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ABSTRACT 

 

 

Nitrogen (N) fertilization management in corn (Zea mays L.) production requires more 

consideration in Alabama. This is due to high spatial variability in soil texture across the state and within 

fields, and to the high temporal variability of rainfall patterns among growing seasons. Remote sensing 

using vegetation spectral indices (VIs) can be calculated from data collected using active remote sensors, 

providing the ability to perform on-the-go variable N rate application and to assess in-season N rate to 

achieve maximum economic yield potential. Analysis of N response under different rainfall scenarios was 

considered in this study as an additional tool to increase nitrogen use efficiency (NUE).  

The objectives of this study were to: (i) identify VIs that best correlate with field measurements 

of plant leaf area index (LAI) and chlorophyll (Chl) content at early corn growth stages (V6); (ii) evaluate 

well-correlated VIs for in-season corn yield potential predictability; and, (iii) evaluate the impact that in-

season changes in rainfall have on simulated corn yield, N leaching (NL), inorganic N in the soil at 

maturity (IN), and nitrogen use efficiency (NUE).  

The data were collected in three different regions of Alabama; at Baldwin (south AL), Macon 

(central AL), and Limestone (North AL) counties. A complete randomized block design (r = 5) including 

different combinations of N rates at planting and side-dress N was implemented during 2009 to 2012.  

Canonical correlation analysis was performed to evaluate which VIs were best correlated with LAI and 

Chl at different growth stages. In addition, VIs were evaluated for their corn yield predictability goodness. 

A crop simulation study was conducted for the same experiment at two of the locations in central 

and north Alabama. Soil and plant measurements were collected to calibrate and validate the CSM-

CERES-Maize model. Different scenarios of rainfall amount and distribution were selected based on the 

abundant and well distributed rain index (AWDR) calculated for 61 years. The goal for using the AWDR
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index was to characterize periods during the year that were either wet or dry. Having a better 

understanding of corn N response under different soil and weather conditions will assist producers in 

better decision making concerning the N rate and application timing. The CSM-CERES-Maize model was 

used to simulate and assess corn yield, N leaching, inorganic N in the soil at maturity, and grain N use 

efficiency for each rainfall scenario.  

Results from the first study indicated that VIs including the red-edge wavelength are better at 

assessing LAI and Chl content at early growth stages than other VIs. Furthermore, the red-edge VIs 

performed better for mid-season yield predictability assessment. When comparing VI models for yield 

potential prediction, the normalized difference red-edge vegetation index (NDRE) resulted in higher yield 

potential predictability than the normalized difference vegetation index (NDVI). The NDRE exhibited R
2
 

of 0.37, 0.42, and 0.67 at V6, V8, and V10, respectively, while the NDVI resulted in 0.26 at V6, 0.30 at 

V8 and 0.36 at V10 growth stage. Other VIs including the RE resulted in similar yield potential prediction 

as the NDRE. Although the yield potential predictability in red-edge VIs was higher than NDVI at V6, 

the root mean square error (RMSE) were not considerably different between NDVI and red-edge indices.  

Results from model simulation for years corresponding to either rainfall scenario indicated that 

corn response to N fertilization changed based on the rainfall conditions and soil type (silt loam in North 

and loamy sand in Central Alabama). In both locations, for scenario A, the crop response to N rates under 

wet May-June years was higher than the one during dry May-June years. In Central Alabama, the yield 

response curve under rainfall conditions reached a plateau at 56 and 112 kg N ha
-1

 at dry and wet May-

June, respectively. The North Alabama location, also under rainfall conditions, resulted in higher N 

response. During dry May-June years no N was needed to achieve the maximum yield, while in wet May-

June years, 56 kg N ha
-1

 was sufficient to reach the plateau where yield did not significantly increase with 

higher N rates. Rainfall patterns for scenario B (wet/dry March-June and dry/wet July-August) March-

June wet and July-August dry combination resulted in higher N response given that plants were under to 

prolonged time under wet conditions as opposed to March-June dry and July-August wet combination. 
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Results from this study could be used by farmers as a decision support tool to improve N management in 

corn under the Alabama growing conditions.  
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I. LITERATURE REVIEW 

 

 

Nitrogen (N) is an essential element for life. Microorganisms, plants, animals and humans use N 

for metabolic processes that are crucial to the life cycle. Nitrogen is the most abundant component of the 

atmosphere occupying 78% by volume as a nontoxic, colorless, odorless, and tasteless gas. However, N 

in the atmosphere is mostly in the form of dinitrogen (N2), a form that is not available to plants. The main 

N source for plants is soil organic matter. Soil organic N becomes plant available (inorganic N) as 

microorganisms decompose soil organic matter. Plants can also uptake N through a symbiotic relationship 

with microorganisms. Nitrogen-fixing plants, such as legumes, make symbiotic relationships with 

Rhizobium sp. During symbiosis, a strong plant-microorganism association takes place and atmospheric 

N is fixed by microbes and provided to the plant. The plant role in this association is to provide sugars to 

the associated microbe.  

Soil N is taken up by plants and converted into organic forms as amino acids, nucleic acids, 

enzymes, chloroplasts, and other vital components in the plant structure. Some N is returned to the soil 

after the plant senesces and the residues are decomposed into organic matter. This is a small part of the N 

cycle involving inorganic N present in the atmosphere and soil as well as organic N present in living 

organisms (Johnson et al., 2005; Porter, 2013; Wagner, 2012). 

Nitrogen is the most limiting nutrient for most crops, particularly cereal crops. Sixty percent of 

total fertilizer applied worldwide is used in cereal crop production. The average N use efficiency (NUE) 

for cereal grains is approximately 33%. In corn (Zea mays L.) production worldwide, low NUE is 

associated with release of N by plant tissue (52 to 73% of the unaccounted N using 
15

N in corn research), 

gaseous N losses due to denitrification (22% in no-till), urea losses on surface applications (more than 

40%), excess N application due to yield potential overestimation, and excess N applications as a strategy
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for high yield (Raun and Johnson, 1999). However, most of these losses can be minimized by combining 

agronomic practices and precision agriculture technology.  

Crop rotation is a practice proven to improve NUE in the southeastern US. Hubbard et al. (2013) 

reported higher NUE in fields that incorporated cover crops compared to those left fallow. Contrasting 

results indicated that incorporating residues with high carbon:N ratio (C:N) reduced NUE due to soil N 

immobilization (Shaffer and Ma, 2001). However, residue retention under weather and soil conditions of 

the Southeast (high temperature, humidity and low C content in the soil) may be a desirable practice to 

prevent N leaching. Under these conditions, N undergoes net immobilization and organic matter 

mineralization is enhanced. Through this process, plant available N is released for the following crop 

(Hubbard et al., 2013).  

Soil N conservation can also be improved with no-tillage practices. Tillage practices aerate soils 

and create a more oxidative environment in which nutrients are more susceptible for mineralization. As a 

result, soil capacity to immobilize and conserve N is decreased under tillage practices which negatively 

affects NUE (Spargo et al., 2008).  

Corn hybrid selection can help improve NUE. Differences between hybrids have been observed 

specifically with N accumulation before anthesis, showing NUE differences between hybrids (Moll, 

Kamprath, et al., 1982). Well-managed irrigation systems are another way to improve NUE (Pandey et 

al., 2000; Szeles et al., 2012). Reduced water supply during plant growth and development limit the 

development of stem and leaf cells, resulting in reduced crop biomass and leaf area (Szeles et al., 2012). 

Hence, having a crop with sufficient water supply will enhance plant growth, nutrient uptake, and yield.  

Nitrogen use efficiency can also be increased by managing fertilizer timing. In-season N 

applications have resulted in higher NUE as compared to pre-plant N applications in several experiments 

(Miller et al., 1975; Olson et al., 1986; Randall et al., 2003; Tremblay et al., 2012). Side-dress N 

applications are recommended for sandy soils with low cation exchange capacity (CEC) and for fine 

textured, poorly drained soils (Murrell, 2006). These soils tend to be more susceptible to leaching and 

denitrification. Therefore, N fertilizer recommendations for Alabama corn grain production suggest 
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splitting N in at least two applications, one third of the total N at planting and the remaining two thirds as 

a side-dress when plants have about six fully developed leaves (Mask and Mitchell, 2012).  

Finally, precision agriculture technologies are now available to support N management and 

increase NUE. Variable rate application technologies and remote sensing are some of the precision 

agriculture technologies used to better estimate and apply N rates based on temporal and spatial changes 

within a field resulting in increased NUE. Successful results in assessing N need at mid-season were 

found in several studies  (Kitchen et al., 2010; Mullen et al., 2003; Raun and Johnson, 1999; Raun et al., 

2002; Samborski et al., 2009; Solie et al., 2012; Teal et al., 2006) 

Nitrogen fertilization represents approximately 40% of corn production costs (Varco, 2013) 

However, farmers sometimes give N cost less importance when a substantial yield increase is achieved. 

Nonetheless, increasing input use efficiency is key, especially for N stewardship, and enhancing 

environmental sustainability. Currently, uniform application of side-dress N on corn is a common practice 

among farmers, even though the high variability of corn N-response exists within a field resulting in low 

NUE. Tremblay et al. (2012) when studying N fertilized fields, found yield increased by factors of 1.6 

and  2.7  at medium and fine soil textures,  respectively, compared with the control treatment (zero N 

applied). However, they also reported low yields at low and high N rates indicating the high variability in 

corn N response. 

Precise estimation of optimum N fertilizer rate is key to increase NUE and reduce N leaching 

losses. Howarth (2008), studying coastal N pollution, related the increase of global coastal eutrophication 

to the increase in N fixation from agriculture, synthetic N fertilizer use, and fossil fuel consumption. From 

these three processes, synthetic fertilizer use was found to be the main N source of pollution (100 Tg year
-

1
).  

Nitrogen recommendations have traditionally followed the mass-balance approach (Stanford, 

1973). By this method, N rates were back-calculated based on yield goal and grain N concentration. It 

accounts for non-fertilizer N sources such as N mineralized from soil organic matter (SOM), preceding 

crops, and organic amendments. Scharf et al. (2006) found that the mass balance approach was not 
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accurate in estimating the right N rate because it is based on historical data, N mineralization, and plant N 

uptake which are highly variable within a field and between years. Recent studies have shown that by 

accounting for temporal and spatial within-field variability of plant chl content and biomass through the 

use of remote sensors, it is possible to better estimate the yield potential and N rate needed to achieve it 

(Raun and Johnson, 1999; Raun et al., 2002; Teal et al., 2006).  

Nevertheless, it is important to recognize that NUE varies from year to year depending on 

weather and soil spatial variability (Hollinger and Hoeft, 1986; Raun and Johnson, 1999; Tremblay et al., 

2012). Therefore, it is not always an easy task to determine how much N should be applied at a given 

time. Several methods attempt to measure plant status with the aim of estimating the right in-season N 

rate. For instance, the use of Chl meters like SPAD-502 (Konica Minolta, Osaka, Japan) has been 

successfully used for estimation of plant N status and estimate the N rate to be applied in several studies 

(Hurtado et al., 2011; Wood et al., 1992; Ziadi et al., 2008). The handheld SPAD-502 sensor clips on the 

leaf blade and indirectly measures Chl content. It emits light in the form of light emitting diode (LED) 

and measures light transmittance across the leaf blade as a ratio of near infrared and red wavelengths. The 

degree of N deficiency can be calculated from the SPAD readings as a ratio between a non-limiting and 

an N limited plant (Ziadi et al., 2008). Although this approach improves NUE, it is not possible to do on-

the-go variable rate application using SPAD. Variable rate application using SPAD requires first geo-

referenced field data collection and prescription map development which results in a very time consuming 

procedure.   

For large fields, a more effective N content assessment and fertilizer application is possible 

through remote sensing (Samborski et al., 2009). The concept of remote sensing relies on the leaf 

absorbance and reflectance properties (Gates et al., 1965). The amount of light absorbed by a leaf is a 

function of its photosynthetic activity and is directly related to the photosynthetic pigment content. Since 

Chl are photosynthetic pigments and contain a significant amount of N, it is feasible to estimate the N 

content based on Chl content indirectly assessed by spectral reflectance measurements (Hatfield et al., 

2008).  



5 

 

There are specific wavelengths in the electromagnetic spectrum that are most suitable for plant 

status spectral reflectance assessment based on the Chl reflectance properties. Within the visible portion, 

the blue (400-500 nm) and the red (670 nm) absorbance can reach 90% with increase of Chl content 

(Lichtenthaler, 1987). Thus, absorption at these wavelengths becomes saturated with low amounts of 

pigments. In contrast, for the green (550 nm) and red edge (700 nm) portions, the absorption coefficients 

are very low and sensitivity of absorption to Chl content is much higher than in the blue and red (Hatfield 

et al., 2008). On the other hand, the maximum reflectance was found to be in the near infrared (NIR) with 

slight variability among Chl contents levels (Hatfield et al., 2008) and independent of leaf senescence 

stages (Gitelson and Merzlyak, 1994). The combination of reflectance at different wavelengths in the 

form of vegetation indices (VIs), which comprise wavelength ratios or ratios of normalized differences, 

have been used to enhance differences among objects or to assess health levels on vegetation.  

Several VIs have been developed to extract information about specific crop characteristics such 

as leaf area index (LAI), biomass, and Chl content (Hatfield et al., 2008; Myneni et al., 1995; Viña et al., 

2011). For instance, normalized difference vegetation index (NDVI) corresponds to the normalized 

difference between the near infrared (NIR) and red (Red) wavelengths, and is widely used to estimate 

green biomass (Weier and Herring, 1999).  

Spectral reflectance data in the form of VIs can be used to indirectly assess in-season yield 

potential as well as determine a specific N fertilizer rate required to achieve the crops potential yield 

(Kitchen et al., 2010; Raun et al., 2005; Solie et al., 2012). Many sensors are available in the market, such 

as GreenSeeker (Trimble, Sunnyvale, CA, USA) or CropCircle (Holland Scientific, Inc, Lincoln, NE) to 

calculate NDVI. Remote sensed data and yield data for different N rates are used in regression models or 

algorithms to develop a yield potential curve and calculate the N rate needed to achieve the yield 

potential. These algorithms estimate the N rate based on a response index or sufficiency index (SI) as the 

ratio of spectral measurements from a non-limited N strip and the N deficient areas within a field. For 

instance, a value of SI = 1 would indicate no N deficiencies within the field relative to the N rich strip, 

while a SI = 0.5 would indicate an N stressed crop within the field. Nitrogen variable rate is then 
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estimated based on the SI or response index and the yield potential curve. Algorithms developed by Raun 

et al. (2005) and Kitchen et al. (2010) are currently used for N variable rate application (VRN). Most of 

the current approaches for VRN application are based on remote sensing readings but restrict their use to 

a specific growth stage. Plant N needs, remote sensors’ sensitivity to crop status and in-season yield 

prediction are the main factors influencing that window. Scharf et al. (2002) in Missouri found no 

evidence of yield reduction when N applications were delayed until V11corn growth stage. Therefore, N 

fertilizer could be applied any time before V11 growth stage. However, N applications assisted by remote 

sensors are restricted to a narrower window. Certain VIs such as NDVI are inaccurate for estimating yield 

potential at the V6 corn growth stage (Teal et al., 2006) and are not sensitive at advanced growth stages 

when LAI > 2 (Gitelson et al., 2003). Variable rate N application assisted by active remote sensors is 

usually conducted after V8 corn growth stage in the Midwest (Teal et al., 2006). Nonetheless, plant N 

stress at early corn growth stages (V6) can be irreversible, affecting final yield when certain combinations 

of weather, climate and soil conditions take place (Binder et al., 2000). Delaying N application to V8 or 

later corn growth stages in Alabama may result in N stress, due to the sandy soils and high rainfall that 

characterize the Coastal Plain region of the state. Farmers in Alabama usually apply N fertilizer as early 

as the V4-6 growth stage (Charles C. Jr. Mitchell, personal communication, 2011). 

Variable rate N application at early corn growth stages is less precise compared to applications at 

later growth stages. A weak relationship between NDVI at V6 corn growth stage and yield has been 

reported in Oklahoma (Teal et al., 2006). This can be attributed to less spatial and temporal variability of 

corn plants early in the growing season. Hence, early season N content assessment and VRN application 

are only feasible if there are tools for in-season weather assessment to help reduce the uncertainties and 

better estimate the yield potential. Corn production in the southeast USA is influenced by climate 

conditions characterized by high temperatures and relative humidity, as well as highly variable rainfall. In 

the Alabama Gulf Coast regions, average annual rainfall reaches 1500 mm a year. However, rainfall 

events are extremely variable in terms of distribution and amount (Kunkel et al., 2013). Due to 

inconsistent weather and climate patterns throughout the growing season, crop yields vary among years. 
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Along with impact of inter-annual climatic conditions on the Southeast corn yield, changes in soil type 

across the region impose another challenge for N management. Common soils in the Southeast are 

Spodosols, Alfisols, and Ultisols, the latter being the predominant soil type on the Piedmont and Gulf 

Coastal Plains regions. Ultilsols are highly weathered, acid soils, with low CEC and high pH dependent 

charges (Shaw et al., 2010). These conditions create an opportunity for further research on corn N 

fertilizer recommendations, taking into account soil type and in-season weather and climate conditions. 

Properly calibrated and validated, simulation models can play an important role in assessing N 

fertilizer requirements by taking into account interactions between management and environmental 

conditions. Some examples of existing models used for supporting N fertilizer  management and yield 

estimation are Maize-N (Setiyono et al., 2011), ADAPT-N (Melkonian et al., 2008) and the crop system 

model (CSM)-CERES-Maize model (Jones and Kiniry, 1986; Jones et al., 2003; Ritchie et al., 1998). The 

first two models, Maize-N  and ADAPT-N, were developed for pre-plant and in-season N rate estimation 

by accounting for presiding crops, mineralized N, organic fertilizers (manure), in-season weather (site 

specific) and N-corn market prices (only Maize-N). The CSM-CERES-Maize model was developed for 

research and extension purposes. The CSM-CERES-Maize is part of the Decision Support System for 

Agrotechnology Transfer (DSSAT) which includes a set of 16 different crops simulation models.  It has a 

main driver program (land unit module) with five primary modules (weather, soil, plant, soil-plant-

atmosphere interface, and management components). Those modules allow the description of a specific 

environment or land unit module (Jones et al., 2003). In the model, soil water is simulated on a daily basis 

accounting for rainfall, irrigation, infiltration, vertical drainage, unsaturated flow, soil evaporation and 

plant water uptake (Ritchie et al., 1998). The N balance is also simulated accounting for mineralization, 

immobilization, denitrification, leaching, and plant N uptake (Goodwin and Singh, 1998). The CSM-

CERES-Maize has been used in several experiments assessing corn yield and N cycling (He et al., 2011; 

Liu et al., 2011; Pang et al., 1997; Persson et al., 2009), and corn irrigation and fertilization (Asadi and 

Clemente, 2001; Popova and Kercheva, 2004).
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Two studies are included in this thesis.  

The objectives of the first study were to:  

1. Identify the VI that best correlates with field plant measurements of LAI and Chl content at 

early corn growth stages (V6). 

2. Evaluate the selected VI for in-season yield potential predictability. 

The objective of the second study was to: 

1. Evaluate the impact of in-season changes in rainfall on simulated corn yield, N leaching, 

inorganic N in the soil at maturity and NUE. 
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II. EVALUATION OF VEGETATION INDICES FOR IN-SEASON VARIABLE RATE 

NITORGEN APPLICATION USING ACTIVE ROMOTE SENSORS
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Abstract 

The use of crop canopy sensors for variable rate nitrogen (N) application in corn (Zea mays L.) 

grain production in the southeastern US requires identification of the relationship between plant status and 

sensor spectral reflectance, as well as the level of sensor’s data predictability of in-season yield potential. 

The objectives of this study were to identify vegetation indices (VIs) that best correlate with field plant 

measurements of leaf area index (LAI) and chlorophyll (Chl) content at early corn growth stages and to 

evaluate selected VI for in-season yield potential prediction. An N test was conducted between 2010 and 

2012 at three locations in Alabama. Six N fertilizer rates (0, 56, 112, 168, 224, 280 kg N ha
-1

) of urea 

ammonium nitrate were applied at planting. In each location, data collected at the V6, V8, V10 vegetative 

growth stages were leaf Chl content measured with a Chl meter SPAD-502, LAI, and canopy spectral 

reflectance using the Greenseeker 505 and CropCircle ACS-470 sensors. Ten VIs that used red, near-

infrared (NIR), and red-edge (RE) wavelengths were calculated with data collected from each location 

and growth stage. A canonical correlation analysis was conducted to identify the VIs best correlating with 

field-measured crop status variables (SPAD and LAI). Results indicated that VIs including de RE 

wavelength were more sensitive to changes in leaf Chl content and biomass than VIs including the red 

wavelength. The normalized difference red-edge (NDRE), Chl index red-edge [CI (RE)], simple ratio red-

edge [SR (RE)], and inverse simple ratio red-edge [ISR (RE)] were most highly correlated to Chl content 

and biomass. When canopy sensor data from multiple location-years were combined for evaluation of in-

season yield predictability, the yield prediction equation including the NDRE index had a higher 

coefficient of determination and a lower root mean square error when compared to equations including 

the NDVI index. The NDRE equation exhibited coefficient of determination (R
2
) values of 0.37, 0.42, and 

0.67 at the V6, V8, and V10 growth stages, respectively. Coefficients of determination values for the 

NDVI equation were 0.26 at V6, 0.30 at V8, and 0.36 at the V10 growth stage. Even though models for 

mid-season yield prediction of NDVI and NDRE performed similar at V6, the NDRE, the CI (RE) and SR 

(RE) resulted in overall higher yield predictability for all growth stages. Therefore, our finding suggest 
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that the NDRE and VIs including the RE wavelength can help improving mid-season yield potential 

prediction for VRN application between V6 and V10 growth stages. 
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Introduction 

Nitrogen fertilizer is considered the most important nutrient in corn production because of its high 

impact on yield and production costs (Stone et al., 2010). The use of N as an inorganic fertilizer has been 

a subject of several agronomic, environmental, and economic studies. From an agronomic perspective, N 

applications can be under- or over- estimated if plant N uptake and N application timing are not 

synchronized. Raun and Johnson (1999) reported a 33% worldwide N use efficiency (NUE) for cereal 

grain production, highlighting the variables influencing NUE and implying the need to improve N 

management.  

Low NUE is directly related to the current increase in coastal eutrophication (Howarth, 2008). 

Eutrophication has resulted in habitat degradation, widespread hypoxia and anoxia, loss of biodiversity, 

and increase in harmful algal blooms in coastal areas. Cost of N fertilizer, which has risen 130 percent 

from 2000 to 2007 (Huang, 2007), is another concern for farmers that pursue higher NUE to reduce 

production costs. Due to the current low NUE and high prices, several approaches have been evaluated to 

better estimate crop N requirements. However, additional refinement is required for current N 

applications to better account for soil and plant environmental conditions. 

Nitrogen fertilizer recommendations are site-specific based on soil and climate conditions. 

Traditionally, fertilizer recommendations have been based on a yield goal, N in the soil, and N 

concentration in grain (Stanford, 1973). For example, recommendations from Northern Western States 

Extension Agencies, such as Iowa State University Extension (ISUE), recommend soil N analyses to 

account for soil N available to the plant (Johnson, 1997). In contrast, southern states, such as Alabama, do 

not include N soil testing for fertilizer recommendations because soil N at planting time is considered low 

due to the predominant sandy soils in the region, and high precipitation and ambient temperature during 

the spring-summer season (Charles C. Jr. Mitchell, personal communication, 2011). Soils in Alabama are 

also low in organic matter and have low cation exchange capacity (CEC) (Shaw et al., 2010). For corn 

grain production in Alabama, the recommendation for N fertilizer application is 134 kg N ha
-1

. In order to 

increase NUE, the Alabama Cooperative Extension system (ACES) recommends splitting the N into at 
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least two applications, one-third of the total N at planting and the remaining N at the V6 growth stage. 

Moreover, the N rate can be modified by a factor based on preceding crop and irrigation (Mask and 

Mitchell, 2012).  

Recent studies have indicated that by accounting for spatial within-field variability of plant Chl 

content and biomass through the use of remote sensors, it is possible to increase NUE (Kitchen et al., 

2010; Raun and Johnson, 1999; Raun et al., 2002; Teal et al., 2006). However, it is important to recognize 

that NUE varies from year to year due to dependency on weather and soil spatial variability (Hollinger 

and Hoeft, 1986; Raun and Johnson, 1999; Tremblay et al., 2012). Therefore, it may be difficult to 

determine how much N should be applied at a given time.  

Several methods attempt to measure plant N status with the aim of estimating the correct in-

season N rate. For instance, the Chl meter SPAD-502 (Konica Minolta, Osaka, Japan) has been used for 

estimating plant N status (Hurtado et al., 2011; Wood et al., 1992; Ziadi et al., 2008). The handheld 

SPAD-502 sensor clips on the leaf blade and indirectly measures leaf Chl content. The degree of N stress 

can be calculated from SPAD readings ratio between a non-limiting and N limited plants (Ziadi et al., 

2008). Although this approach can be used to improve NUE, assessment of within-field leaf N changes 

using SPAD might be labor and time intensive, therefore limiting its use for on-the-go variable rate 

nitrogen application. Variable rate nitrogen application using SPAD requires first geo-referenced field 

data collection and subsequently the generation of an N prescription map which might require time and 

specialized knowledge. Hence, for large fields, a more effective N content assessment for in-season 

fertilizer application is remote sensing (Samborski et al., 2009).  

The concept of remote sensing relies on leaf absorbance and reflectance properties (Gates et al., 

1965). The amount of light absorbed by a leaf is a function of its photosynthetic activity and is directly 

related to the photosynthetic pigment content. Since Chl are the main photosynthetic pigments and 

contain significant amount of N, it is feasible to estimate N content based on Chl content indirectly 

assessed by spectral reflectance measurements (Hatfield et al., 2008). Based on Chl reflectance properties, 

there are specific wavelengths in the electromagnetic spectrum (EMS) that are more suitable for plant 
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status spectral reflectance assessment. Within the visible portion, from blue (400-500 nm) to red (670 nm) 

portion, absorbance can reach 90% with an increase in Chl content (Lichtenthaler, 1987). Therefore, 

absorption in those wavelengths becomes saturated with low pigments amount. In contrast, for the green 

(550 nm) and the red-edge (700 nm) wavelengths, the absorption coefficients are very low and sensitivity 

of absorption to Chl content is much higher than in the blue and red portions of the EMS (Hatfield et al., 

2008). On the other hand, maximum reflectance values can be found in the near infrared (NIR) portion of 

the EMS with slight variability of Chl content levels (Hatfield et al., 2008) and independently of leaf 

senescence stages (Gitelson and Merzlyak, 1994). The combination of reflectance at different 

wavelengths in the form of vegetation indices (VIs), which comprise wavelength ratios or ratios of 

normalized differences, have been used to enhance differences among objects or to assess health levels on 

vegetation (Hatfield et al., 2008).  

Several VIs have been developed to extract information of specific crop characteristics such as 

leaf area index (LAI), biomass, and Chl content (Hatfield et al., 2008; Myneni et al., 1995; Viña et al., 

2011). For instance, the normalized difference vegetation index (NDVI) that corresponds to the 

normalized difference between the near infrared (NIR) and red (Red) wavelengths has been one of the 

most widely used VIs to estimate green biomass (Weier and Herring, 1999).  

Spectral reflectance data in the form of VIs can be used indirectly to assess in-season yield 

potential as well as the specific N fertilizer rate required to achieve a crop’s potential yield (Kitchen et al., 

2010; Raun and Johnson, 1999; Raun et al., 2005; Solie et al., 2012). Many sensors available in the 

market, such as the GreenSeeker (Trimble, Sunnyvale, CA, USA) or CropCircle (Holland Scientific, Inc, 

Lincoln, NE), calculate NDVI. Different nitrogen rate algorithms assisted by on-the-go active remote 

sensors have been developed for VRN application. Remote sensed data and yield data from different N 

rates are used in regression models or algorithms to develop a yield potential curve and calculate in-

season the N rate needed to achieve the yield potential. These algorithms estimate the N rate based on a 

response index or sufficiency index (SI) as the ratio of spectral measurements from a non-limited N strip 

and the N deficient areas within a field. For instance, a SI = 1 would indicate no N deficiencies within the 
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field relative to the N rich strip, while a SI = 0.5 would indicate an N stressed crop area within the field. 

Nitrogen variable rate is then estimated based on the sufficiency index or response index values 

calculated using the canopy sensor readings and the yield potential curve.  

Algorithms developed by Raun et al. (2005) and Kitchen et al. (2010) are currently used for VRN 

application in corn production. These current in-season VRN applications restrict their use to a specific 

window during the growing season (V8 to V12 growth stage). Plant N needs, remote sensors’ sensitivity 

to crop status and in-season yield prediction are the main factors influencing that window. Scharf et al. 

(2002) found no evidence of yield reduction when N applications were completed at the V11 stage 

suggesting that N fertilizer could be applied any time before V11. However, N applications assisted by 

remote sensors are restricted to a narrower window. Certain VIs, such as NDVI, are inaccurate in 

estimating yield potential at the V6 corn growth stage (Teal et al., 2006), and are non-sensitive at 

advanced growth stages when LAI > 2 (Gitelson et al., 2003). Variable rate N application using active 

remote sensors is usually conducted after the V8 corn growth stage in the Midwest (Teal et al., 2006). 

Delaying N application to V8 or later corn growth stages in Alabama may result in N stress due to sandy 

soils and high rainfall that characterize the Coastal Plain region of the state. Therefore, farmers in 

Alabama usually apply N fertilizer as early as the V4-6 growth stage (Charles C. Jr. Mitchell, personal 

communication, 2011). According to Binder et al. (2000), plant N stress at early corn growth stages (V6) 

can be irreversible affecting final yield when certain combinations of weather, climate and soil conditions 

take place. Previous studies have reported limitations on the use of the canopy sensors for N assessment 

early in the growing season. Teal et al. (2006), using data from Oklahoam reported a low correlation 

between NDVI and final yield when data collected at the V6 corn growth stage was used. The edaphic 

and environmental conditions of the Southeast suggest N in-season application much earlier than the 

Midwest, therefore, assessment of plant N status early in the season is needed in order to take advantage 

of the current precision agriculture technologies and management approaches.  

Currently, research that compares the most used VI (NDVI) with other indices for the assessment 

of crop status at early corn growth stages is limited in the Southeast. Therefore, the objectives of this 
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study were to (1) identify the VIs that best correlate with field plant measurements of LAI and leaf Chl 

content at early corn growth stages (V6); (2) evaluate the selected VIs for in-season yield potential 

predictability. 
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Materials and Methods 

Experimental Site and Treatments 

 This three-year study took place at three Auburn University Research Stations in Alabama (AL) 

between 2010 and 2012. The research stations were the Gulf Coast Research and Extension Center (GCS) 

in Fairhope, AL (30°32’09.21”N, 87°52’39.15”W, 34 m elevation), E.V. Smith Research Center (EVS) in 

Shorter, AL (32°25’43.43”N, 85°53’34.81”W, 69 m elevation) and Tennessee Valley Research and 

Extension Center (TVS) in Belle Mina, AL  (34°41’05.37N, 86°53’18.04”W, 187 m elevation). Soil 

series were: Compass loamy sand (coarse-loamy, siliceous, subactive, thermic Plinthic Paleudults) at the 

EVS site under irrigation, Marvyn sandy loam (fine-loamy, kaolinitic, thermic Typic Kanhapludults) at 

the EVS site under rainfed conditions, Decatur silt loam (fine, kaolinitic, thermic Rhodic Paleudults) at 

the TVS site under irrigation, and Marlboro very fine sandy loam (fine-loamy, siliceous, subactive, 

thermic Plinthic Paleudults) at the GCS site (rainfed). Locations, years, experiments, planting and sensing 

dates are presented in Table 1.1. 

Irrigated tests at the EVS and TVS sites will be referred to as EVS-I and TVS, respectively. 

Rainfed tests at GCS and EVS sites will be referred as GCS and EVS-R, respectively. Irrigation 

management was conducted according to plant needs and research station practices. At each site-year, a 

randomized complete block design (r = 5) with six N treatments (0, 56, 112, 168, 224, 280 kg ha
-1

) of 

urea ammonium nitrate (liquid, 28 % N) incorporated at planting were implemented. Plots received a pre-

plant application of P, K, and lime based on recommendations of the Soil Testing Laboratory at Auburn 

University and the Alabama Cooperative Extension Systems (ACES) (Mask and Mitchell, 2012). Each 

plot was 3.66 m wide by 10 m long with 0.9 m row spacing resulting in a total of four rows. The corn 

hybrid used was a Pioneer 31P42 sown at 70,000 seeds ha
-1

 at GCS and EVS sites and at 80,000 seeds ha
-

1
 at the TVS site during the three years of the study. 

Data collection 

Spectral reflectance, leaf Chl content and LAI were collected at the V6, V8, and V10 corn growth 

stages. All readings were collected from the two middle rows of each plot. The leaf Chl content and LAI 
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data were collected as ground truth measurement of plant status. Leaf Chl content can be indirectly 

assessed thought the use of a Chl meter SPAD-502 (Konica Minolta, Osaka, Japan) (Hurtado et al., 2011; 

Rorie et al., 2011; Wood et al., 1992; Zhao et al., 2007; Ziadi et al., 2008). Ten random SPAD values per 

plot were collected. Each SPAD value consisted on the average of three readings from the most recently 

collared leaf on each corn plant. Leaf area index was assessed with an LAI-2200 plant canopy analyzer 

(LI-COR Biosciences, Lincoln, NE) (Rover and Koch, 1995; Wilhelm et al., 2000; Wu et al., 2007). 

Three readings per plot were collected with the LAI-2200 sensor. Each of the three readings consisted of 

five measurements, one reading above canopy and four bellow canopy (in the row, 25%, 50%, and 75% 

of the row width). The LAI-2200 calculated LAI by measuring the blue light range (320-490 nm) at five 

zenith angles (148º field-of-view). 

Spectral reflectance data were measured using a GreenSeeker GS-505 (Trimble, Sunnyvale, CA, 

USA) and a CropCircle ACS-470 (Holland Scientific, Inc, Lincoln, NE) active remote sensors. Both 

sensors were placed at a height of 0.82 m from the canopy during data collection. The GreenSeeker (GS-

505) measured spectral reflectance using modulated light emitting diodes in the visible (Red, 660 nm) and 

in near-infrared (NIR, 770 nm) wavelengths at a sample output rate of 50 Hz (NTech Industries, 2007). 

Normalized difference vegetation index (NDVI) was automatically calculated by the GS-505 sensor using 

the red and NIR sensor readings. The CropCircle ACS-470 sensor used a modulated polychromatic light 

emitting diode (LED) array emitting light in the range between 430 to 850 nm. It contains of three silicon 

photodiode channels for photodetection that range from 320 to 1100 nm. The optical measurement bands 

were user-definable and range from 430 to 800 nm via 12.5 mm interference filters. For this study, the 

CC-470 sensor was calibrated for three wavelength combinations in the Red (670nm), near infrared (NIR, 

760nm), and Red-edge (RE, 730nm) portions of the electromagnetic spectrum using a 5 Hz sample output 

rate (Holland Scientific, 2011). Both sensors, GS-550 and CC-470, were mounted on a customized 

bicycle. The modification consisted of two extra side-wheels and a structure based on a mast with a 

platform where the sensors were mounted. This configuration allowed a consistent height above the target 

plant for the readings. The bicycle was pulled or pushed at walking speed though the second and third 
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rows of each plot. Vegetation indices were calculated from the sensors’ readings, giving priority to 

indices with high Chl content correlation. Normalized difference vegetation index collected by the 

GreenSeeker (GS-NDVI) and ten additional VIs were calculated using data from the CC-470 sensor. The 

VIs calculated using the CC-470 sensor’s data were NDVI, NDVI red-edge (NDRE), simple ratio (SR), 

simple ratio red-edge [SR(RE)], inverse simple ratio (ISR), inverse simple ratio red-edge [ISR(RE)], Chl 

index red-edge [CI-(RE)], Datts index (Datt), MERIS terrestrial Chl index (MTCI), and modified simple 

ratio (MSR) (Table 1.2).  

Vegetation indices are often used to enhance specific plant properties. For instance, NDVI has 

been regularly used to assess differences in Chl content as well as crop yield prediction (Solari et al., 

2008). A healthy plant absorbs and reflects more energy in the visible (e.g. Red) and NIR, respectively, as 

compared to an unhealthy (Chl reduced) plant (Hatfield et al., 2008; Ollinger, 2011). Therefore, healthy 

plants generate higher NDVI values compared to unhealthy plants. One disadvantage of the NDVI is that 

it becomes saturated on high biomass crops, LAI > 2 for corn (Gitelson et al., 2003). Indices with the 

same wavelengths as NDVI but with different combinations of the Red and NIR wavelengths are the SR, 

ISR and MSR indices. The NDRE index uses the same equation as the NDVI but replaces the Red with 

the Red-edge wavelength. According to Gitelson and Merzlyak (1994), the red-edge wavelength is more 

sensitive to Chl content at higher biomass levels compared to NDVI. Analogous indices to the NDRE are 

the SR (RE), ISR (RE), and CI (RE). The Datt index that combines the Red, RE, and NIR wavelength 

removes the interferences caused by leaf scatter, and is therefore considered a good estimator of Chl 

content at regional and global scales (Datt, 1999). Similar to the Datt index, the MERIS terrestrial Chl 

index is also reported as being sensitive to a wide range of Chl content at the regional and global scale. 

This index also combines the Red, RE, and NIR wavelengths (Dash and Curran, 2004).

Statistical Analysis 

A canonical correlation analysis (CCA) was conducted by year-site-growth stage to identify the 

VIs that best correlated with field-measured crop status variables. This statistical analysis examined the 

relationship between two sets of variables, creating independent pairs of new variables called canonical 
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variates (X and Y). Each canonical variate (X and Y) results from the linear combination of the original 

variables within each set. The association between the two sets of variables was maximized by 

aggregating multiple associations into a few significant ones (Martín et al., 2005). Then correlations are 

analyzed in terms of intra-set structure correlation (strength of the association between the original 

variables and their canonical variate) as well as in terms of inter-set structure correlation (strength of the 

interrelationship between canonical variates of a measurement domain and the observed variables of the 

other domain) (Ortiz et al., 2011). 

Before the CCA was run, data for each vegetation index value was standardized to a zero mean 

and unit variance. The first step for data standardization was to take the difference between each 

independent VI value and the VI average of the dataset (site-year-growth stage). Then, the result from the 

difference was divided by the standard deviation of the VI dataset (site-year-growth stage). This ensured 

that the VIs comparison was under the same range of values. The CCA was conducted using the PROC 

CANCORR procedure of SAS (SAS Institute, 2008). Plant status canonical variate (PSV) and vegetation 

index canonical variate (VIV) were designated as the canonical variates for the analysis. The PSV 

resulted from the linear combination of ground truth measurements of LAI and SPAD data. The VIV 

resulted from the linear combination of the eleven VIs. The significance of the canonical correlation was 

assessed using Wilkes-Lambda statistic. Canonical variates are significantly associated by a canonical 

correlation if P < 0.05 for the Wilkes-Lambda statistic (Gittins, 1985). Standardized cumulative variance 

(SVC) values reported in the CCA were used to study the percent of total variance explained by each 

canonical variate within each data set. The simple linear relationships between the original variables and 

the canonical variates are explained by the loadings or correlations within each set. Variables having a 

high contribution to the canonical variate are those exhibiting large loadings for multivariate 

dependencies assessment (Ortiz et al., 2011). Since the goal of this study was to identify VIs best 

correlating with plant status assessed by LAI and leaf Chl content, canonical variates were analyzed in 

terms of inter-set structure correlation.
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Identification of vegetation indices for in-season corn status discrimination  

The inter-set correlation values allowed the identification of the VIs strongly correlated with plant 

status canonical variate. For every site-year-growth stage, VIs with the four highest inter-set correlation 

values were identified. Then, a frequency table by growth stage was developed including only the VIs 

with the top four highest correlations on each site-year. Indices with higher frequencies were those that 

resulted more times with the highest correlations by growth stage. Therefore, those VIs exhibiting the 

highest frequencies could be considered the best and most stable for an indirect prediction of leaf Chl 

content and LAI status. 

Vegetation Index data for in-season corn yield potential estimation 

A reliable VI that is sensitive to variations in leaf Chl content and LAI as early as V6 corn growth 

stage is needed for Alabama corn production systems. The VIs that strongly correlate with PSV were 

evaluated as predictors for corn yield. Linear regression models were used to determine the relationship 

between in-season (V6, V8, and V10 growth stage) crop growth assessment using vegetation index data 

and grain yield. Linear regression models by growth stage included multiple site-years. Those regression 

models were determined using the PROC REG procedure in SAS (SAS Institute, 2008). Because each 

model combined data of multiple site-years for a given growth stage, the in-season estimated yield 

(INSEY) equations were established as described by Raun et al. (2002). The INSEY values were 

computed dividing the VIs values by the cumulative growing degree days (GDD) calculated for each site-

year-growth stage from planting to sensing date. This procedure normalized the VIs data allowing the 

combination of VIs into a single regression model (Teal et al., 2006). The GDD were calculated using the 

“optimum day method” (Barger, 1969) calculated as: 

     
          

 
     

Where: Tmax and Tmin are the minimum and maximum temperature, respectively 
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Values of coefficient of determination (R
2
), the root mean square error (RMSE) and the 

coefficient of variation (CV) were used to evaluate and compare each yield potential prediction model. 

These parameters were used before by Peng and Gitelson (2011) to compare VIs models when evaluating 

crop gross primary productivity in corn. Yield prediction models, including a specific vegetation index as 

predictor variable, with the highest coefficient of determination (R
2
), the lowest RMSE, and the lowest 

CV were more suitable for in-season yield potential estimation and therefore potential use for VRN 

application at a given growth stage. 

Yield prediction equations were developed using linear and exponential regression models. After 

both models were evaluated for their fit, the linear regression model with intercept was found to be the 

best yield predictor because of the lowest RMSE and CV values. Linear regression models with intercept 

were successfully used in evaluating corn grain and stover yield prediction by Mourtzinis et al. (2013). 

Also, linear relationships between mid-season VIs assessment and grain yield were previously found 

appropriate for this type of datasets (Teal et al., 2006). 



23 

 

Results and Discussion 

Canonical correlation analysis 

The CAA between plant status variables and VIs resulted in two pairs of canonical variates for 

each site-year-growth stage (Table 1.3). The first pair of canonical variates (CC1) was significantly 

correlated (p < 0.05, Wilk’s Lambda) for most site-year-growth stages combinations, except for EVS-I-

V6-2010, GCS-V8-2010, and EVS-I-V6-2012. Canonical correlations between the first pair of canonical 

variates (CC1) ranged from 0.84 to 0.99. The second pair of canonical variates (CC2) resulted in a 

significant canonical correlation only at one site-year-growth stage (EVS-I-V10-2011).  

The standardized cumulative variance (SCVP and SCVVI) explained by the canonical variates of 

the CC1 pair (PSV and VIV) varied by site-year-growth stage. Except for TVS-V8-2011 (SCVP =1), 

which did not include the LAI data in the analysis (data not available), the PSV canonical variate 

explained between 48% and 86% of the total variance in plant status data. An increase in total variance 

explained by the PSV canonical variate was observed as the plant growth progressed from the V6 to the 

V10 growth stage. For example, SCVp for the V6 growth stage ranged from 50% to 67% but for the V10 

growth stage ranged from 62% to 82%. The SCVVI resulted in a similar trend among growth stages as the 

SCVP. In four out of five cases the VIV canonical variate explained 62% to 65% at V6 and in four out of 

six cases it explained from 84% to 90% of the total variance in the VIs values at the V10 corn growth 

stage. Even though the VIV canonical variate resulted in higher variance explained when compared to the 

PSV canonical variate, results indicated that the percent variance explained by both canonical variates 

increased as the plant growth progressed from the V6 to the V10 corn growth stages. 

Relationship between canonical variables and field measured data 

Because the correlation between the first pair of canonical variates (CC1) was the highest and 

significant for most site-year-growth stages, the discussion of results herein is focused on the intra-set 

structure correlation coefficients of the first pair of canonical variates. The intra-set correlations are the 

correlations between canonical variates and the observed variables of the same domain. Tables 1.4-6 

present the intra-set correlations between the PSV variate and the plant status variables (SPAD and LAI) 
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evaluated at the V6, V8, and V10 growth stages, respectively.  These correlations show the variable that 

affects the most their canonical variate and the direction of the effect (Gittins, 1985; Martín et al., 2005; 

Ortiz et al., 2011). Among the two plant status variables, SPAD had the highest intra-set correction with 

the PSV variate across site-year-growth stages with correlation values ranging from 0.68 (EVS-I-V8-

2012) to 1.00 (GCS-V6-2010, TVS-V6-2010, TVS-V8-2011, and TVS-V10-2010). The intra-set 

correlation between LAI and PSV increased as the growth progressed with values ranging from -0.02 to 

0.78, 0.16 to 0.95, and 0.49 to 0.84 at the V6, V8, and V10 growth stages, respectively. The high values 

observed for the intra-set correlations between plant status measurements (especially SPAD) and PSV 

suggest that VIs exhibiting a high correlation with PSV could be useful to assess plant differences with 

respect to SPAD and LAI.   

The inter-set correlation (strength of the interrelationship between canonical variates of a 

measurement domain and the observed variables of the other domain) between each VI and the PSV 

canonical variate increased as the growth stages progressed for most site-year combinations.  For 

example, the inter-set correlation values ranged from 0.56 to 0.78 for the V6 growth stage at the GCS site 

in 2012; however, at the same location the correlation values were in a range of 0.83 to 0.93 for the V10 

growth stage (Tables 1.4 and 1.6).  

Rainfed experiments exhibited a greater variation in inter-set correlation coefficients when 

compared to irrigated experiments. For the rainfed experiments at the V6 growth stage, the ranges of 

inter-set correlations between VIs and PSV were 0.67-0.86, 0.65-0.83, and 0.56-0.78 for the GCS-2010, 

EVS-R-2012, and GCS-2012 site-years, respectively. In contrast, for the irrigated site (TVS) at the V6 

growth stage, the ranges of inter-set correlations were 0.57-0.73 and 0.82-0.84 during the 2010 and 2012 

growing seasons, respectively. Under irrigated conditions corn N response is higher, which results in a 

more homogeneous plant stand among N rates. When VIs assessment is conducted under these 

conditions, lower variability in mid-sensor readings and VIs is observed when compared to same 

measurements in rainfed experiments. Variability among N fertilized plots was higher for rainfed 
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conditions, therefore, variability in Chl content and LAI was better assessed by VIs. This results in greater 

variations among correlations.  

At the V6 growth stage, the MTCI exhibited the strongest correlation with PSV for two out of the 

three rainfed site-years and the GS-NDVI exhibited the least correlation (Table 1.4). Moderate 

correlations were exhibited by the CI (RE), SR (RE), NDRE, ISR (RE), and Datt vegetation indices. The 

SR (RE), MTCI and CI (RE) were the VIs that more often exhibited the greatest correlations among site-

years. The MTCI is known for its sensitivity to high Chl content levels (Boyd et al., 2011; Dash and 

Curran, 2004), and it has also been found to be unaffected by confounding effects of water stress 

(Shiratsuchi et al., 2011). In the same study, the MTCI was more sensitive to N rate levels at early and 

advance growth stages when compared to the NDVI. These results support the observed high correlations 

exhibited by the MTCI VI in two of the rainfed site-years at the V6 growth stage.  

When inter-set correlation values corresponding to GS-NDVI and NDVI indices were compared, 

the one calculated using the CC-470 sensor (NDVI) had a higher correlation with PSV than the one 

calculated with the GS-505 sensor (GS-NDVI). This was observed across three rainfed site-years using 

data collected at theV6 growth stage. Although small differences were found in other studies, NDVI 

calculated by CC-470 could be more sensitive to differences in leaf  Chl content and biomass than the 

same index calculated using data from the GS-505 sensor (Erdle et al., 2011; Perry et al., 2012).     

When inter-set correlations were analyzed at theV8 growth stage also differences among site-

years were found (Table 1.5). The range of variation of inter-set correlation coefficients was smaller for 

most irrigated sites compared with the rainfed sites. When the inter-set correlation coefficients for both 

irrigated sites (EVS-I and TVS) were compared, a small range of variation was observed at the TVS sites 

compare with the EVS-I site. Those differences could be related to differences in soil texture among sites. 

The soil texture at the TVS site was characterized as silt loam while at the EVS-I site as loamy sand. 

Since there is a higher N fertilization response in finer textural classes (Tremblay et al., 2012), the leaf 

Chl content and/or biomass variability among N treatments at the TVS site was not very pronounced at 

early growth stages compared with the EVS-I site. Therefore, more homogeneous leaf Chl content and 
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LAI conditions could explain the small range of inter-set correlation values at the TVS indicating low 

sensitivity of the VIs for discriminating small plant status differences. The GS-NDVI exhibited the 

highest correlations among VIs in two out of the three rainfed site-years. Across site-years, the VIs with 

the most frequent high correlation were NDRE, ISR (RE), SR (RE), and CI (RE).   

At the V10 growth stage, inter-set correlations were the greatest compared with those at the V6 

and V8 growth stages (Table 1.6). However, the variability of inter-set correlations for the VIs did not  

differ considerably when rainfed and irrigated tests were compared. Across site-years, the VIs with the 

most frequent high correlation were NDRE, ISR (RE), and the CI (RE). 

The three indices that resulted in high correlation with plant status variables had in common the 

red edge wavelength. This portion of the electromagnetic spectrum (730 nm, measured in this experiment) 

has been proven to be more sensitive to leaf Chl content across a range of crops  (Delegido et al., 2013). 

Their results also indicated that the NDRE is a more reliable VI because it does not saturate at high LAI 

values. The CI (RE) resulted in the strongest relationships between VIs assesstment and Chl content for 

maize, soybean, grass and potato (Clevers and Gitelson, 2013). The ISR using the Red wavelength was 

better in assessing N health differences compared to NDVI (Roberts, 2006). Therefore, the ISR (RE) was 

expected to be a good estimator of leaf Chl content and biomass as observed in this experiment.  

Identification of vegetation indices for in-season corn status discrimination  

The results from the frequency analysis were intended to rank the VIs based on the degree of 

inter-set correlation within and across corn growth stages (Table 1.7). For this analysis, only VIs with the 

highest four inter-set correlations per growth stage were taken into consideration. For instance, among the 

site-year combinations at the V6 growth stage, GS-NDVI was one time out of five site-year combinations 

in the top four highest correlations therefore; only one unit frequency was assigned to it in the frequency 

table. Hence, one unit frequency out of five possible events indicated that 20% of the times the GS-NDVI 

was within the top four highest correlations at the V6 corn growth stage.  

At the V6 growth stage, indices SR (RE), ISR (RE) and CI (RE) exhibited high correlations with 

plant status canonical variate at most site-years (Table 1.4). Those indices were in the top four highest 
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correlations in four out of five site-year combinations, 80% of cases (Table 1.7). Following those VIs, the 

NDRE and the MTCI were in the top four highest correlations in 60% of cases and Datt index in 40% of 

cases. The remaining VIs only were 20% of cases in the top four highest correlations. The VIs with higher 

frequency of high correlation with the PSV were better estimators of Chl content and LAI at V6 growth 

stage. Moreover, when VIs were separated according to their wavelengths; it was evident that VIs 

including the NIR and the RE wavelengths had a stronger correlation with plant status. The MTCI and 

Datt indexes ranked as the second best predictors of plant status after the three RE indices [SR (RE), ISR 

(RE) and CI (RE)] and those include the NIR, Red and RE wavelengths in the equations. From the group 

of VIs, the ones with the lowest prediction ability of plant status, low frequency of occurrence of being in 

the top four correlations, were the indices that included only the NIR and Red wavelengths. 

The NDRE and the ISR (RE) indices exhibited the highest correlation frequencies at the V8 

growth stage. Those indices were in the top four highest correlations in six out of seven site-year 

combinations, 86% of cases. The second best predictors of plant status were the SR (RE) and CI (RE) 

indices with correlations in the top four groups in five out of seven cases (71%) and the MTCI in 57% of 

cases.  The other VIs evaluated exhibited < 50% frequency of correlation with plant status. Even though 

both NDVI indices were ranked low in terms of their indirect assessment of plant status, GS-NDVI had 

higher frequency of occurrence of being in the top four correlations than CC-NDVI, 43% and 14% of 

cases, respectively. The indices with the top four highest correlations were the same as for the V6 growth 

stage. The VIs containing the NIR and RE resulted with the highest frequencies among vegetation 

indices. Moderate frequencies resulted in those VIs containing the NIR, Red and RE wavelengths.  

At the V10 growth stage, the NDRE and ISR (RE) were in the top four highest collections in 

100% of cases. The CI (RE) was ranked as the second with the highest correlation frequency in 83% of 

the cases. The SR (RE) and the MTCI resulted in the third place as best predictors of plant status in the 

67% of cases. The other VIs in the group exhibited a correlation frequency below 50%. The results at the 

V10 growth stage in terms of VIs suitable for indirect prediction of plant status were similar to those 

observed at the V6 and V8 growth stages.  
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Overall, the highest frequencies among site-years-growth stages were exhibited by those VIs 

including only the NIR and RE wavelengths. The second highest frequencies among site-years-growth 

stages were for those VIs combining three wavelengths in the equation (MTCI and Datt).The remaining 

VIs, which only included the Red and the NIR wavelengths, resulted in the lowest frequencies calculated 

in the correlations rank.  

Overall, among the VIs evaluated, the NDVI exhibited the lowest frequency of high correlation 

with plant status variables at the V6 corn growth stage. However, the replacement of the Red by RE 

wavelength in the NDVI equation improved the correlations considerably. Thus, VIs containing the RE 

wavelength can improve leaf Chl content and LAI assessment resulting in better VIs for VRN application. 

A wider application window for VRN application is possible using the RE wavelength. The RE is more 

sensitive to leaf Chl content and biomass and it does not saturates at high biomass levels (Delegido et al., 

2013; Gitelson et al., 2003; Viña et al., 2011). Moreover, results from this experiment show that the RE is 

also sensitive to leaf Chl content and biomass at early corn growth stages indicating the potential use of 

this wavelength for early season N fertilizer applications.  

Vegetation Index data for In-season corn yield potential estimation 

The VIs more often exhibiting highest correlations with the plant status variate (Table 1.7) and 

the NDVI calculated using data from the CC-470 sensor were selected to evaluate their ability predicting 

yield potential. Yield prediction equations were computed for the following VIs: NDVI, NDRE, CI (RE), 

SR (RE), and ISR (RE).  

Results of mid-season VIs assessment, where sensor measurements considerably described 

variability among different N fertilized plots, were used to develop linear regression models with final 

grain yield. Results are shown in Table 1.8.  

Models for the selected VIs and grain yield resulted significant (p < 0.0010) for each VI and 

growth stage evaluated. When evaluating the relationship between mid-season VIs assessments and final 

yield, an improvement in yield predictability was observed as the growth stages progressed from the V6 

to the V10.  
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Among the five models evaluated across the three growth stages, the ISR (RE) and the NDVI 

resulted in the lowest R
2
, the highest RMSE and the highest CV for all growth stages. However, when the 

ISR (RE) was evaluated for yield predictability using independent site-years by growth stage (not 

combining multiple locations into one regression model), the R
2
 resulted among the strongest relationship 

to grain yield for all site-years as compared to the NDVI and the other VIs assessed (data not shown).    

At the V6 growth stage, the five different VIs linear regression models included data from four 

site-years. The R
2
 ranged from 0.12 to 0.43 for ISR (RE) and SR (RE), respectively. The NDVI resulted 

in the second lowest R
2
 (0.26) after the ISR (RE) with the lowest R

2
 value. The NDRE, which comprised 

the same equation as NDVI, but replacing the Red by the RE wavelength, resulted in a higher R
2
 (0.37) 

than NDVI. However, the RMSE and the CV were not considerably lower. The RMSE resulted in 2247 

and 2080 kg ha
-1

 for NDVI and NDRE, respectively. Results for the CV were 30 % and 28 % for NDVI 

and NDRE, respectively. The CI (RE) exhibited R
2
 of 0.34 and RMSE of 2129 kg ha

-1
, while the SR 

(RE), had highest R
2
, and a RMSE of 1982 kg ha

-1
. Looking at the CV, the CI (RE) resulted in 28% (same 

than NDRE), and the SR (RE) in 26 %. 

Five site-years were combined for regression models comparisons at the V8 growth stage. An 

increase in yield potential predictability was observed for all VIs compared with the yield prediction 

models generated with data from the V6 growth stage. The same tendency than in the V6 was observed, 

the NDVI and the ISR (RE) resulted in the lowest yield prediction with R
2
 values of 0.30 and 0.32, 

respectively. Other VIs including the RE wavelength resulted in R
2
 > 0.40. The NDRE, CI (RE) and SR 

(RE) had similar RMSE and CV values. The CV was 32 % for the NDRE, CI (RE), and SR (RE) indices, 

but 35 % for the NDVI and the ISE (RE) indices. Although, the NDVI has been successfully used in 

algorithms for VRN application at the V8 growth stage (Teal et al., 2006), our data shows that the NDRE 

had a higher yield predictability (high R
2
 and low RMSE) than the yield prediction equation using NDVI 

as predictor variable. A VIs with higher yield predictability results in more accurate prediction of in-

season N rates.   
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At the V10 growth stage, five site years were also combined for regression models comparisons. 

Overall, the yield predictability increased when compared with models using data collected either at the 

V6 or V8 growth stages. This was expected because as the growth stages progresses to the V10, 

variability in plant status was enhanced. This was also observed in the CCA when the V10 resulted in 

higher correlations with PSV (Chl and LAI) variate. For instance, those plots that received high N rates 

responded to N fertilizer showing higher Chl contents and biomass than plots receiving low N rates. The 

variability in plant status resulted in grain yield differences. Since higher differences in N response were 

observed later in the season, measurements at the V10 resulted in more accurate yield predictability. For 

this growth stage, the ISR (RE) also resulted in the lowest R
2
 (0.09), the highest RMSE (3071 kg ha

-1
) and 

the highest CV (45%).  

Differences in yield predictability between the NDVI and the NDRE were greater than those 

observed at the V6 and V8 growth stages. The NDVI exhibited R
2
 = 0.36, while the NDRE resulted in R

2
 

= 0.67. Also, the RMSE and the CV were considerably lower for the NDRE, and resulted in 1850 kg ha
-1

 

and 27 %, respectively. The NDVI exhibited a RMSE of 2568 kg ha
-1

 and a CV of 37 %. The rest RE VIs 

[CI (RE) and SR (RE)], as the NDRE, also exhibited high R
2
, low RMSE and low CV, > 0.67, < 1861 kg 

ha
-1

, and 27 % respectively. Overall, results indicated a higher performance of the RE VIs [except for ISR 

(RE)] with respect to in-season yield prediction. The NDVI saturation reported in several studies 

(Delegido et al., 2013; Gitelson et al., 2003; Viña et al., 2011) was also validated in these results when the 

NDVI did not significantly increase yield predictability compared to the RE VIs at the V10 corn growth 

stage.  

However, at early growth stages (V6), the only indication that the NDRE, the CI (RE), and the 

SR (RE) performed better than the NDVI were provided by the higher R
2
. Differences in RMSE and CV 

at the V6 growth stage were not considerably high. Therefore, there is not sufficient evidence to conclude 

that the NDRE, the CI (RE), and the SR (RE) are better VIs than NDVI in yield potential prediction at 

early growth stages. 
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Conclusions 

The ability to indirectly assess biomass and leaf Chl content was assessed for ten VIs. The use of 

the canonical correlation analysis allowed the combination of multiple variables into canonical variates to 

evaluate the correlation between plant status and vegetation indices canonical variates. High correlations 

were found between canonical variates suggesting that VIs could be used for indirect assessment of 

biomass and leaf Chl content. A frequency table by growth stage was developed including only the VIs 

with the top four highest correlations on each site-year. Indices with higher frequencies were those that 

appeared more often within the four highest correlations by growth stage. Vegetation indices that 

included the RE wavelength were more often among the highest correlations.  

Yield prediction equations were developed for NDVI, NDRE, CI (RE), SR (RE) and ISR (RE). 

Linear regression models were evaluated for their yield potential predictability using the R
2
, the RMSE, 

and the CV %. The NDRE, the CI (RE) and the SR (RE), resulted in the highest yield predictability at V6 

growth stage showing consistency in high predictability as the growth stages progressed from V6 to V10. 

Therefore, the NDRE, SR (RE), and the CI (RE) are potential VIs to be included in algorithms combining 

multiple site-years for VRN application between V6 and V10 growth stage. However, further research is 

needed for better assessment of RE VIs yield predictability at early growth stages.
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Table 1.1 Planting and sensing date by site and year. 

Year  Site†  Plating Date  
Sensing Date¶ 

   
V6 

 

V8 

 

V10 

2010 
 

EVS-R‡ 

 

31-Mar 

 

- 

 

18-May 

 

- 

 

EVS-I§ 

 

13-Apr 

 

18-May 

 

- 

 

- 

 

GCS‡ 

 

29-Mar 

 

28-Apr 

 

10-May 

 

24-May 

 

TVS§ 

 

2-Apr 

 

13-May 

 

- 

 

4-Jun 

2011 
 

EVS-I 

 

7-Apr 

 

- 

 

23-May 

 

3-Jun 

 

TVS 

 

7-Apr 

 

- 

 

27-May 

 

- 

2012 
 

EVS-R 

 

27-Mar 

 

1-May 

 

11-May 

 

- 

 

EVS-I 

 

27-Mar 

 

1-May 

 

11-May 

 

21-May 

 

GCS 

 

21-Mar 

 

27-Apr 

 

10-May 

 

14-May 

  TVS   2-Apr   4-May   16-May   23-May 

† EVS, E. V. Smith Research Center; TVS, Tennessee Valley Research and 

Extension Center; GCS, Gulf Coast Research and Extension Center. 

‡Rainfed experiments. 

§Irrigated experiments. 

¶Sensing date by growth stage. Accounting from the first leaf to the last fully 

developed (collared) leaf. Six (V6), eight (V8), and ten (V10) leaves per plant. 
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Table 1.2 Vegetation indices (VIs) formulas used in this study.  

VIs† 
 

Equation‡ 
 

Source 

NDVI 

 

(NIR-Red)/(NIR+Red) 

 

Rouse et al. (1973), Tucker (1980) 

NDRE  

 

(NIR-RE)/(NIR+RE) 

 

Gitelson, A.A. and M.N. Merzlyak, (1994) 

SR 

 

NIR/Red 

 

Jordan, (1969) 

SR (RE)§ 

 

NIR/Red edge 

 

- 

ISR 

 

Red/NIR 

 

Gong et al., (2003) 

ISR (RE)§ 

 

RE/NIR 

 

- 

Cl (RE)  (NIR/RE)-1 

 

Gitelson et al., (2003b) and Gitelson et al., 

(2005) 

Datt 

 

(NIR-RE)/(NIR-Red) 

 

Datt, (1999) 

MTCI 

 

(NIR-RE)/(RE-Red) 

 

Dash and Curran (2004) 

MSR   (NIR/Red-1)/((NIR/Red)
1/2

+1)   Chen (1996) 

†VIs: NDVI, normalized difference vegetation index; NDRE, normalized difference vegetation 

index; SR, simple ratio; SR(RE), simple ratio red-edge; ISR, inverse simple ratio, ISR(RE), 

inverse simple ratio red-edge; CI(RE), chlorophyll index red-edge; Datt, Datt index; MTCI, 

MERIS terrestrial chlorophyll index; MSR, modified simple ratio.  

‡Red, 670nm; RE, 730nm; NIR, 760nm.  

§Vegetation indices calculated in this study. 
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Table 1.3 Canonical Correlation by year, site and growth stage. 

Year 
 

Site† 
 

GS‡ 
 

Canonical Correlation 

 

Wilk's.L 

 

SCV 

   

CC1§ Pr > F CC2§ Pr>F 
 

Pr > F 
 

SCVP¶ SCVVI# 

2010 

 

EVS-R‡‡ 

 

V8 

 

0.93 0.003 0.69 0.303 

 

0.003 

 

0.63 0.65 

 

EVS-I¥ 

 

V6 

 

0.91 0.110 0.83 0.232 

 

0.110 

 

0.70 0.48 

 GCS‡‡  

V6 

 

0.96 0.003 0.36 0.986 

 

0.003 

 

0.50 0.62 

  

V8 

 

0.84 0.196 0.54 0.783 

 

0.196 

 

0.67 0.56 

  

V10 

 

0.97 0.000 0.81 0.121 

 

0.000 

 

0.73 0.57 

 
TVS¥ 

 

V6§§ 

 

0.88 0.020 0.78 0.130 

 

0.020 

 

0.56 0.62 

  

V10 

 

0.97 0.003 0.68 0.509 

 

0.003 

 

0.62 0.22 

2011  EVS-I  

V8 

 

0.94 <0.0001 0.45 0.688 

 

<0.0001 

 

0.48 0.69 

  

V10 

 

0.92 <0.0001 0.67 0.003 

 

<0.0001 

 

0.77 0.87 

 

TVS 

 

V8ǂ 

 

0.90 <0.0001 ND₩ ND 

 

<0.0001 

 

1.00 0.92 

2012 

 
EVS-R 

 

V6 

 

0.93 0.010 0.66 0.479 

 

0.010 

 

0.51 0.64 

  

V8 

 

0.95 0.010 0.58 0.748 

 

0.010 

 

0.79 0.66 

 EVS-I  

V6 

 

0.99 0.227 0.82 0.717 

 

0.227 

 

0.46 0.58 

  

V8 

 

0.93 0.001 0.81 0.052 

 

0.001 

 

0.68 0.74 

  

V10 

 

0.98 0.002 0.92 0.056 

 

0.002 

 

0.82 0.86 

 GCS  

V6 

 

0.89 0.006 0.78 0.099 

 

0.006 

 

0.67 0.65 

  

V8 

 

0.94 0.002 0.70 0.289 

 

0.002 

 

0.76 0.52 

  

V10 

 

0.97 <0.0001 0.80 0.064 

 

<0.0001 

 

0.74 0.84 

 TVS  

V6 

 

0.90 0.027 0.62 0.546 

 

0.027 

 

0.58 0.85 

  

V8 

 

0.90 0.010 0.72 0.235 

 

0.010 

 

0.86 0.91 

    V10   0.98 <0.0001 0.77 0.178   <0.0001   0.81 0.90 

† EVS, E. V. Smith Research Center; TVS, Tennessee Valley Research and Extension Center; GCS, Gulf Coast 

Research and Extension Center. 

‡GS, corn growth stage. 

§CC, canonical correlation. 

¶Standardized cumulative variance in plant status variables. 

#Standardized cumulative variance in vegetation indices. 

‡‡Rainfed. 

¥Irrigated.  

 ₩ND, non-data available.
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Table 1.4 Intra-set and inter-set correlations generated through the CCA. Data 

collected at the V6 growth stage. 

Variables†\sites‡ 
 

2010 

 

2012 

 
GCS§ 

 
TVS¶ 

 
EVS-R§ 

 
GCS 

 
TVS 

Correlation between field-measured plant status variables and plant status 

canonical variate (PSV) 

SPAD (Chl) 
 

1.00 
 

0.98 
 

0.98 
 

0.86 
 

1.00 

LAI 
 

-0.02 
 

0.07 
 

0.26 
 

0.78 
 

-0.41 

Correlation between vegetation indices and plant status canonical variate (PSV) 

GS-NDVI  0.67 

 

- 

 

0.65 

 

0.70 

 

0.84 

NDRE 
 

0.77 

 

0.72 

 

0.81 

 

0.74 

 

0.82 

NDVI 
 

0.71 

 

0.70 

 

0.69 

 

0.72 

 

0.83 

SR 
 

0.69 

 

0.70 

 

0.69 

 

0.78 

 

0.82 

SR (RE) 
 

0.77 

 

0.73 

 

0.81 

 

0.75 

 

0.82 

ISR 
 

-0.72 

 

-0.65 

 

-0.68 

 

-0.69 

 

-0.84 

ISR (RE)  -0.77 

 

-0.71 

 

-0.81 

 

-0.72 

 

-0.83 

MTCI 
 

0.86 

 

0.70 

 

0.83 

 

0.70 

 

0.83 

MSR 
 

0.70 

 

0.70 

 

0.69 

 

0.77 

 

0.82 

CI (RE) 
 

0.77 

 

0.73 

 

0.81 

 

0.75 

 

0.82 

Datt   0.85   0.57   0.66   0.56   0.83 

†Variables: SPAD, chlorophyll content; LAI, leaf area index; GS-NDVI, 

Greenseeker normalized difference vegetation index; NDRE, normalized 

difference vegetation index red-edge; NDVI, Cropcircle normalized difference 

vegetation index; SR, simple ratio; SR(RE), simple ratio red-edge; ISR, inverse 

simple ratio, ISR(RE), inverse simple ratio red-edge; MTCI, MERIS terrestial 

chlorophyll index; MSR, modified simple ratio; CI(RE), chlorophyll index red-

edge; Datt, Datt index.  

‡EVS, E. V. Smith Research Center; TVS, Tennessee Valley Research and 

Extension Center; GCS, Gulf Coast Research and Extension Center. 

§Rianfed. 

¶Irrigated. 
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Table 1.5 Intra-set and inter-set correlations generated through the CCA. Data collected at the V8 

growth stage. 

Variables†\sites‡ 
 

2010 

 

2011 

 

2012 

 

EVS-R§ 
 

EVS-I¶ 
 

TVS¶ 
 

EVS-R 
 

EVS-I 
 

GCS§ 
 

TVS 

Correlation between field-measured plant status variables and plant status canonical variate (PSV) 

SPAD (Chl) 
 

0.97 
 

0.96 
 

1.00 
 

0.99 
 

0.68 
 

0.99 
 

0.96 

LAI 
 

0.57 
 

0.16 
 

- 
 

0.79 
 

0.95 
 

0.74 
 

0.89 

Correlation between vegetation indices and plant status canonical variate (PSV) 

GS_ NDVI 
 

0.85 
 

0.71 
 

0.87 
 

0.65 
 

0.75 
 

0.85 
 

0.85 

NDRE 
 

0.75 
 

0.83 
 

0.88 
 

0.82 
 

0.82 
 

0.77 
 

0.87 

NDVI 
 

0.76 
 

0.71 
 

0.86 
 

0.72 
 

0.76 
 

0.67 
 

0.84 

SR 
 

0.70 
 

0.69 
 

0.84 
 

0.77 
 

0.79 
 

0.70 
 

0.86 

SR (RE) 
 

0.73 
 

0.81 
 

0.87 
 

0.84 
 

0.82 
 

0.76 
 

0.87 

ISR 
 

-0.78 
 

-0.70 
 

-0.86 
 

-0.68 
 

-0.75 
 

-0.60 
 

-0.83 

ISR (RE) 
 

-0.76 
 

-0.83 
 

-0.88 
 

-0.80 
 

-0.82 
 

-0.77 
 

-0.86 

MTCI 
 

0.70 
 

0.87 
 

0.87 
 

0.85 
 

0.81 
 

0.32 
 

0.86 

MSR 
 

0.73 
 

0.70 
 

0.85 
 

0.76 
 

0.78 
 

0.71 
 

0.86 

CI (RE) 
 

0.73 
 

0.81 
 

0.87 
 

0.84 
 

0.82 
 

0.76 
 

0.87 

Datt 
 

0.72 
 

0.89 
 

0.87 
 

0.76 
 

0.82 
 

0.05 
 

0.85 

†Variables: SPAD, chlorophyll content; LAI, leaf area index; GS-NDVI, Greenseeker normalized difference 

vegetation index; NDRE, normalized difference vegetation index red-edge; NDVI, Cropcircle normalized 

difference vegetation index; SR, simple ratio; SR(RE), simple ratio red-edge; ISR, inverse simple ratio, 

ISR(RE), inverse simple ratio red-edge; MTCI, MERIS terrestrial chlorophyll index; MSR, modified simple 

ratio; CI(RE), chlorophyll index red-edge; Datt, Datt index.  

‡EVS, E. V. Smith Research Center; TVS, Tennessee Valley Research and Extension Center; GCS, Gulf 

Coast Research and Extension Center. 

§Rianfed. 

¶Irrigated. 
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Table 1.6 Intra-set and inter-set correlations generated through the CCA. Data collected at 

the V10 growth stage. 

Variables†\sites‡ 
 

2010 

 

2011 

 

2012 

 

GCS§ 

 

TVS¶ 

 

EVS-I¶ 

 

EVS-I   GCS   TVS 

Correlation between field-measured plant status variables and plant status canonical 

variate (PSV) 

SPAD (Chl) 
 

0.97 
 

1.00 
 

0.99 
 

0.98 
 

0.98 
 

0.96 

LAI 
 

0.72 
 

0.49 
 

0.74 
 

0.82 
 

0.72 
 

0.84 

Correlation between vegetation indices and plant status canonical variate (PSV) 

GS_ NDVI 
 

0.75 
 

0.48 
 

0.70 
 

0.84 
 

0.87 
 

0.87 

NDRE 
 

0.85 
 

0.61 
 

0.89 
 

0.94 
 

0.91 
 

0.97 

NDVI 
 

0.61 
 

0.28 
 

0.85 
 

0.88 
 

0.86 
 

0.88 

SR 
 

0.61 
 

0.33 
 

0.84 
 

0.91 
 

0.83 
 

0.91 

SR (RE) 
 

0.86 
 

0.67 
 

0.89 
 

0.95 
 

0.89 
 

0.97 

ISR 
 

-0.60 
 

-0.28 
 

-0.85 
 

-0.87 
 

-0.85 
 

-0.85 

ISR (RE) 
 

-0.85 
 

-0.57 
 

-0.89 
 

-0.93 
 

-0.92 
 

-0.97 

MTCI 
 

0.50 
 

-0.23 
 

0.89 
 

0.93 
 

0.90 
 

0.97 

MSR 
 

0.61 
 

0.31 
 

0.85 
 

0.90 
 

0.85 
 

0.91 

CI (RE) 
 

0.86 
 

0.67 
 

0.89 
 

0.95 
 

0.89 
 

0.97 

Datt   0.87   0.23   0.88   0.91   0.93   0.98 

†Variables: SPAD, chlorophyll content; LAI, leaf area index; GS-NDVI, Greenseeker 

normalized difference vegetation index; NDRE, normalized difference vegetation index red-

edge; NDVI, Cropcircle normalized difference vegetation index; SR, simple ratio; SR(RE), 

simple ratio red-edge; ISR, inverse simple ratio, ISR(RE), inverse simple ratio red-edge; 

MTCI, MERIS terrestrial chlorophyll index; MSR, modified simple ratio; CI(RE), 

chlorophyll index red-edge; Datt, Datt index.  

‡EVS, E. V. Smith Research Center; TVS, Tennessee Valley Research and Extension 

Center; GCS, Gulf Coast Research and Extension Center. 

§Rianfed. 

¶Irrigated. 



38 

 

Table 1.7 Ranking of occurrence of vegetation indices having the highest intra-set 

correlation. 

VIs† 
 

V6 

 

V8 

 

V10 

 

Sensing times year-

location (5)  

Sensing times year-

location (7)  

Sensing times year-

location (6) 

 

Freq (VI)‡ 

 

%§ 

 

Freq (VI) 

 

% 

 

Freq (VI) 

 

% 

GS_ NDVI 

 

1 

 

20 

 

3 

 

43 

 

0 

 

0 

NDRE 

 

3 

 

60 

 

6 

 

86 

 

6 

 

100 

NDVI 

 

1 

 

20 

 

1 

 

14 

 

0 

 

0 

SR 

 

1 

 

20 

 

1 

 

14 

 

0 

 

0 

SR (RE) 

 

4 

 

80 

 

5 

 

71 

 

4 

 

67 

ISR 

 

1 

 

20 

 

1 

 

14 

 

0 

 

0 

ISR (RE) 

 

4 

 

80 

 

6 

 

86 

 

6 

 

100 

MTCI 

 

3 

 

60 

 

4 

 

57 

 

4 

 

67 

MSR 

 

1 

 

20 

 

1 

 

14 

 

0 

 

0 

CI (RE) 

 

4 

 

80 

 

5 

 

71 

 

5 

 

83 

Datt   2   40   3   43   3   50 

†VIs: GS-NDVI, Greenseeker normalized difference vegetation index; NDRE, normalized 

difference vegetation index red-edge; NDVI, Cropcircle normalized difference vegetation 

index; SR, simple ratio; SR(RE), simple ratio red-edge; ISR, inverse simple ratio, ISR(RE), 

inverse simple ratio red-edge; MTCI, MERIS terrestrial chlorophyll index; MSR, modified 

simple ratio; CI(RE), chlorophyll index red-edge; Datt, Datt index.  

‡Frequency of occurrence in top four highest correlations (times by growth stage a VI is in 

the top four higher correlations).  

§Percent Frequency (number of times in the top four higher correlations divided by total 

sensing times at V6 times100).  
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Table 1.8 Performance evaluations of five linear regression models as predictors 

of corn yield potential at the V6, V8, and V10 corn growth stages.  

Growth 

Stage 
Parameter 

Vegetation Index† 

NDVI NDRE CI(RE) SR(RE) ISR(RE) 

V6 

R
2
† 0.26 0.37 0.34 0.43 0.12 

RMSE‡ 2247 2080 2129 1982 2452 

CV§ 30 28 28 26 33 

V8 

R
2
 0.30 0.42 0.40 0.41 0.32 

RMSE 2497 2270 2303 2289 2462 

CV 35 32 32 32 35 

V10 

R
2
 0.36 0.67 0.67 0.68 0.09 

RMSE 2568 1850 1861 1814 3071 

CV 37 27 27 26 45 

† The values under each vegetation column represent three different model 

performance indicators of good-need of fit. Every model included a single 

vegetation index as independent/predictor variable. 

†R
2
, Coefficient of determination. 

‡RMSE, root mean square error (kg ha
-1

). 

§CV, coefficient of variation (%). 
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III. NITROGEN FERTILIZER RESPONSE OF CORN AS AFFECTED BY RAINFALL 

PATTERNS IN ALABAMA 
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Abstract 

Nitrogen (N) fertilization is an important practice for increasing yield in corn (Zea mays L.). However, 

plant-soil interactions with in-season climatic variability result in different site-specific responses of corn 

to N fertilizer rates. The objectives of this study were to evaluate the Cropping System Model (CSM)-

CERES-Maize for its ability to simulate growth, development, grain yield and grain N of corn planted in 

Alabama, and to evaluate the impact that in-season changes in rainfall have on simulated corn yield, N 

leaching (NL), inorganic N in the soil at maturity (IN), and nitrogen use efficiency (NUE). The crop 

model was calibrated and evaluated using data collected from an N fertilization study conducted at two 

locations in Alabama (AL) between  2009 and 2012.Three N treatments from a randomized complete 

block design of 16 N rate treatments (r =5) were selected for this study. The N treatments used were 0, 

168, and 224 kg N ha
-1

. The N rates were split at planting and side-dress in 56-112 and 67-157, for 168 

and 224 kg N ha
-1

, respectively. Two rainfall scenarios used for the simulation modeling study were 

established by analyzing values of the abundant and well distributed rain index (AWDR) which assesses 

rainfall amount and evenness for a given period. Weather data of 61 years was used to calculate AWDR 

values index corresponding to two different corn growing scenarios; i) Scenario A:dry/wet May-June 

years and ii) Scenario B: years having dry/wet March-June period and wet/dry July-August period. 

Results from a seasonal analysis indicated that corn response to N fertilization changed based on the in-

season rainfall conditions and soil type (Silt loam in North and Loamy sand in Central AL). For scenario 

A, the crop response to N rates under wet May-June years period was higher that dry years at both 

locations. For Central AL, the N rate yield response curve under rainfall conditions reached a plateau at 

56 and 112 kg N ha
-1

 during a dry and wet May-June, respectively. For the conditions of North AL, when 

the model was run under rainfed conditions, corn N response was higher. During dry May-June years no 

N fertilizer was needed to achieve the maximum yield, while in wet May-June years, 56 kg N ha
-1

 was 

sufficient to reach the plateau where yield did not significantly increase with higher N rates. For scenario 

B, when the model was run for EVS rainfed using years characterized as wet March-June period and dry 

July-August period, higher yield were observed. A prolonged period under wet conditions favored higher 
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yield.  However, under irrigation, no significant differences between wet-dry and dry-wet combination 

were observed at EVS. In contrast, at TVS no significant differences were observed between dry-wet and 

wet-dry conditions under rainfed conditions, but significant differences were found under irrigation. For 

rainfed conditions the silt loam at TVS was able to hold more water during the dry period and prevent 

yield losses. However, when irrigated, yield was negatively affected in the silt loam during the wet-dry 

combination due to excessive water. Farmers could use results from this study as a decision support tool 

to improve N management in corn under Alabama growing conditions.
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Introduction 

Nitrogen fertilization in corn has been a subject of extensive research due to its significant impact 

on corn biomass and grain yield production. Nitrogen fertilization represents 40% of the total corn 

production cost (Varco, 2013). However, farmers sometimes give N cost less importance when a 

substantial yield increase is achieved. Nonetheless, increasing NUE is key to reduce environmental 

pollution and enhance sustainability in the long term. Uniform application of N at side-dress in corn is a 

common practice among farmers in the southeast US, even though high variability of corn N-response 

driven by soil and weather conditions results in low N use efficiency (NUE). Tremblay et al. (2012) found 

yield increased by a factor of 1.6 and  2.7 due to N fertilization at medium and fine soil textures,  

respectively, compared with the control treatment (zero N applied) . However, they also reported low 

yields at low and high N rates evidencing the high variability in corn N response.  

Precise estimation of optimum N fertilizer rates is key to increasing NUE and reducing N 

leaching losses. Raun and Johnson (1999) reported a worldwide average NUE of 33% in cereal grain 

production implying the need to understand and control the N cycle for reducing negative environmental 

impacts of N over-application. Howarth (2008), studying coastal N pollution, related the increase of 

global coastal eutrophication to the increase in N fixation from agriculture, synthetic N fertilizer use, and 

fossil fuel consumption. From these three processes, synthetic fertilizer use was found to be the main N 

source of pollution (100 Tg year
-1

).  

Nitrogen recommendations have traditionally followed the mass-balance approach (Stanford, 

1973). By this method, N rates were back-calculated based on yield goal and grain N concentration. It 

accounts for non-fertilizer N sources such as N mineralized from soil organic matter (SOM), preceding 

crops, and organic amendments. Scharf et al. (2006) found that the mass balance approach is not accurate 

in estimating the right N rate because it was based on historical data, N mineralization,  and plant N 

uptake, which are highly variable within a field and between years.  

Methods for variable rate N (VRN) application attempt to increase NUE by accounting for  

within-field spatial N need variations, but does not account directly for temporal climate and weather 
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variability  (Kitchen et al., 2010; Mullen et al., 2003; Solie et al., 2012; Teal et al., 2006). Soil properties 

such as texture, water holding capacity, SOM, as well as ambient temperature and precipitation, have a 

significant impact on soil N dynamics, which directly affects NUE and crop yield (Zhu et al., 2009).  

Nitrogen use efficiency was found to be affected by soil texture when comparing N response 

across different soil types and locations (Tremblay et al., 2012). Soils with finer textures tend to hold 

more N due to higher cation exchange capacity (CEC) and to have higher SOM contents (Gaines and 

Gaines, 1994; Van Es et al., 2002). Therefore, fine textured soils typically have higher NUE than course 

textured soils. This difference was evidenced when significant lower economic optimal N rates were 

needed to maximize yield in a silt loam and silty clay loam soils as compared to irrigated sandy soils 

(Oberle and Keeney, 1990). Moreover, Kim et al. (2008) indicated that N and water in the soil are 

synergistically related. In this association, water additions enhanced NUE while N additions enhanced 

water use efficiency. Temperature is also important for N dynamics because it affects N mineralization 

rate. Tremblay et al. (2012) reported that temperature plays an important role affecting NUE from 30 days 

before side-dress (SD) to 15 after side-dress. They also found that rainfall was key from 15 days before 

SD to 30 days after side-dress. The higher temperatures before SD will promote N mineralization, while 

the higher rainfall after SD will enhance water and nutrient uptake. The NUE improvements require 

decision tools for N rates estimation that take into account the influence of weather on this process. 

Therefore, an understanding of the role of weather and climate on NUE combined with in-season 

assessment spatial N needs can improve N management.  

Corn production in the southeastern US is influenced by climate conditions, characterized by high 

temperatures and relative humidity as well as highly variable rainfall.  In the Alabama Gulf Coast region, 

average annual rainfall reaches 1500 mm a year. However, rainfall events are extremely variable in terms 

of distribution and amount (Kunkel et al., 2013). Due to inconsistent weather and climate patterns 

throughout the growing season, crop yields vary among years. Along with the impact of inter-annual 

climatic conditions on the Southeast corn yield, changes in soil type across the region impose another 

challenge on N management. Common soils in the Southeast are Spodosols, Alfisols, and Ultisols, with 
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the latter being the predominant soil type in the Piedmont and Gulf Coastal Plains regions. Ultilsols are 

highly weathered, acids, with low CEC and high pH dependent charges (Shaw et al., 2010). These 

conditions open an opportunity for further research on corn N fertilizer recommendations taking into 

account soil type and in-season weather and climate conditions.   

When properly calibrated and validated simulation crop growth models can play an important 

role in assessing N fertilizer requirements by taking into account interactions between management and 

environmental conditions. Some examples of existing models used for supporting N fertilizer  

management and yield estimation are Maize-N (Setiyono et al., 2011), ADAPT-N (Melkonian et al., 

2008), and the crop system model (CSM)-CERES-Maize model (Jones and Kiniry, 1986; Jones et al., 

2003; Ritchie et al., 1998). The first two models, Maize-N  and ADAPT-N, were developed for pre-plant 

and in-season N rate estimation by accounting for previous crops, mineralized N, organic fertilizers 

(manure), in-season weather (site specific) and N-corn market prices (only Maize-N). The CSM-CERES-

Maize model was developed for research and extension purposes. The CSM-CERES-Maize is part of the 

Decision Support System for Agrotechnology Transfer (DSSAT) which includes a set of 16 different 

crops simulation models.  It has a main driver program (land unit module) with five primary modules 

(weather, soil, plant, soil-plant-atmosphere interface, and management components). Together, the 

modules describe a specific environment or land unit module (Jones et al., 2003). In the model, soil water  

is simulated on a daily basis accounting for rainfall, irrigation, infiltration, vertical drainage, unsaturated 

flow, soil evaporation and plant water uptake (Ritchie et al., 1998). The N balance is also simulated with 

the model accounting for mineralization, immobilization, denitrification, leaching, and plant N uptake 

(Goodwin and Singh, 1998). The CSM-CERES-Maize has been used with successful results in several 

studies (Kovács et al., 1995; Pang et al., 1997; Singh et al., 1993). For instance, Pang et al. (1997) 

successfully simulated grain yield and N uptake under irrigation with  R
2
 = 0.94 and R

2
 = 0.95, 

respectively. Also, NO3-N leaching for no-till lysimeters, under corn-alfalfa rotation, was well simulated 

by Gerakis et al. (2006).  
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The objective of this this study was to evaluate the impact of in-season changes in rainfall on 

simulated corn yield, N leaching (NL), inorganic N in the soil at maturity (IN), and nitrogen use 

efficiency (NUE). The results from this study will be used to understand plant N response and improve 

current N recommendations rates for southeastern US climate conditions.  
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Materials and Methods 

Experimental data 

A field N experiment was conducted at two Alabama Agricultural Experiment Stations during a 

period of four years (2009, 2010, 2011, and 2012). The research stations were, the E.V. Smith Research 

Center (EVS) in Shorter, AL (32°25’43.43”N, 85°53’34.81”W, 69 m elevation) and Tennessee Valley 

Research and Extension Center (TVS) in Belle Mina, AL (34°41’05.37N, 86°53’18.04”W, 187 m 

elevation). Both experiments were sprinkler irrigated according to plants need and research stations 

practices.  

In each site-year, a randomized complete block design (r = 5) with 16 N treatments was 

implemented. Nitrogen was applied as liquid urea ammonium nitrate (28 % N). Three N treatments, 0, 

168, 224 kg N ha
-1

 were selected for this study. Nitrogen rate was split, 1/3 of total N applied at planting 

and the remainder in a side‐dress application at the V6 growth stage. The N rates for planting and side-

dress were 0-0, 56-112 and 67-157 for 0, 168 and 224 kg N ha
-1

 treatments, respectively. Plots received a 

pre-plant application of P, K, and lime based on recommendations of the Soil Testing Laboratory at 

Auburn University and the Alabama Cooperative Extension Systems (ACES) (Mask and Mitchell, 2012). 

Each four rows plot was 3.66 m wide by 10 m long with 0.9 m row spacing. The corn hybrid Pioneer 

31P42 was sown at 70,000 seeds ha
-1

 at the EVS site and 80,000 seeds ha
-1

 at the TVS site during the four 

years of the study. Planting dates by year and location are shown in Table 2.1. 

Plant, soil, and weather data 

Model calibration and validation data for crop phenology parameters of emergence, anthesis, and 

physiological maturity dates were collected following crop the physiology parameters as described by 

Ritchie et al. (1992)(Table 2.1). Biomass was collected at midseason (R1 growth stage) and physiological 

maturity from four replications on each study site over an area of 0.91 and 0.76 m
2
 in each plot at EVS 

and TVS respectively. Samples were separated into leaves, stems, and ears; oven dried (with air 

circulating at 70 °C) to constant weight. Leaves and steams were weighted separately and ears were 

counted and segregated into husk, kernels, and cobs and weighed independently. Kernel number and 
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moisture content were determined and dry matter weight was calculated. Yield components derived from 

the biomass samples were number of kernels per ear, number of kernels per m
2
, and average kernel mass 

(yield). Yield was corrected to 0% of moisture. 

Soil series at the study sites were Compass loamy sand (coarse-loamy, siliceous, subactive, 

thermic Plinthic Paleudults) at the EVS site and Decatur silt loam (fine, kaolinitic, thermic Rhodic 

Paleudults) at the TVS site. At both locations volumetric soil water content (cm
3
 cm

-3
) was measured at 

15 and 30 cm soil depths. At the EVS site, soil moisture was also measured at 60 cm depth. The EC-5 

(Decagon Devices Inc., USA) soil sensors were used to record volumetric soil water content at four hour 

intervals throughout the growing season. The soil moisture data was used to calibrate the soil-water 

holding characteristics. Nitrogen content in the soil (%) for the treatment 168 kg N ha
-1

 at four 

replications was measured at 20cm depth at EVS and TVS after harvest in 2012. Each treatment sample 

was the combination of 15 soil subsamples across the plot. Subsamples collection was divided into three 

sets of five subsamples per plot. The first set was collected between the first and the second row, the 

second set between the second and the third row, and the third set between the third and the fourth row. 

Within each set, the first subsample was collected in the row and the subsequent subsamples were 

collected in the mid-row in a diagonal direction towards the following row where the fifth subsample was 

collected. Nitrogen content (%) was determined by total combustion using a Vario Elementar macro CNS 

analyzer (Elementar Analysensysteme Gmblt, Hanau, Germany).  

Weather input data for model calibration and validation for the period 2009-2012, including 

rainfall and temperature (maximum and minimum), was obtained from the CRONOS Database (North 

Carolina Climate Retrieval and Observations Network Of the Southeast Database, http://www.nc-

climate.ncsu.edu/cronos). Daily solar radiation was estimated using the method described by Hargreaves 

and Samani (1982).  

Daily weather input data for the seasonal analysis simulation was obtained from the Cooperative 

Observer Program (COOP) network of the national weather service (http://www.nws.noaa.gov/om/coop/) 

for a period of 61 years data available (1950-2010). Daily solar radiation was estimated with the WGER 

http://www.nc-climate.ncsu.edu/cronos
http://www.nc-climate.ncsu.edu/cronos
http://www.nws.noaa.gov/om/coop/
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generator (Hodges et al., 1985) and then adapted for the south-eastern USA conditions (Garcia y Garcia et 

al., 2008). 

In-season rainfall variability 

Rainfall changes in the growing-season were studied for assessment of their impact on yield, 

grain NUE, IN and NL. By site-year, historic records of 61 years of daily rainfall were analyzed in terms 

of rainfall amount and distribution over different periods within each growing season. The abundant and 

well distributed rainfall (AWDR) index representing optimal water availability (abundant rainfall, well 

distributed in time) over a specific time period was selected for this analysis. The AWDR index was 

calculated following the methodology proposed by Tremblay et al. (2012) using equation 1. The AWDR 

assesses and combines rainfall amount (PPT) and frequency (SDI) for a given period (n). 

AWDR = PPT x SDI           (1) 

Where PPT is the cumulative daily rainfall (mm) over the study period [Σ(Rain)], and the SDI 

corresponds to the Shannon diversity index defined by equation 2. The SDI ranges from 0-1. SDI = 1 

implies equal amount of rain in each day of the year, while SDI = 0 implies extreme unevenness in 

rainfall distribution. 

SDI = [-Σpi ln(pi)]/ln(n)    (2)  

Where pi = Rain/PPT and n corresponded to the number of days in the given period (Bronikowski 

and Webb, 1996). 

Annual differences on daily AWDR were studied for two different periods during the corn 

growing season:  i) Scenario A, corresponding to either dry or wet condition during the May-June period 

and ii) Scenario B, corresponding to dry/wet March-June and dry/wet July-August periods. The May and 

June months represent important condition for corn growth and development in Alabama. During this 

period, N side-dress application, corn tasseling, and silking normally occur. Tremblay et al. (2012) when 

studying corn N uptake response to soil texture and weather, found that rainfall was most critical for N 

uptake from 15 days before to 30 days after N side-dress. Those results show a higher N response when 

high rainfall occurred during this 45 days period because water supply enhances plant growth and nutrient 
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uptake. Additionally, avoiding water stress during the flowering period was important. Nesmith and 

Ritchie (1992) when studying tassel development and yield in corn as affected by water-deficits, reported 

46% yield losses when corn was under water stress for 19 subsequent days starting just before tasseling. 

Water stress during the flowering period negatively affected the plant reproductive stage resulting in poor 

synchronization in flower organ appearance (Freier et al., 1984; Herrero and Johnson, 1981) and embryo 

abortion (Westgate and Boyer, 1986).  

Using rainfall data representing dry and wet conditions for the May-June period will help to 

understand its impact on N side-dress on final yield and NUE. With scenario B, the goal was to evaluate 

the impact of water either during the growth and development period or grain filling period affecting yield 

and NUE the most. Our hypothesis was that if a wet March-June combined with dry July-August occurs, 

N side-dress application could be favored. Plus, corn plants may be less impacted during the silking and 

initiation of the grain filling period, but the opposite might occur if the rainfall scenario corresponds to a 

dry March-June and wet July-August period. For scenario A, the AWDR was calculated for the May-Jun 

period corresponding to each of the 61 years of weather data. The AWDR index values that were below 

the 25th quantile and above the 75th quantile of the distribution were then grouped into two sets of years 

defined as dry and wet years for the May-June time frame.  

Scenario B conditions consisted in selecting years characterized as dry March-June and wet July-

August conditions or wet March-June and dry July-August conditions occurring within the same year. 

The first AWDR values corresponded to the period from March-June and the second value corresponded 

to the July-August period. These AWDR values were used to identify years with AWDR values below the 

25th percentile (driest years) and years with AWDR values above the 75th percentile (wettest years) for 

each specific time period. Years were selected if they consisted of a dry March-June and a wet July-

August or vice versa.

Model Calibration 

Field data collected at the EVS and TVS sites in 2012 was used to calibrate the CSM-CERES-

Maize model of DSSAT 4.5 (Hoogenboom, 2010) and to generate the cultivar coefficients for the Pioneer 
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31P42 corn hybrid (Pioneer Hi-Bred International, Johnston, Iowa). Only treatments with sufficient N 

(168 and 224 kg N ha
-1

) were used for calibration. This procedure was needed in order to account for the 

specific environmental conditions of corn grown in the southeastern US. 

Soil-Water Holding Characteristics and Nitrogen assessment 

The crop model required estimation of specific soil-water holding characteristics in order to 

estimate soil plant-available water. For each horizon in the soil profile, the soil water holding 

characteristics required by the model include permanent wilting point or lower limit (LL, cm
3
 cm

-3
), field 

capacity or drained upper limit (DUL, cm
3
 cm

-3
), saturated water content (SAT cm

3
 cm

-3
), saturated 

hydraulic conductivity (KSAT, cm h
-1

), and root growth factor (SRGF, ranging from zero to one) (Table 

2.4). The SBuild program of DSSAT Verison 4.5 was used to estimate initial values of those parameters 

using basic soil characteristics for each layer that were input into the model. The estimated KSAT value 

for each horizon was replaced by data from the Web Soil Survey (USDA-NRCS, 

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx). 

Using a preliminary set of cultivar coefficients, the soil water holding characteristics were 

calibrated for the first two or three soil horizons by adjusting the LL, DUL, and SAT simulated values to 

the measured values. A quality calibration was reached by minimizing the root mean square error 

(RMSE) between simulated and observed volumetric soil water content for the specific soil horizons 

depths of the 168 kg N ha
-1

 treatment. The SBuild program was also used to estimate soil drainage, soil 

albedo, and runoff curve number based on soil color, drainage, slope and runoff potential for each 

experimental location. Soil profile calibration improves the soil crop model simulation by minimizing the 

error between simulated and measured soil profile characteristicsCultivar Coefficients 

Coefficients calibration using 2012 data from EVS and TVS for the corn hybrid Pionner 31P42 

was done following the procedures described by Boote (1999). The variables considered for this 

procedure were crop phenology parameters, plant biomass partition, grain yield, as well as plant tissue 

and grain N content. Crop phenology was calibrated using observed emergence, anthesis, and 

physiological maturity dates. Biomass partitioning data was collected at flowering and physiological 

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
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maturity. After soil water holding characteristics were calibrated, the new cultivar coefficients were 

estimated using the GLUE (generalized likelihood uncertainty estimation) analysis tool (He, Porter, et al., 

2010). The coefficients calibrations were performed in a sequential order from phenology parameters to 

growth and development parameters. Sensitivity analysis for phenology parameters, biomass components, 

yield, and N variables were conducted to estimate the cultivar coefficient values that minimized the 

RMSE between simulated and observed values for the N fertilized treatments (168 and 224 kg N ha
-1

). 

Cultivar coefficients descriptions and coefficients for the corn hybrid Pioneer 31P42 are shown in Table 

2.5. 

Model Evaluation and Statistical Methods for Performance Assessment 

Model calibration and validation assessment for the corn hybrid Pioneer 31P42 was done by 

comparing simulated phenology parameters, biomass components, grain yield, and N variables to 

observed values. Five site-years of data were used for model validation including data collected from the 

EVS site during 2009 and 2010, and the TVS site from the period 2009-2011. The simulated values 

deviation with respect to the measured values was evaluated by assessing results from three statistical 

parameters included in the DSSAT package. Those parameters were: root mean square error (RMSE), 

percentage prediction deviation (PD), and the index of agreement, d-statistic (Willmott, 1982). Values for 

each index were calculated using the following equations: 
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N = number of observed values. 

Pi = predicted value. Pi = Pi – O. 

Oi = observed value. O’i  = O’i – O. 

O = Mean of observed values. 

 

The RMSE measures the difference between the observed and predicted values. A lower error 

between simulated and observed values is observed when the RMSE approaches zero. For the d-statistic 

the closer it is to one, the better prediction of the simulated over the measured values. The percent 

prediction deviation assesses model under- or over- prediction, with negative or positive PD values, 

respectively. 

Model application 

After model calibration and validation, an analysis was conducted to assess corn yield, grain 

NUE, NL, and IN at the EVS and TVS sites under contrasting climate scenarios with respect to rainfall 

amount and distribution. Sixty one years (1950-2010) of historical weather data from weather stations 

located were for the model simulation analyses. A seasonal analysis within DSSAT was conducted for 

simulating corn response to six different N rates under irrigated and rainfed conditions (Thornton and 

Hoogenboom, 1994).  Irrigation parameters were set to 50 % threshold of maximum water holding 

capacity, 0.4 m management depth, and 85 % efficiency. Nitrogen rates ranging from 0 to 280 kg ha
-1

 

were established in order to simulate a wide range of possible N rates applied by farmers in the area. The 

N rates were 0-0, 0-56, 34-78, 67-157, 140-140 and 280-0 kg N ha
-1

 with the first number of the rate 

combination corresponding to the N rate applied at planting and the second number corresponding to the 

N side-dress rate. For the seasonal analysis, specific planting date and N fertilizations dates were 

established based on the management practices implemented on the field experiment for the 2009-2012 

period at each site. The planting and first N fertilization application dates were 2 April and 12 April at 

TVS and EVS sites, respectively. The side-dress N application date was set at 40 days after planting, 

corresponding to 12 May and 22 May, for the TVS and EVS sites, respectively.  
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Once the seasonal analysis was completed, the simulated data for the years identified on the 

rainfall analysis corresponding to rainfall scenarios A and B were grouped and analyzed separately to 

study the impact of rainfall condition on corn N responses in terms of dry grain yield (kg ha
-1

), total N 

applied (N rate, kg ha
-1

), NL (kg ha
-1

), IN (kg ha
-1

), and grain NUE (%).  

Grain N use efficiency (fertilizer N recovery) was calculated for both scenarios (A and B) under 

rainfed and irrigated conditions using the following formula (Pomares-Garcia and Pratt, 1978): 

PFR = (NF)-(NC) / R 

NF = total N uptake in corn from N fertilized plots (kg ha
-1

) 

NC = total N uptake in corn from unfertilized plots (kg ha
-1

) 

R = rate of fertilizer N applied (kg ha
-1

) 

PFR = percent fertilizer recovery (%) 

 

Statistical Analysis 

For each scenario, differences between dry and wet conditions with respect to AWDR, yield, 

NUE, NL, and IN values were analyzed. Yield, NUE, NL, and IN differences between N rates were 

analyzed within each scenario (A and B) under rainfed and irrigated simulation conditions. The statistical 

analysis was conducted using the procedure linear mixed models (PROC MIXED) implemented in SAS 

(SAS Institute, 2008). Nitrogen treatments and weather scenarios (AWDR) were considered fixed effects. 

Mean separation between N treatments for yield, NUE, NL and IN were obtained by a Tukey’s significant 

difference test (P < 0.05). 
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Results and Discussion 

Calibration and evaluation of the CSM-CERES-Maize model 

The corn hybrid 31P42’s cultivar coefficients providing the lowest RMSE and highest d-statistic 

for the group of study variables measured at both sites are presented in Table 2.5. After calibration, the 

RMSE between simulated and observed anthesis dates corresponding to N-fertilization/site combinations 

was 1.6 days with a d-statistic value of 0.94 (Fig. 2.1.a). The physiological maturity date was simulated 

earlier at TVS and later at EVS resulting in 2.5 days RMSE, for both sites combined (Fig. 2.1.b). Above 

ground biomass and yield resulted in d-statistic value above 0.8 with RMSE values of 2341 and 1188 kg 

ha
-1

, respectively (Fig. 2.1.c and 2.1.d). The d-statistic for above ground biomass and grain N were 0.77 

and 0.55, respectively. The RMSE for the same variables were 37 and 30 kg ha
-1

, respectively (Fig. 2.1.e 

and 2.1.f). 

Validation results including anthesis (DAP), above ground biomass (kg ha
-1

), yield (kg ha
-1

), and 

grain N (kg ha
-1

) variables for all site-years shown in Fig. 2.2. There were no differences between 

simulated and measured anthesis days for the EVS-2009 and TVS-2010 site-years. The highest difference 

between simulated and measured anthesis days was observed at EVS-2009 [PD = (-12.5%), 10 days 

difference]. Overall, The RMSE between simulated and measured anthesis dates across all site-years was 

6 days with a d-statistic value of 0.88. Above ground biomass weight and grain yield were well simulated 

for all fertilized treatments at the EVS and TVS site in 2009 and 2010. The PD values ranged from (-4.8) 

to 34.1 %, and from (-1.3) to 38.1 % for above ground biomass and grain yield, respectively. The above 

ground biomass resulted in 3650 kg ha
-1

 RMSE and a d-statistic value of 0.86 (data from three site-years). 

Yield was well simulated. It resulted in 2091 kg ha
-1

 RMSE and 0.87 d-statistic value calculated using 

five site-years data. At TVS, 2011grain yield resulted in 56.4% PD and 82.4% PD for the 150 and 200 kg 

N ha
-1

 treatments, respectively. Finally, grain N calculated with data from EVS-2009 resulted in 79 kg N 

ha
-1

 RMSE and a d-statistic value of 0.6.
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Climatic Analysis 

Sixty one years were used to calculate the AWDR index values for two different weather growing 

scenarios: May to June rainfall (Scenario A) and March-June rainfall conditions combined with July-

August rainfall conditions (Scenario B). For scenario A, 15 years exhibited the lowest AWDR index 

values. These were classified as years with May-June months exhibiting low and not well distributed 

rainfall (dry May-June conditions). There were also 15 years that showed the highest AWDR index 

values, therefore they were classified as years with May-June months exhibiting higher than average and 

well distributed rainfall (wet May-June conditions). It is important to state that the years selected for each 

location were different given that the AWDR index was calculated by location using local weather data 

(Table 2.2). For instance, for the EVS site, the AWDR index values ranged from 24 to 65 for dry years 

and 134 to 290 for wet years, respectively. When the AWDR values for the TVS site were compared with 

the EVS site, a wider range of AWDR index values (13 -76) for the dry years group compared with a 

narrower range of AWDR values (163- 294) for the wet years was observed. Average values for AWDR 

in wet years were at least two times higher than AWDR values in dry years for each location (P < .0001) 

(Table 2.2). For scenario B, only four years matched the rainfall selection criteria (Table 2.3). The year 

selection under this scenario was more complex because the goal was to identify years that combined an 

extremely wet period (AWDR values above 75th quartile, March to June period) followed by an 

extremely dry period (AWDR values below 25th quartile, July to August period) and vice versa. Average 

values for AWDR in wet years were significantly different from dry years for each location (P < .0001) 

and at least twice high. When comparing the AWDR index values between July-August wet years and 

July-August dry years, differences in AWDR index values were statistically significant (P < .0001). 

Significant differences between AWDR values in dry and wet periods are important for evaluation of crop 

yield, NUE, NL, and IN and NUE under contrasting rainfall amount and distribution.  

Model Application 

The years selected through the analysis of AWDR index values corresponding to the climate 

scenarios A and B were used for simulating corn yield response to supplemental N under rainfed and 
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irrigated conditions. The corn response to N application was evaluated in terms of grain yield (kg ha
-1

), 

NL (kg N ha
-1

), IN (kg N ha
-1

), and NUE (%). Overall, independently of the climate scenario, an increase 

in yield and IN and a decrease in NUE were observed as the N rate increased. The N leaching was mainly 

dependent on the rainfall conditions, dry or wet conditions, and was not significantly affected by N rate 

changes. 

Tremblay et al. (2012) found that the N-rich rate (178 kg N ha
-1

) resulted in significant lower 

yield than the one produced by the split application [34 and 134 kg N ha
-1

 at planting and side-dress 

(median: V7), respectively]. They reported higher yield for the split application in several cases with 

different soil textures, at low and high AWDR values. However, in our study for both scenarios, there 

were no significant differences in yield and NUE between the split (140-140 kg N ha
-1

) and the N-rich 

starter of 280 kg N ha
-1

. The 280 kg N ha
-1

 treatment was a considerable amount of N that was not 

affected by changes in rainfall amount and distribution.  

Scenario A - Rainfed 

Grain yield was significantly influenced by rainfall amount and distribution, dry and wet May-

June periods based on AWDR values, at the EVS (P < .0001) and TVS (P < .0001) sites (Table 2.2).  

During the May-June wet years, a 100% yield increase was observed in both locations with 

respect to dry conditions during the same growing period (Tables 2.6-7). At the EVS site, corn yield 

response curve reached a plateau at 4021 and 8320 kg ha
-1

 during dry and wet May-June years, 

respectively. When dry May-June conditions occurred, the plateau was reached when N-application rate 

exceeded 56 kg N ha
-1

. In contrast, during wet May-June periods, the plateau was reached with a rate of 

112 kg N ha
-1

. At the TVS site, there were no significant yield differences (P = 0.14) between N rates 

during dry May-June years and the average yield among N treatments was 4573 kg ha
-1

. During wet May-

June years, yield differences existed only between the zero and the N fertilized treatments (P < .0001), but 

there were no differences among N fertilized treatments. The plateau for the yield response function was 

reached with less N amount at the TVS site when compared to the EVS site. The higher N response could 

be associated with differences in rainfall amount and distribution, soil texture and organic matter. At the 
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TVS site, the average AWDR index value for the dry May-June years was 213 compared to the 185 

AWDR index value at the EVS site, which indicated a higher amount and well distributed rainfall during 

that period. The silt loam soils at the TVS site favored N uptake compared to the loamy sand soils in the 

EVS site. Tremblay et al. (2012) found a higher N response on soils with a clay content above 30%  when 

studying the impact of weather and soil texture on N response at 51 locations in the United States, Mexico 

and Canada. Soil with higher clay content retain more water and tend to have higher soil organic matter 

contents than sandy soils (Baldock and Skjemstad, 2000; Denef et al., 2004). Moreover, Oberle and 

Keeney (1990), when studying the factors affecting corn fertilizer N requirements in the U.S. Corn Belt, 

found that silt loam and silty clay loam soils had lower economic optimal N rates than irrigated sandy 

soils.  

Beside yield, significant differences between dry and wet May-June years existed for NUE, IN, 

and N leaching (Tables 2.6-7). Higher NUE was observed in wet years compared to the same treatments 

under dry conditions (low AWDR values). Independent of location, the highest value of NUE was 

observed in the control treatment (0 Kg N ha
-1

); NUE decreased significantly with increasing N amount. 

At the EVS site, the NUE values ranged from 100 to 18% under dry May-June years and from 100 to 

42% for wet May-June years. At TVS, the NUE also followed the same trend; it ranged from 100 to 20% 

and from 100 to 44% at dry and wet years respectively, with significant differences among N rates as 

well. The water available in the soil through rainfall might be related to NUE differences between dry 

May-June years (low NUE) and wet May-June years (high NUE). Under low soil moisture conditions, the 

applied N does not move downward promptly into the soil, and thereby not taken up by the plant. Similar 

findings were reported by Kim et al. (2008) when analyzing relationships between water and N in the soil. 

They found that a synergistic relationship existed between water and N and that NUE was enhanced by 

water additions with water use efficiency enhanced by N additions.  

In this study, three N pathways for N were studied. These included IN, NL below root zone, and 

plant N uptake (calculated as NUE). Even though, the amount of NL differed between the dry and the wet 

years (p < .0001 and p < .0023 at EVS and TVS, respectively), there were no significant differences 
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among N rates in dry or wet years for both locations. For instance, at the EVS site, the NL resulted in 17 

and 31 kg N ha
-1

 during dry and wet years, respectively. At the TVS site, the mean NL values were 2 and 

5 kg N ha
-1

 for the dry and wet years, respectively. Differences in NL between EVS and TVS could be 

attributed to soil texture and organic matter. The silt loam soil at the TVS site has higher clay and organic 

matter content (higher CEC) which results in higher potential for N absorption (Gaines and Gaines, 1994; 

Van Es et al., 2002). When looking at the simulated values for NUE and inorganic N in the soil, a 

negative correlation was observed (r = -0.8). As the NUE decreased, the IN increased in all cases. This 

negative correlation indicated that the N not taken up by the plant remained in the soil. High values of IN 

together with the low NUE were observed during dry years at the EVS and TVS sites. At the EVS site, 

the IN in the soil was lower for all N rates compared to values observed at the TVS site. This low IN at 

EVS could be explained by a higher NL as compared to the TVS site. At TVS, no N fertilizer applications 

were necessary to achieve maximum yield. While at EVS, the maximum yield was achieved with 56 kg N 

ha
-1

 and resulted in 62 % NUE. For the wet years, the most efficient N rates were 112 and 56 kg N ha
-1

 

with 69 and 80 % NUE at the EVS and TVS sites, respectively. From these results, it is important to note 

that those N rates were the most efficient based on statistical significant differences, but there are absolute 

differences that may be more important from a practical perspective. For instance, at the TVS site during 

wet years, there were no statistical significant differences between the grain yield resulting from N rate 

112 and the 168 kg N ha
-1

, however, the absolute difference in grain yield between both rates was 1871 kg 

ha
-1

 favoring the 168 kg N ha
-1

 rate. Depending on N rate and corn market prices, almost 2000 kg ha
-1

 

could be a significant profit increase for a producer. In this study, the N fertilizer rate 56 kg N ha
-1

 (zero N 

at planting and 56 kg N ha
-1

 side-dress) for dry years and the 112 kg N ha
-1

 (split 30% at planting and 

70% at side-dress) for wet years were the most efficient N rates. Based on rates evaluated in this study, 

NUE may be maintained above 62 % by using N rates that were selected according to the weather 

scenario.



60 

 

Scenario A - Irrigated 

The statistical differences for AWDR corresponding to scenario A – rainfed apply to this scenario 

as well. However, no statistical significant differences between dry and wet May-June with respect to 

yield, IN, and NUE were observed in either site (Tables 2.8-9). This occurred because irrigation water 

supply was sufficient and plants were maintained under optimal water conditions. Differences between 

May-June dry and wet years were only observed for NL at each location (P < .0001). Nevertheless, there 

were no significant differences in NL among N rates for the TVS and EVS sites. Mean NL values at the 

EVS site were 18 and 42 kg N ha
-1

 for the dry and wet years, respectively. At the TVS site, NL was 2 kg 

N ha
-1

 for dry years and 6 kg N ha
-1

 for wet years. Under the conditions of wet years, NL was 

significantly higher compared to dry years mainly because higher rainfall amounts promote water 

movement thought the soil profile and N is leached out of the root zone.  

Nitrogen leaching resulted higher at EVS than TVS. These results were also observed in scenario 

A – rainfed. Those differences were probably due to soil texture and higher organic matter content 

(Gaines and Gaines, 1994). Since there were no significant differences in yield, IN and NUE between 

May-June dry and wet years, data were combined and analyzed for differences by N rates. For both 

locations, the yield response function reached a plateau above 112 kg N ha
-1 

and yielded an average of 

10290 and 11748 kg ha
-1

 at EVS and TVS, respectively. The NUE was higher under irrigated conditions 

compared with the rainfed conditions described earlier. For instance, during rainfed dry years at EVS, the 

NUE ranged from 100 to 18% while for the same years but under irrigated conditions the NUE ranged 

from 100 to 52%. A higher NUE is enhanced using irrigation because water supply promotes plant 

growth and nutrient uptake (Kim et al., 2008; Szeles et al., 2012). Under irrigated conditions, results from 

this study at both locations indicated that an N rate of 112 kg N ha
-1

 (30% of the N and planting and 70% 

at side-dress) was optimal to achieve maximum yield.  
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Scenario B - Rainfed 

The first studied climate scenario (wet-dry) included four years that were characterized by a wet 

period from March to June months and a dry period for July-August months. The second climate scenario 

(dry-wet) was characterized by a dry period from March to June and a wet period for July-August. 

Significant differences in AWDR (p < .0001) between dry and wet March to June, as well as, significant 

differences (p < .0001) between wet and dry July-August were found at EVS and TVS (Table 2.3). 

 Grain yield at EVS exhibited statistically significant differences at (p < 0.0244) between wet-dry 

and dry-wet years, but there were not significant differences at the TVS site (p < 0.6266) (Tables 2.10-

11). When yield from the wet-dry compared with the dry-wet climatic conditions were compared at the 

EVS site, yield under wet-dry conditions was higher 5326 kg ha
-1 

than the dry-wet (4332 kg ha
-1

) 

conditions. However, for both climatic conditions (dry-wet and wet-dry) there were no significant yield 

differences among N rates. Yield under the wet-dry climate scenario could be much higher because the 

soil profile held some water from the wet period into the dry one, and also the crop was able to develop 

more biomass during vegetative stages resulting in more photoassimilates for grain filling.  

Nitrogen leaching differences between both climate scenarios, wet/dry March-June and dry/wet 

July-August, were observed at the EVS and TVS sites (p < .0001 and p < .0002, respectively). Similar to 

the results from the scenario A, there were no significant differences among N rates for either 

combination; however, wet-dry years exhibited significantly higher NL than the dry-wet years. The NL at 

the EVS site was 30 and 14 kg N ha
-1

 at wet-dry and dry-wet years, respectively. In contrast, at TVS site 

the NL resulted in 10 kg N ha
-1

 in wet-dry years and in 1 kg ha
-1

 at dry-wet years. The period of time that 

fields were exposed to wet conditions was significantly longer (more days) in the wet-dry than in the dry-

wet combinations. Therefore, differences in NL may be attributed to the longer period of time (from 

March to June) the wet-dry years were exposed to wet conditions as compared to the dry-wet combination 

(exposed to wet conditions only in July-August). Also, as observed before, the NL was higher at the EVS 

site compared to the TVS site. Because of limited rainfall, plants did not develop sufficiently and no N 

fertilizer was needed to achieve the highest possible yield at EVS under scenario B. Under rainfed 
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conditions the silt loam at TVS was able to hold more water during the dry period and prevent yield 

losses. Therefore, at TVS, no significant differences in yield between dry-wet and wet-dry years were 

found. As a result, total averages (between wet-dry and dry-wet combinations) by N rate were computed 

to evaluate differences in IN and NUE. Significant differences in yield (p < .0001) were found between 

zero and 56 kg N ha
-1

. Over 56 kg N ha
-1

 the yield response curve reached a plateau resulting in an 

average of 7768 kg ha
-1

. Maximum yield using the most efficient N rate was achieved with 56 kg N ha
-1

 

and resulted in 83% NUE. 

Scenario B - Irrigated 

The same conditions for the AWDR (significantly different between periods) corresponding to 

scenario B – rainfed apply to this scenario. At the EVS site there were no significant differences with 

respect to yield, NUE and IN between wet-dry and dry-wet climate scenarios (Tables 2.12-13). 

Significant differences between climate scenarios were only found for NL (P < .0001). Nitrogen leaching 

resulted in 34 and 19 kg N ha
-1

 during the wet-dry and dry-wet climate scenarios, respectively. A similar 

trend was also observed before in scenario B – rainfed, where the wet-dry period resulted in higher NL. 

This was probably due to the prolonged period under wet conditions as opposed to the dry-wet 

combination. Looking at the average yield between wet-dry and dry-wet yield at EVS, the yield response 

curve reached a plateau at 112 kg N ha
-1

. Above this N rate, there are no significant differences in yield 

which resulted in a mean 11054 kg ha
-1

 yield. Applying 112 kg N ha
-1

 and splitting 30% at planting and 

70% at side-dress for EVS wet-dry or dry-wet conditions under irrigation, resulted in a high NUE (85%). 

At the TVS site, significant differences were found in yield (P < .00001), NL (P < 0.0001), IN (P < 

0.0433), and NUE (P < .0036) (Table 2.14). Yield ranged between 4336-9593 and 4818-12737 kg ha
-1

 for 

wet-dry and dry-wet combinations, respectively. Lower yield in the wet-dry combination could be 

attributed to cloudy days with excessive rainfall for prolonged periods (high AWDR index values) 

causing occasional water flooding. This affects roots respiration and reduces yield as a consequence 

(Lizaso and Ritchie, 1997; Meyer et al., 1987). Yield response curve reached a plateau at 56 and 112 kg N 

ha
-1

 for the wet-dry and dry-wet combination respectively. The 56 and 112 kg N ha
-1

 rates resulted in 84 
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and 71% NUE, respectively. Nitrogen leaching resulted in similar trend as described above in scenario B-

rainfed. Higher NL was observed in the wet-dry combination due to prolonged time exposed to wet 

conditions as compared to dry-wet combination. 
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Conclusions 

The CSM-CERES-Maize model was successfully used to model yield, NUE, IN in the soil at 

maturity and NL under different rainfall scenarios. Two different scenarios, A and B, were developed to 

assess the impact of rainfall amount and distribution on the simulated variables. Scenario A, corresponded 

to years with either dry or wet conditions during the May-June period, while Scenario B, consisted of 

years with dry/wet March-June and dry/wet July-August periods. Using a dataset of 61 years, each 

specific period during the year was assessed for rainfall amount and distribution using the AWDR index. 

Only years that qualified for the specific rainfall scenario were used for model simulation. Corn growth 

and development was simulated for the selected years of each scenario using the CSM-CERES-Maize. 

Simulated results were analyzed according to rainfall scenario. Results from the simulation indicated an 

overall increase in yield and IN in the soil at maturity and a decrease in NUE as N rates increased. Corn N 

response was affected by rainfall patterns and by soil texture. In North Alabama, where soils were 

characterized as silt loam, corn N response was higher when compared to Central Alabama, where soil 

texture was characterized as sandy loam. Moreover, N rate prescriptions should be changed annually 

according to possible rainfall scenarios expected for the season. For instance, at EVS, 56 and 112 kg N 

ha
-1

 were the optimal N rates for years under dry and wet May-June, respectively. A good decision for N 

application rate could save a producer half of the N applied for a dry year compared to a fixed annual N 

rate of 112 kg N ha
-1

. If the N rates can be changed according to the weather scenarios, the NUE would be 

maintained above 62% even in the worst conditions affecting this variable. Nevertheless, a reliable 

rainfall forecast is needed to better predict in-season precipitation variations affecting yield and NUE to 

develop better decisions tools on the proper N rate to be applied.
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Table 2.1 Planting, anthesis, physiological maturity, and side-dress dates by site-year. 

  

Year 
  

Site† 

EVS 

 

TVS 

 
Planting   Anthesis   P. Maturity‡   N Side-dress 

 

Planting   Anthesis   P. Maturity   N Side-dress 

2009 

 

20-Apr 

 

1-Jul 

 

- 

 

19-May 

 

24-Mar 

 

28-Jun 

 

- 

 

12-May 

2010 

 

13-Apr 

 

16-Jun 

 

- 

 

27-May 

 

2-Apr 

 

14-Jun 

 

- 

 

14-May 

2011 

 

- 

 

- 

 

- 

 

13-May 

 

7-Apr 

 

- 

 

- 

 

12-May 

2012   27-Mar   1-Jun   19-Jul   3-May   2-Apr   13-Jun   3-Aug   7-May 

†EVS, E.V. Smith Research Center; TVS, Tennessee Valley Research and Extension Center (both irrigated). 

‡P. Maturity: Physiological Maturity. 
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Table 2.2 Abundant and well distributed rain (AWDR) values 

for May-June period, scenario A. 

Site† 
May-June (Dry) 

 

May-June (Wet) 

Years 

 

AWDR‡ 

 

Years 

 

AWDR 

EVS 

1951 60 

 

1955 180 

1954 40 

 

1957 168 

1964 57 

 

1970 161 

1965 57 

 

1973 171 

1968 52 

 

1976 135 

1977 40 

 

1978 210 

1986 65 

 

1980 153 

1988 63 

 

1983 147 

1990 63 

 

1987 205 

1993 65 

 

1989 290 

1995 37 

 

1991 284 

1996 31 

 

1992 146 

2000 43 

 

1999 188 

2002 31 

 

2004 202 

2007 24 

 

2009 134 

Average -   48***   -   184 

TVS 

1952 

 

32 

 

1959 

 

200 

1954 

 

60 

 

1967 

 

213 

1958 

 

72 

 

1974 

 

177 

1962 

 

65 

 

1976 

 

262 

1964 

 

40 

 

1983 

 

255 

1965 

 

76 

 

1984 

 

181 

1968 

 

64 

 

1986 

 

177 

1971 

 

71 

 

1989 

 

294 

1988 

 

13 

 

1991 

 

185 

1995 

 

66 

 

1994 

 

215 

1996 

 

72 

 

1997 

 

178 

1998 

 

57 

 

1999 

 

163 

2000 

 

76 

 

2001 

 

263 

2005 

 

70 

 

2003 

 

240 

2007 

 

27 

 

2009 

 

198 

Average - 

 

57*** 

 

- 

 

213 

†EVS, E.V. Smith Research Center; TVS, Tennessee Valley 

Research and Extension Center (both irrigated). 

‡AWDR = PPT x SDI. PPT (cumulative precipitation) = 

Σ(Rain), where Rain is the daily rainfall (mm). SDI (Shannon 

diversity index) = [-Σpi ln(pi)]/ln(n), where pi = Rain/PPT and 

n is the number of days in that period. 

***Significant at the 0.001 probability level. 
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Table 2.3 Abundant and well distributed rain (AWDR) values for March-June wet/dry and 

July-August wet/dry, scenario B. 

Site† 

Mar-Jun(Dry) & Jul-Aug(Wet) 

 

Mar-Jun(Wet) & Jul-Aug(Dry) 

Years  
AWDR† 

 
Years  

AWDR 

 
Mar-June 

 

Jul-Aug 

 
 

Mar-June 

 

Jul-Aug 

EVS 

1974 

 

187 

 

277 

 

1957 

 

389 

 

70 

1985 

 

156 

 

165 

 

1962 

 

330 

 

96 

1996 

 

188 

 

236 

 

1976 

 

345 

 

81 

2008 

 

183 

 

254 

 

1980 

 

460 

 

54 

Average -   179***   233   -   318   75 

TVS 

1986 

 

216 

 

146 

 

1983 

 

526 

 

25 

1971 

 

216 

 

146 

 

1991 

 

526 

 

55 

2005 

 

227 

 

161 

 

1963 

 

421 

 

78 

1985 

 

233 

 

155 

 

1997 

 

350 

 

82 

Average - 

 

223*** 

 

152 

 

- 

 

456 

 

60 

†EVS, E.V. Smith Research Center; TVS, Tennessee Valley Research and Extension Center 

(both irrigated). 

‡AWDR = PPT x SDI. PPT (cumulative precipitation) = Σ(Rain), where Rain is the daily 

rainfall (mm). SDI (Shannon diversity index) = [-Σpi ln(pi)]/ln(n), where pi = Rain/PPT and n 

is the number of days in that period. 

***Significant at the 0.001 probability level. 
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Table 2.4 Soil properties for the experiment conducted at the two study sites in Alabama. 

Site† 
 

Soil series 
 

Horizon 
 

Depth 
 

Clay 
 

Silt 
 

CEC‡ 
 

LL§ DUL¶ SAT# 
 

SSKS‡‡ 

  

 

  

 

  

 

cm 

 

% 

 

% 

 

cmol kg
-1

 

 

 

----------  cm
3
 cm

-3
  -------- 

 

 

cm h
-1

 

TVS 

 

Decatur 

 
fine, kaolinitic, thermic Rhodic Paleudult 

  
Ap1 

 

19 

 

31 

 

54 

 

8.9 

 

0.21 0.33 0.52 

 

3.2 

  
Ap2 

 

30 

 

35 

 

52 

 

10.0 

 

0.21 0.33 0.49 

 

3.2 

  
Bt1 

 

46 

 

51 

 

39 

 

11.9 

 

0.27 0.34 0.47 

 

3.2 

  
Bt2 

 

110 

 

54 

 

36 

 

10.5 

 

0.30 0.44 0.46 

 

3.2 

  
Bt3 

 

150 

 

63 

 

28 

 

10.9 

 

0.34 0.47 0.48 

 

3.2 

EVS 

  

Compass 

  coarse-loamy, siliceous, subactive, thermic Plinthic Paleudult 

  
Ap 

 

17 

 

4 

 

16 

 

2.3 

 

0.08 0.15 0.43 

 

33.1 

  
BE 

 

42 

 

7 

 

20 

 

1.9 

 

0.13 0.24 0.42 

 

20.2 

  
Bt1 

 

80 

 

7 

 

21 

 

1.4 

 

0.20 0.33 0.42 

 

9.9 

  
Bt2 

 

99 

 

8 

 

20 

 

1.6 

 

0.20 0.32 0.41 

 

3.2 

  
Btv 

 

122 

 

8 

 

18 

 

1.6 

 

0.24 0.34 0.40 

 

3.2 

  
BC 

 

140 

 

12 

 

15 

 

2.3 

 

0.09 0.16 0.39 

 

3.2 

    C   150   14   15   2.9   0.10 0.18 0.38   3.2 

†EVS, E.V. Smith Research Center; TVS, Tennessee Valley Research and Extension Center (both irrigated). 

‡CEC, cation exchange capacity. 

§LL, lower limit or permanent wilting point. 

¶DUL, drained upper limit or field capacity. 

#SAT, saturation. 

‡‡SSKS, saturate hydraulic conductivity. 
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Table 2.5 Cultivar coefficients (CC) of the CSM-CERES-Maize model. 

CC 

 

Unit 

 

Definition 

 

31P42† 

P1  C° days > 8 C°  Thermal time from emergence to juvenile phase.  240 

P2  Unitless (0 - 1)  Photoperiod coefficient.  0.60 

P5  C° days > 8 C°  Thermal time from silking to physiological maturity.  913 

G2  kernels plant
-1

  Maximum number of kernels per plant.  780 

G3  mg kernel
-1

 d
-1

  Kernel growth rate in optimum conditions.  8.1 

PHINT  C° days > 8 C°  Thermal interval between successive leaf tip 

appearances. 

 41.5 

† Corn hybrid, Pioneer Hi-Bred International. 
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Mean SD# Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0-0 2230 a‡ 576 18† 15 27 a 5 100 a 0 3050 a 722 34† 16 23 a 2 100 a 0

0-56 4021 b 950 17† 14 30 a 11 62 b 20 6245 b 1607 31† 14 24 a 3 67 b 16

34-78 4350 b 1095 17† 14 51 a 29 45 c 13 8320 bc 2058 29† 12 26 a 11 69 b 16

56-112 4241 b 1015 17† 14 95 b 35 30 d 9 8616 bc 2309 29† 13 35 a 18 64 bc 16

67-157 4213 b 996 17† 14 148 c 34 22 d 7 8410 bc 2292 30† 13 63 b 33 51 cd 16

140-140 4274 b 902 17† 13 201 d 33 18 d 5 8446 bc 2199 32† 15 109 c 39 42 d 13

280-0 4303 b 930 17† 14 198 d 35 18 d 5 8614 c 2282 35† 19 106 c 40 42 d 13

†No statistical significant difference.

‡Means followed by the same letter do not differ at α = 0.05.

§Significant different from the contrasting weather condition (P <0.05).

#Standard deviation.

Table 2.6 Yield, nitrogen leaching (NL), inorganic nitrogen in the soil at maturity (IN), and nitrogen use 

efficiency (NUE) differences for E.V, Smith Research Center under rainfall conditions of Scenario A  (May-

June). 

Nitrogen 

treatment  

(kg ha
-1

)
kg ha

-1

Dry (May-June)

%

Wet (May-June)

NUEYield§ NL§ IN§

kg ha
-1

NUE§ IN

%

Yield NL

Mean SD# Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0-0 2824† 1149 2† 5 28 a‡ 7 100 a 0 4380 a 948 5† 8 24 a 5 100 a 0

0-56 4841† 2253 2† 5 38 a 29 63 b 36 8046 b 1460 5† 8 23 a 4 80 b 17

34-78 5100† 2873 2† 6 60 ab 44 50 bc 33 9771 b 1862 5† 8 24 a 4 77 b 16

56-112 4927† 2788 2† 6 103 bc 55 34 cd 24 9917 b 2266 5† 9 34 a 14 67 bc 16

67-157 4853† 2750 2† 6 156 cd 57 25 cd 18 9483 b 2439 5† 9 69 b 35 53 cd 17

140-140 4869† 2684 2† 6 208 d 56 20 d 15 9410 b 2274 5† 9 113 c 42 43 d 14

280-0 4892† 2801 2† 6 202 d 59 20 d 15 9556 b 2323 6† 11 107 c 41 44 d 14

§Significant different from the contrasting weather condition (P <0.05).

#Standard deviation.

†No statistical significant difference.

‡Means followed by the same letter do not differ at α = 0.05.

IN

kg ha
-1

kg ha
-1

%%

Yield NL

Table 2.7 Yield, nitrogen leaching (NL), inorganic nitrogen in the soil (IN),  and nitrogen use efficiency (NUE) 

differences for Tennessee Valley Research and Extension Center under rainfall conditions of Scenario A 

(May-June). 

Wet (May-June)

NUE
Nitrogen 

treatment  

(kg ha
-1

)

Yield§ NL§ IN§ NUE§

Dry (May-June)
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Yield IN NUE

Mean SD# Mean SD Mean Mean Mean

%

0-0 19† 15 36† 15 3515 a‡ 24 a 100 a

0-56 18† 15 37† 15 7336 b 24 a 79 b

34-78 18† 15 39† 15 9840 c 24 a 82 b c

56-112 18† 14 42† 17 10381 c 28 a 75 c

67-157 18† 14 43† 19 10409 c 44 b 64 d

140-140 18† 14 47† 23 10409 c 82 c 52 e

280-0 19† 16 50† 28 10409 c 81 c 52 e

¶Variables that were not statistically different were averaged to evaluate 

differences between nitrogen rates.

#Standard deviation.

Table 2.8 Yield, nitrogen leaching (NL), inorganic nitrogen in the soil at 

maturity (IN), and nitrogen use efficiency (NUE) differences for E.V, 

Smith Research Center under irrigated conditions of Scenario A  (May-

June).  

Average¶Dry (May-June) Wet (May-June)

†No statistical significant difference.

‡Means followed by the same letter do not differ at α = 0.05.

§Significant difference from the contrasting weather condition (P <0.05).

Nitrogen 

treatment  

(kg ha
-1

)

NL§ NL

kg ha
-1
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Yield IN NUE

Mean SD# Mean SD Mean Mean Mean

%

0-0 2† 5 5† 8 4631 a‡ 25 a 100 a

0-56 2† 5 5† 8 9044 b 25 a 91 b

34-78 2† 5 5† 9 11363 c 25 a 90 b

56-112 2† 4 6† 9 11823 c 28 a 80 c

67-157 2† 4 6† 9 11851 c 42 b 68 d

140-140 2† 4 6† 9 11850 c 75 c 57 e

280-0 2† 5 7† 10 11851 c 71 c 57 e

†No statistical significant difference.

NLNL§

Dry (May-June)

#Standard deviation.

‡Means followed by the same letter do not differ at α = 0.05.

§Significant difference from the contrasting weather condition (P <0.05).

kg ha
-1

Average¶

¶Variables that were not statistically different were averaged to evaluate 

differences between nitrogen rates.

Nitrogen 

treatment  

(kg ha
-1

)

Table 2.9 Yield, nitrogen leaching (NL), inorganic nitrogen in the soil 

(IN),  and nitrogen use efficiency (NUE) differences for Tennessee 

Valley Research and Extension Center under irrigated conditions of 

Scenario A  (May-June)

Wet (May-June)
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IN NUE

Mean SD# Mean SD Mean SD Mean SD Mean Mean

%

0-0 2594† 596 34† 7 2930† 729 14† 13 25 a‡ 100 a

0-56 4629† 1555 34† 6 4727† 814 13† 12 26 a 61 b

34-78 6132† 2477 30† 3 4684† 590 14† 11 40 a b 51 bc

56-112 6004† 2312 28† 5 4430† 1175 14† 11 76 b 37 cd

67-157 5954† 2236 27† 4 4525† 1098 14† 11 126 c 28 cd

140-140 5972† 1920 28† 3 4532† 983 14† 9 179 d 23 d

280-0 5996† 2243 30† 3 4498† 1160 14† 11 176 d 23 d

Yield§ NL§

Wet (M-J) - Dry (Ju-A) Dry (M-J) -Wet (Ju-A)

Table 2.10 Yield, nitrogen leaching (NL), inorganic nitrogen in the soil (IN), 

and nitrogen use efficiency (NUE) differences for E.V. Smith Reseach 

Center under rainfall conditions for Scenrio B  [March (M) to June (J) 

wet/dry, and July (Ju) to August (A) wet/dry]. 

Average¶

Yield NL

§Significant difference from the contrasting weather condition (P <0.05).

#Standard deviation.

Nitrogen 

treatment  

(kg ha
-1

)

¶Variables that were not statistically different were averaged to evaluate 

differences between nitrogen rates.

†No statistical significant difference.

‡Means followed by the same letter do not differ at α = 0.05.

kg ha
-1
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Yield IN NUE

Mean SD# Mean SD Mean Mean Mean

%

0-0 10† 14 1† 1 4147 a‡ 26 a 100 a

0-56 10† 14 1† 1 7339 b 25 a 83 ab

34-78 10† 15 1† 1 8321 b 27 a 77 bc

56-112 10† 15 1† 1 8097 b 47 a 59 c

67-157 10† 15 1† 1 7603 b 102 b 42 d

140-140 11† 15 1† 1 7577 b 154 c 33 d

280-0 13† 19 1† 1 7671 b 148 c 34 d

#Standard deviation.

¶Variables that were not statistically different were averaged to evaluate differences 

between nitrogen rates.

§Significant difference from the contrasting weather condition (P <0.05).

†No statistical significant difference.

‡Means followed by the same letter do not differ at α = 0.05.

Kg ha
-1

Wet (M-J) - Dry (Ju-A)

NL§

Dry (M-J) -Wet (Ju-A)

Table 2.11 Yield, nitrogen leaching (NL), inorganic nitrogen in the soil (IN), and 

nitrogen use efficiency (NUE) differences for Tennessee Valley Research and 

Extension Center under rainfall conditions for Scenario B  [March (M) to June (J) 

wet/dry, and July (Ju) to August (A) wet/dry]. 

Average¶

NL
Nitrogen 

treatment  

(kg ha
-1

)
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Yield IN NUE

Mean SD# Mean SD Mean Mean Mean

%

0-0 34† 7 16† 12 3830 a‡ 24 a 100 a

0-56 35† 7 16† 12 7860 b 24 a 80 b

34-78 35† 7 17† 12 10548 c 25 a 85 b

56-112 34† 7 19† 12 11181 c 27 a 80 b

67-157 34† 8 21† 14 11181 c 37 a 69 c

140-140 33† 5 21† 10 11181 c 78 b 56 d

280-0 35† 8 21† 13 11181 c 77 b 56 d

NL§ NL§

kg ha
-1

#Standard deviation.

Wet (M-J) - Dry (Ju-A) Dry (M-J) -Wet (Ju-A)

Table 2.12 Yield, nitrogen leaching (NL), inorganic nitrogen in the soil (IN), and 

nitrogen use efficiency (NUE) differences for E.V. Smith Reseach Center under 

irrigated conditions for Scenrio B  [March (M) to June (J) wet/dry, and July (Ju) to 

August (A) wet/dry].

†No statistical significant difference.

‡Means followed by the same letter do not differ at α = 0.05.

§Significant difference from the contrasting weather condition (P <0.05).

¶Variables that were not statistically different were averaged to evaluate 

differences between nitrogen rates.

Nitrogen 

treatment  

(kg ha
-1

)

Average¶

Mean SD# Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0-0 4336 a‡ 912 10† 14 21 a 1 100 a 0 4818 a 428 1† 1 29 a 5 100 a 0

0-56 7921 b 1089 10† 14 21 a 1 85 b 9 9700 b 350 1† 1 29 a 6 95 a 4

34-78 9394 b 665 11† 14 23 a 1 81 b 4 12133 c 757 1† 1 29 a 5 89 ab 13

56-112 9571 b 581 11† 15 31 a 2 68 c 4 12701 c 354 1† 1 30 a 4 83 ab 10

67-157 9593 b 600 11† 15 68 b 13 52 d 3 12737 c 291 1† 1 33 ab 3 75 bc 4

140-140 9592 b 520 11† 13 114 c 11 42 d 3 12737 c 290 1† 1 56 c 17 63 c 2

280-0 9589 b 605 13† 17 108 c 16 42 d 3 12736 c 291 1† 1 54 bc 6 63 c 2

#Standard deviation.

Yield§ NL§

Table 2.13 Yield, nitrogen leaching (NL), inorganic nitrogen in the soil (IN), and nitrogen use efficiency (NUE) 

differences for Tennessee Valley Research and Extension Center under irrigated conditions for Scenario B 

[March (M) to June (J) wet/dry, and July (Ju) to August (A) wet/dry].

INYield NL NUE

Wet (M-J) - Dry (Ju-A)

IN

Dry (M-J) -Wet (Ju-A)

§Significant difference from the contrasting weather condition (P <0.05).

Nitrogen 

treatment  

(kg ha
-1

)

†No statistical significant difference.

‡Means followed by the same letter do not differ at α = 0.05.

%

NUE§

%kg ha
-1

kg ha
-1
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Figure 2.1. Observed and simulated data (treatments 168 and 224 kg N ha
-1

) for the CSM-CERES-Maize 

model calibration: (a) anthesis day (dap, days after planting); (b) physiological maturity day (dap, days 

after planting); (c) tops weight (kg ha
-1

); (d) yield (kg ha
-1

); (e) above biomass nitrogen (kg N ha
-1

); grain 

nitrogen (kg N ha
-1

). 
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Figure 2.2. Observed and simulated data (treatments 0, 168, and 224 kg N ha
-1

) for the CSM-CERES-

Maize model validation: (a) anthesis (dap, days after planting); (b) above ground biomass (kg ha
-1

); (c) 

yield (kg ha
-1

); (d) grain nitrogen (kg N ha
-1

).  
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IV. SUMMARY AND CONCLUSIONS 

 

 

Nitrogen is a nutrient that impacts corn growth, development, and grain yield. Understanding the 

N cycle, which is a complex system including soil (inorganic and organic portions), plants, animals and 

atmosphere, can help improving NUE in agricultural ecosystems. Corn NUE can be improved by 

combining good agronomic management practices with technology (precision agriculture, hybrid 

selection, irrigation, climate and weather forecasts, among others).  

This thesis focused on evaluating the potential of using precision agriculture tools together with 

climate data for improving NUE in Alabama. The first study objectives were to (1) identify the VIs that 

best correlate with field plant measurements of LAI and leaf Chl content at early corn growth stages (V6), 

and (2) evaluate the selected VIs for in-season yield potential predictability. The second study objective 

was to evaluate the impact that in-season changes in rainfall have on simulated corn yield, NL, IN in the 

soil at maturity, and NUE.  

Results from the first study suggest that VIs including the red-edge (730 nm) wavelength were 

better estimators of Chl content and biomass than VIs including the red wavelength (670 nm). The 

NDRE, SR (RE), ISR (RE), and CI (RE) resulted on the highest frequency (> 60% of cases) of strongest 

correlation with plant status measured variables of SPAD and leaf area index (LAI). Those VIs and the 

traditionally used NDVI index were evaluated for mid-season yield potential predictability. For the V6, 

V8, and V10 growth stages, five linear regression models including a single VI as an independent variable 

were generated for in-season grain yield prediction. Performance evaluation of the five models per growth 

stage was conducted by comparing the performance indicator of good-need of fit of coefficient of 

determination (R
2
), root mean squared error (RMSE), and the coefficient of variation (CV). When 

comparing vegetation indices based-yield prediction models, the NDRE resulted in higher yield potential 

predictability as compared the NDVI-based yield models. The NDRE-based models exhibited R
2
 of 0.37, 

0.42, and 0.67 at V6, V8, and V10 growth stages, respectively, while the NDVI-based models resulted in 

R
2
 0.26 at V6, 0.30 at V8 and 0.36 at V10 growth stage. Other VIs including the RE resulted on similar 
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yield potential prediction as the NDRE. Even though the yield potential predictability using red-edge VIs 

was higher than NDVI at V6, there were not large differences in RMSE different between the models 

including the NDVI and red-edge indices. Nevertheless, at the V8 and V10 growth stages the yield 

potential predictability was considerably higher using the NDRE index as predictor than the prediction 

using NDVI index. The higher percentage of the yield variability explained by the model using the NDRE 

as independent variable indicated that this VI and other red-edge VIs could potentially be used to increase 

NUE when developing algorithms for VRN application. However, further research is needed to develop 

and evaluate yield potential prediction at early growth stages using red-edge VIs. 

The results from the second study, evaluation of the impact that in-season changes in rainfall on 

simulated corn yield, NL, IN in the soil at maturity, and NUE in Central and North Alabama, showed that 

the crop response to N fertilizer differed among rainfall scenarios and soil type (Silt loam in North and 

Loamy sand in Central AL ). At both locations, the crop response to N rates under a wet May-June 

(scenario A) period was higher compared to years with a dry May-June period. Furthermore, in North 

Alabama, where soils were characterized as silt loam, corn N response resulted higher when compared to 

Central Alabama, where soil texture was characterized as sandy loam. For Central Alabama (EVS), the 

yield response curve under rainfed conditions reached a plateau at 56 and 112 kg N ha
-1

 for dry and wet 

May-June rainfall conditions, respectively. Based on our findings, farmers should apply 56 kg N ha
-1

 side-

dress at V6 growth stage to achieve maximum yield in dry May-June years. If the May-June period is wet, 

an N rate of 112 kg N ha
-1

 (30 % at planting, and 70 % at side-dress) might be enough to achieve 

maximum yield. At the North AL location, no N is needed to be applied during dry May-June years. 

During dry years there is not water in the soil, and the N applied cannot be taken up by the plant. In 

contrast, for wet May-June years, 56 kg N ha
-1

 applied at the V6 was required to achieve maximum yield. 

When the CSM-CERES-Maize model were run under irrigated conditions, results indicated that 

112 kg N ha
-1

, for EVS and TVS, was sufficient to achieve for maximum yield. Data from this study 

showed that if supplemental water through irrigation is available, the N fertilizer to achieve the highest 

yield in each location should be applied spitted on 30 % of the total nitrogen at planting and 70 % at side-
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dress (V6). Using 112 kg N ha
-1

, the NUE under irrigated conditions could be kept above 82 % for both 

locations.  

Results for scenario B also indicated variations in yield and N uptake under different rainfall 

conditions. Under rainfall conditions corresponding to a wet March-June period and late dry conditions 

during the July-August period, a higher N response was observed at EVS as compared to years with 

March-June dry and July-August wet. Those conditions provided a prolonged time under sufficient water 

for plant growth, development, and flowering, plus enhancing N uptake. However, no N was needed to 

achieve maximum yield under rainfall conditions for either combination (wet-dry or dry-wet). Water 

stress in either situation (wet-dry or dry wet), limits growth and development (dry-wet combination) or 

grain filling (wet-dry combination) which results in low amounts of N (no fertilizer) required to achieve 

maximum yield. In contrast, at the TVS rainfed, corn N response was only observed for the 56 kg ha
-1 

N 

rate. There was no yield response to higher N rates due to limited rain on the dry period of either 

combination (dry-wet and wet-dry). 

Under scenario B- Irrigated for EVS, no significant differences between dry-wet and wet-dry 

combinations were observed. From the average between dry-wet and wet-dry combinations was possible 

to conclude that 112 kg N ha
-1

 spitted on 30 % at planting and 70 % at side-dress was the optimum N rate 

to achieve maximum yield. For TVS irrigated under the wet-dry combination, 56 kg N ha
-1

 applied at 

side-dress (V6) was sufficient to achieve maximum yield. However, for the dry-wet combination, 

achieving higher yield than the wet-dry combination the N rate of 112 Kg N ha
-1

 was optimum for 

maximum yield. Lower yield in the wet-dry combination was attributed to cloudy days with excessive 

rainfall for prolonged periods (high AWDR index values) causing occasional water flooding which 

affects roots respiration reducing crop yield.  

Results from these studies could be used by farmers as decision support tools to improve N 

management in corn under the growing conditions of Central and North Alabama. However, better 

climate and weather forecasts for in-season rainfall changes is needed in order for the farmers to use the 
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information about the rainfall amount and distribution as decision tools for assessment of in-season N 

management.
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