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Abstract

Rainfall intensity-duration-frequency (IDF) curves are extensively used for

hydrologic designs. A design based on inaccurate rainfall characteristics can lead to

malfunction of infrastructure, excessive design cost, and loss of life. It is expected that

the frequency and magnitude of future extreme rainfalls will change due to increases in

greenhouse gas (GHG) concentrations. Quantifying potential effects of climate change by

reviewing and updating IDF curves for future climate scenarios and adapting to them is

one way to reduce vulnerability. This study was undertaken to evaluate expected changes

in IDF curves from the current climate to the projected future climate. Six combinations

of global and regional climate models were used to develop the IDF curves under future

climate scenarios. Three-hourly precipitation data were temporally downscaled using two

different disaggregation methods: stochastic and artificial neural network (ANN). In the

second chapter, stochastic method was used to downscale three-hourly precipitation into

15-min precipitation amount and IDF curves were developed. The results of all six

climate models suggest that the future rainfall intensities are expected to decrease for

short duration events (i.e., less than 2 hours). However, for longer duration events, the

results are not consistent across the models. In the third chapter, a feed-forward, back-

propagation ANN model was developed to estimate maximum 15-, 30-, 45-, 60-, and

120-min precipitations. The results were also compared with the disaggregated rainfalls

derived using the stochastic method.
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Results indicate that future rainfall intensities for short duration (< 2 hours) events are

expected to decrease by 33% to 74%. However, a large uncertainty exists in the projected

rainfall intensities of longer duration events. In chapter 4, uncertainty associated with the

studied models was quantified using kernel density estimator and probability-based IDF

curves were created. The resultant IDF curves incorporating all models were also

developed. Although the results derived from different climate projections show large

uncertainty associated with climate models, all of them indicate decrease in future rainfall

intensity for short duration rainfall events, especially for durations less than 2 hours. The

methodology developed can be used for developing IDF curves for other parts of the

United States and the world.
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Chapter 1

1. Introduction

1.1. Climate Change

Climate is a complex system consisting of the oceans, land, atmosphere, snow, and

ice. Changes in climate can happen due to natural events such as volcanic eruptions, solar

radiation variations, earth internal dynamics, orbital irregularities or human activities, etc.

“Climate change” is a term usually used to describe changes caused by human activities

(Solaiman 2011). During the last century, the concentration of carbon dioxide (CO2) and

other greenhouse gases (GHGs) in the earth’s atmosphere has risen due to increased

industrial activities (Prodanovic et al. 2007). This increase in GHG concentrations is

causing large-scale variations in atmospheric processes, which can then lead to changes

in precipitation and temperature characteristics.

The global average temperature has increased 0.74°C during the 20th century, and

projections indicate that it will continue to increase over the next hundred years (IPCC

2007). Changes in temperature can be associated with changes in precipitation, causing

more drought, floods, heat waves, melting ice caps, sea level rise, or more frequent

extreme rainfalls (IPCC 2007). Based on the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC 2007), between 75 and 250 million

people may experience increased water stress in the next 10 years because of climate

change (Muller 2007).
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All these changes will increase challenges with respect to water resources as they

become more pronounced. Degradation of water quality, property damage, and potential

loss of life due to flooding are caused by extreme rainfall events. Damage from erosion

can impact areas from farm fields to stream banks adjacent to important infrastructure

(Wright  et  al.  2010).  To  prepare  for  future  climate  changes,  it  is  imperative  that  we

review and update current standards for water management infrastructure design. This

would prevent water management infrastructures from performing below the designated

guidelines in the future (Prodanovic et al. 2007).

1.2.General Circulation Models (GCMs)

The first climate model was developed by Norman Phillips (1956). This mathematical

model could successfully show monthly and seasonal patterns in the troposphere (Cox

2002). Other scientists started working to develop General Circulation Models (GCMs) in

the late 1960s, when the first oceanic and atmospheric model was developed at the

National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid

Dynamics Laboratory (Lynch 2006, NOAA 2007). The National Center for Atmospheric

Research (NCAR) developed the Community Atmosphere Model in the early 1980s

(Collin 2004), and many more climate models have been created since then. These

General Circulation Models (GCMs) are currently the best tools to study the effects of

climate change. They are the current state-of-the-art in climate science. The main goal of

these models is to identify the climate system’s functioning, employing various sciences

such as physics and chemistry (Prodanovic et al. 2007). GCMs use complicated equations

representing the physical processes of the atmosphere. Significant computing resources

are required to produce meaningful forecasts in this complex system, which includes
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interactions between the different components of ocean layers, temperature gradients,

trade winds, solar radiation, clouds, land masses and ocean currents (Prodanovic et al.

2007). To capture large-scale circulation flows, GCMs operate at medium coarse

resolutions (between 250 and 600 km). GCMs picture the climate in three dimensions

throughout the globe, with 10 to 20 vertical layers in the atmosphere and as many as 30

layers in the ocean (IPCC 2007). GCMs are the best tools available to obtain projections

of different variables, such as precipitation, temperature, humidity, solar radiation, wind

speed, etc. Figure 1.1 displays how a climate model is built. The world is broken up into

many smaller areas or grid cells depending of the resolution of the model. The location of

each grid cell is determined based on its position on earth. There are vertical layers above

each grid cell that can be defined at different pressure levels.

The lower left picture shows all the physical processes happening in each grid cell of

the model. Different kinds of surfaces (e.g. ocean, land, ice) are defined in the model, and

various variables such as temperature, wind, and many others will be calculated in the

model (http://www.cmmap.org).

1.3. Regional Circulation Models (RCMs)

Regional Climate Models (RCMs) perform the same as GCMs but over a restricted

domain, which allows higher resolution and leads to more detailed outputs (Barron and

Sorooshian 1997). They are downscaling tools that add high-resolution information to

large-scale projections of GCMs. By resolving features down to 50 km or less, RCMs

provide more accurate depictions of surfaces, such as coastlines, mountain topographies,

small islands, etc. RCMs also make a more realistic representation of small islands as
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compared to global models, where their climate would be considered the same as the

surrounding ocean (Barron and Sorooshian 1997, Jones et al. 2004).

Like GCMs, they are full, physically-based models that represent all the interactions

and processes between climate system components (Jones et al. 2004). Dynamical,

statistical, and hybrid (statistical-dynamical) methods are three techniques used to obtain

regional climate projections; RCMs are categorized in a dynamical technique group

(Jones et al. 2004). They can be thought of as being composed of three layers. One layer

is largely driven by the GCM, another layer builds on some locally specific data, and the

third layer uses its own physics-based equations to resolve the model based on data from

Figure 1.1 Representation of a climate model setup
(from http://www.cmmap.org/learn/modeling/whatIs2.html retrieved on 03/12/2013)
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model based on data from the other two. The results are comparatively local projections

that are informed by both local specifics and global models. This process requires

significant computational resources because it depends on the use of complex

models. Figure 1.2 demonstrates an example of precipitation prediction by RCM and

GCM over the Alps and Pyrenees between the present and 2080. It is obvious that more

detailed results can be obtained by incorporating RCM that can represent the effects of

these mountains on the weather much better than GCM.

1.4.Climate Model Scenarios

To predict or estimate the changes that might be expected to happen in future climate,

some assumptions about the status of future (e.g. CO2 concentration, population growth,

and economic development) need to be made (IPCC 2007). IPCC has developed a set of

future emission scenarios called Special Report on Emissions Scenarios (SRES). Four

qualitative storylines yield four sets of scenarios called “families”: A1, A2, B1, and B2.

Figure 1.2 Predicted changes in winter precipitation over Central/ Southern Europe between the present
day and 2080 predicted by the RCM (right) and GCM (left).

(from http://climateprediction.net/content/regional-climate-models retrieved on 03/12/2013)
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The A1 scenario family assumes a future of global population that reaches the highest

point at mid-century and drops from that time forward, very rapid economic growth, and

rapid introduction of new and more efficient technologies (IPCC 2007). The A1 scenario

family includes three groups identified by their technological emphasis: fossil-intensive

(A1FI), non-fossil energy sources (A1T), or a balance across all sources (A1B). The

A1FI and A1T scenarios specifically analyze the alternative energy technology

developments and hold other driving forces constant.

The A2 scenario (Nakicenovic et al. 2000) family assumes a population of 15 billion

by 2100. Self-reliant nations, slower changes in technology, and increased incomes are

some of the factors that define the scenario. Economic development is regionally

oriented, and economic growth and technological changes are more fragmented and

slower than in other storylines. A continuous increase in CO2 emissions related to land

use as a result of the increasing population without a proportional increase in agricultural

productivity is also demonstrated in this scenario (Nakicenovic et al. 2000).

The B1 scenario family considers a world with the same global population as A1,

rapid changes in the economy, and the introduction of clean and resource-efficient

technologies. This scenario’s emphasis is on global solutions to economic, social, and

environmental sustainability without additional climate initiatives.

The B2 scenario family highlights local solutions to economic, social, and

environmental sustainability. The world’s population is increasing at a lower rate

compared to the A2 scenario. There are intermediate levels of economic development and

less rapid and more diverse technological change than in the B1 and A1 scenarios.
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In most scenarios, the global forest area will decrease for some decades due to the

population increase and income growth. They will increase by the end of the 21st century,

with the greatest increase in the B1 and B2 scenario families. Agricultural land use

changes are associated with changing food demands. Many other social, technological,

and economic factors affect agricultural, forest, and other types of land change. All of the

driving forces mentioned above will affect CO2 and other GHG emissions. Figure 1.3

shows the range of total CO2 emissions in gigatons of carbon (GtC/year) from all sources

(energy, industry, and land-use change) for different scenario groups from 1990 to 2100.

Figure 1.3 Total global annual CO2 emissions [in gigatons of carbon (GtC/year)] for six scenario
groups.
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1.5. Bias Correction

General Circulation Models (GCMs) are important tools in evaluating climate change

impacts and decision-making (Wood et al. 2004, Li et al. 2010). However, since models

are not perfect, a 20th century climate projected from a model is not the same as the

climate of the 20th century based on observations. Hence, GCM precipitation outputs

cannot be used in hydrological models or in decision-making without performing some

form of bias correction (Sharma et al. 2007, Hansen et al. 2006, Feddersen and Andersen

2005). A realistic presentation of future precipitation from global climate models is

extremely important for vulnerability and impact assessment (Wood et al. 2004,

Schneider et al. 2007). Therefore, modelers use bias correction techniques to represent

more realistic GCM outputs by establishing a relationship between climate model outputs

and observations and then using that relationship to transform the simulated 21st century

climate to a "best guess" 21st century climate. These techniques are given a variety of

names in the literature, such as statistical downscaling, histogram equalizing, and

quantile-based mapping (Piani et al. 2010).

1.6. Downscaling Techniques

1.6.1. Spatial Downscaling

GCMs are developed to simulate the current climate and predict the future climate

change under different climate scenarios. However, the projected climate at a global scale
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does not provide a satisfactory output to use in a hydrological model at a watershed or

regional scale (Solaiman 2011). The spatial resolution of GCMs usually ranges from 250

km to 600 km, which is a coarse resolution for studies at a watershed scale. The accuracy

of GCMs decreases at smaller temporal and spatial scales. Therefore, the projected results

from the GCMs are downscaled to a higher resolution level (Solaiman 2011).

“Downscaling” is based on the view that the regional climate is conditioned by the

climate on a larger scale (Von Storch 1995, 1999a). Information is cascaded "down" from

larger to smaller scales. The regional climate is the result of the interplay of the overall

atmospheric or oceanic circulation and of regional specifics, such as topography, land-sea

distribution, and land use (Von Storch 1995, 1999a). The confidence that may be placed

in downscaled climate change information is dependent on the validity of the large-scale

fields from the GCM. Since different variables have different characteristic spatial scales,

some variables are considered more realistically simulated by GCMs than others.

However, there is no consensus in the community about what level of spatial aggregation

is required for the GCM to be considered skillful.

Two common downscaling techniques are dynamical downscaling and statistical

downscaling. Running a set of regional climate models, dynamical downscaling process

uses the relatively coarse resolution output from the GCMs as a continuously updated

boundary condition for the high-resolution regional models. The most common technique

to perform dynamical downscaling is using RCMs (Brissette et al. 2007, Solaiman 2011).

Utilizing dynamical downscaling requires computational efforts that make it impractical

when several GCMs and emission scenarios are used (Maurer et al. 2007). Figure 1.3
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shows how the downscaling techniques can provide a better representation of GCMs with

higher resolution output to use in regional climate change studies.

Statistical downscaling is more popular due to its relative computational ease.

Generally, they are categorized as weather generators, transfer functions and weather

typing schemes. Weather generators are statistical models that generate random but

realistic daily sequences of variables, such as precipitation and temperature. These data

Figure 1.4 Downscaling techniques allow the use of GCMs outputs as inputs into regional
climate and weather models. From

http://www.southwestclimatechange.org/climate/modeling/downscaling retrieved on 03/12/2013
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are sometimes called synthetic data. Usually, they generate precipitation first, and other

data are later derived using the statistical relationships between precipitation and these

data (Von Storch 1999b, Katz and Parlange 1996). Transfer functions use a quantitative

relationship, such as regression models or linear or non-linear interpolations (Von Storch

1999b). Sailor and Li (1999) modeled local temperature at different stations in the U.S.

using multiple regression models, and Dehn and Buma (1999) specified precipitation at a

French Alpine site. An alternative to linear regression is piecewise linear or nonlinear

interpolation, such as kriging tools (Wackernagel 2003). Biau et al. (1999) used this

approach to relate local precipitation to large-scale pressure distributions. Other studies

have used cubic splines to specify precipitation (Buishand and Klein Tank 1996,

Buishand and Brandsma 1997, 1999). Another non-linear technique is based on Artificial

Neural Networks (ANNs), which is more powerful than other methods, but the

interpretation of the dynamical character of the relationships is less easy (Von Storch

1999b).

Weather typing schemes are based on a more traditional synoptic climatology

concept, including analogs and phase space partitioning. They define weather classes

related to local and regional climate variations (Von Storch 1999b). These weather

classes are defined synoptically or fitted specifically for downscaling purposes by

constructing indices of airflow (Conway et al. 1996). Weighting the local climate states

with the relative frequencies of the weather classes and then the frequency, distribution,

or mean of the regional climate are derived, and climate change is estimated by

determining the frequency of weather classes (Von Storch 1999b). The regional and local

climates are usually obtained from observations. Zorita et al (1995) introduced the analog
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method for downscaling and its applicability for the specification of precipitation was

tested by Cubasch et al. (1996), Martin et al. (1996), and Biau et al. (1999). Techniques

that partition the large-scale state phase space such as Classification Tree Analysis are

other methods which are mathematically more demanding techniques (Zorita et al. 1995,

Lettenmaier 1999).

1.6.2. Temporal Disaggregation

Many hydrologic models or studies related to hydrology and continuous watershed

simulations require long-term meteorological data, such as precipitation (Burian et al.

2000). However, most of the available precipitation data are in hourly or daily intervals,

which are still not small enough time intervals to estimate the accurate hydrologic

response for small watersheds or developing IDF curves. Time intervals on the order of

minutes (e.g. 15-min or 30-min) are suggested for accurate characterization in urban

settings or many other hydrologic studies (Burian et al. 2000). To obtain such high

temporal resolution data, the hourly or daily data need to be disaggregated. Several

techniques have been developed and proposed to disaggregate precipitation data. Most of

these methods discuss disaggregation of the daily or longer time interval precipitation

(e.g. Hershenhorn and Woolhiser 1987, Glasby et al. 1995). Liou (1970) developed a

method using four explicit distributions to disaggregate the hourly rainfall to 15-min.

rainfall. The selection of distribution to use in a specific storm hour was based on a

comparison of precipitation depths in that hour with those of the preceding and

successive hours. Ormsbee (1989) developed two disaggregation models to disaggregate

hourly precipitation data. One model, called a discrete model, disaggregates the hourly
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precipitation to three 20-min intervals precipitation. The other model a continuous

model  disaggregates the hourly rainfall into 1- to 30-min time intervals.  The

probability distribution of the accumulated rainfalls at different time steps was used by

Pandey (1994) to investigate the scaling nature of probability distribution. They used the

multi-fractal multiplicative cascades theory to explain the rainfall probability

distributions at different time scales and tested the method on an example in Quebec.

Results showed that the method can successfully estimate the distribution of short

duration rainfall.

Socolofsky et al. (2001) introduced a method to downscale daily precipitation data to

hourly data. The method breaks daily precipitation into possible storm intensity patterns

by selecting samples of measured event statistics from hourly observed precipitation data.

Rodriguez-Iturbe et al. (1987, 1988) investigated two point-process based models. In

the Rectangular Pulses Model, storms arrive according to a Poisson process. In this

model, each event has a random duration and constant intensity. The second model

simulates a storm arising from a Poisson process when each storm is associated with a

cluster of cells and each of the cells has a random depth and duration. Examples of

clustered Poisson models are the Bartlett-Lewis and Neyman-Scott models (Rodriguez-

Iturbe et al. 1987, 1988, Islam et al. 1990, Onof and Wheater 1993). Other models have

been used to capture the variability between and within storms but they usually rely on

extrapolating scaling at course resolution to finer scales (Schertzer and Lovejoy 1987,

Gupta and Waymire 1993, Olsson 1996, Veneziano et al. 1996). Hershenhorn and

Woolhiser (1987) and Econonpouly et al. (1990) developed a model to disaggregate daily

rainfall by simulating the number of storms in a day and the amount, duration, and
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starting time of each event. The number of rainfall events, duration, and start time are

obtained from an estimated probability distribution fit to observed hourly data within the

same climatological regime.

Several other studies investigated the possibility of using Artificial Neural Networks

(ANNs) for rainfall temporal downscaling. Burian et al. (2000) compared the results of

rainfall disaggregation using an ANN model with two other methods; linear model and a

continuous deterministic rainfall disaggregation model (Ormsbee 1989). Results of their

study indicated that the latter two models underpredicted maximum rainfall intensities

and were outperformed by the ANN model. Dibikie and Coulibaly (2006) evaluated the

ANN model in disaggregating precipitation and compared it with the linear regression

model and concluded that ANN outperforms the statistical models. Other studies have

also reported better performance in predicting heavy rainfall events using the ANN model

compared to linear regression downscaling methods (Weichert and Burger 1998).

1.7.Intensity-Duration-Frequency (IDF) Curves

An IDF curve presents the probability of a given rainfall intensity and duration

expected to occur at a particular location. Figure 1.5 shows an IDF graph. Lines on the

graph represent probability. For example, the five-year line would represent rainfall

events with a probability of occurring once every five years. Another way to explain it is

that the probability of a five-year magnitude storm happening in any given year is 1/5 or

20%. The information presented on the IDF graph is based on a statistical analysis of an

actual storm prediction (Bedient and Huber 1988).
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Each line in the IDF graph shows rainfall events with the same occurring probability

for different durations. A 50-year storm, for example, can be a 50-year, 15-min storm, a

50-year, 1-hr storm or a 50-year 12-hr storm. Rainfall intensity is higher for short storms

and lower for longer storms (Bedient and Huber 1988).

An IDF curve is one of the most common hydrologic tools for designing various

structures, such as, stormwater management facilities, erosion and sediment control

structures, flood protection structures, and drainage structures in urban areas (McCuen

1989, Prodanovic et al. 2007). Typically, standards are set for designs that require the

minimum capacity in terms of rainfall return periods. For example, storm sewers are

typically designed to carry a minimum of a five-year storm meaning that all the runoff

Figure 1.5 Rainfall Intensity-Duration-Frequency (IDF) curve
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from a five-year storm from the upstream of the sewer system must fit in the sewer

without overflowing. The first step toward designing different water management

structures (e.g. dams, channels, detention ponds) is to identify the characteristics of

design storm in terms of duration, return period and intensity. Time of concentration of

the watershed draining to the hydraulic structure usually dictates the design storm

duration. Storm return period is assigned based on economic assessments and risk

analysis (probability of damage, loss of life in case of failure). For example, a 5- to 10-yr

return period is used for designing roadside channels (Brown et al. 2001), where the cost

of failure is negligible. Whereas, a much larger return period is used for designing small

dams (100-yr  and  longer),  where  there  is  a  great  risk  of  loss  of  life  in  case  of  failure.

With knowledge of the storm return period, the design rainfall intensity is then acquired

from the developed IDF curves of the region. The rainfall intensity and duration of

design storm dictate the cost of the hydraulic structure, and any uncertainty in estimation

of these parameters can impose great design uncertainties.

IDF curves are created by analyzing historic rainfall event statistics. More complete

and longer data provide a better statistical analysis. Cumulative frequency analysis is

used to analyze the rainfall records by determining the event intervals with a specific

magnitude for a range of metrics within the rainfall data (e.g. a 30-min storm with the

maximum rainfall value that occurs at a 25-yr interval). A Cumulative Distribution

Function (CDF) is usually used for fitting the precipitation data. For a given return

period (Tr), the cumulative frequency (F) is:

= 1
1

                                                         (1)
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With knowledge of the cumulative frequency, the maximum rainfall intensity can be

found using an appropriate theoretical distribution function. The most common

distribution functions used for developing IDF curve are Gumbel, Log-Pearson Type III,

Weibull, and Generalized Extreme Value (GEV) distributions.

In the U.S., IDFs are presented in the form of isohyetal maps in three reports:

Technical Paper No. 40 (TP-40) (Hershfield 1961) presents the IDF curves for durations

from 30 minutes to 24 hours and return periods from one to 100 years; Technical Paper

No. 49 (Miller 1964) shows the IDFs for durations from two to 10 days for return periods

of two to 100 years; and Hydro-35 (Frederick et al. 1977) showed the IDFs for durations

from five to 60 minutes for just two return periods; two and 100 years. NOAA Atlas 14

presents updated precipitation-frequency atlas of the United States for durations from five

minutes to 60 days (Bonnin et al. 2004). Updating precipitation-frequency is still an

ongoing process and is expected to be completed by June 2013.

 Many different studies have been undertaken to develop the rainfall IDF curves.

Huard et al. (2010) estimated the IDF curves using Bayesian analysis instead of the

classical approach. Svensson et al. (2007) compared different methods of IDF curve

estimation from fragmented records for Scotland. Even though studies have investigated

various methods for developing IDF curves, studies associated with changes to IDF

curves due to climate change are limited. Simonovic and Peck (2009) updated the rainfall

IDF curves for the period from 1961 to 2002 under two climate scenarios for the city of

London, Ontario, Canada. In a continuous study, Solaiman and Simonovic (2011)

developed future IDF curves using 27 climate change scenarios for the city of London,

Ontario, Canada. IDF curves were created for durations from one to 24 hours and return
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periods from two to 100 years. The results of their study showed 20-40% changes in

different durations for all return periods. The climate change impact on rainfall IDF

curves was evaluated by Wang et al. (2013) in the Apalachicola River basin (Florida

Panhandle coast) using two climate models: HRM3–HadCM3 and RCM3–GFDL. Their

study suggested that, based on HRM3–HadCM3 projections, there will be no significant

changes in rainfall intensity at the upstream and middle stream stations, but higher

rainfall intensity is expected at the downstream station. Analysis of the RCM3–GFDL

projections, on the other hand, showed that rainfall intensity is expected to increase from

upstream to downstream. The future IDF curves developed by Nguyen et al. (2006, 2007)

were developed using two climate model projections; HadCM3 and CGCM2 showed a

large difference in the IDF curves of these two models.

 Using the projections from CGCM2 B2 to develop the IDF curves for the Grand

River and Kenora Rainy River regions in Ontario indicated an increase from 24% to 35%

in the 24-hour rainfall intensity for the 2050s and 2080s (Coulibaly and Shi 2005).

Another study investigated the climate change impact on rainfall IDF curves using the

outputs from the CRCM climate model for Southern Quebec (Mailhot et al. 2009). An

analysis of the results showed a 50% decrease by 2050 for rainfall durations of two and

six hours and a 32% decrease for 12- and 24-hour rainfall durations. The IDF curves

developed from the projections of RCM A2 for the next 80 years for Denmark showed

that an increase of 2 to 15% in extreme rainfalls is expected (Onof and Arnbjeg-Nielsen

2009).
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1.8. Problem Statement

Changes in extreme rainfall events can lead to a revision of standards for designing

civil engineering infrastructures. It can also lead to the reconstruction and/or upgrade of

existing civil engineering infrastructures. Current design standards are based on historic

climate information. For example, a dam that is designed to control a 100-year flood

event will provide a significantly lower level of protection if the intensity and duration of

the 100-year flood event increases. To prepare for future climate changes, it is imperative

that we review and update the current standards for water management infrastructure

design. This would prevent water management infrastructures from performing below the

designated guidelines in the future (Prodanovic et al. 2007).

 Most of the studies related to the impact of climate change on future rainfall

intensity do not consider short rainfall durations for developing the IDF curves (e.g. 10-

or 15-min). The reason is that the future projections derived from GCMs are usually

provided at coarse temporal resolutions; as a result, downscaling is required to obtain a

high temporal resolution data. However, in most studies (Wang et al. 2013, Svensson et

al. 2007), temporal disaggregation has been skipped and IDF curves developed with the

available precipitation data from the GCMs.

 Another issue with some of the studies is using only one or two GCM projections to

develop the future rainfall IDFs (Wang et al. 2013, Nguyen et al. 2006, 2007, Coulibaly

and Shi 2005, Mailhot et al. 2009). There are significant uncertainties in the results of

different GCMs. The difference in physical parameterizations, especially of radiative and
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precipitation-forming processes, amongst different GCMs and RCMs, the simplification

of complex processes in the atmosphere, and the difference in initial and boundary

conditions for each climate projection are some of the reasons that explain the existing

uncertainty. Therefore, using only one climate model may represent one of many possible

results and cannot be considered representative of the future. Therefore, it is important to

use more than one GCM for a complete and thorough assessment of possible changes in

the future.

1.9. Dissertation Objectives

The objectives of this dissertation are as follows:

1. To develop rainfall IDF curves for Alabama under future climate change scenarios;

using a stochastic method to disaggregate three-hourly precipitations into 15-

minute precipitations.

2. Use Artificial Neural Network (ANN) to estimate the maximum 15-, 30-, 45-, 60-,

and 120-min rainfall depths from three-hourly precipitations for the creation of

future IDF curves for Alabama.

3. To develop probability-based IDF curves incorporating climate projections from

six different climate models.

1.10. Dissertation Structure

This dissertation includes six chapters. Chapter 1 provides an introductory overview,

a review of literature, and the objectives of the study. A brief review of different climate

change models, climate model scenarios, bias correction and downscaling techniques,
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and a review of studies related to the assessment of climate change on IDF curves is

presented. Chapters 2 through 4 present a discussion of the methodology and results of

the three objectives outlined above. Chapter 2 discusses the development of rainfall IDF

curves for Alabama under future climate change scenario. The details of performing

temporal disaggregation using stochastic method are also presented. The results of this

chapter have already been published in the Regional Environmental Change (Mirhosseini

et al. 2012). Chapter 3 describes the methodology used to develop an ANN model to

estimate the maximum rainfall depths (15-, 30-, 45-, 60-, and 120-min) from three-hourly

precipitations. It also presents the future IDF curves developed using the ANN

disaggregation model and compares the outcomes with the previous chapter’s results.

This chapter has been submitted for publication to the Hydrological Processes Journal

(Mirhosseini et al. 2013). Chapter 4 documents the development of a probability-based

IDF curve using a kernel density estimator using all climate models investigated in this

research. This chapter will be submitted to Journal of Hydrologic Sciences for

publication. Chapter 5 presents the conclusions of this research. Finally, suggestions for

future work are presented in Chapter 6.
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Chapter 2

2. The Impact of Climate Change on Rainfall Intensity-Duration-Frequency (IDF)

Curves in Alabama

2.1. Abstract

Changes in the hydrologic cycle due to increase in greenhouse gases (GHG) are

projected to cause variations in intensity, duration, and frequency of precipitation events.

Quantifying the potential effects of climate change and adapting to them is one way to

reduce vulnerability. Since rainfall characteristics are often used to design water

management infrastructures, reviewing and updating rainfall characteristics (i.e.,

Intensity-Duration-Frequency (IDF) curves) for future climate scenarios is necessary.

This study was undertaken to assess expected changes in IDF curves from the current

climate to the projected future climate. To provide future IDF curves, 3-hourly

precipitation data simulated by six combinations of global and regional climate models

were temporally downscaled using a stochastic method. Performance of the downscaling

method was evaluated and IDF curves were developed for the State of Alabama. The

results of all six climate models suggest that the future precipitation patterns for Alabama

are expected to veer towards less intense rainfalls for short duration events. However, for

long duration events (i.e. > 4 hours), the results are not consistent across the models.

Given that a large uncertainty existed for projected rainfall intensity of these six climate

models, developing an ensemble model as a result of incorporating all six climate
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models, performing an uncertainty analysis and creating a probability based IDF curves

could be proper solutions to diminish this uncertainty.

2.2. Introduction

There is a misunderstanding on the subject of climate change that causes great

confusion about its potential effects on natural resources and human lives (Miller and

Yates 2006). Much of the public is left with two extreme and opposing views about

climate change: either climate change is happening at the greatest rate and soon nothing

will be left on earth, or climate change is a fiction that can be safely ignored. However,

neither of these impressions are useful in making management decisions about natural

resources.

An analysis of temperature records shows a significant warming trend around the

world during the 20th century (Miller and Yates 2006). The global average temperature

increased by 0.74 C over the 20th century. The changing temperature has caused changes

in the seasonal timing of runoff in mountainous areas (Stewart et al. 2004). Despite the

total increase in winter precipitation in the western U.S. and some parts of Canada; spring

snowpacks have been melting earlier (Stewart et al. 2004). Along with the change in

temperature, there will be changes in the hydrologic cycle, leading to changes in

precipitation and runoff. Sea level rise and new stresses on ecological systems (e.g.

forests and freshwater aquatic systems) may be additional climate change impacts on

biological and physical systems.

There is scientific evidence that human activities play a significant role in the

temperature increase. During the last century, the concentration of carbon dioxide (CO2)

and other greenhouse gases (GHGs) in the earth’s atmosphere have risen due to increased
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industrial activities (e.g. burning fossil fuels can release carbon dioxide into the

atmosphere) (Prodanovic et al. 2007). This increase in GHG concentrations is causing

large-scale variations in atmospheric processes, which can lead to changes in

precipitation and temperature characteristics. There is scientific agreement on some

important features of the possible hydrologic changes: there will be an increase in the

average precipitation around the world (Miller and Yates 2006). However, this does not

imply that more precipitation will occur everywhere. Climate change impacts on

precipitation are less certain on the regional scale, and climate models are not consistent

in predicting the expected precipitation. The water supply will depend on the quantity and

timing of local and regional precipitation, which may change with global climate change.

While it is not possible to make very accurate predictions regarding the overall quantity

of precipitation for a specific region, scientific theory suggests that there will be more

intense but less frequent periods of precipitation. In other words, there may be longer

periods of drought alternating with heavy rainfalls.

Changes in extreme rainfall events often present challenges for water

management utilities. Heavy runoff can degrade the water quality, forcing additional

costs for treatment and increasing the risk of water supply contamination by pathogens

(Miller and Yates 2006). Property damage and potential loss of life due to flooding are

also caused by extreme rainfall events (Wright et al. 2010). Heavy precipitation caused

by a hurricane in 1999 left a water treatment plant in Greenville, NC, surrounded by

floodwaters and damaged the utilities’ infrastructure, costing about 11 million dollars

(Miller and Yates 2006).
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Drought can also decrease the capability of water utilities to meet water demands and

enforce emergency restrictions. A severe drought in 2002 left many Colorado reservoirs

dangerously low (Miller and Yates 2006). Forest fires are becoming common as the

temperature increases. Fire can cause serious effects on downstream water quality and

reservoir sedimentation. Erosion can damage areas from farm fields to stream banks

adjacent to important infrastructure (Wright et al. 2010). For example, in 1996, a flood

occurred after a Buffalo Creek fire, which caused severe sediment and debris flow into

Denver’s Strontia Springs Reservoir. It required cleanup and resulted in long-term water

quality effects, imposing heavy costs on the utility (Miller and Yates 2006).

Such extreme events may become common and more difficult to anticipate in the

future because of global climate change. They can lead to a revision of standards for

designing civil engineering infrastructures. It can also lead to the reconstruction and/or

upgrade of existing civil engineering infrastructures. Current design standards are based

on historic climate information. For example, a dam that is designed to control a 100-year

flood event will provide significantly less protection if the intensity and duration of the

100-year flood event increases. Many industries have already started long-term planning

in the context of uncertainty. Accounting for potential changes in water consumption

patterns because of socio-economic or demographic changes is an example of water

utilities’ long-term planning. Climate change, as an extra source of uncertainty, is

becoming significantly relevant to water resource managers (Miller and Yates 2006).

Like any other source of uncertainty, the best practice is to attempt to understand the

possible changes that can happen in the future and the consequences that these changes

can have on the management of infrastructure. Therefore, to prepare for future climate
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changes, it is imperative that we review and update the current standards for water

management infrastructure design. This will prevent water management infrastructure

from performing below the designated guidelines in the future (Prodanovic et al. 2007).

This study was funded by the National Oceanic and Atmospheric Agency (NOAA)

Regional Integrated Sciences and Assessments (RISA) program. Its main objective was

to create IDF curves for Alabama using high-resolution projections (for 2038-2070)

derived from dynamical downscaling of General Circulation Models (GCMs) by

Regional Climate Models (RCMs) and to evaluate the impact of climate change on IDF

curves.

2.3. Materials and Methods

2.3.1. Data and Model Used

The stations providing long-term historical precipitation data for Alabama are shown

in Figure 2.1. The observed (historical) precipitation data at 15-minute intervals were

obtained from the NOAA National Climatic Data Center (NCDC Online Climate Data

Directory 2005). Historical simulations of precipitation for 1968 to 2000 and future

projections for 2038 to 2070 were obtained from the North American Regional Climate

Change Assessment Program (NARCCAP) at three-hour intervals with a spatial

resolution of 50 km (Sebastien et al. 2007, Richard et al. 2007). NARCCAP was designed

to investigate the uncertainties in future climates at a regional scale (Mearns et al. 2007).

To this end, it uses several GCM historical simulations and projections from the

Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison

Project and dynamically downscales them using a set of RCMs. The regional
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downscaling process uses the relatively coarse resolution output from the GCMs as a

continuously updated boundary condition for the high-resolution RCMs.

Figure 2.1 Location of rain gauge stations (red squares) and NARCCAP 50-km
resolution grid centers (green dots, HRM3-HadCM3) used to develop IDF

curves for Alabama.



28

The regional downscaling domain of NARCCAP covers the U.S. and most of Canada

(Mearns et al. 2007, 2009, Sebastien et al. 2007, Richard et al. 2007).

As mentioned above, future projections of precipitation data for this study were

obtained from the NARCCAP website. Six different dynamically downscaled datasets

were used. In the entries below, the datasets are named with the RCM identifier, followed

by the identifier of the GCM providing boundary conditions.

1. HRM3-HadCM3:

The Hadley Centre Coupled Model, version 3 (HadCM3) was developed at the

Hadley Centre in the United Kingdom. It is a coupled atmosphere-ocean general

circulation model (AOGCM) and was one of the major models used in the IPCC Third

Assessment Report in 2001 (Gordon et al. 2000, Pope et al. 2000, Collins et al. 2001).

Two components of HadCM3 are the atmospheric model (HadAM3) and the ocean model

(HadOM3), which includes a sea ice model. The model’s resolution is about 300 km

(Jana and Majumder 2010). Unlike the earlier models developed at the Hadley Centre and

elsewhere, HadCM3 does not need a flux adjustment to produce a good simulation. It has

higher ocean resolution than HadCM2, which is one of the major features of this model.

It also provides a good match between the oceanic and atmospheric components. The

ocean mixing scheme has been improved in this model, as well. The HadOM3 resolution

is 1.25 degrees longitude x 1.25 degrees latitude. It has 20 levels and a time step of one

hour. The HadAM3 horizontal resolution is 3.75 longitude x 2.5 degrees latitude. There

are 19 levels in the vertical.
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The Hadley Centre Regional Model, version 3 (HRM3) is a configuration of the

HadCM3 model that provides high resolution projections of regional climates for impact

studies; the resolution is about 50 km (Gordon et al. 2000; Pope et al. 2000; Johns et al.

2003). The Hadley Centre for the UK climate impact programme, first used the model in

2002, and it has been used for many high-resolution simulation studies since then. HRM3

includes the same atmospheric component as HadCM3, but some modifications were

made to the model physics. It provides a higher spatial resolution of a local area by taking

the boundary conditions of coarse resolution global model simulations (Gordon et al.

2000, Pope et al. 2000, Johns et al. 2003).

2. CRCM-CGCM3:

The Coupled Global Climate Model, version 3 (CGCM 3.1) was developed at the

Canadian Centre for Climate Modelling and Analysis (CCCma). CCCma is a division of

the Climate Research Branch of the Meteorological Service of Canada of Environment

Canada, based at the University of Victoria in Victoria, British Columbia. Three

atmosphere and three coupled atmosphere-ocean GCMs have been produced since 2000

at this center.

CGCM3 uses the same component that was used in developing CGCM2, and it

also uses the updated atmospheric component of the Third Generation Atmospheric

General Circulation Model, AGCM3 (Flato and Boer 2001, Kim et al. 2002, 2003). Like

AGCM2, the horizontal structure of the main prognostic variables is presented by the

spectral transform method, and the vertical representation is in terms of a rectangular

finite element defined for a hybrid vertical coordinate (Laprise and Girard 1990).
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AGCM3 has a higher horizontal resolution than AGCM2. The vertical domain is deeper,

and the vertical resolution is higher. CGCM3 extends from surface to the stratopause

region, and this region spans 32 layers.

CRCM 4.2 is a Canadian Regional Climate Model developed at the Université du

Québec à Montréal based on the fully elastic, non-hydrostatic Euler equations (Laprise et

al. 1998, Caya and Laprise 1999). The physical parameterization is mostly based on

CCCma GCM3. Solar radiative transfers were improved with three bands in the near-

infrared region and one band in the visible region (Puckrin et al. 2004). The radiative

effects of GHGs are considered separately for CO2, CH4, N2O, CFC11, and CFC12. The

land surface scheme is the Canadian LAnd Surface Scheme (CLASS) 2.7 (Verseghy

1991, Verseghy et al. 1993). CLASS uses three soil layers (0.1 m, 0.25 m and 3.75 m

thickness). It includes prognostic equations for energy and water conservation for the

three soil layers and a thermally and hydrologically distinct snowpack where applicable.

3. HRM3-GFDL:

GFDL CM 2.1 is a coupled atmosphere-ocean general circulation model (AOGCM)

developed by the Geophysical Fluid Dynamics Laboratory (GFDL) at Princeton

University (Anderson et al. 2004). It is one of the major models used in the Fourth

Assessment Report, along with HadCM3. The atmospheric component (AM 2.1) covers

180° to 45°W longitude, 10°N to 75°N latitude and has a 24-level atmosphere run at a

resolution of two degrees in the east-west and 2.5 degrees in the north-south direction.

This resolution is sufficient to resolve the large mid-latitude cyclones responsible for

weather variability.
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The atmosphere model includes a representation of radiative fluxes, mixing in the

atmospheric boundary layer, representations of the effects of stratus and cumulus clouds,

a scheme for representing drag on upper-level winds caused by gravity waves, changes in

the spatial distribution of ozone, and the ability to represent the impact of multiple

greenhouse gasses.

The ocean component has 50 levels running at one degree in the east-west direction,

and it varies from one degree to 1/3 degree along the equator in the north-south direction.

This resolution is good enough to resolve the equatorial current system. The other

parameterization includes a free surface height that changes in response to evaporation,

the precipitation and convergence of ocean currents, the absorption of sunlight tied to

observed chlorophyll concentrations, and a representation of the oceanic mixed layer.

4. CRCM-CCSM:

The Community Climate System Model (CCSM) is a coupled climate model

developed at the National Center for Atmospheric Research (NCAR) in Boulder,

Colorado. It simulates past, present, and future climates (Collins et al. 2006a). The model

includes ocean, atmosphere, sea ice and land surface. CGCM3 is the third generation of

coupled models designed to produce realistic simulations and includes an atmosphere

model (CAM3) (Collins et al. 2004, 2006b), the land surface (CLM3) (Oleson et al. 2004;

Dickinson et al. 2006), the sea ice (CSIM5) (Briegleb et al. 2004), and an ocean model

based on Parallel Ocean Program (POP) version 1.4.3 (Smith and Gent 2002). Each

component is designed to conserve total water, energy, mass, and fresh water. The CAM3

is based on the Eulerian spectral dynamical core with triangular spectral truncation
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(Collins et al. 2006b). The zonal resolution at the equator ranges from 3.75 degrees to

1.41 degrees. It includes 16 vertical layers (Collins et al. 2006b).

The ocean model has a horizontal resolution of three degrees or one degree. There are

25 levels extending to 4.75 km in the three-degree version and 40 levels extending to

5.37 km in the one-degree version. The sea-ice model is integrated on the same horizontal

grid as the ocean model (Collins et al. 2006b).

The CLM3 model is built based on the nested sub-grid hierarchy of scales

representing land units, soil or snow columns, and plant functional types (Oleson et al.

2004). CCSM3 considers the effect of competition for water among plant functional

types. One of the major goals in developing the land model was to reduce the positive

continental temperature biases during boreal winter. The relationship between fractional

snow coverage and snow height was modified. The biogeophysics formulation was

modified to increase the sensible and latent heat fluxes over sparsely vegetated surfaces.

In previous versions of CCSM, a constant value for dense vegetation was considered for

the turbulent transfer coefficient between soil and the overlying canopy air. The new

formulation considers this coefficient to be dependent on the density of the canopy,

characterized by leaf and stem area indices (Oleson et al. 2004, Collins et al. 2006a).

RCM3-GFDL:

Regional Climate Model (RCM3 or RegCM) version 3, is a three-dimensional,

hydrostatic, compressible, primitive equation, -coordinate regional climate model

originally developed at the National Center for Atmospheric Research (NCAR). It uses

the NCAR CCM3 radiation scheme. The solar component which accounts for the effect

of H2O, O3, CO2, and O2, uses the -Eddington approximation (Keihl et al. 1996). It
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includes 18 spectral intervals from 0.2 to 5 m. The surface physics are performed using

Biosphere-Atmosphere Transfer Scheme version 1e (BATS1e) (Dickinson et al. 1993).

BATS is a surface package designed to describe the role of vegetation and interactive soil

moisture in modifying the surface-atmosphere exchanges of momentum, energy, and

water vapor. The model has a vegetation layer; a snow layer; a surface soil layer, 10 cm

thick, or a root zone layer, 1-2 m thick; and a third deep soil layer, 3 m thick. The model

also includes a planetary boundary layer scheme, convective precipitation schemes, a

large-scale precipitation scheme, a pressure gradient scheme, a lake model, and an

aerosols and dust model.

5. ECP2-GFDL:

The updated data from the Regional Spectral Model were developed at the

Experimental Climate Prediction Center (ECPC) at the Scripps Institute of

Oceanography. It was originally called ECPC. The main difference between ECPC and

ECP2 is the employment of spectral nudging. Spectral nudging forces the regional model

solution to closely follow its driven global model for scales that are usually close to and

above the synoptic scale. ECPC combines a spectral damping of horizontal wind

tendency and areal average correction of temperature, moisture, and surface pressure,

while ECP2 does not use the moisture correction component of the spectral nudging,

which results in better simulation of precipitation. Also, a larger domain of ECP2 can

more closely match the region modeled by the other RCMs.
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2.3.2. Bias correction

Models are not perfect; a 20th century simulated climate, projected from a model is

not the same as the climate of the 20th century coming from observations. Hence, GCM

precipitation outputs cannot be used in hydrological models or in decision making

without performing some form of bias correction (Sharma et al. 2007; Hansen et al. 2006;

Feddersen and Andersen 2005). A realistic presentation of future precipitation from

global climate models is extremely important for vulnerability and impact assessment

(Wood et al. 2004; Schneider et al. 2007). Therefore, modelers use bias correction

techniques to represent more realistic GCM outputs by establishing a relationship

between climate model outputs and observations, then using that relationship to transform

the simulated 21st century climate to a "best guess" 21st century climate. These techniques

are given a variety of names in the literature, such as statistical downscaling, histogram

equalizing and quantile-based mapping (Piani et al. 2010).

For this study, a quantile-based mapping method proposed by Li et al. (2010) was

used. In this method, monthly rainfall values were used to define the CDF error of

historical model runs relative to observations. This error was used to correct the model

CDF for the future period by calculating a scaling factor from the monthly totals. The

scaling factor is defined as bias-corrected rainfall total for a given month, divided by the

non-bias-corrected total. Prior to disaggregation of 3-hourly rainfall events, the 3-hourly

totals were multiplied by this scaling factor (Li et al. 2010).
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2.3.3. Temporal Downscaling

High temporal resolution (e.g., 15-min, 30-min, and 1-hr) data are needed to create

the IDF curves. Since NARCCAP provides future climate data at 3-hour intervals, it is

necessary to temporally downscale the precipitation data. Different types of downscaling

techniques have been developed over the years; they can be categorized as weather

generators, transfer functions (e.g. linear regression, stochastic method and artificial

neural networks) and weather typing schemes (Von Storch 1999b).

The temporal downscaling method employed in this study is a modified version of a

stochastic method introduced by Socolofsky et al. (2001). They used the method to

downscale daily precipitation data to hourly data. The method developed for this project

breaks 3-hourly precipitation into possible storm intensity patterns by selecting samples

of measured event statistics from a 15-min observed precipitation data (Socolofsky et al.

2001). Most stochastic methods are based on two popular models, Neyman-Scott and

Bartlett-Lewis (Rodriguez-Iturbe et al. 1987, Islam et al. 1990). One of the main reasons

for selecting the Socolofsky method was the reduction of computational effort needed to

perform the method compared with the above-mentioned approaches.

2.3.3.1 Stochastic method

For the purpose of disaggregation, a month-specific database of observed
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precipitation data was created. This database includes several observed rainfall events

with high temporal resolution (15 minute interval). An “event” was defined as a

continuous sequence of precipitation, separated by 30 minutes of dry weather. In case an

event was longer than 3 hours, it was further divided into 3-hr subintervals starting from

the beginning of the rainfall. As such, the database was composed of multiple years of

observed events, separated by month, where each event was no longer than 3 hours.

For each month in the database, the events were sorted based on their total

accumulated rainfall depth and created a CDF using the rainfall depths, such that each

point on the CDF corresponds to actual, measured storm event in the database. In other

words, each observed event is corresponded with a probability.

To disaggregate a 3-hr GCM forecast for August 1st, 2038 between 9:00 to 12:00

a.m., with a magnitude of 300 mm (call it DT), the downscaling algorithm stochastically

selects several (and not one) observed events from the database and distributes them

randomly over the 3-hr period. This means, the algorithm follows these steps:

1- Given a 3-hourly rainfall with magnitude of DT, the algorithm first searches

the historic CDF for the ordinate “a” corresponding to DT.

2- A random number is generated from uniform distribution between 0 and “a”,

call it “u1”.

3- “ui” is the probability of the randomly selected historic event. The magnitude of

the observed event with probability of “ui” is read from the historic CDF (name

Di) and its distribution is retrieved from the database.

4- New DT is calculated by subtracting Di from DT.
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5- This process then repeats for the new DT

6-Stop when n is the number of observed events selected.

2.3.4. Performance

 This method’s performance was tested to ensure its ability to disaggregate the 3-

hourly precipitation data to 15-min data. 3-hourly precipitation time series at each 15-min

gauge were created by adding the measured 15-min precipitation, and the disaggregation

method was tested in its ability to disaggregate the 3-hourly data into a 15-min synthetic

time series. To evaluate the performance of the disaggregation method, the statistics of

measured and synthetic time series were compared as suggested by Socolofsky et al.

(2001) and Choi et al. (2008). The statistical parameters of the maximum rainfall values

were also calculated to ensure the model captured the peaks. Because the disaggregation

method is stochastic, 30 model runs were performed at each station and the mean value of

statistics over all 30 runs was used in the error quantification.

One of the statistics used to evaluate the performance of the disaggregation

method was “zero rainfall probability”. According to the explained method, the stochastic

algorithm selects a number of observed events randomly from a database and distributes

them stochastically over a 3-hr period (12 time slots of 15 minutes). Some of the slots

might remain empty (no rainfall). The final product is a newly generated distribution

which has no similarity to any of the individual historic events. For validation, the

algorithm was run 30 times on some selected events with known distribution and reported

the average metric. Becasue the method is stochastic, for each run, different historic

events are selected from the database and randomly distributed over 12 time slots. So the

“zero rainfall probability” from each run is different from the other. The other statistic
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used for validation of the method was performance measures between the maximum

rainfall of disaggregated time series compared to reference rainfall. As explained earlier,

several reference rainfall events with known distributions were selected and

disaggregated using the explained scheme. The resultant distributions were compared to

the reference distribution and the statistical analysis was performed to acquire the

goodness of fit measures (e.g. R2 of zero rainfall probability and maximum rainfall).

When a single 3-hr event was disaggregated, the maximum partial rainfall depth for a

given period within that event was calculated. These maxima are not compared by taking

the maximum of the monthly or annual disaggregated rainfalls but by taking the

maximum of disaggregated selected events for each month and rainfall duration. For any

of these events, the model was run 30 times and the mean statistics was presented.

2.3.5. Creating IDF curves

 Generalized Extreme Value (GEV) distribution was selected as the best probability

distribution for Alabama based on different tests (e.g. probability plots, goodness of fit

and L-moment ratio) in a study by Durrans and Brown (2001). The GEV distribution is a

continuous probability distribution that combines Gumbel, Frechet and

Weibull distributions and it is based on extreme value theory (Coles, 2001). This

distribution was used in this study for creating IDF curves. The GEV distribution has

cumulative distribution function:
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 GEV parameters have been estimated using the method of moments (MOM)

(Hosking et al. 1985, Bhunya et al. 2007). Kolmogorov-Smirnov (K-S) test was used to

evaluate the performance of the fit.

The steps below describe the process of creating IDF curves:

1. Obtain annual maximum series of precipitation depth for a given duration (15,

30 and 45 min, 1, 2 , 3, 6, 12, 24 and 48 hr)

2. Use GEV distribution to find precipitation depths for different return periods

(2, 5, 10, 25, 50 and 100 years)

3. Repeat the first two steps for different durations

4. Plot depth versus duration for different frequencies



40

2.4. Results and Discussion

2.4.1. Bias correction

As mentioned earlier, the quantile-based mapping method proposed by Li et al.

(2010) was used in this study. Bias correction was done on a monthly basis for each of

the six climate models. CDFs of observed data from all stations and CDFs of climate

model data for the same period were compared to each other. The 21st century projections

were then corrected based on the differences between theses CDFs. In this method,

monthly rainfall values were used to define the CDF error of historical model runs

relative to observations and this error was used to correct the model CDF for the future

period by calculating a scaling factor from the monthly totals (Li et al. 2010). The

resulting bias-corrected model projections were used for the remainder of this study.

Figure 2.2 shows the observed and modeled CFDs for each month when bias correction

was performed for HRM3-HadCM3 model. The CDFs for the remaining models are

presented in Appendix A.

2.4.2. Performance

The statistical measures used in the error quantification for typical months in

winter (February) and summer (August) are presented in Table 2-1. In addition, statistical

parameters of maximum rainfall values were calculated to make sure that the

disaggregation model was capturing the peaks (Table 2-2).
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Figure 2.2 Monthly Cumulative Distribution Functions (CDFs) to perform bias correction- Model
data is from HRM3-HadCM3 model
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These results show that the method was performing well in disaggregating the 3-

hour interval precipitation to 15-min data. Performance of GEV parameter estimation was

also evaluated using Kolmogorov-Smirnov (K-S) test (Massey 1951). The critical value

between sample and theoretical cumulative distributions at 95% level of confidence

=0.05) was 0.234. The maximum distance between the sample and theoretical

cumulative distributions needs to be less than the critical value.

Table 2-1 Performance measures between the disaggregated time series and measured statistics
of 15-min rainfall

Month Station Statistics R2 MAE RRSE

February Auburn, AL P0
2

0.91
0.82

0.01
0.0003

0.31
0.62

August Auburn, AL P0
2

0.82
0.78

0.05
0.002

0.69
0.81

P0: probability of zero rainfall, 2: the variance of 15-min rainfall, R2 : linear regression, MAE:
mean absolute error and RRSE: root relative squared error

Table 2-3 shows statistical measures used for this evaluation. Based on the K-S test

results, on all attempts GEV distribution fit to the sample CDFs with minimal error. The

test results were always smaller than the critical value at 95% confidence and had a small

standard error.
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Table 2-2 Performance measures between the maximum rainfall of disaggregated time series and
measured statistics

R2 MBE*

min 15 30 45 60 120 15 30 45 60 120

Jan 0.67 0.69 0.75 0.80 0.81 -14.6 -9.08 -10.9 -9.5 -8.9

Feb 0.75 0.75 0.78 0.73 0.75 -8.57 -10.8 -10.4 -11.5 -7.4

Mar 0.77 0.78 0.81 0.82 0.85 17.6 -3.9 -10.6 -10.03 -10.3

Apr 0.65 0.68 0.80 0.85 0.85 7.42 -9.7 -8.6 -8.4 -8.21

May 0.68 0.70 0.73 0.75 0.77 -5.9 -7.5 -8.3 -9.2 -10.4

Jun 0.72 0.75 0.78 0.78 0.82 -6.7 -11.1 -9.3 -9.8 -12.9

Jul 0.67 0.69 0.72 0.73 0.81 -5.01 -9.8 -10.7 -9.2 -8.97

Aug 0.69 0.73 0.75 0.77 0.79 -8.40 -8.18 -9.2 -10.4 -9.6

Sep 0.75 0.78 0.79 0.80 0.81 -3.2 -9.2 -8.6 -8.1 -8.9

Oct 0.78 0.80 0.80 0.81 0.82 -9.02 -9.8 -9.5 -11.5 -8.4

Nov 0.65 0.70 0.76 0.78 0.83 -24.6 -6.4 -9.4 -8.9 -4.9

Dec 0.73 0.75 0.77 0.81 0.84 -12.9 -6.8 -8.3 -10.8 -9.7

Ave. 0.71 0.73 0.77 0.78 0.81 -6.15 -8.52 -9.48 -9.78 -9.04

* MBE: Mass Balance Error (%)

Table 2-3 Performance measures between the sample and theoretical cumulative distributions
using Kolmogorov-Smirnov (K-S) test

Models
Kolmogorov-Smirnov R2 **

Average Max Min Std.*  Average Max Min Std.*

HRM3-HadCM3 0.092 0.201 0.043 0.026 0.980 0.996 0.926 0.011

CRCM-CGCM3 0.086 0.195 0.039 0.024 0.982 0.996 0.937 0.010

HRM3-GFDL 0.089 0.175 0.038 0.024 0.981 0.996 0.922 0.011

CRCM-CCSM 0.087 0.178 0.035 0.023 0.982 0.997 0.933 0.01

RCM3-GFDL 0.104 0.218 0.042 0.034 0.971 0.997 0.910 0.01

ECP2-GFDL 0.088 0.178 0.031 0.024 0.982 0.997 0.933 0.01

The critical value at =0.05 is 0.234
* Standard deviation
** Coefficient of determination
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2.4.3. IDF curves

IDF curves for Alabama were created as a series of 60 maps for each of the 6

NARCCAP regional climate projections (360 maps total) for 10 different rainfall

durations and 6 different return periods.

An example of the type of maps that can be generated is illustrated in Figure 2.3

using HRM3-HadCM3 projections. Maps for the remaining models are presented in

Appendix B. Comparing these maps with NOAA Technical Paper 40 (TP-40) (Hershfield

1961) shows that changes in future IDF curves are expected with the future climate (TP-

40 is not shown in the figure).

For example, for a 50-yr return period with 6-hr duration, 191 mm of precipitation

on average is expected to fall in the southwestern part of the state. Based on TP-40, this

amount is 152 mm— about 25 % less than what is predicted for the future. The largest

projected 12-hr rainfall value (about 329 mm) is expected to happen in southwest

Alabama. For the same region and duration, TP-40 (Hershfield 1961) shows about 203

mm of rainfall, 62% less than what is expected in future. Changes in future rainfall

intensity are expected to continue for other rainfall durations and return periods, but it is

not possible to discuss the results of all 360 maps in details. Therefore, City of Auburn in

Alabama was selected as an example from which to discuss the results in more detail.

Figure 2.4 and figure 2.5 show the future and current IDF curves using all six NARCCAP

regional climate projections for Auburn, AL for the two different return periods of 10 and

100 years.
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Figure 2.3 Rainfall map; 50-year rainfall of 6-hr, 12-hr, 24-hr and 48-hr durations (mm) under future
climate using HRM3-HadCM3 projected data
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Figure 2.4 (a-b) shows IDF curves under both the future and current climates for

Auburn when HRM3-HadCM3 projections were used to develop future IDF curves.

Figure 2.4a demonstrates that the projected rainfall intensity for a 10-yr return period

tends to decrease by 20% when the rainfall duration is less than 4 hours, and is expected

to increase by 42% for rainfall durations of more than 4 hours. Also, rainfall intensity

tends to increase by 38% if the rainfall duration exceeds 6 hours and is expected to

decrease by 20% for durations less than 6 hours when the return period is 100 years

(Figure 2.4b).

Figure 2.4 (c-d) depicts the changes in IDF curves when CRCM-CGCM data were

used. For a 10-yr return period, rainfall intensity tends to be reduced by 5l%. Results also

show a 49% decrease for a 100-yr return period. Using HRM3-GFDL projections

presents a 26% decline in rainfall intensity for durations less than 4 hours and a 65%

increase for durations more than 4 hours (Figure 2.4e). Likewise, a 22% decrease and a

129% increase are expected to be observed for durations of less than and more than 4

hours, respectively (Figure 2.4f).

Figure 2.5 (a-b) displays future and current IDF curves developed using the CRCM-

CCSM model. Forty three percent and 49% declines are expected to be noticed for all

durations when the return period is 10-yr and 100-yr, respectively. Results of utilizing the

RCM3-GFDL model for developing IDF curves are presented in Figure 2 .5 (c-d). A 34%

rainfall intensity reduction was observed for durations less than 5 hours, while there was

a 27% increase for longer durations (Figure 2.5c). A 14% decline for durations of less

than 3 hours and a 55 % increase in rainfall intensities for longer durations was also

observed (Figure 2.5d). Figure 2.5 (e-f) demonstrates changes in rainfall intensity
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employing the ECP2-GFDL model. Both the 10 and 100-yr return periods saw 33% and

37% reductions, respectively for all rainfall durations.
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Figure 2.4 IDF curves under current and future climate using HRM3-HadCM3, CRCM- CGCM3 and
HRM3-GFDL models for Auburn, AL
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Figure 2.5 IDF curves under current and future climate using CRCM-CCSM, RCM3-GFDL and ECP2-GFDL
models for Auburn, AL
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Table 2-4 summarizes the discussed results for different return periods using six

climate models for Auburn, AL.

Table 2-4 Comparisons of IDF curves under the current and future climate scenario for Auburn,
AL

Model Return period Average Percentage difference in rainfall intensity

 HRM3-HadCM3

2-yr and 5-yr
 duration(t) >3 hrs: 49% increase

t <3 hrs: 22 % decrease

10-yr
t >4 hrs: 42% increase

t <4 hrs: 20 % decrease

50-yr
t >5 hrs: 33% increase

t <5 hrs: 20 % decrease

100-yr
t >6 hrs: 38% increase

t <6 hrs: 20 % decrease

CRCM-CGCM3 all return periods 50% decrease for all durations

HRM3-GFDL
2-5 and 10 years

 t >4 hrs: 50% increase
t <4hrs: 29 % decrease

50- and 100-yr
t >4 hrs: 100% increase
t <4hrs: 22 % decrease

CRCM-CCSM all return periods 44% decrease for all durations

RCM3-GFDL

2-yr
t >12 hrs: 13% increase

t <12 hrs: 38 % decrease

5 years
t >6 hrs: 23% increase

t <6 hrs: 34 % decrease

10 years
t >5 hrs: 27% increase

t <5 hrs: 34 % decrease

50 years
t >4 hrs: 44% increase

t <4 hrs: 20 % decrease

100 years
t >3 hrs: 55% increase

t <3 hrs: 14 % decrease

ECP2-GFDL

2-yr
t >12 hrs: 15% increase

t <12 hrs: 46 % decrease

5-yr
t >17 hrs: 3% increase

t <17 hrs:41 % decrease

10, 50 and 100-yr 36% decrease for all durations
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As the results above clearly demonstrate, the six different NARCCAP-based

projections are not identical. Analyzing all maps for the state of Alabama shows the same

disparity as Auburn. Two of the models (CRCM-CGCM3 and CRCM-CCSM) show a

decrease in future rainfall intensity for all return periods and all rainfall durations for

Alabama. The other four suggest that, depending on the return period, future rainfall

intensities could decrease below and increase above a specific rainfall duration. The

disparity in results could be due to many factors. Dai (2006) performed a study in which

precipitation characteristics in eighteen climate models were analyzed and compared with

historical data. The study pointed out that some of the climate models’ deficiencies in

measuring tropical rainfall were correlated with biases in the Sea Surface Temperature

(SST) (Dai, 2006). The SST biases in the CGCM3 model are in accordance with dry

biases in the Caribbean Sea and the Gulf of Mexico, so it may underestimate variables

such as precipitation (Dai, 2006). It was also noted that the HadCM3 model simulates a

realistic precipitation pattern, but that the results of climate models vary for different

regions in the world (Dai, 2006). Therefore, it should be noted that these models are

different in nature, and many variables could be involved in creating discrepancies.

Differing results could be attributed to different types of GCMs and RCMs or to initial

conditions and boundary conditions for each climate projection— but they all agree that

for short durations of rainfall (usually less than 4 hours), rainfall intensity is expected to

decrease or remain close to the current values. Results suggests that the current standard

and guidelines, which use short rainfall durations for designing water management

infrastructures (e.g. a roadside channel, a detention pond for a small drainage area), can

serve their purpose in the future well.
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As mentioned earlier the results of six different NARCCAP-based projections are

not consistent with respect to larger events. To further explore the results of larger events,

graphs presented in Figure 2.6 were prepared. In this figure rainfall intensity for a 12-hr

rainfall under future and current climate was plotted for different return periods. Figure

2.6a presents the results when HRM3-HadCM3 projections were used to develop future

IDF curves. It shows that if a given rainfall intensity under current climate occurs once

every 20 years (the probability of that given rainfall happening in any year; p=5%), the

same rainfall intensity is expected to happen once every 2 years (p=50%), under future

climate. Figure 2.6 (b-c) also show increase in rainfall intensity under future climate

using HRM3-GFDL and RCM3-GFDL projections. On the other hand, Figure 2.6d that

presents the results of using CRCM-CGCM3 projections, suggests that if a given rainfall

intensity under current climate occurs once every 2 years (p=50%), the same rainfall

intensity is expected to happen once every 10 years (p=10%) under future climate.

Likewise, Figure 2.6e and 2.6f show reduction in future rainfall intensity. How these

results will affect designing different structures will be discussed below.

The first step towards designing different water management structures (e.g.

dams, channels, detention ponds) is to identify the characteristics of design storm in

terms of duration, return period and intensity. Time of concentration of the watershed

draining to the hydraulic structure usually dictates the design storm duration. Storm

return period is assigned based on economic assessments and risk analysis (probability of

damage, loss of life, etc. in case of failure). For example, a 5- to 10-yr return period is

used for designing roadside channels (Brown et al. 2001) where the cost of failure is

negligible whereas a much larger return period is used for designing small dams where
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Figure 2.6 Rainfall intensity vs. return period under current and future climate for a 12-hr rainfall using a)
HRM3-HadCM3, b) HRM3-GFDL, c) RCM3-GFDL, d) CRCM-CGCM3, e) CRCM-CCSM and f) ECP2-GFDL

model
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there is a great risk of life in case of failure. Knowing the storm return period, the design

rainfall intensity is then acquired from developed IDF curves of the region. Rainfall

intensity and duration of design storm dictate the cost of the hydraulic structure, and any

uncertainty bound to estimation of these parameters can greatly impose design

uncertainties. For example, figure 2.6 a, b and c suggest design rainfall intensities of 16,

28 and 23 mm/hr, respectively for a 100-yr return period and 12-hr duration while figure

2.6d and 2.6f recommend 9 mm/hr and figure 2.6e proposes 8 mm/hr as a design rainfall

intensity (design rainfall intensity based on current IDF curves for this specific example

is 12 mm/hr). As can be clearly seen, there is a large uncertainty existed on projected

rainfall intensity of these six climate models for long durations. Developing probability-

based IDF curves as a result of incorporating all six climate models could be a better way

to present the results.

2.5. Summary and Conclusions

This study developed IDF curves under future climate scenarios for Alabama,

which were then compared to the IDF curves under the current climate. Six high-

resolution projections (for 2038-2070) derived from dynamical downscaling of GCMs by

RCMs were used in this study. Results of the four climate model projections  HRM3-

HadCM3, HRM3-GFDL, RCM3-GFDL and ECP2-GFDL  suggest that future rainfall

intensity could decreases or increases depending on the return period. Results of the

remaining two model projections  CRCM-CGCM3 and CRCM-CCSM  indicate a

reduction in future rainfall intensity for all return periods and all rainfall durations for

Alabama. A large uncertainty of projected rainfall intensity of these six climate models
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for long durations makes it difficult to obtain strong conclusions about the expected

changes on future rainfall intensity in Alabama. A variety of factors cause the differing

results; a likely reason is the difference in physical parameterizations, especially of

radiative and precipitation-forming processes, amongst different GCMs and RCMs, as

well as the difference in initial and boundary conditions for each climate projection—but

the result they all have in common is that the precipitation pattern for Alabama veers

toward less intense rainfalls for short rainfall durations. From results discussed above, we

can conclude that the current standards and guidelines for designing municipal

management infrastructures based on short rainfall durations can continue to serve well in

the future. This conclusion is solely based on the results of the six climate model

projections used in this study and not all existing climate models and scenarios. Using

additional climate model projections in the future will help to make a stronger conclusion

in this regard. Also, given the large uncertainty in the output from GCMs and disparity in

the results of these models, creating a probability based IDF curves could be a better way

to presents the IDF curves.
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Chapter 3

3. Developing Rainfall Intensity-Duration-Frequency (IDF) Curves For Alabama

Under Future Climate Scenarios Using Artificial Neural Network (ANN)

3.1. Abstract

Hydrologic design of water management infrastructures is based on specific design

storms derived from historic rainfall events available in the form of intensity-duration-

frequency (IDF) curves. However, it is expected that the frequency and magnitude of

future extreme rainfalls will change due to increase in greenhouse gas concentrations in

earth’s atmosphere. This study evaluated potential changes in current IDF curves for

Alabama under projected future climate scenarios. Three-hourly precipitation data

simulated by five combinations of global and regional climate models were temporally

downscaled using Artificial Neural Networks (ANNs). A feed-forward, back-propagation

model was developed to estimate maximum 15-, 30-, 45-, 60-, and 120-min

precipitations. The results were also compared to disaggregated rainfalls derived using

the stochastic method. Comparison of these two methods indicated that the ANN model

provided superior performance in estimating maximum rainfall depths, while the

stochastic method tended to under-predict maximum rainfall depths. Developed IDF

curves indicate that future rainfall intensities for the rainfall events less than 2 hours are

expected to decrease by 33% to 74% from current ones when ANN model is used, while

large uncertainty exists in the projected rainfall intensities of longer duration events. This

finding was independent of the temporal downscaling method used.
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3.2. Introduction

Hydrologic design of storm water management facilities, culverts, flood protection

structures, erosion and sediment control structures, and many other hydraulic structures

are based on specific design storms derived from historic rainfall events as available in

the form of intensity-duration-frequency (IDF) curves (McCuen 1998, Prodanovic et al.

2007). An IDF curve is a tabular or graphical illustration of the probability that a given

rainfall intensity will happen (Wolcott et al. 2009). A design based on an inaccurate

design storm can result in malfunction of infrastructure, loss of life in the case of failure,

or excessive cost if the design storm is overestimated.

An increase in greenhouse gas concentrations, such as carbon dioxide (CO2), in the

earth’s atmosphere during the last century can cause large-scale variations in atmospheric

processes and, as a result, changes in precipitation and temperature characteristics

(Prodanovic et al. 2007). One of the expected impacts of the changes in precipitation

characteristics is a change in the frequency and magnitude of extreme rainfalls, which can

lead to revision of existing standards for designing civil engineering infrastructures. It

can also require the rebuilding and/or upgrading of existing infrastructures.

One way to be prepared for possible changes, and to decrease vulnerability of

hydraulic infrastructures to climate change, is to predict potential effects (as manifested

by IDF curves) and adapt to them (Prodanovic et al. 2007).
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A recent study by Mirhosseini et al. (2012) (Chapter 2) developed future IDF

curves for Alabama using high-resolution projections (for 2038–2070) derived from

dynamical downscaling of General Circulation Models (GCMs) by Regional Climate

Models (RCMs). A stochastic method was used in order to disaggregate 3-hourly

precipitation to 15-min precipitation. Following the previous study, the main objective of

the present study was to create IDF curves for Alabama using an Artificial Neural

Network (ANN) to estimate the maximum 15-, 30-, 45-, 60-, and 120-min precipitation

depths. An additional objective was to compare the performance of ANN model

downscaling with the performance of the stochastic model used by Mirhosseini et al.

(2012).

The artificial neuron concept was first introduced by McCulloch and Pitts (1943)

and ANNs have existed since then (Dwason and Wilby 2001). ANN models have been

used for both spatial and temporal downscaling of temperature and precipitation. They

also have been used for rainfall–runoff modelling and flood forecasting (Dwason and

Wilby 2001). There are studies investigating performance of ANN models to temporally

disaggregate rainfall. They compared results of ANN disaggregation with other methods

as well. Burian et al. (2000) developed an ANN model and evaluated its performance by

comparing it with two other methods; a linear model and a continuous deterministic

rainfall disaggregation model (Ormsbee 1989). Viability of an ANN model for rainfall

disaggregation was evaluated in a study by Dibikie and Coulibaly (2006). Evaluation of

ANN model was done by comparing the results with linear regression model.
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In this chapter developing an ANN model to estimate the maximum 15-, 30-, 45-, 60-,

and 120-min rainfall depths from 3-hourly precipitations will be discussed. Results were

used to create future IDF curves and then were compared to the results of previous

chapter, the impact of climate change on the IDF curves was evaluated afterwards.

3.3. Methodology

3.3.1. Data and Model Used

Historical (observed) rainfall data at 15-minute intervals were obtained from the

NOAA National Climatic Data Center Online Climate Data Directory. Locations of 34

rain gauge stations in Alabama are presented in Figure 1. Simulated historical

precipitations for the period 1968–2000 and projected precipitations for the period 2038–

2070 at a temporal resolution of 3 hours and a spatial resolution of 50 km were obtained

from the North American Regional Climate Change Assessment Program (NARCCAP)

(Sebastien et al., 2007, Richard et al., 2007). Maximum and minimum temperatures for

the same periods were obtained at daily intervals.

Five different dynamically downscaled datasets were used for the study and derived

from five NARCCAP projections: HRM3-HadCM3 (Hadley Centre Regional Model and

Hadley Centre Coupled Model, version 3), CRCM-CGCM3 (Canadian Regional Climate

Model and Coupled Global Climate Model), HRM3-GFDL (Hadley Centre Regional

Model and Geophysical Fluid Dynamics Laboratory model), CRCM-CCSM (Canadian

Regional Climate Model and The Community Climate System Model), and RCM3-

GFDL (Regional Climate Model and Geophysical Fluid Dynamics Laboratory model). A
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complete description of these models can be found in chapter 2, section 2.3.1. It should

be noted that ECP2-GFDL model used in the previous study was not used in the current

study because of the lack of availability of the future temperature variables needed to

develop an ANN model.

3.3.2. Bias Correction and Temporal Downscaling

As mentioned in chapter 2, a quantile-based mapping method proposed by Li et al.

(2010) was used to perform bias correction. For this method, monthly rainfall values

were used to define the cumulative distribution function (CDF) of errors of historical

model runs relative to the observations. This error was used to correct the model CDF for

the future period by calculating a scaling factor from the monthly totals for each month

(January–December). This error was used to correct the model CDF for the future period

by calculating a scaling factor from the monthly totals. The scaling factor is defined as

the bias-corrected rainfall total for a given month divided by the non-bias-corrected total.

Prior to the disaggregation of 3-hourly rainfall events, 3-hourly totals were multiplied by

their corresponding monthly scaling factors (Li et al., 2010). The same method was used

for bias correction of temperature data.

Creating IDF curves requires high temporal resolution rainfall data. NARCCAP

future climate data are provided at 3-hour intervals, which make temporal downscaling a

necessary task. Different types of downscaling techniques have been discussed in many

studies (Von Storch 1999b, Rodriguez-Iturbe et al. 1987, Islam et al. 1990, Socolofsky et

al. 2001). The temporal downscaling method employed in a recent study by Mirhosseini

et al. (2012) was a modified version of the stochastic method introduced by Socolofsky et

al. (2001). Results of that study showed that stochastic method tends to underpredict
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precipitation. A study by Burain et al. (2000) compared the results of rainfall

disaggregation using a feed-forward ANN model and two other methods; linear model

and a continuous deterministic rainfall disaggregation model introduced by Ormsbee

(1989). Based on their study both of these models underpredicted maximum rainfall

intensities as compared to ANN model. Several other studies also showed the same

results (Dibikie and Coulibaly 2006, Weichert and Burger 1998). Therefore, in the

current study, ANN model was used to find the maximum 15-, 30-, 45-, 60-, and 120-min

rainfall depths from 3-hourly precipitations.

3.3.3. Artificial Neural Network

ANN models are not deterministic models. They learn from examples, train

themselves using the input and target outputs presented to them, and adjust parameters

until they are able to provide meaningful outputs (Burian et al., 2001). Artificial Neural

Networks have been used to solve different hydrological and water resources problems

(Halff et al. 1993, Smith and Eli 1995, Minns and Hall, 1996), and have proven to be

powerful tools for solving difficult problems. ANN models have also been successfully

used for temporal downscaling of precipitation. For example, Burian et al. (2000, 2001)

used an ANN model to disaggregate hourly rainfall into sub-hourly and found it to be a

viable method.

The ANN disaggregation model developed for this study was a feed-forward, back-

propagation model. The model includes three layers: input, hidden, and output layers.

The connections between neurons in feed-forward networks are in the forward direction.

Output is calculated from each neuron (processing unit) of the ANN model, starting from
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the input layer and moving forward through the hidden layers to the outputs (Burian et

al., 2001). The function that determines the behavior between the input and output layers

is called transfer function. The hyperbolic tangent sigmoid transfer function was used in

this study.

Training and learning functions are used to adjust the weights and biases of the

network. The Levenberg-Marquardt back propagation training function and the gradient

descent with momentum weight/bias learning function were used to develop the ANN

model. Back-propagation explains the direction of propagation for calculating the errors.

Making adjustments to the network weight (learning process) is a separate step which

depends on the results of the training step (Burian et al., 2001). Determination of the

learning rate has a significant impact on the performance of the model. Having too large

values, the ANN model would remember only the training data due to the weight

oscillation. On the other hand, too small values will significantly increase training time

(Burian et al. 2000, 2001, Isik et al. 2012). Learning rate used to develop the ANN model

in this study was determined to be 0.16, as compared with a range of 0.01 to 0.95 in other

studies (Maier and Dandy 2000).

3.3.4. ANN Model Input Data

Finding appropriate input variables is an important step when developing an ANN

model (Maier and Dandy 2000, Dawson and Wilby 2001, Bowden et al. 2005). Many

methods of selecting significant input variables have been developed, such as, using prior

knowledge of the system, linear cross-correlation methods, and using partial mutual

information algorithms (Bowden et al. 2005, May et al. 2008). The Akaike Information

Criterion (AIC) and Normalized Mean Square Error (NMSE) were two criteria or
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performance parameters used in this study to find the best input datasets. The AIC has

been widely used as a model input selection method (Qi and Zhang 2001, Ren and Zhao

2002, Zhao et al. 2008, Kalin et al. 2010, Isik et al. 2012), and can be calculated using the

equations below (Qi and Zhang 2001):

= log( ) +

where  is the number of model parameters (input variables),  is the number of

observations and is the maximum likelihood estimate of variance of the residual

term or the mean square error (MSE) between the observed and simulated data.

=
)

where  is the observed data and  is the output of the ANN model.

More precisely, yobs used to train, validate, and test ANN models are the maximum

15-, 30-, 45-, 60-, and 120-min precipitations derived from observed rainfall data at

stations in Alabama. The model with the minimum AIC value was selected as the best

one.

The NMSE estimates the overall deviations between the observed and simulated

values, and it ranges from 0 to + . A model with a zero NMSE is a perfect model. If

NMSE is 1, the model is as good as the observed mean values, and greater than 1 shows a

poor model (Weigend and Gershenfeld, 1993; Singh et al., 2007).

=
)
)

where  is the mean of the observed data.

There are 60 (12 months by 5 rainfall durations) ANN models developed in this

study. For each model, nine different combinations of possible input variables were
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selected for each month and rainfall duration (15-, 30-, 45-, 60-, and 120-min). The above

two criteria were then calculated for each combination in order to identify the optimum

input variables. As an example, Table 3-1 presents the results of selecting input variables

for January. The results in Table 3-1 shows that 3-hourly precipitation (P3), daily

precipitation (Pdaily), monthly precipitation (Pmonthly), and maximum and minimum

temperatures (Tmax and Tmin) were selected as optimum input data or variables for the

ANN model. The results for the remaining months also suggest that the above inputs are

the optimum data for developing the ANN model.

Table 3-1 The Akaike Information Criterion (AIC) and Normalized Mean Square Error (NMSE)
calculated for the nine combinations of input variables in order to determine optimal input

variables of the ANN model.

No. Input Variables
AIC NMSE

15-
min

30-
min

45-
min

60-
min

120-
min

15-
min

30-
min

45-
min

60-
min

120-
min

1 P t-3, P3, P t+3 1.80 1.95 1.95 1.94 1.53  0.48 0.32 0.24 0.19 0.05

2 P t-3, P3, P t+3, Pdaily,
Pmonthly

1.76 1.91 1.92 1.89 1.49  0.44 0.30 0.22 0.17 0.05

3 P t-3, P3, P t+3, P daily,
Pmonthly, Tmax, Tmin

1.74 1.88 1.89 1.87 1.50  0.42 0.28 0.20 0.16 0.05

4 P3, Pdaily, Pmonthly 1.76 1.92 1.92 1.89 1.52  0.44 0.30 0.22 0.17 0.05

5 P3, Pdaily, Pmonthly, Pannual 1.76 1.91 1.91 1.90 1.49  0.44 0.30 0.22 0.18 0.05

6 P3, P daily, Pmonthly, Tmax, Tmin 1.71 1.88 1.88 1.87 1.48  0.32 0.22 0.18 0.14 0.04

7 P3, Pdaily, Pmonthly, Pannual ,
Tmax, Tmin

1.74 1.89 1.91 1.87 1.53  0.42 0.28 0.21 0.17 0.05

8 P3, Pdaily, Pmonthly, Pannual,
Tmax, Tmin, elev. 1.74 1.89 1.89 1.87 1.48  0.42 0.28 0.20 0.16 0.04

9 P t-3, P3, P t+3, Tmax, Tmin 1.77 1.92 1.93 1.89 1.54  0.45 0.30 0.22 0.17 0.05

P3 is 3-hourly precipitation; P t-3, P t+3 are precipitations 3 hr before and 3 hr after P3;  Pdaily, Pmonthly, and
Pannual are 24-hr, monthly, and annual sums of precipitation, respectively; Tmax, Tmin are maximum and
minimum temperatures; and elev. is the elevation of the station.
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In this study, target data of the ANN model are the maximum 15-, 30-, 45-, 60-, and

120-min precipitation. The main advantage of this study is that the output of the ANN

model are the maximum precipitation of different durations that are needed later to create

the IDF curves. This method is computationally more efficient as compared to finding the

disaggregated rainfall for each interval and then finding the maximum rainfalls for five

different durations.

3.3.5. ANN Model Training and Performance Measures

The ANN model was trained with input and target datasets using the training function

discussed in section 3.3.3. Model accuracy usually increases with an increase in training,

but there is a point at which more training does not improve model performance, and

sometimes even gets worse (Burian et al., 2000; 2001). Identifying this point can be done

with trial and error. For the ANN model evaluated in this study, 60% of observed data

were used for training, 20% for validation, and the last 20% for testing. Burian et al.

(2001) investigated a number of training iterations to develop an ANN model for hourly

rainfall disaggregation and found that the performance of the model improves when the

iteration numbers increase from 100 to 1000–1500, and that it worsens for higher values.

For this study, the iteration number of 1000 was selected. The determination of the

number of hidden neurons in an ANN model is a matter of experimentation (Burian et al.

2000, 2001, Isik et al. 2012). In our investigation, performance of the ANN model for 1-

30 hidden neurons was evaluated, and eventually 6 hidden neurons were selected for

developing the model.

The performance measures for evaluation of the ANN model were Nash-Sutcliffe

Efficiency coefficient (NSE) and correlation coefficient (R). Again, Normalized Mean
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Square Error (NMSE) and Akaike Information Criterion (AIC) were used to find the

optimum input data. The results of the ANN model were also compared to the results of

the rainfall disaggregation using stochastic method from the previous chapter.

3.3.6. Intensity-Duration-Frequency (IDF) Curves

Future IDF curves were created for Alabama using Generalized Extreme Value

(GEV) distribution. As mentioned in Chapter 2, this method was selected as the best

probability distribution for Alabama in a study by Durrans and Brown (2001). Method of

moments (MOM) was used to estimate the GEV parameters (Hosking et al., 1985;

Bhunya et al., 2007) and performance of the fit was evaluated by Kolmogorov-Smirnov

(K-S) test (Massey 1951). Based on the K-S test results, GEV distribution fitted to the

sample CDFs with minimal error. Statistical measures used for this evaluation are

presented in Table 2-3 (Chapter 2). IDF curves where created by obtaining the annual

maximum precipitation depth for different rainfall durations (e.g. 15-, 30- and 45- min, 1-

and 2-hr.). GEV distribution was then used to find the precipitation depths for different

return periods (e.g. 2, 5, 10 years) and it was repeated for different durations. Finally

depth versus duration was plotted for different frequencies to develop the IDF curves.

3.4.Results and Discussion

3.4.1. Performance

Temporal disaggregation was performed for each month and rainfall duration

separately. The statistical measures used in the error quantification are presented in Table

3-2. Both R and NSE for all months are greater than or equal to 0.6, and higher R and
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NSE values were obtained for longer durations. These results show that the developed

ANN model performed very well in disaggregating the 3-hour interval precipitations and

finding the maximum of 15-, 30-, 45-, 60-, and 120-min rainfall depths.

Table 3-2 Performance of the ANN model for training, validation, and testing datasets for every
month and every rainfall duration.

Performance Month Training  Validation Test All
R NSE  R NSE R NSE  R NSE

15-min

Jan 0.73 0.60 0.80 0.63 0.80 0.63 0.60 0.80

Feb 0.80 0.61 0.83 0.70 0.81 0.70 0.80 0.65

Mar 0.75 0.60 0.82 0.70 0.82 0.70 0.80 0.65

Apr 0.80 0.62 0.80 0.63 0.82 0.70 0.80 0.64

May 0.83 0.70 0.84 0.70 0.86 0.73 0.84 0.70

Jun 0.90 0.74 0.87 0.75 0.90 0.80 0.90 0.75

Jul 0.90 0.74 0.86 0.74 0.90 0.80 0.90 0.75

Aug 0.86 0.73 0.90 0.80 0.88 0.80 0.86 0.75

Sep 0.80 0.65 0.94 0.84 0.92 0.82 0.90 0.77

Oct 0.81 0.65 0.86 0.74 0.88 0.77 0.84 0.71

Nov 0.80 0.61 0.81 0.66 0.84 0.70 0.81 0.65

Dec 0.71 0.60 0.80 0.60 0.84 0.70 0.80 0.61

30-min

Jan 0.82 0.70 0.86 0.75 0.90 0.80 0.85 0.72

Feb 0.85 0.72 0.90 0.80 0.87 0.75 0.86 0.75

Mar 0.84 0.70 0.88 0.80 0.88 0.77 0.90 0.74

Apr 0.85 0.73 0.86 0.73 0.90 0.80 0.86 0.75

May 0.90 0.80 0.90 0.78 0.91 0.82 0.90 0.80

Jun 0.91 0.84 0.92 0.85 0.93 0.87 0.92 0.85

Jul 0.92 0.84 0.94 0.86 0.93 0.86 0.92 0.85

Aug 0.92 0.84 0.93 0.86 0.94 0.88 0.92 0.85
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Sep 0.88 0.75 0.97 0.92 0.97 0.91 0.94 0.90

Oct 0.86 0.74 0.90 0.80 0.91 0.81 0.90 0.80

Nov 0.86 0.74 0.87 0.76 0.90 0.80 0.87 0.80

Dec 0.81 0.70 0.85 0.72 0.90 0.80 0.85 0.73

45-min

Jan 0.90 0.80 0.90 0.81 0.92 0.83 0.90 0.80

Feb 0.88 0.78 0.91 0.82 0.91 0.81 0.90 0.80

Mar 0.90 0.80 0.92 0.84 0.92 0.85 0.91 0.82

Apr 0.90 0.80 0.90 0.81 0.92 0.84 0.90 0.82

May 0.93 0.86 0.93 0.87 0.94 0.90 0.93 0.90

Jun 0.95 0.90 0.95 0.91 0.96 0.92 0.95 0.91

Jul 0.95 0.90 0.96 0.92 0.96 0.92 0.95 0.91

Aug 0.95 0.84 0.95 0.86 0.96 0.88 0.95 0.86

Sep 0.91 0.84 0.98 0.94 0.97 0.93 0.96 0.91

Oct 0.90 0.81 0.93 0.86 0.94 0.85 0.92 0.84

Nov 0.90 0.81 0.91 0.82 0.93 0.84 0.91 0.82

Dec 0.86 0.74 0.90 0.80 0.93 0.84 0.90 0.80

60-min

Jan 0.90 0.81 0.92 0.85 0.93 0.90 0.92 0.84

Feb 0.91 0.83 0.93 0.86 0.93 0.85 0.92 0.84

Mar 0.92 0.84 0.94 0.89 0.94 0.89 0.93 0.87

Apr 0.92 0.86 0.93 0.86 0.94 0.88 0.93 0.87

May 0.95 0.89 0.95 0.90 0.96 0.92 0.95 0.90

Jun 0.96 0.93 0.97 0.94 0.97 0.94 0.97 0.94

Jul 0.97 0.93 0.97 0.94 0.97 0.94 0.97 0.94

Aug 0.96 0.93 0.97 0.94 0.98 0.95 0.97 0.94

Sep 0.94 0.88 0.99 0.97 0.98 0.96 0.98 0.94

Oct 0.93 0.86 0.95 0.90 0.96 0.90 0.94 0.90

Nov 0.93 0.86 0.93 0.87 0.95 0.90 0.94 0.87
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Dec 0.90 0.80 0.92 0.83 0.94 0.86 0.92 0.83

120-min

Jan 0.97 0.95 0.98 0.96 0.98 0.96 0.98 0.96

Feb 0.98 0.95 0.98 0.96 0.98 0.96 0.98 0.96

Mar 0.98 0.96 0.99 0.97 0.99 0.97 0.98 0.97

Apr 0.99 0.97 0.98 0.97 0.99 0.98 0.99 0.97

May 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98

Jun 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.98

Jul 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Aug 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Sep 0.99 0.95 0.99 0.97 0.99 0.97 0.99 0.97

Oct 0.98 0.97 0.99 0.98 0.99 0.97 0.99 0.97

Nov 0.98 0.96 0.98 0.96 0.99 0.97 0.98 0.96

Dec 0.97 0.95 0.98 0.96 0.99 0.97 0.98 0.96
R: Correlation coefficient
ENS: Nash–Sutcliffe model efficiency coefficient

ANN model results were also compared with the results of the stochastic method

used by Mirhosseini et al. (2012). Figures 3.1(a-e) show scatter plots of observed and

predicted maximum 15-, 30-, 45-, 60-, and 120-min rainfalls in a typical summer month

(July) from the ANN model and the stochastic method. Scatter plots for the remaining

months are presented in Appendix C. Comparison of the results from these two methods

indicates that the ANN model performed better in estimating maximum rainfall. The

perfect prediction line (1:1 line) shown on each plot divides the under-predictions from

over-predictions. These plots suggest that ANN model predictions closely distribute

along the perfect prediction line, and that the stochastic method tends to under-predict

maximum rainfall intensities.
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3.4.2. IDF Curves

The future IDF curves for Alabama were developed for five GCM models and for six

return periods (2-, 5-, 10-, 25-, 50-, and 100-yr).  The results of future IDF curves were

also presented as a series of maps (total 150 maps = 5 durations × 6 return periods × 5

GCM models) for the five NARCCAP regional climate projections. An example of the

generated maps is illustrated in figure 3.2. Figure 3.2 shows the maps created for a 100-yr

return period and durations of 15-, 30-, 45-, and 60-min.

d) ANN model
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Figure 3.1 Scatter plots of observed and modeled maximum a) 15-min, b) 30-min, c) 45-min, d) 60-min, and e)
120-min rainfall depths using the ANN model (left panels) and the stochastic method (right panels) for July.
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Figure 3.2 Rainfall; 100-year rainfall of 15-, 30-, 45- and 60-min durations (mm) under future climate
using HRM3-HadCM3 projected data
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The remaining maps for other durations and other models are shown in Appendix D.

Comparing these maps with NOAA Technical Paper 40 (TP-40) (Hershfield 1961) and

NWS HYDRO-35 (Frederick et al. 1977) shows that changes in future IDF curves are

expected with the future climate. The largest projected rainfall for all the durations shown

in figure 3.2 is expected to happen in the southwest Alabama. For example, for a 100-yr

return period with 30-min duration, between 51 and 72 mm of rainfall is expected to fall

in the southwestern part of the state. Tp-40 reports amounts from 76 and 89 mm

(Hershfield 1961).This amount is expected to be between 66 and 86 mm for 1-hr rainfall

duration. Based on TP-40 (Hershfield 1961), this amount is reported between 102 and

114 mm— about 35% and 25% more than what is predicted for the future. The smallest

projected rainfall amounts are expected to occur in the north and northwest Alabama. For

a 100-yr return period and a 15-min rainfall duration, between 20 and 23 mm of rainfall

is predicted. HYDRO-35 (Frederick et al. 1977) reported this amount to be in a range of

44 and 46 mm which is about 52% on average more than the predicted rainfall for future.

Since it is not possible to discuss the results of all 150 maps in detail, City of Auburn in

Alabama was selected as an example to discuss the results. Figure 3.3 presents the future

IDF curves at Auburn using five NARCCAP regional climate projections for the two

different return periods of 10 and 100 years and rainfall durations of 15-, 30-, 45-, 60-

and 120-min (Results for durations longer than 2-hr are presented in Mirhosseini et al.

(2012) so they will not be discussed here). Future results include the IDFs created with

disaggregated rainfalls from both the ANN models and the stochastic method.

Figures 3.3a and b depict the IDF curves under the future and current climates using

HRM3-HadCM3 projections for developing the future IDFs. Figure 3.3a shows that if the
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ANN model is used for rainfall disaggregation, projected rainfall intensity for a 10-yr

return period tends to be reduced by 34%. However, the stochastic method suggested a

decrease of 20%. Figure 3.3b presents the changes in rainfall intensity for a 100-yr return

period. It shows that the rainfall intensity tends to decrease by 20% when using stochastic

method and 41% when ANN model was used for rainfall disaggregation.

The CRCM-CGCM3 projections show that the rainfall intensity for a 10-yr return

period was reduced by 71% when the ANN model was used for rainfall disaggregation,

compared to a 68% decrease using the stochastic method (Figure 3.3c). Figure 3.3d

shows the results for a 100-yr return period. Figures 3.3e and f display the IDF curves

developed using the HRM3-GFDL model. Future rainfall intensity is expected to decline

by 40% when the ANN model is used for disaggregation, while the stochastic method

suggests a 26% decline (Figure 3.3e). For a 100-yr return period, future rainfall intensity

tends to decrease by 22% and 41% when the stochastic method and ANN model are used

for rainfall disaggregation, respectively (Figure 3.3f).

Figures 3.3g-j show IDF curves developed using CRCM-CCSM and RCM3-GFDL

projections. Graphs show the future IDF curves developed using two different rainfall

disaggregation methods (the ANN model and the stochastic method) and compare them

to the current IDF curves. Sixty percent (stochastic method) and 63% (ANN model)

declines in rainfall intensities are expected for a 10-yr return period (Figure 3.3g). For the

100-yr return period, 59% (stochastic method) and 66% (ANN model) decreases in future

rainfall intensities are expected.
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Figure 3.3i displays the results when RCM3-GFDL data were used for developing the

IDF curves. Utilizing the ANN model for disaggregation indicates that rainfall intensities

are expected to decline by 44% for a 10-yr return period, while the stochastic method

suggests a 34% decrease. A 41% decline in rainfall intensities was also observed for a

100-yr return period while utilizing the ANN model for temporal downscaling. This
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Figure 3.3 IDF curves for 10-yr and 100-yr return periods under current and future climate (using HRM3-
HadCM3, CRCM- CGCM3, and HRM3-GFDL CRCM-CCSM and RCM3-GFDL models) for Auburn, AL.
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value showed an approximate 14% decrease when the stochastic method was used

(Figure 3.3j).

Table 3-3 summarizes the results for different return periods using five climate

models for Auburn, AL. The ANN model and stochastic method agree that future rainfall

intensities for durations less than 2 hours are expected to decrease. However, they don’t

provide identical results. When HRM3-HadCM3 projections were used to develop the

IDF curves, the ANN model suggested a decrease by 37% on average for Auburn, while

the stochastic method indicated a 21% decline on average. The ANN model and

stochastic method indicate almost the same results when CRCM-CGCM3 and CRCM-

CCSM models were used to create IDF curves under the future climate. Utilizing HRM3-

GFDL data shows a 41% decrease on average when the ANN model was used as a

disaggregation method, while the stochastic method indicates a 26% decrease on average.

Using RCM3-GFDL data for developing future IDF curves, ANN model suggests that

future rainfall intensity is expected to decrease by 44% on average while the stochastic

method shows a 31% decline. Several studies have investigated performance of ANN

models for rainfall disaggregation and have compared their result with other methods.

Burian et al. (2000) compared the results of rainfall disaggregation using an ANN model

with two other methods; linear model and a continuous deterministic rainfall

disaggregation model (Ormsbee 1989). Their study indicated that the latter two models

underpredicted maximum rainfall intensities and were outperformed by the ANN model

ANN model.
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Table 3-3 Comparisons of IDF curves under the current and future climate scenarios for Auburn,
AL using two temporal downscaling methods, the ANN model and the stochastic method.

Model Return period
Average Percentage difference in rainfall intensity

ANN model Stochastic method

 HRM3-HadCM3

2-yr 33% decrease 24% decrease
5-yr 36% decrease 21% decrease
10-yr 34% decrease 20% decrease
50-yr 40% decrease 20% decrease

100-yr 41% decrease 20% decrease
Average 37% decrease 21% decrease

CRCM-CGCM3

2-yr 66% decrease 68% decrease
5-yr 70% decrease 68% decrease
10-yr 71% decrease 68% decrease
50-yr 73% decrease 66% decrease

100-yr 74% decrease 65% decrease
Average 71% decrease 68% decrease

HRM3-GFDL

2-yr 38% decrease 32% decrease
5-yr 40% decrease 28% decrease
10-yr 41% decrease 26% decrease
50-yr 41% decrease 23% decrease

100-yr 41% decrease 22% decrease
Average 41% decrease 26% decrease

CRCM-CCSM

2-yr 58% decrease 60% decrease
5-yr 62% decrease 60% decrease
10-yr 63% decrease 60% decrease
50-yr 66% decrease 60% decrease

100-yr 66% decrease 59% decrease
Average 63% decrease 60% decrease

RCM3-GFDL

2-yr 45% decrease 48% decrease
5 years 47% decrease 40% decrease

10 years 44% decrease 34% decrease
50 years 42% decrease 20% decrease
100 years 42% decrease 14% decrease
Average 44% decrease 31% decrease
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Dibikie and Coulibaly (2006) evaluated the viability of an ANN model to

disaggregate precipitation and compared it with a liner regression model and concluded

that an ANN outperforms the statistical models. Other studies also reported better

performance in predicting heavy rainfall events when using an ANN model as compared

to linear regression downscaling methods (Weichert & Burger 1998). One reason for

better performance of ANNs could be that a neural network can approximate complex,

highly non-linear relationships without a priori assumptions (Dibikie and Coulibaly

2006). Also, ANNs allow the data to define the functional form while regression models

assume a functional form. Therefore, it is believed that neural networks are more

powerful tools than other downscaling methods (Von Storch et al. 2000, Dibikie &

Coulibaly 2006).

Results show that no matter which temporal downscaling method was used, the

five different climate model projections were not identical. Analyzing all the developed

IDF curves for the state of Alabama (data not presented) also shows a similar disparity as

observed for Auburn. The CRCM-CGCM3 and CRCM-CCSM models demonstrate a

decrease in future rainfall intensity for Alabama, while the other three models suggest

that a decrease below and increase above a specific rainfall duration can occur, depending

on the return period. As was mentioned by Mirhosseini et al. (2012), the difference in the

climate model results could occur due to different initial and boundary conditions for

each of the climate projections, or the differences in physical parameterizations (such as

precipitation-forming processes) amongst different GCMs and RCMs. Despite the

disparity in future projections from the investigated models, they all suggest that future

rainfall intensities for short durations are expected to decrease. The results of larger
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events and their effects on designing different water management structures were

explored in further detail in Mirhosseini et al. (2012).

3.5. Summary and Conclusions

This study investigated the viability of using ANNs to estimate maximum 15, 30,

45, 60, and 120-min precipitations in order to develop IDF curves under the future

climate scenarios. The results were also compared to disaggregated rainfall using the

stochastic method. Comparison of these two methods indicates that the ANN model

provides superior performance in estimating the maximum 15-, 30-, 45-, 60-, and 120-

min precipitations.

Scatter plots created to evaluate the performance of the ANN model suggest that

the predictions of the ANN model more closely approximated the perfect prediction line,

and that the stochastic method under-predicts the maximum rainfall amounts. Using the

ANN model for rainfall disaggregation, IDF curves for Alabama under the future climate

scenario were developed from dynamically downscaled NARCCAP projections. Results

were further compared to the current IDF curves. Comparison of the developed ANN

model with the stochastic method shows that both methods agree that future rainfall

intensities (for duration less than 2 hours) are expected to decrease. Both methods

estimate almost similar decreases in rainfall intensities when CRCM-CGCM3 and

CRCM-CCSM models were used to create IDF curves under the future climate.

However, the ANN model suggests greater declines in rainfall intensities compared to the

stochastic method when HRM3-HadCM3, HRM3-GFDL, and RCM3-GFDL projections

were used.
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Analyzing the results for longer durations presented in details in Mirhosseini et al.

(2012), revealed that there is a large uncertainty in the projected rainfall intensity of the

investigated climate models for long durations (> 4 hours). This uncertainty prevents us

from giving strong conclusions about the expected changes in future rainfall intensity for

long duration rainfall events in Alabama. However, projections from all of the climate

models (disaggregated with both temporal downscaling methods) show a decrease for

shorter rainfall durations (i.e., less than 2 hours). Therefore, it can be concluded that the

existing IDF curves for designing water management infrastructures based on short

rainfall durations will continue to be useful in the future. This conclusion is based solely

on the results of the selected climate model projections used in this and the previous

study by Mirhosseini et al. (2012), and not on all existing climate models and scenarios.

Perhaps using additional model projections will help researchers to better understand the

possible changes in future rainfall intensities. Also, given the large uncertainty in the

output from the GCMs, performing an uncertainty analysis and creating probability based

IDF curves, which can better present the results, especially for longer durations, is being

undertaken in order to complete the current and previous studies.
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Chapter 4

4.      Developing Probability-based IDF Curves Using Kernel Density Estimator

4.1. Abstract

Many hydrologic structures are designed based on Intensity-Duration-Frequency

(IDF) curves. A design based on an inaccurate design storm can cause problems, such as,

malfunction of the infrastructure, excessive cost, or loss of life. In Chapter 2, IDF curves

under future climate scenarios were created for Alabama using six different NARCCAP-

based projections. The results demonstrated that these models do not project identical

results, and there is uncertainty regarding future rainfall intensities projected by these six

climate models. Understanding the uncertainties associated with climate model outputs

can help decision-makers to explain the impacts of climate change with more confidence.

Therefore, the main objective of this chapter is to develop probability-based IDF curves

incorporating climate projections from six different climate models using a kernel density

estimator.  The  resulting  IDF  curves  help  understand  uncertainties  associated  with

projected rainfall intensities. IDF curves were previously created using two different

temporal disaggregation methods: a stochastic method and an ANN model. A kernel

density estimator was applied to the resulting estimated rainfall intensities from both

methods and probability-based IDFs were developed. In addition to the probability-based

IDFs, typical IDF curves that incorporated all models were also developed. Using the

median of the distribution as the “most likely” outcome the results are
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presented in the form of IDF graphs. A comparison of the results with the current IDF

curves for Auburn indicated that, when the stochastic method was used for rainfall

disaggregation, future rainfall intensity could decreases or increases depending on the

return period. The resultant IDF curves for Auburn indicate that future rainfall intensities

are expected to decrease by 29% to 39% for durations less than six to eight hours and to

increase by 14% to 19% for longer durations. Results of the ANN model for durations

less than two hours indicates that the precipitation pattern for Alabama veers toward less

intense rainfalls for the investigated durations and for all the return periods. This decrease

is expected to be between 48% and 52% for Auburn.

4.2.Introduction

As mentioned in previous chapters, many hydrologic structures are designed based on

IDF curves (McCuen 1998, Prodanovic et al. 2007), and a design based on an inaccurate

design storm can result in malfunction of infrastructure, loss of life in the case of failure,

or excessive cost if the design storm is overestimated. In the previous chapters, the

development of future IDF curves was discussed, and the results were compared with

current IDF curves. The results demonstrated that the six different NARCCAP-based

projections are not identical and that there is uncertainty regarding the projected rainfall

intensities of these six climate models. Decision-makers can benefit from understanding

the uncertainties associated with climate model outputs to explain the impacts of climate

change with more confidence (Colglazier 1991, Solaiman 2011). Uncertainties in the

outputs of climate models arise from imperfect knowledge of physical processes,

inadequate information, or analytical resources. For example, complex atmospheric and
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oceanographic processes are being simplified, and imprecise assumptions about different

climatic processes have been made.

Uncertainties also exist in estimating the future GHG concentrations, and, as a result,

changes in the carbon cycle can be another source of uncertainty of rainfall projections.

Despite the fact that the fundamentals of the GHG physics effect are well-founded and an

increase in CO2 concentrations has been recorded since the industrial revolution, there is

still discussion and debate about this issue (Solaiman 2011).

In addition, the data are available at a coarse spatial and temporal resolution, which

can cause disparities between GCMs when at a regional scale. The earth system’s inborn

complexity and the inability to predict exact and accurate human behavior are other

sources of climate model uncertainty (Wilby and Harris 2006, Stainforth et al. 2007,

Buytaert et al. 2009, Solaiman 2011).

The spatial resolution of GCMs usually ranges from 200 to 600 km, but there is an

increased need for high-resolution data for climate change assessment and impact studies,

and it is accepted that the accuracy of GCMs decrease at finer scales. Variables such as

temperature and precipitation from GCMs can be misrepresented because of the coarse

resolution. Details of land surfaces, water surfaces and topography are not represented

well in some climate models, so the models are unable to predict the high variability in

clouds and precipitation and to provide accurate projections (Widmann et al., 2003,

Brissette et al. 2007).

Different initial boundary conditions are another source of uncertainty (Stainforth et

al. 2007). Another source of uncertainty could be forcing uncertainty. For example, using

model simulations based on different scenarios of GHG concentrations in the future
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completely depends on the activities undertaken to control these emissions (Cubasch et

al. 2001).

Quantifying uncertainties from climate models has been the subject of many studies

related to impact assessment (Solaiman 2011). Selecting the most suitable models is one

of the key factors in performing reliable climate change assessment research (Tebaldi and

Smith 2009). Many studies have used just one climate model to evaluate the impact of

climate change in the future. The problem with using one GCM is that, with the presence

of significant uncertainties, one model is only one of many possible realizations and may

not be representative of the future. Therefore, it is very important to use as many models

as possible to present the results in a probabilistic way. Unfortunately, few studies have

used a collection of climate models. New and Hulme (2000) used Bayesian Monte Carlo

simulations to introduce a probabilistic framework to quantify the climate model’s

uncertainty. Another study used a CMIP2 multi-model ensemble with equally probable

realizations to estimate the probabilities of climate change (Raisanen and Palmer 2001).

Recently, Solaiman (2011) used a kernel density estimator to quantify the uncertainty

associated with 11 GCMs for the city of London, Canada. Another study by Giorgi and

Mearns (2003) introduced the Reliability Ensemble Averaging (REA) method to estimate

the probability of regional precipitation and temperature change. Nine GCMs with two

emission scenarios the A2 and B2 emission scenarios were used in this study.

Bayesian statistics was applied to compute a future climate distribution by using observed

data and corresponding simulations from GCMs (Tebaldi et al. 2004, 2005). It was

assumed that GCM ensembles illustrate an example of a full potential climate model

space consistent with the observed climate using Probability Distribution Functions



86

(PDFs) at a regional scale. Their study was extended by Smith et al. (2009). They

introduced a univariate approach to take into account one region at a time.

A probabilistic framework was developed by Wilby and Harris (2006) to combine the

results of four GCMs and two emission scenarios. A Monte Carlo approach was used to

find the elements of uncertainty. Cumulative Distribution Functions seemed to be the

most sensitive in selecting the climate change scenarios and downscaling different

models. Another study by Ghosh and Mujumdar (2007) developed a method to evaluate

the uncertainty of climate models to investigate future drought scenarios in a non-

parametric manner. More promising results were obtained compared to other parametric

methods.

Since all of the investigated climate models in this study provided different results,

developing probability-based IDF curves seemed to be an appropriate solution to quantify

uncertainties in projected rainfall intensities. Therefore, this chapter presents a

methodology to develop probability-based IDF curves using non-parametric kernel

density estimation.

4.3.Methodology

4.3.1. Data

As mentioned in the previous two chapters, simulated precipitations for 2038 to 2070

at a temporal resolution of three hours and a spatial resolution of 50 km were obtained

from the North American Regional Climate Change Assessment Program (NARCCAP)

(Sebastien et al., 2007, Richard et al., 2007). Simulated temperature projections at daily

intervals were also obtained from NARCCAP. Using these datasets, future rainfall
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intensities (for each duration and frequency) were estimated for each NARCCAP

regional climate projections. The estimated rainfall intensities were then used to develop

the probability-based IDFs.

Probability-based IDF curves were developed from the results of rainfall intensities

estimated by the stochastic method (for 15-, 30-, 45-min, 1-, 2-, 3-, 6-,12-, 24- and 48-hr

as well as the ANN model (for 15-, 30-, 45-min, 1-hr and 2-hr).

4.3.2. Probability Density Function (PDF)

To deal with the uncertainty associated with climate models, a practical method that

is robust and flexible enough to handle data variety should be used. It should also be

statistically consistent in application across regional, local, and global scales. It needs to

provide consistent results to be able to get as much information as possible from the data

(Solaiman 2011). Most parametric approaches are unable to meet all mentioned

requirements (Solaiman 2011, Zucchini 2003).

The probability distribution of a continuous random variable (x) is described in terms

of a Probability Distribution Function (PDF). A PDF is usually used to explain the nature

of data (Zucchini 2003). Probabilities associated with (x) can be estimated using the

following relationship:

( ) = ( )                      (4.1)

The goal is usually to estimate ( ) from a sample of data , … . It can be

estimated using a parametric approach that assumes f(x) is a member of some parametric

family of distributions and then estimates the assumed distribution’s parameters from the
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data. This approach is easy to apply but is not useful if the distribution assumption is

incorrect (Miller et al. 1965, Zucchini 2003). Lack of flexibility is one of the major

drawbacks of parametric approaches (Lall et al. 1996). Therefore, using non-parametric

approaches prevents us from making assumptions about the f(x) and estimates the PDF

directly from the data (Zucchini 2003). A histogram is widely known as a non-parametric

estimator of the PDF. It is very simple to use, but its disadvantage is discontinuity.

Moreover, there are other non-parametric methods that are better than histograms

(Adamowski 1985, Solaiman 2011).

A non-parametric approach to estimate the PDF can be used for uncertainty

quantification of climate models. Methods such as K-nearest neighbor methods, kernel

methods, Bayesian-spline methods, maximum likelihood methods, and orthogonal series

methods are examples of non-parametric approaches that have been used (Adamowski

1985, Solaiman 2011).

4.3.3. Kernel Density Estimation

Among the methods mentioned above is a method called the kernel density estimation

method. This method has been used widely in hydrology, flood frequency analysis, and

rainfall resampling as a more reliable and flexible approach than parametric approaches

(Sharma et al. 1997, Lall 1995, Adamowski 1985).

Weight functions or kernels convolution centered on the empirical frequency

distribution of the data, form a kernel density estimator. The kernel density function can

be estimated using the following equation:
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( ) = 1                          (4.2)

where ) is the kernel function. Thus, a PDF can be a kernel function.

The kernel density estimator is sometimes called Parzen-Rosenbalt after Emanuel

Parzen and Murray Rosenbalt, who are assumed to have created the kernel density

estimator in its current form (Rosenbalt 1956, Parzen 1962).

The kernel density estimator of a sample , …  from a distribution with an

unknown density function  can be determined from:

( ) =
1

( ) =
1

( )                    (4.3)

where , also called ), is the kernel function or weight function, and h is a

smoothing parameter or bandwidth.

Selecting the appropriate bandwidth and kernel function are the important factors for

applying kernel density estimation successfully (Wang et al. 2007; Sharma et al. 1997).

Figure 4.1 displays a kernel density estimate and a histogram created from the same data.

Some of the common kernel functions are triangular, Epanechnikov, rectangular,

biweight, and normal. Table 4-1 shows the kernel function for these examples (Bergman

2009, Zucchini 2003). The normal kernel is usually used as the kernel function, and it

was applied to this study as well.
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Table 4-1 Examples of kernel functions

Kernel function K(t)

Triangular 1 | | | | < 1
0

Epanechnikov
3
4 1

1
5

| | < 5

0

Rectangular
1
2

| | < 1

0

Biweight
15
16

(1 ) | | < 1

0

Normal
1
2

( )

Figure 4.1 Comparison of kernel density estimate (right) and histogram (left). The individual kernels are the red
dashed curves and the kernel density estimate the blue curves.

 (From http://en.wikipedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png retrieved on 03/12/2013
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Kernel bandwidth has a strong effect on the kernel estimate. Many studies have

investigated the selection of a smoothing parameter or bandwidth and found that it is

even more important than the selection of the kernel function (Wang et al. 2007, Scott

2009, Sheather et al. 1991, Marron et al. 1987). A change in bandwidth can greatly

change the shape of the kernel estimate (Sheather et al. 1991, Marron et al. 1987).

Various methods have been used to quantify the estimator. One method is the Mean

Squared Error (MSE) and its two components: bias and standard error (or variance)

(Scott 2009, Zucchini 2003, Sheather et al. 1991, Marron et al. 1987). MSE can be

measured using:

( ) ( ) ( )

= [ ( ) ( )] ( ) ( ))

( ) ( ))                 (4.4)

There is usually a trade-off between the variance and bias of the estimator in

equation 4.4. Bias can be reduced by increasing variance, and vice versa, by changing the

smoothing parameter.

The most common global measure of accuracy is the Mean Integrated Squared

Error (MISE) (Rosenbalt 1956, Scott 2009, Zucchini 2003, Sheather et al. 1991,

Adamowski 1985), given by:

( ) ( )
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= ))

= ( ) + ( )                     (4.5)

4.3.3.1. Bias, Variance and MSE

The bias is given by (Scott 2009, Zucchini 2003):

( ) =
1 1

( )

=
1 1

( )

=
1

( )                        (4.6)

If =  , , =

( ) = ( ) ( )

Using the Taylor series to expand the ( ) yields:

( ) ( ) ( ) +
1
2 ) " ( ) )

where ( ) represents terms that converge to zero faster than  as  approaches zero.

Thus:
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( ) = ( ) ( ) ( ) ( ) + ( )
)

2
"( ) )

( ) + 2
"( ) + ( )                     (4.7)

( )
2

"( )                               (4.8)

where  is the variance of the kernel, is the smoothing parameter or bandwidth, and

"( ) is density curvature at .

The variance is given by (Scott 2009, Zucchini 2003):

( )
1

=
1

Therfore, since , …  are distributed independently:

= ( ) ( )
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( ) =
1 1

( )
1 1

( )

=
1 1

( )
1

( ) ( )

Using Taylor approximation and substituting z = , when n becomes large and

h becomes small, the approximation of above equation will be:

( )
1

( ) ( )                           (4.9)

It is clear that  increases as variance decreases. Combining equations 4.8 and 4.9

leads to:

( ) ( ) ( )

1
4

" ) +
1

( )                         (4.10 )

where = ( )  and = )

Integrating equation 4.10a leads to:

1
4 ) +

1
                        (4.10 )

where ( ) = " ) .
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As shown in equation 4.10b, MISE is a function of the bandwidth. The first term

in equation 4.10 becomes large when  values are large, and the second term becomes

large when  decreases. There is a value for  that minimizes the MISE, and that is the

optimal bandwidth (Rosenbalt 1956, Scott 2009, Zucchini 2003, Sheather et al. 1991,

Adamowski 1985, Jones et al. 1996). Equation 4.10 is the measure of the estimator’s

performance. By minimizing equation 4.10, the optimal bandwidth can be calculated

using the following equation:

)
( )

1

Setting above equation equal to zero will give the optimal bandwidth, .

=
1

( )                   (4.11)

Substituting equation 4.11 in 4.10, the minimum MISE for the given PDF and kernel can

be calculated using:

=
5
4

( )
              (4.12)

Finding the optimal bandwidth depends on the sample size, kernel function, and

an unknown PDF. A variety of methods have been developed to simplify equation 4.11

based on the selected kernel function, methods such as rule of thumb, cross-validation

methods, the plug-in approach, and the smoothed bootstrap approach (Silverman 1986,

Rudemo 1982, Bowman 1984, Hall 1992, Sheather 1986, 1983, Sheather et al. 1991,

Polansky and Baker 2000). Considering a standard normal density as a kernel function,
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Polansky and Baker (2000) proposed an equation for optimal bandwidth selection. The

optimal bandwidth is given by the following equation and was used in this study

(Polansky and Baker 2000):

= 1.587                       (4.13)

where is  the  sample  size  and ,  (Silverman 1986), where is the

sample standard deviation and  is the interquartile range.  is a measure of

statistical dispersion. It is defined as the difference between the upper and lower quartiles

( 1).

4.3.4. Probability-based IDF Curves

The results of the created IDFs from the previous chapters were used to develop the

probability-based IDF curves. The kernel density estimator was applied to the projected

rainfall depths for each return period, and each rainfall duration and probability versus

rainfall depth was plotted. To develop the IDF curves, the median of the distribution

(probability: 0.5) was selected as the most likely outcome, and the results are presented in

the form of IDF graphs.

Probability-based IDF curves were developed from the results of rainfall intensities

estimated by the stochastic method (for 15-, 30-, 45-,min, 1-hr and 2-hr) in combination

with NARCCAP projections (for 3-,6-,12-,24- and 48-hr) and estimated rainfall

intensities using the ANN model (for 15-, 30-, 45-min, 1-hr and 2-hr).

4.4.Results and Discussion

4.4.1. Optimal bandwidth selection
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The equation proposed by Polansky and Baker (2000) was used to calculate the

optimal bandwidth. Rainfall intensities for 10 rainfall durations (e.g. 15-min, 30-min) and

6 return periods (e.g. 2-yr, 5-yr) were estimated using six different climate model

projections (Chapter 2). Selecting 15-min rainfall duration for Auburn as an example,

Table 4-2 shows calculated bandwidth when stochastic method was used as a

disaggregation method.

Table 4-2 Optimal bandwidth selection for Auburn, 15-min rainfall duration

Climate Models
15-min rainfall (mm)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr
CRCM-CCSM 10.19 13.73 16.17 19.39 21.89 24.49
CRCM-CGCM3 8.50 11.16 12.77 14.63 15.91 17.09
HRM3-GFDL 14.88 20.39 23.86 28.06 31.05 33.91
RCM3-GFDL 16.58 22.28 25.55 29.17 31.54 33.65
HRM3-HadCM3 12.53 18.40 22.46 27.81 31.94 36.17
GFDL-ECP2 11.76 15.46 17.85 20.79 22.91 24.98

sample size (n)= 6
Standard deviation(S) 2.97 4.20 4.96 5.90 6.63 7.39
IQR/1.349 3.48 4.93 5.70 6.43 7.15 6.98
Min{S,IQR/1.349} 2.97 4.20 4.96 5.90 6.63 6.98
hopt (Equ. 4.13) 2.59 3.67 4.33 5.16 5.79 6.10

The same procedure was applied to calculate the bandwidth for the remaining rainfall

durations for all 34 stations in Alabama. Optimal bandwidths were also calculated to

develop the probability-based IDF curves when ANN model was used for rainfall

disaggregation.

4.4.2. Probability-based IDF Curves

4.4.2.1 Stochastic Method

Probability-based IDF curves were developed for 34 stations in Alabama (Figure 2.1).

The results of the developed probability-based IDFs when the stochastic method was
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used for disaggregation are shown in Figure 4.2 for Auburn. The remaining graphs for

other stations in Alabama are presented in Appendix E.

15-min

Rainfall depth (mm)

0 10 20 30 40 50 60

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr
5-yr
10-yr
25-yr
50-yr
100-yr

30-min

Rainfall depth (mm)

0 20 40 60 80 100

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr
5-yr
10-yr
25-yr
50-yr
100-yr

45-min

Rainfall depth (mm)

0 20 40 60 80 100 120

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr
5-yr
10-yr
25-yr
50-yr
100-yr

1-hr

Rainfall depth (mm)

0 20 40 60 80 100 120 140 160

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr
5-yr
10-yr
25-yr
50-yr
100-yr

2-hr

Rainfall depth (mm)

0 20 40 60 80 100 120 140 160

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr
5-yr
10-yr
25-yr
50-yr
100-yr

3-hr

Rainfall depth (mm)

0 50 100 150 200

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr
5-yr
10-yr
25-yr
50-yr
100-yr



99

Figure 4.2 provides additional probability information compared to a typical IDF

graph, which allows designers and decision-makers to use the IDF curve with more

confidence. For example, for a 10-yr return with one-hour rainfall duration, there is a

probability of 0.6 that rainfall amount will be less than or equal to 35 mm.
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Figure 4.2 Probability-based IDFs when stochastic method used for disaggregation for 15-, 30-, 45-
min,1- ,2-, 3-, 6-, 12-, 24- and 48-hr rainfall duration-graphs are presented for Auburn, AL.
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Considering the median of distribution as the most likely outcome, typical IDF curves

were developed for all stations in Alabama. Figure 4.3 shows how the resultant IDF was

created for Auburn. A probability-based IDF for 15-min rainfall duration is presented as

an example to explain the process.

Figure 4.3 Resultant IDF curves for Auburn, AL using the stochastic method
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The dashed line presents the rainfall depths (mm) with a probability of 0.5 for 15-min

rainfall durations and for all the return periods. Rainfall depths for the remaining rainfall

durations (Figure 4.2) were also derived from the probability-based IDF curves. These

values were then used to create the resultant IDF curves. IDF curves for the remaining

stations (33 stations) are presented in Appendix F.

To discuss the magnitude of uncertainty using a particular GCM projection on

deriving IDF curves, Table 4-3 presents rainfall depths for 15-min rainfall durations. The

upper section of the table is similar to Table 4-2. The lower section summarize the

rainfall depths with a most likely probability of 0.5  derived from probability-based IDF

curve (Figure 4.3), minimum and maximum of the rainfall depths that presents the

rainfall depth range.

Table 4-3 Uncertainty quantification for 15-min rainfall duration, Auburn, AL

Climate Models
15-min rainfall (mm)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr
CRCM-CCSM 10.19 13.73 16.17 19.39 21.89 24.49
CRCM-CGCM3 8.50 11.16 12.77 14.63 15.91 17.09
HRM3-GFDL 14.88 20.39 23.86 28.06 31.05 33.91
RCM3-GFDL 16.58 22.28 25.55 29.17 31.54 33.65
HRM3-HadCM3 12.53 18.40 22.46 27.81 31.94 36.17
GFDL-ECP2 11.76 15.46 17.85 20.79 22.91 24.98

Rainfall depth from
probability based-IDF

12.34 16.94 19.93 23.64 26.30 28.93

Min 8.50 11.16 12.77 14.63 15.91 17.09
Max 16.58 22.28 25.55 29.17 31.94 36.17

Percentage
difference (%)

-31.10 -34.12 -35.93 -38.12 -39.52 -40.93
34.40 31.52 28.19 23.38 21.42 25.02
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Table 4-3 shows that rainfall depths for 2-yr return period range from 8.5 mm

(projection from CRCM-CGCM3) to 16.58 mm (projection from RCM3-GFDL). Using

50% as most likely probability, 2-yr, 15-min rainfall is projected as 12.34 mm. Therefore,

8.5 mm projection from CRCM-CGCM3 is 31% underestimated but 16.58 mm projection

from RCM-GFDL is about 34% overestimated. Results for the remaining return periods

(5-, 10-, 25-, 50- and 100-yr) are presented in Table 4-3. Figure 4.4 also displays the

rainfall depth range and the resulting rainfall depth derived from probability-based IDF

curve.

Figure 4.4 shows that rainfall depth range (difference between max and min)

increases for longer return periods. For example, for 100-yr return period, rainfall depth

derived from the probability-based IDF projects this amount to be about 29 mm.
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Figure 4.4 Projected rainfall depth range from six climate models (bars show minimum and
maximum) and the red dot represents the rainfall depth derived from the probability-based IDF.
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Projected rainfall depth from HRM3-HadCM is 36.17 mm which is 25% overestimated

compared with rainfall depth derived from the probability-based IDF. CRCM-CGCM3

projection for the same return period and same duration is 17.09 mm that shows about

41% underestimation.

Solaiman and Simonovic (2011) developed probability-based IDF curves using 27

climate change scenarios for the city of London, Ontario, Canada. To compare the results

of their study with this one, Figure 4.5 shows projected rainfall depth range (bars) and

rainfall depth derived from probability-based IDF (red dots) for Auburn and London.

Results are presented for 1-, 2-, 6-, 12- and 24-hr rainfall durations.
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Figure 4.5 Projected rainfall depth range (bars show minimum and maximum and the red dot represents
the rainfall depth derived from the probability-based IDF) for Auburn, AL (left side) and London,

Ontario, Canada (right side).

12-hr, Auburn

Return Period (yr)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

R
ai

nf
al

ld
ep

th
(m

m
)

0

50

100

150

200

250

300

350

24-hr, Auburn

Return Period (yr)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

R
ai

nf
al

ld
ep

th
(m

m
)

0

100

200

300

400

500

600

12-hr, London

Return Period (yr)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

R
ai

nf
al

ld
ep

th
(m

m
)

0

50

100

150

200

250

300

350

24-hr, London

Return Period (yr)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

R
ai

nf
al

ld
ep

th
(m

m
)

0

100

200

300

400

500

600

6-hr, Auburn

Return Period (yr)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

R
ai

nf
al

ld
ep

th
(m

m
)

0

20

40

60

80

100

120

140

160

180

200

220

6-hr,London

Return Period (yr)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

R
ai

nf
al

ld
ep

th
(m

m
)

20

40

60

80

100

120

140

160

180

200

220



105

Table 4-4 shows the rainfall depths derived from probability-based IDF, ranges of the

rainfall depths projected by different future climate models for Auburn, AL and London,

ON. Results are presented for 1-, 2-, 6-, 12- and 24-hr rainfall duration. Percentage

differences (Table 4-4) were calculated between minimum or maximum rainfall depths

projected by different future climate models and rainfall depth derived from probability-

based IDF for each duration. The percent differences between minimum rainfall depths

and the rainfall depths derived from probability-based IDF for five durations from only

six future climate models from Auburn range from -33.5% to -43.5% with an average of -

37.2%. These percent differences are comparable to ones obtained from 27 future climate

models for London, Ontario, i.e. ranging from -18.3% to -22.1% with average of -20.6%.

The percent differences of maximum rainfall depths are also comparable to ones obtained

from Solaiman and Simonovic (2011).

Figure 4.5 and data in Table 4-5 show that rainfall depth ranges for Auburn using six

climate models are comparable to the ones for London while using 27 climate change

scenarios. Using more GCMs to develop the probability-based IDFs will lead to obtain

more accurate results but Figure 4.5 shows that even though only six GCM projections

were used, the IDF curves developed using the probability method are more

representative than only one model to what it would happen in the future.  Analyzing the

results from Table 4-3 and the remaining rainfall durations (not shown in the table) for

Auburn shows that projections from CRCM-CGCM3 are likely to be underestimated but

RCM3-GFDL and in some cases HRM3-GFDL most likely overestimates rainfall in

Alabama, and projections from HRM3-HadCM3 are the most representative.
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Table 4-4 Uncertainty quantification of rainfall depths (mm) projected from different climate
models for Auburn, AL and London, ON

City Auburn, AL London, ON
Duration 1-hr

Return
period 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

50%* 18.0 25.6 30.9 37.8 43.1 48.5 33.0 43.0 52.0 62.0 67.0 77.0
Min 10.4 14.1 17.0 21.0 24.5 28.3 24.1 33.1 38.8 46.0 51.4 56.7
Max 29.1 40.4 47.6 56.3 62.4 71.1 42.1 59.6 71.2 85.9 96.8 107.6

Range 18.7 26.3 30.6 35.2 38.0 42.8 18.0 26.6 32.4 39.9 45.4 50.9
Percentage
diff (%)**

-42.0 -44.9 -45.2 -44.3 -43.2 -41.7 -26.9 -23.1 -25.4 -25.8 -23.3 -26.4
61.7 57.7 53.9 48.8 44.8 46.6 27.5 38.7 37.0 38.5 44.4 39.7

Duration 2-hr
50% 26.0 35.2 41.3 49.2 55.2 61.2 40.0 55.0 67.0 81.0 91.0 101.0
Min 14.9 18.3 20.8 24.3 27.2 30.4 30.4 40.3 46.9 55.2 61.3 67.5
Max 41.4 53.6 60.7 71.1 79.5 87.6 55.9 78.7 93.8 113.6 129.1 144.5

Range 26.5 35.3 39.9 46.8 52.2 57.2 25.5 38.4 46.9 58.4 67.8 77.0
Percentage

diff (%)
-42.9 -48.1 -49.7 -50.6 -50.7 -50.3 -24.1 -26.7 -30.0 -31.9 -32.6 -33.2
59.1 52.4 46.9 44.6 43.9 43.2 39.7 43.1 40.0 40.3 41.9 43.0

Duration 6-hr
50% 48.9 68.3 81.5 98.7 111.9 124.4 52.0 72.0 84.0 101.0 113.0 125.0
Min 27.9 35.6 41.4 49.7 56.6 64.2 40.3 53.5 62.1 73.0 81.0 89.0
Max 81.8 103.4 117.7 146.3 169.0 204.5 71.9 101.4 120.9 145.6 163.8 182.0

Range 53.9 67.8 76.3 96.6 112.4 140.3 31.6 47.9 58.8 72.6 82.8 93.0
Percentage

diff (%)
-42.9 -47.8 -49.2 -49.7 -49.4 -48.4 -22.5 -25.8 -26.1 -27.8 -28.3 -28.8
67.2 51.5 44.5 48.1 51.0 64.4 38.3 40.8 43.9 44.1 45.0 45.6

Duration 12-hr
50% 67.8 95.7 114.5 138.4 155.1 167.5 62.0 83.0 97.0 114.0 128.0 141.0
Min 41.5 54.9 65.0 79.6 91.9 99.6 49.4 66.6 77.4 90.2 99.7 109.2
Max 110.0 141.2 178.6 233.6 280.8 333.9 85.8 117.2 138.0 164.3 183.8 203.2

Range 68.5 86.4 113.6 154.0 188.9 234.2 36.4 50.6 60.6 74.0 84.1 94.0
Percentage

diff (%)
-38.8 -42.7 -43.2 -42.5 -40.7 -40.5 -20.3 -19.8 -20.2 -20.8 -22.1 -22.6
62.2 47.6 56.0 68.8 81.1 99.3 38.4 41.3 42.3 44.1 43.6 44.1

Duration 24-hr
50% 87.1 121.0 144.7 177.2 202.4 232.1 71.0 94.0 110.0 129.0 144.0 158.0
Min 57.9 77.7 92.7 114.2 123.7 131.1 56.4 76.8 87.8 102.0 112.6 123.1
Max 124.9 184.6 241.4 328.1 405.2 494.7 98.2 133.0 156.0 185.0 206.6 228.2

Range 67.0 106.9 148.7 213.9 281.5 363.6 41.8 56.2 68.2 83.0 94.1 105.1
Percentage

diff (%)
-33.5 -35.8 -36.0 -35.6 -38.9 -43.5 -20.6 -18.3 -20.1 -20.9 -21.8 -22.1
43.4 52.6 66.8 85.1 100.2 113.1 38.3 41.4 41.8 43.4 43.5 44.5

* 50%: rainfall depth derived from the probability-based IDF, considering50% probability as a most
likely outcome.
** Percentage diff (%): percentage difference of min or max from 50%.
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A comparison of the resultant IDF curves with the current IDFs is presented in Figure

4.6. Figure 4.6a shows that, for a 2-yr return period, rainfall intensity is reduced by 39%

for durations of less than 12 hours. A 14% increase is expected for durations of more than

12 hours. Figure 4.6b displays a 36% decrease for a 5-yr return period for durations of

less than eight hours and a 17% increase for durations longer than 8 hours. For a 10-yr

return period, a 34% decline for durations of less than 8 hours and an 18% increase in

rainfall intensities are expected (Figure 4.6c).

Figure 4.6d depicts the results for a 50-yr return period. It shows that the projected

rainfall intensity tends to decrease by 31% for durations of less than 6 hours and is

expected to increase by 19% for rainfall durations of more than six hours.
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Figure 4.6 Resultant IDF curves under future and current climate for Auburn, AL when the stochastic
method was used for rainfall disaggregation
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4.4.2.2 ANN Model

Figure 4.7 displays probability-based IDFs when the ANN model was used to

disaggregate rainfall. For example, if the rainfall depth of a one-hour storm for a 10-yr

return period is 30 mm, the maximum probability of this specific rainfall is about 0.6

(Figure 4.7). The resultant IDF curves created using the probability of 0.5 as the most

likely probability are presented in Figure 4.8. The results were also compared to current

IDF curves. Figure 4.9 shows the IDF curves under the future and current climate for

different return periods and compares the result of the ANN model with the stochastic

method for durations of less than two hours.

Figure 4.9a shows a 48% decrease for a 2-yr return period for durations less than two

hours. The stochastic method shows almost the similar results. There was a 50% decrease

for a 5-yr return period. The stochastic method estimates a 46% decrease for the same

return period (Figure 4.9b). Figure 4.9c displays the IDF curves under the future and

current climate for a 10-yr storm. It shows that the rainfall intensity is expected to

decrease by 51%. A 44% decrease is projected when the stochastic method is used.

Figure 4.9d shows that the rainfall intensity in expected to decrease by 52% for a 50-yr

return period. The stochastic method shows a decrease of 40%. A 52% decrease in

rainfall intensities is expected for a 100-yr return period (Figure 4.9e). A 38% decrease is

estimated by the stochastic method.
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Figure 4.7 Probability-based IDFs when ANN model used for disaggregation for 15-, 30-, 45-min,1- and
2-hr rainfall duration-graphs are presented for Auburn, AL.
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The results of both the ANN model and the stochastic method suggest that future

rainfall intensities for rainfall durations of less than two hours are expected to decrease.

They estimate almost the same decrease for two-, five-, and ten-year return periods.

Auburn IDF curves
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Figure 4.8 Resultant IDF curves for Auburn, AL using ANN model
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Figure 4.9 Resultant IDF curves under future and current climate for Auburn, AL
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4.5.Summary and Conclusions

Developing the IDF curves under the future climate for the state of Alabama was

investigated in the previous chapters, and the results showed that, due to the uncertainty

associated with climate models, these models are unable to project identical results.

Because all of the investigated climate models in this study provided different results,

developing probability-based IDF curves offered a more reliable approach. Therefore,

this chapter presented a methodology to develop probability-based IDF curves using non-

parametric kernel density estimation. A probability-based IDF curve provides additional

probability information that allows designers and decision-makers to use IDF curves with

more confidence.

The resultant IDF curves were also created by selecting the median of the distribution

as the most likely outcome. Analyzing the results of the ANN model and the stochastic

method for durations of less than two hours indicated that they both agree that the

precipitation pattern for Alabama veers toward less intense rainfalls for the investigated

durations and for all the return periods. The results indicated that, for small duration

events, future rainfall intensity is expected to decrease by 54% on average for the State.

The result is not exactly the same when stochastic method was use but still indicates a

decline in future rainfall intensities. A 47% decrease on average is expected for durations

of less than 2 hours.

A comparison of the results with the current IDF curves for Alabama indicated that,

when the stochastic method was used for rainfall disaggregation, future rainfall intensity



114

could decreases or increases depending on the return period. Results displays a 35%

decrease on an average for Alabama. This decline mostly is expected for durations of less

than six hours and 12 hours, depending on the location and return period. For longer

durations, an 11% increase is projected.

The results of this study indicated that incorporating all six NARCCAP projections to

develop the resultant IDF curves project that future rainfall intensities mostly for rainfall

durations of less than six hours is expected to decrease, and this finding is independent of

the temporal downscaling method used.
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Chapter 5

5. Conclusions

5.1. Summary and Conclusions

Many hydrologic designs of water management infrastructures are based on specific

design storms derived from historic rainfall events available in the form of intensity-

duration-frequency (IDF) curves. However, it is expected that the frequency and

magnitude of future extreme rainfalls will change due to increase in greenhouse gas

concentrations in earth’s atmosphere (Prodanovic et al. 2007). There is scientific

agreement that there will be an increase in the average precipitation around the world.

However, this does not imply that more precipitation will occur everywhere. Extreme

events can present great challenges for water management utilities. Degradation of water

quality, forcing additional costs for treatment, property damage and potential loss of life

due to flooding are some of the things that are caused by extreme events (Miller and

Yates 2006). On the other hand, drought can decrease the capability of water utilities to

meet water demands and enforce emergency restrictions (Miller and Yates 2006).

Changes in precipitation characteristics may require revision of existing standards for

designing civil engineering infrastructures. It can also require the rebuilding and/or

upgrading of existing infrastructures. One way to be prepared for possible changes, and

to decrease vulnerability of hydraulic infrastructures to climate change, is to predict

potential effects (as manifested by IDF curves) and adapt to them. Therefore, the overall
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objective of this study was to evaluate the impact of climate change on rainfall IDF

curves for Alabama. Three objectives were presented in the beginning of this dissertation.

For each of the objectives, major findings are summarized below.

5.1.1. Objective 1

 To develop rainfall IDF curves for Alabama under future climate change scenario;

using a stochastic method to disaggregate three-hourly precipitations into 15-minute

precipitations.

Six high-resolution projections (for 2038-2070) derived from dynamical

downscaling of General Circulation Models (GCMs) by Regional Climate Models

(RCMs) were used in this study. Three-hourly projected precipitations were

disaggregated using a stochastic method and rainfall IDF curves under future climate

scenario were created. Major conclusions were:

1. The rainfall pattern for Alabama will change in future due to climate change.

2. Results of the six NARCCAP projections were not identical. A variety of factors

can be responsible for differing results; a likely reason is the difference in

physical parameterizations, especially of radiative and precipitation-forming

processes, amongst different GCMs and RCMs, as well as the difference in initial

and boundary conditions for each climate projection.

3. Four of these models  HRM3-HadCM3, HRM3-GFDL, RCM3-GFDL and

ECP2-GFDL  showed both increase and decrease in predicted rainfall intensity.

This increase/decrease depends on the rainfall duration and return period of the

storm.
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4. The remaining two model projections  CRCM-CGCM3 and CRCM-CCSM

indicated a reduction in future rainfall intensity for all return periods and all

rainfall durations for Alabama.

5. There is a large uncertainty on the projected rainfall intensity of these six climate

models for long durations (i.e., larger than 4 hours).

6. Precipitation pattern for Alabama veers toward less intense rainfalls for short

rainfall durations.

5.1.2. Objective 2

 Use Artificial Neural Network (ANN) to estimate the maximum 15-, 30-, 45-, 60-,

and 120-min rainfall depths from three-hourly precipitations for the creation of future

IDF curves for Alabama.

A feed-forward, back-propagation model was developed to estimate maximum

precipitations for different rainfall durations. The performance measures for evaluation of

the ANN model were Nash-Sutcliffe Efficiency coefficient (NSE) and correlation

coefficient (R). Normalized Mean Square Error (NMSE) and Akaike Information

Criterion (AIC) were used to find the optimum input data. The results of the ANN model

were also compared to the results of the rainfall disaggregation using stochastic method

from the previous chapter and it was found that:

1. Scatter plots created to evaluate the performance of the ANN model suggest that

the predictions of the ANN model more closely approximated the perfect

prediction line.
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2. The ANN model provided a superior performance in estimating maximum rainfall

depths, while the stochastic method under-predicted maximum rainfall depths.

3. Analyzing the developed IDF curves for Auburn indicated that future rainfall

intensities for the studied duration (< 2 hours) events are expected to decrease by

33% to 74% from current ones.

4. Comparison of the developed ANN model and the stochastic method showed that

both methods are in agreement that future rainfall intensities (for duration less

than 2 hours) are expected to decrease.

5. ANN model and the stochastic method estimated almost similar decreases in

rainfall intensities when CRCM-CGCM3 and CRCM-CCSM models were used to

create IDF curves under the future climate.

6. The ANN model displayed more declines in rainfall intensities compared to the

stochastic method when HRM3-HadCM3, HRM3-GFDL, and RCM3-GFDL

projections were used.

5.1.3. Objective 3

To develop probability-based IDF curves incorporating climate projections from six

different climate models.

 Results of the developed IDF curves clearly indicated that due to the uncertainty

associated with climate models, these models are unable to project identical results.

Therefore, developing probability-based IDF curves seemed to offer a more reliable

approach to incorporate all the models. Non-parametric kernel density estimator was used

to develop probability-based IDF curves that provides additional probability information

and allows designers and decision-makers to use IDF curves with more confidence.
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Major findings of this study were:

1. With the presence of significant uncertainties associated with climate models,

using one single GCM provides one of many possible realizations and may not be

representative of the future. Utilizing a collection of models can provide more

realistic information about the possible changes in future.

2. Using the ANN model to disaggregate rainfall, the resultant IDF curve for

Alabama indicated that future rainfall intensity is expected to decrease by 54% on

average for durations less than two hour.

3. A decline by 47% on average for durations less than 2 hours was estimated for

Alabama when stochastic method was used.

4. For durations more than 2 hours, changes in rainfall intensity depends on the

rainfall duration and return period. It could decrease or increase for a given

duration and return period.

5. Probability-based IDF curves developed using the kernel density estimator provide

very useful information that can help decision-makers to use IDF curves with

more confidence.

6. Although the results derived from different climate projections shows large

uncertainty associated with climate models, all of them indicate decrease in future

rainfall intensity for short durations, especially durations of less than 2 hours.
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Chapter 6

6. Future research

This study offers two temporal downscaling methods to disaggregate precipitation

and develop the IDF curves. It also presented a framework for uncertainty quantification

associated with six NARCCAP climate models. This chapter provides some

recommendations for future research.

1. Using a collection of models can provide more realistic information about the

possible changes in future than only one model. Six climate models were used in

this study, but incorporating more models will improve the results and allows us

to use the information of IDF curves with higher level of confidence.

2. The NARCCAP modelers used only one emission scenario for simulation. In

addition to using more climate models, considering more scenarios can also lead

to improvements in IDF curves.

3. Spatial and temporal resolution of the projections used in this study was 50 km

and 3 hour, respectively. Incorporating models with higher spatial and temporal

resolution could significantly improve the results.

4. Uncertainties resulting from different downscaling methods were not considered

in this study. Therefore, future research may include uncertainty investigation of

the disaggregation method.
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A.4.CRCM-CGCM3 
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A.5. CRCM-CCSM 
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Appendix B 

Rainfall Intensity-Duration-Frequency Maps 

B.1. HRM3-HadCM3 
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B.2. HRM3-GFDL 
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B.3. RCM3-GFDL 
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B.4. ECP2-GFDL 
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B.5. CRCM-CGCM3 
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B.6. CRCM-CCSM 
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Appendix C 

Scatter plots of observed and modeled rainfall depths using the ANN model 

and the stochastic method 

C.1. 15-min, Jan-Dec 
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C.2. 30-min, Jan-Dec 
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C.3. 45-min, Jan-Dec 
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C.4. 60-min, Jan-Dec 

  

 ANN model-Jan

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

Overprediction

Underprediction

Perfect 
prediction

 Stochastic model-Jan

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

Overprediction

Underprediction

Perfect prediction

ANN model-Feb

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

O
b

s
e
rv

e
d

 m
a

x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overprediction

Underprediction

Perfect 
prediction

 Stochastic model-Feb

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

O
b

s
e
rv

e
d

 m
a

x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overprediction

Underprediction

Perfect prediction

 ANN model-Mar

Predicted max 60-min rainfall depth (in)

0 1 2 3

O
b

s
e
rv

e
d

 m
a

x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

Overprediction

Underprediction

Perfect 
prediction

 Stochastic model-Mar

Predicted max 60-min rainfall depth (in)

0 1 2 3

O
b

s
e
rv

e
d

 m
a

x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

Overprediction

Underprediction

Perfect prediction



199 
 

 

 ANN model-Apr

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overprediction

Underprediction

Perfect 
prediction

Stochastic model-Apr

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overprediction

Underprediction

Perfect prediction

 ANN model-May

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overprediction

Underprediction

Perfect 
prediction

Stochastic model-May

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overprediction

Underprediction

Perfect prediction

ANN model-Jun

Predicted max 60-min rainfall depth (in)

0 1 2 3

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

Overprediction

Underprediction

Perfect prediction

 Stochastic model-Jun

Predicted max 60-min rainfall depth (in)

0 1 2 3

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

Overprediction

Underprediction

Perfect prediction



200 
 

  

 ANN model-Jul

Predicted max 60-min rainfall depth (in)

0 1 2 3 4

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

4

Overprediction

Underprediction

Perfect 
prediction

 Stochastic model-Jul

Predicted max 60-min rainfall depth (in)

0 1 2 3 4

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

4

Overprediction

Underprediction

Perfect prediction

 ANN model-Aug

Predicted max 60-min rainfall depth (in)

0 1 2 3

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

Overprediction

Underprediction
Perfect 
prediction

Stochastic model-Aug

Predicted max 60-min rainfall depth (in)

0 1 2 3

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

Overprediction

Underprediction

Perfect prediction

 ANN model-Sep

Predicted max 60-min rainfall depth (in)

0 1 2 3 4 5 6

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

4

5

6

Overprediction

Underprediction

Perfect 
prediction

 Stochastic model-Sep

Predicted max 60-min rainfall depth (in)

0 1 2 3 4 5 6

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0

1

2

3

4

5

6

Overprediction

Underprediction

Perfect 
prediction



201 
 

 

 

 

 ANN model-Oct

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overprediction

Underprediction

Perfect
 prediction

Stochastic model-Oct

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overprediction

Underprediction

Perfect prediction

 ANN model-Nov

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

Overprediction

Underprediction

Perfect 
prediction

 Stochastic model-Nov

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

Overprediction

Underprediction

Perfect prediction

 ANN model-Dec

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

Overprediction

Underprediction

Perfect 
prediction

Stochastic model-Dec

Predicted max 60-min rainfall depth (in)

0.0 0.5 1.0 1.5 2.0 2.5

O
b

s
e
rv

e
d

 m
a
x
 6

0
-m

in
 r

a
in

fa
ll

  
  

  
  

  
  

 d
e
p

th
 (

in
) 

0.0

0.5

1.0

1.5

2.0

2.5

Overprediction

Underprediction

Perfect prediction



202 
 

C.5. 120-min, Jan-Dec 
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Appendix D 

IDF Maps, using ANN model for rainfall disaggregation 

D.1. HRM3-HadCM3 
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D.2. HRM3-GFDL 
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D.3. RCM3-GFDL 
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D.4. CRCM-CGCM3 
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D.5. CRCM-CCSM 
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Appendix E 

Probability-based IDF curves for Alabama 

E1. Stochastic Method 

1. Athens 
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2. Bridgeport 
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3. Boaz 
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6. Haleyville 
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13. Ashland 
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14. Tuscaloosa 
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15. Thorsby 
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16. Dadeville 
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17. Marion 
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18. Warrior L&D 
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20. Montgomery 
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21. Midway 
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22. Troy 
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23. Greenville 
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24. Peterman 
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25. Abbeville 
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26. Enterprise 
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28. Atmore 1 
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29. Atmore 2 
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30. River Falls 
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31. Andalusia 
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32. Thomasville 
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33. Jackson 
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E.2. ANN model 

1. Athens 
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2. Bridgeport 
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3. Boaz 
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4. Hanceville 
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5. Addison 
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6. Haleyville 
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7. Hamilton 
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8. Vernon 

 

15-min

Rainfall depth (mm)

0 10 20 30 40

P
ro

b
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr 

5-yr 

10-yr 

25-yr 

50-yr 

100-yr 

30-min

Rainfall depth (mm)

0 10 20 30 40 50 60

P
ro

b
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr 

5-yr 

10-yr 

25-yr 

50-yr 

100-yr 

45-min

Rainfall depth (mm)

0 20 40 60 80

P
ro

b
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr 

5-yr 

10-yr 

25-yr 

50-yr 

100-yr 

1-hr

Rainfall depth (mm)

0 20 40 60 80 100 120

P
ro

b
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr 

5-yr 

10-yr 

25-yr 

50-yr 

100-yr 

2-hr

Rainfall depth (mm)

0 20 40 60 80 100 120 140

P
ro

b
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

2-yr 

5-yr 

10-yr 

25-yr 

50-yr 

100-yr 



300 
 

9. Berry 
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10. Warrior 
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11. Jacksonville 
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12. Birmingham 
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13. Ashland 
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14. Tuscaloosa 
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15. Thorsby 
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16. Dadeville 
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17. Marion 
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18. Warrior L&D 
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19. Alberta 
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20. Montgomery 
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21. Midway 
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22. Troy 
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23. Greenville 
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24. Peterman 
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25. Abbeville 
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26. Enterprise 
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27. Dothan 
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28. Atmore 1 
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29. Atmore 2 
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30. River Falls 
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31. Andalusia 
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32. Thomasville 
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33. Jackson 
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Appendix F 

IDF curves for Alabama 

F.1. Stochastic Method 
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7-Hamilton 
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