
BUILT-IN SELF-TEST OF PROGRAMMABLE RESOURCES IN

MICROCONTROLLER BASED SYSTEM-ON-CHIPS

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

John Sunwoo

Certificate of Approval:

Victor P. Nelson Charles E. Stroud, Chair
Professor Professor
Electrical and Computer Engineering Electrical and Computer Engineering

Thaddeus A. Roppel Stephen L. McFarland
Associate Professor Acting Dean
Electrical and Computer Engineering Graduate School

BUILT-IN SELF-TEST OF PROGRAMMABLE RESOURCES IN

MICROCONTROLLER BASED SYSTEM-ON-CHIPS

John Sunwoo

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
Dec 16, 2005

 iii

BUILT-IN SELF-TEST OF PROGRAMMABLE RESOURCES IN

MICROCONTROLLER BASED SYSTEM-ON-CHIPS

John Sunwoo

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at their expense.

The author reserves all publication rights.

 Signature of Author

 Date

 iv

VITA

John Sunwoo, son of Changshin and Jungjean Sunwoo, was born on November 14,

1980 in Gwangju, Korea. He graduated from High School Attached to Chosun University

in 1999. He graduated with a Bachelor of Science degree in Electrical Engineering with a

major in Computer Engineering at Auburn University in May 2003. After completion of

his undergraduate degree, he entered the graduate program in Electrical and Computer

Engineering at the same institute in August 2003. While in pursuit of his Master of

Science degree at Auburn University, he worked under the guidance of Dr. Charles E.

Stroud as a graduate student research assistant in the Auburn University Built-In Self-Test

(AUBIST) laboratory.

 v

THESIS ABSTRACT

BUILT-IN SELF-TEST OF PROGRAMMABLE RESOURCES IN

MICROCONTROLLER BASED SYSTEM-ON-CHIPS

John Sunwoo

Master of Science, Dec 16, 2005
(B.S.E.E, Auburn University, Alabama, 2003)

85 Typed Pages

Directed by Dr. Charles E. Stroud

System-on-Chip (SoC) implementations typically incorporate embedded Field

Programmable Gate Array (FPGA) cores to take advantage of the programmable logic

and routing resources provided by FPGAs. Testing the FPGA core typically requires

numerous configuration downloads to completely test the various modes of operation of

the programmable logic resources and the size of each configuration download file is

large due to large amount of programmable resources. However, the ability to perform

dynamic partial reconfiguration of the FPGA core from embedded processor core opens

new opportunities for testing the FPGA using Built-In Self-Test (BIST). This thesis

discusses the implementation of BIST for FPGA cores using partial dynamic

reconfiguration from the embedded processor. As a result, all external configuration

downloads are eliminated and replaced by one single processor program that programs

 vi

the FPGA core for BIST, executes the BIST sequence, retrieves the BIST results, and

executes diagnostic procedures to locate and identify faults detected by the BIST. Total

testing time is improved by as much as a factor of 45 and a configuration memory storage

requirement by as much as a factor of 83 by using dynamic partial reconfiguration

compared to the traditional approach that requires BIST configuration downloads for

every mode of operation of the programmable logic resources in the FPGA core of the

Atmel AT94K series SoCs.

 vii

ACKNOWLEDGMENTS

I am greatly indebted to Dr. Charles E. Stroud for his guidance and support during

this study. He helped me becoming a better engineer not only with his technical

assistance, but also with his moral support. Also, I would like to express sincere

appreciation to my fellow research colleagues Srinivas, Jonathan, Sudheer, Sachin and

Adam for their advice, concern and friendship. I reserve special thanks to Jinsung who

has given so much of her time for the completion of this thesis. Additional appreciation is

extended to my committee members Dr. Victor Nelson and Dr. Thaddeus Roppel for their

critical reading of the thesis and their helpful suggestions.

Finally, I would like to express my deepest gratitude to my parents, and brothers

(Jin and Nelson). Through their support, encouragement and love I found the strength to

pursue my goals.

 viii

Style manual or journal used: IEEE (Institute of Electrical and Electronic

Engineers) Journal style

Computer software used: Microsoft Office Word 2003, Microsoft Office Visio

2003

 ix

TABLE OF CONTENTS

LIST OF FIGURES ……………………………………..………………………………… xi

LIST OF TABLES …………………………..…………………………………………… xiii

CHAPTER ONE ……………………………………..……………………………………. 1

1.1 Overview of SoCs …………………………………………………………........... 2

1.2 Overview of FPGA Core ……………………………………………………......... 3

1.3 SoC Testing ……………………………………………………………………….. 5

1.3.1 Overview of Built-In Self-Test …………………………………………….... 5

1.3.2 Merits of BIST ……………………...……………………………….............. 6

1.4 BIST for FPGAs ………………………………………………………………….. 6

1.5 Thesis Statement ………………………………………………………………….. 7

CHAPTER TWO ………………………………………..………………………………... 11

2.1 Architecture of Atmel AT94K Series FPSLIC SoCs …………………………….. 11

2.1.1 FPGA Core Architecture …………………………………………………… 12

2.1.2 AVR Microcontroller Architecture …………………………………………. 16

2.1.3 RAM Architecture ………………………………………………………….. 18

2.1.4 FPGA-RAM-AVR Interface ……………………………………………….. 19

2.2 Special Features in the AT94K …………………………………………………... 20

2.2.1 Cache Logic Mode …………………………………………………………. 20

2.2.2 Use of Macro Generation Language (MGL) ………………………………. 22

2.3 Overview of BIST for Embedded FPGA Core in the Atmel FPSLIC …………... 23

2.4 Thesis Restatement ……………………………………………………………… 27

 x

CHAPTER THREE ………………………………………………..……………………… 29

3.1 Implementation of ORA and Shift Register …………………………………….. 30

3.2 Implementing Shift Register Reconfiguration for Logic BIST …………………. 33

3.3 Dynamic AVR Reconfiguration of BUTs and ORAs for BIST …………………. 37

3.4 A Better Logic BIST Sequence ………………………………………………….. 42

CHAPTER FOUR ……………………………………………..………………………….. 47

4.1 Development of C Program for Logic BIST Generation ………………………... 47

4.1.1 Implementation Issues and Considerations ………………………………… 48

4.1.2 Efficient Sequence of On-chip Dynamic Configuration of FPGA BIST from

AVR ………………………………………………………………………………. 50

4.2 Debugging Technique for Developing Logic BIST from Scratch ………………. 56

4.3 Experimental Results ……………………………………………………………. 57

CHAPTER FIVE ………………………………………..………………………………... 62

5.1. Summary ………………………………………………………………….…….. 62

5.2. Improvements in Total Test Time and Configuration Memory Requirements …. 64

5.3. Main Contribution ………………………………………………………………. 66

5.4. Future Research ………………………………………………………………… 67

REFERENCES ………………………………………..………………………………….. 69

 xi

LIST OF FIGURES

Figure 1.1 Basic Structure of Microcontroller Based SoC with FPGA Core ……………. 2

Figure 1.2 General FPGA Structure and Configurable Interconnect Points …………….. 4

Figure 1.3 Basic BIST Architecture ……………………………………………………... 5

Figure 1.4 Basic Logic BIST Structure ………………………………………………….. 7

Figure 2.1 Symmetrical FPGA Core Surrounded by I/O ……………………………….. 12

Figure 2.2 Cell-to-Cell Connections & PLB Cell ………………………………………. 13

Figure 2.3 Cell-to-Bus Connections ……………………………………………………. 13

Figure 2.4 Configurable Interconnect Point Structure and Types [12] …………………. 14

Figure 2.5 Basic Modes of Horizontal Repeater ……………………………………….. 15

Figure 2.6 Banked Clock & Set/Reset for One Column of PLB Cells …………………. 16

Figure 2.7 AVR Core Architecture ……………………………………………………… 17

Figure 2.8 FPGA-RAM-AVR Interface ………………………………………………… 19

Figure 2.9 AVR-FPGA Dynamic Cache Logic …………………………………………. 21

Figure 2.10 Cell Reconfiguration Method ……………………………………………… 21

Figure 2.11 Basic Bist Structure- Logic Bist …………………………………………… 23

Figure 2.12 Basic Comparison Based ORA Structure ………………………………….. 24

Figure 2.13 FPGA BIST Structure for Complete Test ………………………………….. 25

Figure 2.14 Diagnosis PLBs from Analyzing Comparison Based ORA Results ……….. 26

Figure 2.15 Logic BIST Architecture of AT94K Series SoCs ………………………….. 27

Figure 3.1 ORA Structure for Logic BIST ……………………………………………… 30

Figure 3.2 Two-PLB ORA ……………………………………………………………… 31

Figure 3.3 High Level Structure of ORA and After the Reconfiguration ………………. 31

Figure 3.4 Comparison ORA and the ORA After Reconfiguration …………………….. 32

Figure 3.5 Shift Register Layout ………………………………………………………... 33

Figure 3.6 AVR Code of ORA Reconfiguration to Shift Register ……………………… 35

Figure 3.7 Four Layouts for Logic BIST [33] ………………………………………….. 39

 xii

Figure 3.8 AVR Code of BUT Reconfiguration and ORA Initialization ……………….. 40

Figure 3.9 Four BIST Phases in One Session for AT94K SoCs ………………………... 43

Figure 4.1 Illustration of Configuration Byte Shared by More then One Resources ….. 50

Figure 4.2 FIGARO Illustration of How AVR Connects to a Global Clock Buffer ……. 53

Figure 4.3 AVR Code of Generating N Clock Cycles to ‘FPGAIOWE’ ……………….. 54

Figure 4.4 ADINO Pad connected from Scan Chain …………………………………… 55

Figure 4.5 Use of MGL to Verify AVR Routines ………………………………………. 57

 xiii

LIST OF TABLES

Table 1.1 Advantages vs Disadvantages BIST [17] ………………………………………6

Table 1.2 List of Acronyms Used ………………………………………………………... 9

Table 3.1 Logic BIST Reconfiguration …………………………………………………. 41

Table 3.2 Total Memory Reduction …………………………………………………….. 41

Table 3.3 Total Test Time and Speed Up ……………………………………………….. 42

Table 3.4 Logic BIST Reconfiguration Improvement ………………………………….. 45

Table 3.5 Total Memory Reduction …………………………………………………….. 46

Table 3.6 Total Test Time and Speed Up ……………………………………………….. 46

Table 4.1 Total Configuration Routine Analysis ………………………………………... 58

Table 4.2 Actual Download File Size (Kbytes) ………………………………………… 60

Table 4.3 Total Memory Reduction …………………………………………………….. 60

Table 4.4 Total Test Time and Speed Up …………………….…………………………. 60

Table 5.1 Logic BIST Reconfiguration Comparison …………………………………… 65

Table 5.2 Total Configuration Memory Reduction …………………………………….. 65

Table 5.3 Total Test Time and Speed Up ………………………………………………. 65

 1

CHAPTER ONE
INTRODUCTION

Developments of System-on-Chips (SoCs) which integrate high performance

processors, programmable logic and interconnect resources and a considerable amount of

memory in a single chip have recently become a popular trend. An SoC is also referred to

as “System Large Scale Integration (System LSI)” or “System Integrated Circuit (System

IC) [6].” SoC technology is the packaging of various kinds of digital system components

on a single IC, where systems could only be implemented on Printed Circuit Boards

(PCBs) in the past. SoC technology is making rapid progress because it is essential to

realizing inevitable trends in modern electronic devices such as miniaturization, low-

power, low-cost, high-speed and high-reliability [6]. Some SoC devices have more

processing ability than a typical 10 year-old desktop computer.

As IC technology advances, it not only makes the design and manufacturing

process more costly but also makes the testing process after manufacturing even costlier

[1]. As a result, the increase in testing cost is much higher compared to the increase in

the integration ratio [1]. The architecture of a typical SoC facilitates interaction between

the on-chip microcontroller and the Field Programmable Gate Array (FPGA) that

contains the programmable logic and interconnection resources. This interaction can

assist in the development of fault detection tests as well as fault recovery strategies [5].

Therefore, Built-In Self-Test (BIST) for SoCs is a very attractive solution not only for

 2

systems but also for designers and manufacturers.

1.1 Overview of SoCs

Typical microcontroller based SoCs include an FPGA core, Random Access

Memory (RAM), a microcontroller, and peripheral input/output logic [7]. Figure 1.1

shows the typical SoC structure.

FPGA core

RAM

Figure 1.1 Basic structure of microcontroller based SoC with FPGA core

Micro-
controller

Peripherals

Current FPGAs are capable of higher logic capacity than the earlier programmable

logic devices [22]. FPGA cores provide the reconfigurable resources within most

microcontroller based SoCs. A detailed FPGA core structure is presented in Section 1.2.

RAM, in general, is a storage media where data can be stored or accessed [8].

RAM in SoCs sometimes interfaces with both FPGA core and microcontroller core. It

enables data interaction between the microcontroller core and the FPGA core [7]. In

particular, Static Random Access Memory (SRAM) is commonly used in SoCs [9]. The

 3

SRAM is important for speed and efficiency of SoCs because it interacts with both

FPGA core and microcontroller simultaneously. Program memory is another type of

storage media; it stores the programs to be executed by the microcontroller.

A microcontroller is a type of processor that is intended to operate in an embedded

system on a single IC. General purpose registers are fixed memory spaces that help the

microcontroller to process data faster and more efficiently [7]. Programming of the

microcontroller is implemented using assembly or C programming language. This makes

the use of microcontrollers in SoCs convenient without time-consuming design and

synthesis processes [7].

All components in a SoC are usually linked to each other closely for maximum

performance [7]. Internal or external interrupts allow interaction with the microcontroller

to initiate execution of certain tasks. Therefore, the FPGA core can generate internal

interrupts to the microcontroller.

1.2 Overview of FPGA Core

An FPGA consists of reconfigurable logic blocks, where the logic can be

programmed multiple times after it is manufactured [8][10]. Unlike standard ICs, FPGAs

can have flexible functionality while having a general structure [11]. As illustrated in

Figure 1.2-a, an FPGA consists of an array of programmable logic blocks (PLBs)

(usually an M x N array), containing gates, look-up table RAMs, flip-flops, and

programmable interconnect wiring. All FPGAs are reprogrammable, since their logic

functions and interconnect are defined by the contents of a configuration memory [8].

The PLBs are functional logic units which can be programmed for different modes

 4

of operation such as RAM-based look-up tables (LUTs) for combinational logic

functions, flip-flops or latches for sequential logic functions, arithmetic operations,

memory functions, etc [12][13]. Usually one PLB consists of multiplexers (MUXs),

LUTs, flip-flops, and routing resources.

(a) General FPGA structure

Programmable
I/O block

Programmable
Logic Block

Programmable
Routing resources

PLB

PLB

PLB

PLB

Local
Routing

Channels

Global
Routing

Channels

Configurable
Interconnect Points

(switches)

 zoom

 (b) FPGA routing resources

Figure 1.2 General FPGA Structure and Configurable Interconnect Points

 There are additional programmable routing resources outside the PLBs. A large

number of programmable switches, known as Configurable Interconnect Points (CIPs) or

Programmable Interconnect Points (PIPs), are built-in into cross sections of the routing

resources. These CIPs enable the internal circuitry of an FPGA to be connected in

various network structures [14][15]. Thus, configuring programmable routing resources

determines the connectivity between PLBs and other components in the chip. As

illustrated in Figure 1.2-b, local routing resources determine connectivity of a PLB to its

neighboring PLB and to global routing resources, while global routing resources

determine connectivity of a given PLB to non-neighboring PLBs, programmable I/O

blocks, or other components in the SoC. [12].

 5

1.3 SoC Testing

Testing of embedded cores in SoCs is a challenging problem as they are deeply

embedded in the SoC with a limited number of Input/Output (I/O) pins. As a result, it

may not be possible to test all the embedded cores in a SoC using test patterns from

external sources [24]. In some companies, more than 30% of the total production cost is

due to testing [16]. BIST could be a better approach for testing SoCs as it does not

require any external test equipment and test patterns are generated internally by the

embedded core itself, thus eliminating the problem of core access [24]. By eliminating

external test equipment, the BIST approach reduces the testing time and cost [24].

1.3.1 Overview of Built-In Self-Test

The most fundamental definition of BIST is: ‘To design a circuit so that the circuit

can test itself and determine whether it is “good” or “bad”’ [17]. As shown in Figure 1.3,

the Test Pattern Generator (TPG), Output Response Analyzer (ORA), and Test Controller

(TC) are the primary components in BIST technology.

Sets of test vectors generated by the TPG are applied to the Circuit Under Test

 6

(CUT) while the ORA monitors test responses from the CUT in order to determine

whether the CUT is good (fault-free) or bad (faulty). The test controller starts the BIST

sequence by initializing the target circuit, and it also controls the BIST sequence [12][17].

1.3.2 Merits of BIST

Various chip testing techniques are currently being widely studied. Among them,

the BIST approach has excellent advantages compared to its disadvantages, as shown in

Table 1. [17]. Eliminating the need for external test equipment as well as reducing

manufacturing test time and cost are the main merits of BIST. BIST fits nicely in modern

SoC testing because it has good internal access to individual embedded cores which, in

most cases, are difficult to access through external I/O pins [9]. For configurable

components such as FPGAs, the disadvantages shown in Table 1, such as the area

overhead and performance penalties, are no longer a consideration, as will be discussed

in the following section.

Table 1.1 Advantages vs Disadvantages BIST [17]
Advantages Disadvantages

+vertical testability (wafer to system)
+high diagnostic resolution
+at speed testing
+reduced need for external test equipment
+reduced development time & effort
+more economical burn-in testing
+reduced manufacturing test time & cost
+reduced time-to-market

-area overhead
-performance penalties
-additional design time & effort
-additional risk to project

1.4 BIST for FPGAs

Traditional BIST approaches introduce area overhead and performance penalties

[17]. However, BIST for FPGAs removes these associated problems by using the re-

programmability of the FPGAs. Initially the FPGA is configured to perform the BIST

 7

operation and, after the test is complete, the chip is reconfigured for its normal system

operation [10].

In the general FPGA BIST structure, groups of PLBs in the FPGA are configured to

be TPGs, Blocks Under Test (BUTs), and ORAs as shown in Figure 1.4. During each

BIST sequence, the BUTs receive identical test patterns from the TPGs and the BUT

outputs are compared by the ORAs [18]. The BUTs are reconfigured in a different mode

of operation after each BIST sequence until all modes of operation are tested. After all

the BIST configurations have been run, a test session is completed [12]. After the first

test session is over, the FPGA is configured reversely: BUTs become ORAs and TPGs,

and vice versa [19][20][21]. In this way, all PLBs in the FPGA are tested completely.

TPG

TPG

BUT

BUT

ORA

BUT

BUT

ORA

BUT

BUT

ORA

BUT

BUT

ORABIST
start

Pass/Fail

Figure 1.4 Basic Logic BIST Structure

. . .

. . .

. . .

1.5 Thesis Statement

One of the important goals of BIST is to minimize the testing time and cost [18].

For most FPGA BIST approaches, however, reconfiguration time for each BIST

 8

configuration consumes most of the testing time. This is because of the use of external

configuration control (such as a PC) and the large number and size of the BIST

configuration files that need to be stored in memory and downloaded into the FPGA. For

example, the Xilinx 4000XL has 230 BIST configurations [11]. This means the FPGA

has to be reconfigured 230 different times to completely test it, and a significant amount

of external memory space is needed to store the 230 BIST configurations and a

significant amount of time is required to download the configuration data into the device.

Moreover, there are additional time requirements to retrieve ORA results [18].

The objective of this research and thesis is to improve FPGA BIST time efficiency

on SoCs by utilizing the microcontroller core embedded in the SoC. This thesis focuses

on overcoming BIST time and memory storage penalty factors due to the large number

of BIST configurations. Unlike traditional FPGA BIST approaches, the computing power

of the embedded microcontroller in SoCs can be used to dynamically reconfigure and

test the FPGA cores within the SoC boundary, with improved configuration time and

memory storage requirements [6].

As a result, there is no need for BIST configurations to be downloaded from the

external configuration storage into the FPGA. Only an initial download is done to the

program and data memories for the microcontroller. The microcontroller then

reconfigures the FPGA core, executes the BIST sequence, and retrieves the ORA results.

Only one initial download to the program memory of the SoC is needed, and thus only

one configuration needs to be stored in external memory. Alternatively, the BIST

configuration program can reside in the program memory for on-demand executions of

BIST if the BIST configuration program is sufficiently small.

 9

The proposed BIST approach has been implemented on the Atmel AT94K series

FPSLIC (Field Programmable System Level Integrated Circuit). Further details on the

embedded microcontroller and FPGA core as well as their interactions in the FPSLIC are

described in Chapter 2. Chapter 3 discusses how the microcontroller assists the BIST of

the embedded FPGA core to improve the BIST performance. Chapter 4 extends the idea

to use the microcontroller as the main BIST component which configures the FPGA for

BIST, executes the BIST sequence, retrieves the BIST results and diagnoses faulty PLBs

without the need of external configuration downloads. Experimental results for the

implementation and application in actual SoCs, along with possible improvements, will

also be discussed in each chapter. Finally, Chapter 5 summarizes this research and its

significance, along with possible directions for future research and development. A list of

acronyms used in this thesis is in shown Table 1.2.

Table 1.2 List of Acronyms Used

ADIN AVR Data In
ALU Arithmetic Logic Unit
AVR Advanced Virtual RISC
BIST Built-In Self-Test
BUT Block Under Test
CAD Computer Automated Design
CIP Configurable Interconnect Point

CISC Complex Instruction Set Computer
CPU Central Processing Unit
CUT Circuit Under Test
DSP Digital Signal Processing
FF Flip-Flop

FPGA Field Programmable Gate Array
FPGAIOWE FPGA I/O Write Enable

 10

FPGAIORE FPGA I/O Read Enable
FPSLIC Field Programmable System Level Integrated Circuit

HDL Hardware Description Language
IC Integrated Circuit

IDS Integrated Development System
I/O Input/Output

LFSR Linear Shift Feedback Register
LSI Large Scale Integration
LUT Look-Up Table
MIPS Million Instructions Per Second
MGL Macro Generation Language
MUX Multiplexer
ORA Output Response Analyzer
PC Personal Computer or Program Counter

PCB Printed Circuit Board
PIP Programmable Interconnect Point
PLB Programmable Logic Block

PWM Pulse Width Modulation
RISC Reduced Instruction Set Computer
SoC System-on-Chip

SRAM Static Random Access Memory
TC Test Controller

TPG Test Pattern Generator
UART Universal Asynchronous Receiver-Transmitter
VLSI Very Large Scale Integration
WUT Wire Under Test
XDL Xilinx Design Language
XOR Exclusive OR-Gate

 11

CHAPTER TWO
BACKGROUND

SoCs consist of multiple cores integrated within the same chip boundary. A study

described in [25] introduced the method of using the embedded processor to test other

cores in the SoC [25]. However, it did not address testing embedded FPGA cores.

Proposals such as [26] and [27] suggested using the embedded FPGA core as the main

test resource for SoCs. However, a case study of these proposals showed that the FPGA

core’s limited access to the other cores prevented the thorough test of an SoC [28]. The

test limitations due to the architecture of SoCs are the main concern for BIST. In this

chapter, the architectural features of Atmel’s AT94K series Field Programmable System

Level Integrated Circuit (FPSLIC) are described, followed by the features that affect the

BIST approaches. An overview of previous work in BIST for the embedded FPGA core

in the Atmel AT94K series SoCs is then presented. This chapter concludes with the

restatement of this thesis motivation.

2.1 Architecture of Atmel AT94K Series FPSLIC SoCs

The Atmel AT94K series SoC architecture consists of an FPGA core, RAM cores,

and an 8-bit Advanced Virtual RISC (Reduced Instruction Set Computer) processor core,

denoted as AVR [7]. The individual components have different features for operation in

unique modes as well as in mutual aid modes within a system.

 12

2.1.1 FPGA Core Architecture

As illustrated in Figure 2.1, the Atmel FPGA core comprises a symmetrical NxN

array of identical PLBs, where N = 48 for the largest AT94K series device, the AT94K40.

The FPGA core is based on a fine-grain architecture that has a large number of small

PLBs, each of which is about the one-fourth size of the Xilinx Virtex/Spartan II series

PLB [28] [30].

. . .

I/O Pad

Vertical
Repeaters

FreeRAM

Logic Cell

Horizontal
Repeaters

Figure 2.1 Symmetrical FPGA Core Surrounded by I/O

As illustrated in Figure 2.2, each PLB contains two 3-input LUTs, a D Flip-Flop

(FF) with asynchronous set/reset, and a number of multiplexers that provide a variety of

functions including several modes of operation such as sequential mode, arithmetic mode,

DSP/multiplier mode, counter mode, tri-state/multiplexer (MUX) mode [7]. The logical

value produced by each PLB can be held in the D Flip-Flop (FF) present in the PLB. As

shown in Figure 2.2, the X and Y outputs of each PLB connect diagonally and

orthogonally to its neighboring cells, respectively [7], and these resources are considered

as local routing resources. As illustrated in Figure 2.3, five vertical and five horizontal

 13

busing planes are associated with each PLB as x8 and x4 lines respect to repeater

boundaries. The x8 and x4 lines are considered as global routing resources that span eight

and four PLBs, respectively, with repeaters separating the groups of PLBs as shown in

Figure 2.3. Four inputs to the PLB or one output from the PLB can access any of five x4

lines in the busing planes adjacent to the PLB through Configurable Interconnect Points

(CIPs).

G
lo

ba
l R

ou
tin

g
R

es
ou

rc
es

H
or

iz
on

ta
l B

us
in

g
Pl

an
e

 14

The basic structure of a CIP is shown in Figure 2.4a and consists of a pass

transistor controlled by a configuration memory bit [12]. When the configuration

memory bit is programmed to logic “1”, wire segments A and B are connected [12].

Cross-point CIPs and Multiplexer CIPs constitute most of the routing resources of the

embedded FPGAs present in AT94K FPSLIC SoCs [33]. Cross-point CIPs enable the

connection between the two wires. As illustrated in Figure 2.4b, the vertical wire A will

be connected to wire B when the cross point CIP is turned “on”, meaning that the

configuration memory bit controlling the CIP is a logic “1”. The cross-point CIP is used

when the signal needs to turn from one direction to a perpendicular direction [12]. A

MUX CIP, shown in Figure 2.4c, enables the connection between a single input wire

from a group of wires to a single output wire [12].

As shown in Figure 2.1, vertical and horizontal bus repeaters, placed within the

global routing resources for every 4x4 array of PLBs, prevent signal degradation in the

process of sending signals on distant or heavily loaded nets [33]. Each repeater consists

of four MUX CIPs. The repeater can be configured in the modes illustrated in Figure 2.5

and one repeater block can have a combination of the modes if there are no conflicts in

the directions of different signal paths. For instance, a repeater can be configured to have

 15

the modes shown in Figure 2.5a, 2.5i, and 2.5c with no conflicts. A conflict of the signals

will occur when the repeater is configured to have modes shown in Figure 2.5a, 2.5i, and

2.5k because the modes shown in 2.5i and 2.5k conflict, since two MUX CIPs are

driving the same x8 line. All the repeater signals are buffered through the MUX CIPs

except the mode shown in Figure 2.5e, which consists of a transmission gate and is used

for bi-directional signals. Vertical repeaters are configured in the same way as the

horizontal repeaters and the repeater models shown in Figure 2.5 should be rotated by 90

degrees for visualization of the vertical repeater configuration modes.

Figure 2.5 Basic Modes of Horizontal Repeater

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

x4 line

x8 line

x4 line

x8 line

x4 line

x8 line

 Banked clock and set/reset lines run to the groups of four PLB cells in a single

column within repeater boundaries. As shown in Figure 2.6, eight global clock buses are

connected to the column clock MUX which routes one of the eight clocks to all PLBs in

the column. Any FPGA internal signal can be routed to one of the global clocks or it can

be routed directly to the clock input for any set of four PLBs. Set/reset lines have a

similar architecture and the difference is the direction of the signal flow, set/reset goes up

 16

through the PLBs while clock goes down. Both the clock and set/reset signal can be

inverted by choosing an inverting path on the MUX which is present before the signal

reaches the set of four PLBs.

Global Clock1 - 8

Buried
Clock
Line

repeater

Figure 2.6 Banked Clock & Set/Reset for One Column of PLB Cells

repeater

= PLB

Buried
Set/Reset

Line

From any user I/O
Buffer

From any
global
routing

From any
global
routing

2.1.2 AVR Microcontroller Architecture

The microcontroller from Atmel is called the AVR (Advanced Virtual RISC, and

also known as Alf Vergard RISC: named after the founders Alf Bogen and Vergard

 17

Wollan) [29]. The AVR is based on an 8-bit RISC architecture, meaning 1 byte wide

working registers are used when instructions are fetched and executed. As shown in

Figure 2.7, all 32x8 general-purpose registers are tied to the Arithmetic Logic Unit

(ALU) so that two independent registers can be accessed in only one clock cycle,

allowing most of the AVR instructions to be executed in a single clock cycle [7].

Interrupt
Unit

Serial
UARTs

16-bit
Timer/

Counter

8-bit
Timer/

Counter

32 x 8
General
Purpose
Registers

8-bit Data Bus

Status
and

Control

PC*

Instruction
Register

Instruction
Decoder

In
di

re
ct

A

dd
re

ss
in

g

D
ire

ct
A

dd
re

ss
in

g

Interface to FPGA

Control Lines

Program
SRAM

Memory

Data
SRAM ALU

Figure 2.7 AVR Core Architecture

*PC: Program Counter

Peripherals

Control
Registers

2-wire
Serial

Watchdog
Timer

16 I/O
Lines

The AVR core has a Harvard architecture, which has the ability to execute an

instruction while accessing memory space at the same time [30]. With its architectural

advantage, the AVR has up to ten times faster throughput than the CISC (Complex

Instruction Set Computer) developed by Intel [7]. The AVR can achieve a throughput of

1 MIPS (Million Instructions Per Second) per MHz [7]. In addition, there are two 8-bit

bi-directional general purpose Input/Output (I/O) ports called PORTD and PORTE [7].

There are peripherals such as 8-bit or 16-bit timer/counter with Pulse Width Modulation

(PWM), Universal Asynchronous Receiver-Transmitter (UART), 16 I/Os, and 2-wire

serial port located within the AVR core. Peripherals attached to the AVR core can be

 18

programmed in assembly language or C language. Interrupt sources internal and external

to the SoC allow the AVR to be operated in more interactive ways. The return address of

the program counter (PC) is stored on the stack when interrupts and subroutine calls

occur and the stack is allocated in the Data SRAM [7].

2.1.3 RAM Architecture

There are two types of SRAMs present in AT94K series devices. One type of

SRAM is evenly distributed through the FPGA core and the other type of SRAM is

placed outside of the FPGA core, shared by other cores such as the AVR and its

peripherals.

The SRAMs distributed through the FPGA core are 32x4-bit memory blocks with

one RAM placed in every 4x4 array of PLBs as illustrated in Figure 2.1. This dedicated

SRAM, denoted as freeRAM by Atmel, can be accessed through the global routing

resources by PLBs [7]. Each freeRAM can operate in single port or dual port mode [7].

The other type of SRAM resides outside the FPGA core. Both the FPGA core and

the AVR core share the embedded Data SRAM and, thus, it is designed with a bigger size

than the freeRAM [7]. The Data SRAM is used by the AVR and FPGA for general-

purpose data storage [7]. Depending on the design, the SRAM can be configured in

various modes and can also be flexibly partitioned. In the AT94K40 series SoCs, a

maximum size of 36 Kbyte SRAMs are supported, which can be partitioned into

different sizes of Data SRAM and program memory blocks. Both the AVR and FPGA are

connected to the Data SRAM, which can be partitioned in size from 4 Kbytes to 16

Kbytes. It stores data from the FPGA and AVR, and provides register space for the AVR.

The program memory is used to store AVR programs and it can be partitioned in size

 19

from 20 Kbytes to 32 Kbytes. The program memory provides the space from which the

AVR fetches instructions and runs programs, and it cannot be accessed from the

embedded FPGA core [7].

2.1.4 FPGA-RAM-AVR Interface

As illustrated in Figure 2.8, the Data SRAM resides between the FPGA core and

AVR core, enabling smooth data sharing and/or exchange between the AVR and FPGA

cores. To access the Data SRAM, a 16-bit address is required from the FPGA or AVR

core. Data to be accessed or stored pass through the bi-directional 8-bit data bus across

the FPGA core, the Data SRAM, and the AVR core. The Write/Read Enable signals along

with clock signal provide control over access of the Data SRAM.

Data SRAM

16
-B

it
A

dd
re

ss
 B

us

16
-B

it
A

dd
re

ss
 B

us

A
V

R
 C

LK

8-
B

it
D

at
a

B
us

R
ea

d/
W

rit
e

En
ab

le

Figure 2.8 FPGA-RAM-AVR Interface

AVR Core

16-Bit Interrupt Bus

16-Bit I/O Memory Address

8-Bit Data Bus

Read/Write Enable
(FPGAIORE/FPGAIOWE)

FP
G

A
 C

LK

8-
B

it
D

at
a

B
us

R
ea

d/
W

rit
e

En
ab

le

FPGA Core

The FPGA core can be directly accessed by the AVR core, as shown in Figure 2.8.

There is an 8-bit data bus between the FPGA core and the AVR that allows them to

 20

communicate interactively under the control of the AVR. FPGAIOWE (FPGAIORE) is a

strobe line that is activated when the AVR writes to (reads from) the 8-bit bi-directional

data bus. There are 16 decoded address lines supplied from the AVR to the FPGA. Also,

a maximum of 16 interrupts are available from the FPGA to the AVR with various

priority levels to make the operations of the AVR efficient [7].

2.2 Special Features in the AT94K

In this section, some of the unique features of the AT94K series device are

described. These features have a direct impact on the development and execution of

BIST in this thesis.

2.2.1 Cache Logic Mode

In the AVR Cache Logic mode, the configuration memory of the FPGA core can be

dynamically reconfigured by the AVR during system operation, without re-downloading

the configuration data externally. This can be done without affecting the contents of the

flip-flops, known as dynamic partial reconfiguration. As illustrated in Figure 2.9, due to

its PLB addressable structure, FPGAX, FPGAY, and FPGAZ hold the address of the

target configuration memory byte of the FPGA to be reconfigured, where FPGAX

corresponds to the horizontal PLB location, FPGAY corresponds to the vertical PLB

location, and FPGAZ corresponds to specific configurable logic and/or routing resources

within the specified PLB. A 32-bit configuration word cache waits until the FPGAD

register receives new data to be written into the FPGA configuration memory [7]. Any

writes into FPGAD result in a configuration clock cycle to the FPGA configuration

memory [7]. Thus, instead of downloading a full configuration each test phase, the AVR

 21

can partially reconfigure the locations where a change is needed. The basic routine to

program the AVR to reconfigure the FPGA core is shown in Figure 2.10.

32
-B

it
C

on
fig

ur
at

io
n

W
or

d

ldi rTemp, (Column# - 1) ; PLB Horizontal Coordinate
out FPGAX, rTemp

ldi rTemp, (Row# - 1) ; PLB Vertical Coordinate
out FPGAY, rTemp

ldi rTemp, 0bttttzzzz ; TagZ coordinate (Page#[7:4]+Byte#[3:0])
out FPGAZ, rTemp

ldi rTemp, 0bxxxxxxxx ; New PLB “Byte” Contents
out FPGAD, rTemp

Figure 2.10 PLB Reconfiguration Method

Since the AVR can specify the X (horizontal) and Y (vertical) PLB coordinates, it

can be programmed in such way that the AVR can algorithmically generate

configurations and reconfigure the FPGA core. The fine-grained architecture of the

FPGA core is the major advantage when using X (FPGAX) and Y (FPGAY) PLB

 22

coordinates because of its regular and repeatable structure [24][30]. In other words, a

coarse-grained architecture would make it difficult to algorithmically reconfigure the

FPGA because of its irregular structure. In addition, the FPGA’s symmetrical architecture

enables simple and predictable reconfiguration [7]. One major drawback with AT94K

series SoCs is that the FPGA configuration memory contents cannot be read using the

AVR [24].

2.2.2 Use of Macro Generation Language (MGL)

Atmel provides a specially designed programming language called Macro

Generation Language (MGL) [31]. The language is utilized through Figaro; one of

Atmel’s Integrated Development System (IDS) tools [31]. It is used to instantiate designs

in the FPGA and to produce a downloadable bitstream [33]. The main advantage of using

macro designs made by the MGL is its capability to implement parameterized designs

that can be constructed in any size FPGA array. MGL defines the layout and routing of

the FPGA core [31]. Furthermore, unlike the Xilinx Design Language (XDL), MGL

supports hierarchical designs by calling pre-defined or user-defined macros into newer

macros which could reduce program size. Designs described in MGL can be edited,

debugged, and executed in Figaro IDS software [31]. When configuring a PLB, MGL

based on either predefined macros (gates, multiplexers, flip-flops, etc) or dynamic

macros can be used [32]. Dynamic macros give flexibility in defining the PLB function.

However, the user can only control the PLBs by the dynamic macros and no further

control is provided by MGL [32]. In order to achieve maximum fault coverage from

BIST for FPGAs, complete control over the configuration of the logic and routing

resources is required [33].

 23

2.3 Overview of BIST for Embedded FPGA Core in the Atmel FPSLIC

The BIST architecture for testing the PLB resources in an FPGA, shown in Figure

2.11, configures a column of PLBs to function as two or more identical TPGs that drive

test patterns to alternating columns of identically configured BUTs. The outputs of BUTs

are monitored by comparison-based ORAs located in adjacent columns between the

BUTs [17].

For applying test patterns to the BUTs, there are a number of TPG types that can be

used [17]. The most basic TPG type is the N-bit binary counter since it generates

exhaustive 2N binary test patterns. Another well known type is the Linear Shift Feedback

Register (LFSR) which generates pseudo-random test patterns. If the LFSR has a

primitive polynomial function then it will generate all possible 2N-1 patterns excluding

the all-zero pattern [17]. The all-zero pattern can be achieved in an LFSR by adding

circuitry, however, it would cost additional area in the FPGA to be programmed. Thus,

for testing the PLB blocks, if the number of inputs to the BUTs is small, using the binary

counter as a TPG is the most economical and efficient method [33].

 24

The basic design of the ORA is shown in Figure 2.12 where two identical BUT

outputs are compared by the exclusive OR-gate (XOR-gate) [17]. When a mismatch

occurs between the two BUTs, the input of the Flip-Flop (FF) will see a logic “1” from

the output of the XOR-gate. The logic value “1” is latched in the flip-flop via the OR

gate and held throughout the BIST sequence. At the end of the BIST sequence, the

content of the flip-flop indicates whether the ORA saw a mismatch of the two BUT

outputs or not. Typically there is more than one ORA to be read at the end of test. ORA

results can be read either individually by reading the configuration memory of the ORA

block directly or they can be scanned out serially using a shift register as illustrated in

Figure 2.11 by the dotted line [17].

The BUTs are reconfigured in various modes of operation until they are completely

tested [10]. The number of modes in which the BUTs are to be configured is determined

by the complexity of the PLB. The more programmable logic resources the PLB has, the

more BUT configurations are typically needed to test all the resources in the PLB. The

BIST architecture is then flipped about the vertical axis (Figure 2.13) to test the PLBs

that were previously TPGs and ORAs for the complete test of all PLBs as BUTs [28].

 25

TPG BUT

BUT

ORA

ORA

ORA

ORA

BUT

BUT

Figure 2.13 FPGA BIST Structure for Complete Test

BUT

BUTTPG

TPGBUT

BUT

ORA

ORA

ORA

ORA

BUT

BUT

BUT

BUT TPG

Test Session
West

Test Session
East

The basic sequence for FPGA BIST consists of the following steps:

1) Configure the FPGA to a BIST structure

2) Execute the BIST sequence

3) Retrieve ORA results

4) Analyze ORA results to find faulty PLBs.

Step 1 requires the configuration of resources in the FPGA to perform the BIST.

Typically this is done by external configuration download to the FPGA for every BIST

configuration. Next, the test controller initiates the BIST (Step 2) by applying BIST

clocks to the FPGA so that the test patterns are applied to the BUT inputs while the BUT

outputs are monitored. At the end of each BIST sequence, ORA results are retrieved so

that they can be analyzed (Step 3 and 4). When analyzing the results, as shown in Figure

2.14, the faulty PLB can be found based on the locations of the ORAs that observed

mismatches [21]. BIST steps 1 through 4 are repeated until all the modes of operation for

the BUT are tested.

 26

2.14 Diagnosis PLBs from Analyzing Comparison Based ORA Results

0 1 1 0

BUT ORA Faulty BUT
ORA Found
Mismatch

In the case of the Atmel AT94K series SoCs, the BIST architecture shown in Figure

2.15 is used wherein each ORA monitors one diagonal X-output and one direct Y-output

from the neighboring BUTs. The architecture shown in Figure 2.11 is not applicable,

since a PLB cannot be configured to monitor more than one diagonal X-input and one

direct Y-output selected at the same time [33]. Therefore, two different routing schemes

are needed in order to observe both the diagonal X and direct Y connections for complete

testing of the PLB logic resources. For all PLBs except the ones located in corners of the

FPGA array, a total of four configurations of the BUTs are needed to obtain a fault

coverage of 99.7% with only one fault left which is potentially detected [17][33]. The

potentially detected fault is detected during routing BIST to result in 100% fault

coverage with a complete set of BIST configurations [28].

 27

2.4 Thesis Restatement

BIST approaches have been developed for FPGAs by programming some of the

PLBs as TPGs and ORAs to test the remaining programmable logic and interconnect

resources [10]. However, these techniques typically require downloading a large number

of BIST configurations into the FPGA one at a time, executing each BIST sequence, and

retrieving the BIST results at the end of each BIST sequence. While this problem can be

reduced by minimizing the total number of BIST configurations and/or by taking

advantage of the partial reconfiguration capabilities provided in recent FPGAs, the total

test time and memory storage requirements are still dominated by the download process.

For SoC testing, the embedded microprocessor cores in SoCs can be programmed to test

other accessible cores such as FPGA cores. Dynamic, partial, and full reconfiguration of

 28

FPGA cores by embedded processor between each test phase can reduce the total test

time. After completion of BIST, the embedded processor can retrieve the test results,

perform diagnosis, and report the faults and their locations to a higher computing

resource for fault recovery or fault-tolerant applications.

The dynamic partial reconfiguration capability of the embedded processor core was

previously used to a limited extent in [28]. However, this approach needed to download

each and every BIST configuration into the FPGA core. The primary focus of this thesis

is to investigate potential improvements in the total test time and memory requirements

by avoiding any and all downloads into the FPGA. By programming the embedded

processor core to execute algorithmic reconfiguration routines, the amount of memory

required for storing BIST configurations is reduced since no configuration data is

downloaded into the FPGA. The fine-grain architecture, in conjunction with the PLB

addressable configuration memory of the AT94K series SoCs, helps to configure the

BIST structures without the need for excessive configuration clock cycles. If small

enough, the BIST program can remain resident in the program memory for on-demand

reconfiguration and execution of BIST, requiring no download at all. If fast enough, the

BIST program can be more frequently used during idle intervals in system operation for

high reliability, high availability applications.

 29

CHAPTER THREE
AVR ASSISTED FPGA LOGIC BIST

The goal in this thesis is to reduce the total test time and configuration memory

storage requirements associated with BIST of the PLBs in the FPGA core. In order to do

so, previous work [33] which required FPGA configuration download for each test phase

was used, which served as a fundamental model so that any improvements could be

measured. Since the work in [33] has realized some of the problems associated with

BIST for FPGAs in AT94K series SoCs, it has proposed ways to overcome these

problems. In this chapter, improvements over the previous work [33] are discussed with

experimental data taken from the execution of BIST on actual Atmel AT94K series SoCs.

The flow of the chapter is according to the improvements made throughout the

thesis work, which divides into three phases. First, the shift register reconfiguration

development for retrieving ORA results at the end of each BIST sequence [33] is

discussed. This was an essential development for [33] as well as fundamental work for

the next two phases. As the second phase of the development, the AVR processor is used

to assist the BIST developed in [33] by not only reconfiguring ORAs into a shift register

but also reconfiguring the BUTs for each test phase based on BIST structures and

requirements in [33]. This approach replaces most time-consuming FPGA configuration

downloads with simple AVR programs and is denoted as ‘AVR-assisted BIST’ in this

thesis. The third phase of the development yields a modified version of the AVR-assisted

 30

BIST which has a new way of testing X and Y direct PLB connections and reads test

results at the end of multiple test phases.

3.1 Implementation of ORA and Shift Register

One of the issues in the previous work [33] was the fact that the ORA results could

not be read back directly from the FPGA configuration memory to the test controller (a

PC in our case), which made the implementation of a shift register, or scan chain,

necessary. For implementing the scan chain, another problem arose due to the PLB size

and a small number of input lines. In order to configure a comparison-based ORA with a

shift register feature shown in Figure 3.1, a total of five inputs are needed for one PLB

[33]. Since the PLBs present in Atmel AT94K series SoCs have only four inputs there is

no way to implement the ORA with a shift register feature as shown in Figure 3.1.

D Q
X
Y

From Previous
ORA

Shift Control
Figure 3.1 ORA Structure for Logic BIST

 Initially when the ORA structure was investigated, there were two possible models

that could be implemented [33]. As shown in Figure 3.2, the ORA and the scan chain can

be implemented together by using two PLBs per ORA with four BUTs being compared at

once. However, using this model results in loss of diagnosis resolution compared to using

the model shown in Figure 3.3 [33]. In Figure 3.3a, all ORAs are reconfigured by the

 31

AVR core to form the scan chain shown in Figure 3.3b. As a result, the initial BIST

architecture has the simple ORA shown in Figure 3.4a. After the BIST sequence is

executed and ORA results are ready to be read, the ORAs are reconfigured as a scan

chain (shift register) and the results are scanned (shifted) out for analysis, as is illustrated

in Figures 3.3b, 3.4b and 3.5. The main difference between the two-PLB ORA and one-

PLB ORA is the need for partial dynamic reconfiguration of the ORA cells.

Figure 3.2 Two-PLB ORA

BUT comp

BUT shift

BUT

BUT

 To Next ORA

Shift Data
Shift Control

Figure 3.3 High Level Structure of ORA and After the Reconfiguration

BUT ORA BUT

BUT ORA BUT

BUT Scan
chain BUT

BUT Scan
chain BUT

(a) Comparison ORA (b) Reconfigured as a Shift Chain

X
Y

X

X

X
Y

Y

Y

Y

Y

Y

Y

 In order to reconfigure the comparison based ORAs (Figure 3.4a) as a shift register

(Figure 3.4b), the AVR first writes to the PLB configuration memory for each ORA to

change the functionality of these PLBs. As the reconfiguration is being performed by the

 32

AVR core, since the ORA scan chain is a directional shift register, diagonal X connection

and orthogonal Y connection which was being compared in Figure 3.4a would be

reconfigured so that each shift register cell is routed to the neighboring shift register by

using the direct Y connection as shown in Figure 3.3b.

 Figure 3.5 shows a simplified illustration of the shift register layout for one of the

logic BIST configurations. Note that the ORA results are scanned out via an external pin.

The shift register reconfiguration program, which will be introduced in next section,

controls the AVR writes to the configuration memory of the FPGA, reconfigures all the

ORAs as a scan chain to have shift-up and shift-down columns as well as to have center

route-through PLBs where the BUTs are reconfigured as part of the scan chain. The

route-through PLBs don’t require any flip-flop to be involved but a simple routing

connection between the shift-up and shift-down columns as illustrated in Figure 3.5

 33

3.2 Implementing Shift Register Reconfiguration for Logic BIST

 In order to implement the dynamic reconfiguration routine of converting ORAs into

a scan chain, assembly or C programming language can be used to develop the AVR

program. There are advantages and disadvantages of using assembly over C. If the

program is written in assembly, which is "machine-level”, it can provide an educative

approach to what goes on inside the processor. Also the assembly program is the best

way to optimize the code because it enables user to control behavior of the processor in

detail. However, C programming language was chosen because of its convenient features

and the support of well-performed compilers that optimize the compiled program fairly

effectively. Although different compilers have slightly different notations and rules to do

the same thing, most compilers do a better job of code size and execution speed

optimization compared to most of the user’s assembly code if the code is long. For our

development needs, due to the usage of many parameterized files and modification

throughout the development sequence, programming in C language was the best choice

 34

to keep the development process efficient.

 A compiler called “Codevision AVR” was used [7]. It enables use of C language to

generate programs for execution on the AVR microcontroller. The compiler converts the

user’s C program to assembly language and generates an Intel HEX file. The Intel HEX

file is then combined with the FPGA bitstream generated from the Figaro [33]. The

combined file (a combined bitstream) is downloaded to the SoC. The resultant bitstream

programs program/data memory of the AVR, the FPGA configuration memory, and

peripherals around the AVR processor. The compiler can optimize compiled AVR

program size by grouping common tasks into subroutines. When optimizing for speed,

the compiler tries to generate smallest number of subroutines possible so that fewer

branch instructions occur during execution.

 35

interrupt [EXT_INT0] void isr_reconf_ORA(void) {
//UP … (a)
for (FPGAX = 2; FPGAX < size; FPGAX+=4) {

for (FPGAY = 0; FPGAY < size; FPGAY++) {
//connecting shift register for UP direction … (b)

FPGAZ = [PLB Tag]+[Byte#];
FPGAD = [Byte]

}
}
//DOWN … (c)
for (FPGAX = 4; FPGAX < size; FPGAX+=4) {

for (FPGAY = 0; FPGAY < size; FPGAY++) {
//connecting shift register for DOWN direction … (d)
}

}
//LEFT-TOP … (e)
FPGAY = size-1; //Top = Row 47
for (FPGAX = 4; FPGAX < size; FPGAX+=4) {
//connecting shift register for every corners … (f)
}
//LEFT-BOTTOM … (g)
FPGAY = 0; //Bottom = Row 0
for (FPGAX = 2; FPGAX < size; FPGAX+=4) {
//connecting shift register for every corners(2) … (h)
}
//CENTER-TOP … (i)
FPGAY = size-1; //Top = Row 47
for (FPGAX = 5; FPGAX < size; FPGAX+=4) {
//Route throughs between ORAs … (j)
}
//CENTER-BOTTOM … (k)
FPGAY = 0; //Top = Row 0
for (FPGAX = 3; FPGAX < size; FPGAX+=4) {
//Route throughs between ORAs … (l)
}
//START … (m)
FPGAX = size-2;
FPGAY = 0;
//Putting logic "1" at the end of the scan chain … (n)

}

Figure 3.6 AVR Code of ORA Reconfiguration to Shift Register
 A C code example for the ORA-to-Shift Register reconfiguration is shown in

Figure 3.6. The example shows the AVR routine for reconfiguring ORAs into shift

registers at the end of a logic BIST sequence. It consists of various for-loops which

reconfigure the ORAs into shift registers. In order to form the shift register illustrated in

 36

Figure 3.5, first, half of the ORA columns are configured to shift data up and the other

half to shift down as shown in Figure 3.6 lines (a) through (d). To connect every column

of shift register pieces into one scan chain, the routines shown in Figure 3.6 lines (e)

through (l) reconfigure either top or bottom PLBs of the ORA columns and some of BUT

PLBs that are adjacent to one end of each shift register column as route-though PLBs

according to Figure 3.5. Finally at the end of the scan chain, the look-up-table is

reconfigured to generate a constant logic value “1” as shown in Figure 3.6 lines (m) and

(n) to verify the integrity of the scan chain during BIST results retrieval [10]. This also

helps to check the consistency of the cache logic mode itself to ensure that the dynamic

partial reconfiguration was correct. After specifying ‘FPGAX’ and ‘FPGAY’ location,

‘FPGAZ’ is written followed by ‘FPGAD’ from the AVR so that FPGA configuration

memory can be written.

 The routine is executed through external interrupts. At the end of each BIST

sequence, the higher test controller unit (such as PC) activates the interrupt to

reconfigure the shift register, after which the ORA results can be retrieved by the test

controller. All BIST configurations reported in [33] used similar shift register

reconfiguration programs developed as part of this thesis and were a necessary part of the

development in [33]. Dynamic partial reconfiguration of ORAs into a shift register is

also used in routing BIST due to the fact that the ORA contents cannot be read directly

from FPGA configuration memory. Most of the ORA layouts are regular, thus

algorithmic AVR reconfiguration routines which reconfigure the ORAs to a scan chain

were implemented in a similar way to the logic BIST shown in Figure 3.6 [33].

 37

3.3 Dynamic AVR Reconfiguration of BUTs and ORAs for BIST

 Improvements of the test time and configuration memory requirement can be made

by developing a new BIST sequence using the AVR microcontroller to dynamically

reconfigure FPGA configuration memory. For example, the BIST sequence in the

previous work on the same device is as follows [33]:

1) Reconfigure FPGA for the BIST (download configuration file).

2) Run BIST (BIST clock is applied).

3) Reconfigure ORAs to form a scan chain (dynamic partial reconfiguration via the

AVR).

4) Retrieve ORA results (to the external controller such as PC).

5) Reconfigure FPGA for the next BUT mode of operation (configuration file

download required).

6) Repeat step 2) – 5) until all modes of BUT operation are tested.

7) Diagnose the retrieved ORA results to locate the faulty blocks (if there are any

ORA failures).

 Improvement can be made to Step 5 above when the FPGA has to be reconfigured

externally via downloading an external configuration file for the next BIST configuration.

Instead of the external configuration download, this BUT reconfiguration can be done by

the AVR processor through partial reconfiguration of BUTs to the next mode of operation.

Since the BUTs in logic BIST architecture have either column or row oriented structure,

they can be easily reconfigured by an algorithmic AVR routine to save test time.

 Additional improvements can be made to step 4. After the BIST clock cycles are

applied for each BIST sequence, the ORA results are retrieved in this step. This is

 38

because the shift registers are overwritten to ORAs when the next BIST configuration

download occurs, resulting in a chip reset and the contents of ORAs are lost. However,

from another aspect, the new BIST configuration downloads are required in order to reset

the contents of ORAs as well as to reinitialize comparison-based ORA functionality for

the next BIST configuration. Improvements can be made by utilizing the AVR’s dynamic

partial reconfiguration capability since the AVR can reconfigure the shift chain back to

ORAs and clear the flip-flop contents of ORAs so that the next test phase can be run.

Therefore, only one initial BIST configuration download to the FPGA is needed for each

test session and subsequent BIST configuration downloads can be replaced with a small

AVR program.

 As a result, only one BIST configuration needs to be downloaded along with a

program to be executed by the processor core for the reconfiguration of subsequent BIST

configurations. In the previous work [33], the FPGA is tested for four directions (Figure

3.7) and one direction consists of four modes of BUT configuration. Therefore a total of

16 BIST configurations must be downloaded. These sixteen configuration downloads can

be replaced by four downloads with the AVR-assisted BIST. This provides an

improvement to total test time when compared to downloading individual BIST

configurations because the download time dominates the total test time since the

configuration clock usually runs at a lower frequency than the processor clock.

 39

3.7 Four Layouts for Logic BIST [33]

a) West Session b) East Session

c) South Session d) North Session

TPG

BUT
ORA

To reconfigure for the next test phase from the AVR, an external interrupt routine is

used which has a global variable ‘phase’. The variable ‘phase’ is initialized to 1 during

the initial download to the FPGA which means the first BUT mode is configured in the

FPGA. When the interrupt occurs, the ‘phase’ variable is incremented to configure BUTs

differently and appropriately as the test sequence proceeds, as shown in Figure 3.8 line

(c). In order to achieve maximum speedup, the use of arrays is avoided and a ‘switch-

case-break’ scheme is used (Figure 3.8a) which saves execution time but requires more

program memory size. After the reconfiguration of the BUTs, the existing shift register is

reconfigured back to ORAs by a routine similar to the BUT reconfiguration routine

shown in Figure 3.8.

 40

 Detailed analysis of the AVR reconfiguration is shown in Table 3.1 in terms of the

number of processor clock cycles required to perform the various functions associated

with reconfiguration and execution of logic BIST. The number of non-commented lines

of C source code and the number of bytes of program memory storage required for the

compile program are also given. In logic BIST for AT94K40 (a 48x48 array) there are

1,152 BUTs and 1,104 ORAs in each BIST configuration [28]. Therefore, BUT

reconfiguration requires about 61 cycles per BUT while reconfiguration of the ORAs

 41

into a shift register requires about 23 cycles per ORA and reconfiguration back to ORAs

after retrieval of the BIST results requires about 34 cycles per ORA.

Table 3.1 Logic BIST Reconfiguration

Reconfiguration function
Average processor
execution cycles

Number of lines
of code

Program memory
bytes

ORA to shift register 25,570 127 764
Shift register to ORA 37,220 102 328

Reconfigure BUT 70,023 154 756

 As illustrated in Table 3.2, in the initial work [33], each of the four BIST

configurations associated with each of the four test sessions contains approximately 65

Kbytes of configuration data including the program for reconfiguration of the ORAs into

a shift register at the end of the BIST sequence for retrieving ORA results.

Table 3.2 Total Memory Reduction

 Download [33] AVR-assisted
Memory

Reduction
Total Configurations 65 Kbytes × 16 files 67.5 Kbytes x 4 files 3.9

 Therefore, a total of approximately 1.04 Mbytes of memory is needed to store all

sixteen logic BIST configurations. A single configuration for a given logic BIST session

with a program to reconfigure the subsequent three BIST configurations requires only

67.5 Kbytes of configuration and program data (total of approximately 270 Kbytes),

giving a factor of 3.9 reduction in memory storage for four test sessions. In these cases,

the AVR program performs the following steps during the BIST sequence to obtain

improvements over the previous work [33]:

 1) Execute the BIST sequence for the current BIST configuration.

 2) Reconfigure the ORAs into a shift register at the end of the BIST sequence.

 3) Retrieve the BIST results.

 42

 4) Reconfigure the shift register back to ORAs for the next BIST configuration.

 5) Reconfigure BUTs for the next BIST configuration.

 6) Repeat steps 1 through 5 until all of the BIST configurations have been executed.

 The test time is determined by the total time required to download the BIST

configuration and the time for the processor to execute the steps listed above. At the

maximum download (1MHz) and processor clock (25MHz) frequencies, it takes total of

523 milliseconds for a single logic BIST configuration, 2.1 seconds for the test session of

four logic BIST configurations, and a total of 8.4 seconds for the complete set of 16 logic

BIST configurations as shown in Table 3.3. Using the processor core for reconfiguration

(AVR-assisted) of the four BUT configurations within a given test session, it takes a total

of 559 milliseconds per test session, giving a speed-up of 3.75.

Table 3.3 Total Test Time and Speed Up

 Download [33] AVR-assisted Speed up Factor
Download (1MHz) 523msec x 16 540msec x 4 3.87
Run time (25MHz) 1msec x 16 19msec x 4 0.21
Total BIST Time 8.4 sec 2.24 sec 3.75

3.4 A Better Logic BIST Sequence

 Taking the AVR-assisted logic BIST idea one step further, additional improvements

can be made to the BIST sequence. In the previous work [33], one BIST session consists

of four BIST configurations to be downloaded and two different routing schemes, shown

in Figure 3.9, which alternate as the phase increases, requiring retrieval of ORA results

after every BIST configuration [33].

 43

Figure 3.9 Four BIST Phases in One Session for AT94K SoCs

1

1

1

1

1

1

1

1

1

1

1

1

a) Phase 2
(routing scheme 1)

1

1

1

1

1

1

1

TPG

BUT mode 1
ORA

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

2 BUT mode 2 3 BUT mode 3 4 BUT mode 4

b) Phase 2
(routing scheme 2)

c) Phase 3
(routing scheme 1)

d) Phase 4
(routing scheme 2)

 The MGL-based AVR-assisted logic BIST described in the previous section had to

scan out the ORA results at the end of each BIST sequence. It is due to the fact that the

routing scheme alternated after every test phase, resulting in the inability to locate faulty

PLBs based on failing BIST results. By reordering the BIST configurations and by

grouping the same routing schemes together, the ORA result can be retrieved after

multiple test phases. This results in saving total test time by saving ORA reconfiguration

and retrieval time. As a result, the contents of the ORAs are not cleared in between test

phases because the ORA contents have to be maintained throughout the different BIST

phases in order to scan out results at the end of the test session. In this case, there is some

loss in diagnostic resolution but it does not degrade any fault detection capabilities. Thus,

BIST still detects any faulty PLBs while attaining faster test time while diagnosis can

still identify faulty PLBs. The loss in diagnostic resolution is only to the extent that the

failing BUT mode of operation cannot be identified.

 In the case of the X and Y direct PLB connection tests, which are located on four

 44

corners of the FPGA, avoiding alternating routing schemes results in complete testing of

the PLBs, including X and Y direct connections on the four corners. The work in [33]

reported lower fault coverage in eight PLBs located in the four corners.

 This modified approach to dynamic partial reconfiguration of the FPGA core by the

embedded processor core is analyzed and illustrated in Table 3.4 in terms of the number

of processor execution clock cycles and program memory size required for

reconfiguration of BIST, execution of the BIST sequence, and retrieval of the BIST

results for diagnosis. This new logic BIST approach consists of the following steps:

1) Reconfigure the FPGA for BIST (download configuration file).

2) Run BIST (BIST clock is applied).

3) Partially reconfigure for the next BUT configuration via the microcontroller.

4) Repeat steps 2) and 3) until all modes of operation with the same routing scheme

are run.

5) Reconfigure the ORAs into a shift register.

6) Retrieve the BIST results for diagnosis to locate faulty PLBs.

7) Reconfigure the shift register back to ORAs for a different routing scheme.

8) Reconfigure BUTs for another ORA-to-BUT routing scheme.

9) Repeat steps 2 through 6 for the next test session.

 As shown in Table 3.4, the new BIST sequence produces a 41% reduction in the

average number of execution clock cycles per test phase and a 49% reduction in program

memory storage requirements. This is due in part to the fact that ORA results can be

retrieved after each group of four BIST configurations without loss of fault detection

information, instead of after every BIST configuration as is the case in the externally

 45

controlled logic BIST approach in [33]. Another factor is that the externally controlled

logic BIST approach required running four test sessions (west, east, south, and north) for

complete testing of PLB logic while the modified AVR-assisted logic BIST approach

only requires running two test sessions (west and east), twice each (one for each routing

scheme). Thus, the modified AVR-assisted logic BIST requires fewer reconfiguration

clock cycles to completely test the PLBs in the FPGA core. One penalty of having only

west and east test sessions is that they are not sufficient to test additional routing faults

associated with horizontal transmission gates, which make PLB-to-global bus

connections. Whereas the externally controlled logic BIST approach [33] is able to detect

them in addition to the PLB logic faults. However, it can be solved by running similar

sessions for north and south, or as an alternative, routing BIST requires north and south

test sessions for repeaters and the horizontal transmission gates should be tested in those

BIST configurations.

Table 3.4 Logic BIST Reconfiguration Improvement

Compared Features AVR-assisted Modified AVR-assisted
Total Number of Test Phases 16 16

Number of Downloads Required 4 2
Average Number of Lines of Code 350 x 4 450 x 2

Total Program Memory Size (Bytes) 1,694 x 4 1,736 x 2
 Total Execution Clock Cycles 1,844,916 1,086,462

Average Cycles per Test Phase 115,307 67,904

By comparing the improved and original BIST configurations from [33], a total

memory reduction factor of 7.7 and a test time speedup by a factor of 7.4 are achieved, as

shown in Tables 3.5 and 3.6 respectively. Note that all the data shown are based on the

AT94K40 device which has a PLB array size of 48x48. But it should be noted that all

 46

tests were also developed for and executed on AT94K10 devices, which have a PLB array

size of 24x24. The speedup in testing time in the AT94K10 is less due to the smaller array

size.

Table 3.5 Total Memory Reduction

 Download [33] Modified AVR-assist
Memory

Reduction
Total Configurations 65 Kbytes × 16 files 67.6 Kbytes x 2 file 7.7

Table 3.6 Total Test Time and Speed Up

 Download [33] Modified AVR-
assist

Speed up Factor

Download (1MHz) 523msec x 16 541msec x 2 7.75
Run time (25MHz) 1msec x 16 22msec x 2 0.36
Total BIST Time 8.4 sec 1.13 sec 7.4

 47

CHAPTER FOUR
AVR GENERATED FPGA LOGIC BIST

The previous chapter described how the embedded AVR microcontroller can assist

in the BIST of the embedded FPGA core using an initial external configuration download

to the FPGA. Significant improvements in the BIST performance were obtained by using

the microcontroller to reconfigure the FPGA for the subsequent BIST configurations

instead of downloading those BIST configurations. This chapter extends the idea to

eliminate all external downloads to the FPGA by replacing those download bitstream files

with a single AVR program. The program contains algorithmic routines to reconfigure the

FPGA core for every BIST configuration. Furthermore, the AVR becomes the test

controller by executing the BIST sequence and retrieving the BIST results. The detailed

development and debugging process of AVR generated BIST configurations will be

discussed. Finally, the improvement over the conventional FPGA BIST will be presented

by showing the BIST time speedup and configuration memory storage reduction factor.

4.1 Development of C Program for Logic BIST Generation

The goal is to develop a program for algorithmic reconfiguration of the FPGA core

for every BIST configuration. This requires only a single download to the program

memory without configuration of the FPGA core. If the program is sufficiently small, it

can reside in the program memory without the need for any download. The key point in

 48

this approach is to have an algorithmic routine to reconfigure the FPGA for different

BIST configurations [28]. If fast enough, the BIST program can be more frequently used

during idle intervals in system operation for high reliability, high availability applications.

 To accomplish the first goal, minimizing the size of the program, the BIST

architecture must be regular to facilitate an efficient reconfiguration algorithm. In

addition, the order of the configuration process must be efficient. The configuration order

also impacts the second goal, minimizing test execution time. The test execution time can

also be reduced by not retrieving test results from the ORAs after each BIST

configuration but instead, using dynamic partial reconfiguration to execute many BIST

configurations before retrieving test results. There is some loss of diagnostic resolution in

that the faulty functionality within a PLB can no longer be identified. However, there is

no loss in diagnostic resolution in that faulty PLB(s) can still be identified [34].

4.1.1 Implementation Issues and Considerations

 Since BIST configurations generated from MGL in [33] test all logic resources in

the BUTs with total of four BIST configurations, the first goal was to program the

embedded processor to perform the same tests by replicating the BIST structures (TPGs,

BUTs, ORAs, etc) which were generated by MGL, replacing all the BIST configuration

downloads with a single AVR program.

 One of the limitations of this approach, of having a single processor program to test

all the resources in an FPGA, is that the time required for developing and debugging the

program can be significant. Most of the FPGA design tools provide a graphical

representation of the design to be implemented in the FPGA to help in debugging the

design. Atmel provides a tool called Figaro which graphically represents how the design

 49

is mapped onto the FPGA, provided the original design is described using MGL, VHDL

or Verilog. On the other hand, if the entire BIST configuration is generated through

partial reconfiguration by the AVR, debugging the design without any tool support can

become quite tedious and error-prone. If the AT94K series SoCs were capable of

dynamic configuration readback via the AVR processor core (which is not the case),

BIST development time would be greatly reduced by facilitating read-modify-write

operations to the configuration memory. Instead, the BIST configurations previously

developed and verified using MGL as described in [33] must serve as a baseline for

developing and debugging the desired program for the AVR processor core.

 In order to develop the AVR program, we must determine the BIST configuration

that has to be generated initially and also the proper order of subsequent configurations so

as to minimize the configuration time from the AVR. We use the BIST configurations

originally developed using MGL [33] to help determine these two issues. While the

graphical representation of the design helps in planning the reconfiguration routines as to

how the different resources (logic, routing, repeaters, and clocks) have to be configured,

the MGL generated bitstream helps in determining the order in which to write various

configuration bytes for different resources so as to make the algorithmic reconfiguration

routines efficient in terms of speed and size as well as power dissipation during

reconfiguration.

 After developing and verifying the routines for the initial configuration, routines are

then developed for reconfiguring the BUTs to test the subsequent modes of operation.

The BIST reconfiguration order has to be carefully considered and arranged since, if

different resources are configured independently, there is possibility of destroying the

 50

previously configured bytes, since some of the configuration bytes are shared by different

programmable resources. For example, as shown in Figure 4.1, if reconfiguring repeater

connection ‘A-C’ requires writing a logic 1 on the least significant bit location of the

repeater configuration byte, then writing a byte ‘00000001’ may turn off the existing

activated CIP that is needed for BIST.

4.1.2 Efficient Sequence of On-chip Dynamic Configuration of FPGA BIST from

AVR

 To find an efficient configuration sequence when reconfiguring the FPGA core

from scratch, a primary goal is to avoid the risk of overwriting a configuration bit that has

been previously written and, as a result, inadvertently injecting errors into a BIST

configuration. The following considerations help to minimize this risk. First, do not

configure more than what is needed when configuring the FPGA for the test. For example,

the BIST clock routing need not be configured until the other BIST components are

configured and ready for the BIST clock. When the BIST clock is ready to be applied for

the BIST sequence, the scan chain output path from the ORAs is not needed and should

 51

only be configured right before the BIST results are to be retrieved. Second, keep track of

configuration bytes that control more than one kind of programmable component (such as

repeaters with global clocks and resets, for example). Third, configure resources that are

regular and repeat over the entire array first (such as the BUTs and ORAs, for example)

and then configure the resources that are local to a specific area in the FPGA array (such

as the clock, scan chain output signal, and TPGs).

 The algorithmic reconfiguration program for the embedded AVR core was

developed in C. The program’s subroutines and reconfiguration sequence is arranged in

the following order:

 1. Clear the FPGA - Instead of the chip reset, this subroutine clears the entire FPGA

configuration memory contents to ensure that the BIST components will be configured

into an empty FPGA. It clears all configuration memory bytes associated with PLBs,

repeaters, clocks, set/resets, flip-flops, free RAMs, and I/O buffers [7]. This routine is

also executed when there are transitions between test sessions as shown in Figure 2.15.

 2. Initialize the ORAs - This subroutine configures the local routing resources

associated with each ORA and its LUTs to function as a comparison-based ORA. It

configures the ORAs to either routing scheme 1 or 2, as shown in Figure 2.15, and resets

the ORA flip-flop contents to logic 0.

 3. Initialize/reconfigure the BUTs - This subroutine first configures the cross points

where the TPG signals and buses to the BUT inputs are connected along the very top and

the bottom of the FPGA array. When the routine is used to reconfigure the BUTs for the

next BIST configuration, depending on the current test session and the BIST

configuration, it changes the local routing connecting the BUTs as well as the

 52

programmable logic resources inside the BUTs. The BUTs are also reset through this

subroutine, meaning the flip-flops in all of the BUTs are initialized to either logic 0 or

logic 1 (depending on the BUT configuration) to ensure correct BIST operation. In fact,

this feature provides additional testing of the flip-flops that cannot be tested by

downloading individual BIST configurations into the FPGA core and illustrates the

improved controllability obtained with partial reconfiguration from the embedded

processor core.

 4. Initialize the TPGs - This subroutine programs two 5-bit counters in the TPG

column of the PLB array. It also performs all local, global, and repeater routing between

the TPG PLBs, as well as the TPG to BUT signal connections as shown in Figure 2.15.

When configuring repeaters in this step, writing to some of the repeater bytes needs extra

attention because some of the bytes in repeaters also include global clock and set/reset

control bits. This subroutine also initializes the TPG flip-flops to logic 0 to ensure that the

TPGs are synchronized prior to execution of the BIST sequence.

 5. Route BIST clock controlled by the AVR interface - This subroutine connects the

FPGA Write Enable line (FPGAIOWE as shown in Figure 2.8 and 4.2) from the AVR

interface to one of the global clock input lines of the FPGA core so that the BIST clock

signal can be distributed to all of the PLBs. FPGAIOWE is used to generate and control

the BIST clock from the AVR. Since the AVR-FPGA interface cannot be described and

programmed from the MGL, the circled points shown in Figure 4.2 illustrate dynamic

reconfiguration from the AVR. Finally, this subroutine configures the clock control

settings such as clock invert bits for the TPGs, BUTs, and ORAs which are the last steps

before running the BIST.

 53

Figure 4.2 FIGARO Illustration of How AVR Connects to a Global Clock Buffer

FPGAIOWE from AVR

Dynamic AVR
reconfiguration Points

Global
CLK

 54

 6. Run the BIST - In this subroutine, the embedded AVR processor generates the

BIST clock cycles to the FPGA core to run the complete BIST sequence. A control

register ‘FISCR’ is assigned to decode and connect one of four I/O registry addresses

(‘FISUB’ is decoded in Figure 4.3) to the AVR-FPGA data bus. A clock cycle is

generated by writing a dummy value to the 8-bit ‘FISUB’ as shown in Figure 4.3 which

causes a clock cycle to be generated at the ‘FPGAIOWE’ pad. The TPGs generate the test

patterns and any ORAs that observe mismatches in the outputs of their two neighboring

BUTs will latch a logic 1.

 7. Reconfigure the ORAs as a scan chain - At the completion of the BIST sequence,

the ORAs will hold the test results to be read by the AVR. During this subroutine, all of

the ORAs are dynamically reconfigured as a scan chain without affecting the contents of

the ORA flip-flops as discussed in previous chapter.

 8. Route the scan out data to the AVR interface - When ORA results are scanned out

to the AVR core, the bidirectional data bus between the AVR and FPGA core must be

used to shift the ORA results to the AVR for storage in the data SRAM. This subroutine

routes a signal path from the output of the last ORA in the shift register to one of the 8-bit

data bus lines (AVR DATA IN 0 in Figure 4.4) to the AVR core.

 55

 9. Retrieve ORA results and store in the data SRAM for fault detection analysis

and/or diagnosis - According to the instruction given to the embedded processor by a

higher computing source (a PC in our case), the AVR can retrieve the ORA results after

every BIST configuration or after multiple BIST configurations. In the latter case, there is

some loss in diagnostic resolution but it does not degrade any fault detection capabilities.

Thus, it still detects and identifies any faulty PLBs while attaining faster test time. The

AVR can either return the actual test results (the contents of the ORAs) or it can perform

an on-chip diagnostic procedure [34] as instructed by the higher computing source. In the

event that the AVR is instructed to perform diagnosis, it returns a list of all faulty PLBs

and their locations in the array for the BIST configuration(s) just executed.

 56

4.2 Debugging Technique for Developing Logic BIST from Scratch

 Atmel’s MGL and Figaro IDS tools can be used to a certain extent to help in

speeding up the development and debugging process for the AVR program, which

consists of the various configuration subroutines. In order to use an MGL program in

debugging, a completely developed and verified MGL-based BIST configuration from

[33] was modified to omit certain configurations of the BIST components in the FPGA

core, as illustrated in Figure 4.5. An AVR program was then developed to write the

configuration of the original components missing in the modified MGL configuration.

The MGL-generated bit stream and the compiled AVR code are then combined into a

single bit stream using Atmel System Designer and downloaded into the SoC. The MGL-

based BIST configuration, with missing BIST components, will report failures upon

running BIST. However, if the BIST runs correctly after the execution of the AVR

configuration routine, then we will have verified, at least to a certain extent, that the

configuration subroutine correctly replaces the missing BIST component. Each BIST

component is removed, one at a time, from the MGL code and combined with an

appropriate AVR configuration subroutine to verify all of the AVR configuration

subroutines for all BIST components. In this manner, we are essentially using the BIST

architecture to test itself for design verification. A fault injection emulation technique is

then used by reconfiguring certain PLBs to have faults and to verify that the BIST

accurately detects and diagnoses these faults [17]. When there is no MGL-generated

configuration data to be downloaded into the FPGA core, we are left with one AVR

program which consists of all the logic BIST reconfiguration subroutines to be

downloaded to the program memory of the SoC.

 57

Figure 4.5 Use of MGL to Verify AVR Routines

a) MGL bitstream to
be downloaded into

the FPGA core

b) AVR program routine
that configures lower

TPGs on the FPGA core

c) Run BIST and verify the
operation with fault inject

4.3 Experimental Results

 The AVR program, consisting of the various subroutines described Section 4.1, is

summarized in Table 4.1 in terms of individual program memory storage requirements,

number of non-commented lines of source code, and the number of processor execution

cycles for each configuration subroutine. Note that Table 4.1 contains the detailed

functional level analysis of the final program which compiles to an Intel HEX file format

to be downloaded to the program memory of the chip to run all of the west and east test

sessions, which are equivalent to the complete set of the logic BIST configurations

developed in [33]. Almost all of the subroutines developed for the west test session were

parameterized so that they can be reused in the east session to reduce the program

memory size. The main difference between the two test sessions is the direction of the

 58

TPG signal flow across the top and the bottom of the array, which corresponds to

horizontal repeaters on the top and bottom rows. The rest of the configuration subroutines

for the BUTs and ORAs are reused simply by applying offsets to the column locations.

TPG configuration routines are also reused by changing the TPG column location from

FPGAX = 0 for the first (west) test session to FPGAX = ArraySize-1 for the second

(east) test session. Thus, most of the configuration subroutines take two parameters:

directions of the TPG signal flow to the BUTs (west or east) and the BIST configuration

for the particular BUT mode of operation to be tested.

Table 4.1 Total Configuration Routine Analysis
Processor Execution

Cycles
BIST

Reconfiguration
Subroutines

Program Memory
Size (KBytes)

Number of
Lines of Code

(Approx.) K10 K40
Clear FPGA 0.492 150 59664 215128

Place/config BUT 0.834 300 25829 100360
Place/route ORA 0.22 70 14844 60686
Place/route TPG 1.486 600 4652 14866

Route BIST clock 0.234 40 1923 4911
ORA/shift reg 0.282 80 6371 24791
Route scan out 0.402 45 24879 97370

Misc. 0.726 2700 * *
Total 4.676 4000 138162 518112

* Ignored in the total value.

 Due to the irregular structure of the TPG and associated routing, the subroutine for

configuring the TPG PLBs and the TPG to BUT routing occupies a large portion of the

program memory. The second biggest subroutine is the placement and reconfiguration of

the BUTs, since this contains 16 different combinations of BUT test configurations as

well as the flip-flop and set/reset tests in half of the BIST configurations. The complete

 59

AVR program occupies 4.7 KBytes of program memory, which corresponds to only

about 14% of the total 32 KByte program memory space available in the AT94K series

SoC.

 In contrast to the program memory size or the number of non-commented lines of C

source code, the number of processor execution cycles listed in Table 4.1 shows a

different aspect of the BIST reconfiguration program. For example, more execution

cycles are required in the routines for clearing the FPGA, for placement and

reconfiguring of the BUTs, and for placement and routing the ORAs. Fewer execution

cycles are required for placing and routing the TPGs. This is because the first three

subroutines contain extensive loops which travel along every X (FPGAX) and Y

(FPGAY) location of the chip. This illustrates how the regular and algorithmic structure

of the BIST architecture helps to reduce the program memory storage requirements. The

K10 notation in Table 4.1 denotes AT94K10 devices, which have an array size of 24×24

PLBs, while the K40 denotes AT94K40 devices, which have a 48×48 PLB array. The

column showing processor execution cycles for K40 is greater by a factor of

approximately four, indicating that the increase in reconfiguration time and retrieval of

results is linear with the device size.

 Subroutines for applying the diagnostic procedure to the BIST results and for

communicating with the higher controlling source also increase the program memory

storage requirements. Also, due to the additional bits added from the tool that generates

the final bit-stream, the actual file size to be downloaded to the program memory of the

AVR increases from 4.7 Kbytes to 12.6 Kbytes as summarized in Table 4.2.

 60

Table 4.2 Actual Download File Size (KBytes)
All

Configurations
On-Chip Diagnosis

+ others
Added by System Designer Bit

Generation
Total

4.676 2.5 5.419 12.6

 With the internal BIST reconfiguration process executed by the AVR core, we

achieve much better external memory storage requirements and faster testing time when

compared to downloading individual BIST configurations into the FPGA. This is

summarized in Table 4.3 for external memory storage and in Table 4.4 for total test time.

The data shown in these tables are for a AT94K40 device with a 48×48 PLB array.

Table 4.3 Total Memory Reduction

 Download[33] AVR-generated Memory Reduction

Total Configurations
65 Kbytes
× 16 files

12.6 Kytes
x 1 file

83

Table 4.4 Total Test Time and Speed up
 Download[33] AVR-generated Speed up Factor

Download (1MHz) 8.371 sec. 0.101 sec. 83.077
Run-time (25MHz) 0.016 sec. 0.085 sec. 0.193
Total BIST Time 8.387 sec. 0.186 sec. 45.125

 The total test time is calculated by adding the download time and BIST execution

time (or run-time as listed in Table 4.4). The external download is done using a

maximum clock speed of 1MHz since all external downloads, which involve a check for

download errors (the check-sum function) at the FPGA, can run at a maximum

configuration clock frequency of 1 MHz [7]. Since the AVR can run at 25 MHz clock

speed, BIST execution time is calculated assuming that the BIST clock runs at 25 MHz.

This data was obtained from simulation on the ‘Codevision AVR’ C compiler and ‘AVR

Studio’ for both conventional and processor-only cases and was also verified against

actual download and execution times in several AT94K40 devices.

 61

 As a result of the single AVR program for BIST reconfiguration, we obtain a factor

of 45 speed-up in total test time and a factor of 83 reduction in external memory

requirements for storing BIST configurations. It is interesting to note that the run-time in

Table 4.4 increases for AVR BIST reconfiguration. This is due to the fact that the

embedded processor core is doing all the reconfiguration, execution, and retrieval of

BIST results while in the download of BIST configurations, the processor core is only

used to reconfigure the ORAs into shift registers at the end of the BIST sequence for

retrieval of the test results. With this consideration, the increase in run-time seems

surprisingly small.

 62

CHAPTER FIVE
SUMMARY AND CONCLUSIONS

This chapter summarizes the thesis and emphasizes the main contributions,

followed by possible future research subjects. The summary section addresses problems

in developing BIST configurations on commercially available SoC devices and discusses

how the problems were solved through this thesis work. Experimental results summarize

and discuss improvements in BIST which utilizes embedded AVR microcontroller as a

BIST component, followed by a discussion of possible future research topics.

5.1. Summary

The PLBs in the embedded FPGA core in AT94K FPSLIC devices from Atmel

were tested with 99.7% fault coverage in the thesis work described in [33]. One of the

difficulties in developing BIST configurations on the device was due to that fact that

each PLB has limited amount of resources which made it impossible to have an ORA

with shift register capabilities in a single PLB [33]. With further investigation of the SoC

device, we determined that the embedded FPGA can be dynamically reconfigured from

the embedded AVR core, so that the BIST architecture could start with comparison-based

ORAs, where each ORA monitors two BUTs, and scan out the ORA results by

dynamically reconfiguring the ORAs to shift registers at the end of the BIST sequence.

As a result, BIST configuration bitstreams that are downloaded to the SoC device consist

of FPGA configurations as well as the AVR program for ORA to shift register

 63

reconfiguration. Therefore, the work in [33] was completed and concluded with the

support of the AVR partial reconfiguration which influenced most of the ideas in this

thesis.

In order to improve test time, which is dominated by BIST configuration download

time in [33] and other previous FPGA BIST works in [10]-[12], [18]-[21], the role of the

AVR has been extended to do partial reconfiguration of BUTs for each test phase. This

eliminates the need for new downloads to the FPGA and any chip reset between the BIST

configurations. Without a chip reset, the AVR must reconfigure more resources, such as

resetting flip-flops in ORAs and TPGs, which costs additional clock cycles. However,

faster test time than the approach in [33] was achieved because the AVR reconfiguration

runs at a clock frequency of 25MHz while the external download can only run at 1MHz

in order to provide error checks on the configuration downloads files. The improved

BIST approach, however, needed the initial download to the FPGA for each test session.

With the BIST approach that requires initial download to the embedded FPGA

followed by dynamic reconfigurations of the FPGA from the AVR between test phases,

we focused on imitating the exact BIST architecture and sequence as done in [33].

However, with the dynamic partial reconfiguration capability of the AVR, any

modification can be made to the BIST architecture in such a way that improves the total

test time. One of the modifications made was in the local X and Y routing scheme that

alternates as shown in Figure 3.9. Instead of the alternate routing schemes, one routing

scheme (scheme 1) is maintained to run four BUT configurations, with ORA results

scanned out after the all modes of BUT operation have been tested. Next, the FPGA is

reconfigured to have another routing scheme (scheme 2) to run four BUT configurations

 64

again. This gave better speedup in test time, further reductions in memory storage

requirements, and improved fault coverage at the corners on the FPGA core.

As the AVR’s dynamic partial reconfiguration capability was proven to give

flexibility of developing BIST configurations, the idea arose that the AVR could program

the entire FPGA core from the very beginning without the need of any external download.

All BIST components such as TPGs, BUTs and ORAs were carefully analyzed and a C

program was developed so that the AVR can write certain configurations to certain parts

of the FPGA to perform particular BIST functions such as TPG, ORA, or BUT. The

drawback of this approach was excessive development time due to that fact that there are

no tools that can visualize the dynamic cache logic of AVR writing to the FPGA

configuration memory. In the end, this approach resulted in a single program that

replaces 16 external downloads, achieving better test time speedup and memory storage

requirements reduction than any other approach.

5.2. Improvements in Total Test Time and Configuration Memory Requirements

As a result, we have achieved improvements in the total test time and memory

storage requirement for BIST configurations throughout the development. The final

result is a single program executed by the embedded processor core for the complete

reconfiguration, execution, and retrieval of test results during BIST of the programmable

logic resources in the FPGA core of the Atmel AT94K series configurable SoC, as

summarized in Tables 5.1, 5.2, and 5.3. As can be seen, replacing configuration

downloads to the chip requires more AVR program size and processor execution cycles.

However, this is a good trade-off since it eliminates FPGA configuration downloads

which dominate total BIST configuration memory storage requirement and test time.

 65

Table 5.1 Logic BIST Reconfiguration Comparison

Compared
Features

Download [33] AVR-assisted
Modified AVR-

assisted
AVR-generated

 # of Downloads
Required

16 4 2 1

Total Number of
ORA Retrieval

1 x 16 4 x 4 2 x 2 4 x 1

Number of lines
of code

127 x 16 350 x 4 450 x 2 1,300 x 1

Total Program
memory bytes

764 1,694 x 4 1,736 x 2 4,676 x 1

Total Processor
execution cycles

25,570 1,844,916 1,086,462 2,127,686

Table 5.2 Total Configuration Memory Reduction

 Download [33] AVR-assisted
Modified

AVR-assisted
AVR-generated

Total
Configurations

65 Kbytes
× 16 files

67.5 Kbytes
x 4 files

67.6 Kbytes
x 2 files

12.6 Kbytes
X 1 file

Memory
Reduction

1 3.9 7.7 83

Table 5.3 Total Test Time and Speed Up

 Download [33] AVR-assisted
Modified AVR-

assisted
AVR-generated

Download
(1MHz)

523msec x 16 540msec x 4 541msec x 2 101msec x 1

Run time
(25MHz)

1msec x 16 19msec x 4 22msec x 2 85msec x 1

Total BIST Time 8.4 sec 2.24 sec 1.13 sec 0.186 sec
Speed Up Factor 1 3.75 7.4 45

 66

5.3. Main Contribution

 The ability to perform dynamic partial reconfiguration of the FPGA core from the

embedded processor core provides a major testing capability. However, the non-existent

configuration memory readback capability, as well as lack of graphical tool support that

can show dynamic partial reconfigurations in the FPGA, make the SoC testing (and test

development) much more difficult. Therefore, a unique way of debugging and verifying

AVR’s dynamic reconfiguration was used by combining the AVR program with

previously verified MGL-generated FPGA BIST configurations so that the resultant

download bitstream can be run in the chip for the AVR program verification. Finally, by

having a single program downloaded into the program memory of the embedded

processor to reconfigure the FPGA core algorithmically, downloads to the FPGA core are

eliminated, resulting in significant reduction in the total testing time (a factor of 45) as

well as the configuration memory required (a factor of 83) compared to the previous

work done in [33]. The single AVR-generated BIST and diagnostic program is

sufficiently small to reside on-chip for on-demand BIST and diagnosis of the

programmable logic resources in the FPGA core of the SoC.

 The same techniques discussed in this thesis can also be applied to BIST of the

programmable routing resources. Previous work [33] showed that the number of routing

BIST configurations required (48) was three times more than the logic BIST

configurations (16) for the same device tested in this thesis. In other words, three times

more configuration downloads could be replaced with a single AVR program resulting in

a better reduction of configuration memory requirements and total test time.

 67

5.4. Future Research

 There are two areas that can be considered for future research related to this thesis.

They are the embedded AVR microcontroller itself and a dynamic reconfiguration

visualization tool. Throughout this thesis work, the microcontroller was assumed to be

fault-free. Without this assumption, it is not certain that the FPGA BIST configurations

generated from the AVR are correct. If the AVR can be tested also, then it would support

the argument that the partial reconfigurations that are made by the AVR to the FPGA core

can be trusted. An AVR test could be broken into several parts (such as ALU, stack,

dynamic reconfiguration logic, peripherals and etc), and critical parts that are mostly

used for the BIST reconfiguration shown in this thesis can be selected and tested

individually.

 The AVR leads to the other subject, the dynamic reconfiguration visualization tool.

If developers can see how the FPGA configurations are being changed by the AVR, there

would be no need for spending excessive time in developing AVR-generated BIST

configurations that currently requires developer’s ability of imagining any design

changes (by looking at the AVR program) inside the FPGA core resulting from the AVR

dynamic reconfiguration. Currently, a simulation program called “AVR Studio” has

capabilities to simulate and record various parts in the AVR (such as registers, ports,

processor clock cycles and etc), and the visualization tool could be built on top of the

AVR simulator as a form of software plug-in module. The visualization tool will not help

general users to debug designs since most designers would not consider the physical

design structure or layout which is typically done by the CAD tool. However, the

visualization tool will be very useful to test engineers, especially those who are related to

 68

the topics and techniques discussed in this thesis.

 69

REFERENCES

[1] D. W. Kim, W. I. Cho, “Development of Universal BIST Tool to provide BIST
Environment,” Journal of New Technology., Kwang-woon Univ, Vol. 26, pp. 65-75,
1997.

[2] R. Drechsler, "Synthesizing checkers for on-line verification of System-on-Chip
designs," Proc. IEEE International Symp. on Circuits and Systems, Vol. 4, pp. 25-28,
2003.

[3] B. Bentley, "Validating the Intel Pentium 4 microprocessor," Proc. ACM/IEEE
Design Automation Conf., pp. 244-248, 2001.

[4] J. J. Engel, T. S. Guzowski, A. Hunt, D. E. Lackey, L. D. Pickup, R. A. Proctor, K.
Reynolds, A. M Rincon, D. R. Stauffer, "Design methodology for IBM ASIC
products," IBM Journal of Research and Development, Vol 40, No. 4, pp.387-407,
1996.

[5] S. Pontarelli, G. C. Cardarilli, A. Malvoni, M. Ottavi, M. Re, A. Salsano, “System-on-
Chip Oriented Fault-Tolerant Sequential Systems Implementation Methodology,”
Proc. IEEE International Symp. on Defect and Fault Tolerance in VLSI Systems, pp.
24-26, 2001.

[6] __, Agilent Technologies Home Page: http://www.agilent.com

[7] __, Atmel Home Page: http://www.atmel.com

[8] Hyper Dictionary Home Page: http://www.hyperdictionary.com

[9] M. Schrader, R. McConnell, "SoC Design and Test Considerations," Proc. Design,
Automation and Test in Europe, pp. 202-207, 2003.

 70

[10] M. Abramovici and C. Stroud, "BIST-Based Test and Diagnosis of FPGA Logic
Blocks," IEEE Trans. on VLSI Systems, Vol. 9, No. 1, pp. 159-172, 2001.

[11] C. E. Stroud, K. N. Leach, T. A. Slaughter, “BIST for Xilinx 4000 and Spartan
Series FPGAs: A Case Study,” Proc. IEEE International Test Conf., pp. 1258-1267,
2003.

[12] S. Wijesuriya, “Built-In Self-Test of Field Programmable Gate Array Interconnect,”
M.S.E.E. Thesis, University of Kentucky, 1997.

[13] __, Field Programmable Gate Arrays Data Book, Data Book, Lucent Technologies,
January 1998.

[14] J. Rose, A. El Gamal, A. Sangiovanni-Vincentelli, "Architecture of Field-
Programmable Gate Arrays," Proc. IEEE, Vol. 81, No. 7, pp. 1013-1029, 1993.

[15] S. Brown, and J. Rose, "FPGA and CPLD Architectures: A Tutorial," IEEE Design
& Test of Computers, Vol. 13, No. 2, pp. 42-57, 1996.

[16] K. Iijima, A. Akar, C. McDonald, and D. Burek, “Embedded Test Solution as a
Breakthrough in Reducing Cost of Test for System on Chips,” Proc. IEEE Asian
Test Symp., pp 311 – 316, 2002.

[17] C. E. Stroud, A Designer’s Guide to Built-In Self-Test, Springer-Verlag, New York,
2002.

[18] C. Stroud, S. Wijesuriya, C. Hamilton and M. Abramovici, “Built-In Self-Test of
FPGA Interconnect,” Proc. IEEE International Test Conf., pp. 404-411, 1998.

[19] C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-In Self-Test for
Programmable Logic Blocks in FPGAs (Finally, A Free Lunch: BIST Without
Overhead!),” Proc. IEEE VLSI Test Symp., pp. 387-392, 1996.

[20] C. Stroud, E. Lee, S. Konala, and M. Abramovici, "Using ILA Testing for BIST in
FPGAs," Proc. IEEE International Test Conf., pp. 68-75, 1996.

[21] C. Stroud, E. Lee, M. Abramovici, "BIST-Based Diagnostics for FPGA Logic
Blocks," Proc. IEEE International Test Conf., pp. 539-547, 1997.

 71

[22] S. Brown, and J. Rose, "FPGA and CPLD Architectures: A Tutorial," IEEE Design
& Test of Computers, Vol. 13, No. 2, pp. 42-57, 1996.

[23] K. Y. Ko, Mike W. T. Wong, and Y. S. Lee, "Testing System-On-Chip by
Summations of Cores' Test Output Voltages," Proc. IEEE Asian Test Symp., pp 350
– 355, 2002.

[24] J. Sunwoo, S. Garimella, C. Stroud, “On Embedded Processor Reconfiguration of
Logic BIST for FPGA Cores in SoCs,” Proc. IEEE North Atlantic Test Workship,
pp. 15-22, 2005.

[25] R. Rajsuman, “Testing a System-On-a-Chip with Embedded Microprocessor,” Proc.
IEEE International Test Conf., pp. 499-508, 1999.

[26] M. Abramovici, C. Stroud, and J. Emmert, “Using Embedded FPGAs for SoC
Yield Improvement,” Proc. ACM/IEEE Design Automation Conf., pp. 713-724,
2002.

[27] G. Zeng, H. Ito, “Hybrid BIST for System-On-a-Chip Using an Embedded FPGA
Core,” Proc. IEEE VLSI Test Symp., pp. 353-358, 2004.

[28] C. Stroud, J. Sunwoo, S. Garimella and J. Harris, “Built-In Self-Test for System-
on-Chip: A Case Study”, Proc. IEEE International Test Conf., pp. 837-846, 2004.

[29] __, AVR Assembly Home Page: www.attiny.com

[30] S. Donthi and R. Haggard, “A Survey of dynamically reconfigurable FPGA
devices,” Proc. IEEE Southeastern Symp. on System Theory, pp. 422-426, 2003.

[31] __, “Integrated Development System – Figaro User Guide”, Atmel Corp., 2002.

[32] C. Sroud, J. Harris, S. Garimella and J. Sunwoo, “Built-In Self-Test Configurations
for Atmel FPGAs Using Macro Generation Language,” Proc. IEEE North Atlantic
Test Workshop, pp. 83-90, 2004.

[33] J. Harris, “Built-In Self-Test Configurations for Field Programmable Gate Array
Cores in Systems-On-Chip,” M.S.E.E. Thesis, Auburn University, 2004.

 72

[34] C. Stroud, S. Garimella, J. Sunwoo, “On-Chip BIST-Based Diagnosis of Embedded
Programmable Logic Cores in System-on-Chip Devices,” Proc. ISCA International
Conf. on Computers and Their Applications, pp. 308-313, 2005.

	prepages1.pdf
	prepages2.pdf
	body.pdf

