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Abstract

With the growing use of new telecommunications technologies such as 4G and wireless

hotspots, heterogeneous wireless networks (HetNets) are gaining more attention. The source

of heterogeneity of a HetNet can either be the differences in nodes (such as transmission

ranges, failure rates and energy levels) or the differences in services offered in the network

(such as GSM and WiFi). Quality of service (QoS) is an issue for users while the cost of the

infrastructure is an issue for the network provider. In telecommunications network design

problems, survivability and reliability are well known QoS metrics. Most previous studies

considered survivability and reliability as constraints (vertex connectivity or edge-disjoint

paths), while other papers used traditional reliability metrics (such as two-terminal relia-

bility or all-terminal reliability). In this dissertation, a new metric that combines network

reliability with network resilience in capacitated networks is devised. Exact and approximate

methods to evaluate this capacitated resilience metric are formulated and solved. Capac-

itated resilience is used to solve HetNets network designs ranging from 10 to 150 users.

Results are compared to the popular reliability and survivability metrics in the literature. It

is shown that networks designed by this new measure are significantly different than other

network designs. This metric is the first to consider rerouting under capacity constraints in

the instance of failure and thus reflects more realistic practice. It is also computationally

tractable for use during network design.
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Chapter 1

Introduction

Reliability and survivability of telecommunication networks is a popular area of opti-

mization. With the growing use of wireless services, e.g. 3G/4G and wireless hotspots, the

topic has assumed more importance. The needs of users are increasing as the Internet is

becoming the new source of entertainment. Bandwidth requirements of users have increased

dramatically with the available multimedia services and even more bandwidth will be de-

manded in the future due to the increasing number of communication devices (such as cell

phones, laptops and tablets). Connection speed, coverage, session continuity and reliability

are the main concerns of the users. The competitive structure of the telecommunication in-

dustry forces service providers to invest more in their infrastructure to satisfy user demands.

With the emergence of new technologies, service providers try to combine different solutions

to serve customers better. This creates the network design problem.

In the literature, most of the efforts were to evaluate the reliability or the survivability of

a network. However, design of the network is very important for service quality. In general,

a telecommunication network design problem is to minimize the cost of a network while

ensuring some quality of service constraints. The network can be any type, such as wireless

or fiber optic. In this dissertation, wireless telecommunication networks are considered.

In a typical wireless communication network, users connect to an intermediate node; then

intermediate nodes connect to an end node (e.g., a base station - usually connected to a wired

backbone). While “session continuity” is a concern for users, the cost of the infrastructure

is an issue for the network provider. Although networks vary, the requirement is always the

same: coverage and reliability/survivability at a low cost. Network type does not affect this

requirement but the related properties, constraints and assumptions vary.
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This dissertation defines and investigates “Capacitated Resilience” (CR) in heteroge-

neous wireless networks (HetNets). The structure is mesh type networks, but the methodol-

ogy presented in this dissertation can be easily extended to other wireless networks (such as

sensor networks). Capacitated resilience, a new metric proposed in this research, is related

to reliability and it will be explained in detail in Section 3. Before defining capacitated

resilience, the basic wireless network types (mesh, sensor and ad hoc networks) and HetNets

are summarized.

1.1 Wireless network types

A wireless mesh network (WMN) consists of “interconnected mesh access points (MAPs),

relays (MRs) and gateways (MGs) in which mesh clients (MCs) connect to MAPs to access

the Internet and MGs act as bridges between the wireless infrastructure and the Internet

while MRs relay the traffic” (Benyamina et al., 2011). According to Amaldi et al. (2008),

MRs and MAPs are often fixed and electrically powered. Also, MAPs are connected to a

wired link, such as local area network (LAN), DSL or fiber. Wireless network devices in a

mesh network have an organizational hierarchy (Amaldi et al., 2008). An illustration of the

structure of a mesh network is given in Figure 1.1. In this structure, users connect to a MR

and MRs connect to a MAP which is connected to the wired backbone.

A wireless sensor network (WSN) consists of “low-cost, low-power and energy-constrained

sensors to monitor a physical phenomenon” (Guidoni et al., 2010). Sensors are aimed to

monitor an area and gather information, however, they have limited ranges and they are

usually battery operated with limited energy levels. Generally, relay nodes (RNs) are used

to transmit information from sensor nodes (SNs) to a server node (or an end node).

Another type of wireless networks is “ad hoc networks”. According to Moraes et al.

(2009), an ad hoc network has transceivers that can receive and transmit packets (informa-

tion) by using multiple consecutive wireless links. Mobile ad hoc networks (MANETs) are

wireless networks in which the nodes (transceivers) are mobile. Unlike mesh type networks,
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(Wired Backbone)

User

Relay Point (RP)

Access Point (AP)

Figure 1.1: A wireless mesh network design (from Amaldi et al. (2008))

where the network has a hierarchy, MANETs are self configuring networks without a fixed

infrastructure.

1.2 HetNets

HetNets are an integration of different kinds of wireless networks. Chen et al. (2007)

state that telecommunication service providers, such as Verizon, Sprint and T-Mobile, are

integrating or planning to integrate multiple wireless technologies with partially overlapped

coverage areas. One example is to offer wireless LAN access for their 3G/4G customers.

However, to benefit from these services, the users (mobile hosts) must be equipped with

one or more wireless access technologies. In this case, a mobile host can choose WiFi in one

location and 3G/4G in another location because of different cost rates, bandwidth or coverage

properties. Because customer satisfaction is closely related to the quality of service (QoS)

level and better service usually means more investment, a service provider should optimize

cost by employing the best combination of available heterogeneous wireless technologies

(Chen et al., 2007). Niyato and Hossain (2009) claim that the future of wireless networks

is to provide seamless mobility to users with the integration of different wireless access

technologies. For example, they foresee the integration of 802.16 based metropolitan area
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networks (WMANs) and 802.11 based wireless local area networks (WLANs) in the near

future. This integration is an example of a HetNet. They cite load balancing and preventing

network congestion as important issues of this integration.

Pei et al. (2010) state that research on integration of third-generation (3G) mobile

systems (and, currently, 4G service) and WLAN systems are gaining popularity. According

to the authors, the main reason for this popularity is to satisfy more diversified QoS needs

of users. Although 3G systems can provide more bandwidth and economic revenues, WLAN

technologies are widely used and demanded by customers. The important issue is to select

an appropriate wireless access technology to have service continuity (Pei et al., 2010).

Yang et al. (2007) give an example of HetNets in Figure 1.2. In this example, the

authors introduce ad hoc network technology on top of a cellular system to increase system

performance. If a request from mobile handset 2 (MH2) is blocked due to limited bandwidth

on base station 1 (BS1), traffic diversion station 2 (TDS2) reroutes the flow to BS2. The new

path becomes MH2-TDS2-TDS1-BS2. In this type of system, the traffic diversion station can

connect either base stations or mobile handset devices. In other words, the traffic diversion

stations and mobile handset devices can use both ad hoc technologies and cellular network

technologies. Yang et al. (2007) refer to the IEEE 802.11 protocol for their ad hoc interface.

They also mention that all base stations in their example (Figure 1.2) operate at a cellular

network frequency.

Yang et al. (2007) assert that destination nodes are unknown and this is the main differ-

ence between HetNets and wireless mobile ad hoc networks in which the destination nodes

are known. In HetNets the destination can be any node, as long as the bandwidth require-

ments (or other QoS requirements) are met. Hence, this involves a unique issue for HetNets

- the destination selection problem. In this problem, the best suitable base station must be

selected to satisfy QoS requirements. However, many important issues must be addressed to

solve it. In HetNets, users can choose from variety of wireless access technologies (such as,

a cellular network or a WLAN) with different channel characteristics (such as bandwidth,
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Figure 1.2: A HetNet design (from Yang et al. (2007))

loss or delay). Another issue is that requirements differ due to the different service providers

that users interact with, because each service provider offers different services. Yang et al.

(2007) state that this routing problem is NP-hard due to the heterogeneity of the system.

Another example of HetNets is given in Figure 1.3. In this design, a sink node gathers

all of the information sent from sensor nodes. It is basically a heterogeneous wireless sensor

network. Gateways are added to the system to balance load and increase network life time

(because sensors are battery powered). Since gateway devices are more expensive than

sensors, the objective is to minimize the number of gateway devices without decreasing the

QoS level (different QoS metrics are covered 2.2). In this example, the sink node is connected

to a direct geographical link, such as a wired backbone or a satellite connection. However,

instead of connecting the gateways with these expensive technologies, they are connected to

each other with wireless links such as ZigBee, WiFi or WiMax. The authors state that the

connection of gateways constitutes a wireless mesh network and sensors are connected to this

mesh backbone. Gateways can be fixed or mobile and finding the best location of gateways

is an issue. In this example, sensor to gateway and gateway to gateway connections may use

different wireless technologies. The structure of this example by Capone et al. (2010) is very

similar to the one of Yang et al. (2007).
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Figure 1.3: A HetNet design (from Capone et al. (2010))

1.3 Problem definition

A telecommunications network can be defined as a graph G consisting of vertices (nodes)

of users and network devices. Edges are the connections between users (or devices) and net-

work devices. To be connected with a network device v, a user or network device must be

within the communication range of v. The communication range is determined by the tech-

nical specification of the network device. Throughout this dissertation, the sets of vertices

(devices or users) and edges (wireless or wired links) of G will be denoted as V and E,

respectively.

Design of survivable/reliable heterogeneous wireless networks is a new area of optimiza-

tion which has applications in mesh and sensor networks. With the growing use of new

telecommunications technologies such as 4G and wireless hotspots, this subject is gaining

more attention. The source of heterogeneity of a HetNet is the difference in services offered

in the network (such as 3G/4G and WiFi). Some authors in the literature also use the

term heterogeneity as the differences in nodes (such as transmission ranges, failure rates and

energy levels). In this dissertation, the research problem includes both different nodes and

different services in the wireless network. The network structure will be similar to the ones

in Figures 1.2 and 1.3. In this type of network, users connect to a gateway (relay node)

and gateways connect to a sink node (e.g., base station) using potentially different wireless
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technologies. In a study for homogeneous wireless networks (Amaldi et al., 2008), a similar

structure for mesh networks was presented and the network design problem was solved to

minimize the installation cost of the network under full coverage constraints. However, the

heterogeneous wireless network presented by Capone et al. (2010) integrates different wire-

less technologies and different nodes (with different properties), and it will be used in this

dissertation as a base structure of the proposed model.

The main focus of this dissertation is the resilience of a telecommunications network. Ca-

pacitated resilience is related to reliability and survivability; however, it has not yet been con-

sidered in survivable networks. Survivability/reliability of heterogeneous wireless networks

has gained attention recently and the two important network designs are mesh and sensor

type networks. Most studies consider survivability/reliability as a constraint (vertex connec-

tivity or edge-disjoint paths). For example, Kashyap et al. (2010) minimized the number of

relay nodes in a sensor network under k-connectivity constraints. Benyamina et al. (2011)

worked on a reliable mesh network design problem with k-connectivity constraints. The

remaining papers on optimization of heterogeneous wireless networks do not consider sur-

vivability/reliability. Among them, Amaldi et al. (2008) proposed a mathematical model to

minimize the cost of a mesh network without considering survivability/reliability. Benyamina

et al. (2009b) worked on the same problem proposed by Amaldi et al. (2008); however, they

used bi-objective optimization (minimizing cost and maximizing network throughput) with-

out survivability/reliability constraints. In another similar work, Benyamina et al. (2009a)

proposed a bi-objective algorithm for the minimum gateway placement problem in mesh

networks (without survivability/reliability) to minimize cost and congestion of gateways.

Benyamina et al. (2009b) and Benyamina et al. (2009a) only considered different nodes in

the networks as the source of heterogeneity. In this dissertation, the integration of different

wireless technologies are also considered. More importantly, link capacity for rerouting is

included in the context of survivability/reliability.
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In studies using traditional reliability calculations, cost is minimized under a minimum

reliability constraint. For example, Dengiz et al. (2002) used Formulation 1.1 where cij is the

cost to use edge xij. In this formulation, “all-terminal reliability” of a solution is required

to exceed a predefined threshold.

min z =
N−1∑
i=1

N∑
i=1+1

cijxij

s.t.

R(x) ≥ R0

(1.1)

The calculation of all terminal reliability is simply the multiplication of the reliable

components. To demonstrate, a simple formulation from Grover (2004) is shown in Equation

1.2. As two-terminal reliability includes only two nodes in the network, all terminal reliability

includes all node pairs in the network.

R(G, s, t, p) =
m∑
i=0

Ni(G, s, t)p
i(1− p)m−i

where {s, t} ∈ E, p = fixed failure rate of edges,

Ni(G, s, t) is the number of operating states

(1.2)

This reliability calculation is nonlinear due to the multiplication of decision variables xij

(1 if edge (i, j) is selected). However, it can be linearized by using the logarithm of reliability

as explained in Equation 3.4 in Section 3.2.1. In this dissertation, “capacitated resilience”

metric is used instead of reliability because capacitated resilience includes reliability and

also considers rerouting of flows when a failure occurs. Rerouting is very important to

ensure survivability of the network. The motivation to use capacitated resilience instead of

reliability is explained in detail in Section 1.4.

In this dissertation, a telecommunciation network consists of users and devices; and

capacitated resilience is defined at the user level. “User” can represent an individual or
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total traffic requirements in an area. Equation 1.3 shows the capacitated resilience of User

i (Ui). R(pi) denotes the reliability of the assigned path of User i where the user is assigned

to a device whose path has maximum reliability (from the user to an AP). The resilience

factor scales the user reliability. To calculate it, all alternative paths from User i to any

available access point are identified first. Then, reliabilities of the alternative paths are

calculated. These steps are explained in detail in Section 4.1.4. Capacity of devices and

links are considered for finding initially assigned and alternative paths.

Capacitated resilience = R(pi) ∗Resilience Factor (1.3)

After finding the user capacitated resiliences (which is computationally the most ex-

pensive part of the capacitated resilience calculation), network level capacitated resilience

is calculated easily according to Equation 1.4. Network capacitated resilience calculation

is simply the weighted average of user level capacitated resiliences in terms of user traffic

requirements. In this equation, wi is the weight of User i, which is calculated as flow of User

i / total flow of users. Both network and user level capacitated resiliences are between 0

and 1 because network level capacitated resilience is the weighted average of user level ca-

pacitated resiliences which are found by scaling the reliability of the assigned paths (R(pi),

where 0 ≤ R(pi) ≤ 1).

Capacitated resilience = wi ∗ Capacitated resilience (Ui) (1.4)

Similar to a reliability calculation, the capacitated resilience calculation is nonlinear.

Nevertheless, this calculation can be handled with metaheuristic search methods, such as

Evolutionary Strategies (ES) and genetic algorithms (GA), because of the flexibility of those

methods. For heuristic search methods, an important issue is to use penalty functions to

accommodate the capacitated resilience constraint in the objective function to eliminate
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infeasibility issues. In this dissertation, new aspects of survivability/reliability (with capac-

itated resilience) are investigated. A practical yet effective solution methodology has been

developed to minimize the cost (maximize capacitated resilience) of a network for a required

capacitated resilience level (budget). The details of the solution method are covered in

Chapter 4.

Typical objective functions used in previous studies are cost (Shahnaz and Erlebach,

2010), energy consumption (Moraes et al., 2009) and lifetime of the network (Yang et al.,

2009). In general, the objective functions of survivable/reliable networks are either cost

or reliability. In models where the objective function is cost, reliability/survivability is

considered as a constraint (either edge-disjoint paths or k-connectivity). If reliability is the

objective, then cost is usually constrained to an upper bound.

In addition to single objective optimization, two objective functions are optimized si-

multaneously in this dissertation: cost and capacitated resilience. Pareto optimality is used

as the bi-objective optimization method. Benyamina et al. (2009a) and Benyamina et al.

(2009b) used bi-objective optimization for mesh networks, but they did not consider surviv-

ability/reliability. Capone et al. (2010) minimized cost and energy consumption, but they

used a simple weighted additive objective function and they did not consider survivabil-

ity/reliability. Therefore, this research fills a gap by using cost and a survivability/reliability

metric that considers edge and node capacities in bi-objective optimization of heterogeneous

wireless networks.

In this dissertation, the decision variables are the number, types and locations of the

devices, user to device assignments, and routing decisions from users to APs (see Section 4.1

for more details). In addition, to distinguish this research from others, realistic features are

included in the optimization model. These include variable transmission ranges of devices

and the presence of relays in the network. Although the problem becomes more complicated

with the addition of different components, the solution becomes more meaningful for real

life applications.
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1.4 Primary contributions

The primary objectives of this dissertation are to present a new and valuable surviv-

ability metric, capacitated resilience, for wireless heterogeneous networks and to develop

effective methods for solving realistic heterogeneous wireless network design problems where

the objective functions are cost and capacitated resilience. Models with one objective func-

tion (cost or capacitated resilience) have been developed to present a solution approach. As

there are two metrics to optimize, Pareto optimality is also used in a biobjective model.

Using penalty functions for capacitated resilience helps the heuristic optimization method

move from the infeasible region to the feasible region easily (see Section 4.1.9) during search.

Realistic size problems instances with many (more than 100) users and devices are solved to

assess the proposed survivability metric.

The main hypothesis of this research is that a network design with better allocation

of redundancies for rerouting options considering node capacities can be obtained by using

capacitated resilience instead of using traditional reliability metrics or k-connectivity/edge

disjoint paths constraints. Network designs using capacitated resilience, traditional reli-

ability constraints and connectivity constraints are compared to verify this hypothesis in

this dissertation (Section 6.3). Capacitated resilience enables more realistic operation be-

cause it considers rerouting possibilities in case of a failure. Traditional reliability measures

(such as two-terminal/all-terminal reliability, traffic efficiency, probability that two nodes

can communicate and expected loss of traffic), do not directly consider rerouting options.

Survivability constraints, such as k-connectivity and edge disjoint paths, consider rerouting

options; however, they allocate redundant paths to the network without consideration of

reliability or capacity. They assume the components (nodes or edges) are perfectly reliable.

The redundancy provided by k-connectivity and edge disjoint paths increases the chance of a

user remaining connected to the network but it causes more slack capacity and higher costs.

On the other hand, capacitated resilience also includes redundancy by considering rerouting
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and leads to designs with less, but more effectively distributed, slack capacities. More on

this discussion is presented in Section 2.2.6.

This research provides contributions to the survivable/reliable wireless telecommunica-

tion networks field in several ways:

• First, capacitated resilience as a survivability/reliability measure is the main contri-

bution of this dissertation. As previously explained, in the survivable/reliable wireless

networks literature, survivability/reliability was often considered as a constraint of

edge-disjoint paths (or k-connectivity). Some studies used traditional reliability mea-

sures, e.g. two-terminal reliability or all-terminal reliability, as objective functions.

Survivability/reliability has been similarly studied in the heterogeneous wireless net-

works literature. However, wireless networks (heterogeneous or homogeneous) require

a better design approach considering rerouting of flows (in case of a failure). Therefore,

a different metric other than reliability is needed. Capacitated resilience is devised be-

cause it includes both reliability and rerouting alternatives. The capacitated resilience

metric is applicable not only to telecommunications networks, but also to other network

types, such as transportation networks. It can also be used in military applications

where instantaneous changes can affect the success of an operation. Both exact calcu-

lation and estimation methods are presented for capacitated resilience calculation.

• A second contribution is to present a bi-objective method to optimize HetNets for cost

and capacitated resilience. In most real life applications, cost is the main limitation

to achieve higher QoS levels that are demanded by users. Bi-objective optimization

with Pareto optimality allows decision makers to minimize cost and maximize capaci-

tated resilience by selecting the most appropriate solution from a set of non-dominated

solutions.

• A third contribution is the comparison of the network designs obtained by optimization

of different reliability/survivability metrics. Specifically, network designs optimized for
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capacitated resilience are compared with designs optimized for other metrics. The

specific network designs of capacitated resilience and the other metrics are identified

and their effectiveness are discussed.
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Chapter 2

Literature Review

In this chapter, the previous work in literature is summarized. The main focus is on

network types, survivability/reliability measures and wireless communication issues.

2.1 Heterogeneous wireless networks

Throughout this dissertation, the term “heterogeneous wireless network” refers to a

heterogeneous wireless telecommunications network. As explained before, the source of het-

erogeneity can be different services used in a wireless network or differences among the

properties of nodes.

In this section, heterogeneous wireless networks, including sensor and nonsensor net-

works, are summarized. In this dissertation, nonsensor HetNets are termed as heterogeneous

wireless networks and do not have sensor nodes. The reason for this classification is the large

and specific literature of sensor networks.

2.1.1 Nonsensor heterogeneous wireless networks

In nonsensor HetNets various objective functions have been used to optimize a given

network. Among them, cost and throughput are the widely used ones. The total number

of nodes is a variation of cost. Overhead is a well known metric that defines the extra

data that is sent with the actual communication data to route it over a network. It is

an important metric for routing protocols. Availability is defined by Choi et al. (2011) as

“the probability that a system or service is available at a specific time”. Another objective

function, redundancy ratio, is the ratio of number of backup systems to working systems.

Connected dominated sets are defined in detail in Tiwari et al. (2007) and it can be briefly
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defined as a set of vertices V ′ ∈ V in which a vertex i ∈ V ′ can connect to another vertex

j ∈ V ′ by using only vertices of V ′ and every other vertex of V − V ′ is adjacent to a

vertex j ∈ V ′. Therefore, this metric is related to the connectivity of a network. Energy

consumption of nodes has also been an objective. Relays help connect users with an end

node, for example a base station. They are generally used to increase coverage by providing

multi-hop connections with a lower cost. Table 2.1 summarizes the objective functions used

in the literature.

Table 2.1: Summary of objective functions used in the nonsensor heterogeneous wireless
network literature
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Overhead X
Throughput X
Availability X
Redundancy ratio X
Cost X
Size of connected dominated set X
Energy consumption X
# of relay nodes (RNs) X

Many different decision variables have been used in nonsensor HetNets literature as

shown in Table 2.2. Shahnaz and Erlebach (2010) used Steiner subgraphs, where a Steiner

tree spans all the nodes in a graph G. Similarly, a Steiner subgraph spans a given set of

nodes. As another decision variable, transmission power of a node affects its range, with

higher power yielding a larger range. To find the best routing from users to a base station,

“edges to select” was used as a decision variable. Number of backup systems is simply the

number of additional systems other than the working ones. The location of nodes has a
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direct impact on reliability of a network. Nonoverlapping wireless channel assignment is

used to prevent interference (see Section 2.4.1 for more information on interference).

Table 2.2: Summary of decision variables used in the nonsensor heterogeneous wireless net-
work literature
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Transmission power of each node X
Edges to connect nodes X X X
# of backup systems for control systems X
Relay locations X
Wireless channel assignments X

In the optimization process, many variables have been fixed. For example, number

of nodes, transmission ranges of nodes, network density, and number of users are common

parameters. Network density is one such parameter and is defined by Tiwari et al. (2007) as

the number of nodes per unit area. Choi et al. (2011) used node weight as a parameter. It

determines the priority of a node to be secured against failures. Similar to this dissertation,

traffic requirements of nodes are fixed in So and Liang (2009). The parameters used in

heterogeneous wireless networks are given in Table 2.3.

Various methods have been used to optimize a nonsensor HetNet, including mixed in-

teger programming, approximation algorithms and custom algorithms (Table 2.4).

As discussed in Chapter 1, instead of using survivability/reliability measures, edge-

disjoint paths and k-connectivity constraints are usually used in the nonsensor HetNets

literature (Table 2.5).

Some studies focused on the architecture of HetNets. For example, Birkos et al. (2012)

proposed ROMEO (Remote colloborative real-time multimedia experience over the future

Internet) architecture for live 3D video delivery networks. This architecture aims for seamless
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Table 2.3: Summary of parameters used in the nonsensor heterogeneous wireless network
literature
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Number of nodes X
Different transmission ranges of nodes X
Network density X
Number of users X
Unidirectional/bidirectional edges X
Weight of the nodes X X
Traffic requirements of users X

Table 2.4: Summary of optimization methods used in the nonsensor heterogeneous wireless
network literature
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video session continuity over heterogeneous networks consisting of WiFi, LTE (Long-term

evolution, usually referred to 4G LTE) and DVB (Digital video broadcasting) for mobile and

roaming users. This dissertation will not cover the technical aspects of these technologies.
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Table 2.5: Summary of survivability/reliability measures used in the nonsensor heterogeneous
wireless network literature
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Two edge-disjoint paths X X
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No survivability/reliability (only connectivity) X

Summary and discussion

In the above listed studies either k-connectivity or edge-disjoint path constraints are

used for survivability/reliability. In this research, “capacitated resilience” is maximized

while cost is minimized.

Another main difference of these nonsensor HetNet studies with this dissertation is the

level of comprehensiveness of the models. Each of these studies captured a specific aspect

of the problem. For example, Dilmaghani and Rao (2007) worked on a possible disaster

scenario. In their problem, they deployed a mesh network to increase throughput and reduce

overhead. They used Transport Control Protocol (TCP) for their mesh network and observe

the bottlenecks in a real application. However, they did not use any optimization approach.

The main focus of Choi et al. (2011) was the redundancy of devices. They solved the problem

as a queuing system (M/M/c), which restricts their model with unrealistic assumptions, for

example, exponentially distributed failures and repairs. Also they did not consider the path

of communication links from nodes i to j, which is considered in this dissertation as a decision

variable. Shahnaz and Erlebach (2010) considered a “node-weighted graph” having different

nodes with different costs. However, their problem was to find a Steiner tree and connect all

nodes together. Similarly, Tiwari et al. (2007) worked on connected subgraphs. Although
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their idea of a node-weighted graph is similar to the one studied in this dissertation, their

connectivity assumption does not apply here because connectivity of a user to a base station

(or an end node) is required in this dissertation. In other words, users are not required

to be connected to each other in this dissertation, but they must be connected to an AP.

Ad hoc networks were studied by Moraes et al. (2009) with a focus to find optimum power

assignments of nodes. Instead of locating the nodes, they had device positions as an input.

It is a different problem because positions of nodes are optimized in this dissertation.

2.1.2 Heterogeneous wireless sensor networks

Although this dissertation does not include sensor networks, some of the studies are

related to the HetNets and therefore this section summarizes the relevant wireless sensor

network literature. There have been many studies aimed at optimizing heterogeneous wire-

less sensor networks. In the literature, an important objective function is cost while others

are total energy consumption or lifetime of the network. The number of additional nodes

(either additional relay or sensor nodes) is minimized in some studies. In addition, transmit-

ted communication packets and latency are two important performance metrics for sensor

networks in which realtime information is crucial. Latency is the time delay in data com-

munications (Guidoni et al., 2010). In one study (Wang et al., 2008), the number of high

transmission power state nodes was minimized to reduce total power usage, which is an im-

portant issue for battery powered sensors. Also, Machado et al. (2010) minimized vacancy

which is defined as the area outside of the sensing region. Al-Turjman et al. (2013) used

k-connectivity as the performance metric. The objective functions of the selected literature

are summarized in Table 2.6.

The decision variables used in heterogeneous wireless sensor networks have been various.

The number (and/or location) of relay nodes has been used in many studies. Also, number of

additional sensor nodes is another decision variable that is used in some studies. Similarly,

the number (and/or location) of base stations has been used as a decision variable. The
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Table 2.6: Summary of objective functions used in the heterogeneous wireless sensor network
literature
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Number of relay nodes X X X X X
Lifetime of network X X
Energy consumption X
Transmitted communication packets X
Probability of a node can securely deliver
information

X

Latency X
Cost X
Number of high transmission power state
nodes

X

Lifetime of a node (related to energy con-
sumption)

X

Avg. and Coef. Var. of capacity utilization
of RNs

X

# of linear programming models have been
applied in the algorithm

X

Vacancy X
# of additional sensor nodes (SNs) X
CPU time X X
k-connectivity X

decision variable “edges to select” was used to route information from sensors to a base

station with flow on each edge (and edges to select) as a decision variable. The decision

variables of the selected literature are given in Table 2.7.

Many parameters have been used in the heterogeneous wireless sensor networks litera-

ture. Number of nodes, especially sensor nodes, is one of the most frequently used parameters

in optimization models. Transmission ranges of sensor and relay nodes are also used in many

studies. Grid (or region) size is used as a parameter for initial deployment of sensors or other

nodes. As an indicator of network activity of sensor nodes, number of broadcast messages

was used by Machado et al. (2010). The network activity parameter is important because it
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Table 2.7: Summary of decision variables used in the heterogeneous wireless sensor network
literature
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# and (or) locations of RNs X X X X X X X X
# and (or) locations of base station (BS)
nodes

X

# and locations of (additional) SNs X X X
Edges to use X
Binary if SN connected to BS and RN X
Flow from SNs to BS and RN X
Transmission power of each node X
Flow of a commodity from node i to j X

directly affects the power usage of the sensor nodes. Table 2.8 summarizes the parameters

used in the heterogeneous wireless sensor networks literature.

Many of the constraints in heterogeneous wireless sensor networks are related to either

link or device capacity. Qian et al. (2007) used a different connectivity constraint, key

connectivity, which affects only less powerful sensor nodes. They defined key connectivity as

the probability that less powerful (limited ranged) sensors can connect to network. Lifetime

of a network was defined in Al-Turjman et al. (2013) as the time period that the sensor

network operates. The constraints previously used are summarized in Table 2.9.

To optimize heterogeneous wireless sensor networks different methods have been used.

Among them, traditional optimization methods (e.g., mixed integer programming), custom

algorithms and approximation methods are the common ones. Also, a metaheuristic search

method, genetic algorithms, has been used. One study used Markov chains to solve the

heterogeneous wireless sensor network design problem (Machado et al., 2010). Simulation

is another common tool to verify solutions. Custom mixed integer programming methods
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Table 2.8: Summary of parameters used in the heterogeneous wireless sensor network liter-
ature
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Number of SNs X X X X X X X
Number of other nodes X X X X
Number of edges X X
Transmission ranges of RNs X X X X
Transmission ranges of SNs X X X
Traffic load X X
Initial energy levels of SNs X
Grid/region size X X X X
Average distance between nodes X
Direction of wireless communication (one-
way, two-way)

X

Network activity level X
Pr. of a SN to be active X
Bidirectional/unidirectional links X

(such as Lagrangian relaxation) have also been also used. Table 2.10 summarizes methods

that have been used to optimize heterogeneous wireless sensor networks.

Two/k-edge disjoint paths and k-connectivity are the most commonly used constraints

to ensure survivability/reliability in heterogeneous wireless sensor networks. As a variation

of connectivity constraints, Guidoni et al. (2010) worked on small world concept, in which

there are some shortcuts that reach from a node i to a farther node j. These shortcuts

are obtained by using more powerful devices (yielding a larger range). As a variation of

all-terminal reliability, Qian et al. (2007) used probability that a node can securely deliver

information to ensure survivability in wireless sensor networks. To ensure secure communi-

cation between nodes, they proposed assigning different communication keys to sensor nodes

(for sending/receiving encrypted information). In their model, a set of edges E ′ ∈ E fails

after a key is compromised by a successful attack on a node which uses the same key as E ′.

The survivability/reliability measures used in sensor networks are given in Table 2.11.
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Table 2.9: Summary of constraints used in the heterogeneous wireless sensor network liter-
ature
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areas)

X

Survivable path from nodes to RNs X X X X X
Survivable path from RN to BS X X X X X
Key connectivity X
Capacity of relay/BS nodes X
Link capacity (bandwidth) X
Max transmission range X
Candidate/restricted locations for RNs X X
Cost X
Lifetime of network X
No constraints X

Table 2.10: Summary of optimization methods used in the heterogeneous wireless sensor
network literature
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Simulation X X X X
Markov chain X
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New routing scheme X

Summary and discussion

Similar to this dissertation, the number and locations of RNs were optimized by Misra

et al. (2010). However, instead of considering cost, they minimized the number of deployed
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Table 2.11: Summary of survivability/reliability measures used in the heterogeneous wireless
sensor network literature
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information

X

Probabilistic failures on edges/components X X X
Small world concept X
Routing based survivability X
No survivability/reliability (only connectiv-
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X

relay nodes under connectivity constraints. Yang et al. (2010) extended the same problem to

have two edge-disjoint paths for both sensor to relay nodes and relay to base station nodes

whereas the original problem only considered relay to base station nodes. Han et al. (2010)

also worked on the same problem. Differing from these studies, devices with different capa-

bilities (such as range or capacity) and costs are considered in this dissertation. In addition

to a mixed integer programming model, these studies proposed approximation methods for

special cases of the problems. Yang et al. (2010) reported that their approximation algo-

rithm never exceeds an optimality gap of 100%. Although this gap is large, the method

could be useful for large problem instances. In this dissertation, optimum solutions of maxi-

mum capacitated resilience problem are not known. Therefore, an optimality gap cannot be

calculated for the method in this dissertation. In another similar study, Yang et al. (2009)

proposed an approximation algorithm for optimum base station placement. They were the

first to present a polynomial time approximation algorithm to solve this problem. Although

they did not compare their algorithm with an exact method, their algorithm was reported

to be better than other approximations. Major difference compared to this dissertation is
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that none of these studies used capacitated edges or considered rerouting of flows in case of a

failure. Al-Turjman et al. (2013) considered three dimensional node placement, whereas this

dissertation and other studies mentioned in this section place nodes in a two dimensional

area.

Wang et al. (2007) minimized cost under connectivity and energy constraints. Their

problem is different than the research problem presented in this dissertation, because they

did not assign paths from sensors to base stations. Also, they only studied the problem

as a minimum set covering problem and flows were not considered. They did not model

a mixed integer programming formulation, but they provided an exact algorithm to solve

the problem. They also presented approximation methods. Machado et al. (2010) worked

on the lifetime of a sensor network. The unique thing about their model is the Lagrangian

relaxation, because it is a powerful method to solve large sized problems.

Similar to nonsensor networks, edge-disjoint paths and k-connectivity are the two most

common survivability measures in the heterogeneous wireless sensor network literature.

Wang et al. (2008) presented an approximation algorithm to minimize the number of high

transmission power state nodes under k-connectivity constraints and it outperformed com-

peting approaches in the literature. Kashyap et al. (2010) minimized the additional number

of relay nodes in a given network while ensuring connectivity constraints. They gave an ex-

act method and also presented an approximation algorithm with a k-connectivity constraint.

Their approximation method works for larger values of k as well as small ones. Similar to

Kashyap et al. (2010), Bredin et al. (2010) minimized the additional number of sensor nodes

to satisfy k-connectivity constraints for any value of k. It is a different problem than the

one in this dissertation, because in their model the network is already deployed. They also

provided an approximation algorithm for their problem. Al-Turjman et al. (2013) defined

connectivity in a different way by using Laplacian Matrix of nodes. Matrix element (i, j)

is −1 if nodes i and j are connected, 0 otherwise The element (i, i) is the number of edges

connected to node i. They explained that λ2, the second smallest Eigen value of the matrix,
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defines the minimum number of nodes and links to disconnect the network. Therefore, they

maximized λ2 to maximize connectivity. Guidoni et al. (2010) worked on a small world

concept. Similar to this dissertation, they decided on paths in their model (“edges to use”

as a decision variable). It is basically a connectivity problem without considering link reli-

abilities of the links. Qian et al. (2007) considered network attacks and connectivity issues.

They proposed a multiobjective GA to minimize cost and maximize the probability that a

node can securely deliver information. As explained earlier, the latter metric is a variation

of all-terminal reliability. In their multiobjective optimization they used a simple weighted

additive objective function, whereas Pareto optimality is used in this dissertation. They

did not consider flow assignment or capacity issues, but they chose the edges to build paths.

Also, there were no relay nodes in their model. Therefore, this dissertation fills an important

gap by proposing capacitated resilience as a survivability/reliability metric and using it in a

bi-objective optimization model.

2.2 Survivability/reliability measures

In this section, the most common reliability measures are summarized and compared

with capacitated resilience, which is proposed in this dissertation as a new survivabil-

ity/reliability measure.

2.2.1 Two-terminal reliability

According to Grover (2004), there are two probabilistic failure models used to analyze

the survivability of a network: (1) Given occurrence of failure models and (2) Random

occurrence of failure models. In the first one the typical question is: “If failure x occurs,

how well are network services protected from it?”. The second type of models deals with:

“How likely is it that a path between nodes has total outage of over x minutes a year?”

Grover (2004) also asked the question “How likely is that at least one path between

nodes exists?” These questions are related to “two-terminal reliability” which is defined as
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the likelihood that at least one distinct path between (s, t) works. Grover (2004) stated

that calculating two-terminal reliability is NP -complete when link failure probabilities are

known. The formula of two-terminal reliability is given in Equation 1.2.

A more general form of two-terminal reliability is k-terminal reliability. Ball (1986)

defined k-terminal reliability as the probability that there exists an operating path from a

source node s to each node in K, where s ∈ K and k ≡ |K|. If k = 2, then the reliability

is called two-terminal reliability. All-terminal reliability is calculated when k = n (in other

words, K is V ) where a network can be defined as a graph G = (V,E) having n nodes and

m edges. Harms (1995) defined all-terminal reliability as “the probability that there is a

path of operating edges from node s to all other nodes”. A different explanation would be to

define unreliability as the likelihood that every distinct path between (s, t) contains at least

one failed (blocked) edge. Two-terminal reliability is a special case of all-terminal reliability

where it is calculated for only node pairs (i, j).

According to Dengiz et al. (2002), all-terminal network reliability (also called uniform

or overall network reliability) can also be defined as “the probability that every pair of nodes

can communicate with each other”. The primary design problem is to choose a set of links

for a given set of nodes to either maximize reliability given a cost constraint or to minimize

cost given a minimum network reliability constraint, as given in Equation 1.1 (in Section

1.3). Dengiz et al. (2002) also used the upper bound estimation technique of Jan (1993) for

their all-terminal reliability measure.

These measures consider only edge failures, and nodes are assumed to perfectly reliable.

Another assumption is that the failures are independent than each other. This is important

for computational ease. Also, in most of the studies, repairs are assumed to take a very

short time and are therefore ignored in the models. And, links are either working or failed -

degradation is not considered.

27



These reliability measures can be calculated exactly or approximately. For larger net-

works, exact calculation of reliability requires extensive computational work, therefore ap-

proximation approaches are required.

Ball (1986) stated that a cutset (minimal subset of components whose failure implies

the failure of network) and a pathset (minimal subset of components required to operate the

network) can be defined by using a “stochastic binary system” (which was first presented by

Ball and Nemhauser (1979)) as described below (S ⊆ T , where T is the set of all components):

φ(S) =


1 if when S operates and T - S fails then the system operates

0 if when S operates and T - S fails then the system fails

Pathsets and cutsets were enumerated to evaluate reliability in early studies (Ball, 1986).

To use this enumeration method for reliability calculation, the number of pathsets and cutsets

must be small.

In an early paper, deMercado et al. (1976) used a partitioning approach to calculate

2-terminal network reliability. Ball (1979) provided a partition based approach to calculate

2, k and all terminal reliability and compared the proposed algorithm with the enumeration

methods. The proposed method is more effective than enumeration approaches in terms

of CPU time. Provan and Ball (1984) proposed an algorithm to compute two-terminal

reliability between nodes s and t in polynomial time based on the number of (s, t)-cuts in

the network. The complexity of their algorithm is O(|E| + |N |µ2), where µ is the number

of (s, t)-cuts. This algorithm is intractable for large values of µ. Abraham (1979) used an

algorithm based on boolean algebra to find the 2-terminal reliability of a network. Disjoint

(mutually exclusive) paths between nodes i and j are identified first and then reliability is

calculated. Beichelt and Spross (1987) improved the algorithm proposed by Abraham (1979)

and calculated 2-terminal reliability more effectively because they reduced the number of

disjoint terms and therefore reduced the computational time.
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Despite these efforts, exact calculation of reliability becomes intractable for large prob-

lems. Therefore, alternative methods are needed to solve the problem.

Van Slyke and Frank (1971) developed an effective approach to calculate the probability

of a network being connected and the fraction of communicating node pairs. Their approach

was based on simulation. Deeter and Smith (1998) worked on all-terminal reliability (actually

they used source-sink reliability, which is a variation of all-terminal reliability) and they used

a GA. In their GA model, they used reliability in a penalty function (to ensure a minimum

reliability constraint). The calculation method of reliability in their model is taken from Ball

and Van Slyke (1977). It is a backtracking algorithm and is a reasonable choice for small

sized networks. For larger networks, they suggested Monte Carlo simulation to estimate

reliability.

Monte Carlo simulation is a popular tool that has been used in reliability analysis;

however, it is an approximation. In eary works, Kumamoto et al. (1977) used Monte Carlo

simulation estimate system reliability and Karp and Luby (1985) proposed Monte Carlo

simulation to estimate k-terminal network reliability. Lomonosov (1994) estimated reliability

using Monte Carlo simulation combining various states of the network. Nel and Colbourn

(1990) used Monte Carlo simulation and improved a well-known estimation of reliability

bounds (Ball and Provan, 1982) by adding additional constraints to the original estimation.

Colbourn and Harms (1988) used linear programming to obtain tighter bounds than (Ball

and Provan, 1982) for estimation of all-terminal network reliability.

Dengiz et al. (1997) also worked on all-terminal reliability. They minimized cost under

a minimum reliability constraint. They calculated reliability using Equation 2.1:

∑
Ω

(∏
l∈L′

pl

) ∏
l∈L\L′

ql

 ,

where Ω = all operational states, L′ = set of operational links, L′ ∈ L

pl = reliability of link l, ql = 1− pl

(2.1)
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However, Dengiz et al. (1997) reported that this formula is not tractable for large values

of Ω. Therefore, they proposed an estimation method based on Monte Carlo simulation. In

their GA methodology, they included reliability as a penalty in the objective function.

Hui et al. (2003) proposed a Monte Carlo approach based on simulation and partitioning

edge sets to estimate network reliability. They only considered edge failures (nodes are

assumed to be perfectly reliable) and they calculated k-terminal reliability. They used a

structure function φ(x) which is originally proposed by Ball and Nemhauser (1979). They

reported that the new method improved the performance dramatically in comparison to the

Crude Monte Carlo and Permutation Monte Carlo approaches. This approach could have

been adopted in this dissertation to estimate reliability because the problem herein is focused

on heterogeneous wireless networks, but an exact method has been developed to calculate

capacitated resilience.

Hui et al. (2005) combined a Cross-Entropy method and a Monte Carlo simulation ap-

proach to estimate k-terminal network reliability. They used cross-entropy with Crude Monte

Carlo, Permutation Monte Carlo and Merge Monte Carlo simulation based approaches. In

their estimation approach, they sampled only up time of each edge and then calculated the

probability of the network functioning at a specific time. By iteratively estimating the ref-

erence parameter of the cross-entropy method and using likelihood formulations, reliability

of the network is estimated. Kroese et al. (2007) also approached reliability estimation by

using a cross-entropy method. In their problem, they designed the most reliable network

under a budget constraint. Hui et al. (2005) reduced the variation in the reliability esti-

mation dramatically and increased the speed of the calculation. Also, they concluded that

Permutation Monte Carlo and Merge Monte Carlo yield better solutions than Crude Monte

Carlo for estimating reliability. This proposed approach might be used for extensions of this

dissertation, because the authors reported promising performance for large sized networks.

Hui (2007) proposed a new method (Synchronous Construction Ranking) for Monte Carlo
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simulation to rank different network designs according to their k-terminal reliability values.

Their main concern was to find the most reliable design among many candidates.

Ramirez-Marquez and Coit (2005) estimated two-terminal reliability in multi-state net-

works by using Monte Carlo simulation. Multi-state networks are consisted of edges with

different available capacities where the current state (capacity) of the edge can take values

of bi ≥ 0. Thus, multistate two-terminal reliability (M2TRd) is defined as the probability

that a flow requirement (d units of flow) between nodes i and j can be served by the network

of multi-state edges.

Cancela and El Khadiri (1995) proposed a variance reduction technique for Monte Carlo

simulation to estimate k-terminal reliability. They used a recursive method to reduce varia-

tion of Monte Carlo simulation by evaluating the unreliability of the network. Their method

yielded faster results than existing methods, namely Dagger Sampling, Sequential Construc-

tion, Bounds, Failure Set and Merge Process approaches. This method was further improved

by Cancela and El Khadiri (1998) by applying series-parallel reductions. A series reduction

is to replace two serially connected links (with reliabilities rij and rjl) by one link where

the new reliability is calculated as rij ∗ rjl. A parallel reduction is to replace two paral-

lel connected links by one link where the reliability of the new link is rij + rkl − rij ∗ rkl.

These reduction techniques were proposed by Rushdi (1984) in an earlier study to calculate

k-terminal reliability. Similar to Cancela and El Khadiri (1995), Cancela and El Khadiri

(2003) proposed a new formulation to reduce variance of Monte Carlo simulation to estimate

k-terminal unreliability. They also combined the new formulation with the series-parallel

reduction approaches of Cancela and El Khadiri (1998). Their formulation yielded better

solutions in terms of CPU time.

In a recent study by Grosan et al. (2009), the objective functions of cost and resilience

were used. They defined resilience by assigning a backup path in addition to a primary path

between commodity pairs. Similar to k-connectivity and edge-disjoint paths, the backup

paths of Grosan et al. (2009) ensure survivability but the paths are not required to be
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disjoint (they can have more than one common edge or node). Also, they only consider link

failures. Their cost function is simply the edge costs. They minimized the number of common

edges with primary and backup paths to ensure resilience. Inversely, they also maximized

the number of non-common edges between backup paths. They used Pareto optimality for

these three objective functions. In summary, their approach only assigns primary and backup

paths and it minimizes common edges between the primary and backup paths. This can be

accomplished using edge-disjoint path constraints more effectively. They did not compare

their method with other methods, and only discussed the network designs generated by their

algorithm.

2.2.2 Probability that two nodes can communicate

Wilkov (1972) presented the “probability of two nodes communicating” measure assum-

ing that all communication-link failures and computer-center breakdowns are statistically

independent and that each communication link fails with probability p and each computer

center goes down with probability q. This metric is similar to two-terminal reliability; how-

ever, it includes both link and node failures. Calculation of Pc(a, b), the probability of

successful communication of any operating nodes a and b, is approximated by Equation 2.2.

Pc(a, b) =
b∑
i=0

Aea,b(i)(1− p)ipb−i, p� q (2.2)

Ana,b(i) is the number of combinations of i nodes such that if they are operative and the

remaining (n− 2− i) nodes fail, there is at least one communication path between nodes a

and b. Wilkov (1972) also gave an approximation formula for the q � p case. However, a

comparison with an exact method is not given.
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This approximation calculation could be used in our problem, but a downside is the

requirement of homogeneous failures (with failure probability p). Also the calculation of

Ana,b(i) is computationally expensive.

2.2.3 Expected loss of traffic (ELT)

Another measure for survivability/reliability is the expected loss of traffic (ELT). Ac-

cording to Grover (2004), it is basically the expected number of lost demand-minutes over a

year. In this calculation, the total demand (flow) between i and j is not required to be along

a single path – multiple paths are allowed. The demand dij may be realized by routing over

P different routes, but total demand must be satisfied. Grover (2004) gives the formula of

ELT in Equation 2.3.

ELTi,j =
∑

p=1...P

dpij ∑
∀k∈(S,N)

δpij(k)Uk

M0 (2.3)

Thus, ELT is the “sum of the demand-weighted unavailability of each distinct (not

disjoint) path employed to satisfy total demand dij” (Grover, 2004). Disjoint paths can be

assured by additional constraints.

Similar to capacitated resilience, ELT can be calculated if flow from i to j is routed

over different paths. ELT can also be interpreted as unreliability with split flows, however, it

returns the lost demand-minutes over a year. Therefore, unlike capacitated resilience, ELT

is not scaled within 0 and 1. In the capacitated resilience calculation, if a flow cannot be

rerouted, capacitated resilience is equal to zero. On the other hand, ELT does not capture

rerouting possibilities. It only calculates the unreliability for given splits of a flow and use

them in the lost-demand calculation. As another difference, ELT calculation assumes that

all distinct paths (the given splits) are independent. This assumption may lead to a higher

ELT value than it should be if the splits are routed over two paths having a common network
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component. In capacitated resilience calculation, independent subgroups of alternative paths

(see Section 3.2.3 for details) are used to overcome the path dependency issues.

2.2.4 Traffic efficiency

Konak and Bartolacci (2007) used the traffic efficiency (TE) measure which was origi-

nally proposed by Kubat (1989). The main reasons for them to use TE instead of reliability

are to include node failures and to consider traffic flows. They also included a 2-node con-

nectivity constraint in their model.

They defined the state of edges and nodes as either 0 or 1. If a component is operational,

then its state is 1, otherwise it is 0. They assumed that reliability (and unreliability) of nodes

and edges are given as inputs.

They defined TE as the expected value of Ω(x), which is the fraction of the traffic that

the network delivers in state x (Equation 2.4). The definition of Ω(x) is given in Equation

2.5. They defined τij to be 1 if there is a path between nodes i and j. γ is defined as

the total traffic demand of the network. This formulation needs to consider 2m+n states for

calculation of TE.

TE = E[Ω(x)] =
∑
x∈S

Ω(x) ∗ P{x} (2.4)

Ω(x) =
1

γ

n∑
i=1

n∑
j=i+1

τij(x)tij (2.5)

There are four main differences between TE and the capacitated resilience metric pro-

posed in this dissertation. First, TE does not consider capacity of edges (or nodes), however,

capacitated resilience considers capacity in finding the initial path (the most reliable path)
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and in rerouting. Second, TE considers node failures as well as link failures, whereas ca-

pacitated resilience considers only link failures. This is an important difference of TE with

capacitated resilience and the other connectivity based reliability measures, such as all-

terminal reliability. Third, paths from i to j are found for each state of network to calculate

TE, whereas all distinct paths are found to calculate capacitated resilience for a given state

of network. In other words, capacitated resilience calculates all possible paths from originat-

ing node i to all operating AP s. And for capacitated resilience, rerouting is only enacted if

the initially assigned path fails (any failure in the path). Therefore, distinct paths are cal-

culated without using the failed component and all components other than the failed one(s)

are assumed operational. Nevertheless, TE considers all possible states of all components in

the network where network components are either operational or failed. Last, split flows are

allowed in routing process of capacitated resilience when maximum capacity of an alternative

path is reached. On the other hand, as seen from Equation 2.5, TE does not split the traffic

flow between nodes i and j. These are the main differences between TE and capacitated

resilience.

An additional difference is the calculation method of TE. It is calculated by an effi-

cient simulation technique based on “sequential construction” (summarized in Section 4.3.2)

by Konak and Bartolacci (2007). In the original article proposing the TE measure, Kubat

(1989) combined a Monte Carlo based simulation and analytical approach to calculate TE.

The motivation of the calculation approaches of these studies is the intractability of the cal-

culation of TE for large sized networks. However, in this dissertation, capacitated resilience

is calculated by enumeration of paths. This enumeration may be intractable for large net-

works. Therefore, limits on the number of paths (see Section 3.2.2) and cut sets (see Section

3.2.4) are used to estimate capacitated resilience in larger networks.

Similar to capacitated resilience metric, TE is already normalized because it is the

expected fraction of the traffic that the network delivers. Therefore, two different network
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designs can be readily compared using TE. Both TE and capacitated resilience prefer larger

values, and for both metrics the upper limit is 1.

2.2.5 k-connectivity and edge-disjoint paths

A two-connected (or two-node connected) graph has at least two node-disjoint paths

between every pair of vertices (Bondy and Murty, 2008). If two paths are edge-disjoint,

they do not have a common edge (but can have a common node). Similarly, if two paths

are node-disjoint, they do not have a common node (Kashyap et al., 2010). Therefore, if a

graph is two-connected, it is also a two-edge connected graph. However, the reverse of this

statement is not necessarily true. These connectivity constraints are widely used to ensure

survivability/reliability of a network.

2.2.6 Summary and discussion

To summarize, some survivability/reliability metrics have been used in the HetNets

literature although it is most common to add k-connectivity or edge-disjoint path constraints.

Among them, two-terminal and all-terminal reliability measures are the most frequently used

ones. These metrics consider link failures. Similar to these, “probability that two nodes can

communicate” also captures link failures, but it includes node failures as well. However,

flow between nodes is not taken into consideration in these metrics. It is important to have

flows and capacities of the devices because rerouting of flow is possible in case of a failure.

The proposed metric in this dissertation, capacitated resilience, uses reliability and rerouting

options at the same time. It assumes capacitated links due to capacity of wireless devices.

Capacitated links have been considered in some studies (such as Benyamina et al. (2009a)

and Capone et al. (2010)), whereas some studies (for example Shahnaz and Erlebach (2010))

did not consider capacity of links. Using capacitated wireless links and devices for resilient

heterogeneous wireless network design problem is more realistic.
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Table 2.12 compares capacitated resilience with the other reliability/survivability met-

rics. The most important difference of capacitated resilience is the consideration of capacity.

Another difference is that capacitated resilience prioritizes the availability of rerouting op-

tions. Also, it allows split flows in rerouting. On the other hand, capacitated resilience

assumes that nodes are perfectly reliable. In conclusion, capacitated resilience is a more

comprehensive metric as it includes both reliability and rerouting under capacity constraints.

Table 2.12: Comparison of reliability/survivability metrics
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Rerouting X X X
Capacity X
Node Failures X X X
Link Failures X X X X X X
Split flows X X

In Section 3.3, the reliability/survivability metrics presented in this chapter are calcu-

lated for an example network and the differences are discussed.

2.3 Shortest path problem variations: Constraint shortest path and k shortest

path

The rerouting calculation of capacitated resilience requires enumeration of all possible

alternative paths under capacity constraints. This problem is known as the constrained k

shortest path problem. The problem reduces to the constrained shortest path problem if k

equals to one. Constrained shortest path and k shortest path problems are well known and

they are summarized in this section.

In one of the earliest works on the shortest path problem Yen (1971) proposed an exact

method to find k shortest paths between two nodes. However, this algorithm does not include
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constraints. Since that time, the shortest path problem has been solved under constraints and

the problem was termed the “constrained shortest path problem”. According to Dumitrescu

and Boland (2001), the weight constrained shortest path problem is to minimize the cost

of a route between two nodes while ensuring the total edge weight is less than a predefined

value. Another variation of this problem uses node weights instead of edge weights. The

basic formulation of this problem is taken from Dumitrescu and Boland (2001) and given in

Equation 2.6.

min
∑
e∈E

cexe (2.6a)

s.t.

∑
e∈δ+(i)

xe −
∑

e∈δ−(i)

xe =


1 , if i = s

−1 , if i = t

0 , if i ∈ V \ {s, t}

∀i ∈ V (2.6b)

∑
e∈E

wexe ≤ W (2.6c)

xe ∈ {0, 1}, ∀e ∈ E, δ+(i) = {(i, j) ∈ E}, δ−(i) = {(j, i) ∈ E} (2.6d)

Dumitrescu and Boland (2001) reported that the weight constrained shortest path prob-

lem is closely related to the shortest path problem with time windows and the resource

constrained shortest path problem. Also, the bi-objective (cost and weight minimization)

shortest path problem is another variation of this problem.

To solve this problem, mixed integer programming formulations were developed in many

studies. However, other methods were devised to solve the problem more effectively. Among
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them, Lagrangian relaxation, column generation and dynamic programming are the most

common ones.

Desrochers et al. (1992) worked on vehicle routing with time windows problem, which is

a variation of the weight constrained shortest path problem. In this problem, time windows

(allowable delivery times) are added to the vehicle routing problem in which the minimum

cost route is sought between two nodes. They used distance between nodes as cost and the

weight of edge (i, j) is defined as the time duration (including the service time at customer

i). They defined the problem as a set partitioning problem to select a set of minimal cost

routes (Equation 2.7):

min
∑
r∈R

crxr

s.t.∑
r∈R

δirxr = 1 , i ∈ N \ {d}

xe ∈ {0, 1}, r ∈ R, δir = 1 if route r ∈ R visits customer i ∈ N \ {d}, 0 otherwise

where d is the central depot that routes are originating and terminating at

(2.7)

In this formulation, R is the set of feasible routes for the vehicle routing problem with

time windows. xr is a binary variable (1 if route r is used). Since the number of columns (i.e.,

feasible routes) are extremely large, Desrochers et al. (1992) presented a column generation

approach.

Barnhart et al. (1998) also used column generation to solve an aircraft routing problem

which is similar to vehicle routing with time windows. Differing from the problem solved

by Desrochers et al. (1992), they simultaneously solved a fleet assignment problem and an

aircraft routing problem (The problem reduces to the aircraft routing problem when there

is only one fleet to assign.) Holmberg and Yuan (2003) used column generation to find the
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shortest path under time-delay and reliability constraints for capacitated multicommodity

network flow problems.

In an early influential paper, Beasley and Christofides (1989) solved the resource con-

strained shortest path problem by a Lagrangian relaxation formulation. In their problem,

the resource constraint was the budget of the traveler. Again in an early study, Handler and

Zang (1980) solved the constrained shortest problem by a Lagrangian relaxation algorithm.

They used a knapsack constraint in their problem. Their algorithm terminates at the kth

shortest path which is the first path satisfying the constraints.

Irnich and Desaulniers (2005) summarized solution methodologies as dynamic program-

ming, Lagrangian relaxation, constraint programming and heuristics. Dynamic programming

is used to build new paths. A trivial path P is extended for all feasible combinations and

new paths are checked whether they are useful or not. Paths are often encoded by labels

in dynamic programming algorithms to solve the shortest path with resource constraints

problem (Irnich and Desaulniers, 2005). They explained the usage of Lagrangian relaxation

in detail. They also defined how to use constraint programming using a “domain reduction

algorithm” for each constraint. Heuristic methods, such as “preprocessing” techniques, can

be used to eliminate edges and reduce the network. “Dynamic programming heuristics” stop

if a predefined number of negative (that is, cannot enter the basis) columns are found.

Carlyle et al. (2008) improved the Lagrangian relaxation approach by closing the opti-

mality gap using an enumeration of near-shortest paths. In this dissertation, this approach

would be useful because rerouting of flows (for the capacitated resilience calculation) requires

enumeration of all possible paths. However, this approach yields an approximate solution.

Avella et al. (2002) proposed a heuristic to solve large resource constrained shortest path

problems. Their heuristic depends on penalty functions and provides approximate solutions.

In many cases, their method yielded better solutions with lower number of iterations than

Lagrangian relaxation. They eliminate resource constraints by using an exponential penalty
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function. This approach could be used in this dissertation to find the most resilient paths

under a capacity constraint, but it, too, is an approximate method.

Ribeiro and Minoux (1985) proposed a heuristic method to get good feasible solutions

for double constrained shortest path problems. Their algorithm generates partial solutions

and combines them to a final solution using enumeration. They showed that the method

produces good, feasible solutions even for hard constraints. This method might be useful

as a future work of this dissertation by finding the most resilient path for instances with

capacity and minimum hop constraints.

Mehlhorn and Ziegelmann (2000) worked on the resource constrained shortest path

problem where there are k resource constraints. They proposed an algorithm, “hull ap-

proach”, to solve this problem and showed that it provides good upper and lower bounds for

the problem. It is a polynomial algorithm when k equals 1. This algorithm could be useful

in this dissertation if more than one constraint (such as capacity and minimum number of

hops) are applied. However, only capacity is considered herein.

van der Zijpp and Catalano (2005) proposed an algorithm to enumerate k-shortest

paths with resource constraints. Their problem is equivalent to a shortest path problem

with resource constraints if k is equal to 1. Their algorithm finds the constrained shortest

paths directly instead of selecting feasible ones from a large set, which reduces CPU times

dramatically.

Feillet et al. (2004) presented an exact algorithm to find the optimum path for the

constrained shortest path problem. Their algorithm is a label-correcting algorithm and the

problem is a restricted case where the paths are constrained to use a node only once. In

their problem, capacity is defined for nodes, which is similar to the problem presented in

this dissertation. Righini and Salani (2008) worked on the same problem and proposed a

dynamic programming model. They also used a “state-space relaxation” based dynamic

programming method in which an infeasible region can be projected onto a feasible region

without guaranteeing optimality.
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As another variant, Villeneuve and Desaulniers (2005) worked on the shortest path

problem with forbidden paths. In this problem some paths (edges) are restricted in building

shortest paths. They proposed a polynomial time algorithm and stated that their method

can be used to eliminate cycles in k different shortest paths between nodes i and j. In

this dissertation, this problem may have been useful to find distinct paths (for rerouting) if

forbidding some edges was necessary.

Similar to Desrochers et al. (1992), Irnich and Desaulniers (2005) defined the same

problem and they stated that this problem is very close to a multiobjective function where

time and cost are considered. They also noted that paths can be incomparable because

one path may be better than another for one criterion (for example, cost) but can be worse

for the other one (e.g., time). They also classified different variants of this problem. They

distinguished problems according to formulation of the resource constraints, existence of

path-structural constraints, objective and underlying network.

Irnich and Villeneuve (2006) proposed an algorithm to eliminate cycles with length k

from resource constrained shortest paths. In this study, they proposed a pseudo-polynomial

labeling algorithm. They found that this method solves hard problem instances (with wide

time windows) faster than the other methods in literature. They also showed that their

algorithm can handle Pareto optimal resource constrained shortest paths. In an early work,

Aneja and Nair (1978) solved the constrained shortest path problem with a bicriteria model.

Warburton (1987) presented a method to approximate Pareto optimal paths for multiobjec-

tive shortest path problems.

2.3.1 Summary and discussion

In relation to constrained shortest path problems, the problem in this dissertation is

somewhat different. In this dissertation, the route with maximum reliability is sought under

capacity constraints. Edge reliabilities have been transformed with a logarithm to linearize

the model and the k shortest path problem has been solved under a capacity constraint.

42



However, similar to previous studies (Desrochers et al., 1992; Barnhart et al., 1998) there

are a large number of paths to enumerate. The k shortest path problem helps to reduce the

size of the problem for larger networks by limiting the number of rerouting options (k). These

distinct paths are important for the rerouting calculation of capacitated resilience. Reliability

of a path is maximized, instead of minimizing the cost. Also, the weight constraint is replaced

with capacity of nodes. In this dissertation, the k shortest path problem is solved using Yen’s

algorithm (Yen, 1971), presented in Section 3.2.2, because of its ease for implementation.

Nevertheless, the solution approaches presented in Section 2.3 might be adopted to solve the

problem. For example, as a future study, column generation could be applied to calculate

capacitated resilience. All possible paths could be generated as columns and the restricted

problem solved.

In this dissertation, capacity constraints are based on node (device) constraints. Hence,

a transformation from node capacities to edge capacities is required. As demonstrated in

Equation 2.8, device capacities can easily be converted to edge capacities. The capacity

of edge (i, j) is the minimum of the capacities of devices i and j that the edge connects.

Therefore, edge capacity constraints ensure that the capacity of nodes are not exceeded.

lij = min{li, lj}, where l denotes capacity (2.8)

In this dissertation, enumeration of all possible paths is an appropriate solution for

small sized networks; however, for realistic sized problems more computationally effective

solution approaches must be used. A limit on the number of alternative paths (k) helps to

approximate for larger networks (see Section 3.2.2 for more details). Cut set size is another

parameter in the capacitated resilience calculation (see Section 3.2.4 for more details).
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2.4 Some issues of wireless networks

2.4.1 Reliability of a wireless link and network density

In one of the earliest and the most influential works, Takagi and Kleinrock (1984) worked

on multihop packet radio networks and defined “probability of successful transmission” by

Equation 2.9a. In this formula, S is one-hop throughput, which is defined as the average

number of successful transmissions per slot from the terminal (Equation 2.9b), and N is

the expected number of nodes within transmission range. Pr.(P → Q) is the probability

that the transmission from P to Q is successful. Transmission is only possible if none of the

terminals (including Q) within the range (R) of Q transmits when P is transmitting to Q. p

is the probability that a terminal transmits a packet and it depends on N (number of nodes

within range). p is calculated according to Equation 2.9c. Takagi and Kleinrock (1984)

found the optimal number of nodes in a transmission range as 7.72 to maximize throughput.

The key of this formulation is that the probability of successful transmission is calculated

considering interference in the network due to density. Similarly, several other studies defined

probability of successful transmission for wireless networks by taking interference concept

into consideration (Hunter et al., 2008; Huang et al., 2008; Hira et al., 2007).

Pr. of Successful Transmission =
S

p
, where (2.9a)

S = Pr.(there is at least one terminal within R) (2.9b)

∗ Pr.(P transmits) ∗ Pr.(P → Q)

p =
2

N + 2 +
√
N2 + 4

(2.9c)

The reliability of a link defined in this dissertation and “probability of successful trans-

mission” (Takagi and Kleinrock, 1984) are related to each other in terms of their definitions.

44



Both definitions consider the probability if nodes i and j can communicate with each other.

However, they have a major difference in terms of their calculation method. The probability

of successful transmission takes interference (due to number of nodes in transmission range)

into account, however, the reliability of a link only considers the distance (which affects sig-

nal quality) between the nodes. Reliability also depends on signal quality which is affected

by distance, and is assumed to be negligible in this dissertation.

In another study, Camp et al. (2006) defined the probability that there is a route between

nodes i and j (denoted as Rij) for wireless mesh networks. Similar to the definition of path

reliability given in this dissertation, they calculated the product of the probabilities of all

links in a path between i and j (Equation 2.10). In this formulation, Sl is the signal strength

of link l ∈ Rij and Tmin is the minimum required signal strength.

Pr(Rij exists) =
∏
∀l∈Rij

Pr(Sl > Tmin) (2.10)

Xue and Kumar (2004) stated that the number of connected neighbors affect the capacity

of an ad hoc network due to interference of nodes. Node i interferes with node j when it

broadcasts within the range of j. Transmission range (r) determines the number of nodes in

the neighborhood and that interference increases on order of r2 (Xue and Kumar, 2004; Gupta

and Kumar, 2000). In another study, Raniwala and Chiueh (2005) stated that the bandwidth

of a wireless network using the IEEE 802.11 protocol can be decreased by interference due

to the relays in the same path or neighboring paths.

Hekmat and Van Mieghem (2004) used a path-loss law model for radio propagation to

calculate interference of mobile ad hoc networks. In their model, the mean value of received

signal power (pa) decreases as distance (d) between devices increases. The calculation of pa

is given in Equation 2.11 where constant c is affected by transmission power and some other

properties of the devices, and η is the path loss exponent between 2 and 6. η is 2 for free
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space, and 5 for a building environment with obstacles. Thus, they modeled interference

with this assumption. Their assumption of degradation of signal quality has not been used

in this dissertation to keep the model more tractable. Also, the model in this dissertation is

more general and the specific environment is not known.

pa = cd−η (2.11)

Hekmat and Van Mieghem (2004) also showed that delays in communication increase

and network throughput reduces as the number of nodes increases. They found that when

network density increases, the average number of hops to communicate decreases but fewer

nodes transmit simultaneously. Therefore, capacity per node reduces. In this dissertation,

density of a network is adjusted according to the number of users in the network to address

this issue.

Takagi and Kleinrock (1984) stated that if the average number of terminals in a trans-

mission range is N , then the probability of successful transmission is proportional to 1/N in

multihop packet radio networks. A shorter transmission range includes a smaller number of

terminals in a neighborhood and therefore means a lower possibility of collision. However, a

long transmission range increases the chance of finding an appropriate receiver in a desired

direction. Takagi and Kleinrock (1984) worked on this trade-off and investigated the opti-

mum number of average terminals in a transmission range. In another study, Grossglauser

and Tse (2002) assumed that all nodes can communicate with each other in a mobile ad

hoc network. Their analysis showed that throughput for each communication pair in the

network decreases proportional to 1/
√
n (where n is the number of nodes per unit area) as

n increases.

In a real life application, reliability of a link is affected by the number of nodes (links) in

the transmission range. Probability of successful transmission is proportional to 1/N (where
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N is the average number of nodes in transmission range) due to the interference caused by

density (Takagi and Kleinrock, 1984).

2.5 Capacity of a wireless network and interference issues

As a simplistic view, the number of APs definitely affects the capacity in this disser-

tation. All users must connect to an AP; however, possible routes to reach an AP can be

extremely difficult to find if a limited number of APs exist in a network. In other words,

more APs increase the chances to balance the flow of the network. The main bottleneck of

a given network can be investigated by a graph theoretical approach. To determine whether

a specific node is a bottleneck, the cut-sets of the network should be checked. If the node

is repeatedly included in many of the node cut-sets of a network, that device is a bottle-

neck. On the other hand, another definition of a bottleneck would be a device that has no

or limited capacity to route flows. Therefore, the number of devices affects the capacity of

a network. In this dissertation, both device capacities and cut-sets are considered for the

capacitated resilience calculation.

Another issue with the number of devices in a network (or density) is the interference in

the wireless channels. Nevertheless, the effects of interference caused by neighbors have not

been included in the dissertation because this complicates the mathematical model which

is already hard to solve. It is assumed that nonoverlapping channels are used to avoid

interference issues.

The issues on interference and capacity have been studied in the wireless networks

literature and therefore they are summarized in this section, even though they are not

included in this dissertation.

Xue and Kumar (2004) showed that an ad hoc wireless network (having n nodes) be-

comes (asymptotically) connected if each node is connected to more than 5.1774 log n nearest

neighbors n goes to∞. By definition, the number of connected neighbors affect the capacity

of the network due to interference of nodes. They also mentioned that device i interferes
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with device j when it broadcasts within the range of j. Therefore, more links cause more

interference and, eventually, a lower capacity of the network. However, there is a trade-off

between the number of links (number of neighbors) and reliability of a network. As the

expected number of neighbors (number of links) increases, the chance of having a one hop

connection increases (“relaying burden” decreases) but overall interference of network grows.

Relaying burden means the requirement of a node to relay the packets from other nodes.

Although this is a natural result of multi-hop communication, a higher level of relaying bur-

den is not desired because it increases the loads on RPs by requiring them to transceive a

larger number of packets from other nodes (users or RPs). Transmission range (r) affects not

only the number of neigbors but also the relaying burden and interference (Xue and Kumar,

2004). Relaying burden grows with order of 1/r, whereas interference grows with the order

of r2 (also discussed in Gupta and Kumar (2000)). Therefore, less range and fewer neighbors

are better in terms of interference, but the network may be disconnected if the range is too

small.

In the problem solved in this dissertation, the network has a different structure. Its

structure is closer to the one presented by Gastpar and Vetterli (2002) in which there is only

one active link between i and j and all remaining nodes are simply relay nodes for conveying

information between i and j. This is similar to the user to AP connection of this dissertation.

However, in this dissertation instead of the one active link of Gastpar and Vetterli (2002)

there are as many connections as the number of users. By using the min-cut maximum

flow theorem, Gastpar and Vetterli (2002) showed that the capacity of the network goes to

O(log n) bits per second when n (number of nodes in the network) goes to ∞.

Li et al. (2001) used simulation to analyze the capacity of a wireless ad hoc network.

One important result related to this dissertation was the effect of multi-hop communication

in an ad hoc network. They showed that throughput significantly reduces as the number

of hops increases, but the reduction becomes very small after some number of hops. If n

is the total number of nodes in the network, they showed that a wireless network (using
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IEEE 802.11) approaches its theoretical maximum capacity per node (O(1/
√
n)), which was

originally proposed by Gupta and Kumar (2000). Therefore, capacity of a network reduces

as the network becomes denser .

Reliability of a wireless mesh network increases when there are more redundant paths for

communication pairs to alleviate catastrophic effects due to failure of bottleneck links (Bruno

et al., 2005). Raniwala and Chiueh (2005) explained the term “path capacity” which is the

minimum residual bandwidth of the path that connects a WMN node to the wired network.

Another approach to analyze wireless network capacity is “gateway capacity” which takes

into account the capacity of the gateway (AP) link with the assumption that a bottleneck

is caused by the gateway (AP) connection. A gateway is simply an AP, which is explained

in this dissertation. Raniwala and Chiueh (2005) also stated that a bottleneck is generally

located on links around an AP due to heavy collision and interference. Therefore, the number

of APs affects the capacity of a network. However, Raniwala and Chiueh (2005) added that

bottlenecks can occur even in intermediate wireless links due to other radio sources and

therefore path load balancing can be a more effective strategy to improve network capacity

instead of AP (gateway) load balancing. Similarly, Jun and Sichitiu (2003) showed that

gateways (APs) in a WMN are the main bottlenecks. If n is the number of users served by

an AP (gateway), they claimed that the available capacity of each node is affected by order

of 1/n. Adding more APs increases the capacity and reliability of the network (Jun and

Sichitiu, 2003). The number of APs directly affects the capacity of both individual nodes

and the network. Jun and Sichitiu (2003) computed throughput through identification of

bottleneck collision domain which was defined as the area in the network limiting the amount

of data that can be transmitted in the network.

Wang and Liu (2006) proposed a linear programming model to find maximum capacity

(in terms of throughput) for a given network. They investigated ad hoc networks and did not

consider mesh type networks, but their methodology could be adapted to this dissertation

as a future work to calculate throughput.
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Wu et al. (2006) assumed that mesh routers use different channel assignments to prevent

interference in their model. The same assumption has been included in this dissertation. A

non-overlapped channel is used for one of the routers when two of the routers are close

enough to interfere with each other. As summarized in Wu et al. (2012), IEEE 802.11a has

12 non-overlapping channels, whereas IEEE 802.11b/g has only three. In their proposed

queuing model, a bottleneck is defined as the average delivery delay of data requests at

the gateway nodes (APs). Also bottleneck throughput is defined as the “maximum feasible

data requesting frequency from all users attached to a mesh router”. They showed that the

bottleneck delay decreases when the number of APs (gateways) increases. They assumed

the location of gateways do not affect bottlenecks because they ignored the delay caused

by routers. However, this is an issue in real life problems. By using their M/D/1 queuing

model, they found that the number of APs must be greater than λNs to ensure a steady

network where N is the number of mesh routers, λ is the mean arrival rate of data to the

mesh routers and s is the server time at an AP node.
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Chapter 3

Proposed metric: Capacitated resilience

3.1 The need for a new metric

In network design literature, requiring k-connectivity or edge-disjoint paths are the most

common ways to ensure survivability. Other reliability metrics, namely k-terminal reliabil-

ity (Grover, 2004), all-terminal reliability (Harms, 1995), “traffic efficiency” (Konak and

Bartolacci, 2007), “probability that two nodes can communicate” (Wilkov, 1972) and “ex-

pected loss of traffic” (Grover, 2004), have also been used. Among them, two-terminal and

all-terminal reliability measures are the most frequently used ones. These well known reli-

ability/survivability measures, and the differences between them and capacitated resilience

are summarized in Sections 2.2 and 2.2.6, respectively.

The main motivation for developing a new metric is to include rerouting options as

well as reliability when considering capacitated links and devices. Capacity is one of the

main differences. If a device (or a link) does not have enough capacity then traffic can-

not be routed on that device (or link). Connectivity based survivability metrics and most

reliability/survivability metrics do not consider capacity.

Rerouting is an important issue for session continuity in telecommunication networks

and it is the essential part of the capacitated resilience metric. For example, capacitated

resilience becomes zero if there is no alternative path available. Capacitated resilience em-

phasizes session continuity in network design. Unlike connectivity constraints, it also allows

comparison of different network designs. In other words, two different k-connected network

designs can have different reliability and capacitated resilience values.

The capacitated resilience metric proposed in this dissertation can be calculated with

an exact method. In the network reliability/survivability literature, metrics were mostly
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calculated by approximate methods, such as Monte Carlo simulation. The studies using

exact methods made many simplifying assumptions to keep problems tractable and do not

consider alternative paths. Connectivity based metrics, such as k-connectivity, have only k

different alternative paths and they do not consider reliabilities of the paths. This is another

difference between capacitated resilience and the others.

3.2 Proposed metric: Capacitated resilience

Network level capacitated resilience is the weighted average of capacitated user re-

siliences in terms of their traffic requirements. Equation 3.1 presents the calculation of

capacitated network resilience. In this equation, wi is the weight of User i, which is the

proportion of traffic flow of User i to the total traffic flow of all users. Note that the traffic

flow of a user is assumed to be constant over time. The capacitated resilience calculation

requires user level capacitated resilience values to be known. If the network consists of one

user, then capacitated user resilience is equal to network resilience.

Capacitated Resilience =
∑

i∈ Users

wi ∗ Capacitated Resilience (Ui) (3.1)

User level capacitated resilience is defined in Equation 3.2. R(pi) denotes the reliability

of the assigned path of User i where the user (Ui) is assigned to a device whose path has

maximum reliability (from the user to an AP). The resilience factor scales the user reliability.

To calculate it, all alternative paths (those having available capacity) from User i to any

available access point are identified first. Then, reliabilities of the alternative paths are

calculated. These steps are explained in Sections 3.2.1 through 3.2.5. Capacity of devices

and links are considered for finding assigned and alternative paths, but split flows are not

allowed due to complexity of calculations.
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Capacitated Resilience (Ui) = R(pi) ∗Resilience Factor (Ui) , i ∈ Users (3.2)

The next sections explain the calculation steps of capacitated resilience (user level)

components: (1) Finding the most reliable path between the user to an access point, (2)

Identifying alternative paths between the user and any access point, (3) Determining inde-

pendent subgroups of the alternative paths, (4) The reliability calculation of independent

subgroups, and (5) Calculating reliability of the alternative paths (Resilience factor) using

subgroup reliabilities.

A subgroup consists of a subset of alternative paths of a user. Obviously, a subgroup is

a subgraph of the network. Therefore, subgroup and subgraph are used interchangeably in

this dissertation.

3.2.1 Finding the most reliable path between the user to an access point

There might be more than one AP in a HetNet. For a given user, finding the most

reliable path to connect an AP is important for service quality. The most reliable path from

a user to an access point is found by Dijsktra’s shortest path algorithm (Algorithm 3.1).

It is a well known algorithm which labels every vertex v with its predecessor p(v). In this

algorithm, the distance from vertice r to v is defined as l(v). More information can be found

in Bondy and Murty (2008). As given in Equation 3.3, the algorithm works by minimizing

the logarithm of link reliabilities which is equivalent to maximizing reliability of the path.

Note that the reliability of the wireless link between user i and device j is calculated by

max{0, (rj − dij)/rj}, where dij is the distance between user i and device j and rj is the

range of device j. Similarly, the reliability of the wireless link between device j and device

k is calculated by max{0, (r − djk)/r}, where r = min{rj, rk}.
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Algorithm 3.1 Pseudocode of Dijkstra’s shortest path algorithm (Bondy and Murty, 2008)

1: set p(v)← ∅, v ∈ V , l(r)← 0, d(v)←∞, v ∈ V \ r
2: while there is an uncolored vertex u with l(u) <∞ do
3: choose a vertex u with minimum l(u)
4: color u black
5: for ∀ uncolored neighbor v of u with l(v) > l(u) + w(u, v) do
6: replace p(v) by u and l(v) by l(u) + w(u, v)
7: end for
8: end while
9: return (p, l)

logR(P ) = log
∏

(i,j)∈P

pij

logR(P ) =
∑

(i,j)∈P

log pij

(3.3)

R(P ), reliability of a path of the user to an AP, is maximized when
∑

(i,j)∈P log(pij) is

maximized (equivalently, −
∑

(i,j)∈P log(pij) is minimized), because 0 ≤ pij ≤ 1, as given in

Equation 3.4.

max{R(P ) =
∏

(i,j)∈P

pij} ≡ max{
∑

(i,j)∈P

log(pij)} ≡ min{−
∑

(i,j)∈P

log(pij)} (3.4)

After evaluating reliabilities from the user to all available APs (having enough capacity),

the AP with the most reliable path is assigned to the user.

3.2.2 Identifying alternative paths between the user and any access point

Upon assigning the most reliable AP to a user, the next step is to identify all alternative

paths from the user to all APs. This subproblem is computationally the most expensive part

of the capacitated resilience calculation.
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For each available AP, a k shortest path problem is solved to find the k most reliable

paths from the user to that AP. Identifying all available paths might be intractable for

large networks, therefore limiting the number of paths (k) reduces the complexity of this

subproblem. Obviously, the solution becomes exact if k is sufficiently large.

The k shortest path problem is not new and there are many algorithms to solve it.

Section 2.3 summarizes the k shortest path problem and its solution methods. Among them

Yen (1971), Eppstein (1998), Katoh et al. (1978), and Katoh et al. (1982) are the most

important ones. Katoh et al. (1982) is a generalization of Yen (1971). Eppstein (1998)

is faster than Yen (1971) but it allows repeated vertices (which makes the search space

larger). In this paper, Yen’s (Yen, 1971) k shortest path algorithm has been used, because

it provides an effective and easy implementation and allows only simple paths (no loops or

repeated vertices).

Details of Yen’s algorithm

The pseudo code of Yen’s Algorithm to find k shortest paths is given in Algorithm 3.2

(the interested reader may refer to the original article (Yen, 1971) for more information):

Yen’s algorithm starts with finding the most reliable path using any shortest path algo-

rithm. In here, Dijkstra’s shortest path algorithm (Algorithm 3.1) has been used because it

is an exact algorithm and easy to implement. Note that solving the shortest path problem is

equivalent to maximizing reliability of the path according to Equation 3.4. Upon identifying

the shortest path between the user and the AP, the second shortest path is found by modi-

fying the shortest path obtained in the first step. The main idea in this algorithm is to use

previously obtained shortest paths to generate the remaining shortest paths. Therefore, the

algorithm runs Dijkstra’s shortest path algorithm from an intermediate node in the shortest

path (called a spur) to the AP without using the rest of the edges in the shortest path. After

finding the second shortest path the algorithm finds the rest of the k shortest paths, (k− 2)
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Algorithm 3.2 Pseudocode of Yen’s k shortest path algorithm

1: for k=1 do
2: Step 1: Use Dijsktra to find shortest path from a fixed node to other nodes. The result

will be A1. This step assumes there are no negative loops in the shortest path.
3: Step 1a: Store A1 into List A.
4: end for
5: for k=2 to K do
6: Step 2: Check if a node sequence (1) − ... − i of Ak−1 is same with first i nodes of

previously generated path j = 1, 2, ..., k − 1. Go to Step 3..
7: Step 3: Find the shortest path from i to N without including any nodes from (1)−..−i

of Aj (which is called as Rk
i ). Therefore, we are finding the shortest path of spur of

Aki , which is Ski .
8: Step 3a: Add Aki (joins Rk

i and Ski ) to candidate List B. Note that we need only
K − (k − 1) many items in List B.

9: if Number of paths found at Step 3 + number of paths in List A > K then
10: K Shortest paths found, save the paths to List A
11: Break
12: else
13: Step 4: Move path Ak from List B to List A.
14: Step 4a: Leave remaining items in B and k++. Repeat steps 2–4 until having K

shortest paths.
15: end if
16: end for
17: return List A (k shortest paths)
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paths in a similar fashion. To do this, new candidate shortest paths are found by using

previously identified shortest paths. The algorithm ends when k shortest paths are found.

3.2.3 Determining independent subgroups of the alternative paths

Upon identifying all alternative paths from the user to all available APs, the next step

is to group the alternative paths into independent subgroups. For any user having at least

one alternative path (except the assigned path), there must be at least one independent

subgroup of alternative paths. Each independent subgroup consists of paths having one or

more common edges. Any path of an independent subgroup cannot have a common edge

with a path of another independent subgroup. Independent subgroups are determined by a

simple algorithm, which is summarized in Algorithm 3.3.

In this algorithm, all alternative paths are compared with each other to check for com-

mon edges. If so, one of the paths and all other paths in the same group are labeled as the

other path’s group. Therefore, the number of subgroups is dynamic in this algorithm.

Algorithm 3.3 Pseudocode of clustering alternative paths into independent groups

1: Save all alternative paths to List P
2: groupNo ← 1
3: for each path i ∈ P do
4: if path i is not in a group then
5: if i = 1 then
6: Assign groupNoi ← groupNo
7: groupNo+ +
8: end if
9: for j = 1 to P do

10: if i and j has a common edge then
11: Assign groupNoi to all paths of the group that j belongs to
12: end if
13: end for
14: end if
15: end for
16: return Independent subgroups of alternative paths
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3.2.4 Reliability calculation of independent subgroups

To find the capacitated resilience, reliabilities of the independent subgroups (that are

identified in the previous step) must be calculated. However, minimum (or minimal) inde-

pendent cuts must be found first to get reliability of each subgroup.

This problem is similar to s-t cut set problem, which is basically finding the minimum

cut set between source and sink nodes. However, as there can be more than one AP in

a subgroup, the problem is not the same as the s-t cut set problem. Another version of

this problem is the multiterminal cut problem which is finding a set of edges that consist of

non-terminal nodes to disconnect terminal nodes. Xiao (2010) and Hartvigsen (1998) stated

that the multiterminal cut problem is NP-hard for n ≥ 3, where n is the number of nodes in

a graph. Again, this problem is not the same problem herein, because the terminal vertices,

i.e. the user and APs, do not necessarily communicate with each other. In other words, APs

do not communicate with each other because they only serve as a connection to the wired

backbone. Also, unlike MANETs, users are not required to communicate with each other.

Thus, algorithms from the literature are not suitable for the capacitated resilience calcu-

lation. Therefore, an algorithm has been developed to find all minimum independent cut sets

to disconnect the user from any AP with which user can communicate directly or indirectly

(via RPs). One way to solve this problem is to enumerate all possible cut sets and then find

the independent ones. The main drawback of this approach is the large computational effort

for realistic sized networks. Although estimation methods can be used, such as Monte Carlo

simulation (for example, Dengiz et al. (1997) and Deeter and Smith (1998) use Monte Carlo

for all-terminal reliability estimation), an exact approach has been presented in this paper.

The pseudo code for finding minimum independent cut sets is given in Algorithm 3.4.

This algorithm checks all combinations of edges beginning with one edge, two edges, three

edges and so on. If any combination of the edges disconnects the user from all APs in the

subgroup, then that combination of edges is a cut. If any combination of edges uses an edge

58



from a previously found cut set, that combination is not considered. The algorithm termi-

nates when there are not enough edges left to form a unique combination or all combinations

have been examined.

Algorithm 3.4 Pseudocode of finding minimum independent cutsets of a subgroup

1: Save all unique edges of alternative paths in the subgroup to set E
2: Cutsets ← ∅
3: for k = 1 to m (number of edges in E) do
4: if |E| - number of unique edges in Cutsets < k then
5: break
6: end if
7: for each unique combination of edges (C(m, k)) ∈ E do
8: if C(m, k) ∩ Cutsets = ∅ then
9: if removal of edges in C(m, k) disconnects user from all APs then

10: Cutsets ← Edges in C(m, k)
11: end if
12: end if
13: end for
14: end for
15: return Cutsets

Upon identifying all minimum independent cut sets of a subgroup, reliability of a sub-

group is calculated. Failure of any cut set disconnects the user from APs. Therefore, all cut

sets must be reliable to make the network reliable. Equation 3.5 presents the reliability cal-

culation of a subgroup (Si). In this formulation, C denotes the total number of combinations

of edges that form cut sets. Similarly, R(Cij) denotes the reliability of cut set combination

Cij. R(Cij) is calculated by parallel reliability calculations (Equation 3.6). The reliability

of cut Cij requires that at least one edge (or serial edges from a RP to an AP), denoted as

e in the Equation 3.6, to be operational.

Reliability(Si) =
C∏
j=1

R(Cij) (3.5)
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R(Cij) = 1−
C∏

e∈Cij

(1− re) , where re is the reliability of edge e ∈ Cij (3.6)

3.2.5 Calculating reliability of the alternative paths (resilience factor) using

subgroup reliabilities

After calculating reliabilities of the independent subgroups, the last step is to calculate

the reliability of the alternative paths (union of subgroups). This calculation is simply the

parallel reliability calculation, where the system is reliable if at least one of the subgroups

is reliable. Equation 3.7 shows this calculation where S denotes the number of independent

subgroups and R(Si) denotes the reliability of subgroup i.

Resilience Factor = 1−
S∏
i=1

[1−R(Si)] (3.7)

3.3 An example network

In this section, calculations of capacitated resilience and the other reliability/survivability

metrics are demonstrated on an example. The network presented in Figure 3.1 is used

throughout this section. In this network, there are four APs (having enough capacities) and

many rerouting options for a single user.

3.3.1 Capacitated resilience calculation

Capacitated resilience is calculated for both uncapacitated and capacitated cases. Al-

though capacitated resilience considers capacities, uncapacitated case is important to show

the effect of the capacity constraint because the other metrics neglect capacities.
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Figure 3.1: An example network

Uncapacitated case

Uncapacitated case considers that device capacities are larger than the user flow re-

quirement and therefore the problem becomes uncapacitated. To calculate the capacitated

resilience of this network, all possible alternative paths from the user to all available APs are

found (where capacity is available) by Yen’s k shortest path algorithm. In this dissertation,

k is sufficiently large (k = 7) to find all shortest paths. Then, alternative paths from User to

APs are grouped into independent groups. Lastly, reliability of the independent subgroups

are calculated.

Independent subgroups 1, 2, and 3 are identified using the procedure given in Section

3.2.3.

The cut set of subgroup 1 (Figure 3.2) is U − AP1 and the reliability of the subgroup

is 0.7.
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Figure 3.2: Independent subgroup 1 of the network in Figure 3.1
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Figure 3.3: Independent subgroup 2 of the network in Figure 3.1
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Figure 3.4: Independent subgroup 3 of the network in Figure 3.1

The cut set of subgroup 2 (Figure 3.3) consists of (U −RP2) and (RP2−AP1, RP2−

AP3). The reliability of the subgroup is 0.644. The calculation steps are presented in

Equation 3.8.

R(S2) = R(U −RP2) (R(RP2 − AP1, RP2 − AP3))

= 0.7(1− (1− 0.8)(1− 0.6)) = 0.7(0.92) = 0.644

(3.8)

The cut set of subgroup 3 (Figure 3.4) consists of (U−RP4), and (RP4−AP6, RP4−

AP7, RP4−RP5 or RP5−AP6). The reliability of the subgroup is 0.4275 (Equation 3.9).

R(S3) = R(U −RP4) (R(RP4− AP6, RP4− AP7, RP4−RP5orRP4− AP6))

= 0.5 ((1− (1− 0.5)(1− 0.5)[1− (0.6 ∗ 0.7)])) = 0.5(0.855)

= 0.4275

(3.9)

After calculating reliabilities of the subgroups, the reliability of the alternative path

system (resilience factor) can be calculated by:
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1− (1− 0.7)(1− 0.644)(1− 0.4275) = 0.938857

The resilience factor is the reliability of alternative path system (rerouting options).

The alternative path system remains reliable if at least one subgroup is reliable. The capac-

itated resilience of the network has been defined in Equation 1.3. Therefore, the capacitated

resilience (for the single user) can be calculated as:

Capacitated resilience = 0.8(0.938857) = 0.751086

Capacitated resilience for the entire network is calculated by the weighted average (in

terms of flows) of user level capacitated resiliences. In this example there is only one user.

Capacitated case

For the capacitated case (Figure 3.5), the calculations of subgroups 1 and 2 remain

unchanged. However, the reliability calculation of subgroup 3 is changed due to lack of

capacity of AP6 and AP7. The flow of the user must be split between AP6 (traffic flow

of 10) and AP7 (traffic flow of 10), therefore the subgroup can only be operational if the

two split paths, U-RP4-AP7 and U-RP4-AP6 (or U-RP4-RP5-AP6), are both reliable. The

calculation is given in Equation 3.10. The reliability of the subgroup 3 reduced from 0.4275 to

0.1775. The system reliability becomes 0.912157 (Equation 3.11). The capacitated resilience

is calculated as 0.72973 (Equation 3.12). The reduction in the capacitated resilience is

not very high (from 0.7511 to 0.7297) because there are three alternative path systems

in this example. If the subgroup 3 was the only alternative path system, the reduction

in the capacitated resilience due to limited capacity would be more significant, i.e., from

0.8 ∗ 0.4275 = 0.342 to 0.8 ∗ 0.1775 = 0.142.
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Figure 3.5: Capacitated version of the example in Figure 3.1 (c and f denote device capacity
and user flow requirement, respectively

R(S3) = R(U −RP4) (R(RP4− AP6, RP4− AP7, RP4−RP5orRP4− AP6))

= 0.5 (0.5(1− [1− 06(0.7)][1− 0.5])) = 0.5(0.355)

= 0.1775

(3.10)

1− (1− 0.7)(1− 0.644)(1− 0.1775) = 0.912157 (3.11)

Capacitated resilience = 0.8(0.912157) = 0.72973 (3.12)

The next sections demonstrate the calculation of the other reliability/survivability met-

rics. As explained in Section 2.2, capacity is not considered for those metrics.
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3.3.2 Connectivity measures

The connectivity measures are also investigated for the same example (Figure 3.1).

Two-connectivity (two node-disjoint paths) is assured by the paths U-AP3 and U-RP2-AP3.

Similarly, the same set of paths (U-AP3 and U-RP2-AP3) ensures two edge-disjoint paths.

Therefore, this network is both two node-connected and two edge-connected.

3.3.3 Two-terminal and all-terminal reliability

Similar to the connectivity measures, two-terminal reliability is calculated for U-AP3.

The paths leading to AP3 from the user are U-AP3 and U-RP2-AP3. Therefore, at least

one of the paths must be operational to reach AP3. Two-terminal reliability becomes 1 −

(1− 0.8) (1− 0.6(0.7)) = 0.844.

All-terminal reliability considers all paths from the user to all available APs. Therefore,

the parallel reliability calculation of the paths from user to AP1, AP3, AP6 and AP7 yields

all-terminal reliability: 1−(1−0.8)(1−0.42)(1−0.7)(1−0.56)(1−0.25)(1−0.25)(1−0.21) =

0.993196. Not surprisingly, all-terminal reliability is larger than two-terminal reliability

because it considers all possible APs whereas two-terminal reliability considers only AP3.

3.3.4 Traffic efficiency

Traffic Efficiency/Resilience (Konak and Bartolacci, 2007; Kubat, 1989) is calculated

by both exact method and simulation. The exact method yields 0.9878, whereas simulation

(using 5000 iterations, according to Algorithm 4.6 in Section 4.3.2) yields 0.9902.

3.3.5 ELT

The ELT calculation requires the input of the splits of the flow. Assuming the user

traffic is splitted equally to U-AP3 and U-AP1, the ELT is calculated by (according to

Section 2.2.3):
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ELT = [(1−R(U − AP1))(0.5) + (1−R(U − AP3))(0.5)] (M0)

= [(1− 0.7)(0.5) + (1− 0.8)(0.5)] 5.26(105)

= 0.25(5.26(105)) = 131, 500 demand-minutes/year

The value of the constant M0 is 5.26(105) to convert the fraction of lost flow to demand-

minutes per year (Grover, 2004). However, the resulting number is not scaled, it is the

expected number of lost demand-minutes over a year. Considering the fraction of the flow

that cannot be routed is 0.25, then a conversion of ELT can be done to obtain a scaled

measure (like reliability), i.e., ELT becomes 0.75 (1− [(1− 0.7)(0.5) + (1− 0.8)(0.5)]).

3.3.6 Summary

The procedures for finding the above listed reliability/survivability measures are sum-

marized in detail in Section 4.3. Each metric presents a different way to evaluate the network.

Capacitated resilience emphasizes the importance of rerouting options in case of failure of the

assigned path. Therefore, it considers the redundancy level of the network under capacity

constraints. Connectivity metrics focus on redundant paths, but they do not consider their

reliability. Two terminal and all terminal reliabilities are calculated by parallel reliability

calculations and they focus on the redundancy in the network. In the example given in Fig-

ure 3.1, terminal reliability values are high, however, these values can be misleading because

these metrics do not consider the common links that are used by many paths. In case of a

failure of these links, the redundancy of the network can be reduced or lost. Capacitated

resilience considers common links and their impact on reliability of redundant paths in its

subgroup and cut set calculations. Traffic efficiency also indirectly considers common links

in the reliability calculation. However, it does not consider capacity. As explained in Section

6.3, all these differences result in different network designs.
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Chapter 4

Proposed Method and Solution Approach

The network design problem, even without survivability/reliability constraints (or ob-

jectives), is a well known NP -hard problem. In this dissertation, an Evolutionary Strategies

(ES) algorithm has been developed to solve this problem. Both single objective and bi-

objective models are considered in the proposed ES.

The main reasons to use ES for solving the resilient heterogeneous wireless network

design problem are summarized below:

• The capacitated resilience calculation is nonlinear and traditional optimization meth-

ods (such as mixed integer programming) cannot be applied effectively. And for com-

putational reasons, for large problem instances, an alternative methodology other than

traditional exact optimization methods is needed to solve the problem. This is the

main motivation for using a metaheuristic such as ES.

• ES is known for its success on continuous problems. The problem solved in this disser-

tation has device coordinates as continuous decision variables as well as some discrete

variables (e.g., device types). Also, ES is a flexible method that can handle many

restrictions and assumptions.

• Bi-objective optimization is one of the main contributions of this research. ES can

easily be extended to bi-objective optimization using “Pareto optimality” (defined in

Section 4.2.1). Here, bi-objective optimization is ensured by “non-domination ranking”

(see Section 4.2.1) as used in NSGA-II (Deb et al., 2002). NSGA-II is a multiobjective

Genetic Algorithm (GA) technique, however, its main idea has been adapted to ES in

this dissertation.
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There are some drawbacks of using ES. First of all, it does not guarantee optimality.

Second, choosing a good representation (encoding) of problem and finding efficient muta-

tion operators are generally challenging issues. Third, parameter tuning is important for

better solution quality; for example, premature convergence can be observed due to certain

parameter settings. These issues have been addressed in this dissertation.

4.1 Single objective Evolutionary Strategies (ES) model

Cost and capacitated resilience are two objective functions that are considered in this

dissertation. The single objective ES uses cost (capacitated resilience) as the objective

function and capacitated resilience (budget) as a constraint. The parameters of the ES

model are given in Table 4.1. Budget is important because it determines the maximum

number of devices in the network. As there are two types of devices (AP and RP), the

number of devices and their types change the cost. As explained in Section 4.1.9, the cost

and the capacitated resilience of a solution are penalized if the solution is infeasible. A

solution becomes infeasible if any user is not assigned to a device or a device does not have

a feasible route.

Table 4.1: Input parameters used in the ES model

Parameter Description
# of users and their locations Locations as (x, y) coordinates
flow of the users Traffic requirement of each user
gridX and gridY The limits of the area in which nodes are deployed
budgetLimit Budget limit for installing devices
maxDevice Maximum number of devices
Cost of devices Cost to deploy a relay or an access point
Ranges of devices Ranges of relay or access points
Capacity of devices Capacities of relay or access points

The decision variables of the ES model are listed in Table 4.2. The objective function

of the ES model is defined in detail in Section 4.1.5.
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Table 4.2: Decision variables used in the ES model

Decision Variable Description
# of devices Number of devices used in the solution (≤ MaxDevice)
Locations of devices Defined as (x, y) coordinates
Mixture of type of devices Either router or access point
User to device assignments Each user i is assigned to a device j
Routing of the flow From a router to an access point the route of user traffic
Reliability among devices It depends on the locations of devices and routing
Reliability among users and devices It depends on the locations of users and devices

4.1.1 Pseudocode of ES model

The pseudocode of the single objective ES model is given in Algorithm 4.1. This ES

model maximizes capacitated resilience (minimizes cost) under a budget (capacitated re-

silience) constraint.

At each generation, a parent is selected from the population randomly and saved as

a child solution. Then, mutation and swap operators are applied to the child. Mutation

and swap operators are explained in Section 4.1.6. In the proposed ES, the device types of

a solution are changed every ten generations because finding good coordinates for a given

set of devices (mixture of APs and RPs) is very hard. Therefore, 10 generations give ES

enough time to adjust device coordinates for a given set of devices. Children are replaced

with population members according to (µ+ σ) rule (see Section 4.1.7 for more details). The

best solution is saved throughout the generations.

In the proposed ES algorithm, there are ES specific operations. First of all, mutation

success is calculated for a predetermined number of generations (g′). A successful mutation

means that the child solution (mutated solution) has a better objective function values than

its parent (lower cost or higher resilience, according to the objective function). Note that

the success of a mutation is defined differently in bi-objective optimization (see Section 4.2

for details). According to the “rate of successful mutations”, σ is dynamically adjusted at

n generations. If the percentage of successful mutations is less than the rate of successful

mutations, the search space is narrowed by 0.85. In this dissertation, rate of successful
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mutations is selected as 0.2, which is very common in ES literature and known as the “one

fifth rule” (Dréo et al., 2006). σ is the mutation rate for coordinates and is explained in

Section 4.1.6 in detail. At the beginning of the ES, σx and σy are initialized to one third

of the grid dimensions (gridX and gridY of Table 4.1). The algorithm terminates if the

maximum number of generations is reached or the best solution has not updated for a given

number of generations (Section 4.1.8). This ES algorithm yields the best network design

(does not guarantee optimality), the lowest cost or the highest resilience, according to the

objective function.

Parameters for running the ES model are given in Table 4.3.

Table 4.3: Model parameters used in the ES model

Parameter Description
Np Population size
Nc Number of children
Pm Probability to mutate
maxGen Maximum number of generations
maxNonImprovingGen Maximum number of non-improving generations
numberOfAlternativePaths Number of alternative paths in capacitated resilience calculation
cutSetSize The maximum number of edges in a cut set
successRate Also known as one fifth rule. It is a parameter to adjust σ in ES
sigmaAdjuster Adjustment rate of σ in ES
numberOfMutationsToAdjustSigma It is used to estimate successful mutations in ES
penaltyUnassignedUser Penalty value if a user is not assigned to a device
penaltyInfeasibleRouting Penalty value if a device cannot connect to the wired backbone

4.1.2 Encoding

An adjacency matrix is used to represent the network structure. This matrix is n x n,

where n is the maximum number of devices. Different from a traditional adjacency matrix,

reliabilities between devices are used instead of 0/1 values in the matrix. In other words, if

devices i and j can communicate with each other (both devices are within the communication

ranges of each other), then the entry ij of the adjacency matrix is the reliability between

devices i and j. Also, device types and (x, y) coordinates of the devices are stored in an
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Algorithm 4.1 Pseudocode of the single objective ES model

Ensure: Maximum budget (minimum capacitated resilience) constraint, assigning all users
to a device, feasible (defined in Section 4.1.9) routings

1: Random initialization of population (Section 4.1.3)
2: Sort population (from the best solution to the worst)
3: bestSolutionSoFar ← Population(0)
4: g ← 0 //g is the generation counter
5: while (g < maxGen) do
6: for (i = 0 to Nc − 1 ) do
7: Randomly select a parent (i) from population to mutate, i ∈ {0, 1, ..., (Np − 1)}
8: Mutate device coordinates of Child[i]
9: Select two random devices j and k of Child[i]

10: Swap device types of j and k within Child[i]
11: if (g%10 = 0) then
12: Mutate device types of Child[i]
13: end if
14: end for
15: Sort population and children (from the best solution to the worst)
16: Replace worst population members with new generated children
17: Sort population (from the best solution to the worst)
18: if (Population[0] is better than bestSolutionSoFar) then
19: bestSolutionSoFar ← Population[0]
20: end if
21: if (g%g′ = 0) then
22: if (Mutation success rate > 0.20) then
23: Increase σx and σy to 1/0.85 of their values
24: else
25: Decrease σx and σy to 0.85 of their values
26: end if
27: end if
28: if (bestSolutionSoFar has not been updated for maxNonImprovingGen generations)

then
29: Terminate ES
30: end if
31: g ← g+1
32: end while
33: return Network design with maximum capacitated resilience (or minimum cost)
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array with the size of the maximum number of devices. Users to device assignments are

stored in a separate array with the size of the number of users.

4.1.3 Population initialization procedure

The population is randomly initialized using a different random number seed than the

one used in the ES. In the initialization procedure, only device types and device coordinates

(in continuous space) are created. Users are assigned to the closest devices and a routing

algorithm (Section 4.1.4) is applied to route user flows. Cost, reliability and capacitated

resilience values are calculated according to the equations of Section 4.1.5.

4.1.4 Edge selection algorithm

The edge selection algorithm is basically the routing of flow from device (or user) i to

j. Device capacities are checked by using the adjacency matrix, and the best path from user

i to APj is determined by using Dijkstra’s shortest path algorithm. Dijkstra’s algorithm

minimizes the total cost of the links of a path, however, in this routing problem cost is

meaningless because wireless links do not incur costs. Instead, the logarithms of link relia-

bilities are used as “cost” in Dijkstra’s algorithm. The algorithm maximizes the reliability

between user i and an access point. This procedure was explained in Equation 3.4. Thus,

an access point with the most reliable path is selected using Dijkstra’s algorithm. If the

device is already an access point, Dijkstra’s algorithm is not applied, because it is already

connected to the wired backbone.

The main issue of this algorithm is the capacity of devices. Users are sequentially

assigned to the devices and routed over the devices. In other words, Dijkstra’s algorithm is

applied to each user in a randomized order. Therefore, depending on the order of assigning

flows to devices a better path may become infeasible later in the algorithm (due to lack of

capacity of a device). It is possible that a user’s flow cannot be routed due to insufficient

capacity of devices. Also, the ES may yield non-optimal results due to this ordering issue.
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On the other hand, this algorithm works satisfactorily for problem instances in which the

capacities of devices are not highly constrained. Although the effect of ordering on the

solution quality has not been observed in the preliminary testing of the ES, this issue will

be investigated as a future work of this dissertation.

4.1.5 Calculation of cost, reliability and capacitated resilience

The cost calculation is the summation of the deployment costs of devices (Equation

4.1). Also, penalty values are added to the cost function. As given in Table 4.3, two

different penalties are defined in this ES model. A penalty is added to the cost if a user is

not assigned to a device and another penalty is added if a device does not have a feasible

path to an AP. Section 4.1.9 discusses these penalties in detail.

Cost =
∑

i∈Devices

ci ∗ xi

where ci is the cost of device i, and

xi = 1, if the device i is included in the solution

(4.1)

The capacitated resilience calculation is given in Equation 1.4 (in Section 1.3). Accord-

ing to this equation, the weighted average (in terms of flows) of all resilience values for each

device is calculated to find capacitated network resilience. A penalty is applied to capaci-

tated resilience if the budget is exceeded. Capacitated resilience is also penalized if there are

unassigned users or infeasible device paths. These penalties are discussed in Section 4.1.9 in

detail.

The reliability of a network is calculated similarly to the capacitated resilience cal-

culation. The reliabilities of assigned paths of all users are combined using the weighted

average of user flows. Therefore, the network reliability is the weighted average of the user

reliabilities.
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4.1.6 Mutation operators

The first mutation is to alter device coordinates. In this mutation, the coordinates

of a device are changed by N(0, σx) and N(0, σy) for x and y axes, respectively. The

(x, y) coordinates of devices are restricted to be inside the predefined grid (given in Table

4.3). This is also known as “self-adaptive Gaussian” mutation (Dréo et al., 2006) because the

mutation rates of coordinates, σx and σy, are dynamically adjusted during the ES. The search

is widened by increasing σ parameters by 1/0.85 if the percentage of successful mutations

is larger than 0.2 (“one fifth rule”). Otherwise, the search is focused on a smaller region by

decreasing σ values by 0.85. This decision is made every n generations.

A swap of device types is the second type of mutation. In this mutation, also known as

“2-opt swap”, the two devices to swap are randomly selected and device coordinates are not

changed. To perform the swap operator, the devices are not required to be in the solution.

This encourages the optimizer to search more diverse candidate solutions. Also, it works

faster since the devices are not checked whether they are in the solution or not.

The last mutation is to change a device type of a child using a variation of bit-flip

mutation (Dréo et al., 2006). In this mutation, an RP (AP) device changed to an AP (RP)

if a random number is less than the mutation probability (given in Table 4.3). Similarly, the

status of the device is changed by this mutation operator. For example, a device is included

in the solution if another random number is less than the mutation probability and the device

was not included in the solution prior to the mutation. If a previously not included device

is included in the solution, the coordinates of the device are assigned using an algorithm

instead of random assignment. In this algorithm, the number of devices in each quadrant

are calculated and the device coordinates are randomly assigned within the quadrant having

the least amount of devices. There are four quadrants (I, II, III and IV) in the xy plane, the

first quadrant is the area where x > 0 and y > 0, the second is the area where x < 0 and

y > 0, the quadrant is the area where x < 0 and y < 0 and the last is the area where x > 0
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and y < 0. A slight increase in the solution quality has been observed with using this device

coordinate assignment instead of random coordinate assignment.

The coordinate change and swap mutations are done at each generation. However,

device type change mutation is done at every 10 generations to give the ES enough time

to optimize device coordinates as explained in Section 4.1.1. The swap mutation is done at

each iteration instead of doing it infrequently because the probability of changing a device

type (from AP to RP or RP to AP) is not very high and therefore the effect of swap on

the solution quality is not very large. Since only two devices are swapped and there are two

device types (AP and RP), the probability of getting a different device type after the swap

operator is 0.5 if there are equal amount of APs and RPs in the solution. Also, only two

devices in a solution are swapped, therefore the net effect of the change (if there is any)

on the solution quality is very limited. In fact, the initial experimentation of the model

showed that swapping at each iteration outperformed swapping infrequently. Obviously, the

main mutation operator is the coordinate change. Note that the original solution, which was

mutated and saved as the child solution, stays in the population as the parent solution.

After mutations, users are assigned to the devices having the most reliable path to

an AP using the routing algorithm. Cost, reliability and capacitated resilience values are

calculated.

Budget is not considered in mutation operators. However, a penalty of exceeding the

budget is included in the capacitated resilience calculation (see Section 4.1.9 for details),

which is applied after mutation. The reason of not including budget control in mutations is to

encourage the optimizer to find more diversified solutions even though this may temporarily

create some infeasible solutions.
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4.1.7 Replacement of population with children

After generating children, population and children solutions are combined and the best

solutions are selected for the next generation of population. This is also known as (λ + µ)

replacement in ES literature.

As an elitist approach, the “best so far” solution is stored and updated throughout

generations. At each generation, the worst individual of the population is replaced with the

“best so far” solution if the “best so far” is better than the current best individual of the

population. The reason of this approach is to maintain the “best so far” solution in the

population at all times.

4.1.8 Stopping criteria

The stopping criteria are the total number of generations and the number of non-

improved generations. The number of non-improved generations criterion prevents the ES

running longer without improving solution quality. The key is to select the number of

non-improved generations is to balance early termination prevention and avoid running ex-

cessively.

4.1.9 Penalty functions

Three main penalties are used in the proposed ES: (1) Unassigned users, (2) Infeasible

device routes, and (3) Budget overruns. These penalties change cost (penalties 1 and 2)

and capacitated resilience (penalties 1, 2 and 3) to ensure that infeasible solutions do not

proliferate in the population.

The cost of a solution is penalized if a user is not assigned to a device. A user may not

be assigned to a device due to lack of capacity of the device, being beyond the ranges of

devices, or lack of connection of device to an AP. Another penalty is applied to the cost when

the routing of a device is infeasible. Infeasible routing occurs when an RP cannot connect

to an AP. There is no routing needed for APs, therefore this penalty does not apply to APs.
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Each penalty is a “death penalty” (Dréo et al., 2006), in other words, these penalty values

are very large to prevent reproduction of infeasible solutions. These penalties are defined in

Table 4.3 for each user and device. An additional cost penalty is not applied for exceeding

the budget limit, but capacitated resilience is penalized.

Capacitated resilience is scaled by percentage of assigned users. For example, if one

out of ten users is not assigned to a device, the capacitated resilience value is scaled by

0.9 (= 9/10). The number of devices with infeasible paths is incorporated in the capacitated

resilience calculation in a similar way. The percentage of devices with feasible paths scales

capacitated resilience. In addition to these two penalties, capacitated resilience is further

penalized by the cost of the solution. If the cost of the devices (not including penalties) is

greater than the budget, capacitated resilience is scaled by “budget/cost of devices”. This

dynamically penalizes capacitated resilience for exceeding the number of devices and forces

the ES to reduce the total number of devices or number of APs (either by removing them

or replacing them with RPs).

The details of the penalty functions are given in Algorithm 4.2.

4.2 Bi-objective Evolutionary Strategies (ES) model

The bi-objective ES simultaneously optimizes capacitated resilience and cost using

Pareto optimality. The parameters and decision variables of the bi-objective ES model

are same as in the single objective model (Tables 4.1, 4.2 and 4.3).

4.2.1 Definitions: “Non-dominated rank”, “Crowding distance” and “Pareto

optimality”

In bi-objective optimization of resilient heterogeneous wireless networks, solution i dom-

inates solution j only if its cost (capacitated resilience) is lower (higher) than j and capaci-

tated resilience (cost) is not lower (higher) than j (Equation 4.2).
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Algorithm 4.2 Pseudocode of penalty functions

Ensure: Penalize cost and capacitated resilience of solution[i] (if the conditions are met)
1: Define nUU and nID as the number of unassigned users and the number of infeasible

devices, respectively
2: Define CostDevices as the deployment cost of devices in solution[i]
3: Set nUU ← 0, nID ← 0 and CostDevices ← 0
4: Calculate solution[i].cost and solution[i].CR // CR denotes Capacitated Resilience
5: for (∀ user[j] in solution[i]) do
6: if (user[j] is not assigned to a device) then
7: nUU ← nUU + 1
8: end if
9: end for

10: if (nUU > 0) then
11: solution[i].cost← solution[i].cost + nUU ∗ penaltyUnassignedUser
12: solution[i].CR← solution[i].CR ∗ Total number of users in solution[i]−nUU

Total number of users in solution[i]

13: end if
14: for (∀ device[j] in solution[i]) do
15: if (device[j] is not connected to an AP (has an infeasible route)) then
16: nID ← nID + 1
17: end if
18: end for
19: if (nID > 0) then
20: solution[i].cost← solution[i].cost + nID ∗ penaltyInfeasibleRouting
21: solution[i].CR← solution[i].CR ∗ Total number of device in solution[i]−nID

Total number of device in solution[i]

22: end if
23: for (∀ device[j] in solution[i]) do
24: CostDevices ← CostDevices + device[j].cost
25: end for
26: if (CostDevices > budgetLimit) then
27: solution[i].CR← solution[i].CR ∗ budgetLimit

CostDevices

28: end if
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Solution i dominates j if

Costi ≤ Costj and Cap. Resiliencei > Cap. Resiliencej , or

Costi < Costj and Cap. Resiliencei ≥ Cap. Resiliencej

(4.2)

Deb et al. (2002) defined “non-dominated ranking” and “crowding distance” to ensure

population diversity for their multiobjective GA. A “non-dominated rank” of a population

is a set of non-dominated solutions. In other words, a solution does not dominate another

within a rank. For a population having more than one solution, there is at least one non-

dominated rank which is called the first rank. There can also be other ranks in a population;

i.e., second, third and so on. A solution of a lower non-dominated rank (e.g., first rank)

dominates the solutions of higher ranks (e.g., second rank). The solutions in the first rank

are “Pareto optimal” because they are not dominated by any solution in the population.

“Crowding distance”, as first defined by Deb et al. (2002), measures “uniqueness” of

a solution in objective function space. It is defined for solutions within the same non-

dominated rank. In this dissertation the crowding distance is calculated according to the

algorithm proposed by Deb et al. (2002). This algorithm (Algorithm 4.3) deals with each

non-dominated rank separately. Within each rank, the crowding distances of solutions are

calculated for each objective function. For any objective function, the crowding distance of

a solution becomes infinity (or a very large number) if its objective function value is the

minimum (or maximum) of its rank. For all other solutions crowding distance is calculated

by adding the difference of objective function values of two neighboring solutions (i+ 1 and

i − 1). Therefore, a smaller crowding distance means that the objective function value of

solution i is very close to its neighbor solutions (i+1) and (i−1). Note that, the neighboring

solutions of a solution are defined for each objective function and they can be different for

each objective. In Figure 4.1, the crowding distance values of solutions 1 and n (where

n = |r|) are infinity. As given in Algorithm 4.3, the crowding distance is normalized for each
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Capacitated Resilience

Cost

1

i− 1

i

i+ 1

n

Figure 4.1: Crowding distance calculation

objective functionm by (fmaxm −fminm ). Although the closeness of the objective function values

of two solutions does not guarantee their similarity in solution space, initial experimentation

showed that two solutions are very similar in solution space if their objective function values

(cost and capacitated resilience) are close to each other.

Algorithm 4.3 Pseudocode of crowding distance calculation (Deb et al., 2002)

1: for (r = 1 to total number of non-dominated ranks ) do
2: for (each objective m (cost or capacitated resilience)) do
3: Solution(i).distance← 0, ∀i ∈ Rank r
4: Sort solutions within the rank according to objective m
5: n← number of solutions in Rank r, Solution(1)←∞, Solution(n)←∞
6: fmaxm ← Maximum value of objective function m within rank r
7: fminm ← Minimum value of objective function m within rank r
8: for (i = 2 to (n− 1)) do

9: Solution(i).distance = Solution(i).distance+ Solution(i+1).m−Solution(i−1).m
fmax
m −fmin

m

10: end for
11: end for
12: end for

4.2.2 Pseudocode of ES model

The pseudocode of the bi-objective ES model is given in Algorithm 4.4. The algorithm

is exactly the same as the single objective ES except that the sorting is different and Pareto
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optimality is used. The solutions within a population are sorted according to non-dominated

ranks and then the crowding distances within the rank (see Section 4.2.4 for details). This

idea of sorting was first introduced by Deb et al. (2002) for a multiobjective Genetic Algo-

rithm (GA). Each rank has non-dominated solutions. However, by definition, the solutions of

the second rank are dominated by the solutions of the first rank. The first rank is also called

the “Pareto Front” which includes the best solutions of the population. Non-dominated rank

and crowding distance are used to keep population diversified for bi-objective optimization.

4.2.3 Global Pareto front operations

The proposed bi-objective ES keeps a “global” Pareto front throughout the search. The

global Pareto front is different than the current Pareto front of the population. The curent

Pareto front consists of solutions of the current population, wheras the global Pareto front

includes solutions from any population generated during the ES search. In other words,

the global Pareto front keeps the best solutions that have been found so far. Therefore, the

global Pareto front solutions may be different than the Pareto front of the current population.

A solution may be included in the current Pareto front but it may also be dominated by

some solutions of the global Pareto front. At the first generation the global Pareto front is

empty and at the end of the last generation there is at least one non-dominated solution

in the Pareto front. At each generation the population members are modified by mutation

operators. Therefore, new solutions are generated and they are compared with existing global

Pareto front solutions. If a new solution is better than an existing Pareto front solution, the

solution becomes a member of the Pareto front and the dominated solutions of the Pareto

front are discarded. Thus, the size of the global Pareto front is dynamic.

Pareto front diversity

Global Pareto front members do not necessarily exist in the population. They can

be lost during the iterations due to mutation operators. To increase variability within the
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Algorithm 4.4 Pseudocode of the bi-objective ES model

Ensure: Maximum budget (minimum capacitated resilience) constraint, assigning all users
to a device, feasible routings

1: Initialization of population
2: Calculate non-domination rankings and crowding distances of solutions
3: Sort population (according to non-domination rankings and crowding distances, ex-

plained in Section 4.2.4)
4: bestSolutionSoFar ← Population(0)
5: g ← 0
6: while (g < maxGen) do
7: for (i = 0 to Nc − 1 ) do
8: Randomly select a parent (i) from population to mutate, i ∈ {0, 1, ..., (Np − 1)}
9: Mutate device coordinates of Children[i]

10: Select two random devices j and k of Children[i]
11: Swap device types of j and k within Children[i]
12: if (g%10 = 0) then
13: Mutate device types of Children[i]
14: end if
15: end for
16: Sort population and children (according to non-domination rankings and crowding

distances)
17: Replace worst population members with new generated children
18: if (If the solution Population[i] is better than bestSolutionSoFar, i ∈ (0, 1, .., Np) then
19: bestSolutionSoFar ← Population[i]
20: end if
21: Update Pareto front with new solutions (Add new non-dominated solutions from Pop-

ulation and remove dominated solutions)
22: Add some Pareto front members to the population (see Algorithm 4.5)
23: if (g%n = 0) then
24: if (Mutation success rate > 0.20) then
25: Increase σx and σy to 1/0.85 of their values
26: else
27: Decrease σx and σy to 0.85 of their values
28: end if
29: end if
30: if (bestSolutionSoFar has not been updated for maxNonImprovingGen generations)

then
31: Terminate ES
32: end if
33: g ← g+1
34: end while
35: return Network design with maximum capacitated resilience (minimum cost)
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population and increase the solution quality of future generations some inferior population

members are replaced with some non-dominated solutions from the global Pareto front.

Details of this process are given in Algorithm 4.5. In this algorithm, the population is sorted

for increasing crowding distance. A larger crowding distance is preferred because it shows

the “uniqueness” of a solution. Therefore, sorting the population according to the crowding

distance is equivalent to sorting it from the least unique solution to the most unique. To have

a more diversified Pareto front and a better solution quality during the search, the population

is preferred to have a larger number of “unique” solutions. The proposed algorithm compares

each solution in the Pareto front with all members of the population and the number of

similar solutions in the population is saved for each Pareto front solution. A population

solution is determined to be similar to the Pareto front solution if its cost and capacitated

resilience values are within a predetermined percentage of the Pareto front solution’s cost and

capacitated resilience. If a Pareto front solution has a smaller number of similar solutions

than a given threshold, that solution is replaced with the population member having the

smallest crowding distance value. Other Pareto front solutions are added to the population

in a similar way. This process ends if there is no Pareto front solution qualifying for the given

conditions or a predetermined number (countMax parameter in the algorithm) of Pareto

front members are added to the population. The value of countMax has been selected as

four after initial testing of the ES. Thus, at most four least unique solutions in the population

(size of the population is selected as 30) are replaced with the most unique global Pareto

front solutions.

4.2.4 Multiobjective sorting

Deb et al. (2002) defined “partial order” (≺ n) where Solution(i) ≺ n Solution(j) means

that Solution(i) is better (or more preferable) than Solution(j). A solution having a lower

non-dominated rank is better than the other. Within the same rank, solutions with larger

84



Algorithm 4.5 Pseudocode of adding Pareto front solutions to the population

1: n← number of solutions in Pareto front
2: minNumber ← Np/10, countMax ← Np/5, counter ← 0
3: Initialize array numberOfSolutionsWithinRange with size of n
4: Sort Population for increasing order of crowding distance
5: for (i = 0 to n− 1 ) do
6: for (j = 0 to Np − 1 ) do
7: if (Costi ∗ (1 − rangePercentage) < Costj < Costi ∗ (1 + rangePercentage) and

CRi ∗ (1− rangePercentage) < CRj < CRi ∗ (1 + rangePercentage)) then
8: numberOfSolutionsWithinRange[i] ← numberOfSolutionsWithinRange[i] ++
9: end if

10: end for
11: for (i = 0 to n− 1 ) do
12: if (numberOfSolutionsWithinRange[i] < minNumber) then
13: Population[counter] ← ParetoFrontSolution[i]
14: counter ← counter + 1
15: end if
16: if (counter ≥ countMax) then
17: break
18: end if
19: end for
20: Sort Population (multiobjective sort)
21: end for
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“crowding distance” values are more preferable than ones with lower crowding distance

values. Equation 4.3 formally defines this preference rule between solutions.

Solution(i) ≺ nSolution(j) if

Solution(i)rank < Solution(j)rank

or

Solution(i)rank = Solution(j)rank and Solution(i)Crowd. Dist. > Solution(j)Crowd. Dist.

(4.3)

This partial ordering process is used for the multiobjective sorting in this dissertation.

The solutions are first sorted according to increasing order of non-dominated ranks. Then,

the solutions within the same rank are sorted according to the decreasing order of crowding

distance values.

4.3 Calculation of other survivability and reliability metrics

In this dissertation the proposed metric, capacitated resilience, is compared with the

metrics explained in Section 2.2. The calculation steps of these metrics are explained in the

following sections.

4.3.1 k and all-terminal reliabilities

k-terminal reliability is a special case of all-terminal reliability. In the literature, the

parameter k is usually selected as two. Similar to capacitated resilience, k-terminal reliability

is first calculated at the user level and then the network level k-terminal reliability is obtained

by a weighted average in terms of user traffic requirements (Equation 4.4).

k-terminal reliability =
∑

Ui∈ Users

wi ∗ k-terminal reliability(Ui) (4.4)
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In this dissertation, two-terminal reliability is calculated at the user level by calculating

the parallel reliability of the assigned path of the user to an AP and a disjoint path from

the user to the same AP (Equation 4.5). All terminal reliability is the parallel reliability of

the assigned user path and all other disjoint paths from the user to all available APs.

Two-terminal reliability(Ui) = 1−
∏

pi∈ Paths from Ui to the AP

[1−R(pi)] (4.5)

4.3.2 Traffic efficiency (TE)

Due to intractability of exact calculation of TE, Konak and Bartolacci (2007) proposed

a simulation based method, Sequential Construction. One replication of their simulation

algorithm is summarized in Algorithm 4.6.

In this algorithm, both node and edge failures are considered. The algorithm randomly

starts network components (node or link) from either operative or failed states according to

reliabilities (xij is 1 if the component is operational) and improves connectivity incrementally

by repair of each component (changing its state from failed to operative), where component

(i, j) is an edge if i 6= j, a node otherwise (i = j). The permutation of the component

states is randomly generated (according to node and link reliabilities) for each replication of

the algorithm. The algorithm calculates the weighted average of the successful traffic flow

to estimate TE using the total traffic demand on the network (γ) and the traffic demand

between nodes i and j (tij).

In this dissertation, the Sequential Construction algorithm of Konak and Bartolacci

(2007) has been used. They used 300 iterations for all solutions and 5000 iterations for

promising solutions to estimate TE. In here, the number of replications is selected as 2000

to estimate TE because the initial experimentation showed that the difference between the

estimations by 2000 and by 5000 replications is negligible.
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Algorithm 4.6 Pseudocode of Sequential Construction method to estimate TE (Konak and
Bartolacci, 2007)

1: Sample network state x by assigning a random number U for each component (i, j), if
U > pij then xij = 0 (xij = 1 , otherwise).

2: Generate random permutation Π of components in operative and failed states
3: Set T ← 0, h ← 1, c ← 0, a ← 0, label[i] ← i for nodes i = 1, 2, ..., n and xij ← 0 for

each component (i, j).
4: // T , h, a and c are the temporary variables used in the simulation.
5: for ( r ∈ 1, 2, ..., (n+m)) do
6: c = c(n+m−r+1

r
)(

p[r]
1−p[r]

) where p[r] is the reliability of the rth component in permutation

Π that is sampled in the previous step.
7: Repair the rth component in permutation Π.
8: if (rth component is a link (i[r], j[r]), and both nodes i[r] and j[r] are in the operative

state and label[i[r]] 6= label[j[r]]) then
9: Set the label of each node whose label is equal to the label of node i[r] to the label

of node i[r]
10: end if
11: if (rth component is a node (i[r], i[r])) then
12: for (each link (i[j], r) incident to node i[r]) do
13: if (link (i[j], r) and node j are operative and label[i[r]] 6= label[j[r]]) then
14: Set the label of each node whose label is equal to the label of node j to the

label of node i[j]
15: end if
16: end for
17: end if
18: for (each node pair i and j) do
19: if ( label[i] = label[j]) then
20: T = T + tij
21: end if
22: end for
23: h = h+ c, a = a+ c ∗ T/γ
24: end for
25: return Estimation of TE as a/h.
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4.3.3 k-connectivity

k-connectivity is calculated similar to k-terminal reliability. The user level k-connectivity

is checked and the network is said to be k-connected if all users are k-connected. If any user

is not k-connected then network k-connectivity fails.

In this dissertation, k is selected as two. Vertex (node) and edge disjoint connectivity

are both examined. A user is two vertex connected if two different paths connecting the user

to its assigned AP have no common vertex. For two edge connectivity, the two paths must

not have a common edge.
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Chapter 5

Preliminary Results

This chapter summarizes the performance of the proposed single and bi-objective ES

models. It shows the variation of the ES in terms of solution quality and Pareto front

diversity. It also compares single and bi-objective ES performance to validate that the

ES is working satisfactorily prior to the work presented in Chapter 6. This chapter also

explains the key concepts of Pareto front diversity and non-dominated solutions which were

introduced in the previous chapter.

The problem size is selected as 10 users and the budget is constrained to 600 (17 devices)

because it is a small sized scenario with short solution times. The budget is selected as

600 to make problem quite constrained and therefore harder than a scenario with a larger

budget. Capacitated resilience, cost, and Pareto front diversity are compared for different

problem instances. The bi-objective ES ran for 2000 generations with an early termination

criterion of 500 non-improved generations, whereas the single objective optimizer ran for 1000

generations with an early termination criterion of 250 non-improved generations. Both single

objective and bi-objective ES use 30 population members and 30 children. These parameters

were specified during the experimentation of the model building phase with consideration

of the trade-off between solution time and solution quality. The ES is not very sensitive to

the parameter values of size of population and children, however, a larger size of population

(and children) helps improve solution quality with an increase of the solution time. Also, it

improves population diversity for bi-objective optimization. After extensive experimentation

with different parameter values, these values were selected. For example, bi-objective ES

runs longer (2000 generations) than single objective ES (1000 generations) because Pareto

optimality requires more time to find good solutions. Running ES longer increases solution
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time but provides a slight improvement on the solution quality (more on this in Sections 5.2

and 5.3). The selected parameter values were tested on a wide range of test problems and

they are valid for different problem sizes.

The bi-objective Pareto front is updated at each generation. Therefore, the size of the

Pareto front is dynamic. On the other hand, the single objective ES is solved for maximum

capacitated resilience under a budget constraint. The single objective “Pareto front” was

generated using different budget values, i.e., 26 problem instances with different budget

constraints (from 350 to 600 in increments of 10) are solved for maximum resilience. The

best solutions of these 26 runs were combined and the non-dominated solutions are extracted

to form the “Pareto front” of the single objective ES. For the bi-objective Pareto front, eight

replications (different random number seeds) were used for each problem instance, however,

only one random number seed was used to generate the single objective Pareto front.

The Pareto fronts of the single and bi-objective ES are compared in Section 5.1. In

Section 5.2, the bi-objective ES is run longer to match the time of the single objective Pareto

front generation process (the total time of 26 single objective runs) and its performance is

compared with the single objective version. The variation of the single objective ES is

investigated in Section 5.3. Note that variation in the bi-objective ES has been investigated

with eight random number seeds in Sections 5.1 and 5.2.

5.1 Single objective vs. bi-objective ES

For each problem instance, eight random number seeds were used for the bi-objective

optimization, and they were compared with the solutions that were generated from the single

objective ES.

5.1.1 Pareto front diversity

The ranges of capacitated resilience and the cost of single and bi-objective Pareto front

solutions are given in Figures 5.1, 5.2 and 5.3. These are the non-dominated solutions. To
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find the non-dominated solutions, single and bi-objective Pareto fronts are compared with

each other. A solution of the single objective Pareto front is non-dominated if it is not

dominated by any solution of the bi-objective Pareto front. Non-dominated solutions of

bi-objective ES are found similarly. The total number of solutions in each Pareto front and

the number of non-dominated solutions are given in the next section.

The performance of the bi-objective ES varies with random number seed. Only one

random number seed is used to generate the single objective Pareto front due to the long

solution time (requires 26 runs) of the Pareto front generation process. The variation of

the single objective ES is investigated in Section 5.3, For example, random number seed

five of problem instance two has a better Pareto front diversity and a better capacitated

resilience value than the single objective Pareto front. However, random number seed seven

of problem instance one has a worse diversity and lower capacitated resilience value. For

problem instances two and three, bi-objective ES outperforms single objective in terms of

capacitated resilience. However, single objective performs better for problem instance one.

Therefore, the performance comparison for capacitated resilience is not conclusive. However,

the bi-objective Pareto front has a better diversity in terms of cost.

5.1.2 Comparison of non-dominated solutions for bi-objective and single objec-

tive Pareto fronts

The Pareto front solutions of bi-objective ES were compared with the Pareto front

solutions of single objective ES, and vice versa.

In Table 5.1, the non-dominated solutions are reported for each Pareto Front. In the

table, the non-dominated solutions of bi-objective ES were found by calculating the number

of bi-objective Pareto front solutions that are not dominated by single objective Pareto front

solutions. The single objective Pareto front solutions were compared with the bi-objective

Pareto front solutions in the same way. Bi-Objective outperforms single objective for some

scenarios (e.g., random number seed four of problem instance three) but single objective
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(a) Capacitated Resilience Comparison (b) Cost Comparison

Figure 5.1: Comparison of Pareto front solutions (Problem instance 1)
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(a) Capacitated Resilience Comparison (b) Cost Comparison

Figure 5.2: Comparison of Pareto front solutions (Problem instance 2)
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(a) Capacitated Resilience Comparison (b) Cost Comparison

Figure 5.3: Comparison of Pareto front solutions (Problem instance 3)
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dominates bi-objective for most scenarios. However, these results can be misleading because

the solution times of bi-objective and single objective are not equal (single objective combines

26 different runs to generate the Pareto front). Therefore, Section 5.2 repeats the same

analysis presented in this section where the bi-objective optimizer runs longer.

Table 5.1: Performance of single and bi-objective ES for three prob-
lem instances

Method
Bi-Objective Single Objective

Problem Instance 1

Rnd Number Seed 1 4/14* 6/6
Rnd Number Seed 2 8/14 5/6
Rnd Number Seed 3 1/15 6/6
Rnd Number Seed 4 2/10 5/6
Rnd Number Seed 5 5/15 5/6
Rnd Number Seed 6 6/11 3/6
Rnd Number Seed 7 3/11 5/6
Rnd Number Seed 8 2/15 6/6

Problem Instance 2

Rnd Number Seed 1 4/13 7/8
Rnd Number Seed 2 6/12 7/8
Rnd Number Seed 3 11/16 5/8
Rnd Number Seed 4 9/10 7/8
Rnd Number Seed 5 9/21 7/8
Rnd Number Seed 6 7/17 7/8
Rnd Number Seed 7 7/15 7/8
Rnd Number Seed 8 7/17 8/8

Problem Instance 3

Rnd Number Seed 1 11/12 4/9
Rnd Number Seed 2 6/11 8/9
Rnd Number Seed 3 12/15 4/9
Rnd Number Seed 4 9/11 2/9
Rnd Number Seed 5 4/9 6/9
Rnd Number Seed 6 11/14 3/9
Rnd Number Seed 7 6/10 5/9
Rnd Number Seed 8 6/12 8/9

* Number of nondominated solutions (single and bi-objective Pareto fronts are
compared with each other) / total solutions in the Pareto front

5.1.3 Single and bi-objective Pareto Fronts

This section shows the Pareto fronts of both single and bi-objective ES. Specifically,

it presents the diversity of the Pareto front solutions. Also, single and bi-objective Pareto

front solutions are graphically compared. Figures 5.4, 5.5 and 5.6 compare the population

and Pareto front members of single and bi-objective ES. Population members of the single

96



objective are the 26 solutions that are generated using different budget constraints. Non-

dominated solutions of the single objective population members form the single objective

Pareto front.

Except from some instances (e.g., random number seed four of problem instance three),

the single objective outperforms bi-objective. However, the bi-objective Pareto front has

better diversity than the single objective. There is also a gap between the bi-objective

population and the bi-objective Pareto front in terms of solution quality and therefore these

results confirm the need of keeping a global Pareto front in an external repository for bi-

objective ES (Section 4.2.3).

5.2 Equalizing computational effort

In this section, different from Section 5.1, the bi-objective ES was run longer to match

the time of the single objective Pareto front generation process. To match the time of gen-

erating 26 different budget values, the bi-objective optimizer was run for 16,000 generations

with an early termination of 4000 non-improving generations. The rationale of using 16,000

generations instead of 26,000 (26 runs of 1000 generations each) is that the total time of 26

single objective runs for budget values from 350 to 600 is equivalent to the running time of

16,000 bi-objective generations. For each problem instance, the single objective was run for

only one random number seed (due to the long process of generating single objective Pareto

front) and the bi-objective optimizer was run for 10 random number seeds. Variation in the

single objective ES is discussed in Section 5.3.

5.2.1 Pareto front diversity

Figures 5.7, 5.8 and 5.9 summarize the diversity of the bi-objective and single objective

Pareto fronts. For three problem instances, bi-objective ES has a better diversity (in cost

and capacitated resilience) than the single objective version. Also, the capacitated resilience
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(a) Random Number Seed 1 (b) Random Number Seed 2 (c) Random Number Seed 3

(d) Random Number Seed 4 (e) Random Number Seed 5 (f) Random Number Seed 6

(g) Random Number Seed 7 (h) Random Number Seed 8

Figure 5.4: Pareto fronts for problem instance 1: Single objective (obtained by 26 different
budget values) and bi-objective (for different random number seeds)
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(a) Random Number Seed 1 (b) Random Number Seed 2 (c) Random Number Seed 3

(d) Random Number Seed 4 (e) Random Number Seed 5 (f) Random Number Seed 6

(g) Random Number Seed 7 (h) Random Number Seed 8

Figure 5.5: Pareto fronts for problem instance 2: Single objective (obtained by 26 different
budget values) and bi-objective (for different random number seeds)
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(a) Random Number Seed 1 (b) Random Number Seed 2 (c) Random Number Seed 3

(d) Random Number Seed 4 (e) Random Number Seed 5 (f) Random Number Seed 6

(g) Random Number Seed 7 (h) Random Number Seed 8

Figure 5.6: Pareto fronts for problem instance 3: Single objective (obtained by 26 different
budget values) and bi-objective (for different random number seeds)
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(a) Capacitated Resilience Comparison (b) Cost Comparison

Figure 5.7: Comparison of Pareto front solutions (Problem instance 1)

values have been improved over the shorter bi-objective runs with the longer solution times

(in comparison to Section 5.1).

5.2.2 Comparison of non-dominated solutions for bi-objective and single objec-

tive Pareto fronts

The Pareto front solutions of bi-objective ES were compared with the Pareto front

solutions of single objective ES, and vice versa. Table 5.2 summarizes the number of non-

dominated solutions in each combined Pareto front. As expected, running the bi-objective
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(a) Capacitated Resilience Comparison (b) Cost Comparison

Figure 5.8: Comparison of Pareto front solutions (Problem instance 2)
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(a) Capacitated Resilience Comparison (b) Cost Comparison

Figure 5.9: Comparison of Pareto front solutions (Problem instance 3)
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Table 5.2: Comparison of Pareto solutions of single (1000 genera-
tions) and bi-objective (16,000 generations) ES for three problem
instances

Method
Bi-Objective Single Objective

Problem Instance 1

Rnd Number Seed 1 6/13* 5/6
Rnd Number Seed 2 9/12 2/6
Rnd Number Seed 3 3/10 5/6
Rnd Number Seed 4 5/12 6/6
Rnd Number Seed 5 8/16 5/6
Rnd Number Seed 6 9/14 4/6
Rnd Number Seed 7 11/18 5/6
Rnd Number Seed 8 9/18 6/6

Problem Instance 2

Rnd Number Seed 1 6/14 7/8
Rnd Number Seed 2 3/13 8/8
Rnd Number Seed 3 5/13 7/8
Rnd Number Seed 4 8/18 6/8
Rnd Number Seed 5 7/19 8/8
Rnd Number Seed 6 6/18 7/8
Rnd Number Seed 7 7/13 7/8
Rnd Number Seed 8 7/13 7/8

Problem Instance 3

Rnd Number Seed 1 9/15 5/9
Rnd Number Seed 2 10/15 4/9
Rnd Number Seed 3 12/17 3/9
Rnd Number Seed 4 11/16 3/9
Rnd Number Seed 5 14/17 3/9
Rnd Number Seed 6 5/12 8/9
Rnd Number Seed 7 12/14 4/9
Rnd Number Seed 8 7/13 5/9

* Number of nondominated solutions (single and bi-objective Pareto fronts are
compared with each other) / total solutions in the Pareto front

version longer helped improve the Pareto front; the bi-objective Pareto front has better

solutions (in terms of number of non-dominated solutions) than the ones in Section 5.1.

And, the number of solutions in the bi-objective Pareto front is increased. Comparing to

the single objective Pareto front, the bi-objective Pareto front performs better for problem

instances one and three (for most random number seeds), however, the single objective

Pareto front has more non-dominated solutions for problem instance two (except for random

number seed four).
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5.3 Variation of single objective ES

Variation of the single objective ES is summarized in this section. To show the variation

in capacitated resilience and cost, three problem instances of the single objective ES was run

for 10 random number seeds under different budget constraints (for 1000 generations).

Figure 5.10 summarizes the results. Interestingly, there is variation in cost, which means

that the optimizer can not always fully utilize the budget. This also causes variation in the

capacitated resilience. To see the relationship between the variation and the number of

generations, the same experiment was performed with 5000 generations (Figure 5.11). A

similar variation has been observed for 5000 generations. In summary, the single objective

ES is sensitive to random number seed.

A comparison of the variability of single and bi-objective ES is provided in Section 5.4.

5.4 Summary

According to the preliminary results presented in this chapter, the performance of single

and bi-objective ES are comparable in terms of Pareto front diversity, capacitated resilience

and cost. The Pareto front diversity of the bi-objective version was compared with the single

objective Pareto front and it was found satisfactory (in solution quality and diversity) given

that the single objective Pareto front requires a longer time to construct. According to the

two-sample t-tests, the single objective ES found better capacitated resilience values than bi-

objective only for problem instance 4 (p-value=0.0202) of the budget=500 case and problem

instances 3 (p-value=0.0220) and 10 (p-value=0.1002) of the budget=600 case. For the

remaining problem instances, the difference in capacitated resilience between single and bi-

objective ES was not statistically significant. Also, the difference in cost was not statistically

significant in any of the problem instances. The advantage of using bi-objective over single

objective ES is that the bi-objective provides a non-dominated set of solutions instead of a

single solution. A decision maker can decide on the cost and capacitated resilience trade-off
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(a) Problem instance 1 (Capacitated
Resilience)

(b) Problem instance 1 (Cost)

(c) Problem instance 2 (Capacitated
Resilience)

(d) Problem instance 2 (Cost)

(e) Problem instance 3 (Capacitated
Resilience)

(f) Problem instance 3 (Cost)

Figure 5.10: Variation of the single objective ES for different budget values
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(a) Problem instance 1 (Capacitated
Resilience)

(b) Problem instance 1 (Cost)

Figure 5.11: Variation of the single objective ES for different budget values (5000 generations,
10 random number seeds)

and select the best non-dominated solution. Also, as seen in Sections 5.1 and 5.2, single run

of bi-objective ES provides a better diversity than multiple runs of single objective ES and

runs faster.

Both single and bi-objective ES have some variation in solution quality. Table 5.3 shows

the variation in capacitated resilience of the single and bi-objective ES for the 10 user scenario

with two budget levels (10 problem instances with 10 random number seeds each). The

standard deviation of the runs does not exceed 0.105 for the bi-objective (problem instance

2/budget=500) and 0.166 for single objective (problem instance 9/budget=600). Also, the

standard deviations of the single and bi-objective ES are very similar. According to the

F-tests for equal variance of capacitated resilience, the variances of single and bi-objective

ES are not statistically different except in four problem instances: problem instances 4

(p-value=0.0351), 7 (p-value=0.0343) and 8 (p-value=0.0435) of the budget=500 case and

problem instance 9 (p-value=0.0105) of the budget=600 case. It can be concluded that

the variation to seed in capacitated resilience is acceptable (standard deviation is 0.05 on

average) for both single and bi-objective ES.
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This chapter analyzed the performance of the proposed model on a small sized problem.

Succinctly, the performance of the bi-objective ES is comparable to the single objective. The

next chapter compares capacitated resilience with other reliability/survivability metrics.
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Chapter 6

Results

6.1 Comparison of single (capacitated resilience) and bi-objective (cost and

capacitated resilience) ES

In this section, single and bi-objective ES are compared for capacitated resilience. The

Pareto front comparison of single and bi-objective ES was presented in Section 5.1, therefore

Pareto fronts are not analyzed here.

Figures 6.1 through 6.5 summarize the results of the 10, 25, 50, 75 and 100 users

scenarios, respectively. These figures compare the best capacitated resilience values of the

single and bi-objective runs. Ten problem instances with five replications are analyzed for

each scenario. The capacitated resilience in these figures is exactly calculated by setting the

number of alternative paths to 10 and the cut set size to 4.

As seen from the figures, the single objective ES outperforms bi-objective in most prob-

lem instances. This is expected because the bi-objective ES maintains a diversified Pareto

front to optimize the two objective functions simultaneously. For some problem instances

(e.g., problem instance 1 of the 50 user scenario) the bi-objective ES finds better capac-

itated resilience values than the single objective. However, according to the two-sample

t-tests, single objective is significantly better for only some problem instances. The single

objective was significantly better for the 10 user scenario problem instance 3 with budget

600 (p-value=0.0220), problem instance 4 with budget 500 (p-value=0.0202), problem in-

stance 10 with budget 600 (p-value=0.0102). The single objective ES was also statistically

better than bi-objective ES for the 25 user scenario problem instance 2 with budget 1000

(p-value=0.0345) and budget 1200 (p-value=0.0053), problem instance 5 with budget 1200

(p-value=0.0111), problem instance 7 with budget 1000 (p-value=0.0011), problem instance
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9 with budget 1000 (p-value=0.0049) and budget 1200 (p-value=0.0073), problem instance 10

with budget 1000 (p-value=0.0009) and budget 1200 (p-value=0.0257). For the 75 user sce-

nario, the single objective was better than the bi-objective only for problem instance 2 with

budget 2700 (p-value=0.0057) and problem instance 8 with budget 2700 (p-value=0.00185).

For the 50 and 100 user scenarios the single objective ES was not significantly better for any

problem instance. On the other hand, there was no problem instance that the bi-objective

ES was statistically better than the single objective ES. To sum up, according to the results

of the t-tests, the performance of the bi-objective ES is comparable to the single objective

ES.

The performance gap between single and bi-objective optimizers reduces as the problem

size increases (from 50 users to 100 users). For the 100 user scenario (Figure 6.5) bi-objective

optimization was able to find better solutions than the single objective for most problem

instances. For example, bi-objective was statistically better than the single objective for

problem instance 8 at 10% significance level (p-value=0.0622). This may suggest that the

bi-objective performs well for larger sized problems. Its diversified population due to the

Pareto front helps to search the solution space more effectively than the single objective.

6.2 Correlation among capacitated resilience and other metrics

In this section, correlations among the capacitated resilience and the other metrics are

investigated. The main reason to check correlations is to identify possible differences or

similarities of the network structures.

Table 6.1 summarizes the correlations using the best solutions over five random seeds

of each problem instance (total of 10). In this table, each row shows correlations among

the objective function and the other metrics. For example, the first row presents the cor-

relations among capacitated resilience and the other metrics for the network designs found

by optimization for capacitated resilience. The correlation between capacitated resilience
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(a) Problem Instance 1 (b) Problem Instance 2 (c) Problem Instance 3 (d) Problem Instance 4

(e) Problem Instance 5 (f) Problem Instance 6 (g) Problem Instance 7 (h) Problem Instance 8

(i) Problem Instance 9 (j) Problem Instance 10

Figure 6.1: Comparison of single and bi-objective ES performance for capacitated resilience
(using number of alternative paths and size of cut-sets as 10 and 4, respectively), 10 problem
instances with 5 replications of the 10 user scenario
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(a) Problem Instance 1 (b) Problem Instance 2 (c) Problem Instance 3 (d) Problem Instance 4

(e) Problem Instance 5 (f) Problem Instance 6 (g) Problem Instance 7 (h) Problem Instance 8

(i) Problem Instance 9 (j) Problem Instance 10

Figure 6.2: Comparison of single and bi-objective ES performance for capacitated resilience
(using number of alternative paths and size of cut-sets as 10 and 4, respectively), 10 problem
instances with 5 replications of the 25 user scenario
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(a) Problem Instance 1 (b) Problem Instance 2 (c) Problem Instance 3 (d) Problem Instance 4

(e) Problem Instance 5 (f) Problem Instance 6 (g) Problem Instance 7 (h) Problem Instance 8

(i) Problem Instance 9 (j) Problem Instance 10

Figure 6.3: Comparison of single and bi-objective ES performance for capacitated resilience
(using number of alternative paths and size of cut-sets as 10 and 4, respectively), 10 problem
instances with 5 replications of the 50 user scenario
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(a) Problem Instance 1 (b) Problem Instance 2 (c) Problem Instance 3 (d) Problem Instance 4

(e) Problem Instance 5 (f) Problem Instance 6 (g) Problem Instance 7 (h) Problem Instance 8

(i) Problem Instance 9 (j) Problem Instance 10

Figure 6.4: Comparison of single and bi-objective ES performance for capacitated resilience
(using number of alternative paths and size of cut-sets as 10 and 4, respectively), 10 problem
instances with 5 replications of the 75 user scenario
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(a) Problem Instance 1 (b) Problem Instance 2 (c) Problem Instance 3 (d) Problem Instance 4

(e) Problem Instance 5 (f) Problem Instance 6 (g) Problem Instance 7 (h) Problem Instance 8

(i) Problem Instance 9 (j) Problem Instance 10

Figure 6.5: Comparison of single and bi-objective ES performance for capacitated resilience
(using number of alternative paths and size of cut-sets as 10 and 4, respectively), 10 problem
instances with 5 replications of the 100 user scenario
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and all-terminal reliability is high because both capacitated resilience and all-terminal reli-

ability are calculated by considering all paths from a user to all available APs. There is a

similarity between their network designs such that both favor redundancy in their designs.

Also, the correlation of two-terminal reliability and all-terminal reliability is high when op-

timizing for two-terminal reliability because two-terminal reliability is simply a subset of

all-terminal reliability where only one AP is considered. However, the correlation between

two-terminal and all-terminal reliabilities is low when optimizing for all-terminal reliability.

Therefore, there is a difference between the designs of two-terminal and all-terminal reliabil-

ities. Similarly, the correlation between capacitated resilience and two-terminal reliability is

high when optimizing for capacitated resilience but the correlation is low when optimizing

for two-terminal reliability. Hence, there are differences in their network designs. Also, the

correlation between capacitated resilience and TE is low and there are significant differences

in their network designs. The correlations among traffic efficiency, two-terminal and all-

terminal reliabilities are high when optimizing for traffic efficiency, however, the correlations

are low when optimizing for two-terminal or all-terminal reliabilities. Therefore, the network

designs of traffic efficiency, two-terminal reliability and all-terminal reliability are different.

The similarities and the differences in the network designs are discussed in detail in the

Section 6.3.

Table 6.1: Correlations calculated using the best solutions of 10 problem instances of the 10
user scenario

Correlation
Optimized for CR TE Two-term. All-term.

CR - -0.058 * 0.9184 0.8841
TE 0.3075 - 0.6558 0.6925

Two-term. 0.2991 0.2135 - 0.9038
All-term. 0.7318 -0.1063 0.3712 -

* Correlation between capacitated resilience and traffic efficiency
(when the network is designed for capacitated resilience)

117



6.3 Network structure: Comparison of capacitated resilience and other metrics

In this section, the differences between the network structures obtained by optimization

for capacitated resilience and the other metrics are compared. For this comparison, different

problem instances are solved for each metric. Input data of a problem instance consists

of user locations and traffic requirements. In the proposed ES model of this dissertation,

a user represents an area which may consist of some users. If the number of users in the

optimization model were equal to the number in the physical world, then that model would

have a real representation of users. However, this increases the number of users dramatically

and therefore makes the problem intractable for real life applications. Hence, the traffic

requirements of users represent the total traffic requirements of the users in an area. Also,

because of this aggregation of data, the user locations are combined to a single location in

the model for simplification.

The main goal of this section is to identify the key differences in the network structures

in terms of number, types and locations of the devices. For this comparison 10 user and 25

user scenarios are used due to their small problem size (which helps to visually detect the

differences in the network structures). The single objective ES was run for each metric and

the resulting network structures are presented.

The network designs for capacitated resilience are obtained by two cases: unconstrained

and constrained capacity cases. For the first case, capacities of APs and RPs are set to 150

and 80 (large enough to assume uncapacitated operation), respectively. For the constrained

capacity case, capacities are set to 30 and 20, respectively. There are two cases for capacitated

resilience for two reasons. The first is to make a fair comparison with other metrics, one

basically uncapacitated and the other quite capacitated. Recall that the other metrics do not

consider capacity. The second is to assess the effects of different levels of capacity constraint

on the network designs.
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6.3.1 A problem instance of the 10 user scenario

Figure 6.6 presents the input data of problem instance 1 of the 10 user scenario. The

devices are deployed to optimize capacitated resilience, TE, two-terminal reliability and

all-terminal reliability for the given user coordinates and traffic requirements.

Network structures obtained by optimization for capacitated resilience

Problem instance 1 of the 10 user scenario is optimized for capacitated resilience for

two capacity cases. First, the unconstrained capacity case is solved for budget constraints of

500 and 600. Figure 6.7 shows the network structure obtained by optimization of problem

instance 1 for capacitated resilience under a budget constraint of 500. The network structure

shows the allocation of device redundancy in the high traffic requirements areas. U0, U1 and

U8 are the low traffic flow users (which have smaller weights in the capacitated resilience

calculation), therefore they are not prioritized by the ES. In other words, APs (or RPs) are

not located near these users because their effect on the capacitated resilience is limited due

to their low traffic requirements (see Equation 3.1 for the definition of user weight). For

example, the two APs (AP5 and AP8) are not located close to U0 due to its low traffic

requirement. Also, AP5 is located far from U5 but close to U9. The reason is to increase the

reliability of the alternative path (U9 - AP5) without losing connectivity of U5 and U0. The

traffic requirements of U9 and U5 are very high (14.803 and 15.753, respectively) and it might

be argued that the location of AP8 nearer U5 would provide a slightly higher capacitated

resilience because of its higher traffic requirement. However, this improvement would be very

limited due to the small difference between the traffic requirements of U9 and U5. If the

budget was larger (e.g., 600) capacitated resilience would be increased by adding a second

AP close to U5 to improve its assigned path and use AP5 as its alternative path. Similarly

the ES preferred to allocate redundancy for U2 and U3 instead of U7 and U8. This decision

is reasonable because U8 is a low traffic node (3.737) and U3 and U7 are comparable in

terms of their traffic requirements (14.729 and 14.269). Also, locating redundancies around
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x

y

U0(x0.88|y2.696|f0.013)

U1(x3.467|y0.078|f5.11)

U2(x− 3.432|y − 2.914|f19.153)

U3(x− 1.689|y − 2.242|f14.729)

U4(x3.571|y − 3.636|f14.45)

U5(x1.098|y3.948|f15.753)

U6(x1.333|y − 3.518|f19.662)

U7(x− 3.518|y − 0.173|f14.269)

U8(x− 3.227|y − 0.516|f3.737)

U9(x− 1.684|y2.159|f14.803)

Figure 6.6: Inputs of 10 users scenario (problem instance 1): User locations (x and y are the
coordinates, f is the traffic flow requirement)
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U2 and U3 helps to further improve capacitated resiliences of those nodes because the nodes

are located close to each other and this improves the network capacitated resilience. The

capacitated resilience of this network is 0.5054 and the TE is 0.3043.

Figure 6.8 shows the network structure of the same problem with a larger budget (600

instead of 500). As the budget increases, redundancies are added to U0, U4, U5, U6, U7

and U8. On the other hand, U9 has lost its redundant path due to this new arrangement

of the devices. However, since the traffic flow requirements of U7 and U9 are comparable

(14.269 and 14.803, respectively) this new arrangement does not have an adverse effect on

the network level capacitated resilience. Also, locating devices in the more crowded areas (in

this case, the areas of U7, U8, U3 and U2) helps improving the overall capacitated resilience.

Note that U1 still has no redundancy, which is similar to the budget=500 scenario, due to

its low traffic requirement (which is 5.11).

Figures 6.9 and 6.10 show the solutions for constrained capacity case. For the same

problem instance, the capacity of the APs and RPs are set to 30 and 20, respectively. Both

network designs, with budget=500 (Figure 6.9) and budget=600 (Figure 6.10) have lower

capacitated resilience values than the previous designs (Figures 6.7 and 6.8) due to the

limited capacity. However, the designs are similar because the users are connected with an

AP and then the redundancies are provided for high traffic users. Isolated users (such as U0,

U1, U4 and U5 of Figure 6.9) are connected with distant APs that are primarily serving the

high traffic users. For the budget constraint of 600 case (Figure 6.10), similar design rules

have been observed. High traffic user (e.g., U5 and U7) have strong connections with a high

level of redundancy ensured by nearby APs. Isolated users (such as, U1) have no or limited

redundancy. The capacity constraint does not change the design rules.

One of the common design rules from the network structure obtained by optimizing

for capacitated resilience is that the redundancy is allocated to the most promising area

(crowded or having larger traffic nodes) instead of to isolated nodes or low traffic nodes. As

the capacitated resilience of a user becomes zero if there are no alternative paths available,
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
490, 0.5054, 0.3043, 0.604, 0.6114
# of APs = 8, # of RPs = 1

Figure 6.7: Network structure of the 10 user problem (problem instance 1, budget=500)
found by optimization for Capacitated Resilience with unconstrained capacities
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
570, 0.6429, 0.642, 0.7675, 0.7875
# of APs = 9, # of RPs = 3

Figure 6.8: Network structure of the 10 user problem (problem instance 1, budget=600)
found by optimization for Capacitated Resilience with unconstrained capacities

123



User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
500, 0.4975, 0.4502, 0.6556, 0.7047
# of APs = 8, # of RPs = 2

Figure 6.9: Network structure of the 10 user problem (problem instance 1, budget=500)
found by optimization for Capacitated Resilience with constrained capacities
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
570, 0.5839, 0.5826, 0.7408, 0.7651
# of APs = 9, # of RPs = 3

Figure 6.10: Network structure of the 10 user problem (problem instance 1, budget=600)
found by optimization for Capacitated Resilience with constrained capacities
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the location of the assigned devices are strategically made to improve reliabilities of the

alternative paths of other users (see U1 and AP0 in Figure 6.8).

Capacitated resilience vs. TE

Figure 6.11 shows the network structure generated by traffic efficiency optimization

under budget constraint of 500. The major difference of this network between the one

generated by capacitated resilience is the redundancy allocation. In the one generated by

TE optimization, there is no or very limited redundancy in the network. Instead an AP

is located for most users. For the users that cannot have a “dedicated” access point, they

share an access point which is close to another user. For example, U0 and U8 are the low

traffic nodes and they are connected to the network by a distant AP. However, this decision

of assigning the dedicated APs to high traffic nodes is needed to maximize TE.

In terms of redundancy, the network has very limited redundancy but high reliability

for the node connections. Only U2, U3, U4, U6, U7 and U8 have alternative paths. The

other users have no alternative paths, therefore their capacitated resilience values are zero.

The capacitated resilience and TE of this network are 0.2056 and 0.8577, respectively. In

comparison to the network optimized by capacitated resilience (Figure 6.7), TE improved

from 0.3043 to 0.8577, but the capacitated resilience reduced dramatically from 0.5054 to

0.2056 due to lack of alternative paths in the network. This difference is caused by the

structural differences between the two networks.

Figure 6.12 has a larger budget (600 instead of 500), but the structure of the resulting

network is similar to the one of smaller budget (500). The devices are located very close to

users so that the reliabilities between users and APs are very high. Only U0 does not have

an AP located nearby, but U0 has a very small traffic requirement (0.023) therefore it does

not have a significant effect on the TE. The capacitated resilience of the network is 0.2039,

which is similar to one given in Figure 6.11, but the TE has improved from 0.8577 to 0.9854

because of the larger number of RPs and their locations.
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
490, 0.2056, 0.8577, 0.9759, 0.9795
# of APs = 8, # of RPs = 1

Figure 6.11: Network structure of the 10 user problem (problem instance 1, budget=500)
found by optimization for TE
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
510, 0.2039, 0.9854, 0.977, 0.9787

# of APs = 8, # of RPs = 3

Figure 6.12: Network structure of the 10 user problem (problem instance 1, budget=600)
found by optimization for TE
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In summary, the typical network structure obtained by TE optimization is to have high

reliability for high traffic nodes by locating APs near them, and to have some redundancy

for high traffic nodes within the given budget and allow low reliability connections for low

traffic nodes (if the budget is tightly constrained).

Capacitated resilience vs. two-terminal reliability

As seen in Figure 6.13, which is similar to the structure obtained by TE optimization,

the APs (or RPs) are located very close to the users to get maximum reliability. U0 is

assigned to an AP which is not very close to its location, (which was also seen in Figure

6.12), but it does not affect two-terminal reliability significantly due to its low weight in

the network level two-terminal reliability calculation. The two-terminal reliability of this

network is 0.9802 and capacitated resilience is 0.1054. Similar to TE optimization, the main

reason of the low capacitated resilience value for two-terminal optimization is the lack of

redundancy in the network.

As the budget increases from 500 to 600 (Figure 6.14), an AP has been assigned to

the U0 user to increase overall two-terminal reliability. Also, an additional device has been

located near U6, which is a high traffic node with traffic requirement of 19.662. This improved

capacitated resilience from 0.1054 to 0.3695, but two-terminal reliability improved slightly

(from 0.9802 to 0.9831). The network structure remained similar.

Thus, the structure obtained by two-terminal reliability optimization is very similar to

the one obtained by TE optimization. It allocates APs very close to the high traffic nodes. If

the budget is not available, the low traffic nodes are connected to a distant AP which serves

a nearby high traffic user.

Capacitated resilience vs. all-terminal reliability

The network structure found by all-terminal reliability optimization is very similar to

the one of two-terminal reliability. With a budget constraint of 500, APs are located very

129



User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
490, 0.1910, 0.7134, 0.9855, 0.9869
# of APs = 8, # of RPs = 1

Figure 6.13: Network structure of the 10 user problem (problem instance 1, budget=500)
found by optimization for two-terminal reliability
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
560, 0.3695, 0.8565, 0.9861, 0.9862
# of APs = 9, # of RPs = 2

Figure 6.14: Network structure of the 10 user problem (problem instance 1, budget=600)
found by optimization for two-terminal reliability
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close to high traffic nodes (Figure 6.15). When the budget increases to 600 (Figure 6.16),

some redundancies are added to the high traffic nodes and all-terminal reliability increases

from 0.9831 to 0.9877. Not surprisingly, capacitated resilience has increased from 0.2836 to

0.3298 because of the new alternative paths.

It can be said that the network structure obtained by optimization for all-terminal

reliability is very similar to the one obtained from two-terminal reliability optimization.

However, the redundancies for all-terminal reliability are more decentralized. For example,

in Figure 6.16, AP2 and AP12 provide redundancies for all users on the left side (i.e., x < 0)

of the network. This is different than Figure 6.14 in which the redundancies are located near

the users for two-terminal maximization.

Table 6.2 summarizes the values of all metrics for all network designs presented in this

section. Figure 6.17 and 6.18 summarize the comparison of the network designs presented

in this section.

Table 6.2: Summary of all metrics for the 10 user scenario, problem instance 1

Results
Budget Optimized by CR TE 2-term All-term

500

CR (unconstrained capacities) 0.5054 0.3043 0.6040 0.6114
CR 0.4975 0.4502 0.6556 0.7047
TE 0.2056 0.8577 0.9759 0.9795
Two-terminal rel. (2-term) 0.1910 0.7134 0.9855 0.9869
All-terminal rel. (all-term) 0.3284 0.7238 0.9852 0.9871

600

CR (unconstrained capacities) 0.6429 0.6420 0.7675 0.7875
CR 0.5839 0.5826 0.7408 0.7651
TE 0.2039 0.9854 0.9770 0.9787
Two-terminal rel. (2-term) 0.3695 0.8565 0.9861 0.9862
All-terminal rel. (all-term) 0.3298 0.7115 0.9720 0.9877

6.3.2 Another problem instance of the 10 user scenario

In this section the network structures obtained by optimization for different metrics are

compared using another problem instance of the 10 user scenario. The location and flows of

the users are given in the Figure 6.19.
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
500, 0.3284, 0.7238, 0.9852, 0.9871

# of APs = 8, # of RPs = 2

Figure 6.15: Network structure of the 10 user problem (problem instance 1, budget=500)
found by optimization for all-terminal reliability
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
600, 0.3298, 0.7115, 0.972, 0.9877
# of APs = 10, # of RPs = 0

Figure 6.16: Network structure of the 10 user problem (problem instance 1, budget=600)
found by optimization for all-terminal reliability

134



(a) Design for CR (b) Design for TE

(c) Design for two-term. rel. (d) Design for all-term. rel.

Figure 6.17: Summary of the designs of the problem instance 1 of the 10 user scenario,
budget=500
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(a) Design for CR (b) Design for TE

(c) Design for two-term. rel. (d) Design for all-term. rel.

Figure 6.18: Summary of the designs of the problem instance 1 of the 10 user scenario,
budget=600
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x

y

U0(x0.425|y2.529|f6.56)

U1(x1.242|y − 3.97|f9.247)

U2(x2.913|y1.513|f17.002)

U3(x− 2.775|y − 1.519|f12.444)

U4(x0.649|y0.403|f4.59)

U5(x3.559|y − 3.492|f0.998)

U6(x− 1.307|y2.951|f5.34)

U7(x− 2.467|y3.871|f9.607)

U8(x1.285|y0.367|f17.313)U9(x− 1.424|y − 0.027|f3.466)

Figure 6.19: Inputs of the 10 user scenario (problem instance 2): User locations (x and y
are the coordinates, f is the traffic flow requirement)
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Figure 6.20 shows the network optimized for maximum capacitated resilience. Similar

to the network design found for problem instance 1 (Section 6.3.1) this network emphasises

strong connections for high flow nodes and redundancies around those nodes. Similarly, the

constrained capacity case of the same problem instance (solved for capacitated resilience)

yields a similar network design (Figure 6.21) with slightly less capacitated resilience value

(0.6753 instead of 0.7461) due to limited capacities. On the other hand, the network structure

of TE (Figure 6.22) focuses on strong connections for most of the nodes. Redundancy is not

as important as for capacitated resilience.

The networks found for two-terminal and all-terminal reliabilities (Figures 6.23 and

6.24) provide strong connections for high flow nodes, but also some level of redundancy

are allocated by RPs. In capacitated resilience, the redundancies for high flow nodes are

mostly ensured by APs but the two-terminal and all-terminal reliability designs use RPs to

provide redundancies in this problem instance because APs are mainly used to create strong

connections (between users and APs) for two and all-terminal reliability designs and RPs

provide alternative paths at a lower cost.

The summary of the network designs is given in Table 6.3. The designs presented in

this section are compared in Figure 6.25.

Table 6.3: Summary of all metrics for the 10 user scenario, problem instance 2

Results
Budget Optimized by CR TE 2-term All-term

600

CR (unconstrained capacities) 0.7461 0.6308 0.8169 0.8363
CR 0.6753 0.4523 0.7830 0.8306
TE 0.3655 0.9101 0.9036 0.9412
Two-terminal rel. (2-term) 0.5248 0.5361 0.9787 0.9844
All-terminal rel. (all-term) 0.5210 0.8247 0.9764 0.9845

6.3.3 A problem instance of the 25 user scenario

As another example of differences the network design, a larger problem is presented in

this section. Figure 6.26 shows the user locations and traffic requirements of the 25 user
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User AP RP
Range of access point

Range of relay point

U

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
580, 0.7461, 0.6308, 0.8169, 0.8363
# of APs = 9, # of RPs = 4

Figure 6.20: Network structure of the 10 user problem (problem instance 2, budget=600)
found by optimization for Capacitated Resilience with unconstrained capacities
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User AP RP
Range of access point

Range of relay point

U

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
600, 0.6753, 0.4523, 0.7830, 0.8306
# of APs = 10, # of RPs = 0

Figure 6.21: Network structure of the 10 user problem (problem instance 2, budget=600)
found by optimization for Capacitated Resilience with constrained capacities
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User AP RP
Range of access point

Range of relay point

U

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
570, 0.3655, 0.9101, 0.9036, 0.9412
# of APs = 9, # of RPs = 3

Figure 6.22: Network structure of the 10 user problem (problem instance 2, budget=600)
found by optimization for TE
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User AP RP
Range of access point

Range of relay point

U

AP

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
580, 0.5248, 0.5361, 0.9787, 0.9844
# of APs = 9, # of RPs = 4

Figure 6.23: Network structure of the 10 user problem (problem instance 2, budget=600)
found by optimization for two-terminal reliability
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User AP RP
Range of access point

Range of relay point

U

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
590, 0.521, 0.8247, 0.9764, 0.9845
# of APs = 9, # of RPs = 5

Figure 6.24: Network structure of the 10 user problem (problem instance 2, budget=600)
found by optimization for all-terminal reliability
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U

(a) Design for CR

U

(b) Design for TE

U

AP

(c) Design for two-term. rel.

U

(d) Design for all-term. rel.

Figure 6.25: Summary of the designs of the problem instance 2 of the 10 user scenario,
budget=600
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x

y

2 4 6−2−4−6

2

4

6

−2

−4

−6

U0(f0.013)

U1(f5.11)

U2(f19.153)
U3(f14.729)

U4(f14.45)

U5(f15.753)

U6(f19.662)

U7(f14.269)

U8(f3.737)

U9(f14.803)

U10(f8.585)

U11(f12.228)

U12(f1.925)

U13(f10.052) U14(f12.703)
U15(f1.513)

U16(f4.606)

U17(f14.304)

U18(f10.943)

U19(f10.304)

U20(f5.83)

U21(f0.042)

U22(f0.755)

U23(f7.282)

U24(f6.955)

Figure 6.26: Inputs of the 25 user scenario (problem instance 1): User locations (f is the
traffic flow requirement)

scenario. Similar to the previous examples, this problem is solved for maximum capaci-

tated resilience, TE, two-terminal reliability and all-terminal reliability and differences in

the network designs are discussed.

Solving the 25 user problem for maximum capacitated resilience (Figures 6.27 and 6.28)

yields a similar network design found for the previous examples (Sections 6.3.1 and 6.3.2).

The high traffic nodes are connected with the devices located close to them and also some

redundancy is allocated as the budget allows. Low traffic nodes, for example U15 and

U16, are connected with devices which are located further from these users to connect high
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traffic nodes or provide redundancy for high traffic nodes. This trend was observed in the

previous examples as well. The design with a larger budget (Figure 6.28) has a higher level

of redundancy in the network. Similarly, constrained capacity case (Figures 6.29 and 6.30)

has similar designs.

Solving the same problem for maximum TE yields a network design with high reliability

connections for high traffic nodes. Redundancies are allocated as the budget constraint

allows. Unlike with resilience the primary objective is to connect as many high traffic nodes

with high reliability devices as possible. Both the 1000 (Figure 6.31) and the 1200 (Figure

6.32) budget scenarios result in similar structures.

For two-terminal (Figures 6.33 and 6.34) and all-terminal (Figures 6.35 and 6.36) reli-

ability design, the network is different than for capacitated resilience. As discussed in the

previous sections, these yield a design which is similar to the one obtained by TE maximiza-

tion. Network designs obtained by maximization of two-terminal and all-terminal reliabilities

emphasize high reliability connections for high traffic nodes and add redundancies as the bud-

get permits. Redundancy allocation for two-terminal and all-terminal reliability is different

than for capacitated resilience because the redundancies are located near the nodes that do

not have a high reliability connection. This increases the chance for those nodes to keep

connected to the network.

Table 6.4 summarizes the values of all metrics for all network designs presented in this

section. Figures 6.37 and 6.38 compare the designs that are presented in this section.

6.3.4 Summary of the differences of the network designs

According to the examples given in the previous sections, there are some differences in

the network designs obtained by optimization for different reliability/survivability metrics.

The most distinct network design is obtained by capacitated resilience maximization.

Users are connected to the network with a nearby device to ensure a high reliability connec-

tion in capacitated resilience optimization. As seen in the provided examples of the previous
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
990, 0.4667, 0.3904, 0.5942, 0.6305
# of APs = 16, # of RPs = 3

Figure 6.27: Network structure of the 25 user problem (problem instance 1, budget=1000)
found by optimization for Capacitated Resilience with unconstrained capacities
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
1200, 0.5559, 0.4717, 0.6992, 0.7434
# of APs = 19, # of RPs = 6

Figure 6.28: Network structure of the 25 user problem (problem instance 1, budget=1200)
found by optimization for Capacitated Resilience with unconstrained capacities
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
990, 0.3958, 0.4795, 0.5751, 0.6199
# of APs = 16, # of RPs = 3

Figure 6.29: Network structure of the 25 user problem (problem instance 1, budget=1000)
found by optimization for Capacitated Resilience with constrained capacities
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
1170, 0.5165, 0.4823, 0.6909, 0.7549
# of APs = 19, # of RPs = 3

Figure 6.30: Network structure of the 25 user problem (problem instance 1, budget=1200)
found by optimization for Capacitated Resilience with constrained capacities
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
990, 0.0501, 0.8422, 0.8515, 0.8538
# of APs = 16, # of RPs = 3

Figure 6.31: Network structure of the 25 user problem (problem instance 1, budget=1000)
found by optimization for TE
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
1160, 0.0712, 0.9084, 0.8805, 0.8848
# of APs = 18, # of RPs = 8

Figure 6.32: Network structure of the 25 user problem (problem instance 1, budget=1200)
found by optimization for TE
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
980, 0.0959, 0.6682, 0.9157, 0.9180
# of APs = 16, # of RPs = 2

Figure 6.33: Network structure of the 25 user problem (problem instance 1, budget=1000)
found by optimization for two-terminal reliability
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
1180, 0.2349, 0.6378, 0.9488, 0.9554
# of APs = 19, # of RPs = 4

Figure 6.34: Network structure of the 25 user problem (problem instance 1, budget=1200)
found by optimization for two-terminal reliability
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
990, 0.1072, 0.7007, 0.9143, 0.9192
# of APs = 16, # of RPs = 3

Figure 6.35: Network structure of the 25 user problem (problem instance 1, budget=1000)
found by optimization for all-terminal reliability
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User AP RP

Range of access point
Range of relay point

Cost, Capacitated Resilience, TE, Two-terminal Reliability, All-terminal Reliability:
1190, 0.3301, 0.7674, 0.9425, 0.9619
# of APs = 19, # of RPs = 5

Figure 6.36: Network structure of the 25 user problem (problem instance 1, budget=1200)
found by optimization for all-terminal reliability
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(a) Design for CR (b) Design for TE

(c) Design for two-term. rel. (d) Design for all-term. rel.

Figure 6.37: Summary of the designs of the problem instance 1 of the 25 user scenario,
budget=1000

157



(a) Design for CR (b) Design for TE

(c) Design for two-term. rel. (d) Design for all-term. rel.

Figure 6.38: Summary of the designs of the problem instance 1 of the 25 user scenario,
budget=1200
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Table 6.4: Summary of all metrics for the 25 user scenario, problem instance 1

Results
Budget Optimized by CR TE 2-term All-term

1000

CR (unconstrained capacities) 0.4667 0.3904 0.5942 0.6305
CR 0.3958 0.4795 0.5751 0.6199
TE 0.0501 0.8422 0.8515 0.8538
Two-terminal rel. (2-term) 0.0959 0.6682 0.9157 0.9180
All-terminal rel. (all-term) 0.1072 0.7007 0.9143 0.9192

1200

CR (unconstrained capacities) 0.5559 0.4717 0.6992 0.7434
CR 0.5165 0.4823 0.6909 0.7549
TE 0.0712 0.9084 0.8805 0.8848
Two-terminal rel. (2-term) 0.2349 0.6378 0.9488 0.9554
All-terminal rel. (all-term) 0.3301 0.7674 0.9425 0.9619

sections, this is also a very common design rule for other metrics. The main difference of

capacitated resilience is with the redundancy allocation. Redundancy is achieved by locating

an additional device nearby a user. Capacitated resilience optimization locates the additional

device(s) near a user to increase its “resilience”. This approach, providing alternative paths,

is at the core of the capacitated resilience calculation (Equation 3.2 in Section 3.2). How-

ever, budget constraint limits the number of additional devices. Therefore, redundancies are

allocated near high traffic nodes or crowded regions to maximize capacitated resilience as

calculated by the weighted average of user level capacitated resiliences in terms of user traffic

requirements (Equation 3.1 in Section 3.2). Because of this prioritization some low traffic

nodes are connected to the network without redundancies. This is a reasonable strategy

because satisfying a larger number of users (or larger traffic requirements) maximizes the

overall satisfaction of the network. Also, low traffic users are still connected to the network

and some level of redundancy is provided to them within the given budget constraint. The

ideal location for a low traffic user would be near a high traffic node so that it can benefit

from redundancy of the high traffic node. If the low traffic node is isolated from other users,

that user is assigned with a distant device with limited or no redundancy.

TE, two-terminal and all-terminal reliabilities have some common design properties. For

example, they try to assign users a high reliability device to connect the network. Although
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it seems to be similar to the design of capacitated resilience, this is actually their main

difference from the capacitated resilience. Capacitated resilience adds redundancies near

high traffic nodes, whereas the other metrics try to connect more nodes to a high reliability

device then redundancies are allocated if budget allows. In most cases, the redundancies

in the network generated by TE, two-terminal and all-terminal reliabilities are very limited.

There is a slight difference between the designs of two-terminal and all-terminal reliability.

The design for two-terminal reliability has more emphasis on strong connections, however,

the all-terminal design uses more redundancy in network design. For example, in Figure

6.16 the redundancies are allocated in a decentralized way to serve many users instead of a

limited number of users. On the other hand, two-terminal reliability allocates redundancies

nearby users as observed in Figure 6.14.

The network design of capacitated resilience can provide better connectivity if there are

catastrophic failures or attacks in the network because of its higher level of redundancy in the

network. Any potential attack in the network most likely aims for high traffic areas. These

high traffic areas can be more crowded or consist of users with high traffic requirements.

This dissertation solves network design problem for wireless networks. For other networks,

disconnection may mean transportation breakdowns, telephone breakdowns or interdiction in

military supply service. From the rich literature of the network interdiction area, an earlier

study shows that an attacker’s goal might be removing n edges to reduce the maximum

amount of flow (Wollmer, 1964). This is based on max-flow min-cut network problems.

Since the calculation of capacitated resilience actually takes the “min-cut”s into account, it

provides a more resilient design than the others. The main goal is to keep users connected

to the network. Obviously, a planned network interdiction causes more harm than random

failures or attacks, therefore capacitated resilience provides even more resilient network for

random interdiction (or failures). As further study, network designs obtained by these metrics

will be compared for planned interdictions on the network.
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6.4 Bi-objective (TE and capacitated resilience) ES

In previous sections, the bi-objective ES was solved for cost and capacitated resilience.

In this section, the bi-objective ES is solved for traffic efficiency and capacitated resilience.

As seen from Section 6.3, different network designs are obtained by optimization for TE and

for capacitated resilience.

As Section 6.2 summarizes, the correlation between TE and capacitated resilience is

weak when optimizing for TE. Therefore, high TE values may not result in high capacitated

resiliences. Similarly, high capacitated resilience values may not guarantee high TE values.

Figures 6.39 and 6.40 present the Pareto fronts of the bi-objective ES optimized for traffic

efficiency and capacitated resilience for the 10 user scenario with budget constraints of 500

and 600, respectively. The search space of the bi-objective ES of capacitated resilience and

TE is larger than the one of capacitated resilience and cost due to the continuous values

of TE. Therefore, instead of 3000 generations with population size of 30 and children size

of 30, ES is run for 5000 generations with population size of 40 and children size of 40.

Five random number seeds are used for each scenario. Traffic efficiency is calculated by

the simulation method presented in Section 4.3.2 and capacitated resilience is calculated by

setting the values of number of alternative paths and cut-set size to 10 and 4, respectively.

The first thing to notice is the number of solutions in the Pareto fronts. Compared to

the Pareto front solutions of cost and capacitated resilience (Section 5.1.3), there are more

solutions for traffic efficiency and capacitated resilience optimization. The reason is that

the search space is larger as both metrics (TE and capacitated resilience) are continuous,

whereas cost is discrete.

As expected, a budget increase (from 500 to 600) increases the values of TE and capaci-

tated resilience of most solutions. Specifically, with a budget increase, the highest capacitated

resilience increased from 0.5889 (random number seed 2) to 0.6537 (random number seed

4). Similarly, the highest TE increased dramatically (0.8670 for random number seed 4 of
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budget=500 case and 0.9665 for random number seed 4 of budget=600). The lowest capac-

itated resilience remained almost same (0.0345 for random number seed 4 of budget=500

case and 0.0483 for random number seed 2 of budget=600). The lowest TE decreased from

0.5089 (random number seed 5 of budget=500 case) to 0.4238 (random number seed 1 of bud-

get=600 case), however, this lowest value seems to be an extreme case. Without considering

the random number seed 1 of budget=600 case, the lowest TE increases to 0.5561.

The two ends of the Pareto front (low TE/high capacitated resilience and high TE/low

capacitated resilience) suggest that the structure of the networks are different in these areas.

Specifically, the network structures of the solutions in the high TE/low capacitated resilience

section have limited redundancies but more reliable connections for most nodes (Figure 6.41).

The solutions in the other extreme section (low TE/high capacitated resilience) have more

redundancies but some of the low or moderate traffic nodes have less reliable connections

(Figure 6.42). However, the solutions in the middle sections of the Pareto fronts have more

balanced network designs with reliable connections and some level of redundancy (Figure

6.43). Figure 6.44 provides a comparison of these three different designs.

6.5 Solution time comparison of capacitated resilience and other metrics

In this section, computational experience is presented. The solution methods were coded

in Java and the problems were solved on a Linux computer with 2.66 Ghz Intel Quad Core

Xeon W3520 CPU and 8 GB memory.

6.5.1 Solution time comparison of capacitated resilience: Effect of number of

paths and cut-set size

This section summarizes the solution times of the 10 user scenario (10 problem instances

with 10 random number seed for each problem instance) with budget of 500 and 600 for single

(capacitated resilience) and bi-objective (cost and capacitated resilience) optimization. The

effects of number of alternative paths and cut set sizes are investigated.
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(a) Random Number Seed 1 (b) Random Number Seed 2

(c) Random Number Seed 3 (d) Random Number Seed 4

(e) Random Number Seed 5

Figure 6.39: Pareto fronts for the 10 user scenario problem instance 1 with budget constraint
of 500: Bi-objective optimization of TE and capacitated resilience
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(a) Random Number Seed 1 (b) Random Number Seed 2

(c) Random Number Seed 3 (d) Random Number Seed 4

(e) Random Number Seed 5

Figure 6.40: Pareto fronts for the 10 user scenario problem instance 1 with budget constraint
of 600: Bi-objective optimization of TE and capacitated resilience
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE:
500.0, 0.2278, 0.7953
# of APs = 8, # of RPs = 2

Figure 6.41: Network structure of the 10 user problem (problem instance 1, budget=500)
found by bi-objective optimization for capacitated resilience and TE (high TE and low
capacitated resilience case)

165



User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE:
500.0, 0.5633, 0.5959
# of APs = 8, # of RPs = 2

Figure 6.42: Network structure of the 10 user problem (problem instance 1, budget=500)
found by bi-objective optimization for capacitated resilience and TE (low TE and high
capacitated resilience case)
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User AP RP
Range of access point

Range of relay point

Cost, Capacitated Resilience, TE:
500.0, 0.3769, 0.6818
# of APs = 8, # of RPs = 2

Figure 6.43: Network structure of the 10 user problem (problem instance 1, budget=500)
found by bi-objective optimization for capacitated resilience and TE (medium TE and
medium capacitated resilience case)
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(a) high TE and low CR (b) low TE and high CR (c) medium TE and medium CR

Figure 6.44: Comparison of the designs presented in Figures 6.41 through 6.43

Figures 6.45 and 6.46 summarize the solution time per iteration (one ES generation).

The reason of using time per iteration instead of total time is that the early termination

criterion (250 and 500 non-improving generations for single and bi-objective ES) affects

the total solution time. Therefore, solution time per iteration provides a more accurate

comparison. As seen from these figures, the bi-objective ES takes significantly more time

than the single objective because it runs for 2000 generations with early termination criterion

of 500 non-improved generations whereas the single objective runs for 1000 generations with

early termination criterion of 250 non-improved generations. The solution times of the bi-

objective are about the double of the time required for single objective ES due to the extra

operations to maintain Pareto front. As also expected, the solution times of the problems

with a budget constraint of 600 are higher than the ones with a budget constraint of 500

due to larger number of available devices.

More importantly, the time per iteration increases as the number of alternative paths

increases from 1 to ten (Figures 6.45 and 6.46). Cut set size does not seem to affect the

solution time per iteration significantly for the 10 user scenario because the cut-set size

does not have a significant effect on the capacitated resilience calculation due to the small

number of users (and devices). To support this, Figures 6.47 and 6.48 show that capacitated

resilience does not change significantly for different cut-set sizes. Interestingly, the difference
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in capacitated resilience between the number of paths of two and 10 is insignificant and it

validates that the estimation of capacitated resilience using a smaller number of alternative

paths and cut-set size performs well, i.e., finds comparable capacitated resilience values

(near-exact values) faster.

At each ES generation, some number of alternative paths are evaluated. This number

varies for each generation and finding alternative paths requires solving a k-shortest path

problem, therefore it affects the solution time directly. Figures 6.49 and 6.50 compares the

number of evaluated alternative paths. Clearly, these figures have the same trend with the

solution time (per generation) figures (Figures 6.45 and 6.46). The number of evaluated

paths increases as the parameter value of number of alternative paths increases from one to

10. As expected, cut-set size does not have any effect on the number of evaluated alternative

paths.

The effect of the problem size on the total solution time is investigated in detail in

Section 6.5.2.
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6.5.2 Solution time comparison of capacitated resilience: Problem size

Table 6.5 summarizes the solution times of single (capacitated resilience) and bi-objective

(cost and capacitated resilience) ES. The smallest problem size is the 10 user and the largest

test problem is the 150 user scenario. The solution time difference between single and bi-

objective ES increases as the problem size increases. For the 10 user scenario the bi-objective

takes 2.89 times longer than the single objective, whereas it takes 4.45 times longer for the

150 user scenario. The reason is that the single objective terminates earlier (1000 genera-

tions with early termination of 250 non-improved generations) as the problem size increases,

whereas the bi-objective does not terminate (2000 generations with early termination of 500

non-improved generations) as early as the single objective because finding an improved non-

dominated solution is easier. According to these results, solving problem instances having

more than 200 users is not practical.

Table 6.5: Solution time comparison of single (capacitated resilience) and bi-objective (cost
and capacitated resilience) ES for different problem sizes

Solution Time (s)
Objective Scenario Average Std. Dev. Min Max

Single obj

u10 600 10 4* 170.009 58.589 68.252 480.021
u25 1200 10 4 858.131 135.665 499.680 1,503.129
u50 1700 10 4 2,157.812 136.623 1,992.201 2,656.511
u75 2700 10 4 7,885.627 462.430 7,137.655 8,810.718
u100 3000 5 4 10,978.277 412.083 10,350.390 12,057.203
u150 4700 5 4 45,656.592 5,853.616 25,814.137 53,271.754

Bi-obj

u10 600 10 4 492.209 127.283 190.815 667.567
u25 1200 10 4 2,688.267 454.826 1,589.506 3,309.185
u50 1700 10 4 7,174.958 1,519.856 3,754.245 9,124.685
u75 2700 10 4 30,748.788 3,836.392 19,615.756 34,733.680
u100 3000 5 4 46,205.246 3,294.315 30,808.370 49,085.168
u150 4700 5 4 203,254.431 13,536.241 154,795.730 220,643.620

*
a b c d: a=number of users, b=budget, c=number of alternative paths and d=cut set size

In summary, the solution time of bi-objective is higher than single objective. Solution

times of both single and bi-objective ES are sensitive to the parameter value of the number

of alternative paths due to total number of evaluated paths. Cut-set size seems to have an
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insignificant effect on the solution time for the 10 user scenario. An important result is that

the estimation of capacitated resilience with lower number or alternative paths and cut-set

sizes (e.g., 2 and 2 instead of 10 and 4, respectively) performs comparably with the exact

capacitated resilience calculation and runs faster.

6.5.3 Solution time comparison of all metrics

In this section, the solution times for optimization of all metrics for different problem

sizes are summarized. Table 6.6 presents the solution times of the 10 and the 25 user scenarios

for single objective (capacitated resilience, TE, two-terminal and all-terminal reliability) and

bi-objective (cost and capacitated resilience, and TE and capacitated resilience) ES.

According to these results, two-terminal and all-terminal reliability have the lowest solu-

tion times, however, capacitated resilience optimization performs very closely. On the other

hand, traffic efficiency is the worst in terms of solution time. Similarly, the bi-objective ES

of cost and capacitated resilience is significantly faster than the bi-objective ES of TE and

capacitated resilience. Solving bi-objective ES of TE and capacitated resilience is not prac-

tical beyond problem sizes larger than 30 users, whereas bi-objective of cost and capacitated

resilience can solve for the 100 user scenario within the same time of solving the 25 user

scenario for TE and capacitated resilience.

The largest solvable problem sizes within 24 hours for all metrics are given in Table 6.7.

All scenarios are for the medium budget for their size (number of users). According to these

results, using capacitated resilience can solve larger problems than using TE and its largest

solvable problem size is very close to using all-terminal or two-terminal reliabilities.
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Table 6.7: The largest solvable scenarios in 24 hours, given as number of users for a medium
budget

Method # of users in problem

Capacitated resilience* 200
Traffic efficiency 50
Two-terminal reliability 240
All-terminal reliability 220
Bi-objective cost vs. capacitated resilience 125
Bi-objective TE vs. capacitated resilience 20
* Number of alternative paths and cut set size are 10 and 4, respectively.
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Chapter 7

Conclusions and Further Research

7.1 Conclusions

In network design, survivability is a challenging but important problem. In the net-

work reliability/survivability literature, many metrics have been proposed. Among them

all-terminal reliability, k-terminal reliability, traffic efficiency, k edge-disjoint paths and k

node-disjoint paths are commonly used. However, a new survivability metric has been pro-

posed in this dissertation to overcome limitations of the previous metrics and provide a new

aspect to survivability.

Capacitated resilience, the proposed metric in this dissertation, considers capacity, re-

liability and rerouting options simultaneously. This is the main difference of capacitated

resilience compared with the other metrics. If a node or an edge does not have enough

capacity then a path using that node or edge is not feasible. The availability of rerouting

options in case of a failure helps to maintain connectivity and session continuity. Capacitated

resilience becomes zero when rerouting is not available. In a wireless network, redundant

devices create alternative paths which are the rerouting options. Capacitated resilience uses

reliability and scales it with rerouting options to find the true resilience of the network under

capacity constraints. Therefore, it allows a comparison of different network designs whereas

connectivity based metrics do not allow comparison of different designs. The connectivity

based metrics, k edge-disjoint or node-disjoint paths, consider neither reliability nor capacity

in the network. They focus on the redundant paths in the network design assuming per-

fectly reliable nodes and edges. Terminal reliability (k-terminal or all-terminal) focuses on

reliability but does not consider capacity. Traffic efficiency considers rerouting options but

it does not consider capacity.
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In the literature, exact methods to calculate the reliability/survivability metrics have

been presented. However, due to intractability of exact methods for even moderately sized

problems, many approximation methods or simulation (mostly Monte Carlo simulation)

approaches have also been developed. For example, Konak and Bartolacci (2007) proposed a

simulation based method to estimate TE. In this dissertation, an exact method to calculate

capacitated resilience is given as well as an approximation method. The exact calculation

is based on the k-shortest path calculation and cut-set identification. However, a fast and

effective estimation of capacitated resilience is obtained by changing the values of k and the

size of the cut-set.

In this dissertation both single and bi-objective optimization are considered. The Evo-

lutionary Strategies method has been used to solve the network design problem because of

its success on nonlinear problems for which traditional optimization methods (e.g., mixed

integer programming) do not perform satisfactorily. Also, ES works best with continu-

ous problems and the network design problem in this dissertation has device coordinates

as continuous decision variables. Besides, ES can easily be extended to multiobjective opti-

mization, which is one of the contributions of this dissertation. Single objective optimization

solves for maximum capacitated resilience, traffic efficiency, two-terminal reliability and all-

terminal reliability. Bi-objective optimization simultaneously optimizes cost and capacitated

resilience because a main constraint of real life projects is the budget. Pareto optimality is

used for bi-objective optimization. A well known multiobjective method, NSGA-II (Deb

et al., 2002), has been adapted for the proposed bi-objective ES model in this dissertation.

Different problem instances were solved for capacitated resilience as well as the other

metrics and the resulting network designs were compared. The network designs obtained

by optimization for capacitated resilience have structures such that the high traffic users

are prioritized. Redundancies are allocated as the budget allows but the redundant devices

are mostly allocated around the high traffic users to ensure maximum capacitated resilience.

The other metrics prioritized reliable connections for all users (starting from the high traffic
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ones) and redundancies are considered as a secondary objective. Therefore, it can be con-

cluded that capacitated resilience prioritizes the allocation of redundancies (survivability)

considering the capacities.

From the network survivability perspective, it is interesting to consider the performance

of the different designs in case of failures and attacks. Obviously, a planned attack has

a more severe effect on the network than a random attack (or failure). An attack on the

network may aim for removal (or elimination) of some edges (or nodes) to disconnect users

(the max-flow min-cut problem). Capacitated resilience considers cut-sets in its calculation

and its primary design goal is to create redundancies to maintain connectivity in case of a

failure. Since capacitated resilience maximizes survivability by taking cut-sets into account,

it provides a resilient design that minimizes the adverse effects of planned or unplanned

attack.

In this dissertation, heterogeneous wireless networks are considered. Design of sur-

vivable heterogeneous wireless networks is a new area in optimization which has gained

popularity because of the growing use of new telecommunication technologies such as 4G

and wireless hotspots. Heterogeneity is defined as the differences in both offered services

and device properties in a wireless network. However, capacitated resilience and its design

rules can be applied to any network including homogeneous ones (such as military networks,

transportation networks, communication networks or electrical networks) to ensure resilience

and survivability.

7.2 Further research

For future research, node failures can be added to capacitated resilience calculation.

In the current model presented in this dissertation the nodes are assumed to be perfectly

reliable. Including node failures requires the independent subgroup identification process

(Section 3.2.3) to be redesigned because common nodes among different independent sub-

groups create dependencies. To solve this, two independent subgroups having one (or more)
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common node should be merged. This may increase computational effort by reducing the

number but increasing the size of independent subgroups.

As an interesting extension, the effect of interference can be included in the calculation

of capacitated resilience and other metrics. Currently, wireless interference is not considered

as a parameter. Different wireless channels are assumed to be assigned for each wireless

link within the same communication range to eliminate interference. Although interference

has been mostly considered negligible in the network reliability/survivability literature, as

discussed in Section 2.5, it may affect the reliabilities of wireless links in dense networks.

Addition of the wireless channel assignment as a decision variable (this also requires the

routing algorithm to be changed accordingly) and including interference in the wireless link

reliability calculation would make the model presented in this dissertation more realistic.

As discussed in Section 4.1.4, the current assignment of users to devices is done in a

randomized order. Although this is not an issue for most cases, for a few instances it can

lead to suboptimal user-device assignments if the capacity of the network is restricted. The

obvious, but not ideal, solution for this user-device assignment issue would be considering

all possible combinations of user to device assignments (enumeration) and choosing the best

one. However, this approach would make the proposed model intractable for moderate to

large size problem instances. An alternative heuristic method could be devised as future

work.

As another change in the proposed method, the use of Monte Carlo simulation will

be investigated for calculation of the reliability of independent subgroups. In the proposed

model, the reliability is calculated by identification of minimal cut-sets which provides a

lower bound of reliability (worst case). Simulation may provide the expected value of the

reliability of the subgroups, however, it is computationally more expensive.

Network failures and attacks are two important topics in the survivable network design

literature. As future work, the network designs obtained by optimization for capacitated

resilience and the other metrics could be compared in terms of network attacks (that is,
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planned interdictions) or different failure scenarios. The proposed metric, capacitated re-

silience, could be applied to other networks, such as transportation networks or military

supply networks.

In this dissertation, the locations of users are fixed. However, in real life the users are

mobile for wireless network applications. Therefore, to be more realistic, mobility of the

users could be included in the proposed model.

One of the most popular topics in today’s computational optimization area is to use

parallel computing. It gained popularity as devices with multiple core processors became

widespread after 2000. The solution approach presented in this dissertation and calcula-

tion methods of the other metrics are computationally expensive. Effective use of parallel

computing could reduce solution times dramatically. Parallel computing will be even more

important in the future as the parallel use of the GPUs (Graphics Processing Unit) and

the CPUs (Central Processing Unit) are becoming popular. Therefore, adaptation of the

solution method of this dissertation to parallel computing would be an interesting extension.
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Appendix A

Input data of problems

All problem data (10, 25, 50, 75, 100, 150 user scenarios) are given. Each scenario

consists of 10 problem instances. Coordinates and traffic requirement of each user are given

as an array of size three, [x, y, traffic requirement].

A.1 The 10 user scenario

Problem instance 1: [0.88, 2.696, 0.013], [3.467, 0.078, 5.11], [-3.432, -2.914, 19.153],

[-1.689, -2.242, 14.729], [3.571, -3.636, 14.45], [1.098, 3.948, 15.753], [1.333, -3.518, 19.662],

[-3.518, -0.173, 14.269], [-3.227, -0.516, 3.737], [-1.684, 2.159, 14.803]

Problem instance 2: [0.425, 2.529, 6.56], [1.242, -3.97, 9.247], [2.913, 1.513, 17.002], [-

2.775, -1.519, 12.444], [0.649, 0.403, 4.59], [3.559, -3.492, 0.998], [-1.307, 2.951, 5.34], [-2.467,

3.871, 9.607], [1.285, 0.367, 17.313], [-1.424, -0.027, 3.466]

Problem instance 3: [-3.447, 2.797, 0.317], [-2.521, 2.604, 8.453], [1.481, -3.948, 9.813],

[-0.72, 0.644, 13.425], [0.864, 3.667, 3.374], [0.85, 2.552, 3.359], [3.91, 0.577, 14.871], [-3.499,

2.782, 18.653], [-3.675, 0.586, 2.583], [-0.111, -2.855, 18.295]

Problem instance 4: [2.065, -3.872, 4.379], [-1.016, -0.351, 0.317], [1.165, 3.918, 5.042],

[0.292, 0.695, 13.085], [3.838, -3.714, 1.632], [2.008, -0.472, 3.663], [0.525, -2.181, 0.488],

[2.914, 2.585, 12.139], [1.778, -2.903, 18.476], [0.906, -2.608, 13.341]
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Problem instance 5: [-2.095, -1.775, 5.265], [2.815, -0.196, 16.87], [1.497, -0.779,

15.504], [-1.886, -1.92, 2.493], [2.775, -2.977, 9.111], [-1.996, 3.514, 7.032], [1.765, 2.797,

0.603], [3.243, -1.44, 11.039], [-2.868, -1.304, 2.82], [2.098, 1.215, 5.066]

Problem instance 6: [-2.764, -3.462, 1.966], [1.331, 2.051, 4.234], [2.643, 3.312, 12.872],

[-0.611, -2.715, 19.712], [3.23, 1.423, 14.972], [-3.822, -1.639, 5.411], [-3.382, 3.901, 16.055],

[0.416, 1.244, 14.181], [-1.236, -3.566, 9.328], [0.882, 1.563, 2.772]

Problem instance 7: [-0.941, -3.71, 4.635], [1.681, 0.351, 18.569], [3.508, 2.687, 19.517],

[3.035, 0.02, 19.447], [-2.124, -1.193, 2.273], [3.853, -2.038, 8.534], [2.469, 2.661, 3.19], [-3.177,

-3.079, 15.768], [-3.33, -2.657, 18.658], [-0.477, -2.643, 8.68]

Problem instance 8: [-3.041, 2.415, 12.086], [-1.889, 3.811, 11.329], [1.091, 2.325,

18.516], [2.073, -0.832, 4.929], [1.031, -0.61, 14.808], [0.086, 1.011, 0.342], [-0.998, 0.798,

10.204], [1.432, -2.797, 1.415], [0.207, -3.128, 12.247], [-0.151, -0.136, 17.919]

Problem instance 9: [-1.034, -3.91, 0.69], [-1.066, 1.384, 19.162], [-2.36, -3.127, 4.057],

[0.787, -1.283, 5.559], [2.27, -3.082, 0.4], [-2.979, -1.388, 7.635], [-1.676, -2.389, 0.179], [-0.238,

1.017, 9.586], [-2.458, -3.617, 19.424], [-2.329, 3.876, 4.893]

Problem instance 10: [0.931, 2.503, 2.432], [-0.405, -0.237, 8.911], [2.67, 2.788, 4.89],

[1.548, -1.768, 19.765], [0.077, 0.535, 11.362], [1.731, 0.163, 13.669], [-3.519, 2.104, 16.373],

[1.195, 2.416, 11.378], [-1.397, -3.387, 8.271], [3.657, 1.635, 19.93]
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A.2 The 25 user scenario

Problem instance 1: [1.391, 4.263, 0.013], [5.481, 0.123, 5.11], [-5.426, -4.608, 19.153],

[-2.671, -3.544, 14.729], [5.647, -5.749, 14.45], [1.737, 6.242, 15.753], [2.107, -5.562, 19.662],

[-5.562, -0.273, 14.269], [-5.102, -0.816, 3.737], [-2.663, 3.414, 14.803], [-1.794, 0.083, 8.585],

[-1.765, -6.3, 12.228], [-4.653, 0.425, 1.925], [0.107, -3.39, 10.052], [5.823, -2.713, 12.703],

[0.624, -3.538, 1.513], [4.668, 3.128, 4.606], [3.592, -1.387, 14.304], [-5.913, 0.436, 10.943], [-

6.245, -3.151, 10.304], [6.009, -5.457, 5.83], [1.177, 2.556, 0.042], [2.594, 4.961, 0.755], [-6.183,

5.84, 7.282], [0.603, 3.298, 6.955]

Problem instance 2: [-5.566, 5.313, 16.264], [-3.916, -3.112, 1.571], [-2.464, 2.949,

16.276], [4.19, -1.131, 16.322], [0.502, 4.679, 11.183], [3.039, -1.857, 10.679], [-0.306, 3.989,

9.016], [0.757, 6.284, 13.796], [-4.933, -1.147, 5.947], [5.54, 0.711, 12.313], [-2.606, 1.93, 9.247],

[-4.703, 1.202, 10.161], [2.93, -4.495, 2.67], [4.17, 2.936, 0.845], [2.111, 5.758, 18.317], [4.327,

0.98, 10.013], [-0.483, 5.198, 16.846], [-3.782, 3.959, 8.267], [5.978, 0.944, 0.845], [-5.419,

3.253, 11.699], [4.47, -0.273, 2.33], [-4.352, -2.492, 19.088], [-5.81, 4.619, 9.598], [2.951, 4.91,

9.552], [4.872, 4.065, 8.333]

Problem instance 3: [-5.45, 4.422, 0.317], [-3.986, 4.118, 8.453], [2.342, -6.243, 9.813],

[-1.139, 1.018, 13.425], [1.365, 5.798, 3.374], [1.344, 4.035, 3.359], [6.183, 0.912, 14.871], [-

5.533, 4.399, 18.653], [-5.811, 0.926, 2.583], [-0.175, -4.515, 18.295], [-0.375, -1.563, 6.404],

[2.462, 1.265, 19.06], [5.013, 3.641, 7.024], [0.755, -3.928, 18.024], [1.791, 3.54, 5.174], [0.11,

-2.224, 17.889], [-3.362, -2.509, 17.724], [-0.892, -1.127, 10.177], [-3.769, 5.502, 0.987], [1.736,

0.437, 15.58], [-2.44, -0.885, 17.143], [1.644, -2.805, 9.306], [4.615, -3.753, 18.278], [2.696,

5.115, 5.954], [-2.939, -0.918, 14.029]

Problem instance 4: [3.265, -6.121, 4.379], [-1.606, -0.556, 0.317], [1.841, 6.195, 5.042],

[0.461, 1.099, 13.085], [6.068, -5.872, 1.632], [3.174, -0.746, 3.663], [0.83, -3.448, 0.488], [4.608,
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4.087, 12.139], [2.812, -4.591, 18.476], [1.433, -4.124, 13.341], [1.393, 3.296, 16.015], [-0.014,

-1.685, 4.304], [-2.287, 5.521, 0.392], [-2.888, 5.582, 0.617], [-4.652, 3.927, 18.274], [3.082,

-3.432, 17.171], [5.19, 6.276, 7.79], [-6.02, 4.863, 11.239], [-3.875, 1.856, 18.628], [-2.823, -

5.527, 8.739], [-4.983, 2.961, 3.949], [3.221, 3.574, 8.156], [-3.066, 1.617, 4.196], [-1.044, -2.5,

4.303], [-0.53, 1.551, 2.976]

Problem instance 5: [-3.312, -2.807, 5.265], [4.451, -0.309, 16.87], [2.367, -1.232,

15.504], [-2.982, -3.035, 2.493], [4.387, -4.707, 9.111], [-3.157, 5.556, 7.032], [2.791, 4.422,

0.603], [5.128, -2.277, 11.039], [-4.535, -2.062, 2.82], [3.317, 1.922, 5.066], [-1.397, 3.963,

13.456], [-2.088, -3.56, 0.458], [-4.108, -6.32, 9.832], [-3.632, 5.126, 12.081], [-0.112, -4.312,

13.064], [4.601, -1.721, 17.17], [-3.599, 4.186, 6.903], [2.646, 5.441, 2.404], [4.423, 6.196,

9.041], [4.859, 2.084, 6.417], [0.037, -0.233, 18.423], [-4.411, 2.11, 15.584], [-0.403, 2.886,

10.464], [3.847, 1.455, 5.727], [4.88, -3.506, 7.859]

Problem instance 6: [-4.371, -5.474, 1.966], [2.105, 3.242, 4.234], [4.179, 5.236, 12.872],

[-0.967, -4.293, 19.712], [5.107, 2.25, 14.972], [-6.043, -2.592, 5.411], [-5.348, 6.168, 16.055],

[0.659, 1.967, 14.181], [-1.955, -5.638, 9.328], [1.394, 2.471, 2.772], [5.51, 4.801, 10.97], [-6.127,

5.125, 3.239], [4.912, 5.017, 19.512], [-2.181, -0.594, 9.299], [2.377, 5.962, 3.182], [-3.123, -

2.471, 13.902], [5.171, 0.651, 10.818], [5.858, -2.852, 5.917], [0.691, 6.203, 6.802], [-1.6, 5.693,

4.677], [3.335, -6.136, 16.245], [-6.044, 5.252, 9.539], [-1.857, -6.269, 12.376], [-0.159, -1.381,

6.3], [2.656, -1.048, 3.789]

Problem instance 7: [-1.488, -5.866, 4.635], [2.657, 0.555, 18.569], [5.547, 4.248,

19.517], [4.799, 0.032, 19.447], [-3.358, -1.886, 2.273], [6.092, -3.222, 8.534], [3.904, 4.208,

3.19], [-5.023, -4.869, 15.768], [-5.265, -4.2, 18.658], [-0.755, -4.179, 8.68], [4.321, -4.504,

5.384], [-0.63, -3.094, 14.327], [-4.734, 5.981, 15.098], [1.274, -4.947, 19.668], [-5.521, 5.805,

17.34], [5.828, 0.364, 0.627], [-0.755, 0.014, 9.008], [0.303, -4.944, 17.036], [-5.534, 3.857,
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14.227], [-5.343, 2.404, 4.151], [3.73, 4.34, 11.503], [1.338, -0.659, 12.834], [-1.142, -0.483,

5.835], [-2.187, -3.158, 6.496], [-5.752, -2.686, 15.109]

Problem instance 8: [-4.809, 3.818, 12.086], [-2.987, 6.026, 11.329], [1.725, 3.676,

18.516], [3.277, -1.315, 4.929], [1.631, -0.965, 14.808], [0.136, 1.598, 0.342], [-1.578, 1.261,

10.204], [2.265, -4.423, 1.415], [0.327, -4.946, 12.247], [-0.239, -0.214, 17.919], [-4.47, -1.628,

17.803], [-1.982, -3.592, 9.652], [-2.152, 6.195, 3.955], [-0.285, 4.425, 0.322], [1.308, 4.117,

2.191], [1.24, 2.583, 18.785], [-4.832, 5.997, 2.62], [5.004, -2.876, 4.381], [-1.251, 1.814, 14.071],

[-0.995, -2.462, 13.04], [2.772, 2.814, 7.315], [1.45, -1.239, 9.32], [2.168, 4.116, 19.273], [4.811,

5.321, 19.853], [-4.593, 5.806, 0.627]

Problem instance 9: [-1.635, -6.182, 0.69], [-1.686, 2.188, 19.162], [-3.731, -4.945,

4.057], [1.244, -2.029, 5.559], [3.59, -4.873, 0.4], [-4.711, -2.195, 7.635], [-2.651, -3.778, 0.179],

[-0.377, 1.607, 9.586], [-3.887, -5.719, 19.424], [-3.682, 6.128, 4.893], [-2.285, -2.343, 5.256],

[1.849, -1.127, 8.19], [1.761, 1.058, 4.807], [2.575, 2.063, 4.96], [-5.249, -5.235, 14.013], [6.193,

2.75, 13.133], [-5.673, 5.592, 1.832], [5.16, 1.674, 15.116], [-6.005, 3.459, 0.088], [-0.004, -

3.038, 1.035], [-1.479, -0.532, 1.893], [-4.764, 3.13, 19.831], [-0.283, -2.142, 15.42], [0.246,

-2.758, 18.417], [2.146, -3.154, 15.359]

Problem instance 10: [1.472, 3.958, 2.432], [-0.641, -0.375, 8.911], [4.222, 4.409, 4.89],

[2.448, -2.796, 19.765], [0.122, 0.846, 11.362], [2.736, 0.258, 13.669], [-5.563, 3.326, 16.373],

[1.889, 3.821, 11.378], [-2.208, -5.355, 8.271], [5.783, 2.585, 19.93], [-3.586, 5.174, 0.389],

[-0.618, -2.202, 15.35], [0.968, -4.059, 7.338], [-0.584, 5.487, 7.232], [-1.206, 3.216, 18.935],

[-5.609, -6.124, 16.754], [-2.32, 1.538, 13.13], [-2.393, -2.823, 4.36], [3.066, -0.899, 16.088],

[-5.305, -4.712, 16.385], [-5.085, -2.181, 8.741], [1.482, -0.739, 5.719], [-3.308, 4.405, 17.658],

[0.803, 0.9, 6.896], [5.483, -0.384, 6.717]
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A.3 The 50 user scenario

Problem instance 1: [1.967, 6.028, 0.013], [7.752, 0.173, 5.11], [-7.673, -6.517, 19.153],

[-3.777, -5.012, 14.729], [7.986, -8.131, 14.45], [2.456, 8.827, 15.753], [2.98, -7.866, 19.662],

[-7.866, -0.386, 14.269], [-7.215, -1.155, 3.737], [-3.766, 4.828, 14.803], [-2.536, 0.117, 8.585],

[-2.496, -8.909, 12.228], [-6.58, 0.601, 1.925], [0.151, -4.794, 10.052], [8.235, -3.837, 12.703],

[0.882, -5.004, 1.513], [6.601, 4.424, 4.606], [5.08, -1.961, 14.304], [-8.362, 0.616, 10.943],

[-8.832, -4.456, 10.304], [8.498, -7.717, 5.83], [1.665, 3.615, 0.042], [3.669, 7.016, 0.755], [-

8.744, 8.259, 7.282], [0.853, 4.664, 6.955], [-5.683, 7.133, 17.293], [5.72, 2.821, 9.802], [-8.359,

-3.888, 7.194], [6.145, -8.099, 18.491], [0.071, -8.477, 4.166], [-6.133, -8.925, 9.775], [-8.537,

6.21, 14.335], [-0.172, -2.864, 13.144], [-2.63, 0.086, 17.368], [-7.151, 1.85, 1.009], [0.984, -

6.537, 19.711], [-4.739, 7.82, 7.03], [5.741, -6.644, 19.099], [3.277, -4.065, 8.193], [8.564, 7.878,

0.284], [3.931, -0.811, 10.279], [-0.602, -4.814, 19.315], [-3.122, -7.569, 13.917], [-5.749, -2.906,

12.623], [5.612, -1.037, 18.098], [-3.058, -7.471, 16.108], [4.954, 2.657, 18.198], [-2.154, 7.527,

12.932], [-3.58, -4.181, 1.301], [-2.822, 6.504, 12.931]

Problem instance 2: [-7.872, 7.514, 16.264], [-5.538, -4.401, 1.571], [-3.485, 4.17,

16.276], [5.925, -1.599, 16.322], [0.71, 6.618, 11.183], [4.297, -2.626, 10.679], [-0.433, 5.641,

9.016], [1.071, 8.887, 13.796], [-6.976, -1.622, 5.947], [7.835, 1.006, 12.313], [-3.685, 2.729,

9.247], [-6.651, 1.7, 10.161], [4.144, -6.356, 2.67], [5.898, 4.152, 0.845], [2.985, 8.143, 18.317],

[6.119, 1.386, 10.013], [-0.683, 7.351, 16.846], [-5.349, 5.599, 8.267], [8.454, 1.336, 0.845], [-

7.664, 4.6, 11.699], [6.321, -0.386, 2.33], [-6.154, -3.524, 19.088], [-8.216, 6.532, 9.598], [4.173,

6.943, 9.552], [6.89, 5.748, 8.333], [4.707, 1.239, 19.653], [-5.624, 1.501, 9.7], [-1.807, 8.596,

0.65], [-0.064, -0.291, 16.267], [-2.304, 2.736, 1.652], [-0.458, 7.4, 6.83], [6.017, 6.694, 12.227],

[3.208, 3.439, 11.02], [4.516, -3.939, 1.113], [0.853, 1.728, 9.313], [-2.23, -6.862, 11.642], [-

2.95, 2.502, 0.817], [4.774, -0.301, 0.667], [4.099, -8.193, 7.482], [7.399, 7.657, 2.596], [-5.54,

3.527, 8.587], [-5.854, 1.03, 5.198], [-5.356, 7.693, 17.39], [-1.275, -7.606, 7.763], [8.217, -2.825,

13.669], [8.022, -7.272, 18.338], [2.967, 7.497, 7.284], [3.305, -4.26, 18.8], [-7.35, 3.19, 11.776],
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[-2.737, -2.266, 3.255]

Problem instance 3: [-7.708, 6.254, 0.317], [-5.637, 5.823, 8.453], [3.313, -8.828, 9.813],

[-1.611, 1.439, 13.425], [1.931, 8.199, 3.374], [1.9, 5.706, 3.359], [8.744, 1.29, 14.871], [-7.825,

6.221, 18.653], [-8.218, 1.31, 2.583], [-0.247, -6.385, 18.295], [-0.531, -2.21, 6.404], [3.481,

1.789, 19.06], [7.089, 5.149, 7.024], [1.068, -5.555, 18.024], [2.533, 5.006, 5.174], [0.156, -

3.145, 17.889], [-4.754, -3.549, 17.724], [-1.262, -1.594, 10.177], [-5.331, 7.781, 0.987], [2.455,

0.618, 15.58], [-3.45, -1.252, 17.143], [2.325, -3.967, 9.306], [6.527, -5.307, 18.278], [3.813,

7.233, 5.954], [-4.156, -1.298, 14.029], [-4.834, 5.622, 0.981], [-0.569, -6.238, 3.029], [5.733,

-8.013, 14.799], [5.123, -7.712, 1.984], [1.087, -5.509, 2.361], [-7.378, 6.138, 13.116], [-5.294,

-3.467, 2.613], [-0.41, 4.894, 6.345], [-2.528, -4.958, 7.044], [5.87, -8.054, 8.951], [-6.493, -

7.845, 18.027], [-1.895, -8.677, 11.516], [6.33, 0.578, 18.171], [5.075, -1.556, 7.65], [3.887,

-7.349, 7.521], [3.671, 3.462, 19.24], [8.672, 8.32, 8.083], [-1.701, 5.357, 15.402], [-7.216, -

0.743, 11.301], [4.885, 8.199, 4.504], [-1.903, 3.86, 18.638], [-4.729, -2.005, 11.642], [6.873,

3.528, 17.364], [-6.35, 2.27, 1.108], [-7.854, -5.837, 13.617]

Problem instance 4: [4.618, -8.657, 4.379], [-2.271, -0.786, 0.317], [2.604, 8.761, 5.042],

[0.653, 1.555, 13.085], [8.582, -8.305, 1.632], [4.489, -1.055, 3.663], [1.174, -4.876, 0.488],

[6.517, 5.78, 12.139], [3.977, -6.492, 18.476], [2.027, -5.832, 13.341], [1.97, 4.661, 16.015],

[-0.02, -2.383, 4.304], [-3.234, 7.808, 0.392], [-4.084, 7.894, 0.617], [-6.579, 5.553, 18.274],

[4.359, -4.853, 17.171], [7.34, 8.876, 7.79], [-8.514, 6.877, 11.239], [-5.48, 2.625, 18.628], [-

3.993, -7.816, 8.739], [-7.047, 4.187, 3.949], [4.555, 5.054, 8.156], [-4.336, 2.287, 4.196], [-1.476,

-3.535, 4.303], [-0.75, 2.194, 2.976], [3.053, -8.532, 14.047], [2.013, 8.305, 7.218], [5.133, 1.917,

14.707], [2.096, -3.251, 11.635], [0.841, -7.685, 12.252], [4.627, -0.525, 16.254], [6.964, -1.883,

15.11], [-8.234, -1.653, 2.702], [-6.237, -1.709, 2.029], [-1.878, 6.714, 19.324], [-0.986, -3.293,

11.953], [7.185, -5.307, 7.675], [-2.363, -1.602, 12.774], [2.46, -6.027, 7.67], [0.885, -2.879,

0.047], [-8.478, 4.651, 10.272], [-7.095, -6.568, 7.34], [-3.179, 8.696, 16.591], [-1.958, 0.993,
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15.162], [1.617, 0.789, 10.452], [-3.84, -3.383, 9.934], [-5.715, -4.648, 10.825], [5.703, 2.275,

0.946], [7.316, -5.501, 10.487], [1.434, -7.758, 8.439]

Problem instance 5: [-4.684, -3.969, 5.265], [6.295, -0.437, 16.87], [3.348, -1.743,

15.504], [-4.217, -4.292, 2.493], [6.205, -6.656, 9.111], [-4.464, 7.857, 7.032], [3.947, 6.253,

0.603], [7.252, -3.221, 11.039], [-6.413, -2.917, 2.82], [4.691, 2.718, 5.066], [-1.975, 5.605,

13.456], [-2.953, -5.034, 0.458], [-5.81, -8.937, 9.832], [-5.137, 7.249, 12.081], [-0.158, -6.099,

13.064], [6.507, -2.434, 17.17], [-5.089, 5.919, 6.903], [3.742, 7.695, 2.404], [6.256, 8.762, 9.041],

[6.872, 2.947, 6.417], [0.052, -0.33, 18.423], [-6.238, 2.984, 15.584], [-0.57, 4.081, 10.464], [5.44,

2.058, 5.727], [6.901, -4.958, 7.859], [-1.092, -4.252, 11.065], [-5.405, 7.442, 12.474], [0.478,

-1.797, 2.861], [-2.722, 8.343, 2.661], [4.818, 6.089, 11.968], [1.895, -4.747, 8.615], [-6.239,

7.166, 10.234], [-1.863, -6.647, 12.609], [2.76, 8.864, 4.975], [-2.446, -6.652, 5.043], [0.851,

-0.323, 1.589], [2.698, -8.921, 7.352], [4.437, 0.886, 1.715], [-1.365, 1.375, 7.809], [-5.697,

1.62, 10.048], [6.568, -4.313, 5.129], [6.562, 8.646, 5.473], [-0.543, 4.53, 2.858], [3.465, -8.344,

19.529], [-5.885, 3.2, 2.279], [-2.542, -7.456, 6.143], [8.518, 1.808, 11.395], [7.08, 7.618, 0.966],

[-6.254, 6.745, 1.138], [-7.571, 4.247, 5.406]

Problem instance 6: [-6.181, -7.741, 1.966], [2.977, 4.585, 4.234], [5.91, 7.405, 12.872],

[-1.367, -6.071, 19.712], [7.222, 3.181, 14.972], [-8.546, -3.665, 5.411], [-7.563, 8.722, 16.055],

[0.931, 2.781, 14.181], [-2.764, -7.973, 9.328], [1.972, 3.495, 2.772], [7.792, 6.789, 10.97], [-

8.665, 7.248, 3.239], [6.946, 7.095, 19.512], [-3.084, -0.84, 9.299], [3.362, 8.431, 3.182], [-4.417,

-3.495, 13.902], [7.313, 0.92, 10.818], [8.284, -4.033, 5.917], [0.978, 8.772, 6.802], [-2.263,

8.051, 4.677], [4.716, -8.678, 16.245], [-8.547, 7.428, 9.539], [-2.627, -8.866, 12.376], [-0.225,

-1.953, 6.3], [3.756, -1.482, 3.789], [-6.064, -5.289, 17.436], [-5.991, 4.627, 10.374], [-4.721,

1.921, 0.395], [7.207, -6.194, 2.688], [6.116, -2.253, 0.645], [-2.659, 5.401, 16.618], [0.295,

4.274, 10.454], [8.064, 4.843, 3.913], [-4.847, -0.224, 19.209], [7.963, 2.433, 3.14], [6.766, 4.78,

5.8], [-0.813, 7.542, 7.531], [-8.842, -8.467, 5.591], [-0.487, 6.725, 16.624], [1.122, -4.89, 18.796],
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[-5.072, -2.134, 11.865], [1.988, 4.89, 9.848], [5.353, -8.124, 1.76], [7.351, 4.513, 9.799], [-1.452,

2.976, 18.906], [8.599, -1.751, 14.223], [-8.306, 5.713, 12.091], [1.303, -7.996, 16.316], [-4.034,

-6.84, 15.376], [-2.337, -7.788, 6.761]

Problem instance 7: [-2.105, -8.295, 4.635], [3.758, 0.785, 18.569], [7.844, 6.008,

19.517], [6.787, 0.046, 19.447], [-4.749, -2.667, 2.273], [8.615, -4.557, 8.534], [5.521, 5.951,

3.19], [-7.103, -6.885, 15.768], [-7.445, -5.94, 18.658], [-1.068, -5.91, 8.68], [6.111, -6.369,

5.384], [-0.89, -4.376, 14.327], [-6.694, 8.458, 15.098], [1.802, -6.997, 19.668], [-7.808, 8.209,

17.34], [8.243, 0.515, 0.627], [-1.068, 0.02, 9.008], [0.428, -6.992, 17.036], [-7.826, 5.455,

14.227], [-7.557, 3.399, 4.151], [5.275, 6.138, 11.503], [1.892, -0.932, 12.834], [-1.615, -0.684,

5.835], [-3.093, -4.466, 6.496], [-8.134, -3.799, 15.109], [-1.441, 3.134, 11.053], [-7.829, -2.281,

11.29], [-7.285, 2.943, 2.679], [1.098, 2.846, 12.451], [-7.163, 0.238, 2.564], [-3.987, -6.721,

7.561], [-6.817, -6.935, 1.66], [-7.921, 2.093, 19.394], [-7.177, -2.843, 9.946], [8.025, 5.58, 9.297],

[1.279, 1.027, 7.677], [-5.099, -7.356, 5.582], [-7.855, 3.011, 11.832], [6.788, 3.533, 12.035], [-

3.865, 1.267, 13.452], [-7.49, 8.276, 9.623], [8.729, 7.164, 2.969], [-5.881, -1.919, 5.054], [8.094,

-1.849, 1.462], [-2.728, -2.42, 13.381], [6.911, 5.327, 3.794], [3.413, -4.376, 0.614], [-0.167, -

5.621, 10.23], [4.429, 7.956, 7.98], [8.064, 5.848, 11.309]

Problem instance 8: [-6.801, 5.4, 12.086], [-4.225, 8.522, 11.329], [2.439, 5.199, 18.516],

[4.634, -1.86, 4.929], [2.306, -1.365, 14.808], [0.193, 2.26, 0.342], [-2.232, 1.784, 10.204], [3.203,

-6.255, 1.415], [0.463, -6.995, 12.247], [-0.339, -0.303, 17.919], [-6.321, -2.303, 17.803], [-2.804,

-5.08, 9.652], [-3.044, 8.761, 3.955], [-0.403, 6.258, 0.322], [1.85, 5.823, 2.191], [1.754, 3.652,

18.785], [-6.834, 8.481, 2.62], [7.077, -4.067, 4.381], [-1.77, 2.565, 14.071], [-1.407, -3.481,

13.04], [3.92, 3.979, 7.315], [2.051, -1.752, 9.32], [3.066, 5.821, 19.273], [6.803, 7.525, 19.853],

[-6.495, 8.211, 0.627], [5.002, 8.653, 11.567], [2.7, 4.284, 8.756], [-6.127, -8.445, 9.424], [1.52,

3.762, 16.464], [2.542, -3.684, 5.685], [8.539, -0.981, 15.444], [1.498, -6.895, 17.785], [2.496,

4.296, 3.866], [5.432, 6.258, 5.23], [-1.226, -5.228, 0.874], [4.316, 1.29, 2.069], [2.893, -5.882,
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13.46], [-6.775, 6.002, 8.279], [-5.284, 3.455, 17.283], [2.313, -4.199, 12.28], [6.501, -8.91,

7.165], [-2.611, -0.038, 4.041], [6.859, -6.106, 19.606], [-4.988, 6.607, 15.425], [-1.662, 2.299,

8.112], [3.092, 8.004, 2.301], [8.497, -7.725, 13.755], [5.113, -1.167, 6.279], [5.964, 2.205, 4.205],

[4.211, 6.771, 1.349]

Problem instance 9: [-2.312, -8.743, 0.69], [-2.385, 3.094, 19.162], [-5.276, -6.993,

4.057], [1.76, -2.869, 5.559], [5.077, -6.891, 0.4], [-6.662, -3.104, 7.635], [-3.749, -5.343, 0.179],

[-0.532, 2.273, 9.586], [-5.497, -8.087, 19.424], [-5.208, 8.667, 4.893], [-3.232, -3.314, 5.256],

[2.615, -1.594, 8.19], [2.49, 1.496, 4.807], [3.642, 2.917, 4.96], [-7.423, -7.403, 14.013], [8.759,

3.89, 13.133], [-8.023, 7.908, 1.832], [7.297, 2.367, 15.116], [-8.492, 4.891, 0.088], [-0.005,

-4.296, 1.035], [-2.092, -0.753, 1.893], [-6.737, 4.427, 19.831], [-0.4, -3.03, 15.42], [0.348, -

3.901, 18.417], [3.034, -4.46, 15.359], [-2.934, -6.657, 18.732], [-2.953, -5.218, 16.716], [1.328,

-3.79, 11.914], [-3.86, -4.733, 3.197], [-7.333, 8.117, 3.384], [-6.672, -7.051, 0.219], [-7.009, -

1.396, 11.47], [-0.323, 7.877, 11.754], [3.497, 1.91, 10.66], [7.16, -4.961, 9.828], [-7.134, -4.168,

14.069], [-2.892, 6.713, 5.121], [3.746, 2.073, 13.972], [-1.605, -2.36, 17.73], [2.515, -6.354,

1.335], [-7.202, -5.957, 1.786], [8.046, 7.447, 16.882], [-8.384, 2.923, 2.787], [-4.225, 6.208,

11.437], [4.305, -1.345, 15.754], [-5.503, 3.864, 13.636], [4.059, -7.917, 3.785], [7.937, 2.549,

2.262], [5.435, -3.151, 5.49], [8.717, 3.839, 15.51]

Problem instance 10: [2.081, 5.597, 2.432], [-0.906, -0.53, 8.911], [5.971, 6.235, 4.89],

[3.462, -3.954, 19.765], [0.173, 1.197, 11.362], [3.87, 0.365, 13.669], [-7.868, 4.704, 16.373],

[2.671, 5.403, 11.378], [-3.123, -7.573, 8.271], [8.178, 3.656, 19.93], [-5.071, 7.318, 0.389],

[-0.874, -3.114, 15.35], [1.369, -5.741, 7.338], [-0.826, 7.76, 7.232], [-1.705, 4.549, 18.935],

[-7.933, -8.66, 16.754], [-3.281, 2.176, 13.13], [-3.384, -3.992, 4.36], [4.337, -1.271, 16.088],

[-7.502, -6.664, 16.385], [-7.192, -3.084, 8.741], [2.096, -1.045, 5.719], [-4.678, 6.23, 17.658],

[1.136, 1.272, 6.896], [7.755, -0.543, 6.717], [4.507, -1.399, 0.201], [1.51, 3.05, 6.454], [-1.575,

-8.495, 3.289], [-4.321, -0.907, 1.998], [8.754, -5.077, 14.343], [7.608, 2.805, 7.084], [6.922,
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6.011, 12.915], [-3.911, -6.862, 1.272], [3.62, -1.407, 3.344], [4.352, 0.092, 7.431], [8.179, 7.561,

1.958], [-4.536, 3.227, 9.428], [-5.245, 0.12, 3.811], [-6.31, 6.009, 4.69], [-3.482, -4.229, 8.286],

[3.103, -2.261, 16.521], [-8.666, -7.364, 3.542], [2.007, -3.635, 19.301], [-4.866, -6.784, 5.814],

[-1.76, 3.269, 10.979], [1.693, -5.581, 15.315], [8.221, -0.869, 16.199], [3.581, 5.833, 19.338],

[6.805, 0.368, 7.279], [-7.251, 2.626, 17.83]

A.4 The 75 user scenario

Problem instance 1: [2.409, 7.383, 0.013], [9.494, 0.212, 5.11], [-9.398, -7.981, 19.153],

[-4.626, -6.139, 14.729], [9.781, -9.958, 14.45], [3.008, 10.811, 15.753], [3.65, -9.634, 19.662],

[-9.634, -0.472, 14.269], [-8.836, -1.414, 3.737], [-4.613, 5.913, 14.803], [-3.107, 0.144, 8.585], [-

3.057, -10.912, 12.228], [-8.059, 0.736, 1.925], [0.185, -5.872, 10.052], [10.086, -4.699, 12.703],

[1.08, -6.129, 1.513], [8.085, 5.419, 4.606], [6.222, -2.402, 14.304], [-10.242, 0.755, 10.943],

[-10.817, -5.457, 10.304], [10.408, -9.451, 5.83], [2.039, 4.427, 0.042], [4.493, 8.593, 0.755],

[-10.709, 10.115, 7.282], [1.045, 5.712, 6.955], [-6.96, 8.736, 17.293], [7.006, 3.455, 9.802], [-

10.238, -4.762, 7.194], [7.526, -9.919, 18.491], [0.088, -10.382, 4.166], [-7.511, -10.93, 9.775],

[-10.455, 7.605, 14.335], [-0.211, -3.508, 13.144], [-3.221, 0.105, 17.368], [-8.758, 2.266, 1.009],

[1.205, -8.006, 19.711], [-5.804, 9.578, 7.03], [7.032, -8.137, 19.099], [4.014, -4.979, 8.193],

[10.489, 9.648, 0.284], [4.814, -0.993, 10.279], [-0.737, -5.896, 19.315], [-3.823, -9.269, 13.917],

[-7.042, -3.559, 12.623], [6.874, -1.27, 18.098], [-3.745, -9.151, 16.108], [6.068, 3.254, 18.198],

[-2.639, 9.218, 12.932], [-4.385, -5.121, 1.301], [-3.456, 7.966, 12.931], [1.629, -6.449, 1.617],

[5.583, 3.279, 1.716], [-7.267, -1.026, 18.109], [-4.92, 7.412, 2.69], [3.984, -1.754, 10.246],

[7.302, -0.917, 4.575], [2.738, 1.414, 5.374], [-6.525, -9.809, 2.798], [7.858, 9.542, 5.496], [-

2.264, -3.468, 13.783], [-9.35, -8.791, 18.704], [2.329, 3.016, 6.007], [-5.257, 10.59, 7.005], [-

10.162, -3.831, 1.601], [4.63, -0.781, 7.818], [-7, 2.155, 11.707], [-3.574, -3.025, 9.733], [-4.413,
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6.247, 3.81], [-10.845, 6.443, 2.828], [8.502, -2.268, 9.626], [-6.603, -2.023, 2.721], [-2.678, -

3.088, 5.35], [10.824, 2.05, 14.046], [-4.414, 8.134, 14.616], [9.818, -9.004, 13.559]

Problem instance 2: [-9.641, 9.202, 16.264], [-6.783, -5.39, 1.571], [-4.269, 5.107,

16.276], [7.257, -1.958, 16.322], [0.87, 8.105, 11.183], [5.263, -3.216, 10.679], [-0.531, 6.909,

9.016], [1.311, 10.884, 13.796], [-8.544, -1.987, 5.947], [9.596, 1.232, 12.313], [-4.513, 3.343,

9.247], [-8.146, 2.082, 10.161], [5.076, -7.785, 2.67], [7.223, 5.085, 0.845], [3.656, 9.973, 18.317],

[7.495, 1.697, 10.013], [-0.836, 9.003, 16.846], [-6.551, 6.857, 8.267], [10.354, 1.636, 0.845], [-

9.386, 5.634, 11.699], [7.742, -0.472, 2.33], [-7.537, -4.316, 19.088], [-10.063, 8, 9.598], [5.111,

8.504, 9.552], [8.438, 7.04, 8.333], [5.765, 1.517, 19.653], [-6.888, 1.838, 9.7], [-2.213, 10.528,

0.65], [-0.079, -0.356, 16.267], [-2.822, 3.351, 1.652], [-0.561, 9.063, 6.83], [7.369, 8.198,

12.227], [3.929, 4.212, 11.02], [5.531, -4.825, 1.113], [1.045, 2.116, 9.313], [-2.731, -8.404,

11.642], [-3.613, 3.064, 0.817], [5.846, -0.369, 0.667], [5.02, -10.035, 7.482], [9.062, 9.378,

2.596], [-6.785, 4.32, 8.587], [-7.169, 1.262, 5.198], [-6.56, 9.422, 17.39], [-1.562, -9.315, 7.763],

[10.064, -3.459, 13.669], [9.825, -8.906, 18.338], [3.634, 9.182, 7.284], [4.048, -5.218, 18.8],

[-9.002, 3.906, 11.776], [-3.352, -2.775, 3.255], [-1.726, -2.732, 9.753], [-5.987, -8.049, 9.477],

[7.21, -8.491, 17.368], [7.234, 3.782, 16.078], [0.87, -7.935, 4.173], [-9.613, -6.931, 15.493], [-

2.815, -1.452, 7.789], [0.769, 9.295, 9.345], [-4.21, -1.665, 16.332], [6.639, 8.026, 3.99], [3.734,

7.571, 16.745], [-4.534, -8.891, 2.972], [0.533, 8.625, 2.667], [2.243, -10.532, 9.704], [-1.24,

6.822, 12.744], [-1.406, 0.307, 18.737], [1.06, -7.19, 12.95], [-7.736, -2.805, 0.231], [-9.872,

-6.592, 19.123], [-3.598, -9.732, 3.749], [0.846, 4.612, 2.71], [-5.043, 0.679, 19.922], [-0.881,

-9.866, 2.161], [4.817, -9.622, 0.188], [-3.079, 1.763, 3.338]

Problem instance 3: [-9.44, 7.659, 0.317], [-6.904, 7.132, 8.453], [4.057, -10.813, 9.813],

[-1.973, 1.763, 13.425], [2.365, 10.042, 3.374], [2.327, 6.988, 3.359], [10.709, 1.58, 14.871], [-

9.583, 7.619, 18.653], [-10.065, 1.605, 2.583], [-0.303, -7.82, 18.295], [-0.65, -2.707, 6.404],

[4.264, 2.191, 19.06], [8.682, 6.306, 7.024], [1.308, -6.803, 18.024], [3.102, 6.131, 5.174], [0.19,
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-3.852, 17.889], [-5.823, -4.346, 17.724], [-1.545, -1.952, 10.177], [-6.529, 9.53, 0.987], [3.007,

0.756, 15.58], [-4.226, -1.534, 17.143], [2.847, -4.859, 9.306], [7.994, -6.5, 18.278], [4.669, 8.859,

5.954], [-5.09, -1.59, 14.029], [-5.92, 6.885, 0.981], [-0.697, -7.64, 3.029], [7.022, -9.814, 14.799],

[6.275, -9.445, 1.984], [1.331, -6.747, 2.361], [-9.037, 7.517, 13.116], [-6.484, -4.246, 2.613], [-

0.502, 5.993, 6.345], [-3.096, -6.073, 7.044], [7.189, -9.864, 8.951], [-7.952, -9.608, 18.027],

[-2.321, -10.627, 11.516], [7.753, 0.708, 18.171], [6.216, -1.906, 7.65], [4.761, -9.001, 7.521],

[4.496, 4.24, 19.24], [10.621, 10.189, 8.083], [-2.083, 6.561, 15.402], [-8.838, -0.91, 11.301],

[5.983, 10.042, 4.504], [-2.331, 4.727, 18.638], [-5.792, -2.455, 11.642], [8.418, 4.32, 17.364],

[-7.777, 2.78, 1.108], [-9.619, -7.149, 13.617], [4.911, 4.092, 17.737], [-3.361, -10.487, 12.164],

[7.382, -10.677, 2.338], [10.78, 4.49, 7.92], [-2.201, -7.809, 7.936], [-7.648, 9.901, 11.292],

[9.961, -4.736, 10.95], [7.849, 7.203, 14.411], [10.269, -6.915, 13.165], [6.733, 9.533, 5.995],

[7.078, -6.581, 19.517], [-4.42, -7.505, 9.469], [-4.334, -10.061, 9.408], [-10.235, -4.741, 2.824],

[9.969, -7.457, 14.893], [-4.553, 0.623, 11.666], [-2.942, -0.263, 19.139], [-2.428, 7.746, 15.701],

[-3.21, -10.169, 8.455], [9.151, 7.058, 14.294], [9.59, 9.138, 7.301], [-4.056, -0.334, 0.043], [-

5.87, 4.037, 12.003], [3.967, -7.09, 13.447], [6.811, 2.733, 18.3]

Problem instance 4: [5.656, -10.603, 4.379], [-2.782, -0.962, 0.317], [3.189, 10.73,

5.042], [0.799, 1.904, 13.085], [10.511, -10.171, 1.632], [5.498, -1.292, 3.663], [1.438, -5.972,

0.488], [7.982, 7.079, 12.139], [4.871, -7.951, 18.476], [2.482, -7.143, 13.341], [2.413, 5.708,

16.015], [-0.025, -2.919, 4.304], [-3.961, 9.562, 0.392], [-5.002, 9.668, 0.617], [-8.057, 6.802,

18.274], [5.338, -5.944, 17.171], [8.989, 10.87, 7.79], [-10.428, 8.422, 11.239], [-6.712, 3.215,

18.628], [-4.89, -9.572, 8.739], [-8.63, 5.128, 3.949], [5.579, 6.19, 8.156], [-5.31, 2.8, 4.196],

[-1.808, -4.33, 4.303], [-0.918, 2.687, 2.976], [3.739, -10.449, 14.047], [2.466, 10.171, 7.218],

[6.287, 2.348, 14.707], [2.567, -3.981, 11.635], [1.03, -9.413, 12.252], [5.667, -0.643, 16.254],

[8.529, -2.307, 15.11], [-10.084, -2.025, 2.702], [-7.639, -2.093, 2.029], [-2.3, 8.223, 19.324], [-

1.208, -4.033, 11.953], [8.799, -6.5, 7.675], [-2.895, -1.962, 12.774], [3.013, -7.381, 7.67], [1.083,

-3.526, 0.047], [-10.384, 5.696, 10.272], [-8.69, -8.044, 7.34], [-3.893, 10.651, 16.591], [-2.398,
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1.216, 15.162], [1.981, 0.966, 10.452], [-4.704, -4.144, 9.934], [-6.999, -5.692, 10.825], [6.985,

2.786, 0.946], [8.96, -6.738, 10.487], [1.756, -9.501, 8.439], [-6.179, -4.864, 18.14], [-8.948,

-1.33, 0.171], [-5.179, -5.704, 9.412], [-0.849, -5.875, 7.455], [1.723, -8.272, 17.721], [-3.239,

8.502, 18.667], [-7.53, -8.279, 15.757], [4.864, 1.996, 16.902], [-8.199, 0.849, 10.426], [1.516,

7.979, 18.491], [-4.681, 3.7, 18.265], [-3.889, 9.82, 18.962], [-6.519, 9.751, 18.402], [9.471,

6.126, 5.144], [2.671, 2.26, 17.681], [-9.554, 7.677, 3.011], [-4.355, 3.634, 6.328], [-9.852, -

5.496, 8.086], [-2.174, -8.322, 2.225], [9.645, 10.387, 10.388], [2.115, -0.901, 0.032], [9.055,

-2.027, 1.876], [4.032, 2.156, 6.825], [-3.782, -5.716, 18.546], [6.242, 7.995, 19.986]

Problem instance 5: [-5.737, -4.861, 5.265], [7.71, -0.536, 16.87], [4.1, -2.134, 15.504],

[-5.165, -5.257, 2.493], [7.599, -8.152, 9.111], [-5.467, 9.622, 7.032], [4.834, 7.659, 0.603],

[8.882, -3.944, 11.039], [-7.854, -3.572, 2.82], [5.746, 3.329, 5.066], [-2.419, 6.864, 13.456],

[-3.617, -6.166, 0.458], [-7.115, -10.946, 9.832], [-6.291, 8.878, 12.081], [-0.194, -7.469, 13.064],

[7.969, -2.981, 17.17], [-6.233, 7.25, 6.903], [4.583, 9.424, 2.404], [7.661, 10.731, 9.041], [8.417,

3.61, 6.417], [0.064, -0.404, 18.423], [-7.64, 3.655, 15.584], [-0.698, 4.998, 10.464], [6.663,

2.521, 5.727], [8.452, -6.072, 7.859], [-1.337, -5.208, 11.065], [-6.619, 9.115, 12.474], [0.586, -

2.201, 2.861], [-3.334, 10.218, 2.661], [5.9, 7.457, 11.968], [2.321, -5.813, 8.615], [-7.641, 8.776,

10.234], [-2.281, -8.141, 12.609], [3.38, 10.856, 4.975], [-2.996, -8.147, 5.043], [1.042, -0.395,

1.589], [3.304, -10.926, 7.352], [5.435, 1.085, 1.715], [-1.671, 1.684, 7.809], [-6.978, 1.984,

10.048], [8.045, -5.282, 5.129], [8.037, 10.589, 5.473], [-0.664, 5.548, 2.858], [4.244, -10.219,

19.529], [-7.208, 3.919, 2.279], [-3.114, -9.132, 6.143], [10.433, 2.215, 11.395], [8.671, 9.331,

0.966], [-7.66, 8.262, 1.138], [-9.273, 5.202, 5.406], [-7.633, -6.186, 6.53], [-7.133, 1.027, 9.624],

[1.935, -10.133, 14.044], [1.945, 8.85, 5.136], [9.028, -10.397, 19.5], [-2.467, 9.423, 5.043],

[-2.235, -1.29, 14.43], [-7.553, -9.93, 0.114], [-7.506, -10.399, 19.731], [-6.94, 3.244, 15.603],

[6.289, 4.09, 7.427], [-9.168, 2.064, 11.679], [1.976, -6.51, 5.239], [4.688, 2.7, 19.531], [-0.884,

1.148, 16.939], [7.853, 2.056, 19.757], [7.458, -5.341, 3.909], [5.916, -5.196, 3.145], [0.605,

3.423, 2.629], [6.5, 5.032, 6.771], [5.974, 4.868, 16.298], [-4.026, 6.285, 7.461], [0.86, 3.335,
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15.771], [-5.224, -1.088, 9.397], [-7.321, 6.17, 13.917]

Problem instance 6: [-7.571, -9.481, 1.966], [3.646, 5.616, 4.234], [7.238, 9.07, 12.872],

[-1.674, -7.435, 19.712], [8.846, 3.896, 14.972], [-10.467, -4.489, 5.411], [-9.263, 10.683, 16.055],

[1.141, 3.406, 14.181], [-3.385, -9.765, 9.328], [2.415, 4.281, 2.772], [9.543, 8.315, 10.97], [-

10.612, 8.877, 3.239], [8.507, 8.689, 19.512], [-3.777, -1.028, 9.299], [4.117, 10.326, 3.182],

[-5.409, -4.28, 13.902], [8.957, 1.127, 10.818], [10.146, -4.939, 5.917], [1.197, 10.744, 6.802], [-

2.771, 9.861, 4.677], [5.776, -10.628, 16.245], [-10.468, 9.097, 9.539], [-3.217, -10.858, 12.376],

[-0.276, -2.392, 6.3], [4.6, -1.815, 3.789], [-7.427, -6.477, 17.436], [-7.338, 5.667, 10.374], [-

5.782, 2.352, 0.395], [8.827, -7.586, 2.688], [7.49, -2.76, 0.645], [-3.257, 6.615, 16.618], [0.362,

5.235, 10.454], [9.877, 5.932, 3.913], [-5.936, -0.274, 19.209], [9.753, 2.98, 3.14], [8.287, 5.855,

5.8], [-0.996, 9.237, 7.531], [-10.829, -10.37, 5.591], [-0.596, 8.237, 16.624], [1.374, -5.988,

18.796], [-6.212, -2.613, 11.865], [2.435, 5.989, 9.848], [6.556, -9.95, 1.76], [9.003, 5.528,

9.799], [-1.778, 3.645, 18.906], [10.532, -2.145, 14.223], [-10.172, 6.997, 12.091], [1.596, -9.794,

16.316], [-4.941, -8.378, 15.376], [-2.863, -9.538, 6.761], [7.32, 6.879, 4.483], [5.986, -2.101,

1.412], [-6.611, 2.443, 6.294], [-6.912, -4.988, 6.063], [-6.021, -6.008, 8.031], [9.974, 7.423,

4.707], [-8.55, 8.152, 2.159], [0.377, 3.645, 6.168], [5.049, -9.662, 9.593], [-2.819, 0.943, 9.414],

[-10.194, 3.576, 17.297], [-5.9, -6.149, 3.429], [-1.393, 4.731, 3.581], [2.376, 4.708, 4.192], [-

7.874, -6.666, 5.409], [7.974, 0.72, 3.246], [-1.344, 2.617, 3.888], [5.68, 6.059, 19.334], [3.389,

-9.137, 14.939], [-9.478, 2.889, 2.889], [2.966, -9.243, 5.971], [-5.476, -7.507, 3.701], [9.49, 3.25,

2.687], [1.952, 5.119, 17.596], [-6.722, 2.962, 17.955]

Problem instance 7: [-2.578, -10.16, 4.635], [4.602, 0.962, 18.569], [9.607, 7.358,

19.517], [8.312, 0.056, 19.447], [-5.816, -3.266, 2.273], [10.551, -5.581, 8.534], [6.762, 7.289,

3.19], [-8.7, -8.433, 15.768], [-9.119, -7.275, 18.658], [-1.308, -7.238, 8.68], [7.485, -7.801,

5.384], [-1.09, -5.359, 14.327], [-8.199, 10.359, 15.098], [2.207, -8.569, 19.668], [-9.563, 10.054,

17.34], [10.095, 0.631, 0.627], [-1.308, 0.024, 9.008], [0.524, -8.563, 17.036], [-9.584, 6.681,
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14.227], [-9.255, 4.163, 4.151], [6.461, 7.518, 11.503], [2.317, -1.141, 12.834], [-1.977, -0.837,

5.835], [-3.789, -5.47, 6.496], [-9.962, -4.652, 15.109], [-1.764, 3.839, 11.053], [-9.589, -2.794,

11.29], [-8.923, 3.605, 2.679], [1.345, 3.485, 12.451], [-8.773, 0.291, 2.564], [-4.884, -8.232,

7.561], [-8.349, -8.493, 1.66], [-9.701, 2.563, 19.394], [-8.79, -3.482, 9.946], [9.828, 6.834, 9.297],

[1.567, 1.258, 7.677], [-6.245, -9.009, 5.582], [-9.62, 3.688, 11.832], [8.314, 4.327, 12.035], [-

4.734, 1.551, 13.452], [-9.173, 10.136, 9.623], [10.691, 8.774, 2.969], [-7.203, -2.35, 5.054],

[9.913, -2.265, 1.462], [-3.342, -2.964, 13.381], [8.464, 6.524, 3.794], [4.18, -5.36, 0.614], [-

0.205, -6.884, 10.23], [5.425, 9.744, 7.98], [9.876, 7.162, 11.309], [2.151, 9.502, 8.327], [10.529,

1.616, 11.534], [7.425, 10.787, 5.395], [-7.867, -7.733, 10.293], [-9.059, -0.131, 0.603], [-0.193,

3.977, 16.168], [-10.545, -10.349, 15.523], [-1.941, -8.453, 19.42], [-7.365, 0.581, 3.849], [-3.517,

-9.982, 19.926], [-6.891, -9.577, 17.053], [7.862, -7.156, 1.379], [4.373, -7.414, 2.459], [-10.029,

-10.87, 16.344], [-5.797, 4.487, 11.138], [2.845, -6.826, 3.575], [-10.092, 6.825, 19.488], [10.7,

6.449, 10.205], [-4.97, -4.514, 14.014], [-5.611, 3.12, 10.237], [4.002, 1.558, 6.112], [3.418,

0.275, 18.528], [-2.914, -8.363, 19.951], [1.322, 8.94, 6.689], [-3.077, -7.229, 5.632]

Problem instance 8: [-8.329, 6.613, 12.086], [-5.174, 10.437, 11.329], [2.988, 6.367,

18.516], [5.676, -2.278, 4.929], [2.825, -1.671, 14.808], [0.236, 2.768, 0.342], [-2.733, 2.185,

10.204], [3.923, -7.661, 1.415], [0.567, -8.567, 12.247], [-0.415, -0.371, 17.919], [-7.742, -

2.82, 17.803], [-3.434, -6.221, 9.652], [-3.728, 10.731, 3.955], [-0.493, 7.664, 0.322], [2.266,

7.131, 2.191], [2.148, 4.473, 18.785], [-8.37, 10.388, 2.62], [8.667, -4.981, 4.381], [-2.167,

3.141, 14.071], [-1.723, -4.264, 13.04], [4.801, 4.874, 7.315], [2.511, -2.146, 9.32], [3.755, 7.129,

19.273], [8.332, 9.217, 19.853], [-7.955, 10.056, 0.627], [6.127, 10.597, 11.567], [3.307, 5.247,

8.756], [-7.504, -10.343, 9.424], [1.862, 4.608, 16.464], [3.114, -4.512, 5.685], [10.458, -1.201,

15.444], [1.835, -8.445, 17.785], [3.058, 5.261, 3.866], [6.652, 7.664, 5.23], [-1.501, -6.403,

0.874], [5.287, 1.58, 2.069], [3.543, -7.204, 13.46], [-8.298, 7.351, 8.279], [-6.472, 4.232, 17.283],

[2.832, -5.143, 12.28], [7.963, -10.913, 7.165], [-3.197, -0.047, 4.041], [8.4, -7.478, 19.606], [-

6.109, 8.092, 15.425], [-2.036, 2.815, 8.112], [3.787, 9.802, 2.301], [10.406, -9.461, 13.755],
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[6.262, -1.429, 6.279], [7.305, 2.7, 4.205], [5.158, 8.293, 1.349], [-1.618, 8.042, 15.003], [6.031,

-0.426, 7.103], [5.4, -6.188, 17.926], [10.154, 2.544, 16.498], [6.936, -0.723, 9.684], [-1.824,

-1.635, 8.728], [7.825, -10.78, 10.581], [-3.24, -7.07, 17.145], [1.045, 4.322, 0.073], [-4.116,

-9.581, 6.492], [7.907, 3.121, 18.383], [4.254, -6.241, 2.801], [-0.986, 6.602, 10.501], [-0.988,

6.25, 15.083], [5.908, -7.644, 3.309], [0.544, 9.938, 9.972], [5.276, -8.303, 3.477], [1.49, -0.819,

8.82], [-1.279, 9.556, 16.004], [5.898, -6.787, 7.504], [-2.014, -7.761, 11.899], [-1.414, -9.013,

15.753], [-0.098, 1.262, 15.077], [8.187, -7.61, 4.088], [-9.793, -6.605, 11.06]

Problem instance 9: [-2.831, -10.708, 0.69], [-2.921, 3.789, 19.162], [-6.462, -8.565,

4.057], [2.155, -3.514, 5.559], [6.218, -8.44, 0.4], [-8.159, -3.802, 7.635], [-4.591, -6.543, 0.179],

[-0.652, 2.784, 9.586], [-6.732, -9.905, 19.424], [-6.378, 10.614, 4.893], [-3.958, -4.059, 5.256],

[3.202, -1.952, 8.19], [3.05, 1.832, 4.807], [4.461, 3.573, 4.96], [-9.092, -9.067, 14.013], [10.727,

4.764, 13.133], [-9.826, 9.685, 1.832], [8.937, 2.899, 15.116], [-10.401, 5.991, 0.088], [-0.006,

-5.262, 1.035], [-2.562, -0.922, 1.893], [-8.251, 5.422, 19.831], [-0.49, -3.711, 15.42], [0.427, -

4.777, 18.417], [3.716, -5.462, 15.359], [-3.593, -8.153, 18.732], [-3.617, -6.391, 16.716], [1.626,

-4.642, 11.914], [-4.727, -5.797, 3.197], [-8.981, 9.941, 3.384], [-8.171, -8.635, 0.219], [-8.585,

-1.71, 11.47], [-0.396, 9.647, 11.754], [4.283, 2.339, 10.66], [8.769, -6.076, 9.828], [-8.737,

-5.105, 14.069], [-3.542, 8.222, 5.121], [4.588, 2.539, 13.972], [-1.966, -2.89, 17.73], [3.08, -

7.782, 1.335], [-8.821, -7.296, 1.786], [9.854, 9.121, 16.882], [-10.268, 3.58, 2.787], [-5.174,

7.604, 11.437], [5.272, -1.647, 15.754], [-6.74, 4.732, 13.636], [4.971, -9.696, 3.785], [9.721,

3.122, 2.262], [6.656, -3.859, 5.49], [10.676, 4.702, 15.51], [-5.885, -6.215, 16.576], [-3.659, -

4.238, 7.399], [9.512, -6.699, 3.743], [3.862, -9.461, 7.916], [-2.88, -6.819, 7.91], [-8.546, -5.589,

16.422], [2.775, 3.504, 19.897], [-0.487, 7.267, 6.979], [10.838, 8.543, 13.986], [6.757, 4.284,

1.499], [-0.969, -3.538, 5.547], [5.502, -10.886, 3.049], [-1.429, 7.63, 19.706], [-5.743, 10.469,

17.996], [7.823, -6.723, 5.043], [5.688, -5.954, 7.228], [-6.215, 7.186, 4.438], [1.148, -2.896,

1.035], [-7.042, -1.44, 14.363], [10.082, -8.943, 5.555], [-1.995, -5.61, 18.936], [0.901, 5.897,
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14.24], [5.402, -5.122, 11.418], [-5.823, 10.663, 6.884], [-10.22, -0.265, 13.319]

Problem instance 10: [2.549, 6.855, 2.432], [-1.11, -0.649, 8.911], [7.313, 7.636, 4.89],

[4.24, -4.843, 19.765], [0.212, 1.466, 11.362], [4.74, 0.447, 13.669], [-9.636, 5.761, 16.373],

[3.271, 6.617, 11.378], [-3.825, -9.275, 8.271], [10.016, 4.477, 19.93], [-6.211, 8.962, 0.389],

[-1.07, -3.814, 15.35], [1.676, -7.031, 7.338], [-1.011, 9.504, 7.232], [-2.089, 5.571, 18.935], [-

9.715, -10.606, 16.754], [-4.018, 2.664, 13.13], [-4.145, -4.889, 4.36], [5.311, -1.556, 16.088],

[-9.189, -8.162, 16.385], [-8.808, -3.777, 8.741], [2.567, -1.28, 5.719], [-5.729, 7.63, 17.658],

[1.391, 1.558, 6.896], [9.498, -0.665, 6.717], [5.52, -1.713, 0.201], [1.849, 3.735, 6.454], [-1.929,

-10.404, 3.289], [-5.293, -1.111, 1.998], [10.721, -6.218, 14.343], [9.318, 3.436, 7.084], [8.478,

7.362, 12.915], [-4.79, -8.404, 1.272], [4.434, -1.723, 3.344], [5.33, 0.113, 7.431], [10.017, 9.26,

1.958], [-5.556, 3.952, 9.428], [-6.424, 0.147, 3.811], [-7.728, 7.359, 4.69], [-4.264, -5.179,

8.286], [3.801, -2.769, 16.521], [-10.613, -9.019, 3.542], [2.459, -4.452, 19.301], [-5.96, -8.309,

5.814], [-2.156, 4.003, 10.979], [2.074, -6.835, 15.315], [10.069, -1.065, 16.199], [4.386, 7.144,

19.338], [8.334, 0.45, 7.279], [-8.881, 3.217, 17.83], [8.04, 1.02, 2.509], [4.185, 1.749, 0.858],

[-5.033, -5.806, 16.202], [-8.254, 3.797, 15.356], [5.224, 0.512, 11.41], [1.746, 0.133, 12.522],

[4.267, 8.045, 4.648], [-9.781, -3.176, 2.806], [-7.465, -5.979, 4.737], [-7.934, 2.437, 3.119], [-

5.556, 9.26, 18.221], [3.847, -3.524, 3.385], [1.376, -10.013, 6.345], [-2.86, -8.35, 12.14], [7.576,

4.928, 14.506], [7.705, -9.483, 0.805], [-8.82, -2.28, 8.057], [6.597, -1.586, 10.831], [6.074, 3.33,

16.897], [9.962, 6.427, 14.092], [-0.82, 9.129, 9.031], [0.601, -0.554, 3.754], [5.747, 0.879, 18.87],

[4.89, -4.714, 17.664], [-4.561, -10.21, 0.424]
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A.5 The 100 user scenario

Problem instance 1: [2.782, 8.525, 0.013], [10.963, 0.245, 5.11], [-10.852, -9.216,

19.153], [-5.341, -7.088, 14.729], [11.294, -11.499, 14.45], [3.473, 12.484, 15.753], [4.214, -

11.125, 19.662], [-11.124, -0.546, 14.269], [-10.203, -1.633, 3.737], [-5.327, 6.828, 14.803], [-

3.587, 0.166, 8.585], [-3.53, -12.6, 12.228], [-9.305, 0.85, 1.925], [0.213, -6.78, 10.052], [11.646,

-5.426, 12.703], [1.247, -7.077, 1.513], [9.336, 6.257, 4.606], [7.184, -2.774, 14.304], [-11.826,

0.871, 10.943], [-12.49, -6.301, 10.304], [12.018, -10.913, 5.83], [2.354, 5.112, 0.042], [5.188,

9.922, 0.755], [-12.366, 11.68, 7.282], [1.206, 6.596, 6.955], [-8.037, 10.087, 17.293], [8.09,

3.989, 9.802], [-11.821, -5.498, 7.194], [8.69, -11.454, 18.491], [0.101, -11.988, 4.166], [-8.673,

-12.621, 9.775], [-12.073, 8.782, 14.335], [-0.243, -4.051, 13.144], [-3.719, 0.122, 17.368], [-

10.113, 2.616, 1.009], [1.392, -9.245, 19.711], [-6.702, 11.06, 7.03], [8.12, -9.396, 19.099], [4.634,

-5.749, 8.193], [12.112, 11.141, 0.284], [5.559, -1.146, 10.279], [-0.851, -6.809, 19.315], [-4.415, -

10.703, 13.917], [-8.131, -4.11, 12.623], [7.937, -1.466, 18.098], [-4.325, -10.566, 16.108], [7.007,

3.758, 18.198], [-3.047, 10.644, 12.932], [-5.063, -5.913, 1.301], [-3.991, 9.198, 12.931], [1.881,

-7.447, 1.617], [6.446, 3.786, 1.716], [-8.391, -1.185, 18.109], [-5.681, 8.558, 2.69], [4.6, -2.025,

10.246], [8.431, -1.059, 4.575], [3.161, 1.632, 5.374], [-7.535, -11.327, 2.798], [9.074, 11.018,

5.496], [-2.614, -4.005, 13.783], [-10.796, -10.151, 18.704], [2.69, 3.482, 6.007], [-6.07, 12.228,

7.005], [-11.734, -4.423, 1.601], [5.346, -0.902, 7.818], [-8.083, 2.489, 11.707], [-4.127, -3.492,

9.733], [-5.096, 7.213, 3.81], [-12.522, 7.439, 2.828], [9.818, -2.619, 9.626], [-7.625, -2.335,

2.721], [-3.092, -3.566, 5.35], [12.499, 2.368, 14.046], [-5.096, 9.393, 14.616], [11.337, -10.397,

13.559], [-11.523, 4.226, 19.723], [-6.444, -0.43, 11.9], [-7.277, 4.04, 11.29], [4.563, 10.959,

7.164], [11.062, 8.528, 16.289], [-1.735, -4.377, 12.526], [4.404, -10.148, 10.574], [-10.046, -

9.39, 5.59], [-7.631, 4.489, 4.192], [3.708, 7.52, 17.629], [1.38, -5.396, 15.95], [10.635, 7.929,

18.686], [-0.451, 8.246, 10.804], [-3.663, -10.744, 17.785], [-10.736, -6.084, 6.505], [-10.474, -

8.759, 12.94], [8.074, -10.465, 12.492], [-2.148, -4.022, 11.606], [-12.209, -7.332, 9.002], [-2.403,
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9.46, 11.23], [-0.875, -4.152, 0.947], [-11.984, 9.057, 19.401], [4.57, 8.494, 1.795], [-11.034, -

1.287, 13.446], [2.39, 6.663, 0.478]

Problem instance 2: [-11.132, 10.626, 16.264], [-7.832, -6.224, 1.571], [-4.929, 5.897,

16.276], [8.379, -2.261, 16.322], [1.005, 9.359, 11.183], [6.077, -3.713, 10.679], [-0.613, 7.977,

9.016], [1.514, 12.568, 13.796], [-9.866, -2.294, 5.947], [11.08, 1.423, 12.313], [-5.211, 3.86,

9.247], [-9.406, 2.404, 10.161], [5.861, -8.989, 2.67], [8.341, 5.872, 0.845], [4.222, 11.515,

18.317], [8.654, 1.96, 10.013], [-0.966, 10.396, 16.846], [-7.564, 7.918, 8.267], [11.956, 1.889,

0.845], [-10.838, 6.505, 11.699], [8.939, -0.545, 2.33], [-8.703, -4.984, 19.088], [-11.62, 9.238,

9.598], [5.901, 9.819, 9.552], [9.744, 8.129, 8.333], [6.656, 1.752, 19.653], [-7.953, 2.122, 9.7],

[-2.555, 12.156, 0.65], [-0.091, -0.411, 16.267], [-3.258, 3.869, 1.652], [-0.647, 10.465, 6.83],

[8.509, 9.466, 12.227], [4.537, 4.864, 11.02], [6.386, -5.571, 1.113], [1.206, 2.444, 9.313], [-

3.153, -9.704, 11.642], [-4.172, 3.538, 0.817], [6.751, -0.426, 0.667], [5.796, -11.587, 7.482],

[10.464, 10.828, 2.596], [-7.834, 4.988, 8.587], [-8.278, 1.457, 5.198], [-7.575, 10.879, 17.39], [-

1.803, -10.756, 7.763], [11.621, -3.995, 13.669], [11.345, -10.284, 18.338], [4.197, 10.603, 7.284],

[4.674, -6.025, 18.8], [-10.394, 4.511, 11.776], [-3.87, -3.205, 3.255], [-1.994, -3.155, 9.753], [-

6.914, -9.294, 9.477], [8.326, -9.805, 17.368], [8.354, 4.367, 16.078], [1.005, -9.163, 4.173],

[-11.1, -8.003, 15.493], [-3.25, -1.677, 7.789], [0.888, 10.733, 9.345], [-4.861, -1.923, 16.332],

[7.666, 9.268, 3.99], [4.312, 8.742, 16.745], [-5.235, -10.267, 2.972], [0.615, 9.96, 2.667], [2.59,

-12.161, 9.704], [-1.432, 7.878, 12.744], [-1.624, 0.354, 18.737], [1.224, -8.302, 12.95], [-8.933,

-3.239, 0.231], [-11.399, -7.612, 19.123], [-4.154, -11.238, 3.749], [0.977, 5.326, 2.71], [-5.823,

0.784, 19.922], [-1.017, -11.393, 2.161], [5.562, -11.111, 0.188], [-3.555, 2.036, 3.338], [4.472,

3.227, 6.197], [-5.782, -1.133, 1.828], [-6.395, 11.879, 17.989], [-10.381, -4.949, 2.727], [11.79,

-3.698, 14.912], [-6, -6.204, 18.426], [5.359, -6.5, 18.088], [-0.62, -1.596, 12.274], [-3.742, -

10.723, 1.463], [-7.528, 8.469, 17.752], [8.348, 6.723, 14.086], [-1.616, 10.714, 17.943], [-9.213,

-6.601, 14.839], [8.022, 9.242, 2.049], [-1.624, -4.371, 5.718], [-7.869, 11.68, 0.854], [-1.113, -

0.374, 12.465], [-7.829, -12.041, 14.466], [-10.681, 5.242, 0.254], [0.098, -11.909, 10.529], [2.35,
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-11.513, 5.22], [-11.424, 2.608, 5.602], [7.039, -6.477, 4.373], [-3.424, -8.901, 8.182], [7.752,

-5.669, 13.997]

Problem instance 3: [-10.901, 8.844, 0.317], [-7.972, 8.235, 8.453], [4.685, -12.485,

9.813], [-2.278, 2.036, 13.425], [2.731, 11.595, 3.374], [2.687, 8.069, 3.359], [12.365, 1.825,

14.871], [-11.066, 8.798, 18.653], [-11.622, 1.853, 2.583], [-0.35, -9.029, 18.295], [-0.751, -3.126,

6.404], [4.923, 2.53, 19.06], [10.025, 7.281, 7.024], [1.51, -7.856, 18.024], [3.582, 7.08, 5.174],

[0.22, -4.448, 17.889], [-6.724, -5.019, 17.724], [-1.784, -2.254, 10.177], [-7.539, 11.005, 0.987],

[3.472, 0.873, 15.58], [-4.879, -1.771, 17.143], [3.288, -5.61, 9.306], [9.23, -7.505, 18.278],

[5.392, 10.229, 5.954], [-5.877, -1.836, 14.029], [-6.836, 7.95, 0.981], [-0.804, -8.822, 3.029],

[8.108, -11.332, 14.799], [7.246, -10.906, 1.984], [1.537, -7.791, 2.361], [-10.435, 8.68, 13.116],

[-7.487, -4.903, 2.613], [-0.579, 6.921, 6.345], [-3.575, -7.012, 7.044], [8.302, -11.391, 8.951],

[-9.182, -11.095, 18.027], [-2.68, -12.271, 11.516], [8.953, 0.818, 18.171], [7.177, -2.201, 7.65],

[5.497, -10.394, 7.521], [5.192, 4.896, 19.24], [12.265, 11.766, 8.083], [-2.406, 7.577, 15.402],

[-10.205, -1.05, 11.301], [6.909, 11.596, 4.504], [-2.691, 5.459, 18.638], [-6.688, -2.835, 11.642],

[9.72, 4.989, 17.364], [-8.98, 3.21, 1.108], [-11.107, -8.255, 13.617], [5.671, 4.725, 17.737], [-

3.881, -12.109, 12.164], [8.524, -12.329, 2.338], [12.447, 5.184, 7.92], [-2.541, -9.017, 7.936],

[-8.831, 11.433, 11.292], [11.502, -5.469, 10.95], [9.063, 8.317, 14.411], [11.857, -7.985, 13.165],

[7.775, 11.007, 5.995], [8.173, -7.6, 19.517], [-5.103, -8.665, 9.469], [-5.004, -11.618, 9.408], [-

11.818, -5.474, 2.824], [11.511, -8.61, 14.893], [-5.258, 0.719, 11.666], [-3.398, -0.304, 19.139],

[-2.803, 8.945, 15.701], [-3.706, -11.742, 8.455], [10.566, 8.15, 14.294], [11.073, 10.551, 7.301],

[-4.684, -0.386, 0.043], [-6.778, 4.662, 12.003], [4.581, -8.186, 13.447], [7.864, 3.156, 18.3],

[3.497, -2.597, 19.942], [5.309, -3.068, 15.228], [2.296, -1.663, 5.88], [9.222, 6.708, 10.96],

[0.954, 5.55, 15.77], [3.004, 3.501, 8.683], [2.595, 2.674, 16.282], [7.246, 10.073, 12.729], [8.029,

8.856, 1.864], [-7.895, -6.265, 19.174], [-5.946, 3.539, 6.936], [4.919, -10.06, 2.748], [10.076,

-4.561, 6.573], [-1.135, 1.081, 15.319], [6.041, 2.016, 4.473], [-2.869, 11.989, 12.467], [-0.231,

4.221, 9.634], [3.573, 9.152, 16.751], [-10.255, -12.438, 3.86], [-7.115, -1.038, 13.289], [5.125,
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-1.705, 16.342], [0.426, 8.075, 0.354], [8.864, 9.627, 4.414], [-7.782, -4.568, 19.771], [-10.278,

5.158, 6.543]

Problem instance 4: [6.53, -12.243, 4.379], [-3.212, -1.111, 0.317], [3.683, 12.39, 5.042],

[0.923, 2.198, 13.085], [12.137, -11.745, 1.632], [6.349, -1.491, 3.663], [1.66, -6.896, 0.488],

[9.216, 8.174, 12.139], [5.624, -9.181, 18.476], [2.866, -8.247, 13.341], [2.786, 6.591, 16.015],

[-0.029, -3.371, 4.304], [-4.573, 11.042, 0.392], [-5.776, 11.163, 0.617], [-9.304, 7.854, 18.274],

[6.164, -6.864, 17.171], [10.38, 12.552, 7.79], [-12.041, 9.725, 11.239], [-7.75, 3.712, 18.628],

[-5.647, -11.053, 8.739], [-9.965, 5.922, 3.949], [6.442, 7.147, 8.156], [-6.132, 3.234, 4.196],

[-2.088, -4.999, 4.303], [-1.06, 3.102, 2.976], [4.317, -12.066, 14.047], [2.847, 11.744, 7.218],

[7.259, 2.711, 14.707], [2.964, -4.597, 11.635], [1.189, -10.869, 12.252], [6.543, -0.742, 16.254],

[9.849, -2.663, 15.11], [-11.644, -2.338, 2.702], [-8.82, -2.416, 2.029], [-2.655, 9.495, 19.324],

[-1.395, -4.657, 11.953], [10.161, -7.505, 7.675], [-3.342, -2.266, 12.774], [3.479, -8.523, 7.67],

[1.251, -4.072, 0.047], [-11.99, 6.578, 10.272], [-10.034, -9.289, 7.34], [-4.495, 12.299, 16.591],

[-2.768, 1.405, 15.162], [2.287, 1.115, 10.452], [-5.431, -4.785, 9.934], [-8.082, -6.573, 10.825],

[8.065, 3.217, 0.946], [10.347, -7.78, 10.487], [2.028, -10.971, 8.439], [-7.135, -5.616, 18.14],

[-10.332, -1.536, 0.171], [-5.98, -6.586, 9.412], [-0.98, -6.784, 7.455], [1.99, -9.551, 17.721],

[-3.74, 9.817, 18.667], [-8.695, -9.56, 15.757], [5.616, 2.304, 16.902], [-9.467, 0.98, 10.426],

[1.751, 9.213, 18.491], [-5.405, 4.272, 18.265], [-4.49, 11.34, 18.962], [-7.527, 11.259, 18.402],

[10.936, 7.074, 5.144], [3.084, 2.609, 17.681], [-11.032, 8.865, 3.011], [-5.029, 4.197, 6.328],

[-11.376, -6.347, 8.086], [-2.51, -9.609, 2.225], [11.138, 11.994, 10.388], [2.442, -1.04, 0.032],

[10.456, -2.341, 1.876], [4.656, 2.49, 6.825], [-4.367, -6.601, 18.546], [7.208, 9.232, 19.986],

[6.147, -0.246, 4.465], [-1.372, -9.73, 2.666], [3.248, -12.039, 1.16], [-8.337, 11.534, 18.134],

[4.702, -10.213, 9.275], [-12.037, -0.543, 7.445], [7.867, 9.689, 19.933], [-2.154, -8.01, 17.152],

[8.393, -0.435, 4.884], [-6.337, 11.552, 1.779], [8.704, -4.951, 8.651], [-7.487, -0.082, 15.009],

[3.794, 11.801, 17.143], [-5.533, -10.183, 3.831], [-10.467, -9.185, 18.579], [2.596, 6.62, 6.828],

[-6.037, -11.141, 14.486], [6.883, -2.365, 11.66], [5.348, -7.574, 12.913], [5.862, 4.73, 4.626],
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[-2.51, 11.826, 19.164], [4.773, 1.814, 11.234], [-10.726, 11.378, 1.256], [10.663, 2.827, 9.337],

[4.888, -6.323, 3.086]

Problem instance 5: [-6.624, -5.613, 5.265], [8.902, -0.618, 16.87], [4.734, -2.465,

15.504], [-5.963, -6.07, 2.493], [8.775, -9.414, 9.111], [-6.313, 11.111, 7.032], [5.582, 8.843,

0.603], [10.256, -4.555, 11.039], [-9.069, -4.125, 2.82], [6.635, 3.843, 5.066], [-2.793, 7.926,

13.456], [-4.176, -7.119, 0.458], [-8.216, -12.639, 9.832], [-7.264, 10.251, 12.081], [-0.224, -

8.625, 13.064], [9.202, -3.442, 17.17], [-7.197, 8.371, 6.903], [5.292, 10.882, 2.404], [8.847,

12.391, 9.041], [9.719, 4.168, 6.417], [0.074, -0.467, 18.423], [-8.822, 4.22, 15.584], [-0.806,

5.771, 10.464], [7.694, 2.911, 5.727], [9.76, -7.011, 7.859], [-1.544, -6.014, 11.065], [-7.643,

10.525, 12.474], [0.676, -2.542, 2.861], [-3.849, 11.799, 2.661], [6.813, 8.611, 11.968], [2.68,

-6.713, 8.615], [-8.824, 10.134, 10.234], [-2.634, -9.4, 12.609], [3.903, 12.536, 4.975], [-3.459, -

9.407, 5.043], [1.203, -0.456, 1.589], [3.815, -12.616, 7.352], [6.275, 1.253, 1.715], [-1.93, 1.945,

7.809], [-8.057, 2.291, 10.048], [9.289, -6.099, 5.129], [9.281, 12.227, 5.473], [-0.767, 6.406,

2.858], [4.901, -11.8, 19.529], [-8.323, 4.525, 2.279], [-3.595, -10.544, 6.143], [12.047, 2.557,

11.395], [10.012, 10.774, 0.966], [-8.845, 9.54, 1.138], [-10.708, 6.006, 5.406], [-8.813, -7.143,

6.53], [-8.236, 1.186, 9.624], [2.235, -11.7, 14.044], [2.246, 10.22, 5.136], [10.425, -12.006,

19.5], [-2.849, 10.881, 5.043], [-2.581, -1.489, 14.43], [-8.722, -11.466, 0.114], [-8.667, -12.008,

19.731], [-8.013, 3.746, 15.603], [7.261, 4.723, 7.427], [-10.587, 2.383, 11.679], [2.282, -7.517,

5.239], [5.413, 3.118, 19.531], [-1.02, 1.325, 16.939], [9.067, 2.375, 19.757], [8.612, -6.167,

3.909], [6.831, -6, 3.145], [0.698, 3.952, 2.629], [7.506, 5.811, 6.771], [6.898, 5.621, 16.298],

[-4.649, 7.257, 7.461], [0.994, 3.851, 15.771], [-6.032, -1.256, 9.397], [-8.454, 7.124, 13.917],

[-4.337, -3.818, 5.308], [6.263, 8.276, 13.607], [-8.587, 8.236, 9.075], [-3.312, -0.324, 3.467],

[11.02, -9.133, 15.471], [-1.329, -2.249, 7.458], [-10.983, 3.419, 19.734], [12.503, -8.191, 11.85],

[2.359, -8.053, 16.588], [8.829, -7.273, 18.987], [3.184, 4.371, 1.48], [-3.939, -0.663, 8.989],

[-7.114, -9.574, 10.069], [8.703, 6.193, 19.053], [2.447, -5.207, 18.771], [-9.293, 3.066, 3.217],

[6.931, -12.268, 12.425], [2.106, 12.471, 18.195], [-12.633, 6.541, 8.689], [-9.131, -9.915, 8.862],
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[-5.797, 12.273, 4.44], [0.882, 4.795, 7.314], [2.286, -5.673, 17.802], [-6.232, -0.512, 3.085],

[12.352, 9.475, 12.293]

Problem instance 6: [-8.742, -10.947, 1.966], [4.21, 6.485, 4.234], [8.357, 10.473,

12.872], [-1.933, -8.586, 19.712], [10.214, 4.499, 14.972], [-12.086, -5.184, 5.411], [-10.696,

12.335, 16.055], [1.317, 3.933, 14.181], [-3.909, -11.276, 9.328], [2.789, 4.943, 2.772], [11.019,

9.601, 10.97], [-12.254, 10.25, 3.239], [9.823, 10.033, 19.512], [-4.361, -1.187, 9.299], [4.754,

11.923, 3.182], [-6.246, -4.943, 13.902], [10.342, 1.301, 10.818], [11.716, -5.704, 5.917], [1.383,

12.406, 6.802], [-3.2, 11.386, 4.677], [6.67, -12.272, 16.245], [-12.088, 10.504, 9.539], [-3.715,

-12.538, 12.376], [-0.319, -2.762, 6.3], [5.311, -2.095, 3.789], [-8.576, -7.479, 17.436], [-8.473,

6.543, 10.374], [-6.677, 2.716, 0.395], [10.193, -8.76, 2.688], [8.649, -3.186, 0.645], [-3.76,

7.638, 16.618], [0.418, 6.045, 10.454], [11.405, 6.849, 3.913], [-6.855, -0.316, 19.209], [11.261,

3.441, 3.14], [9.569, 6.761, 5.8], [-1.15, 10.666, 7.531], [-12.504, -11.975, 5.591], [-0.688, 9.511,

16.624], [1.586, -6.915, 18.796], [-7.173, -3.017, 11.865], [2.812, 6.916, 9.848], [7.57, -11.489,

1.76], [10.396, 6.383, 9.799], [-2.053, 4.208, 18.906], [12.161, -2.477, 14.223], [-11.746, 8.079,

12.091], [1.842, -11.309, 16.316], [-5.705, -9.674, 15.376], [-3.305, -11.014, 6.761], [8.452, 7.943,

4.483], [6.912, -2.426, 1.412], [-7.634, 2.821, 6.294], [-7.981, -5.76, 6.063], [-6.952, -6.938,

8.031], [11.517, 8.571, 4.707], [-9.873, 9.413, 2.159], [0.435, 4.208, 6.168], [5.83, -11.156,

9.593], [-3.255, 1.089, 9.414], [-11.77, 4.13, 17.297], [-6.812, -7.1, 3.429], [-1.609, 5.463, 3.581],

[2.744, 5.437, 4.192], [-9.093, -7.698, 5.409], [9.208, 0.832, 3.246], [-1.552, 3.022, 3.888], [6.559,

6.997, 19.334], [3.913, -10.551, 14.939], [-10.944, 3.336, 2.889], [3.425, -10.673, 5.971], [-6.323,

-8.668, 3.701], [10.958, 3.753, 2.687], [2.254, 5.911, 17.596], [-7.762, 3.42, 17.955], [-1.673,

2.21, 1.778], [7.556, 4.064, 18.881], [-5.397, -10.29, 6.56], [-2.49, -7.378, 4.769], [-3.389, -9.454,

7.711], [-1.128, -1.322, 5.145], [3.154, -8.77, 6.255], [2.607, -4.583, 9.054], [-8.648, 4.133,

15.909], [9.715, -12.543, 19.449], [0.395, 12.31, 0.116], [9.984, 1.359, 10.413], [11.302, -5.203,

16.993], [3.4, -6.488, 2.031], [2.9, -8.041, 1.243], [-0.343, 0.112, 12.293], [-7.214, 6.602, 0.9],

[-3.81, 12.292, 10.62], [-6.606, -2.126, 10.763], [-5.127, -3.856, 9.688], [3.839, -4.864, 7.984],
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[-8.874, 1.866, 15.639], [7.936, 4.89, 16.731], [-10.57, 4.776, 11.334], [-12.272, 5.533, 13.909]

Problem instance 7: [-2.977, -11.731, 4.635], [5.314, 1.111, 18.569], [11.093, 8.496,

19.517], [9.598, 0.065, 19.447], [-6.716, -3.772, 2.273], [12.184, -6.445, 8.534], [7.808, 8.416,

3.19], [-10.046, -9.737, 15.768], [-10.529, -8.401, 18.658], [-1.51, -8.358, 8.68], [8.643, -9.008,

5.384], [-1.259, -6.188, 14.327], [-9.467, 11.962, 15.098], [2.548, -9.895, 19.668], [-11.042, 11.61,

17.34], [11.657, 0.729, 0.627], [-1.51, 0.028, 9.008], [0.606, -9.888, 17.036], [-11.067, 7.714,

14.227], [-10.687, 4.808, 4.151], [7.461, 8.681, 11.503], [2.676, -1.318, 12.834], [-2.283, -0.967,

5.835], [-4.375, -6.316, 6.496], [-11.503, -5.372, 15.109], [-2.037, 4.433, 11.053], [-11.073, -

3.227, 11.29], [-10.303, 4.163, 2.679], [1.553, 4.024, 12.451], [-10.13, 0.336, 2.564], [-5.639,

-9.505, 7.561], [-9.641, -9.807, 1.66], [-11.202, 2.959, 19.394], [-10.15, -4.021, 9.946], [11.349,

7.891, 9.297], [1.809, 1.453, 7.677], [-7.211, -10.403, 5.582], [-11.108, 4.258, 11.832], [9.6, 4.997,

12.035], [-5.467, 1.791, 13.452], [-10.592, 11.704, 9.623], [12.345, 10.131, 2.969], [-8.317, -2.714,

5.054], [11.447, -2.615, 1.462], [-3.858, -3.423, 13.381], [9.773, 7.533, 3.794], [4.827, -6.189,

0.614], [-0.236, -7.949, 10.23], [6.264, 11.251, 7.98], [11.404, 8.27, 11.309], [2.483, 10.972,

8.327], [12.158, 1.866, 11.534], [8.574, 12.456, 5.395], [-9.084, -8.93, 10.293], [-10.46, -0.151,

0.603], [-0.222, 4.592, 16.168], [-12.176, -11.95, 15.523], [-2.242, -9.76, 19.42], [-8.504, 0.671,

3.849], [-4.061, -11.527, 19.926], [-7.957, -11.059, 17.053], [9.079, -8.263, 1.379], [5.049, -8.561,

2.459], [-11.581, -12.551, 16.344], [-6.694, 5.181, 11.138], [3.285, -7.882, 3.575], [-11.653, 7.881,

19.488], [12.355, 7.447, 10.205], [-5.738, -5.213, 14.014], [-6.479, 3.603, 10.237], [4.621, 1.799,

6.112], [3.947, 0.317, 18.528], [-3.365, -9.656, 19.951], [1.527, 10.324, 6.689], [-3.553, -8.347,

5.632], [-12.045, -5.954, 14.221], [5.353, 10.462, 10.504], [-8.624, -2.451, 16.859], [-11.923,

5.403, 19.878], [0.002, -4.506, 15.211], [-5.909, 10.277, 5.091], [6.882, -2.147, 4.675], [-10.316,

3.79, 18.376], [11.732, -7.194, 17.778], [0.239, 5.068, 14.756], [3.216, 4.768, 7.644], [1.724,

-0.219, 19.036], [-2.846, -10.714, 13.515], [-8.101, 11.545, 10.855], [-9.527, 12.629, 0.962],

[0.879, 0.26, 15.494], [-4.012, 12.25, 15.559], [7.229, 6.314, 18.972], [4.681, 4.711, 0.267],

[-11.888, 6.301, 8.732], [-2.01, -5.145, 8.299], [5.12, -0.392, 1.421], [-7.317, -1.728, 7.253],
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[11.418, -5.052, 3.557], [-4.484, 6.988, 8.499]

Problem instance 8: [-9.618, 7.636, 12.086], [-5.975, 12.051, 11.329], [3.45, 7.352,

18.516], [6.554, -2.63, 4.929], [3.262, -1.93, 14.808], [0.272, 3.196, 0.342], [-3.156, 2.523,

10.204], [4.53, -8.846, 1.415], [0.655, -9.893, 12.247], [-0.479, -0.429, 17.919], [-8.94, -3.257,

17.803], [-3.965, -7.184, 9.652], [-4.304, 12.391, 3.955], [-0.569, 8.85, 0.322], [2.617, 8.235,

2.191], [2.48, 5.165, 18.785], [-9.665, 11.995, 2.62], [10.008, -5.752, 4.381], [-2.502, 3.627,

14.071], [-1.989, -4.923, 13.04], [5.544, 5.627, 7.315], [2.9, -2.478, 9.32], [4.335, 8.232, 19.273],

[9.621, 10.642, 19.853], [-9.185, 11.612, 0.627], [7.074, 12.237, 11.567], [3.819, 6.058, 8.756],

[-8.665, -11.943, 9.424], [2.15, 5.321, 16.464], [3.595, -5.21, 5.685], [12.076, -1.387, 15.444],

[2.119, -9.752, 17.785], [3.531, 6.075, 3.866], [7.681, 8.85, 5.23], [-1.734, -7.393, 0.874], [6.104,

1.825, 2.069], [4.091, -8.318, 13.46], [-9.582, 8.488, 8.279], [-7.473, 4.886, 17.283], [3.271,

-5.938, 12.28], [9.194, -12.601, 7.165], [-3.692, -0.054, 4.041], [9.7, -8.635, 19.606], [-7.054,

9.344, 15.425], [-2.351, 3.251, 8.112], [4.373, 11.319, 2.301], [12.016, -10.924, 13.755], [7.231,

-1.65, 6.279], [8.435, 3.118, 4.205], [5.955, 9.576, 1.349], [-1.868, 9.287, 15.003], [6.964, -0.492,

7.103], [6.235, -7.146, 17.926], [11.724, 2.937, 16.498], [8.009, -0.835, 9.684], [-2.106, -1.888,

8.728], [9.035, -12.448, 10.581], [-3.741, -8.163, 17.145], [1.207, 4.991, 0.073], [-4.753, -11.063,

6.492], [9.13, 3.604, 18.383], [4.912, -7.206, 2.801], [-1.139, 7.623, 10.501], [-1.141, 7.217,

15.083], [6.822, -8.826, 3.309], [0.628, 11.476, 9.972], [6.093, -9.588, 3.477], [1.72, -0.946,

8.82], [-1.477, 11.034, 16.004], [6.81, -7.837, 7.504], [-2.326, -8.961, 11.899], [-1.633, -10.407,

15.753], [-0.113, 1.457, 15.077], [9.453, -8.787, 4.088], [-11.308, -7.626, 11.06], [-7.76, 7.653,

12.387], [-11.94, -4.232, 1.064], [7.158, -8.904, 5.988], [-4.43, -5.004, 5.041], [2.561, -5.04,

16.465], [-6.574, -10.078, 14.764], [-10.697, -7.268, 0.035], [12.022, -8.789, 17.477], [-11.795,

5.444, 4.265], [-8.545, 1.089, 7.696], [-1.934, 3.061, 12.492], [11.397, 6.072, 2.599], [8.83, 6.386,

10.145], [-1.93, 4.861, 10.502], [-6.519, 7.805, 10.156], [-11.013, -0.457, 9.59], [-1.554, -4.671,

8.47], [-10.151, 12.011, 19.433], [1.756, 12.247, 13.706], [-1.518, 10.029, 10.896], [-1.254, 3.915,
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11.337], [12.363, 1.907, 5.267], [-11.168, -12.402, 6.889], [-7.166, -10.556, 16.739], [1.975, -

4.248, 9.632]

Problem instance 9: [-3.269, -12.364, 0.69], [-3.372, 4.375, 19.162], [-7.462, -9.89,

4.057], [2.489, -4.057, 5.559], [7.179, -9.746, 0.4], [-9.422, -4.39, 7.635], [-5.301, -7.556, 0.179],

[-0.753, 3.215, 9.586], [-7.773, -11.437, 19.424], [-7.365, 12.257, 4.893], [-4.57, -4.687, 5.256],

[3.698, -2.254, 8.19], [3.522, 2.116, 4.807], [5.151, 4.126, 4.96], [-10.498, -10.47, 14.013],

[12.387, 5.501, 13.133], [-11.346, 11.183, 1.832], [10.319, 3.347, 15.116], [-12.01, 6.917, 0.088],

[-0.007, -6.076, 1.035], [-2.958, -1.065, 1.893], [-9.528, 6.26, 19.831], [-0.566, -4.285, 15.42],

[0.493, -5.517, 18.417], [4.291, -6.307, 15.359], [-4.149, -9.415, 18.732], [-4.176, -7.38, 16.716],

[1.878, -5.36, 11.914], [-5.459, -6.694, 3.197], [-10.37, 11.479, 3.384], [-9.435, -9.971, 0.219],

[-9.913, -1.974, 11.47], [-0.457, 11.14, 11.754], [4.946, 2.701, 10.66], [10.125, -7.016, 9.828],

[-10.089, -5.895, 14.069], [-4.09, 9.494, 5.121], [5.298, 2.932, 13.972], [-2.27, -3.337, 17.73],

[3.557, -8.986, 1.335], [-10.186, -8.424, 1.786], [11.378, 10.532, 16.882], [-11.856, 4.134, 2.787],

[-5.974, 8.78, 11.437], [6.088, -1.902, 15.754], [-7.783, 5.464, 13.636], [5.74, -11.196, 3.785],

[11.225, 3.605, 2.262], [7.686, -4.456, 5.49], [12.328, 5.429, 15.51], [-6.795, -7.176, 16.576],

[-4.224, -4.893, 7.399], [10.984, -7.736, 3.743], [4.459, -10.925, 7.916], [-3.325, -7.874, 7.91],

[-9.868, -6.454, 16.422], [3.205, 4.046, 19.897], [-0.562, 8.391, 6.979], [12.515, 9.865, 13.986],

[7.802, 4.947, 1.499], [-1.118, -4.086, 5.547], [6.354, -12.57, 3.049], [-1.65, 8.81, 19.706], [-6.632,

12.088, 17.996], [9.033, -7.763, 5.043], [6.568, -6.875, 7.228], [-7.176, 8.297, 4.438], [1.326, -

3.344, 1.035], [-8.131, -1.663, 14.363], [11.641, -10.327, 5.555], [-2.304, -6.478, 18.936], [1.04,

6.809, 14.24], [6.238, -5.914, 11.418], [-6.724, 12.313, 6.884], [-11.801, -0.306, 13.319], [1.717,

-9.93, 12.055], [-10.816, 4.833, 12.906], [0.169, 7.388, 3.572], [-11.35, 3.037, 11.309], [1.915,

-8.869, 18.399], [1.554, -4.554, 14.126], [1.978, -1.35, 13.766], [1.858, 3.23, 19.534], [-8.716, -

11.853, 11.629], [-6.452, -9.914, 11.749], [6.686, 12.313, 6.082], [-1.342, -11.241, 5.793], [3.783,

5.499, 15.332], [-8.256, 8.046, 4.409], [-2.23, -8.64, 11.334], [-12.015, -2.785, 1.286], [-11.329,

2.245, 5.513], [6.811, 8.68, 3.302], [0.764, 10.714, 10.743], [0.814, 11.175, 8.916], [5.286, 6.981,
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9.21], [-1.08, -0.818, 10.918], [11.187, -2.742, 10.817], [-3.174, -5.977, 9.14], [5.037, 2.423, 17.3]

Problem instance 10: [2.943, 7.916, 2.432], [-1.282, -0.75, 8.911], [8.444, 8.817, 4.89],

[4.896, -5.592, 19.765], [0.244, 1.693, 11.362], [5.473, 0.517, 13.669], [-11.127, 6.653, 16.373],

[3.778, 7.641, 11.378], [-4.417, -10.709, 8.271], [11.565, 5.17, 19.93], [-7.172, 10.349, 0.389],

[-1.235, -4.404, 15.35], [1.936, -8.119, 7.338], [-1.168, 10.974, 7.232], [-2.412, 6.433, 18.935],

[-11.218, -12.247, 16.754], [-4.64, 3.077, 13.13], [-4.786, -5.645, 4.36], [6.133, -1.797, 16.088],

[-10.61, -9.424, 16.385], [-10.171, -4.361, 8.741], [2.965, -1.478, 5.719], [-6.615, 8.81, 17.658],

[1.607, 1.799, 6.896], [10.967, -0.768, 6.717], [6.374, -1.979, 0.201], [2.135, 4.313, 6.454], [-

2.228, -12.013, 3.289], [-6.111, -1.283, 1.998], [12.38, -7.179, 14.343], [10.759, 3.967, 7.084],

[9.79, 8.501, 12.915], [-5.531, -9.705, 1.272], [5.12, -1.99, 3.344], [6.154, 0.131, 7.431], [11.567,

10.693, 1.958], [-6.415, 4.563, 9.428], [-7.418, 0.17, 3.811], [-8.924, 8.497, 4.69], [-4.924, -5.98,

8.286], [4.388, -3.198, 16.521], [-12.255, -10.414, 3.542], [2.839, -5.141, 19.301], [-6.881, -9.594,

5.814], [-2.489, 4.622, 10.979], [2.395, -7.893, 15.315], [11.627, -1.229, 16.199], [5.065, 8.249,

19.338], [9.623, 0.52, 7.279], [-10.254, 3.714, 17.83], [9.284, 1.178, 2.509], [4.833, 2.02, 0.858],

[-5.812, -6.704, 16.202], [-9.531, 4.384, 15.356], [6.032, 0.591, 11.41], [2.016, 0.154, 12.522],

[4.928, 9.289, 4.648], [-11.294, -3.668, 2.806], [-8.62, -6.904, 4.737], [-9.162, 2.814, 3.119], [-

6.415, 10.692, 18.221], [4.442, -4.069, 3.385], [1.588, -11.562, 6.345], [-3.302, -9.642, 12.14],

[8.748, 5.691, 14.506], [8.897, -10.95, 0.805], [-10.184, -2.633, 8.057], [7.618, -1.831, 10.831],

[7.014, 3.846, 16.897], [11.503, 7.422, 14.092], [-0.947, 10.541, 9.031], [0.694, -0.64, 3.754],

[6.636, 1.014, 18.87], [5.646, -5.443, 17.664], [-5.267, -11.79, 0.424], [-10.72, -1.71, 8.619],

[-1.018, -2.937, 0.053], [6.624, 0.552, 9.238], [-10.534, 12.301, 1.187], [11.212, 2.101, 1.46], [-

0.265, 8.228, 7.891], [-10.86, -7.464, 6.031], [3.797, -4.066, 5.626], [7.644, 7.595, 4.296], [5.445,

6.519, 16.725], [-3.541, -10.011, 15.248], [-0.77, -4.894, 5.555], [0.975, 6.139, 3.227], [8.107,

6.646, 1.64], [8.942, 10.952, 11.063], [-2.55, 10.216, 4.098], [10.474, -6.955, 17.282], [-0.823, -

5.334, 13.838], [-6.456, 11.252, 12.18], [4.216, -9.329, 14.415], [-10.169, -9.939, 18.697], [8.748,
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-5.168, 7.536], [0.651, 7.051, 3.13], [0.004, -0.404, 7.353], [-6.981, 8.715, 9.055]

A.6 The 150 user scenario

Problem instance 1: [3.407, 10.441, 0.013], [13.426, 0.3, 5.11], [-13.29, -11.287, 19.153],

[-6.542, -8.681, 14.729], [13.832, -14.083, 14.45], [4.254, 15.289, 15.753], [5.161, -13.625,

19.662], [-13.624, -0.668, 14.269], [-12.497, -2, 3.737], [-6.524, 8.363, 14.803], [-4.393, 0.203,

8.585], [-4.323, -15.431, 12.228], [-11.397, 1.041, 1.925], [0.261, -8.304, 10.052], [14.264, -6.645,

12.703], [1.528, -8.667, 1.513], [11.434, 7.663, 4.606], [8.799, -3.397, 14.304], [-14.484, 1.067,

10.943], [-15.297, -7.717, 10.304], [14.719, -13.366, 5.83], [2.883, 6.261, 0.042], [6.354, 12.152,

0.755], [-15.145, 14.305, 7.282], [1.478, 8.079, 6.955], [-9.843, 12.354, 17.293], [9.908, 4.886,

9.802], [-14.478, -6.734, 7.194], [10.643, -14.028, 18.491], [0.124, -14.682, 4.166], [-10.622,

-15.458, 9.775], [-14.786, 10.756, 14.335], [-0.298, -4.961, 13.144], [-4.555, 0.149, 17.368], [-

12.386, 3.204, 1.009], [1.704, -11.322, 19.711], [-8.208, 13.545, 7.03], [9.945, -11.508, 19.099],

[5.676, -7.041, 8.193], [14.834, 13.645, 0.284], [6.809, -1.404, 10.279], [-1.042, -8.339, 19.315],

[-5.407, -13.109, 13.917], [-9.958, -5.034, 12.623], [9.721, -1.796, 18.098], [-5.297, -12.941,

16.108], [8.581, 4.602, 18.198], [-3.732, 13.037, 12.932], [-6.201, -7.242, 1.301], [-4.888, 11.265,

12.931], [2.303, -9.121, 1.617], [7.895, 4.637, 1.716], [-10.277, -1.451, 18.109], [-6.958, 10.482,

2.69], [5.634, -2.48, 10.246], [10.326, -1.297, 4.575], [3.872, 1.999, 5.374], [-9.228, -13.872,

2.798], [11.113, 13.494, 5.496], [-3.202, -4.905, 13.783], [-13.223, -12.432, 18.704], [3.294,

4.265, 6.007], [-7.435, 14.976, 7.005], [-14.371, -5.418, 1.601], [6.547, -1.105, 7.818], [-9.899,

3.048, 11.707], [-5.055, -4.277, 9.733], [-6.241, 8.834, 3.81], [-15.337, 9.111, 2.828], [12.024, -

3.207, 9.626], [-9.339, -2.86, 2.721], [-3.787, -4.367, 5.35], [15.308, 2.9, 14.046], [-6.242, 11.504,

14.616], [13.885, -12.734, 13.559], [-14.112, 5.175, 19.723], [-7.893, -0.527, 11.9], [-8.913, 4.948,

11.29], [5.589, 13.422, 7.164], [13.549, 10.444, 16.289], [-2.125, -5.36, 12.526], [5.394, -12.429,

10.574], [-12.304, -11.5, 5.59], [-9.346, 5.498, 4.192], [4.541, 9.21, 17.629], [1.69, -6.608, 15.95],

[13.025, 9.711, 18.686], [-0.552, 10.099, 10.804], [-4.487, -13.159, 17.785], [-13.149, -7.451,
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6.505], [-12.828, -10.728, 12.94], [9.889, -12.817, 12.492], [-2.631, -4.926, 11.606], [-14.953,

-8.98, 9.002], [-2.943, 11.586, 11.23], [-1.072, -5.085, 0.947], [-14.677, 11.093, 19.401], [5.598,

10.402, 1.795], [-13.514, -1.577, 13.446], [2.928, 8.16, 0.478], [5.055, 4.621, 16.825], [-0.795,

-6.667, 17.41], [-13.005, 3.429, 17.818], [-5.859, -9.829, 5.925], [-11.868, 14.503, 6.585], [2.892,

4.162, 3.004], [4.362, -5.438, 17.225], [9.853, -0.983, 19.897], [11.087, 0.031, 10.633], [-3.534,

1.708, 17.287], [-13.719, -11.191, 8.493], [1.972, -9.334, 11.908], [2.979, 1.199, 5.789], [5.564, -

2.693, 17.42], [-12.201, -4.575, 8.782], [7.848, -7.385, 15.093], [-7.402, 1.45, 4.921], [4.862, 3.54,

1.892], [-2.795, -7.313, 10.249], [9.455, 13.507, 1.696], [4.879, 0.425, 14.073], [14.993, 1.863,

19.624], [9.576, 3.413, 18.683], [4.94, -0.303, 19.3], [-8.611, -10.165, 11.312], [1.958, 14.731,

2.222], [-3.266, -7.621, 11.195], [-0.197, 5.544, 16.721], [9.794, 14.493, 17.339], [-11.601, -7.649,

6.097], [-6.381, -11.459, 15.426], [-11.456, 1.309, 12.018], [-11.264, -3.934, 10.494], [7.121, -

11.191, 18.734], [2.755, 9.621, 17.165], [-5.814, 0.872, 10.471], [-7.841, 13.345, 7.825], [6.07,

15.307, 10.097], [-9.805, -0.819, 6.269], [-10.82, -3.313, 17.763], [-2.233, 1.575, 2.77], [-10.054,

-14.961, 0.509], [-2.75, 10.957, 0.38], [-1.336, -15.453, 9.787], [-13.921, -3.07, 18.709], [-8.055,

3.44, 2.535], [8.026, -8.727, 18.795], [15.377, 9.763, 16.278], [2.132, -8.266, 6.296], [-13.89,

-10.686, 14.343]

Problem instance 2: [-13.634, 13.014, 16.264], [-9.592, -7.623, 1.571], [-6.037, 7.223,

16.276], [10.262, -2.769, 16.322], [1.23, 11.462, 11.183], [7.443, -4.548, 10.679], [-0.75, 9.77,

9.016], [1.854, 15.393, 13.796], [-12.083, -2.81, 5.947], [13.57, 1.743, 12.313], [-6.382, 4.728,

9.247], [-11.52, 2.944, 10.161], [7.178, -11.009, 2.67], [10.215, 7.191, 0.845], [5.171, 14.104,

18.317], [10.599, 2.4, 10.013], [-1.183, 12.732, 16.846], [-9.265, 9.697, 8.267], [14.643, 2.314,

0.845], [-13.274, 7.967, 11.699], [10.949, -0.668, 2.33], [-10.659, -6.104, 19.088], [-14.231,

11.314, 9.598], [7.227, 12.026, 9.552], [11.934, 9.956, 8.333], [8.152, 2.146, 19.653], [-9.741,

2.599, 9.7], [-3.129, 14.888, 0.65], [-0.111, -0.503, 16.267], [-3.99, 4.739, 1.652], [-0.793, 12.817,

6.83], [10.422, 11.594, 12.227], [5.557, 5.957, 11.02], [7.822, -6.823, 1.113], [1.477, 2.993,

9.313], [-3.862, -11.885, 11.642], [-5.11, 4.333, 0.817], [8.268, -0.522, 0.667], [7.099, -14.191,
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7.482], [12.815, 13.262, 2.596], [-9.595, 6.109, 8.587], [-10.139, 1.784, 5.198], [-9.277, 13.324,

17.39], [-2.209, -13.174, 7.763], [14.232, -4.892, 13.669], [13.895, -12.595, 18.338], [5.14, 12.985,

7.284], [5.724, -7.379, 18.8], [-12.731, 5.525, 11.776], [-4.74, -3.925, 3.255], [-2.442, -3.864,

9.753], [-8.467, -11.383, 9.477], [10.197, -12.009, 17.368], [10.231, 5.349, 16.078], [1.23, -

11.222, 4.173], [-13.595, -9.801, 15.493], [-3.98, -2.054, 7.789], [1.087, 13.145, 9.345], [-5.954,

-2.355, 16.332], [9.388, 11.351, 3.99], [5.281, 10.707, 16.745], [-6.412, -12.574, 2.972], [0.753,

12.198, 2.667], [3.172, -14.894, 9.704], [-1.754, 9.648, 12.744], [-1.988, 0.434, 18.737], [1.499,

-10.168, 12.95], [-10.941, -3.967, 0.231], [-13.961, -9.323, 19.123], [-5.088, -13.764, 3.749],

[1.196, 6.522, 2.71], [-7.132, 0.96, 19.922], [-1.246, -13.953, 2.161], [6.812, -13.608, 0.188],

[-4.354, 2.493, 3.338], [5.477, 3.953, 6.197], [-7.082, -1.388, 1.828], [-7.832, 14.549, 17.989],

[-12.715, -6.061, 2.727], [14.44, -4.53, 14.912], [-7.348, -7.598, 18.426], [6.563, -7.961, 18.088],

[-0.759, -1.955, 12.274], [-4.583, -13.133, 1.463], [-9.22, 10.372, 17.752], [10.224, 8.234, 14.086],

[-1.979, 13.122, 17.943], [-11.284, -8.085, 14.839], [9.825, 11.319, 2.049], [-1.989, -5.354, 5.718],

[-9.637, 14.305, 0.854], [-1.363, -0.458, 12.465], [-9.588, -14.748, 14.466], [-13.082, 6.42, 0.254],

[0.12, -14.585, 10.529], [2.878, -14.1, 5.22], [-13.991, 3.194, 5.602], [8.621, -7.932, 4.373], [-

4.194, -10.901, 8.182], [9.494, -6.943, 13.997], [1.234, -5.096, 7.97], [8.484, -9.944, 13.486],

[1.437, 0.393, 16.65], [5.112, 9.883, 15.107], [14.834, -5.841, 8.717], [4.612, -11.8, 9.566], [-7.82,

14.417, 15.273], [-4.611, -9.695, 10.04], [-14.9, -14.567, 17.348], [-1.39, -0.811, 13.725], [0.511,

9.637, 13.329], [-11.384, -10.215, 2.19], [0.895, 2.09, 15.539], [-5.404, 10.077, 0.848], [11.626,

12.144, 0.714], [-4.52, -2.725, 13.343], [13.818, -5.496, 2.145], [-9.333, 5.556, 19.547], [-4.012,

-8.028, 17.988], [10.309, 8.383, 9.211], [-2.937, -9.968, 9.927], [11.119, 5.683, 0.544], [-3.377,

-9.964, 10.933], [1.793, 9.29, 17.672], [5.628, -2.036, 5.134], [-13.543, -7.092, 0.232], [-15.053,

12.461, 19.448], [2.831, 0.331, 4.623], [7.481, -11.822, 14.778], [-2.383, -6.092, 17.256], [10.661,

-4.607, 9.691], [0.229, 15.435, 2.088], [12.367, -4.315, 14.037], [-13.179, 10.191, 16.357], [-

11.856, 0.141, 16.239], [-3.344, 1.09, 18.25], [3.201, -14.32, 4.661], [-7.503, -1.679, 16.421],

[-4.988, -14.135, 6.768], [-11.634, 4.259, 2.78], [-15.457, 7.754, 9.765], [9.025, -8.701, 0.829],

[5.923, -10.348, 11.588], [11.532, -6.499, 6.005], [-4.058, -5.916, 10.526], [8.535, 9.279, 12.01],
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[-1.991, 1.218, 9.335], [-11.07, -6.651, 15.966], [13.814, 6.541, 12.258], [-4.843, -6.987, 2.7]

Problem instance 3: [-13.351, 10.832, 0.317], [-9.764, 10.086, 8.453], [5.737, -15.291,

9.813], [-2.79, 2.493, 13.425], [3.344, 14.201, 3.374], [3.291, 9.883, 3.359], [15.145, 2.235,

14.871], [-13.553, 10.775, 18.653], [-14.234, 2.269, 2.583], [-0.429, -11.059, 18.295], [-0.92, -

3.829, 6.404], [6.03, 3.098, 19.06], [12.279, 8.918, 7.024], [1.85, -9.621, 18.024], [4.387, 8.671,

5.174], [0.269, -5.447, 17.889], [-8.235, -6.147, 17.724], [-2.186, -2.761, 10.177], [-9.233, 13.478,

0.987], [4.252, 1.07, 15.58], [-5.976, -2.169, 17.143], [4.026, -6.871, 9.306], [11.305, -9.192,

18.278], [6.604, 12.528, 5.954], [-7.198, -2.249, 14.029], [-8.373, 9.737, 0.981], [-0.985, -10.805,

3.029], [9.93, -13.879, 14.799], [8.874, -13.357, 1.984], [1.882, -9.542, 2.361], [-12.78, 10.631,

13.116], [-9.17, -6.004, 2.613], [-0.709, 8.476, 6.345], [-4.379, -8.588, 7.044], [10.167, -13.95,

8.951], [-11.246, -13.588, 18.027], [-3.282, -15.029, 11.516], [10.965, 1.002, 18.171], [8.79, -

2.696, 7.65], [6.733, -12.73, 7.521], [6.359, 5.996, 19.24], [15.021, 14.41, 8.083], [-2.946, 9.279,

15.402], [-12.498, -1.287, 11.301], [8.461, 14.202, 4.504], [-3.296, 6.685, 18.638], [-8.191, -3.472,

11.642], [11.905, 6.11, 17.364], [-10.999, 3.931, 1.108], [-13.603, -10.111, 13.617], [6.946, 5.786,

17.737], [-4.753, -14.831, 12.164], [10.44, -15.1, 2.338], [15.245, 6.35, 7.92], [-3.113, -11.044,

7.936], [-10.816, 14.003, 11.292], [14.087, -6.698, 10.95], [11.1, 10.186, 14.411], [14.522, -

9.779, 13.165], [9.523, 13.481, 5.995], [10.01, -9.308, 19.517], [-6.25, -10.613, 9.469], [-6.129,

-14.229, 9.408], [-14.474, -6.704, 2.824], [14.098, -10.545, 14.893], [-6.439, 0.881, 11.666],

[-4.161, -0.372, 19.139], [-3.433, 10.955, 15.701], [-4.539, -14.381, 8.455], [12.941, 9.982,

14.294], [13.562, 12.923, 7.301], [-5.737, -0.473, 0.043], [-8.301, 5.71, 12.003], [5.611, -10.026,

13.447], [9.632, 3.865, 18.3], [4.284, -3.181, 19.942], [6.503, -3.757, 15.228], [2.811, -2.036,

5.88], [11.294, 8.215, 10.96], [1.168, 6.797, 15.77], [3.679, 4.288, 8.683], [3.178, 3.275, 16.282],

[8.875, 12.337, 12.729], [9.834, 10.846, 1.864], [-9.669, -7.673, 19.174], [-7.282, 4.334, 6.936],

[6.025, -12.321, 2.748], [12.34, -5.586, 6.573], [-1.39, 1.324, 15.319], [7.398, 2.469, 4.473], [-

3.514, 14.684, 12.467], [-0.283, 5.169, 9.634], [4.376, 11.209, 16.751], [-12.559, -15.233, 3.86],

[-8.714, -1.272, 13.289], [6.277, -2.088, 16.342], [0.521, 9.89, 0.354], [10.856, 11.79, 4.414],

217



[-9.531, -5.594, 19.771], [-12.588, 6.317, 6.543], [-8.476, -4.576, 7.258], [-1.151, 9.132, 10.331],

[-0.43, -4.093, 10.37], [-13.631, 14.17, 18.417], [-9.467, 2.587, 19.573], [12.645, -12.427, 8.429],

[7.37, 11.765, 7.14], [4.315, 1.172, 7.333], [15.31, 13.899, 12.641], [5.453, -11.912, 9.957], [-

6.375, 1.943, 0.471], [-1.84, 8.933, 19.037], [-2.076, -9.741, 1.34], [1.725, -11.679, 0.36], [-6.363,

0.228, 11.289], [6.221, 6.298, 7.67], [-12.131, -15.365, 4.856], [-2.409, -2.249, 11.663], [0.838,

-2.798, 10.468], [-12.95, 13.596, 18.435], [7.082, 7.324, 0.521], [8.86, -11.715, 9.845], [-12.42,

-12.11, 11.997], [9.41, -2.08, 14.345], [-4.3, 0.725, 6.939], [3.402, 13.227, 12.449], [7.774, -0.521,

16.781], [6.788, 0.414, 17.401], [4.925, -9.943, 1.171], [-1.45, 12.474, 16.226], [-8.859, 12.831,

5.961], [12.15, 5.937, 7.154], [12.185, 13.124, 11.502], [-7.094, 11.849, 16.562], [3.97, -13.254,

13.916], [10.144, 13.606, 10.741], [-9.544, -13.474, 5.508], [15.353, -0.348, 18.327], [5.522,

-1.616, 14.203], [-5.196, 5.233, 3.93], [3.859, 6.91, 17.184], [-9.421, -11.421, 1.54], [-9.557,

13.034, 3.731], [13.666, -12.258, 12.644], [7.919, -2.806, 3], [5.863, -13.141, 6.648], [11.981,

3.683, 18.014], [-1.283, 3.034, 12.203], [-12.919, 14.329, 10.311], [-4.405, 8.569, 16.216]

Problem instance 4: [7.998, -14.994, 4.379], [-3.934, -1.361, 0.317], [4.511, 15.174,

5.042], [1.13, 2.693, 13.085], [14.865, -14.384, 1.632], [7.776, -1.827, 3.663], [2.033, -8.446,

0.488], [11.288, 10.011, 12.139], [6.888, -11.245, 18.476], [3.511, -10.101, 13.341], [3.412,

8.073, 16.015], [-0.035, -4.128, 4.304], [-5.601, 13.523, 0.392], [-7.074, 13.672, 0.617], [-11.394,

9.619, 18.274], [7.55, -8.406, 17.171], [12.713, 15.373, 7.79], [-14.747, 11.911, 11.239], [-9.492,

4.546, 18.628], [-6.916, -13.537, 8.739], [-12.205, 7.252, 3.949], [7.889, 8.754, 8.156], [-7.51,

3.96, 4.196], [-2.557, -6.123, 4.303], [-1.298, 3.799, 2.976], [5.287, -14.778, 14.047], [3.487,

14.384, 7.218], [8.891, 3.32, 14.707], [3.63, -5.631, 11.635], [1.457, -13.311, 12.252], [8.014,

-0.909, 16.254], [12.062, -3.262, 15.11], [-14.261, -2.863, 2.702], [-10.803, -2.96, 2.029], [-3.252,

11.629, 19.324], [-1.708, -5.703, 11.953], [12.444, -9.192, 7.675], [-4.093, -2.775, 12.774], [4.261,

-10.438, 7.67], [1.532, -4.987, 0.047], [-14.685, 8.056, 10.272], [-12.289, -11.376, 7.34], [-5.505,

15.063, 16.591], [-3.391, 1.72, 15.162], [2.801, 1.366, 10.452], [-6.652, -5.86, 9.934], [-9.898,

-8.05, 10.825], [9.878, 3.94, 0.946], [12.672, -9.529, 10.487], [2.484, -13.436, 8.439], [-8.739,
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-6.878, 18.14], [-12.654, -1.881, 0.171], [-7.324, -8.066, 9.412], [-1.201, -8.309, 7.455], [2.437,

-11.698, 17.721], [-4.58, 12.024, 18.667], [-10.649, -11.709, 15.757], [6.878, 2.822, 16.902], [-

11.595, 1.201, 10.426], [2.144, 11.283, 18.491], [-6.62, 5.232, 18.265], [-5.499, 13.888, 18.962],

[-9.219, 13.79, 18.402], [13.393, 8.664, 5.144], [3.778, 3.196, 17.681], [-13.512, 10.857, 3.011],

[-6.159, 5.14, 6.328], [-13.933, -7.773, 8.086], [-3.075, -11.769, 2.225], [13.641, 14.689, 10.388],

[2.991, -1.274, 0.032], [12.806, -2.867, 1.876], [5.702, 3.05, 6.825], [-5.349, -8.084, 18.546],

[8.827, 11.307, 19.986], [7.529, -0.301, 4.465], [-1.681, -11.916, 2.666], [3.978, -14.744, 1.16], [-

10.21, 14.127, 18.134], [5.759, -12.508, 9.275], [-14.742, -0.665, 7.445], [9.635, 11.867, 19.933],

[-2.639, -9.81, 17.152], [10.279, -0.533, 4.884], [-7.761, 14.149, 1.779], [10.661, -6.064, 8.651], [-

9.169, -0.1, 15.009], [4.647, 14.453, 17.143], [-6.777, -12.472, 3.831], [-12.819, -11.25, 18.579],

[3.179, 8.108, 6.828], [-7.394, -13.645, 14.486], [8.43, -2.896, 11.66], [6.55, -9.276, 12.913],

[7.18, 5.792, 4.626], [-3.074, 14.484, 19.164], [5.846, 2.222, 11.234], [-13.137, 13.935, 1.256],

[13.059, 3.463, 9.337], [5.987, -7.744, 3.086], [4.038, 15.088, 5.003], [-12.847, 7.581, 5.386],

[-4.249, 3.637, 1.989], [2.428, 6.691, 11.751], [-5.392, 4.411, 3.92], [5.099, -10.17, 12.638], [-

14.666, 8.205, 15.778], [10.892, -6.467, 3.437], [-10.953, -1.677, 12.921], [-8.725, 1.125, 3.726],

[1.032, -5.605, 5.379], [10.333, -7.547, 16.474], [13.238, -1.269, 19.779], [-9.38, 7.072, 13.021],

[0.231, 11.186, 14.862], [-7.566, -4.394, 15.297], [-10.896, 9.29, 2.669], [11.366, 6.86, 8.822],

[11.615, -0.951, 9.176], [6.04, -4.475, 1.807], [11.65, 14.716, 13.998], [-11.305, -13.023, 0.378],

[10.703, 14.382, 19.542], [-10.663, -4.169, 0.007], [-0.071, 7.434, 18.943], [4.114, -4.96, 17.47],

[-10.738, -1.81, 13.858], [1.891, -2.932, 15.329], [-1.442, -6.42, 4.622], [1.409, 11.424, 7.159],

[1.634, -7.307, 11.123], [9.776, -12.804, 18.33], [-11.687, -5.135, 17.634], [-13.018, 2.111,

11.792], [10.574, -4.094, 1.492], [3.528, -0.655, 15.038], [-10.332, -7.381, 19.165], [-14.009,

7.291, 5.065], [2.062, 11.163, 16.233], [10.097, -14.06, 16.514], [5.104, 15.198, 14.909], [-5.095,

10.881, 3.291], [0.58, -15.337, 11.607], [-9.845, 12.757, 0.841], [11.522, 2.057, 18.013], [-12.331,

11.886, 3.856], [14.648, 3.638, 7.286], [-7.559, -13.745, 17.126], [-12.045, -2.458, 7.325], [-4.285,

-12.123, 6.62]
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Problem instance 5: [-8.113, -6.875, 5.265], [10.903, -0.757, 16.87], [5.798, -3.019,

15.504], [-7.304, -7.434, 2.493], [10.747, -11.529, 9.111], [-7.732, 13.608, 7.032], [6.836, 10.831,

0.603], [12.561, -5.578, 11.039], [-11.107, -5.052, 2.82], [8.126, 4.707, 5.066], [-3.421, 9.708,

13.456], [-5.115, -8.719, 0.458], [-10.063, -15.48, 9.832], [-8.897, 12.555, 12.081], [-0.274, -

10.563, 13.064], [11.27, -4.216, 17.17], [-8.815, 10.253, 6.903], [6.482, 13.328, 2.404], [10.835,

15.176, 9.041], [11.903, 5.105, 6.417], [0.09, -0.572, 18.423], [-10.805, 5.169, 15.584], [-0.987,

7.068, 10.464], [9.423, 3.565, 5.727], [11.953, -8.587, 7.859], [-1.891, -7.365, 11.065], [-9.361,

12.89, 12.474], [0.828, -3.113, 2.861], [-4.715, 14.451, 2.661], [8.344, 10.546, 11.968], [3.282,

-8.221, 8.615], [-10.807, 12.411, 10.234], [-3.226, -11.513, 12.609], [4.78, 15.353, 4.975], [-

4.236, -11.521, 5.043], [1.473, -0.559, 1.589], [4.673, -15.451, 7.352], [7.686, 1.534, 1.715],

[-2.364, 2.382, 7.809], [-9.868, 2.805, 10.048], [11.377, -7.47, 5.129], [11.366, 14.975, 5.473],

[-0.94, 7.846, 2.858], [6.002, -14.451, 19.529], [-10.193, 5.542, 2.279], [-4.403, -12.914, 6.143],

[14.754, 3.132, 11.395], [12.262, 13.196, 0.966], [-10.833, 11.684, 1.138], [-13.114, 7.356, 5.406],

[-10.794, -8.749, 6.53], [-10.087, 1.452, 9.624], [2.737, -14.33, 14.044], [2.75, 12.516, 5.136],

[12.768, -14.704, 19.5], [-3.489, 13.326, 5.043], [-3.161, -1.824, 14.43], [-10.682, -14.043, 0.114],

[-10.614, -14.707, 19.731], [-9.814, 4.587, 15.603], [8.893, 5.785, 7.427], [-12.966, 2.919, 11.679],

[2.795, -9.207, 5.239], [6.629, 3.818, 19.531], [-1.25, 1.623, 16.939], [11.105, 2.908, 19.757],

[10.548, -7.553, 3.909], [8.366, -7.348, 3.145], [0.855, 4.841, 2.629], [9.193, 7.117, 6.771], [8.448,

6.885, 16.298], [-5.693, 8.888, 7.461], [1.217, 4.716, 15.771], [-7.388, -1.538, 9.397], [-10.354,

8.725, 13.917], [-5.312, -4.676, 5.308], [7.671, 10.136, 13.607], [-10.517, 10.087, 9.075], [-

4.056, -0.397, 3.467], [13.497, -11.186, 15.471], [-1.628, -2.754, 7.458], [-13.451, 4.188, 19.734],

[15.313, -10.031, 11.85], [2.889, -9.863, 16.588], [10.813, -8.907, 18.987], [3.899, 5.353, 1.48],

[-4.824, -0.812, 8.989], [-8.712, -11.726, 10.069], [10.659, 7.585, 19.053], [2.997, -6.377, 18.771],

[-11.382, 3.755, 3.217], [8.489, -15.025, 12.425], [2.579, 15.274, 18.195], [-15.473, 8.011, 8.689],

[-11.183, -12.143, 8.862], [-7.099, 15.031, 4.44], [1.08, 5.873, 7.314], [2.8, -6.948, 17.802], [-

7.632, -0.627, 3.085], [15.128, 11.605, 12.293], [-2.892, -9.625, 16.157], [-6.892, -0.112, 2.063],

[1.451, 8.46, 10.07], [-9.994, -5.256, 11.14], [5.059, -7.096, 5.266], [-4.569, 5.82, 7.144], [8.355,
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3.455, 5.79], [-8.847, 9.322, 6.841], [-2.139, -3.25, 19.508], [10.739, -12.795, 12.909], [-9.139,

14.808, 0.448], [-13.765, 3.543, 2.431], [7.132, -7.405, 5.967], [7.832, -10.995, 14.671], [5.458,

13.04, 9.111], [-2.777, -9.16, 0.739], [2.646, -3.017, 19.417], [-4.986, 10.421, 10.388], [-12.242,

-8.053, 4.335], [-11.119, 13.065, 14.799], [1.907, -3.198, 4.025], [7.952, -0.222, 14.611], [4.113,

8.248, 9.877], [-4.736, 11.818, 17.56], [-7.837, 6.717, 2.666], [11.703, 9.651, 5.918], [7.621, -

1.2, 17.16], [15.042, -2.169, 18.946], [14.997, -9.727, 2.982], [1.563, -14.609, 10.522], [13.472,

10.921, 4.667], [11.677, 6.206, 15.867], [0.389, -13.142, 9.388], [8.408, -14.361, 15.161], [-6.532,

10.1, 1.492], [4.82, 11.172, 7.402], [-10.817, -12.952, 10.846], [2.998, -10.411, 11.719], [8.186,

-15.087, 3.9], [13.366, -4.349, 14.328], [1.107, 3.55, 16.162], [-7.228, -1.347, 19.818], [-14.925,

7.238, 9.078], [-4.676, 14.488, 7.999], [4.907, -13.542, 5.672], [-3.194, -0.601, 8.648], [13.613,

14.254, 0.755], [11.101, 2.785, 13.342], [-3.436, -2.026, 19.329], [-12.069, -0.404, 10.785]

Problem instance 6: [-10.707, -13.408, 1.966], [5.156, 7.942, 4.234], [10.236, 12.826,

12.872], [-2.368, -10.515, 19.712], [12.51, 5.51, 14.972], [-14.802, -6.349, 5.411], [-13.1, 15.108,

16.055], [1.613, 4.817, 14.181], [-4.788, -13.81, 9.328], [3.416, 6.054, 2.772], [13.496, 11.759,

10.97], [-15.008, 12.554, 3.239], [12.031, 12.288, 19.512], [-5.342, -1.454, 9.299], [5.823, 14.603,

3.182], [-7.65, -6.053, 13.902], [12.667, 1.594, 10.818], [14.349, -6.985, 5.917], [1.693, 15.194,

6.802], [-3.919, 13.945, 4.677], [8.169, -15.03, 16.245], [-14.805, 12.865, 9.539], [-4.55, -15.356,

12.376], [-0.39, -3.382, 6.3], [6.505, -2.566, 3.789], [-10.503, -9.16, 17.436], [-10.377, 8.014,

10.374], [-8.178, 3.327, 0.395], [12.483, -10.729, 2.688], [10.592, -3.903, 0.645], [-4.605, 9.355,

16.618], [0.512, 7.403, 10.454], [13.968, 8.388, 3.913], [-8.395, -0.387, 19.209], [13.792, 4.215,

3.14], [11.72, 8.28, 5.8], [-1.408, 13.063, 7.531], [-15.314, -14.666, 5.591], [-0.843, 11.648,

16.624], [1.943, -8.469, 18.796], [-8.784, -3.696, 11.865], [3.443, 8.47, 9.848], [9.272, -14.071,

1.76], [12.733, 7.818, 9.799], [-2.515, 5.154, 18.906], [14.894, -3.033, 14.223], [-14.386, 9.895,

12.091], [2.256, -13.85, 16.316], [-6.987, -11.848, 15.376], [-4.048, -13.489, 6.761], [10.352,

9.729, 4.483], [8.465, -2.972, 1.412], [-9.349, 3.455, 6.294], [-9.775, -7.055, 6.063], [-8.514,

-8.497, 8.031], [14.105, 10.497, 4.707], [-12.091, 11.528, 2.159], [0.533, 5.154, 6.168], [7.141,
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-13.663, 9.593], [-3.986, 1.334, 9.414], [-14.416, 5.058, 17.297], [-8.343, -8.696, 3.429], [-1.971,

6.691, 3.581], [3.361, 6.658, 4.192], [-11.136, -9.428, 5.409], [11.278, 1.019, 3.246], [-1.9, 3.701,

3.888], [8.033, 8.569, 19.334], [4.793, -12.922, 14.939], [-13.404, 4.086, 2.889], [4.194, -13.072,

5.971], [-7.744, -10.616, 3.701], [13.421, 4.597, 2.687], [2.76, 7.239, 17.596], [-9.507, 4.189,

17.955], [-2.049, 2.707, 1.778], [9.255, 4.978, 18.881], [-6.61, -12.603, 6.56], [-3.049, -9.036,

4.769], [-4.15, -11.579, 7.711], [-1.382, -1.619, 5.145], [3.863, -10.741, 6.255], [3.193, -5.613,

9.054], [-10.592, 5.062, 15.909], [11.899, -15.362, 19.449], [0.484, 15.076, 0.116], [12.228, 1.665,

10.413], [13.842, -6.372, 16.993], [4.164, -7.947, 2.031], [3.551, -9.848, 1.243], [-0.42, 0.137,

12.293], [-8.836, 8.085, 0.9], [-4.666, 15.054, 10.62], [-8.091, -2.603, 10.763], [-6.28, -4.723,

9.688], [4.702, -5.957, 7.984], [-10.868, 2.285, 15.639], [9.72, 5.989, 16.731], [-12.945, 5.85,

11.334], [-15.03, 6.777, 13.909], [6.625, 0.866, 12.438], [8.866, -0.531, 3.432], [7.563, 11.388,

1.573], [-10.382, -11.164, 19.321], [9.541, 15.164, 17.983], [-6.891, 3.43, 14.268], [10.797, -

9.26, 1.665], [12.078, -1.261, 14.289], [12.673, -6.788, 12.169], [-13.333, 4.687, 17.765], [3.174,

12.256, 5.527], [-0.76, -3.038, 4.778], [11.655, -2.797, 16.521], [-2.317, -7.101, 11.492], [-14.99,

12.957, 5.049], [-9.016, 14.973, 16.473], [5.684, -8.615, 18.798], [-12.323, 5.621, 0.093], [-7.706,

-8.012, 7.921], [-1.109, -10.101, 14.262], [-10.567, 12.292, 5.304], [-5.073, 11.267, 16.936], [-

6.468, -5.511, 9.093], [-15.159, 8.753, 10.653], [8.085, 12.224, 14.299], [4.271, 3.65, 8.281],

[0.68, -5.641, 14.837], [-10.779, -6.435, 17.859], [6.876, 11.587, 15.944], [-8.098, -9.68, 10.014],

[7.781, 12.958, 3.576], [-15.12, 14.006, 4.602], [9.379, 2.739, 18.546], [8.403, 15.148, 13.022],

[-1.976, 9.027, 0.726], [-13.201, 13.574, 1.224], [-5.371, 6.091, 7.88], [-2.807, -13.98, 0.884],

[11.779, -14.519, 1.572], [-13.551, -13.885, 12.107], [14.588, -0.434, 6.048], [11.009, -1.138,

0.289], [-11.735, -11.031, 14.119], [2.499, 7.122, 18.695], [-14.768, 9.038, 9.086], [5.657, 15.456,

17.889], [2.998, -15.059, 14.555], [13.135, -10.544, 8.396], [1.317, 5.963, 2.352], [11.396, -0.805,

15.342]

Problem instance 7: [-3.646, -14.368, 4.635], [6.509, 1.36, 18.569], [13.586, 10.406,

19.517], [11.755, 0.079, 19.447], [-8.225, -4.619, 2.273], [14.922, -7.893, 8.534], [9.562, 10.308,
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3.19], [-12.303, -11.925, 15.768], [-12.896, -10.289, 18.658], [-1.849, -10.237, 8.68], [10.585,

-11.032, 5.384], [-1.542, -7.579, 14.327], [-11.595, 14.65, 15.098], [3.121, -12.118, 19.668], [-

13.524, 14.219, 17.34], [14.277, 0.892, 0.627], [-1.849, 0.034, 9.008], [0.742, -12.11, 17.036],

[-13.554, 9.448, 14.227], [-13.089, 5.888, 4.151], [9.137, 10.632, 11.503], [3.277, -1.614, 12.834],

[-2.796, -1.184, 5.835], [-5.358, -7.736, 6.496], [-14.089, -6.579, 15.109], [-2.495, 5.429, 11.053],

[-13.561, -3.952, 11.29], [-12.618, 5.098, 2.679], [1.901, 4.929, 12.451], [-12.407, 0.411, 2.564], [-

6.906, -11.641, 7.561], [-11.807, -12.011, 1.66], [-13.72, 3.625, 19.394], [-12.431, -4.925, 9.946],

[13.899, 9.665, 9.297], [2.216, 1.779, 7.677], [-8.831, -12.741, 5.582], [-13.605, 5.215, 11.832],

[11.757, 6.119, 12.035], [-6.695, 2.194, 13.452], [-12.973, 14.334, 9.623], [15.12, 12.408, 2.969],

[-10.186, -3.324, 5.054], [14.02, -3.203, 1.462], [-4.726, -4.192, 13.381], [11.97, 9.226, 3.794],

[5.912, -7.58, 0.614], [-0.289, -9.736, 10.23], [7.672, 13.78, 7.98], [13.967, 10.129, 11.309],

[3.041, 13.438, 8.327], [14.89, 2.285, 11.534], [10.501, 15.255, 5.395], [-11.125, -10.936, 10.293],

[-12.811, -0.185, 0.603], [-0.272, 5.624, 16.168], [-14.912, -14.636, 15.523], [-2.745, -11.954,

19.42], [-10.415, 0.822, 3.849], [-4.973, -14.117, 19.926], [-9.746, -13.544, 17.053], [11.119, -

10.12, 1.379], [6.184, -10.485, 2.459], [-14.184, -15.372, 16.344], [-8.198, 6.345, 11.138], [4.023,

-9.653, 3.575], [-14.272, 9.652, 19.488], [15.132, 9.12, 10.205], [-7.028, -6.384, 14.014], [-7.935,

4.412, 10.237], [5.659, 2.204, 6.112], [4.834, 0.388, 18.528], [-4.121, -11.826, 19.951], [1.87,

12.644, 6.689], [-4.352, -10.223, 5.632], [-14.752, -7.292, 14.221], [6.556, 12.813, 10.504], [-

10.562, -3.001, 16.859], [-14.602, 6.617, 19.878], [0.003, -5.519, 15.211], [-7.237, 12.587, 5.091],

[8.429, -2.629, 4.675], [-12.634, 4.642, 18.376], [14.369, -8.811, 17.778], [0.293, 6.207, 14.756],

[3.939, 5.839, 7.644], [2.111, -0.268, 19.036], [-3.485, -13.122, 13.515], [-9.921, 14.139, 10.855],

[-11.668, 15.468, 0.962], [1.076, 0.318, 15.494], [-4.913, 15.003, 15.559], [8.854, 7.733, 18.972],

[5.733, 5.77, 0.267], [-14.56, 7.717, 8.732], [-2.462, -6.301, 8.299], [6.27, -0.48, 1.421], [-8.961,

-2.117, 7.253], [13.984, -6.188, 3.557], [-5.492, 8.558, 8.499], [-5.051, 2.785, 17.239], [5.219,

-3.239, 0.304], [-6.227, 9.068, 1.424], [4.851, -2.219, 6.989], [-11.939, -4.193, 19.927], [14.324,

-10.403, 5.633], [-10.789, 7.611, 4.248], [5.105, -7.7, 1.457], [9.183, 5.313, 11.731], [-3.031,

-0.073, 7.793], [11.511, 6.692, 13.015], [-12.19, -9.829, 1.489], [14.783, -0.352, 8.973], [3.096,
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15.139, 4.893], [-3.369, 10.873, 5.043], [-3.364, -13.616, 1.423], [10.929, 10.589, 3.054], [2.904,

-10.138, 5.449], [14.496, 9.214, 12.46], [11.291, -13.528, 8.143], [13.761, 8.723, 15.737], [6.849,

7.161, 9.988], [-10.279, -12.401, 6.724], [10.472, 14.285, 3.522], [14.964, -2.947, 4.147], [-13.786,

14.103, 11.75], [1.829, -2.533, 12.113], [-5.543, 10.727, 13.664], [14.72, 3.798, 16.85], [12.848,

-9.08, 8.524], [3.216, -6.523, 10.206], [-3.382, -3.997, 8.661], [-12.041, -1.064, 15.915], [-0.35,

5.712, 7.221], [6.823, 2.277, 19.818], [7.645, -6.7, 7.036], [3.717, 9.66, 8.596], [-0.444, 12.458,

3.337], [4.336, 8.774, 0.445], [-1.438, 7.707, 9.044], [6.689, 10.233, 9.838], [3.41, 6.055, 14.035],

[11.587, 8.64, 12.742], [-10.641, 4.805, 16.464], [9.955, -1.662, 11.475], [-2.534, 10.545, 13.155],

[7.645, -2.679, 0.491], [8.96, 14.387, 17.024], [-7.786, 0.971, 9.698], [5.004, -0.12, 18.793]

Problem instance 8: [-11.78, 9.353, 12.086], [-7.317, 14.76, 11.329], [4.225, 9.005,

18.516], [8.027, -3.222, 4.929], [3.995, -2.364, 14.808], [0.334, 3.914, 0.342], [-3.865, 3.09,

10.204], [5.548, -10.834, 1.415], [0.802, -12.116, 12.247], [-0.586, -0.525, 17.919], [-10.949, -

3.989, 17.803], [-4.856, -8.798, 9.652], [-5.272, 15.175, 3.955], [-0.697, 10.839, 0.322], [3.205,

10.085, 2.191], [3.037, 6.326, 18.785], [-11.837, 14.69, 2.62], [12.257, -7.045, 4.381], [-3.065,

4.443, 14.071], [-2.437, -6.03, 13.04], [6.789, 6.892, 7.315], [3.552, -3.035, 9.32], [5.31, 10.083,

19.273], [11.784, 13.034, 19.853], [-11.25, 14.221, 0.627], [8.664, 14.987, 11.567], [4.677, 7.42,

8.756], [-10.612, -14.627, 9.424], [2.633, 6.517, 16.464], [4.404, -6.381, 5.685], [14.79, -1.699,

15.444], [2.595, -11.943, 17.785], [4.324, 7.441, 3.866], [9.408, 10.838, 5.23], [-2.123, -9.055,

0.874], [7.476, 2.235, 2.069], [5.011, -10.187, 13.46], [-11.735, 10.396, 8.279], [-9.153, 5.984,

17.283], [4.006, -7.273, 12.28], [11.261, -15.433, 7.165], [-4.522, -0.066, 4.041], [11.88, -10.576,

19.606], [-8.639, 11.444, 15.425], [-2.879, 3.981, 8.112], [5.356, 13.863, 2.301], [14.717, -13.379,

13.755], [8.856, -2.021, 6.279], [10.331, 3.819, 4.205], [7.294, 11.728, 1.349], [-2.288, 11.374,

15.003], [8.529, -0.603, 7.103], [7.637, -8.752, 17.926], [14.36, 3.597, 16.498], [9.809, -1.022,

9.684], [-2.579, -2.313, 8.728], [11.066, -15.245, 10.581], [-4.582, -9.998, 17.145], [1.478, 6.112,

0.073], [-5.821, -13.55, 6.492], [11.182, 4.414, 18.383], [6.016, -8.826, 2.801], [-1.394, 9.337,

10.501], [-1.398, 8.839, 15.083], [8.355, -10.81, 3.309], [0.77, 14.055, 9.972], [7.462, -11.743,
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3.477], [2.107, -1.159, 8.82], [-1.809, 13.514, 16.004], [8.34, -9.598, 7.504], [-2.848, -10.975,

11.899], [-2, -12.746, 15.753], [-0.138, 1.785, 15.077], [11.578, -10.762, 4.088], [-13.849, -9.34,

11.06], [-9.504, 9.373, 12.387], [-14.623, -5.183, 1.064], [8.767, -10.905, 5.988], [-5.426, -6.128,

5.041], [3.136, -6.173, 16.465], [-8.052, -12.343, 14.764], [-13.101, -8.902, 0.035], [14.724, -

10.765, 17.477], [-14.446, 6.668, 4.265], [-10.465, 1.334, 7.696], [-2.369, 3.75, 12.492], [13.958,

7.437, 2.599], [10.815, 7.821, 10.145], [-2.364, 5.954, 10.502], [-7.984, 9.559, 10.156], [-13.488,

-0.559, 9.59], [-1.904, -5.721, 8.47], [-12.432, 14.71, 19.433], [2.151, 14.999, 13.706], [-1.859,

12.283, 10.896], [-1.535, 4.795, 11.337], [15.141, 2.336, 5.267], [-13.678, -15.189, 6.889], [-

8.777, -12.928, 16.739], [2.419, -5.202, 9.632], [-1.488, 3.613, 13.278], [-0.476, 4.588, 1.309],

[-13.643, 4.935, 5.468], [-1.989, -13.26, 0.069], [-9.665, -8.619, 12.278], [12.36, 14.104, 6.986],

[9.033, -4.34, 17.899], [-8.708, -8.985, 15.622], [13.019, 11.798, 12.19], [-2.221, -8.976, 9.136], [-

2.736, 3.429, 2.135], [-13.682, -14.144, 10.505], [3.715, -13.009, 10.558], [14.038, 7.723, 4.088],

[0.602, 6.803, 14.513], [-5.526, -8.039, 4.853], [5.28, 14.729, 2.561], [-3.858, 6.441, 1.532],

[5.872, -3.278, 3.701], [8.316, -8.681, 0.74], [9.664, 7.961, 12.645], [-10.422, -10.036, 7.073],

[11.452, -4.723, 4.639], [13.199, 13.782, 17.894], [-1.635, 2.984, 7.898], [3.312, -15.026, 9.254], [-

11.572, -10.731, 14.353], [0.578, -2.077, 12.75], [-6.423, 13.937, 16.167], [-0.922, 0.293, 14.104],

[-9.325, -3.515, 16.096], [15.152, 0.646, 11.409], [-3.127, 6.135, 6.437], [7.884, -14.997, 14.245],

[4.796, 1.553, 16.201], [-13.294, 2.333, 16.889], [-2.434, 11.763, 10.128], [11.318, -14.345, 0.88],

[-15.172, -9.919, 12.744], [11.918, -8.25, 17.552], [14.349, 11.592, 12.354], [4.815, -12.677,

9.992], [-12.752, -10.945, 3.73], [5.115, -3.597, 1.109], [-7.424, -0.133, 7.325], [2.903, 9.279,

2.225], [-15.235, 2.139, 0.031], [-0.406, 0.832, 10.246], [-6.361, -2.094, 0.603], [3.224, -9.177,

8.767]

Problem instance 9: [-4.004, -15.143, 0.69], [-4.13, 5.359, 19.162], [-9.139, -12.112,

4.057], [3.048, -4.969, 5.559], [8.793, -11.936, 0.4], [-11.539, -5.377, 7.635], [-6.493, -9.254,

0.179], [-0.922, 3.937, 9.586], [-9.52, -14.008, 19.424], [-9.02, 15.011, 4.893], [-5.597, -5.74,

5.256], [4.529, -2.76, 8.19], [4.313, 2.591, 4.807], [6.308, 5.053, 4.96], [-12.858, -12.823, 14.013],
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[15.171, 6.737, 13.133], [-13.896, 13.696, 1.832], [12.638, 4.099, 15.116], [-14.709, 8.472,

0.088], [-0.009, -7.441, 1.035], [-3.623, -1.304, 1.893], [-11.669, 7.667, 19.831], [-0.693, -5.248,

15.42], [0.603, -6.756, 18.417], [5.256, -7.725, 15.359], [-5.081, -11.531, 18.732], [-5.115, -9.039,

16.716], [2.3, -6.565, 11.914], [-6.685, -8.198, 3.197], [-12.7, 14.059, 3.384], [-11.556, -12.212,

0.219], [-12.14, -2.418, 11.47], [-0.56, 13.643, 11.754], [6.057, 3.308, 10.66], [12.401, -8.592,

9.828], [-12.356, -7.22, 14.069], [-5.009, 11.628, 5.121], [6.489, 3.591, 13.972], [-2.781, -4.088,

17.73], [4.356, -11.005, 1.335], [-12.475, -10.317, 1.786], [13.935, 12.899, 16.882], [-14.521,

5.063, 2.787], [-7.317, 10.753, 11.437], [7.456, -2.33, 15.754], [-9.532, 6.693, 13.636], [7.03,

-13.713, 3.785], [13.747, 4.416, 2.262], [9.413, -5.458, 5.49], [15.099, 6.649, 15.51], [-8.322,

-8.789, 16.576], [-5.174, -5.993, 7.399], [13.453, -9.474, 3.743], [5.462, -13.38, 7.916], [-4.073,

-9.644, 7.91], [-12.085, -7.904, 16.422], [3.925, 4.955, 19.897], [-0.688, 10.277, 6.979], [15.328,

12.082, 13.986], [9.556, 6.059, 1.499], [-1.37, -5.004, 5.547], [7.781, -15.395, 3.049], [-2.021,

10.79, 19.706], [-8.122, 14.805, 17.996], [11.064, -9.507, 5.043], [8.044, -8.42, 7.228], [-8.789,

10.162, 4.438], [1.624, -4.096, 1.035], [-9.959, -2.036, 14.363], [14.258, -12.648, 5.555], [-2.822,

-7.934, 18.936], [1.274, 8.339, 14.24], [7.64, -7.243, 11.418], [-8.235, 15.08, 6.884], [-14.453, -

0.375, 13.319], [2.103, -12.162, 12.055], [-13.246, 5.919, 12.906], [0.208, 9.049, 3.572], [-13.901,

3.72, 11.309], [2.345, -10.862, 18.399], [1.904, -5.578, 14.126], [2.422, -1.653, 13.766], [2.276,

3.956, 19.534], [-10.675, -14.517, 11.629], [-7.902, -12.143, 11.749], [8.188, 15.08, 6.082], [-

1.643, -13.768, 5.793], [4.633, 6.735, 15.332], [-10.112, 9.855, 4.409], [-2.731, -10.581, 11.334],

[-14.715, -3.41, 1.286], [-13.875, 2.75, 5.513], [8.342, 10.631, 3.302], [0.936, 13.122, 10.743],

[0.997, 13.687, 8.916], [6.474, 8.55, 9.21], [-1.323, -1.002, 10.918], [13.701, -3.358, 10.817], [-

3.887, -7.32, 9.14], [6.169, 2.967, 17.3], [-1.186, -1.789, 0.333], [12.026, 5.661, 16.782], [1.974,

-6.516, 14.945], [7.779, -14.16, 12.308], [7.591, -10.899, 13.62], [10.106, -7.76, 0.141], [7.87,

1.093, 1.005], [2.65, 2.507, 16.39], [14.32, -8.41, 12.471], [-6.435, 9.321, 5.909], [6.075, -4.382,

12.319], [3.006, 5.957, 1.144], [4.198, -11.227, 10.929], [-5.431, 3.433, 10.117], [7.064, -13.22,

14.913], [2.911, -4.52, 13.563], [-10.546, -2.925, 15.369], [14.96, 1.686, 1.098], [-9.209, 15.347,

19.163], [10.967, -5.124, 12.687], [15.069, -9.256, 2.526], [-5.149, 4.56, 3.464], [6.733, 5.199,
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1.569], [-1.694, 7.352, 7.561], [8.654, -8.144, 0.718], [-14.225, -6.452, 2.36], [-14.212, -9.885,

16.284], [-11.8, -14.754, 19.089], [4.135, 13.362, 9.778], [-13.81, 13.724, 17.379], [11.399, -

10.114, 5.821], [7.414, -0.592, 9.748], [-11.512, -13.304, 9.083], [-2.099, -3.264, 5.057], [-8.46,

3.768, 7.315], [7.039, 3.773, 9.709], [-12.709, 4.065, 4.931], [-8.714, 2.087, 14.748], [7.127,

14.146, 6.448], [-12.212, -11.446, 4.344], [-4.935, 12.447, 18.205], [-3.283, -8.586, 18.836],

[11.756, 7.65, 14.736], [13.224, -11.031, 15.312], [-3.632, -11.551, 3.96], [1.702, -1.107, 14.978],

[-13.457, 11.004, 17.333], [10.994, 14.816, 1.855], [-12.049, 4.658, 0.898], [7.178, 2.866, 15.362]

Problem instance 10: [3.605, 9.695, 2.432], [-1.57, -0.918, 8.911], [10.342, 10.799,

4.89], [5.996, -6.848, 19.765], [0.299, 2.073, 11.362], [6.703, 0.633, 13.669], [-13.627, 8.148,

16.373], [4.627, 9.358, 11.378], [-5.41, -13.116, 8.271], [14.164, 6.332, 19.93], [-8.783, 12.675,

0.389], [-1.513, -5.394, 15.35], [2.371, -9.944, 7.338], [-1.43, 13.44, 7.232], [-2.954, 7.878,

18.935], [-13.74, -15, 16.754], [-5.683, 3.768, 13.13], [-5.861, -6.914, 4.36], [7.511, -2.201,

16.088], [-12.995, -11.542, 16.385], [-12.457, -5.341, 8.741], [3.631, -1.811, 5.719], [-8.102,

10.79, 17.658], [1.968, 2.204, 6.896], [13.432, -0.941, 6.717], [7.806, -2.423, 0.201], [2.615,

5.282, 6.454], [-2.728, -14.713, 3.289], [-7.485, -1.571, 1.998], [15.162, -8.793, 14.343], [13.178,

4.859, 7.084], [11.99, 10.412, 12.915], [-6.774, -11.886, 1.272], [6.271, -2.437, 3.344], [7.537,

0.16, 7.431], [14.166, 13.096, 1.958], [-7.857, 5.588, 9.428], [-9.085, 0.208, 3.811], [-10.93,

10.407, 4.69], [-6.031, -7.324, 8.286], [5.375, -3.916, 16.521], [-15.01, -12.754, 3.542], [3.477,

-6.296, 19.301], [-8.428, -11.751, 5.814], [-3.049, 5.661, 10.979], [2.933, -9.666, 15.315], [14.24,

-1.506, 16.199], [6.203, 10.103, 19.338], [11.786, 0.637, 7.279], [-12.559, 4.549, 17.83], [11.37,

1.442, 2.509], [5.919, 2.474, 0.858], [-7.118, -8.211, 16.202], [-11.673, 5.369, 15.356], [7.388,

0.724, 11.41], [2.469, 0.188, 12.522], [6.035, 11.377, 4.648], [-13.833, -4.492, 2.806], [-10.558,

-8.456, 4.737], [-11.221, 3.446, 3.119], [-7.857, 13.095, 18.221], [5.441, -4.984, 3.385], [1.945, -

14.16, 6.345], [-4.045, -11.809, 12.14], [10.714, 6.97, 14.506], [10.897, -13.411, 0.805], [-12.473,

-3.225, 8.057], [9.33, -2.243, 10.831], [8.59, 4.71, 16.897], [14.089, 9.09, 14.092], [-1.16, 12.91,

9.031], [0.85, -0.784, 3.754], [8.128, 1.242, 18.87], [6.916, -6.666, 17.664], [-6.451, -14.439,
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0.424], [-13.129, -2.095, 8.619], [-1.246, -3.597, 0.053], [8.113, 0.677, 9.238], [-12.901, 15.066,

1.187], [13.731, 2.573, 1.46], [-0.325, 10.077, 7.891], [-13.301, -9.141, 6.031], [4.65, -4.98,

5.626], [9.362, 9.303, 4.296], [6.669, 7.984, 16.725], [-4.337, -12.261, 15.248], [-0.943, -5.994,

5.555], [1.194, 7.519, 3.227], [9.929, 8.14, 1.64], [10.951, 13.414, 11.063], [-3.123, 12.512,

4.098], [12.828, -8.518, 17.282], [-1.008, -6.533, 13.838], [-7.907, 13.781, 12.18], [5.163, -11.425,

14.415], [-12.455, -12.173, 18.697], [10.714, -6.33, 7.536], [0.797, 8.635, 3.13], [0.005, -0.495,

7.353], [-8.551, 10.674, 9.055], [-2.587, 4.995, 16.45], [-5.003, -10.969, 15.026], [-12.695, 2.52,

13.869], [-7.795, -5.404, 17.245], [-13.966, 5.31, 9.002], [2.643, -4.277, 0.324], [-2.772, -9.919,

19.792], [-5.677, 10.71, 7.615], [4.958, -12.271, 0.227], [0.906, -11.457, 11.586], [2.445, -1.628,

1.074], [-9.622, -12.796, 7.396], [0.125, 10.286, 14.835], [14.717, -6.742, 11.786], [-0.935, -

13.962, 3.858], [-11.486, 9.263, 7.51], [-12.149, 5.102, 9.823], [-2.891, -3.103, 12.567], [-8.478,

-9.267, 3.68], [11.471, 7.357, 1.342], [-9.193, -14.589, 9.778], [-6.669, -7.988, 13.524], [-1.089,

8.06, 16.502], [-4.286, -6.674, 10.088], [15.091, -4.716, 19.501], [-13.819, -3.856, 6.363], [-

12.895, 0.362, 7.869], [2.434, -14.178, 0.968], [1.271, -1.926, 7.041], [12.709, -10.735, 4.507],

[-7.397, 10.71, 10.304], [-8.104, 13.739, 2.959], [4.115, -9.475, 9.659], [8.167, 3.816, 7.838],

[7.538, -5.369, 5.861], [-10.606, -5.327, 1.858], [-4.223, 4.427, 10.972], [6.663, -1.606, 4.331],

[13.617, -6.615, 15.503], [-9.433, -1.214, 19.598], [-9.697, -9.519, 8.547], [-13.121, -3.302,

17.931], [5, -1.891, 6.831], [-3.692, -9.71, 7.653], [-3.738, -12.299, 4.084], [-0.724, -15.451,

15.447], [-6.591, -12.616, 0.191], [-0.86, 4.91, 18.39], [3.971, -7.836, 10.439], [3.126, 4.349,

3.288]
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Dréo, J., Pétrowski, A., Siarry, P., and Taillard, E. (2006). Metaheuristics for Hard Opti-

mization. Springer, Berlin.

Dumitrescu, I. and Boland, N. (2001). Algorithms for the weight constrained shortest path

problem. International Transactions in Operational Research, 8(1):15–29.

Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–

673.

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004). An exact algorithm for the

elementary shortest path problem with resource constraints: Application to some vehicle

routing problems. Networks, 44(3):216–229.

Gastpar, M. and Vetterli, M. (2002). On the capacity of wireless networks: the relay case.

In Precedings of Twenty-First Annual Joint Conference of the IEEE Computer and Com-

munications Societies (INFOCOM 2002), volume 3, pages 1577–1586.

Grosan, C., Abraham, A., and Hassainen, A. (2009). Designing resilient networks using

multicriteria metaheuristics. Telecommunication Systems, 40(1):75–88.

Grossglauser, M. and Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless

networks. IEEE/ACM Transactions on Networking (TON), 10(4):477–486.

Grover, W. (2004). Mesh-based Survivable Networks: Options and Strategies for Optical,

MPLS, SONET, and ATM Networking. Prentice Hall, New Jersey.

Guidoni, D., Mini, R., and Loureiro, A. (2010). On the design of resilient heterogeneous

wireless sensor networks based on small world concepts. Computer Networks, 54(8):1266–

1281.

233



Gupta, P. and Kumar, P. (2000). The capacity of wireless networks. IEEE Transactions on

Information Theory, 46(2):388–404.

Han, X., Cao, X., Lloyd, E., and Shen, C. (2010). Fault-tolerant relay node placement

in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing,

9(5):643–656.

Handler, G. Y. and Zang, I. (1980). A dual algorithm for the constrained shortest path

problem. Networks, 10(4):293–309.

Harms, D. (1995). Network Reliability: Experiments with a Symbolic Algebra Environment.

Discrete Mathematics and Its Applications. CRC Press, Boca Raton.

Hartvigsen, D. (1998). The planar multiterminal cut problem. Discrete Applied Mathematics,

85(3):203–222.

Hekmat, R. and Van Mieghem, P. (2004). Interference in wireless multi-hop ad-hoc networks

and its effect on network capacity. Wireless Networks, 10(4):389–399.

Hira, M., Tobagi, F., and Medepalli, K. (2007). Throughput analysis of a path in an IEEE

802.11 multihop wireless network. In Proceedings of Wireless Communications and Net-

working Conference (WCNC 2007), pages 441–446.

Holmberg, K. and Yuan, D. (2003). A multicommodity network-flow problem with side

constraints on paths solved by column generation. INFORMS Journal on Computing,

15(1):42–57.

Huang, J.-H., Wang, L.-C., and Chang, C.-J. (2008). Throughput-coverage tradeoff in a

scalable wireless mesh network. Journal of Parallel and Distributed Computing, 68(3):278–

290.

Hui, K.-P. (2007). Monte carlo network reliability ranking estimation. IEEE Transactions

on Reliability, 56(1):50–57.

234



Hui, K.-P., Bean, N., Kraetzl, M., and Kroese, D. (2003). The tree cut and merge algorithm

for estimation of network reliability. Probability in the Engineering and Informational

Sciences, 17(1):23–45.

Hui, K.-P., Bean, N., Kraetzl, M., and Kroese, D. (2005). The cross-entropy method for

network reliability estimation. Annals of Operations Research, 134(1):101–118.

Hunter, A., Andrews, J., and Weber, S. (2008). Transmission capacity of ad hoc networks

with spatial diversity. IEEE Transactions on Wireless Communications, 7(12):5058–5071.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In

Desaulniers, G., Desrosiers, J., and Solomon, M. M., editors, Column Generation, pages

33–65. Springer.

Irnich, S. and Villeneuve, D. (2006). The shortest path problem with resource constraints

and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18(3):391–406.

Jan, R. (1993). Design of reliable networks. Computers & Operations Research, 20(1):25–34.

Jun, J. and Sichitiu, M. (2003). The nominal capacity of wireless mesh networks. IEEE

Wireless Communications, 10(5):8–14.

Karp, R. M. and Luby, M. (1985). Monte-carlo algorithms for the planar multiterminal

network reliability problem. Journal of Complexity, 1(1):45–64.

Kashyap, A., Khuller, S., and Shayman, M. (2010). Relay placement for fault tolerance in

wireless networks in higher dimensions. Computational Geometry, 44(4):206–215.

Katoh, N., Ibaraki, T., and Mine, H. (1978). An O(Kn2) algorithm for k shortest simple

paths in an undirected graph with nonnegative arc length. Transactions of the Institute

of Electronics and Communication Engineers of Japan, Section E, 61:971–972.

Katoh, N., Ibaraki, T., and Mine, H. (1982). An efficient algorithm for k shortest simple

paths. Networks, 12(4):411–427.

235



Konak, A. and Bartolacci, M. R. (2007). Designing survivable resilient networks: A stochastic

hybrid genetic algorithm approach. Omega, 35(6):645–658.

Kroese, D., Hui, K.-P., and Nariai, S. (2007). Network reliability optimization via the cross-

entropy method. IEEE Transactions on Reliability, 56(2):275–287.

Kubat, P. (1989). Estimation of reliability for communication/computer networks simula-

tion/analytic approach. IEEE Transactions on Communications, 37(9):927–933.

Kumamoto, H., Tanaka, K., and Inoue, K. (1977). Efficient evaluation of system reliability

by monte carlo method. IEEE Transactions on Reliability, R-26(5):311–315.

Li, J., Blake, C., De Couto, D. S., Lee, H. I., and Morris, R. (2001). Capacity of ad hoc

wireless networks. In Proceedings of the 7th annual international conference on Mobile

computing and networking (MobiCom ’01), pages 61–69.

Lomonosov, M. (1994). On monte carlo estimates in network reliability. Probability in the

Engineering and Informational Sciences, 8(2):245–264.

Machado, R., Ansari, N., Wang, G., and Tekinay, S. (2010). Adaptive density control in

heterogeneous wireless sensor networks with and without power management. Communi-

cations, IET, 4(7):758–767.

Mehlhorn, K. and Ziegelmann, M. (2000). Resource constrained shortest paths. In Paterson,

M., editor, Lecture Notes in Computer Science: Algorithms-ESA 2000, volume 1879, pages

326–337. Springer, Berlin.

Misra, S., Hong, S., Xue, G., and Tang, J. (2010). Constrained relay node placement in

wireless sensor networks: Formulation and approximations. IEEE/ACM Transactions on

Networking (TON), 18(2):434–447.

236



Moraes, R., Ribeiro, C., and Duhamel, C. (2009). Optimal solutions for fault-tolerant topol-

ogy control in wireless ad hoc networks. IEEE Transactions on Wireless Communications,

8(12):5970–5981.

Nel, L. D. and Colbourn, C. J. (1990). Combining monte carlo estimates and bounds for

network reliability. Networks, 20(3):277–298.

Niyato, D. and Hossain, E. (2009). Dynamics of network selection in heterogeneous wireless

networks: An evolutionary game approach. IEEE Transactions on Vehicular Technology,

58(4):2008–2017.

Pei, X., Jiang, T., Qu, D., Zhu, G., and Liu, J. (2010). Radio-resource management and

access-control mechanism based on a novel economic model in heterogeneous wireless

networks. IEEE Transactions on Vehicular Technology, 59(6):3047–3056.

Provan, J. and Ball, M. (1984). Computing network reliability in time polynomial in the

number of cuts. Operations Research, 32(3):516–526.

Qian, Y., Lu, K., Rong, B., and Zhu, H. (2007). Optimal key management for secure and

survivable heterogeneous wireless sensor networks. In IEEE Global Telecommunications

Conference (GLOBECOM), 2007, pages 996–1000.

Ramirez-Marquez, J. E. and Coit, D. W. (2005). A monte-carlo simulation approach for ap-

proximating multi-state two-terminal reliability. Reliability Engineering & System Safety,

87(2):253–264.

Raniwala, A. and Chiueh, T. (2005). Architecture and algorithms for an IEEE 802.11-based

multi-channel wireless mesh network. In Proceedings of 24th Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM 2005), volume 3, pages

2223–2234.

237



Ribeiro, C. C. and Minoux, M. (1985). A heuristic approach to hard constrained shortest

path problems. Discrete Applied Mathematics, 10(2):125–137.

Righini, G. and Salani, M. (2008). New dynamic programming algorithms for the resource

constrained elementary shortest path problem. Networks, 51(3):155–170.

Rushdi, A. M. (1984). On reliability evaluation by network decomposition. IEEE Transac-

tions on Reliability, R-33(5):379–384.

Shahnaz, A. and Erlebach, T. (2010). Approximating fault-tolerant Steiner subgraphs in

heterogeneous wireless networks. In Proceedings of the 6th International Wireless Com-

munications and Mobile Computing Conference, pages 529–533. ACM.

So, A. and Liang, B. (2009). Optimal placement and channel assignment of relay stations

in heterogeneous wireless mesh networks by modified benders decomposition. Ad Hoc

Networks, 7(1):118–135.

Takagi, H. and Kleinrock, L. (1984). Optimal transmission ranges for randomly distributed

packet radio terminals. IEEE Transactions on Communications, 32(3):246–257.

Tiwari, R., Mishra, T., Li, Y., and Thai, M. (2007). k-strongly connected m-dominating

and absorbing set in wireless ad hoc networks with unidirectional links. In International

Conference on Wireless Algorithms, Systems and Applications (WASA), 2007, pages 103–

112. IEEE.

van der Zijpp, N. and Catalano, S. F. (2005). Path enumeration by finding the constrained

k-shortest paths. Transportation Research Part B: Methodological, 39(6):545–563.

Van Slyke, R. and Frank, H. (1971). Network reliability analysis: Part I. Networks, 1(3):279–

290.

Villeneuve, D. and Desaulniers, G. (2005). The shortest path problem with forbidden paths.

European Journal of Operational Research, 165(1):97–107.

238



Wang, C., Park, M., Willson, J., Farago, A., and Du, D. (2008). Fault-tolerant dual

power management in wireless sensor networks. In Global Telecommunications Confer-

ence (GLOBECOM), 2008, pages 1–6. IEEE.

Wang, Q., Xu, K., Takahara, G., and Hassanein, H. (2007). Device placement for heteroge-

neous wireless sensor networks: Minimum cost with lifetime constraints. IEEE Transac-

tions on Wireless Communications, 6(7):2444–2453.

Wang, W. and Liu, X. (2006). A framework for maximum capacity in multi-channel multi-

radio wireless networks. In IEEE 3rd Consumer Communications and Networking Con-

ference (CCNC 2006), volume 2, pages 720–724.

Warburton, A. (1987). Approximation of pareto optima in multiple-objective, shortest-path

problems. Operations Research, 35(1):70–79.

Wilkov, R. (1972). Analysis and design of reliable computer networks. IEEE Transactions

on Communications, 20(3):660–678.

Wollmer, R. (1964). Removing arcs from a network. Operations Research, 12(6):934–940.

Wu, W., Luo, J., Yang, M., and Yang, L. (2012). Joint interface placement and channel as-

signment in multi-channel wireless mesh networks. In IEEE 10th International Symposium

on Parallel and Distributed Processing with Applications (ISPA), pages 395–402.

Wu, X., Liu, J., and Chen, G. (2006). Analysis of bottleneck delay and throughput in wireless

mesh networks. In Proceedings of IEEE International Conference on Mobile Adhoc and

Sensor Systems (MASS 2006), pages 765–770.

Xiao, M. (2010). Simple and improved parameterized algorithms for multiterminal cuts.

Theory of Computing Systems, 46(4):723–736.

Xue, F. and Kumar, P. R. (2004). The number of neighbors needed for connectivity of

wireless networks. Wireless Networks., 10(2):169–181.

239



Yang, D., Misra, S., Fang, X., Xue, G., and Zhang, J. (2010). Two-tiered constrained relay

node placement in wireless sensor networks: Efficient approximations. In 7th Annual IEEE

Communications Society Conference on Sensor Mesh and Ad Hoc Communications and

Networks (SECON), 2010, pages 1–9. IEEE.

Yang, D., Misra, S., and Xue, G. (2009). Joint base station placement and fault-tolerant

routing in wireless sensor networks. In Global Telecommunications Conference (GLOBE-

COM), 2009, pages 1–6. IEEE.

Yang, K., Wu, Y., and Chen, H. (2007). QoS-aware routing in emerging heterogeneous

wireless networks. IEEE Communications Magazine, 45(2):74–80.

Yen, J. (1971). Finding the k-shortest loopless paths in a network. Management Science,

17(11):712–716.

240


