proof. Using (1.4) and (2.35) we have

rD(t, x, y) = Ey(p(t− τD, X(τD), x); τD < t)

≤ c1e
mtEy

(
t

|x−X(τD)|d+α
e−c2|x−X(τD)| ∧ t−d/α

)
≤ c1e

mt

(
t

δd+α
D (x)

e−c2δD(x) ∧ t−d/α
)

We need the following result for to get analogue to the celebrated Weyl’s asymptotic

formula for the eigenvalues of the Laplacian.

Lemma 2.8.

lim
t→0

p(t, 0)e−mttd/α = C1 (2.36)

where

C1 = (4π)d/2
∫ ∞

0

u−d/2θβ(1, u)du =
ωdΓ(d/α)

(2π)dα
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Proof. By (1.2) we have

p(t, x, x) = p(t, 0) = emt
∫ ∞

0

1

(4πu)d/2
e−m

1/βuθβ(t, u)du

Now using the scaling of stable subordinator θβ(t, u) = t−1/βθβ(1, ut−1/β) and a change

of variables we get

p(t, 0) =
emt

(4π)d/2td/α

∫ ∞
0

z−d/2e−m
1/βt1/βzθβ(1, z)dz

then by dominated convergence theorem we obtain

lim
t→0

p(t, 0)e−mttd/α =
1

(4π)d/2

∫ ∞
0

z−d/2θβ(1, z)dz

and this last integral is equal to the density of α-stable process at time 1 and x = 0 which

was calculated in [7] to be

ωdΓ(d/α)

(2π)dα
.

Now we state a proposition which gives the Weyl’s asymtotic for the eigenvalues of the

relativistic Laplacian.

Proposition 2.9.

lim
t→0

td/αe−mtZD(t) = C1|D| (2.37)

where C1 = ωdΓ(d/α)
(2π)dα

.

Let N(λ) be the number of eigenvalues {λj} which do not exceed λ, it follows from

(2.37) and the classical Tauberian theorem (see for example [20], p.445 Theorem 2) where

L(t) = C1|D|em/t is our slowly varying function at infinity that

lim
λ→∞

λ−d/αe−m/λN(λ) =
C1|D|

Γ(1 + d/α)
(2.38)
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This is the analogue for relativistic stable process of the celebrated Weyl’s asymptotic

formula for the eigenvalues of the Laplacian.

We next give the proof of Proposition 2.9.

Proof of Porposition 2.9. By (1.4) we see that

pD(t, x, x)

C1emtt−d/α
=

p(t, 0)

C1emtt−d/α
− rD(t, x, x)

C1emtt−d/α
. (2.39)

Since the limit of the first term tend to 1 as t → 0 by (2.36), in order to prove (2.37), we

must show that

td/α

C1emt

∫
D

rD(t, x, x)dx→ 0, as t→ 0. (2.40)

For 0 < t < 1, consider the subdomains Dt = {x ∈ D : δD(x) ≥ t1/2α} and its complement

DC
t = {x ∈ D : δD(x) < t1/2α}. By Lebesgue dominated convergence Theorem and recalling

that |D| <∞ we get |DC
t | → 0 as t→ 0. Since pD(t, x, x) ≤ p(t, x, x), by (1.3) we see that

rD(t, x, x)

C1emtt−d/α
≤ 1,

for all x ∈ D. It follows that

td/α

C1emt

∫
DCt

rD(t, x, x)dx→ 0, as t→ 0. (2.41)

On the other hand, by Lemma 2.2 in [26] we obtain

rD(t, x, x)

C1emtt−d/α
=

Ex[p(t− τD, XτD , x); t ≥ τD]

C1emtt−d/α

≤ cEy min

{
t1+d/α

|x−X(τD)|d+α
e−c2|x−X(τD)|, 1

}
≤ cmin

{
t1+d/α

δD(x)d+α
e−c2δD(x), 1

}
. (2.42)
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For x ∈ Dt and 0 < t < 1, the right hand side of (2.42) is bounded above by ctd/2α+1/2 and

hence

td/α

C1emt

∫
Dt

rD(t, x, x)dx ≤ ctd/2α+1/2|D| (2.43)

and this last quantity goes to 0 as t→ 0.

For an open set D ⊂ Rd and x ∈ Rd, the distribution P x(τD < ∞, X(τD) ∈ ·) will be

called the relativistic α−harmonic measure for D. The following Ikeda-Watanabe formula

recovers the relativistic α−harmonic measure for the set D from the Green function.

Proposition 2.10 ([26]). Assume that D is an open, nonempty, bounded subset of Rd, and

A is a Borel set such that dist(D,A) > 0. Then

P x(X(τD) ∈ A, τD <∞) =

∫
D

GD(x, y)

∫
A

v(y − z)dzdy, x ∈ D (2.44)

Here we need the following generalization already stated and used in [7].

Proposition 2.11. [26, Proposition 2.5] Assume that D is an open, nonempty, bounded

subset of Rd, and A is a Borel set such that A ⊂ Dc\∂D and 0 ≤ t1 < t2 <∞, x ∈ D. Then

we have

P x(X(τD) ∈ A, t1 < τD < t2) =

∫
D

∫ t2

t1

pD(s, x, y)ds

∫
A

v(y − z)dzdy.

Now we need the following proposition that holds for a large class of Lévy processes.

The result is about the difference pF (t, x, y)− pD(t, x, y) where D and F are open sets and

D ⊂ F. The proof given in [7], given for stable processes, mainly uses the strong Markov

property it works for all strong Markov processes with transition densities.

Proposition 2.12. [7, Proposition 2.3] Let D and F be open sets in Rd such that D ⊂ F.

Then for any x, y ∈ Rd we have

pF (t, x, y)− pD(t, x, y) = Ex(τD < t,X(τD) ∈ F\D; pF (t− τD, X(τD), y))
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Lemma 2.13. [45, Lemma 5] Let D ⊂ Rd be an open set. For any x, y ∈ D and t > 0 the

following estimates hold;

pD(t, x, y) ≤ emtp̃D(t, x, y)

rD(t, x, y) ≤ e2mtr̃D(t, x, y)

(2.45)

We need the following lemma given by Van den Berg in [49].

Lemma 2.14. [49, Lemma 5] Let D be an open bounded set in Rd with R-smooth boundary

∂D and define for 0 ≤ q < R

Dq = {x ∈ D : δD(x) > q}

and denote the area of its boundary ∂Dq by |∂Dq|. Then

(
R− q
R

)d−1

|∂D| ≤ |∂Dq| ≤
(

R

R− q

)d−1

|∂D|, 0 ≤ q < R. (2.46)

Corollary 2.15. ([7], Corollary 2.14) Let D be an open bounded set in Rd with R-smooth

boundary. For any 0 < q ≤ R we have

(i)

2−d+1|∂D| ≤ |∂Dq| ≤ 2d−1|∂D|,

(ii)

|∂D| ≤ 2d|D|
R

,

(iii) ∣∣∣∣|∂Dq| − |∂D|
∣∣∣∣ ≤ 2ddq|∂D|

R
≤ 22ddq|D|

R2

Now we will introduce the following notation. Since D has R-smooth boundary, for any

point y ∈ ∂D there are two open balls B1 and B2 both of radius R such that B1 ⊂ D,B2 ⊂

Rd\(D ∪ ∂D), ∂B1 ∩ ∂B2 = y. For any x ∈ DR/2 there exist a unique point x∗ ∈ ∂D such
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that δD(x) = |x − x∗|. Let B1 = B(z1, R), B2 = B(z2, R) be the balls for the point x∗. Let

H(x) be the half-space containing B1 such that ∂H(x) contains x∗ and is perpendicular to

the segment z1z2.

We will need the following very important proposition in the proof of our main result.

Such a proposition has been proved for the stable process in [7, Proposition 3.1].

Proposition 2.16. Let D ⊂ Rd, d ≥ 2, be an open bounded set with R-smooth boundary

∂D. Then for any x ∈ D\DR/2 and t > 0 such that t1/α ≤ R/2 we have

|rD(t, x, x)− rH(x)(t, x, x)| ≤ ce2mtt1/α

Rtd/α

((
t1/α

δD(x)

)d+α/2−1

∧ 1

)
(2.47)

Proof. Exactly as in [7], let x∗ ∈ ∂D be a unique point such that |x− x∗| = dist(x, ∂D) and

B1 and B2 be balls with radius R such that B1 ⊂ D,B2 ⊂ Rd\(D ∪ ∂D), ∂B1 ∩ ∂B2 = x∗.

Let us also assume that x∗ = 0 and choose an orthonormal coordinate system (x1, x2, ..., xd)

so that the positive axis 0x1 is in the direction of
−→
0p where p is the center of the ball B1.

Note that x lies on the interval 0p so x = (|x|, 0, 0, ..., 0). Note also that B1 ⊂ D ⊂ (B2)c

and B1 ⊂ H(x) ⊂ (B2)c. For any open sets A1, A2 such that A1 ⊂ A2 we have rA1(t, x, y) ≥

rA2(t, x, y) so

|rD(t, x, x)− rH(x)(t, x, x)| ≤ rB1(t, x, x)− r(B2)c(t, x, x).

So in order to prove the proposition it suffices to show that

rB1(t, x, x)− r(B2)c(t, x, x) ≤ ce2mtt1/α

Rtd/α

((
t1/α

δD(x)

)d+α/2−1

∧ 1

)

for any x = (|x|, 0, ..., 0), |x| ∈ (0, R/2]. Such an estimate was proved for the case m = 0 in

[7]. In order to complete the proof it is enough to prove that

rB1(t, x, x)− r(B2)c(t, x, x) ≤ ce2mt
{
r̃B1(t, x, x)− r̃(B2)c(t, x, x)

}
.

But this follows from Propositions 2.11, 2.12 and 2.13.
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Given the ballB2, we set U = (B2)c. Now using the generalized Ikeda-Watanabe formula,

Proposition (2.12) and Lemma 2.4 in [26] we have

rB1(t, x, x)− rU(t, x, x)

= Ex [t > τB1 , X(τB1) ∈ U\B1; pU(t− τB1 , X(τB1), x)]

=

∫
B1

∫ t

0

pB1(s, x, y)ds

∫
U\B1

v(y − z)pU(t− s, z, x)dzdy

≤ e2mt

∫
B1

∫ t

0

p̃B1(s, x, y)ds

∫
U\B1

ṽ(y − z)p̃U(t− s, z, x)dzdy

≤ ce2mtEx
[
t > τ̃B1 , X̃(τ̃B1) ∈ U\B1; p̃U(t− τ̃B1 , X̃(τ̃B1), x)

]
= ce2mt (r̃B1(t, x, x)− r̃U(t, x, x))

≤ ce2mtt1/α

Rtd/α

((
t1/α

δD(x)

)d+α/2−1

∧ 1

)

The last inequality follows by Proposition 3.1 in [7].
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Chapter 3

Strong Analytic Solution to Distributed Order Time Fractional Cauchy problems

In this chapter we give strong analytic solution to distributed order time fractional

Cauchy problems. Our proofs work for operators L that are generators of uniformly bounded

and continuous semigroups on Banach spaces. In our first main result the Lévy subordinator

is written as the sum of n independent stable subordinators of index 0 < β1 < β2 < · · · <

βn < 1 and Theorem 3.4 provides an extension with subordinator Dµ(t) as the weighted

average of an arbitrary number of independent stable subordinators.

Let Dψ(t) be a strictly increasing Lévy process (subordinator) with E[e−sDψ(t)] = e−tψ(s),

where the Laplace exponent

ψ(s) = bs+

∫ ∞
0

(e−sx − 1)φ(dx), (3.1)

b ≥ 0, and φ is the Lévy measure of Dψ. Then we must have either

φ(0,∞) =∞, (3.2)

or b > 0, or both, see [35]. Let

Eψ(t) = inf{τ ≥ 0 : Dψ(τ) > t} (3.3)

be the inverse subordinator.

Let T be a uniformly bounded, strongly continuous semigroup on a Banach space. Let

S(t)f =

∫ ∞
0

(T (l)f)gEψ(t)(l)dl (3.4)
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where gEψ(t)(l) is a Lebesgue density of Eψ(t).

Using (2.31), it is easy to show that

∫ ∞
0

e−stgEψ(t)(l)dt =
1

s
ψ(s)e−lψ(s).

Using Fubini’s Theorem, we get

∫ ∞
0

ψ(s)e−lψ(s)T (l)fdl = s

∫ ∞
0

e−stS(t)fdt. (3.5)

We define a sectorial region of the complex plane C(α) = {reiθ ∈ C : r > 0, |θ| < α}.

Note that C(π/2) = C+ = {Re(Z) > 0}. We call a family of linear operators on a Banach

space X strongly analytic in a sectorial region if for some α > 0 the mapping t→ T (t)f has

an analytic extension to the sectorial region C(α) for all f ∈ X (see, for example, section

3.12 in [23]).

Next we state two theorem that is very important in proving our main results. The first

theorem is about Bochner intergal and the next gives analytic representation of an operators.

Theorem 3.1. (Bochner). A function f : I → X is Bochner integrable if and only if f is

measurable and |f | is integrable. If f is Bochner integrable, then

wwww∫
I

f(t) dt

wwww ≤ ∫
I

‖f(t)‖ dt

Proof. See, for example, [1, Theorem 1.1.4].

Theorem 3.2. (Analytic Representation). Let 0 < α ≤ π
2
, ω ∈ R and q : (ω,∞) → X.

The following are equivalent:

i) There exists a holomorphic function f : C(α)→ X such that supz∈C(β)||e−ωzf(z)|| <∞

for all 0 < β < α and q(λ) = f̃(λ) for all λ > ω.
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ii) The function q has a holomorphic extension q̄ : ω + C(α + π/2) → X such that

supλ∈ω+C(γ+π/2)||(λ− ω)q̄(λ)|| <∞ for all 0 < γ < α.

Proof. See, for example, [1, Theorem 2.6.1].

Now we give our main result for distributed order fractional Cauchy problems. Our

solution works for operators L that are generators of uniformly bounded and continuous

semigroups on Banach spaces.

Let 0 < β1 < β2 < · · · < βn < 1. In the next theorem we consider the case where

ψ(s) = c1s
β1 + c2s

β2 + · · ·+ cns
βn .

In this case the Lévy subordinator can be written as

Dψ(t) = (c1)1/β1D1(t) + (c2)1/β2D2(t) + · · ·+ (cn)1/βnDn(t)

where D1(t), D2(t), · · · , Dn(t) are independent stable subordinators of index 0 < β1 < β2 <

· · · < βn < 1.

Theorem 3.3. Let (X, ||.||) be a Banach space and L be the generator of a uniformly

bounded, strongly continuous semigroup {T (t) : t ≥ 0}. Then the family {S(t) : t ≥ 0} of

linear operators from X into X given by (3.4) is uniformly bounded and strongly analytic in

a sectorial region. Furthermore, {S(t) : t ≥ 0} is strongly continuous and h(x, t) = S(t)f(x)

is a solution of
n∑
i=1

ci
∂βih(x, t)

∂tβi
= Lh(x, t); h(x, 0) = f(x).

for β1 < β2 < · · · < βn ∈ (0, 1)

Proof. We adapt the methods of Baeumer and Meerschaert [3, Theorem 3.1] with some

very crucial changes in the following. For the purpose of completeness of the arguments we

included some parts verbatim from Baeumer and Meerschaert [3].
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Since {T (t) : t ≥ 0} is uniformly bounded we have ||T (t)f || ≤ M ||f || for all f ∈ X.

Theorem 3.1 implies that a function F : R1 → X is integrable if and only if F (s) is measurable

and ||F (s)|| is integrable, in which case

wwww∫ F (l) dl

wwww ≤ ∫ ||F (l)||dl.

For fixed f ∈ X and applying Bochner’s Theorem with F (l) = (T (l)f)gEψ(t)(l) we have that

||S(t)f || =

wwww∫ ∞
0

(T (l)f)gEψ(t)(l)dl

wwww
≤

∫ ∞
0

||(T (l)f)gEψ(t)(l)||dl

=

∫ ∞
0

||T (l)f ||gEψ(t)(l)dl

≤
∫ ∞

0

M ||f ||gEψ(t)(l)dl = M ||f ||

since gEψ(t)(l) is the Lebesgue density for Eψ(t). This shows that {S(t) : t ≥ 0} is well

defined and uniformly bounded family of linear operators on X.

The definition of T (t) and dominated convergence theorem implies

||S(t)f − f || =

wwww∫ ∞
0

(T (l)f − f)gEψ(t)(l) dl

wwww
≤

∫ ∞
0

||T (l)f − f ||gEψ(t)(l)dl

→ ||T (0)f − f || = 0

as t→ 0+. This shows lim
t→0+

S(t)f = f . Now if t, h > 0 then we have

||S(t+ h)f − S(t)f || ≤
∫ ∞

0

||T (l)f |||gEψ(t+h)(l)− gEψ(t)(l)|dl→ 0

as h→ 0+ since Eψ(t+ h) =⇒ Eψ(t) as h→ 0.
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This shows that {S(t) : t > 0} is strongly continuous.

Let q(s) =
∫∞

0
e−stT (t)fdt and r(s) =

∫∞
0
e−stS(t)fdt for any s > 0, so that we can write

(3.5) in the form

ψ(s)q(ψ(s)) = sr(s) (3.6)

for any s > 0. Now we want to show that this relation holds for certain complex numbers.

Fix s ∈ C+ = {z ∈ C : R(z) > 0}, and let F (t) = e−stT (t)f . Since F is continuous, it

is measurable, and we have ||F (t)|| ≤ |e−st|M ||f || = e−tR(s)M ||f || since ||T (t)f || ≤ M ||f ||,

so that the function ||F (t)|| is integrable. Then Bochner’s Theorem implies that q(s) =∫∞
0
F (t)dt exists for all s ∈ C+, with

||q(s)|| =
wwww∫ ∞

0

F (t) dt

wwww ≤ ∫ ∞
0

||F (t)||dt ≤
∫ ∞

0

e−tR(s)M ||f ||dt =
M ||f ||
R(s)

. (3.7)

Since q(s) is the Laplace transform of the bounded continuous function t 7→ T (t)f , Theorem

1.5.1 of [1] shows that q(s) is an analytic function on s ∈ C+.

Now we carry out the details of the proof for only in the case n = 2. We want to show that

r(s) is the Laplace transform of an analytic function defined on a sectorial region. Theorem

3.2 implies that if for some real x and some α ∈ (0, π/2] the function r(s) has an analytic

extension to the region x+C(α+π/2) and if sup{||(s−x)r(s)|| : s ∈ x+C(α′+π/2)} <∞

for all 0 < α′ < α, then there exists an analytic function r(t) on t ∈ C(α) such that

r(s) is the Laplace transform of r(t). We will apply the theorem with x = 0. It follows

from (3.6) that r(s) = 1
s
ψ(s)q(ψ(s)) for all s > 0, but the right hand side here is well

defined and analytic on the set of complex s that are not on the branch cut and are such

that R(ψ(s)) = R(c1s
β1 + c2s

β2) > 0, since β1 < β2, it suffices to consider R(sβ2) > 0,

so if 1/2 < β2 < 1, then r(s) has a unique analytic extension to the sectorial region

C(π/2β2) = {s ∈ C : Re(sβ2) > 0} (e.g., [23, 3.11.5] ), and note that π/2β2 = π/2 + α
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for some α > 0. If β2 < 1/2 then r(s) has an analytic extension to the sectorial region

s ∈ C(π/2+α) for any α < π/2 and R(sβ2) > 0 for all such s. Now for any complex s = reiθ

such that s ∈ C(π/2 + α′) for any 0 < α′ < α, we have in view of (3.6) and (3.7) that

||sr(s)|| = ||ψ(s)q(ψ(s))||

= |c1s
β1 + c2s

β2|||q(c1s
β1 + c2s

β2)||

=

∣∣∣∣ c1r
β1eiβ1θ + c2r

β2eiβ2θ

c1rβ1 cos(β1θ) + c2rβ2 cos(β2θ)

∣∣∣∣
×||R(c1s

β1 + c2s
β2)q(c1s

β1 + c2s
β2)||

≤
∣∣∣∣ c1r

β1eiβ1θ

c1rβ1 cos(β1θ) + c2rβ2 cos(β2θ)

∣∣∣∣M ||f ||
+

∣∣∣∣ c2r
β2eiβ2θ

c1rβ1 cos(β1θ) + c2rβ2 cos(β2θ)

∣∣∣∣M ||f ||
≤

(
1

cos(β1θ)
+

1

cos(β2θ)

)
M ||f || (3.8)

which is finite since |β1θ| < |β2θ| < π/2. Hence Theorem 2.6.1 of [1] implies there exists an

analytic function r(t) on t ∈ C(α) with Laplace transform r(s). Using the uniqueness of the

Laplace transform (e.g., [1, Thm. 1.7.3]), if follows that t 7→ S(t)f has an analytic extension

(namely t 7→ r(t)) to the sectorial region t ∈ C(α). Next we wish to apply Theorem 2.6.1 of

[1] again to show that for any 0 < β1 < β2 < 1 the function

t 7→
∫ t

0

(t− u)−βi

Γ(1− βi)
S(u)fdu i = 1, 2 (3.9)

has an analytic extension to the same sectorial region t ∈ C(α). It is easy to show that

∫ ∞
0

t−βi

Γ(1− βi)
e−stdt = sβi−1 (3.10)

for any 0 < βi < 1 and any s > 0. Since r(s) is the Laplace transform of t 7→ S(t)f ,

it follows from the convolution property of the Laplace transform (e.g. property 1.6.4 [1])

that the function (3.9) has Laplace transform sβi−1r(s) for all s > 0. Since r(s) has an
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analytic extension to the sectorial region s ∈ C(π/2 + α), so does sβi−1r(s). For any x > 0,

if s = x + reiθ for some r > 0 and |θ| < π/2 + α′ for any 0 < α′ < α then in view of (3.8)

we have

||(s− x)sβi−1r(s)|| = ||(s− x)sβi−2sr(s)||

≤ r||sβi−2||
(

1

cos(β1θ)
+

1

cos(β2θ)

)
M ||f ||

where ||s|| is bounded away from zero, ||s|| ≤ r+x and βi−2 < −1, so that ||(s−x)sβi−1r(s)||

is bounded on the region x+ C(α′ + π/2) for all 0 < α′ < α. Then it follows as before that

the function (3.9) has an analytic extension to the sectorial region t ∈ C(α).

Since {T (t) : t ≥ 0} is a strongly continuous semigroup with generator L, Theorem 2.6

implies that
∫ t

0
T (s)fds is in the domain of the operator L and

T (t)f = L

∫ t

0

T (s)fds+ f.

Since the Laplace transform q(s) of t 7→ T (t)f exists, Corollary 1.6.5 of [1] show that the

Laplace transform of t 7→
∫ t

0
T (s)fds exists and equals s−1q(s). Corollary 1.2.5 [42] shows

that L is closed. Fix s and let g = q(s) =
∫∞

0
e−stT (t)fdt and let gn be a finite Riemann

sum approximating this integral, so that gn → g in X. Let hn = s−1gn and h = s−1g. Then

gn, g are in the domain of L, gn → g and hn → h. Since hn is a finite sum we also have

L(hn) = s−1L(gn) → s−1L(g). Since L is closed, this implies that h is in the domain of L

and that L(h) = s−1L(g). In other words, the Laplace transform of t 7→ L
∫ t

0
T (s)fds exists

and equals s−1Lq(s). Then we have by taking the Laplace transform of each term

∫ ∞
0

e−slT (l)fdt = s−1L

∫ ∞
0

e−slT (l)fdl + s−1f
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for all s > 0. Multiply through by s to obtain

s

∫ ∞
0

e−slT (l)fdl = L

∫ ∞
0

e−slT (l)fdl + f

and substitute c1s
β1 + c2s

β2 for s to get

(c1s
β1 + c2s

β2)
∫∞

0
e−(c1sβ1+c2sβ2 )lT (l)fdl = L

∫∞
0
e−(c1sβ1+c2sβ2 )lT (l)fdl + f

for all s > 0. Now use (3.5) twice to get

s

∫ ∞
0

e−slS(l)fdl = L

(
s

c1sβ1 + c2sβ2

∫ ∞
0

e−slS(l)fdl

)
+ f

and multiplying both sides by c1s
β1−2 + c2s

β2−2 we get

(c1s
β1−1 + c2s

β2−1)

∫ ∞
0

e−slS(l)fdl = Ls−1

∫ ∞
0

e−stS(l)fdl + c1s
β1−2f + c2s

β2−2f. (3.11)

where we have again used the fact that L is closed. The term on the left hand side of (3.11)

is c1s
β1−1r(s) + c2s

β2−1r(s) which was already shown to be the Laplace transform of the

function c1

∫ t
0

(t−u)−β1

Γ(1−β1)
S(u)fdu+c2

∫ t
0

(t−u)−β2

Γ(1−β2)
S(u)fdu, which is analytic in a sectorial region.

Equation (3.10) also shows that sβi−2 is the Laplace transform of t 7→ t1−βi
Γ(2−β)

. Now take the

term c1s
β1−2f + c2s

β2−2f to the other side and invert the Laplace transforms. Using the fact

that {S(t) : t ≥ 0} is uniformly bounded, we can apply the Phragmen-Mikusinski Inversion

formula for the Laplace transform (see [2, Corollary 1.4]) to obtain

c1

(∫ t
0

(t−u)−β1

Γ(1−β1)
S(u)fdu− t1−β1

Γ(2−β1)
f
)

+ c2

(∫ t
0

(t−u)−β2

Γ(1−β2)
S(u)fdu− t1−β2

Γ(2−β2)
f
)

= lim
n→∞

L

Nn∑
j=1

αn,j
ecnj l

cnj

∫ ∞
0

e−cnj lS(l)fdl

38



where the constants Nn, αn,j, and cnj are given by the inversion formula and the limit is

uniform on compact sets. Using again the fact that L is closed we get

c1

(∫ t

0

(t− u)−β1

Γ(1− β1)
S(u)fdu− t1−β1

Γ(2− β1)
f

)
+c2

(∫ t

0

(t− u)−β2

Γ(1− β2)
S(u)fdu− t1−β2

Γ(2− β2)
f

)
= L

∫ t

0

S(l)fdl (3.12)

and since the function (3.9) is analytic in a sectorial region, the left hand side of (3.12) is

differentiable for t > 0 Corollary 1.6.6 of [1] shows that

d

dt

∫ t

0

(t− u)−βi

Γ(1− βi)
S(u)fdu (3.13)

has Laplace transform sβir(s) and hence (3.13) equals dβiS(t)f

dtβi
. Now take the derivative with

respect to t on both sides of (3.12) to obtain

c1

(
dβ1

dtβ1
S(t)f − t−β1

Γ(1− β1)
f

)
+ c2

(
dβ2

dtβ2
S(t)f − t−β2

Γ(1− β2)
f

)
= LS(t)f

for all t > 0, where we use the fact that L is closed to justify taking the derivative inside.

Using the relation (2.23) between the Rieman-Liuoville and Caputo fractional derivatives we

proved the theorem

The next theorem provides an extension with subordinatorDµ(t) as the weighted average

of an arbitrary number of independent stable subordinators. Let Eµ(t) be the inverse of the

subordinator Dµ(t) with Laplace exponent ψ(s) =
∫ 1

0
sβdµ(β) where suppµ ⊂ (0, 1).
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Theorem 3.4. Let (X, || · ||) be a Banach space and µ be a positive finite measure with

suppµ ⊂ (0, 1). Then the family {S(t) : t ≥ 0} of linear operators from X into X given

by S(t)f =

∫ ∞
0

(T (l)f)gEµ(t)(l)dl, is uniformly bounded and strongly analytic in a sectorial

region. Furthermore, {S(t) : t ≥ 0} is strongly continuous and h(x, t) = S(t)f(x) is a

solution of

D(µ)
1 h(x, t) =

∫ 1

0

∂βt h(x, t)µ(dβ) = Lh(x, t); h(x, 0) = f(x). (3.14)

Proof. Since suppµ ⊂ (0, 1), the density gEµ(t)(l), l ≥ 0, exists and since ||T (l)f || ≤ M ||f ||,

then S(t)f exists and ||S(t)f || ≤ M ||f ||. Also, S(t)f is strongly continuous as in Theorem

3.3.

Let q(s) =
∫∞

0
e−stT (t)fdt and r(s) =

∫∞
0
e−stS(t)fdt for any s > 0, then by (3.5) we

have

ψ(s)q(ψ(s)) = sr(s) where ψ(s) =

∫ 1

0

sβµ(dβ) (3.15)

for any s > 0. Now we want to show that this relation holds for certain complex numbers s. In

Theorem 3.3, we have shown that q(s) is an analytic function on s ∈ C+ and ||q(s)|| ≤ M ||f ||
R(s)

.

Now we want to show that r(s) is the Laplace transform of an analytic function defined

on a sectorial region. It follows from equation (3.15) that

r(s) =

(∫ 1

0

sβ−1µ(dβ)

)
q

(∫ 1

0

sβµ(dβ)

)

for all s > 0, but the right hand side here is well defined and analytic on the set of complex s

such that R
(∫ 1

0
sβµ(dβ)

)
> 0. Let β1 = sup{supp µ} and fix ε > 0 small such that π/2−ε

β1
>

π/2. So if 1/2 < β1 < 1, then r(s) has a unique analytic extension to the sectorial region

C(π/2−ε
β1

) ⊂ {s ∈ C : R(
∫ 1

0
sβµ(dβ)) > 0} and note that π/2−ε

β1
= π/2 + α for some α > 0. If

0 < β1 < 1/2 then r(s) has an analytic extension to the sectorial region s ∈ C(π/2 + α) for

any α < π/2, and R(
∫ 1

0
sβµ(dβ)) > 0 for all such s. Now for any complex s = reiθ such that
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s ∈ C(π/2 + α
′
) for any 0 < α

′
< α we have that

||sr(s)|| =

∣∣∣∣∣∣∣∣(∫ 1

0

sβµ(dβ)

)
q

(∫ 1

0

sβµ(dβ)

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣
∫ 1

0

sβµ(dβ)

R
(∫ 1

0

sβµ(dβ

)
∣∣∣∣∣∣∣∣∣M ||f ||

=

∣∣∣∣∣
∫ 1

0
rβ cos(βθ)µ(dβ) + i

∫ 1

0
rβ sin(βθ)µ(dβ)∫ 1

0
rβ cos(βθ)µ(dβ)

∣∣∣∣∣M ||f ||
≤

1 +

∣∣∣∣∣∣∣∣
∫ 1

0

rβ sin(βθ)µ(dβ)∫ 1

0

rβ cos(βθ)µ(dβ)

∣∣∣∣∣∣∣∣
M ||f ||

≤

1 +

∫ 1

0

rβ(dβ)

cos(π/2− ε)
∫ 1

0

rβµ(dβ)

M ||f ||

=

(
1 +

1

cos(π/2− ε)

)
M ||f || <∞.

Hence Theorem 2.6.1 of [1] implies that there exists an analytic function r(t) on t ∈ C(α)

with Laplace transform r(s). Using the uniqueness of the Laplace transform it follows that

t 7→ S(t)f has an analytic extension r(t) to the sectorial region t ∈ C(α).

As in Theorem 3.3 for any β ∈ suppµ the function

t 7→
∫ t

0

(t− u)−β

Γ(1− β)
S(u)fdu (3.16)

has analytic extension to the sectorial region t ∈ C(α).

Next we wish to apply Theorem 2.6.1 of [1] again to show that for any 0 < β < 1 the

function

t 7→
∫ t

0

(∫ 1

0

(t− u)−β

Γ(1− β)
µ(dβ)

)
S(u)fdu (3.17)
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has analytic extension to the sectorial region t ∈ C(α).

Since

∫ ∞
0

(∫ 1

0

t−β

Γ(1− β)
µ(dβ)

)
e−stdt =

∫ 1

0

sβ−1µ(dβ)

for any 0 < β < 1 and any s > 0 and r(s) is the Laplace transform of t 7→ S(t)f it

follows from convolution property of the Laplace transform that the function (3.17) has

Laplace transform s−1ψ(s)r(s) for all s > 0. Since r(s) has an analytic extension to the

sectorial region s ∈ C(π/2 +α), so does s−1ψ(s)r(s). For any x > 0, if s = x+ reiθ for some

r > 0 and |θ| < π/2 + α
′

for any 0 < α
′
< α then we have

wwww(s− x)

(∫ 1

0

sβ−1µ(dβ)

)
r(s)

wwww =

wwww(s− x)

∫ 1

0

sβ−2s.r(s)µ(dβ)

wwww
≤ r

wwww∫ 1

0

sβ−2µ(dβ)

wwww (1 +
1

cos(π/2− ε)
)M ||f ||

≤ r

(∫ 1

0

||sβ−2||µ(dβ)

)(
1 +

1

cos(π/2− ε)

)
M ||f ||

≤ r

(∫ 1

0

xβ−2µ(dβ)

)(
1 +

1

cos(π/2− ε)

)
M ||f ||

=
r

x2

(∫ 1

0

xβµ(dβ)

)(
1 +

1

cos(π/2− ε)

)
M ||f ||.

Since µ positive finite measure and x > 0, so that ||(s − x)s−1ψ(s)r(s)|| is bounded on the

region x+ C(α
′
+ π/2) for all 0 < α

′
< α. Then it follows as before that the function (3.17)

has an analytic extension to the sectorial region C(α).

Since {T (t) : t ≥ 0} is a strongly continuous semigroup with generator L, Theorem 1.2.4

(b) in [42] implies that
∫ t

0
T (l)fdl is in the domain of the operator L and

T (t)f = L

∫ t

0

T (l)fdl + f.
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Then by taking Laplace transform of both sides we have

∫ ∞
0

e−stT (t)fdt = s−1L

∫ ∞
0

e−stT (t)fdt+ s−1f

for all s > 0. Multiply both sides by s to obtain

s

∫ ∞
0

e−stT (t)fdt = L

∫ ∞
0

e−stT (t)fdt+ f

and substitute ψ(s) =
∫ 1

0
sβµ(dβ) for s to obtain

ψ(s)

∫ ∞
0

e−ψ(s)tT (t)fdt = L

∫ ∞
0

e−ψ(s)tT (t)fdt+ f

for all s > 0. Now use (3.15) twice to get

s

∫ ∞
0

e−stS(t)fdt = L
s

ψ(s)

∫ ∞
0

e−stS(t)fdt+ f

and multiplying through by s−2ψ(s) to get

s−1ψ(s)

∫ ∞
0

e−stS(t)fdt = Ls−1

∫ ∞
0

e−stS(t)fdt+ ψ(s)s−2f

since L is closed. Invert the Laplace transform to get

∫ t

0

(∫ 1

0

(t− u)−β

Γ(1− β)
µ(dβ)

)
S(u)fdu−

∫ 1

0

t1−β

Γ(2− β)
fµ(dβ)

= lim
n→∞

L
Nn∑
j=1

αn,j
ecnj t

cnj

∫ ∞
0

e−Cnj tS(t)fdt

(3.18)

where the constant Nn, αn,j, and cn are given by the inversion formula.
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Next using Fubini’s theorem we show that
∫ 1

0

∫ t
0

(t−u)−β

Γ(1−β)
S(u)fduµ(dβ) have same Laplace

transform s−1ψ(s)r(s). This is true because

∫ 1

0

∫ ∞
0

wwwwe−st ∫ t

0

(t− u)−β

Γ(1− β)
S(u)f

wwww dudtµ(dβ)

≤M ||f ||
∫ 1

0

∫ ∞
0

e−st
∫ t

0

(t− u)−β

Γ(1− β)
dudtµ(dβ)

= M ||f ||
∫ 1

0

∫ ∞
0

e−stt1−β

Γ(2− β)
dtµ(dβ)

≤M ||f ||
∫ 1

0

sβ−2µ(dβ) <∞.

(3.19)

Since µ is positive finite measure and S(t)f is uniformly bounded then using Fubini’s theorem

and the uniqueness of the Laplace transform for functions in L1
loc(Rd) (Theorem 1.7.3 in [1])

we have

∫ 1

0

[∫ t

0

(t− u)−β

Γ(1− β)
S(u)fdu− t1−β

Γ(2− β)
f

]
µ(dβ)

= lim
n→∞

L
Nn∑
j=1

αn,j
ecnj t

cnj

∫ ∞
0

e−Cnj tS(t)fdt.

(3.20)

Using again the fact that L is closed we get

∫ 1

0

[∫ t

0

(t− u)−β

Γ(1− β)
S(u)fdu− t1−β

Γ(2− β)
f

]
µ(dβ) = L

∫ t

0

S(u)fdu

and now take the derivative with respect to t on both sides to obtain

∫ 1

0

(
dβ

dtβ
S(t)f − t−β

Γ(1− β)
f

)
µ(dβ) = LS(t)f

for all t > 0, where we use the fact that L is closed to justify taking the derivative inside.

Corollary 3.5. Let 0 < γ ≤ 2. Let −(−∆)γ/2 be fractional Laplacian on L1(Rd) correspond-

ing to the semigroup T (t) on L1(Rd). Let Y (t) be the corresponding symmetric stable process

(i.e. T (t)f(x) = Ex(f(Y (t))) ). Then the family {S(t) : t ≥ 0} of linear operators from X
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into X given by S(t)f =

∫ ∞
0

(T (l)f)gEµ(t)(l)dl = E(f(Y (Eµ(t)))), is uniformly bounded and

strongly analytic in a sectorial region. Furthermore, {S(t) : t ≥ 0} is strongly continuous

and h(x, t) = S(t)f(x) is a solution of

∫ 1

0

∂βt h(x, t)µ(dβ) = −(−∆)γ/2h(x, t); h(x, 0) = f(x). (3.21)
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Chapter 4

Two-term trace estimates

In this chapter we state and proof our main result about trace of relativistic stable

processes for R−smooth boundary domains. The asymptotic behavior for the trace of killed

symmetric α−stable processes, α ∈ (0, 2), for an open bounded set with R−smooth boundary

was given in [7]. When m = 0 our result reduces to the result for α−stable processes as

given in [7].

Theorem 4.1. Let D ⊂ Rd, d ≥ 2, be an open bounded set with R − smooth boundary. Let

|D| denote the volume (d−dimensional Lebesgue measure) of D and ∂D denote its surface

area ((d− 1)−dimensional Lebesgue measure) of its boundary. Suppose α ∈ (0, 2). Then

∣∣∣∣ZD(t)− C1(t)emt|D|
td/α

+ C2(t)|∂D|
∣∣∣∣ ≤ C3e

2mt|D|t2/α

R2td/α
, t > 0, (4.1)

where

C1(t) =
1

(4π)d/2

∫ ∞
0

z−d/2e−(mt)1/βzθβ(1, z)dz → C1 =
ωdΓ(d/α)

(2π)dα
as t→ 0,

C2(t) =

∫ ∞
0

rH(t, (x1, 0, · · · , 0), (x1, 0, · · ·, 0))dx1 ≤
C4e

2mtt1/α

td/α
, t > 0

C4 =

∫ ∞
0

r̃H(1, (x1, 0, · · · , 0), (x1, 0, · · ·, 0))dx1

C3 = C3(d, α), H = (x1, · · ·, xd) ∈ Rd : x1 > 0 and rH is given by (1.4)

When m = 0, 0 < α ≤ 2 our result becomes for bounded domains with R−smooth

boundary ∣∣∣∣ZD(t)− C5|D|
td/α

+
C4|∂D|t1/α

td/α

∣∣∣∣ ≤ C7|D|t2/α

R2td/α
(4.2)
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where c5 = ωdΓ(d/α)
(2π)dα

, C4 as in Theorem 4.1. This was established by Bañuelos and Kulczycki

[7] for stable processes.

Proof of Theorem 4.1. For the case t1/α > R/2 the theorem holds trivially. This is true

because for such t′s we have by Equation (1.3)

ZD(t) ≤
∫
D

p(t, x, x)dx ≤ c1e
mt|D|
td/α

≤ c1e
mt|D|t2/α

R2td/α

By Corollary 2.15 and Lemma 2.13 we also have

C2(t)|∂D| ≤ C4e
2mt|∂D|t1/α

td/α
≤ 2dC4e

2mt|D|t1/α

Rtd/α
≤ 2d+1C4e

2mt|D|t2/α

R2td/α

C1(t)emt|D|
td/α

≤ C1e
mt|D|t2/α

R2td/α

Therefore for t1/α > R/2 (4.1) holds. Here and in sequel we consider the case t1/α ≤ R/2.

From (1.5) and the fact that p(t, x, x) = C1(t)emt

td/α
, we have that

ZD(t)− C1(t)emt|D|
td/α

=

∫
D

pD(t, x, x)dx−
∫
D

p(t, x, x)dx

= −
∫
D

rD(t, x, x)dx, (4.3)

where C1(t) is as stated in the theorem. Therefore we must estimate (4.3). We break our

domain into two pieces, DR/2 and its complement. We will first consider the contribution of

DR/2.

Claim 1: ∫
DR/2

rD(t, x, x)dx ≤ ce2mt|D|t2/α

R2td/α
(4.4)

for t1/α ≤ R/2.
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Proof of Claim 1: By Lemma 2.13 we have

∫
DR/2

rD(t, x, x)dx ≤ e2mt

∫
DR/2

r̃D(t, x, x)dx, (4.5)

and by scaling of the stable density the right hand side of (4.5) equals

e2mt

td/α

∫
DR/2

r̃D/t1/α(1,
x

t1/α
,
x

t1/α
)dx. (4.6)

For x ∈ DR/2 we have δD/t1/α(x/t1/α) ≥ R/(2t1/α) ≥ 1. By [7, Lemma 2.1], we get

r̃D/t1/α

(
1,

x

t1/α
,
x

t1/α

)
≤ c

δd+α
D/t1/α

(x/t1/α)
≤ c

δ2
D/t1/α

(x/t1/α)
≤ ct2/α

R2
.

Using the above inequality, we get

∫
DR/2

rD(t, x, x)dx ≤ e2mt

td/α

∫
DR/2

ct2/α

R2
dx ≤ ce2mt|D|t2/α

R2td/α
,

which proves (4.4).

Now using proposition 2.16 we estimate the contribution from D\DR/2 to the integral

of rD(t, x, x) in (4.3).

Claim 2:

∣∣∣∣∣
∫
D\DR/2

rD(t, x, x)dx−
∫
D\DR/2

rH(x)(t, x, x)dx

∣∣∣∣∣ ≤ ce2mt|D|t2/α

R2td/α
(4.7)

for t1/α ≤ R/2.

Proof of Claim 2: By Proposition 2.16 the left hand side of (4.7) is bounded above by

ce2mtt1/α

Rtd/α

∫ R/2

0

|∂Dq|
((

t1/α

q

)d+α/2−1

∧ 1

)
dq.
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By Corollary 2.15, (i), the last quantity is smaller than or equal to

ce2mt(emtt1/α|∂D|
Rtd/α

∫ R/2

0

((
t1/α

q

)d+α/2−1

∧ 1

)
dq.

The integral in last quantity is bounded above by ct1/α. To see this observe that since

t1/α ≤ R/2 the above integral is equal to

ce2mtt1/α|∂D|
Rtd/α

[ ∫ t1/α

0

((
t1/α

q

)d+α/2−1

∧ 1

)
dq +

∫ R/2

t1/α

((
t1/α

q

)d+α/2−1

∧ 1

)
dq

=
ce2mtt1/α|∂D|

Rtd/α

[ ∫ t1/α

0

1dq +

∫ R/2

t1/α

(
t1/α

q

)d+α/2−1

dq

]
≤ ce2mtt2/α|∂D|

Rtd/α
.

Using this and Corollary (2.15), (ii), we get (4.7).

Recall that H = {(x1, · · · , xd) ∈ Rd : x1 > 0}. For abbreviation let us denote

fH(t, q) = rH(t, (q, 0, · · · , 0), (q, 0, · · · , 0)), t, q > 0.

Of course we have rH(x)(t, x, x) = fH(t, δH(x)). In the next step we will show that

∣∣∣∣∣
∫
D\DR/2

rH(x)(t, x, x)dx− |∂D|
∫ R/2

0

fH(t, q)dq

∣∣∣∣∣ ≤ ce2mt|D|t2/α

R2td/α
(4.8)

We have ∫
D\DR/2

rH(x)(t, x, x)dx =

∫ R/2

0

|∂Dq|fH(t, q)dq

Hence the left hand side of (4.8) is bounded above by

∫ R/2

0

||∂Dq| − |∂D|| fH(t, q)dq
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By Corollary 2.15, (iii), this is smaller than

c|D|
R2

∫ R/2

0

qfH(t, q)dq

≤ c|D|e2mt

R2

∫ R/2

0

qf̃H(t, q)dq

=
c|D|e2mt

R2

∫ R/2

0

qt−d/αf̃H(1, qt−1/α)dq

=
c|D|e2mt

R2td/α

∫ R/2t1/α

0

qt2/αf̃H(1, q)dq

≤ c|D|e2mtt2/α

R2td/α

∫ ∞
0

q
(
q−d−α ∧ 1

)
dq ≤ c|D|e2mtt2/α

R2td/α

This shows (4.8). Finally, we have

∣∣∣∣|∂D| ∫ R/2

0

fH(t, q)dq − |∂D|
∫ ∞

0

fH(t, q)dq

∣∣∣∣
≤ |∂D|

∫ ∞
R/2

fH(t, q)dq

≤ c|D|
R

∫ ∞
R/2

fH(t, q)dq by Corollary 2.15, (ii)

≤ c|D|e2mt

Rtd/α

∫ ∞
R/2

f̃H(1, qt−1/α)dq

=
c|D|e2mtt1/α

Rtd/α

∫ ∞
R/2t1/α

f̃H(1, q)dq

Since R/2t1/α ≥ 1, so for q ≥ R/2t1/α ≥ 1 we have f̃H(1, q) ≤ cq−d−α ≤ cq−2. Therefore,

∫ ∞
R/2t1/α

f̃H(1, q)dq ≤ c

∫ ∞
R/2t1/α

dq

q2
≤ ct1/α

R
.

Hence, ∣∣∣∣|∂D| ∫ R/2

0

fH(t, q)dq − |∂D|
∫ ∞

0

fH(t, q)dq

∣∣∣∣ ≤ c|D|e2mtt2/α

R2td/α
(4.9)
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Note that the constant C2(t) which appears in the formulation of Theorem (4.1) satisfies

C2(t) =
∫∞

0
fH(t, q)dq. Now equations (4.3), (4.4), (4.7), (4.8), (4.9) give (4.1).
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Chapter 5

Mixed Stable Processes

In this chapter we explore the basic general properties of the sum of two independent

stable processes and give a first term asymptotic expansion of the trace. I’m still working on

finding a better trace estimate for such processes for a domain with R−smooth boundary.

Most of the notations and results of this chapter are adapted from [17].

Let X be a Lévy process that is the independent sum of an α-stable process Y and a

β-stable process W in bounded open subset of Rd. The infinitesimal generator of the Lévy

process X is ∆α/2 +∆β/2. Let p1
D(t, x, y) and G1

D(x, y) denote the transition density function

and the Green function of the subprocess XD of X killed upon exiting an open set D ⊂ Rd.

Let pD(t, x, y) and GD(x, y) denote the transition density function and Green function of the

subprocess YD of Y killed upon exiting D. Intuitively, one expects the following Duhamel’s

formulas (or Trotter-Kato formula) hold:

p1
D(t, x, y) = pD(t, x, y) +

∫ t

0

∫
D

p1
D(s, x, z)∆β/2

z pD(t− s, z, y) dz (5.1)

G1
D(x, y) = GD(x, y) +

∫
D

G1
D(x, z)∆β/2

z GD(z, y) dz (5.2)

The Lévy process X runs on two different scales: on the small spatial scale, the α component

dominates, while on the large spatial scale the β component takes over. Both components

play essential roles, and so in general this process can not be regarded as a perturbation of

the α−stable process or of the β−stable process.

Let us first recall some basic facts about the independent sum of stable processes and

state our main result. Throughout the remainder of this paper, we assume that d ≥ 1 and

0 < β < α < 2. The Euclidean distance between x and y will be denoted as |x− y|.
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Suppose X is a symmetric α−stable process and Y is a symmetric β−stable process on

Rd and that X and Y are independent. For any a ≥ 0, we define Xa by Xa
t := Xt + aYt.

We will call the process Xa the independent sum of the symmetric α−stable process X

and the symmetric β−stable process Y with weight a. The infinitesimal generator of Xa

is ∆α/2 + aβ∆β/2. Let pa(t, x, y) denote the transition density of Xa (or equivalently the

heat kernel of ∆α/2 + aβ∆β/2) with respect to the Lebesgue measure on Rd. We will use

p(t, x, y) = p0(t, x, y) to denote the transition density of X = X0. Recently it is proven in

[17] that

p1(t, x, y) �
(
t−d/α ∧ t−d/β

)
∧
(

t

|x− y|d+α
+

aβt

|x− y|d+β

)
on (0,∞)× Rd × Rd (5.3)

Here and in the sequel, for a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}; for any two

positive functions f and g, f � g means that there is a positive constant c ≥ 1 so that

c−1g ≤ f ≤ cg on their common domain of definition.

For every open subset D ⊂ Rd, we denote by Xa,D the subprocess of Xa killed upon

leaving D. The infinitesimal generator of Xa,D is ∆α/2 +aβ∆β/2|D, the sum of two fractional

Laplacians in D with zero exterior condition. It is known [17] that Xa,D has a Hölder

continuous transition density paD(t, x, y) with respect to the Lebesgue measure.

Unlike the case of the symmetric α−stable process X := X0, Xa does not have the

stable scaling for a > 0. Instead, the following approximate scaling property is true and will

be used several times in the rest of this paper: If {Xa,D, t ≥ 0} is the subprocess of Xa killed

upon t leaving D, then {λ−1Xa,D
λat , t ≥ 0} is the subprocess of {Xaλ(α−β)/β

t , t ≥ 0} killed upon

leaving λ−1D := {λ−1y : y ∈ D}. Consequently, for any λ > 0, we have

paλ
(α−β)/β

λ−1D (t, x, y) = λdpaD(λαt, λx, λy) for t > 0 and x, y ∈ λ−1D (5.4)
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In particular, letting a = 1, λ = aβ/(α−β) and D = Rd, we get

pa(t, x, y) = adβ/(α−β)p1(aαβ/(α−β)t, aβ/(α−β)x, aβ/(α−β)y) for t > 0 and x, y ∈ Rd. (5.5)

So we deduce from (5.3) that there exists a constants C > 1 depending only on d, α and β

such that for every a > 0 and (t, x, y) ∈ (0,∞)× Rd × Rd

C−1fa(t, x, y) ≤ pa(t, x, y) ≤ Cfa(t, x, y), (5.6)

where

fa(t, x, y) =
(
t−d/α ∧ (aβt)−d/β

)
∧
(

t

|x− y|d+α
+

aβt

|x− y|d+β

)
.

For a domain D ⊂ Rd, we define the first exit time from D by τaD = inf{t ≥ 0 : Xa
t /∈ D}.

We set

raD(t, x, y) = Ex[pa(t− τD, Xa
τaD
, y); τaD < t] (5.7)

and

paD(t, x, y) = pa(t, x, y)− raD(t, x, y) (5.8)

for any x, y ∈ Rd, t > 0.

We are interested in the behavior of the trace of this semigroup defined by

Za
D(t) =

∫
D

paD(t, x, x)dx. (5.9)

Lemma 5.1. Let D ⊂ Rd be an open set. For any x, y ∈ D we have

raD(t, x, y) ≤ c

((
t−d/α ∧ (aβt)−d/β

)
∧

(
t

(δaD(x))d+α
+

aβt

(δaD(x))d+β

))
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Proof.

raD(t, x, y) = Ey [τD < t; pa(t− τD, Xa(τD), x)]

≤ cEy

[(
t−d/α ∧ (aβt)−d/β

)
∧
(

t

|x−Xa(τD)|d+α
+

aβt

|x−Xa(τD)(x)|d+β

)]
≤ c

((
t−d/α ∧ (aβt)−d/β

)
∧
(

t

|δaD(x)|d+α
+

aβt

|δaD(x)|d+β

))

Proposition 5.2 gives the asymptotic of Za
D(t) near t = 0. So far we are only able find

the first term asymptotic expansion of Za
D(t).

Proposition 5.2.

lim
t→0

td/αZa
D(t) = C1|D| (5.10)

where C1 = ωdΓ(d/α)
(2π)dα

.

Proof. By the definition of raD we see that

td/αZa
D(t) =

∫
D

td/αpaD(t, x, x)dx =

∫
D

td/αpa(t, x)dx−
∫
D

td/αraD(t, x, x) (5.11)

Let us first consider the first term on the right hand side of (5.11), by scaling property, we

have

∫
D

td/αpa(t, x)dx =

∫
D

pat
(α−β)/αβ

(1, x)dx = |D|pat(α−β)/αβ(1, 0)

→ p(1, 0)|D| = C1|D| as t→ 0.

In order to prove the proposition (5.2), we must show that

∫
D

td/αraD(t, x, x)dx→ 0, as t→ 0 (5.12)
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By Lemma (5.1) we have td/αraD(t, x, x) ≤ c and consider the sub-domains Dt = {x ∈ D :

δaD(x) ≥ t1/2α} and its complement Dc
t = {x ∈ D : δaD(x) < t1/2α}. Since the indicator

function of the set Dc
t tends to zero pointwise, the Lebesgue dominated convergence theorem

implies, assuming |D| <∞, that |Dc
t | → 0 as t→ 0. It follows that

∫
Dct

td/αraD(t, x, x)dx→ 0, as t→ 0.

On the other hand, by Lemma (??) we have

td/αraD(t, x, x) ≤ ctd/α
(

t

|δaD(x)|d+α
+

aβt

|δaD(x)|d+β

)
(5.13)

For x ∈ Dt and 0 < t < 1, the right hand side of (5.13) is bounded by

ctd/α

(
t

(t1/2α)
d+α

+
aβt

(t1/2α)
d+β

)

and therefore ∫
Dt

td/αraD(t, x, x)dx ≤ c|D|
(
td/2α+1/2 + aβtd/2α+1−β/2α) (5.14)

and this last quantity goes to 0 as t → 0 since 0 < β < α < 2. This proves the proposition

(5.2).

Let N(λ) be the number of eigenvalues {λj} which do not exceed λ, it follows from

(5.10) and the classical Tauberian theorem (see for example [20], p.445 Theorem 2) that

lim
λ→∞

λ−d/αN(λ) =
C1|D|

Γ(1 + d/α)
(5.15)

This is the analogue for the sum of two independent stable process of the celebrated Weyl’s

asymptotic formula for the eigenvalues of the Laplacian.
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Chapter 6

Open Problems and Future Work

In this chapter we discuss some open problems and my future work. The first paragraph

talks about extending our result for time-fraction Cauchy problems to more general time

operator. I’m also trying to extend our result for relativistic stable process to more general

processes like sum of two independent stable processes.

The table below contains different time operator for sub diffusion, ultraslow diffusion,

and intermediate between sub-diffusion and diffusion. Our result in this thesis gives ultraslow

diffusion in special case when µ ∈ RV0(θ − 1) for some θ > 0 [34, Theorem 3.9]. Currently,

I’m working on finding strong analytic solution for Tempered fractional Cauchy problems

and then extending all this time fractional result to more general time operator.

Laplace symbol: ψ(s) inverse subordinator time operator∫∞
0

(1− e−sy)ν(dy) Eψ(t) ψ(∂t)− δ(0)ν(t,∞)

sβ E(t) ∂βt , Caputo∫ 1

0
sβΓ(1− β)µ(dβ) Eµ(t)

∫ 1

0
∂βt Γ(1− β)µ(dβ)

(s+ λ)β − λβ Eλ(t) ∂β,λt in (6.1)

∂β,λt g(t) = ψλ(∂t)g(t)− g(0)φλ(t,∞)

= e−λt
1

Γ(1− β)
dt

[ ∫ t

0

eλsg(s) ds

(t− s)β

]
− λβg(t)

− g(0)

Γ(1− β)

∫ ∞
t

e−λrβr−β−1 dr.

(6.1)

Subdiffusion: 0 < β < 1, Ex(W (E(t)))2 = E(E(t)) ≈ tβ.
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Ultraslow diffusion: For special µ ∈ RV0(θ − 1) for some θ > 0: Ex(W (Eµ(t)))2 =

E(Eµ(t)) ≈ (log t)θ [34, Theorem 3.9].

Intermediate between subdiffusion and diffusion: Tempered fractional diffusion

Ex(W (Eλ(t)))
2 ≈

 tβ/Γ(1 + β), t << 1

t/β, t >> 1.

W (Eλ(t)) occupies an intermediate place between subdiffusion and diffusion (Stanislavsky

et al., 2008)

I am also working on estimating the trace of general processes like sum of two inde-

pendent stable process over a bounded domains with R−smooth boundary and Lipschitz

domains. So far I am able find the first term asymptotic for the trace of such processes over

a bounded domains with R−smooth boundary.
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[8] Bañuelos, R., Kulczycki, T. and Siudeja, B. (2009). “On the Trace of symmetric stable
processes on Lipschitz domains”, J. Funct. Anal. 257.
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