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Abstract 
 

Dielectric composites are promising materials for many applications. 

Polymer-based 0-3 composites with a high dielectric constant represent an important 

category of dielectric composites being studied in research.  

Different conductors were used as filler for 0-3 dielectric composites. By 

combining solution casting and hot-pressed processing, two nanocomposites with 

nano-sized Ni particles embedded into copolymer poly (vinylidene 

fluoride-co-trifluoroethylene) [P(VDF-TrFE)70/30 mol%] and poly (vinylidene 

fluoride-co-chlorotrifluoroethylene) [P(VDF-TrFE) 88/12 mol%] have been prepared. 

Uniform dispersion of nanoparticles in nanocomposite materials was achieved by 

improvement of processing conditions. Dielectric constants of more than 1000 with 

relatively low loss were obtained in both systems. Both composites had a high 

percolation threshold (φc>50 vol.%), making the material reproducible for practical 

applications. 

Novel all-organic dielectric composites based on polypyrrole (PPy) nanoclips were 

prepared by the same process as Ni-polymer composites. Due to their 2D structure and 

large surface area, the composites were highly flexible with a high dielectric constant 

and a low φc (φc<8 wt.%). Dielectric constant more than 1000 was obtained in 

PPy-P(VDF-TrFE) composites. The dielectric constant of a composite with 8 wt.% of 
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PPy is more than 100 times higher than that of the P(VDF-TrFE)70/30 matrix, rising to 

1200 at room temperature.  

From study of Ni-polymer composites and PPy-polymer composites, a new 

dielectric process was observed in both composites, which was a relaxation process 

with a very low relaxation frequency. There are three mechanisms in this 

conductor-polymer composite: 1) the dielectric relaxation process from the polymer 

matrix, 2) the new dielectric relaxation process from the composite, and 3) the 

conductivity of the conducting filler. 

From study of Ni-polymer composites and PPy-polymer composites, the φc and 

critical value (s) of composite are different with the selecting data at different frequency 

and temperature. This conclusion was confirmed using six reported systems with 

different conducting fillers from literature. High length-to-width ratio may cause much 

of the difference in φc and s with different frequencies. 

The mechanism behind the dielectric properties of conductor-dielectric composites 

was explained in this dissertation by introducing the dielectric loss (or conductivity). In 

this research, the contribution of the loss to the effective dielectric constant (εeff) is 

dependent on the microstructure of the composite. Three different models were 

studied: the series model is for 2-2 composite, Maxwell model is for 0-3 composite 

and Lichtenecker's logarithmic mixing model leads itself to 0-0 composite. The 

conductivity of matrix and filler both have much effect on the dielectric constant and 

loss. A way to develop composites with high dielectric constant and low loss was 

introduced. 
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CHAPTER 1                                   

Introduction and Literature Review 

1.1. Fundamentals of Dielectrics 

Dielectrics are widely used in electronic and electrical devices/systems [1-3]. The 

performance of a dielectric material is characterized by their complex permittivity (*) 

for the dielectrics used under weak electric field, by their polarization-electric field 

(P-E) relationship and their breakdown field (i.e., dielectric strength, Eb) for 

dielectrics used under a high electric field. Based on the applications, there are 

different needs for dielectric materials. For some applications, such as insulation 

materials of integrated circuit, dielectrics with a low dielectric constant (i.e., low-k 

materials) are highly desirable, while for some other applications, such as gate 

dielectrics in field-effect transistors, dielectrics with a high dielectric constant are 

preferred. Dielectrics used under a high electric field generally require a high Eb with 

low loss at the applied electric field. 

1.1.1. Dielectrics and Capacitance  

A dielectric is an electrical insulator which can respond to an external stimulation, 

electrical field, E , with electrical polarization, P , which reflects the induced dipole 

moments p  as [4, 5]: 

      
dv

p
P

N

i

 1                                                            (1-1)  

The permittivity ε* is defined by: 
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      PED  0                                                 (1-2)                

      EED r 0
**                                               (1-3)                

where D  is electric displacement, 0 is the permittivity of vacuum (8.8542×10−12 

C2/J·m), * is permittivity of the material, r
* is relative permittivity (=  */0 = ε'r –jε''r). 

ε'r is typically called the dielectric constant. Combining equations (1-2) and (1-3), 

results that: 

      EP r 0
* )1(                                               (1-4)                

 Due to the complex nature of r
*, there is a phase difference between D  and E . 

The phase difference defines the dielectric loss (tanδ) as: 

      
r

r






tan                                                           (1-5) 

where δ reflects the phase difference 90- between the D  and E . 

When an AC electric field with a sinusoidal wave function at an angular 

frequency, ω, (i.e. E(t)=E0 sin(t), where E0 is a constant and t is the time) is applied 

onto a dielectric, there is a displacement current going through the dielectric, the 

density of displacement current is 

      )(
)( *

0 tEj
t

tD
J

rD 



                                         (1-6) 

If the dielectric has a non-zero electric conductivity, , there will be a conducting 

current, the density of the conducting current is 

      )(tEJC                                                           (1-7) 

Therefore, the total current going through a real dielectric would be 

        )()(*
0 tEjJJJ rCDT                                   (1-8) 
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That is, if a dielectric with non-zero electric conductivity is experimentally 

characterized, the response includes both the dielectric and electric conductive 

response. If the measured response is treated as the dielectric response only, the 

electric conductivity would contribute to the measured imaginary part of the 

permittivity as    

      






0

"
con                              (1-9) 

In this case, the measured permittivity and its imaginary part are 

      











0

*
, )()()( rrmeasr j                                  (1-10a) 

      


0

, )()(  rmeasr                                           (1-10b) 

The corresponding dielectric loss is  

      
r

r









 0tan                                                    (1-11) 

If the dielectric is treated as a conductor,  

      )()( ,00Re  measral                                       

(1-12) 

1.1.2. Mechanism of Polarization  

The dielectric response, P , in a dielectric material may originate from different 

mechanisms [4, 5]. For a homogeneous material, the dielectric responses have, in 

general, four mechanisms (as illustrated in Figure 1-1).  
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Figure 1-1. Schematic of (a) electronic polarization, (b) ionic polarization, (c) 
orientational polarization, (d) space charge polarization. 

(1) Electronic polarization: The electric field causes the displacement of the outer 

electron cloud from the inner positive nucleus. This polarization has a 

response time of 10-14~10-16 s and is independent of temperature. 

(2) Ionic polarization: Ions response to an electric field with a change in the 

relative distance in between ions. The response time is about 10-12~10-13 s and 

is almost independent of temperature. 

(3) Orientational Polarization: If there are dipoles existing in a material, the 

electric field E  would generate a torque on each dipole and the torque would 

cause the dipoles align along the electric field direction. The response time is 

about 1~10-8 s and is strongly dependent on temperature. 

(4) Space charge polarization: When the space charge appears in the dielectric 

material, the electric field, E , generates a force on the particle, which 

separate the positive and negative charges. Therefore, there are some dipole 

moments formed. The response time is large than 10-5~1 s which is strongly 
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dependent on temperature. 

The dielectric response of each polarization mechanism changes with frequency f, 

but with different patterns. The electronic and ionic polarization result in a dielectric 

response, while the response of the orientational and space charge is relaxation 

polarization. The * versus frequency for a dielectric with all four polarization 

mechanisms is shown in Figure 1-2.   

 
Figure 1-2. Frequency dependence of the permittivity for a dielectric with four 

different types of dielectric responses: (a) real part and (b) imaginary part. 

1.1.3. Dielectric Relaxation 

In classical physics, the dielectric relaxation is often described using simple 

Debye equation as: 

      
01

)(*



j
s

r 


 
                                              (1-13)                 

      
2

0
21

'






 


s
r                                                  (1-14)                 

      
2

0
2

0

1

)(
"







 s
r                                                  (1-15)                 



 
 

6 
 

      2
0

2
0)(

'

"
tan















s

s

r

r                                          (1-16)                 

where 0 is the so-called relaxation time of the relaxation process (f0=0/2π = 1/2π0 

is called the relaxation frequency), s is the static permittivity (=0), ∞ is the 

permittivity at high frequency limit (=∞). The “s-∞” reflects the contribution of the 

relaxation process to the static dielectric constant and is also called as the permittivity 

strength of the relaxation process. The schematic dependence of ε'r, ε''r and tanδ on 

the angular frequency,  , based on Debye equation is shown in Figure 1-3. At the 

relaxation frequency, the imaginary part of the permittivity reaches its maximum, 

while the dielectric loss reaches its maximum at a frequency, (rs/r∞)1/2(0)
-1 (>0).  

 

Figure 1-3. Frequency dependence of ε'r, ε''r and tanδ calculated using Debye 
equation. 

It should be mentioned that the Debye equation describes the dielectric response 

of the simplest case of a relaxation process. For a real material, the frequency 

dependence of the permittivity is usually much more complicated. In these cases, the 

concept of multiple relaxation times is used. That is, Eq. (1-13) becomes: 
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      



















n

i i

i
ir j1 ,0
, 1

)(*

   (i=1, 2, 3…n)                       (1-17)          

where 0,i is the relaxation times of the ith relaxation process, Δi is the permittivity 

strength of the ith relaxation process, s,i is the multiple static permittivity (=0). 

When there are too many relaxation times, a distribution of relaxation time is usually 

used. All of these relaxation processes make the frequency dependence of the 

dielectric constant much more complicated.  

In 1980s, Johnscher took a new approach to study the dielectric response [6]. In 

his approach, the imaginary part of the permittivity is used and plotted versus 

frequency as shown in Figure 1-4.  

 

Figure 1-4. The schematic of r" as a function of in log-log relationship. 

It is observed that logε''r ~ logω shows a linear relationship when the frequency is 

much higher or lower than the relaxation frequency, ω0. That is,   

      m
r  "  (ω<< ω0)                               (1-18)  

     1'"  m
r   (ω>>ω0)                                          (1-19) 



 
 

8 
 

Based on this approach and the results from many dielectrics, it is concluded that 0< 

m<1 and 0<m'<1. Actually, for a simple Debye process described by Debye equation 

Eq. (1-12), m=1 and m'=0.  

 Considering the conductivity discussed in Section 1.1.1, the electrical 

conductivity will contribute to the measured ε''r. When Johnscher’s approach is used, 

the imaginary part of the measured permittivity can be written as 

      





0

0
, )("  m
measr                                              (1-20) 

If the measured electric conductivity is used, one can get that the real part of the 

measured electrical conductivity is dependent on the frequency as: 

       
nm

meas AA   
0

1
0)(                                (1-21) 

where 0 is electric conductivity (a constant), A and n are constants. 

1.2. Dielectric Materials 

Various dielectrics, such as gases, liquids, and solids, are widely used in the 

current industry for different applications based on their different and unique 

dielectric properties [7-12]. All dielectric materials can be classified either by its 

structure or its composition.  

By the structure, dielectrics can be classified into two major categories: 

nonpolar materials and polar materials [1]. A nonpolar material is a material whose 

molecule or unit cell does not have a permanent dipole moment. A polar material is a 

material possessing a permanent dipole moment which is associated with its molecule 

or unit cell. In some of the polar materials, the interaction among these dipoles is so 
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strong that these dipoles align along the same direction, which results in a 

spontaneous polarization Ps (i.e. the material has a polarization without an electric 

field applied on it). These materials are named as pyroelectric materials. The 

pyroelectric materials have a critical temperature (i.e. Curie temperature). The 

material is pyroelectric when the temperature is lower than the Curie temperature, 

while the material is paraelectric (PE) when the temperature is higher than the Curie 

temperature. If the Ps in a pyroelectric material can be switched by an external electric 

field, the material is called as ferroelectric (FE) material. Since the electric field can 

switch the Ps in a ferroelectric, FE materials usually exhibit a very high dielectric 

constant, especially at temperature around the FE-to-PE phase transition temperature.  

By the composition, dielectrics can be classified into inorganic and organic 

materials. With regard to solid dielectrics, both polymers and inorganic compounds 

are widely used. In general, polymers have a low processing temperature, are 

flexibility with the ability to withstand a high mechanical impact, and exhibit a high 

breakdown field, but exhibit a lower dielectric constant. Inorganic dielectrics exhibit a 

high dielectric constant, but require a high process temperature and are brittle with a 

lower breakdown field. All of these materials are of interest for many applications.    

1.2.1. Inorganic Dielectric Materials   

For the nonpolar inorganic materials, they usually have a low dielectric 

constant, such as εsilicon≈3.7, εdiamonds≈5.5~10, εparfin≈1.9~2.5, εcarbon tetrachloride≈2.0 and 

εQuartz ≈4.4 [1]. R. F. Cava et al. reported a dielectric material (Ta2O5)0.92-(TiO2)0.08 

which has a relative high dielectric constant (~126 at room temperature) [11].This is 
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the highest dielectric constant found to date in a nonpolar material. 

The polar inorganic materials such as the ferroelectric ceramics and crystals, 

usually exhibit a high dielectric constant (~103). For example, the widely studied/used 

ferroelectric BaTiO3 (BT) exhibits a dielectric constant of 1500. The dielectric 

constant of other ceramics Pb(Mg1/3Nb2/3)O3(PMN) and Pb(Zr0.52Ti0.48)O3(PZT) at 1 

kHz are larger than 1000, such as εPMN=5500, εPZT=1300, etc [12, 13]. Although these 

ferroelectrics exhibited a high dielectric constant, their dielectric constant is strongly 

dependent on temperature. For example, their dielectric constant shows a maximum at 

the FE-to-PE phase transition temperature as shown in Figure 1-5(a). At temperature 

higher than this phase transition temperature, the dielectric constant is dependent on 

the temperature by the Curie-Weiss law as [12]:  

      
c

r TT

C


'                                                    (1-22)                

where Tc is the Curie temperature and C is the Curie constant. 

Some ferroelectric based solid solution ceramics/crystals, such as PMN, 

exhibit a so-called relaxor ferroelectric behavior. The relaxor ferroelectrics have a 

weaker temperature dependence on the dielectric constant than the ferroelectrics at 

temperatures around Curie temperature. And they exhibit a very high dielectric 

constant in a broad temperature range as shown in Figure 1-5(a). However, the 

dielectric constant of the relaxor ferroelectrics is still strongly dependent on the 

temperature, and more importantly, their dielectric constant is strongly dependent on 

the frequency as shown in Figure 1-5(b).  



 
 

11 
 

 
Figure 1-5. Dielectric constant versus temperature. (a) BaTiO3 FE ceramics with 
different grain sizes at frequency of 1 kHz [13]; (b) 0.9PMN-0.1PT Relaxor FE 

ceramics different frequencies from 100 Hz to 100 kHz [14]. 

In the last 15 years, some inorganic non-ferroelectric materials with very high 

dielectric constant (~104) have been developed, such as CaCu3Ti4O12 (CCTO), 

Bi2/3Cu3Ti4O12 or in the ACu3Ti4O12 family. These materials are very interesting for 

dielectric study and applications. Among these materials, CCTO is of interest since it 

exhibits a high dielectric constant that is nearly independent of the temperature over a 

broad temperature range from 100 to 400 K at frequencies below 1 MHz [15, 16].  

1.2.2. Dielectric Polymers  

Various polymers, such as epoxy, polyethylene (PE), polyester (PS), poly(methyl 

methacrylate) (PMMA), poly(vinyl chloride) (PVC), polyurethanes (PU), and 

Polytetrafluoroethylene (PTFE) have been studied as dielectrics based on their 

processibility, flexibility, dielectric response, dielectric strength, melting temperature 

and glass transition temperature for different applications. The non-polar polymers 

exhibit a small dielectric constant. For example, εepoxy=4, εPE=2.2~2.4, εPS=2.8~4.5, 

εPTFE=2.1, etc [7-13].  

To achieve a high dielectric constant in polymers, polar polymers have been 
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widely studied and used as dielectrics. Ferroelectric poly(vinylidene fluoride) (PVDF) 

is the most studied polar polymer. PVDF homopolymer and PVDF-based copolymers 

and terpolymers, such as poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)], 

poly(vinylidene fluoride-chlorotrifluoroethylene) [P(VDF-CTFE)], poly(vinylidene 

fluoride-hexafluoropropylene) [P(VDF-HFP)] and P(VDF-TrFE-CFE), have been 

developed and studied as dielectrics [17-25]. All these polymers exhibit a dielectric 

constant around 10 at room temperature and their dielectric constant can be as high as 

~70 at their FE-to-PE phase transition temperature, as shown in Figure 1-6(a). The 

PVDF-based ferroelectric polymer can also be modified into relaxor ferroelectrics by 

irradiation as shown in Figure 1-6(b).   

  

Figure 1-6. Dielectric constant at different frequencies versus temperature for 
P(VDF-TrFE) films during cooling with a rate of 2 °C/min: (a) unirradiated and (b) 

irradiated under 50 Mrads [18]. 

The ferroelectricity in polymers originates from the dipole associated with the 

configuration of polymer chain, such as (-CH2-CF2-) in PVDF has a dipole moment of 

about 7.06×10-30 Cm. For PVDF-based copolymers, TrFE and CTFE are very 

interesting since these copolymers exhibit a high electromechanical response and have 

a high energy storage capability. The difference and similarity among VDF, TrFE, and 
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CTFE monomers are shown in Figure 1-7. 

 

Figure 1-7. The chemical units of VDF, TrFE and CTFE. 

1.3. Dielectric Composites 

A composite is a mixture of materials with significantly different physical or 

chemical properties in an attempt to obtain some advanced properties. The physical 

properties of a composite can be the sum, combination, and product of the properties 

of its constituents based on their physical properties and connectivity. For example, 

the total mass of a composite is simply the sum of the mass of each constituent. The 

connectivity was first classified by Newnham et al [26]. For the composites with two 

constituents, their connectivity can be defined as 0-0, 1-0, 2-0, 3-0, 1-1, 2-1, 3-1, 2-2, 

3-2, and 3-3 as shown in Figure 1-8, where 0/1/2/3 represent the number of 

dimension in continuity for each component in the composite [27-31]. For example, a 

0-3 composite is defined as 0-dimention (i.e. isolated) of a particle is embedded in 

3-dimention of a continuous media. The matrix is the “glue” that holds the composite 

together and usually the softer phase compared to filler [6, 31].  
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Figure 1-8. Ten connectivity patterns in diphasic composite [27]. 

Dielectric materials which are flexible with a low processing temperature, 

exhibit a high dielectric constant, and have a high breakdown field, are required for 

many applications. To meet these different needs dielectric composites, especially 0-3 

composites using dielectric polymer as matrix, have been widely studied in last three 

decades.  

Based on the fillers used, the polymer-based 0-3 composites can be classified into 

two types: one is dielectric-dielectric composites in which the fillers are dielectric 

materials; the other is conductor-dielectric composites where the fillers are conducting 

materials as shown in Figure 1-9 [32, 33]. 

 

Figure 1-9. Schematic of two types of polymer-based 0-3 composites. 
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In both types of composites, the polymer matrix plays a key role in the dielectric 

performance of the composites. For example, the breakdown field of a composite is 

mainly dependent on the polymer matrix; the dielectric constant of a composite is 

strongly dependent on the dielectric constant (m) of the polymer matrix. Therefore, 

many polymers, such as PMMA, PVC, PU, PVDF and its co/ter-polymer, have been 

used in the development of composites [21-25]. 

The dielectric property of a conductor-dielectric composite is determined by the 

percolation phenomenon [32]. That is, when the volumetric content of conducting 

filler is lower than a certain value (i.e. percolation threshold φc), the composite is an 

insulator/dielectric and the dielectric constant increases with increasing filler content. 

As the filler content approaches the φc, the dielectric constant increases with 

increasing filler content very rapidly so that a giant dielectric constant may be 

obtained in the composites close to φc. If the filler content is higher than the φc, the 

composite is a conductor. Therefore, the φc is very critical for a conductor-dielectric 

composite. The φc is dependent on the geometry, shape, size, distribution of the 

conducting fillers [33, 34]. Therefore, conducting fillers with various shapes 

(spherical, core-shell, tube, and bar/wire like) ranging in size from micrometers to 

nanometers have been studied [35-38]. Semiconductors have also been used as fillers 

[39-41]. It should be mentioned that it has been experimentally demonstrated/found 

that the φc is also strongly dependent on the process used to prepare the composite. 

This is related to the distribution of the filler, since for the same composite system, 

different process can result in different distribution of the filler, which can have 
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different φc. 

For dielectric-dielectric composites, it is extremely important to find fillers with a 

high dielectric constant. Therefore, many ferroelectric and relaxor ferroelectrics have 

been widely used in the development of dielectric-dielectric composites due to the 

fact that these materials exhibit a high dielectric constant as described in Section 

1.2.1[42-47]. Since the discovery on high dielectric constant in CCTO [48, 49], it has 

been of interest in utilizing CCTO for the development of composites. This is a new 

avenue for the development of dielectric composites [50].  

The effective dielectric property, εeff, of a composite is certainly dependent on the 

volumetric fraction () of the filler and the properties of the filler and matrix. 

However, the exact relationship between the dielectric property of the composite and 

each constitutes can be very different.  

1.4. Polymer Based 0-3 Conductor-Dielectric Composites 

1.4.1. Percolation Theory 

The effective dielectric constant of a 0-3 conductor-dielectric composite is 

dependent on the volumetric content of conductor filler as shown in Figure 1-10. At 

the lower concentration of filler, conductive particles are separated from each other 

and randomly distributed into the matrix. The corresponding electric properties of the 

composites are dominated by the matrix. With increasing filler concentration, local 

clusters of particles begin to form and the dielectric constant increases. As the filler 

content approaches a certain value, the pattern of conductive particles creates the 

infinite conductive cluster and a network of channels connected by the conductive 
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fillers. At the same time, the dielectric constant increases abruptly, reaching a very 

high value. This critical value of filler content is the so-called percolation threshold, 

where the c is the composition at which the conductor particles form channels 

through the composite [32, 36]. The c is dependent of many factors, such as size, 

shape, as well as their distribution of filler particles, microstructure of the composite. 

For a real conductor-dielectric composite, the c is dependent on the microstructure of 

the composite.  

  

Figure 1-10. Effective dielectric constant of a 0-3 conductor-dielectric composite 
versus the volumetric content of conducting filler (), where c is the percolation 
threshold (dashed blue line). The insets show the microstructure of the composite. 

For ordered binary composites, if the filler particles are spherical with the same 

diameter, a c of 74%, 68% and 52% can be obtained for the filler particles with an 

ordered face centered cubic (FCC), body centered cubic (BCC), and simple cubic (SC) 

structure, respectively. For a truly random distribution of the filler, the c is one third 

[51]. Certainly, the size and shape of the conducting filler particles as well as their 

orientation also have a strong influence on the c [32]. For a real composite, 
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determining the c can be a challenge.  

The shape of filler can be roughly classified into two types: one is spherical fillers 

and another is ellipsoidal fillers (including bar, tube, fiber etc.). If the composite is 

treated as a random mixture of two types of spherical particles, the particle size of the 

matrix is R1 and the particle size of the filler is R2, It is obtained that the φc is about 

~0.16 for R1/R2~1 and larger than 0.16 if R1/R2>>1 [36, 52]. A continuous percolating 

cluster of the minor phase is formed at φc<0.16. The φc of the composites with 

spherical filler can be smaller than 0.1 by use of this approach. For ellipsoidal fillers, 

because it is easy for ellipsoidal fillers to connect with each other, the φc value may 

decrease to much less than 0.16. For ellipsoidal fillers with a large aspect ratio [i.e., p 

= (length of the long axis)/(length of the short axis)], it was obtained that φc∝1/p, (i.e., 

φc decreases with an increase in the aspect ratio), as shown in Figure 1-11[32, 53].  

 

Figure 1-11. Dependence of c on the aspect ratio p of the fillers in composites filled 
with randomly oriented C and Al fibers [32, 55]. 

For the composites in the insulator regime (<c), the dependence of the effective 

dielectric constant on the filler content has been an interesting topic in last three 
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decades. Actually, the influence of the conducting metal filler on the dielectric 

response of a dielectric was first recognized, independently by Cavendish in 1773 and 

Faraday in 1837 when they connected a dielectric with a metal in series [54, 55]. 

Maxwell showed the residual-charge effect which can be accounted for different 

materials connected by a parallel pattern having different dielectric properties and 

conductivities [55]. The effective dielectric response of this series connection of an 

ideal dielectric and an ideal conductor is: 
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where φk, εk, σk are the volume fraction, dielectric constant and conductivity of the kth 

component, respectively (k=1, 2, 3…n). For a real composite, it can be a challenge to 

simulate the effective dielectric response of a composite. For example, the 

conductivity of the filler and the connectivity/microstructure of the composite as well 

as the size and shape of the filler particles will play some role. 

For a typical binary mixture, a dielectric sphere with radius a and relative 

dielectric constant, ε1, are surrounded by a spherical shell with outer radius b and 

relative dielectric constant, ε2. The volume fraction φ is (a/b)3. The effective dielectric 

constant of this system is 
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Wagner considered a sphere as a conductor with a conductivity σ dispersed in a 

non-conducting media with relative dielectric constant, ε,  



 
 

20 
 

      
0

1 
 j  and  2                                     (1-25) 

Combining Eq. (1-25) with Eq. (1-24), 
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Based on a random resistance network model [56], it was concluded that the eff 

at low frequency can be approximately expressed as  

        1
)()(


   cceff BA                     (1-28) 

where φ < φc, A >0, B >0, α >0, and β >0. For a random binary system, it was 

obtained as   

      
s

cmeff
 )(                                  (1-29) 

where φ < φc and s (> 0) are constants [57]. A numerical simulation was used to 

determine the value of s. It was concluded that s  0.7 [58].  

Equation (1-29) is much simpler than Eq. (1-28). Therefore, Eq. (1-29) is widely 

used in the literature to fit experimental results [32-37]. In the literature, Eq. (1-29) is 

normalized as: 
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since the dielectric constant of the composite should be εm when φ = 0.  

It was also found that the eff of a conductor-dielectric composite with  close to 

c is strongly dependent on the frequency. For example, it was showed that [56]: 

      
1 eff                                 (1-31) 

where  (<1) is a constant and ω is the angular frequency. Based on numerical 

simulations, the value of  has been proposed. For a random resistance networks, it 

was indicated that   0.73  0.05 [56], while for a random binary medium, it was 

indicated that  =0.75  0.05 [57]. It should be mentioned that, in reality, the 

composite with a composition close to φc may have a much higher conductivity than 

what has been obtained from theory research since quantum mechanical tunneling 

through the insulating barriers may not be ignorable.  

The conductor-dielectric composite has been widely studied for the development 

of composites with high a dielectric constant since the 1980s [38, 39, 55, 57]. In last 

30 decades, conductor-dielectric composites using dielectric polymers as matrix have 

been extensively studied due to the composites flexibility. The polymer based 

conductor-dielectric composites studied so far can be classified into three categories 

based on the conductor filler: 1) metal; 2) carbon-based filler; 3) conducting polymer 

(CP). Metal particles are the most commonly used as conductor filler due to the fact 

that these particles can be easily prepared.  

1.4.2. Metal Particles Embedded in Polymer 

Metal-polymer composites have been widely studied and employed for different 

applications, such as for static or electromagnetic interference (EMI) shielding [59, 
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60]. Particles of various metals have been used in the development of composites with 

high a dielectric constant, such as Ni, Ag, Cu, and Al, which are the most commonly 

used for metals, as shown in Table 1-1 [61-70]. For example, a dielectric constant as 

high as 2000 has been reported for an epoxy filled with 10 µm silver flakes [65]. It 

was experimentally found that the composites with nano-sized metal particles have a 

lower dielectric constant and a low dielectric loss than that with micro-sized metal 

particles. In an Al-epoxy composite [68], a dielectric constant around 100 and loss 

tangent around 0.02 were also observed. This could be attributed to tunneling network 

composed of the self-passivated Al particles with thick outside Al2O3 shells. 

Ni is one of the more popular metals that have been studied by different groups 

[61-64]. Panda et al [61] observed a threshold composition of 0.278 in cold 

compacted Ni-PVDF. Further, they also prepared composites using 20μm Ni particles. 

In this case, the percolation threshold increased to 0.57 vol.% of Ni [62]. The mixture 

pressed at room temperature under 30 MPa for nano-size composites and 8 MPa for 

micro-size composites, respectively. The φc obtained in the composites with 

nano-sized fillers was lower than with micro-sized fillers. This indicated that the size, 

shape of the filler, and its volume fraction in the composite actually play a significant 

role in the dielectric constant and the percolation threshold by affecting the distance 

between particles and the interfacial area between filler and matrix. 
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Table 1-1. The dielectric properties of conductor-polymer composites  

Filler Matrix Filler’s size Dielectric properties Parameters Freq 

(Hz) 

Ref 

   φm εr max tanδ φc s γ  

Metal 

Ni PVDF 20-30nm 28% 1273 2.04 27.8% 0.82  1k [61] 

Ni PVDF 20µm 57% 995 ~1 57.2% 0.72  1k [62] 

Ni PVDF 5µm 20% 400 0.18 17% 0.89  100 [63] 

Ni PVDF 50nm 20% 70 <0.1 20% -  1k [64] 

Ag flake epoxy 10 µm 11.4% 2000 0.24    10k [65] 

Ag  PVDF D: 100nm 

 L: 20μm 

2% 379 0.25 20% 0.89  1k [66] 

Ag PI 0.5µm 12.5% 400 - 12.2% 0.27   [67] 

Al epoxy 3μm 80% 30 0.02    1k [68] 

Cu PE 20-25μm 20% 50 0.04    1k [69] 

Steel  PVDF D:30μm  

L:500μm 

10% 427 800 9.4% 0.36  50 [70] 

Carbon 

CF PE D: 2-8μm  

L: 100μm 

30% 35 <0.2 30% 1 0.82 200k [71] 

CF PVDF D: 8μm  

L: 100μm 

7.4% 80 <0.1 6.6% 0.86 0.82 1k [72] 

Carbon PU 130nm 10% 2000 1000 10% 1.78  129 [73] 

MWCNT PVDF - 2% 300 <0.8 1.6% 0.31  1k [74] 

MWCNT PVDF D:10-20nm 

L:30μm 

6% 1500 <2 3.8% 1.05  1k [75] 

MWCNT PVDF D:10-30nm 

L:10μm 

15% 5000 <2 8% 1.63  1k [76] 

MWCNT PVDF D:20-40nm 

L:15μm 

12% 2000 1 10.4% 1.06  1k [77] 

Graphite  PVDF D:0.5-25μm 

T:20-60μm 

2.34% >107 >200 1.01% 0.76  100 [78] 

Graphite HDPE 10-20μm 10% 4000 >800 4% 0.76 0.78 50k [79] 

MWCNT LDPE D:20-40nm 

L:5-15μm 

10% 400  9.6%   1 [80] 

         [81] 

MWCNT PVDF D:20-40nm 

L:5-15μm 

13% 6000  9.2%   1 [81] 

Conducting polymer 

PANI P(VDF-T

rFE-CFE) 

<1 μm 25.1% 5500 0.6 25.9% 0.95 0.79 1k [82] 

PANI PVDF D:20-50nm 

L:0.1-0.2μm 

2.9wt% 700 <1 2.9wt% -  100 [83] 

PANI PVDF 100nm 5% 400 <1 4.2% 0.3  1k [84] 

PANI PVDF 100nm 20wt% 170 0.8 27% 0.48  100 [85] 
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Compared to Panda, Dang et al. demonstrated ideal percolative behavior in 

hot-molded Ni (micro-size)-PVDF composites with a percolation threshold Ni 

vol%=0.17 [63]. They hot pressed the composite under 10MPa at 200oC instead of 

room temperature. Again, it is demonstrated that composites with nano-sized metal 

particles have a lower dielectric constant (εr ~70) with a low dielectric loss (<0.1) 

compared to those with micro-sized metal particles (εr ~400) [63]. Xu et al. used a 

solution method, KH550 coupling agent and pressed under 18MPa at 200oC to 

improve the dispersion and affinity of Ni particles in the PVDF matrix [64]. The 

dielectric constant was found to be 70 with a loss smaller than 0.1 at 1 kHz with the 

Ni vol% is 20%. All of these results indicate that dielectric properties of the 

metal-polymer composite are dependent on processing conditions and size.  

1.4.3. Carbon Filler Embedded in Polymer 

Percolation thresholds can be significantly reduced by using a conductor fiber, as 

shown in Table 1-1 [71-81]. For example, composites made of carbon fiber filling 

PVDF resulted in the φc smaller than 10% [72, 74-76]. Additionally, fiber-based 

composites should have a better flexibility than the particle-based composites. 

Although different fibers have been studied, most of efforts were given to carbon fiber 

and carbon nanotube (CNT) due to the fact that they can be easily prepared with a 

larger length(L)/diameter(D) ratio. This aspect ratio can be tuned over a great range 

[76-78]. Carbon fillers have a higher intrinsic conductivity (105~108 S/m) and a 

significantly lower density than metals. More importantly, carbon-based fillers have a 

high compatibility with polymer matrices. CNT has a higher aspect ratio and a much 
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higher conductivity and flexibility compared to carbon fibers. Therefore, a higher 

dielectric response is expected and obtained in CNT-based composites. For example, a 

dielectric constant of 1000 has been reported in several composites [75-78]. 

Unfortunately, the composites using a conducting fiber as a filler exhibited a very 

high loss.    

1.4.4. Conducting Polymer Embedded in Polymer 

Recently, all-organic composites have been developed using conducting polymers 

(CP) as filler which have a high dielectric constant [82-85]. There are three main 

reasons that the conducting polymer is a good candidate filler for the development of 

composites with high dielectric constant. Firstly, the CP have an inherent advantage 

that the conductivity can be adjusted by very simple inorganic/organic acid doping. 

Secondly, CP-dielectric polymer composites are all-organic composites which may be 

prepared as homogeneous films resulting in good mechanical properties. Thirdly, the 

organic interface bonding between two polymers may be prepared in polymerization 

at one time. The polyaniline (PANI)-PVDF composites have been studied over the 

wide ranges of temperatures and frequencies. Huang et al. reported that the composite 

had a very high dielectric constant (>5000) and low loss (0.6) at 1 kHz [82]. Moreover, 

this composite was very flexible which show high electromechanical response. To 

improve the interface bonding between two polymers, organic acid was used as a 

doping agent, (Dodecylbenzene sulfonic acid (DBSA) [83, 85] and perfluorosulfonic 

acid (PFSA) [83]). The PFSA can improve the performance of the PANI because it 

serves as a surface passivation layer for the conductive fillers. The dielectric 
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properties and parameters of percolation characterizations are listed in Table 1-1. It 

can be concluded that the CP-polymer composites are promising. However, their 

development is limited by the size and shape of CP available fillers. 

1.4.5. Summary of Conductor-Polymer Composites 

The conductor-dielectric composites can exhibit a high dielectric constant when 

the filler concentration is close to the φc (can be as small as 10 vol.%). Unfortunately, 

these composites exhibit a high dielectric loss and a low Eb. This can be reduced by 

using a high insulating barrier between the filler and matrix. For example, core-shell 

particles, which have a thin insulator shell, show some promises [86-90]. However, 

further research is needed.  

As discussed in Section 1.4.1, the c is dependent of many factors, especially the 

microstructure of the composite, which is strongly dependent on preparation process. 

If the conducting fillers disperse homogeneously in the matrix, the clusters in 

percolation theory have a high φ. That is, a high φc can be achieved by improving the 

filler distribution using different processes. 

However, it is very risky to prepare composite with a low φc due to the abrupt 

variation of dielectric constant near the threshold. A small deviation from the φc could 

result in significant drop of the dielectric constant, making it rather difficult to control 

the parameters of the preparation process. That is, low φc composites require not only 

the precise control of filler loading but extremely uniform distribution of the filler in 

the matrix. Compared to composites with low φc, composites with high φc have a 

wider “safe” range of volume fraction, which makes the material reproducible for 
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application, and can achieve higher dielectric constants. 

CP based composites are promising due to their good mechanical properties. 

However, the availability of CP particles is limited. Their size and shape are not well 

controlled and most CP are spheres or fibers.  

1.5. Dielectric-Dielectric Composites 

Understanding the dielectric response of a composite (or heterogeneous 

dielectrics) has been an interesting topic for fundamental research and applications. 

Actually, the dielectric property of a heterogeneous dielectric is one of earliest 

researched topics for the physics of dielectrics. For reasons of mathematical analogy, 

all the results are valid for dielectric constant, electric conductivity, heat conductivity, 

and diffusivity of such materials. Actually, many of models/formulas presented below 

for the calculation of the dielectric property of a composite were originally developed 

for the calculation of the conductivity or diffusivity of a mixture 

To determine the dielectric constant of a real composite, the polarization response 

to an electric field of a region that is filled with different dielectrics in some arbitrary 

way has to be calculated. This is an impossible task even if the detailed information 

about the dielectric constant and spatial distribution of each constitute is given [51]. 

Therefore, various models have been introduced to simulate the composites and many 

formulas have been proposed to describe the composition dependence of the dielectric 

constant for 0-3 composites. Some of these formulas are purely empirical, while some 

are based on simplified models of a composite/mixture with approximations in their 

derivation. In all these formulas, the dielectric property (i.e. the effective dielectric 
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constant εeff) of the composite is expressed as a function of composite’s composition 

(i.e. the content of fillers or volume fraction of fillers, φ), dielectric constant, εm, of 

matrix and the dielectric constant, εf, of the filler materials. In some models/formulas, 

one more parameter related to the filler particles, such as shape and orientation were 

also used.  

1.5.1. Dielectric Physics of Composite with Simple Configuration 

The most known models/formulas are two extremely simplified cases: parallel 

and series models/cases as shown in Figure 1-12, in which two dielectrics are used. 

The εeff of the mixture can be simply written as: 

      nnn
eff 2211                               (1-32) 

where φ1 and φ2 (φ1+ φ2=1) are the volume fraction of the dielectric 1 and dielectric 2, 

respectively, ε1 and ε2 are the dielectric constant of dielectric 1 and dielectric 2, 

respectively, and the n is either +1 for parallel case or -1 for series case. The 

dependence of εeff on the volume fraction of the dielectric 1 or dielectric 2 is plotted 

for series and parallel in Figure 1-13. 

 

Figure 1-12. Schematic of parallel pattern and series pattern. 
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Figure 1-13. Schematic of dielectric constant of two phases 1 and 2 vs. volume 
fraction in the mixture: 1, parallel connection; 2, series connection; 3, real composite. 

Equation (1-32) has been extended as a general formula with the n representing a 

variable related to the composite. Various n values/expressions have been introduced. 

For example, n = 1/2 (refractive index model) was proposed by Birchak et al. based 

on the study of refractive index [91] and n = 1/3 was derived by Landau and Lifshitz 

[92] and Looyenga [93], respectively, using different approaches. Based on the results 

obtained using Monte Carlo simulation and finite element methods for spherical 

particles randomly dispersed in a mixture, Wakino suggested that n = φ – φ0 [94]. Here 

φ0 is the critical volume fraction at which the curves of the dielectric constant 

predicted by the new equation and the logarithmic mixing rule intercept each other. 

The simulation results also indicate that φ0  0.35. Using the results obtained from the 

simulation based on Maxwell’s equation, Stölzle et al. [95] proposed 1.55φ + 0.25  n 

 1.65φ + 0.27 for φ < 0.25. A more complicated modification was proposed as [96]  

   
nnn

ff zz 2111e )1(                           (1-33) 

where z is a new correction factor which is dependent on frequency and n=Aφ+B with 
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both A and B as constants which are dependent on frequency.      

As shown in Figure 1-13, Wiener proposed that for a real composite, the εeff 

follows,  

        2211e

11
22

1
11  


ff              (1-34) 

Eq. (1-34) is named as the Wiener limits. It should be mentioned that the Wiener 

limits are not physically proven but only assumption.   

Lichtenecker recognized the Wiener limits and proposed a formula [97]: 
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where u is the relative weight of parallel connection and “1-u” is the relative weight 

of series connection. The limits in the dielectric response of a mixture are important 

for the development of new dielectrics. Various theorems have been established and 

applied to derive/determine the limits of dielectric response of a mixture. Hashin and 

Shtrikman gave the following limits for a 0-3 composite [98]:   
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Lichtenecker logarithmic mixing law: Lichtenecker treated mixtures/composites 

using statistics and proposed [97]: 

      2211 logloglog  eff      or    
21

21
  eff           (1-37) 

This is the Lichtenecker’s logarithmic mixing law, which is the most known model 

and has been widely used in literature to calculate the effective dielectric constant of a 

mixture/composite. It was also recognized by Lichtenecker that Eq. (1-35) and (1-37) 

have the same result when φ1=φ2=1/2 and u=1/2.  
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Similar with Eq. (1-32), the Lichtenecker’s logarithmic mixture law is symmetric 

with respect to its constituents. It is generally considered as a quasiempirical formula. 

The assumption used in its derivation was that each component has a random 

distribution of particle shapes and orientation so that the charge density within a 

component can be replaced by the mean charge density of the mixture [99]. This is 

different with 0-3 composites. That is, the Lichtenecker’s logarithmic law can only be 

used for the mixture in which the spatial distribution of shapes and orientations of the 

inclusions can be treated as statistically random. Therefore, the success (or failure) of 

the Lichtenecker’s logarithmic law in predicting the effective dielectric constant of a 

dielectric-dielectric composite is most likely allied to how well this condition is 

satisfied [99]. 

Modifications were introduced soon after the Lichtenecker’s logarithmic mixing 

law was proposed. One of these is 

      221112 log)1(log)1(log  uueff   

 or  
)1(

2
)1(

1
1221   uu

eff
                              (1-38) 

where u is a parameter introduced to modify the Lichtenecker’s logarithmic mixing 

law. It was believed that the Lichtencker’s logarithmic mixing law Eq. (1-37) is good 

for the ratio of ε2/ε1 less than 4, while the modified mixture law Eq. (1-33) extends the 

useful range of the ratio of ε2/ε1 to less than 10. However, the value of u is unknown. 

Later on, Bruggeman showed that the value of u is dependent on both ε1 and ε2 as 

[100]:   1212

12

222

3


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
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u .  
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1.5.2. Models for 0-3 Composites 

Considering its success in many cases, the Lichtenecker’s logarithmic mixing law 

was also modified to be used for 0-3 composite. That is,  
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where the parameter u represents the shape of the fillers. This was also widely used in 

literature for 0-3 composites. It was experimentally found that the value of u is about 

0.3 for most well dispersed ceramic-polymer composites. It should be mentioned that 

Eq. (1-39) is used for 0-3 composites, in which the volume fraction of the polymer 

matrix cannot be too small. Actually, it is easy to find that Eq. (1-39) gives an 

unreasonable results for φ=1.   

Rayleigh Models: In Rayleigh’s study in 1890s, the composites were treated as a 

medium in which the same dielectric spheres were embedded in a rectangular order in 

the dielectric [101]. The calculation resulted in an infinite series, of which each term 

represented an order of approximation. For the simplest case, the dielectric spheres 

were embedded in a cube order in air (dielectric constant=1). Rayleigh’s calculation 

showed that the εeff for a moderate value of φ can be approximately calculated by 
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For a small value of φ, it becomes: 
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If the air is replaced with a dielectric with a dielectric constant εm, Eqs. (1-40) and 

(1-41) become:  
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Equation (1-43) is also called in the literature as the Maxwell Garnett equation [102].  

Considering Eqs. (1-41) and (1-43), Wiener proposed [103]  
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where u (0<u<φ) is named as “form number.” It was assumed that the u is dependent 

on the shape and size of the filler particles, but not the value of φ. Later on, it was also 

proposed that the value of u is also dependent on εm and εf [103].  

Maxwell-Wagner equation: If filler particles are spherical in shape, the composite 

can be treated as a dielectric sphere (filler) surrounded by a concentric spherical shell 

(matrix) as shown in Figure 1-14. Therefore, the effective dielectric constant of the 

composite can be calculated as [99, 102, 104],  
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This is the Maxwell-Wagner (also named as Maxwell-Garnett) mixing rule. It has 
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been widely employed for calculation of the dielectric constant of 0-3 composites. 

Based on the assumptions used, the interaction between the disposed spheres is 

ignored. Therefore, this result is only effective for infinite dilution of the dispersed 

phase. That is, the spherical filler particles are well separated by distances greater than 

their characteristic size. It is also argued that this mixing rule is an approximation of 

the Lichtenecker’s logarithmic law [99]. Although Eq. (1-45) was originally derived 

under static field, this equation was also derived later on by Webman et al. [57] using 

effective medium theory for the dielectric behavior of microscopically 

inhomogeneous materials at optical and microwave frequency and by Skipetrov [105] 

for a random media in which the heterogeneities of the dielectric constant are much 

smaller than the wavelength of the electromagnetic wave.   

 

Figure 1-14. Schematic of Maxwell-Wagner equation. 

Bruggeman model: Rayleigh’s calculation was further expended by Bruggeman to 

different cases. For a composite made of particles of two dielectrics (this is lightly 

different with 0-3 composites but more close to 0-0 composites), it is obtained for a 

composite of two inter-dispersed materials,  
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In the derivation, it was assumed: 1) all particles are very small compared to the 
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dimension of the sample/composite, 2) the shape, size, and the locations of all 

particles are randomly distributed, 3) the number of particles is large, and 4) all 

particles are closely packaged together so that there is no gap between particles [68].  

     Equation (1-46) is widely used in literatures as Bruggeman mixing rule (this is 

also called as Polder-Van Santeen in literature as it was also proposed in [106]). This 

expression was also derived based on the study of conductivity for a random mixture 

in which each constituent (spherical particles) acts as if surrounded by a homogenous 

medium whose properties are those of the mixture [107]. Actually, this is a direct 

result of an effective medium approximation or self-consistent approximation [57]. 

 To fit the experimental results better, the Bruggeman mixing rule was modified. 

For example, considering Eq. (1-43) and the modification of Eq. (1-44) into Eq. 

(1-46), it was proposed [108-110]   
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where u is a constant. Based on the conductivity of a composite, McLachian proposed 

a general effective medium formula based on the effective media theory and 

consideration of percolation features in a composite [108-110]. When the percolation 

phenomenon is considered, it was proposed that u equals to the critical volume 

fraction (φc) of the filler where the filler particles first forms a continuous percolation 

path across the medium. This general formula for the dielectric property of a 

composite is 
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where u=φc/(1–φc) is dependent on the critical volume fraction of filler particles, and t 

is parameter characterizing the microstructure (including size and shape) or 

distribution and interconnectivity of the components in a composite material.  

Based on Rayleigh’s results and assumptions, Bruggeman further introduced a 

change in the volume fraction of the filler and derived the following equation for a 

random distribution of dielectric spheres in a matrix with a low concentration [100]. 
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This is the Bruggeman equation. This is also named as the Hanai equation since Hanai 

derived this equation for complex permittivity [111]. 

The Bruggeman equation Eq. (1-49) has been modified based on different 

considerations to fit the experimental results. For example, the left side of Eq. (1-49) 

was modified as [112]:  
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where u is a constant. It was experimentally found that the value of u can be either 

positive or negative. Another widely used modification of Bruggeman equation Eq. 

(1-49) is [113, 114] 
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where α is an empirically determined value (≥3) to fit the experimental data.   

Knott equation: In the study of plastic foams, Knott introduced a model, in which the 

filler particles (i.e. air) are treated as small cubes that are surrounded by the matrix (i.e. 

foam) with the same thickness [115]. Therefore, the effective capacitance (i.e. the 
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effective dielectric constant) of the foam is simulated using the capacitance of the 

cubes and the matrix. In the model, the capacitance of all these elements (i.e. cubes 

and slabs) is calculated using the parallel-plate mode. Based on these assumptions, it 

was obtained that   
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Yamada equation: In a study of dielectric and piezoelectric properties of 0-3 

composite, Yamada et al. introduced the following formula using the static field 

condition [116],  
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where α is the parameter attributed to the shape and orientation of the ellipsoidal filler 

particles. Based on the experimental results, the value of α for ceramic particles is 

bigger than one (mostly about 10).  

Reverse composite: Due to the assumptions and simplifications used in each of the 

above models, some (i.e. Eqs. (1-39), (1-44), and (1-47)) are symmetrical in terms of 

their constituents, and others are asymmetrical. The asymmetric result is more closely 

related to a real 0-3 composite. For a real random 0-3 composite, it is likely that the 

filler becomes the matrix and the matrix may be separated into isolated particles when 

the volume fraction of the filler is high. When the matrix and filler are exchanged, the 

εeff is clearly different, as illustrated in Figure 1-15, where Maxwell-Wagner equation 

(Eq. (1-45)) is used. For a real composite, when  is small, the matrix is most likely to 

be the matrix so the εeff should follow the curve I, while when  is big, the matrix is 
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most likely to be the filler and the filler becomes matrix so the εeff should follow curve 

II. Therefore, at certain composition, the εeff changes from curve I to curve II as 

illustrated in the figure as the curve III (blue cross). Therefore, a rapid increase in the 

εeff with increasing  will be observed. This is somehow similar to the percolation 

phenomenon observed in conductor-dielectric composites discussed in Section 1.4.1.     

 
Figure 1-15. Schematic of reverse model for the composite. The black (I) curve is the 
result obtained using dielectric-1 as matrix and dielectric-2 as filler, while the red (II) 
curve is obtained using dielectric-1 as filler and dielectric-2 as matrix. The III curve 

(blue cross) is presented as possible real case. 

1.5.3. Limitation 

The εeff of a composite was simulated using the six equations proposed for 0-3 

composites as shown in Figure 1-16, where εf =1000 and εm =10 are used. In the 

figure, the results for parallel and series connections are also presented for 

comparison. For modified Lichtenecker’s logarithmic law, Eq. (1-39), the u=0.3 was 

used. For Yamada Model, Eq. (1-53), the shape factor α=10 was used. It is easy to 

conclude that: (1) the εeff of composites always increases with the volume content of 

filler, in other words, the εeff monotonically changes with ; (2) εeff falls in between 

area of curve of parallel (black) and series (blue) connection. That is, the Wiener 
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limits from Eq. (1-34) are valid as: 
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Figure 1-16. Schematic of dielectric constant of different models.  

As more and more experimental results are being reported, some experimental 

results have been shown contradict with the current understanding. For example, 

based on the dielectric constant at 100 Hz of BT/PVDF composites at room 

temperature, Dang et al reported that the εeff increases with increasing  for BT<0.5, 

then decreases, as shown in Figure 1-17[118]. The composites were prepared by a 

simple blending and hot-molding procedure. The BT powders are a nearly spherical 

shape with grain sizes of about 1 m. The appearance of a maximum-like curve on εeff 

vs.  contradicts with the monotonically change expected for the composite. This was 

simply explained by the possible pores in the composites with high content of fillers 

without solid experimental data on the porosity.   
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Figure 1-17. Variation of the dielectric constant of the BT/PVDF composites with the 
volume fraction of BT particles. For comparison, the calculations by using Maxwell–

Garrett and Bruggeman equations are also shown [118]. 

Yang et al. reported CCTO/PVDF composites using micro-CCTO powders 

(CCTO-2, micro-size) [119].  The CCTO with PVDF powder were thoroughly 

mixed for 20 min then molded by hot pressing at about 200oC under a pressure of 50 

MPa to get tablet-shaped samples that were 12 mm in diameter and about 0.8 mm in 

thickness. As shown in Figure 1-18, the εeff vs.  exhibited a peak-like curve. The εeff 

increased with increasing CCTO volume content then decreases. The author 

concluded that the micro-sized CCTO exhibited “insulating” boundaries in the matrix. 

 

 

Figure 1-18. Comparison of experimental and theoretical dielectric constants of 
micro-size CCTO/ PVDF at 100 Hz and room temperature [119]. 
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Murugaraj et al reported the dielectric enhancement in composites, where 

nano-sized alumina (dielectric constant is 9.8) were embedded in polyimide (PI) with 

a dielectric constant of 3.5. As shown in Figure 1-19, the eff monotonically increases 

with the content of filler to a value that is higher than the dielectric constant of the 

filler [120]. This cannot be explained by any model and breaks the Wiener limits. This 

oxide-polymer precursor suspension was cast on a flat glass at 100 °C for an hour to 

remove the solvent. These films were then cured in the temperature range of 

180-300°C in an inert atmosphere to obtain robust and stress-free nanocomposite thin 

films. The average particle size of alumina was in the range of 10-15nm and the 

agglomeration of particles was limited to 100-150nm cluster sizes. 

 

 

Figure 1-19. Variation of composite dielectric constant with PI-alumina at 100 kHz 
and solid line is fitted by Maxwell equation [120]. 

1.5.4. Interfacial Layer 

All the models/equations proposed for 0-3 composites are based on only the 

properties of matrix and filler. In real 0-3 composites, especially polymer-based 

composites, an interfacial layer between the filler and polymer matrix may exist. The 
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interfacial layer has different properties than the filler and matrix. Therefore, the 

interfacial layer has been considered as the reason responsible for the experimental 

results. Due to its difficulty in determining thickness and dielectric property of the 

interfacial layer, there are not many quantified results [121-127]. In the literature, 

whenever there are some phenomena that are difficult to be understood using two 

constituents, it is generally explained as the results of the interfacial layer. This is in 

general correct, but lacks the quantified results.   

The volume fraction of the interfacial layer in a composite is dependent on the 

thickness of the interfacial layer and the surface area of the filler particles as shown in 

Figure 1-20, where three thicknesses are assumed for the interfacial layer and the 

filler particles are treated as spheres with the same diameter. Clearly, as the particle 

size decreases, the volume fraction of the interfacial layer increases. The thicker the 

interfacial layer is, the more the volume fraction of the interfacial layer is.     

 

Figure 1-20. Volume fraction of interfacial layer as the function of the diameter (d) of 
the spherical filler particles, where the thickness of the interfacial layer is assumed as 

0.5 nm, 1.0 nm, and 10 nm respectively. [128]. 
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Table 1-2. Volume fraction of interfacial layer with different size of filler and 
thickness of interfacial layer for APF structure 

radius of filler 

(nm) 

Thickness of interfacial layer (nm) 
0.1 0.5 1 5 10 20 

5 4.26% 18.40% 31.18% 64.75% 71.26% 73.41% 

10 2.18% 10.08% 18.40% 52.07% 64.75% 71.26% 

20 1.10% 5.28% 10.08% 36.11% 52.07% 64.75% 

50 0.44% 2.18% 4.27% 18.40% 31.18% 47.03% 

100 0.22% 1.10% 2.18% 10.08% 18.40% 31.18% 

200 0.11% 0.55% 1.10% 5.28% 10.08% 18.40% 

500 0.04% 0.22% 0.44% 2.18% 4.27% 8.21% 

 

 Certainly, the volume fraction of the interface cannot be 100%. As mentioned in 

Section 1.4.1, the most tightly packed crystal with the same size spheres has an 

atomic packing factor (APF) of only 74%. Assuming that the particles are the same 

spheres and the interfacial layer is uniformly coated on the surface of the filler 

particles, the volume fraction of the filler plus interfacial layer in a composite is about 

74%. The volume fraction of the interfacial layer can be estimated for the filler with 

different diameters, as listed in Table 1-2.  

 
Figure 1-21. Comparison of Vo-Shi model prediction with experiment data on 

PI-alumina composite and epoxy-(PMN-PT) composite [120]. 

To quantify the contribution of the interfacial layer to the eff, the interfacial 
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layer has been treated as a single phase of material. When the interfacial layer is 

treated as a new phase with a well-defined dielectric property, a two-phase composite 

becomes a three-phase composite. In this way, the experimentally observed eff  can 

be fitted well as shown in Figure 1-21, where the thickness of the interfacial layer and 

the interface interaction are presented by the value of K [129, 130]. The Vo-Shi model 

is an empirical three phase model that recognizes a distinct interphase region 

surrounding the filler of these polymer composites. The thickness of the interfacial 

layer depended on the degree of interaction between the polymer and the particle, 

which results in a nonmonotonic relationship of the dielectric constant with particle 

volume fraction [120, 129, 130]. As shown in Figure 1-18, the so-called dielectric 

constant of interphase can be as high as 280 for PI-Alumina composites. It is also 

obtained that the thickness of the interfacial layer is about 4 nm. For another 

epoxy-(PMN-PT) composite, the dielectric constant of interphase is calculated more 

than 6000. The average size of PMN-PT is around 900nm. The interface/m is around 

1000 times [131].  

By considering interfacial layer/phase, the experimental results can be fitted 

well, it fails to explain for interfacial layer itself. As mentioned above, the processing 

temperature of polymer-based composites is pretty low, ~ 200 oC. At this temperature 

there is no change to be anticipated for the ceramic filler, which are prepared at 

temperatures higher than 1000 oC. That is, the so-called interfacial layer should be the 

polymer matrix itself with a different microstructure than the bulk polymer matrix. 

Based on the dielectric physics, it would be very difficult to understand that by 
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changing microstructure, the dielectric constant of interfacial layer can be 100 times 

of the bulk polymer matrix.  

1.5.5. Dielectric Loss of Composite 

Most of the models/formulas given in the section 1.5.1 and 1.5.2 were initially 

derived only for the effective dielectric constant of a composite. Some of them can be 

used for complex permittivity. For example, Eq. (1-49) was obtained by Bruggeman 

for the dielectric constant only, but later on extended to complex permittivity by 

Hanai. However, in most of literatures, it is still the case that only the dielectric 

constant is fitted/simulated using these formulas/equations since by using the complex 

permittivity these formulas become too complicated. For the case, when the dielectric 

loss is really needed to be considered, the general practice has been: (1) analyzing the 

dielectric constant using the formulas previous defined for only the dielectric constant; 

(2) analyzing the dielectric loss, using the formulas for complex permittivity with the 

eff obtained in (1). For example, when using the Bruggeman equation, Eq. (1-49), for 

complex permittivity, the imaginary part is calculated using  

      f
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where ε"eff, ε"f and ε"m are the imaginary part of complex relative permittivity (i.e. the 

dielectric constant is the real part of complex relative permittivity) of the composite, 

the filler, and the matrix, respectively [132]. The volume fraction of the filler is 

represented by the εeff, where eff is obtained using Eq. (1-49) only for the real part of 

the complex relative permittivity.  
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In other words, the important limitation in these models is that they do not take 

the dielectric loss into account. Additionally, all above discussions are based on ideal 

dielectrics (i.e. zero electrical conductivity). Actually, all dielectrics have non-zero 

conductivities. As discussed in Section 1.1.3, Eq. (1-10), the electrical conductivity 

contributes to the imaginary part of the measured permittivity. For a composite, the 

conductivity of its constituent would make dielectric response much more complete. 

Besides the contribution to dielectric loss, the electrical conductivity may result in the 

charge accumulation on the interface between two constitutes of a composite, which 

in turn will change the distribution of electrical field in the material. That is, the 

electrical conductivity would respond with some kinds of the dielectric responses.  

1.5.6. Dielectric-Polymer 0-3 Composites 

Table 1-3 shows some of the high-dielectric-constant 0-3 composites reported in 

the literature and the commercially available composites. BT is widely used as filler 

because BT is relatively inexpensive and easy to prepare in different sizes from nm to 

μm. For BT-based composites, a linear relationship between BT volume fraction and 

the effective dielectric constant was observed in PMMA and BT composite and the 

dielectric constant is about 40 for the composites with 60 vol.% BT [19]. A dielectric 

constant of 44 was obtained in composites with 40 vol.% BT using epoxy as matrix 

[133]. Other polymers, such as PVDF and PS, have also been used to prepare 0-3 

composites with BT as fillers with dielectric constant as high as 100 was obtained 

[134, 135]. It has to be mentioned that it is well known that the dielectric constant of 

BT ceramics is strongly dependent on the grain size. That is, the dielectric constant of 
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BT particles is strongly dependent on the size of the particles. This is one of the 

reasons that the dielectric property of the BT-based composite varies over a large 

range. However, the BT has phase transitions, one around 120oC and the other around 

0oC, as shown in Figure 1-5(a). At the phase transition temperature, there is a big 

change in the dielectric constant, which is not desirable for the most of the dielectric 

applications.  

PMN-PT exhibits a much higher dielectric constant at room temperature than the 

BT and does not show a phase transition. Therefore, PMN-PT is also widely used as 

filler for the development of high-dielectric-constant composites as shown in Table 

1-3 [138, 139]. PZT is a widely used piezoelectric ceramic has also been used as 

fillers in the development of high-dielectric constant composites due to the fact that 

PZT exhibits a high dielectric constant and is easy to prepare [140-142]. Another 

widely used ceramic system is BST due to the fact that the BST can exhibit a high 

dielectric constant at temperature around room temperature [143]. The high-energy 

electron irradiation was carried out on a composite system using PMN-PT ceramic 

powders as the filler and P(VDF-TrFE) copolymer as the matrix. The irradiation 

composite exhibited a much higher dielectric constant (~200) than other composites at 

room temperature due to the enhancement of m [139]. The irradiated also made the 

BST-P(VDF-TrFE) composites exhibit a high dielectric constant (~150) at room 

temperature [143].  
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Table 1-3 The dielectric properties of ceramic-polymer composites at room 
temperature [33] 

Dielectric  

fillers 

Polymers filler’s  

size 

composites Ref. 

φ(vol%) εeff tanδ Freq. 

BaTiO3 PMMA - 60% 40 0.012 1kHz [19] 

BaTiO3 Epoxy  - 40% 44 0.2 1kHz [133] 

BaTiO3 PVDF 0.1µm 70% 152.3 <0.1 1kHz [134] 

BaTiO3 Polystyrene 0.7µm 70% 100 <1 1kHz [135] 

BaTiO3 PVC 6.8-0.3µm 40% 18 - 100kHz [136] 

BaTiO3 polyamide (PA) 17-100nm 70% 80 0.02 1MHz [137] 

(Bi,Na)BaTiO3
* P(VDF-TrFE)70/30 - 30% 30 <0.02 1kHz [132] 

PMN Epoxy - 40% 24 0.05 100kHz [133] 

PMN-35PT P(VDF-TrFE)70/30 - 40% 50 <0.1 1kHz [138] 

PMN-PT P(VDF-TrFE) 0.5µm 50% 200 <0.1 10kHz [139] 

PZT Polyurethane - 30% 24 0.7 1kHz [140] 

PZT PVDF 30nm 32% 40 - 100Hz [141] 

PZT Polyvinyl-butyral 100µm 85% 155 0.05 1MHz [142] 

(Ba,Sr)TiO3
** P(VDF-TrFE)70/30 1µm 50% 80 <0.2 1kHz [143] 

CCTO P(VDF-TrFE)55/45 10µm 50% 610 <0.4 1kHz [50] 

CCTO P(VDF-TrFE)55/45 <500nm 50% 60 0.05 1kHz [144] 

CCTO Epoxy 0.3-0.5µm 40% 50 - 100Hz [145] 

CCTO PVDF 1-7µm 55% 95 <0.24 100Hz [146] 

CCTO Polystyrene 10-25µm 64% 80 - 100Hz [147] 

CCTO Polyimide 1-4µm 40% 49 <0.2 100Hz [148] 

CCTO polyethersulfone - 50% 32.7 0.063 1kHz [149] 

*(Bi0.5Na0.5)0.94Ba0.06TiO3 
**(Ba0.65Sr0.35)TiO3 

Since the discovery of CCTO in the 2000s, a great deal of attention has been 

given to CCTO since it is a non-ferroelectric ceramic with a high dielectric constant 

and a weak electromechanical coupling effect as discussed in Section 1.2.1. Different 
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composite systems have been developed using CCTO as the filler [50, 144-150]. For 

temperature dependency concerns, the CCTO/P(VDF-CTFE) composite using 

nano-sized CCTO exhibited a dielectric constant of 100 that is almost independent of 

temperature (up to 120 oC) [150]. It was also found that the dielectric behavior of the 

composites is strongly dependent on the size of the CCTO particles. For micro-sized 

CCTO particles, a dielectric constant of more than 200 was obtained at room 

temperature [50]. For composites using nano-sized CCTO particles, a composite at 

room temperature exhibited a dielectric constant of 60 and loss of about 0.05 at 1 kHz 

[144]. 

1.6. Research Objectives  

In this work, conducting filler-polymer nano-composites based on percolation 

phenomenon were studied, using nano-sized Ni and nanoclips Polypyrrole (PPy) as 

filler. Two different polymer matrices were used in this work: 1) P(VDF-TrFE) 55/45 

mol% copolymer which exhibits a high dielectric constant and a phase transition 

around 110 oC; 2) P(VDF-CTFE) 88/12 mol% (VC88) which exhibits a high 

dielectric constant and a week piezoelectric effect with weak temperature dependence.  

1. By combining the solution cast and hot pressing processes, Ni-polymer 

nano-composites with high percolation was developed in Chapter 2, due to a 

more uniform distribution of metal powders inside the polymer matrix. The 

composites exhibit a high dielectric constant and relative low loss.  

2. Using newly developed nanoclips, a new all-organic composite systems were 

developed and discussed in Chapter 3. Due to its 2D structure, the composites 
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show high flexibility with a high dielectric constant and a low percolation 

threshold.  

3. From the study of Ni-polymer composites and PPy-polymer composites, the 

φc  and s of composite are different with the selecting data at different 

frequencies and temperature. In Chapter 4, this conclusion was confirmed 

using six reported systems using different conducting fillers from literature are 

studied.  

4. As discussed in Section 1.5.3, the εeff can be restricted by the Wiener limits. To 

investigate the contribution of dielectric loss to eff, the loss of matrix and filler 

were considered in three different models which can represent three different 

microstructures. These results show the eff of composites can be larger than 

the dielectric constant of both materials. However, the dielectric loss is 

between the values of dielectric loss of both materials. Therefore, a new 

approach to develop high performance composite was introduced. 

  



 
 

51 
 

References of Chapter 1 

1. K. C. Kao, Dielectric Phenomena in Solids, Elsevier Academic Press, San 

Diego, CA 2004. 

2. A. V. Hippel, Dielectric Materials and Applications, Technology Press of 

MIT, Cambridge, Boston 1954. 

3. R. E. Hummel, Electronic Properties of Materials, Springer, Technology & 

Industrial Arts, 2001. 

4. C. J. Dias, D. K. Das-Gupta, Ferroelectric Polymer and Ceramic-Polymer 

Composites, Trans Tech Publications Ltd., Switzerland, 1994. 

5. R. E. Newnham, Ann. Rev. Mat. Sci. 16, 47(1986). 

6. A. K. Jonscher, J. Phys. D: Appl. Phys. 32, R57 (1999). 

7. H. Nalwa, Handbook of Low and High Dielectric Constant Materials and 

Their Applications, Academic Press, London, 1999. 

8. Y. Rao, S. Ogitani, P. Kohl and C. P. Wong, J. Appl. Poly. Sci. 83, 1084 

(2002). 

9. C. J. Dias and D.-K. Das Gupta, IEEE Trans.Dielectr. Electr. Insul. 3, 706 

(1996). 

10. E. Reichmanis, H. Katz, C. Kloc, and A. Maliakal, Bell Labs Tech. J. 10, 87 

(2005). 

11. R. F. Cava, W. F. Peck, and J. J. Krajewski, Nature 377, 215(1995). 

12. M. W. Barsoum, Fundamentals of Ceramics, Institute of Physics Publishing, 

Bristol and Philadelphia, 1997. 



 
 

52 
 

13. http://www.matweb.com/search/SearchSubcat.asp.  

14. Z.-Y. Cheng, R.S. Katiyar, X. Yao, and A. S. Bhalla, Phys. Rev. B 57, 8166 

(1998). 

15. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez 

Science 293, 673 (2001).  

16. M.A. Subramaniana, Dong Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. 

Solid State Chem. 151, 323 (2000). 

17. Z.-Y. Cheng and Q. M. Zhang, Mater. Res. Bull.33, 183 (2008). 

18. Z.-Y. Cheng, Q. M. Zhang and F. B. Bateman, J. Appl. Phys. 92, 6749 (2002). 

19. H. S. Nalwa, Ferroelectric Polymers: Chemistry, Physics, and Applications, 

Marcel Dekker Inc., New York, 1995. 

20. S. H. Zhang, B. J. Chu, B. Neese, K. L. Ren, X. Zhou and Q. M. Zhang, J. 

Appl. Phys. 99, 044107 (2006). 

21. Q. M. Zhang, V. Bharti and X. Zhao, Science 280, 2101 (1998). 

22. Z. M. Li, S. Q. Li and Z.-Y. Cheng, J. Appl. Phys. 97, 014102 (2005). 

23. X. Zhou, X. H. Zhao, Z. G. Suo, C. Zou, J. Runt, S. Liu, S. H. Zhang and Q. 

M. Zhang, Appl. Phys. Lett. 94, 162901 (2009). 

24. M. Wegener and K. Arlt, J. Phys. D: Appl. Phys. 41, 165409 (2008). 

25. Z. M. Li, Y. H. Wang and Z.-Y. Cheng, Appl. Phys. Lett. 88, 062904 (2006). 

26.  R. E. Newnham, D. P. Skinner and L. E. Cross, Mater. Res. Bull. 13, 525 

(1978). 



 
 

53 
 

27. D. P. Skinner, R. E. Newnham and L. E. Cross, Mater. Res. Bull. 13, 599 

(1978). 

28. N. Jayasundere, B. V. Smith and J. R. Dunn, J. Appl. Phys. 76, 2993 (1994). 

29. C. K. Wong, Y. M. Poon and F. G. Shin, J. Appl. Phys. 90, 4690 (2001). 

30. S. M. Pilgrim and R. E. Newnham, Mater. Res.Bull. 21, 1447 (1986). 

31. M. T. Sebastian and H. Jantunen, Int. J. Appl. Ceram. Technol. 7, 415 (2010). 

32. C. W. Nan, Y. Shen and J. Ma, Annu. Rev. Mater. Res. 40, 131 (2010). 

33. L. Zhang and Z.-Y. Cheng, J. Adv. Dielect. 1, 389 (2011). 

34. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 

1992). 

35. E. J. Garboczi, K. A. Snyder, J. F. Douglas and M. F. Thorpe, Phys. Rev. E 52, 

819 (1995). 

36. C. W. Nan, Prog. Mater. Sci. 37, 1 (1993). 

37. J. Yacubowicz and M. Narkis, Polymer Eng. Sci. 26, 1568 (1986). 

38. D. Toker, D. Azulay, N. Shimoni, I. Balberg and O. Millo, Phys. Rev. B 68, 

041403 (2003). 

39. Y. Shen, Z. X. Yue, M. Li and C. W. Nan, Adv. Funct. Mater. 15, 1100 

(2005). 

40. G. S. Wang, Y. Deng, Y. Xiang and L. Guo, Adv. Funct. Mater. 18, 2584 

(2008). 

41. Y. Deng, Y. J. Zhang, Y. Xiang, G. S. Wang and H. B. Xu, J. Mater. Chem. 

19, 2058 (2009). 



 
 

54 
 

42. Z. M. Dang, C. W. Nan, D. Xie, Y. H. Zhang and S. C. Tjong, Appl. Phys. 

Lett. 85, 97 (2004). 

43. D. N. Fang, A. K. Soh, C. Q. Li and B. Jiang, J. Mater. Sci. 36, 5281 (2001). 

44. S. Komarneni, J. Mater. Chem. 2, 1219 (1992). 

45. Z.-Y. Cheng, A.Q. Guo, and X. Yao, Ferroelectrics 190, 167 (1997).  

46. Z.-Y. Cheng, L. Y. Zhang and X. Yao, J. Appl. Phys. 79, 8615 (1996). 

47. M. E. Lines and A. M. Class, Principles and Applications of Ferroelectrics and 

Related Materials, Clarendon Press, Oxford, 1977. 

48. A. N. Vasil'ev and O. S. Volkova, Low Temp. Phys. 33, 895 (2007). 

49. I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya and L. 

Jastrabik, J. Appl. Phys. 93, 4130 (2003). 

50. M. D. Arbatti, X. B. Shan and Z.-Y. Cheng, Adv. Mater. 19, 1369 (2007). 

51. F. Carpi, D. De Rossi, R. Kornbluh, P. Perine, and P. Sommer-Larsen, 

dielectric elastomers as electromechanical transducers, Elsevier, Amsterdam, 

2008.  

52. R. Zallen, The Physics of Amorphous Solids, New York, Wiley, 1983. 

53. J.Y. Yi and G. M. Choi, J. Electroceram. 3:361(1999). 

54. B. K. P. Scape, Principles of Dielectrics, Clarendon Press, Oxford, 1989. 

55. J. C. Maxwell, Electricity and Magnetism, Clarendon Press, Oxford, 1892. 

56. D. J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1977). 

57. I. Webman, J. Jortner and M. H. Cohen, Phys. Rev. B 15, 5712 (1977). 

58. M. T. Clarkson, Phys. Rev. A 37, 2079 (1988). 



 
 

55 
 

59. D. C. Koskenmaki, C. D. Calhoun and B. E. Huff, US Patent (1991). 

60. Q. Z. Xue, Eur. Polym. J. 40, 323 (2004). 

61. M. Panda, V. Srinivas, and A. K. Thakur, Appl. Phys.Lett. 92, 132905 (2008). 

62. M. Panda, V. Srinivas, and A. K. Thakur, Appl. Phys. Lett. 93, 242908 (2008). 

63. Z.-M. Dang, Y. H. Lin, and C. W. Nan, Adv. Mater. 15, 1625 (2003).  

64. H. P. Xu, H. Q. Xie, D. D. Yang, Y. H. Wu, and J. R. Wang, J. Appl. Polym. 

Sci. 122, 3466 (2011). 

65. Y. Rao and C. P. Wong, 8th IEEE Proc. Electron. Compon. Technol. Conf. 

920 (2002). 

66. L. Qi, B. I. Lee, S. H. Chen, W. D. Samuels and G. J. Exarhos, Adv. Mater. 

17, 1777 (2005). 

67. Z. M. Dang, B. Peng, D. Xie, S. H. Yao, M. J. Jiang, and J. B. Bai, Appl. Phys. 

Lett. 92, 112910 (2008). 

68. J. W. Xu, K. S. Moon, C. Tison and C. P. Wong, IEEE Trans. Adv. Packaging 

29, 295 (2006). 

69. Z. M. Dang, Y. H. Zhang and S.-C. Tjong, Synth. Met. 146, 79 (2004). 

70. Y. J. Li, X. Man, J. Q. Feng and Z. M. Dang, Appl. Phys. Lett. 89, 072902 

(2006). 

71. Z. M. Dang, Y. Shen, L. Z. Fan, N. Cai and C. W. Nan, J. Appl. Phys. 93, 

5543 (2003). 

72. Z. M. Dang, J. P. Wu, H. P. Xu, S. H. Yao, M. J. Jiang and J. B. Bai, Appl. 

Phys. Lett. 91, 072912 (2007). 



 
 

56 
 

73. J. Macutkevic, D. Seliuta, G. Valušis, J. Banys, V. Kuznetsov, S. Moseenkov  

and O. Shenderova, Appl. Phys. Lett. 95, 112901 (2009). 

74. L. Wang and Z. M. Dang, Appl. Phys. Lett. 87, 042903 (2005). 

75. Q. Li, Q. Z. Xue, L. Z. Hao, X. L. Gao and Q. B. Zheng, Compos. Sci. 

Technol. 68, 2290 (2008). 

76. Z. M. Dang, L. Wang, Y. Yin, Q. Zhang and Q. Q. Lei, Adv. Mater. 19, 852 

(2007). 

77. J. K. Yuan, S. H. Yao, Z. M. Dang, A. Sylvestre, M. Genestoux and J. B. Bai, 

J. Phys. Chem. C 115, 5515 (2011). 

78. F. He, S. Lau, H. L. Chan and J. T. Fan, Adv. Mater. 21, 710 (2009). 

79. V. Panwar, R. M. Mehra, J. O. Park and S. H. Park, J. Appl. Polym. Sci. 125, 

E610 (2012). 

80. J. K. Yuan, S. H. Yao, A. Sylvestre and J. B. Bai, J. Phys. Chem. C, 116, 

2051(2012) 

81. J. K. Yuan, Z. M. Dang, S. H. Yao, J. W. Zha, T. Zhou, S. T. Li and J. B. Bai, 

J. Mater. Chem. 20, 2441(2010) 

82. C. Huang, and Q. M. Zhang, Adv. Funct. Mater. 14, 501 (2004). 

83. C. C. Wang, J. F. Song, H. M. Bao, Q. D. Shen, and C. Z. Yang, Adv. Funct. 

Mater. 18, 1299 (2008). 

84. J. K. Yuan, Z. M. Dang, S. H. Yao, J. W. Zha, T. Zhou, S. T. Li and J. B. Bai, 

J. Mater. Chem. 20, 2441(2010) 



 
 

57 
 

85. K. Shehzad, A.Ul-Haq, S. Ahmad, M. Mumtaz, T. Hussain, A. Mujahid, A. T. 

Shah, M. Y. Choudhry, I. Khokhar, S. Ul-Hassan, F. Nawaz,  F. Rahman, Y, 

Butt, and M. Pervaiz J. Mater. Sci. 48, 3737 (2013). 

86. J. W. Xu and C. P. Wong, Appl. Phys. Lett. 87, 082907 (2005). 

87. Y. Shen, Y. H. Lin, M. Li and C. W. Nan, Adv. Mater. 19, 1418 (2007). 

88. T. Y. Dai, K. Chen, X. T. Qing, Y. Lu, J. S. Zhu and F. Gao, Macromol. Rapid 

Commun. 31, 484 (2010). 

89. Z. M. Dang, Y. Q. Lin, H. P. Xu, C. Y. Shi, S. T. Li and J. B. Bai, Adv. Funct. 

Mater. 18, 1509 (2008). 

90. K. C. Li, H. Wang, F. Xiang, W. H. Liu and H. B. Yang, Appl. Phys. Lett. 95, 

202904 (2009). 

91. J. R. Birchak, C. G. Gardner, J. E. Hipp and J. M. Victor, Proc. IEEE 62, 93 

(1974). 

92. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Lond 

Pergamon Press, London and New York, 1960. 

93. H. Looyenga, Physica 31, 401 (1965). 

94. K. Wakino, 9th IEEE Int. Sym Appl. Ferro 33 (1994) 

95. S. Stölzle, A. Enders and G. Nimtz, J. Phys. I Frace 2, 401 (1992). 

96. J. B. Kim, T. W. Kim and C. G. Kim, J. Appl. Polym. Sci. 100, 2189 (2006). 

97. K. Lichtenecker, Physik. Zeitschr. 30, 805 (1929). 

98. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962). 

99. R. Simpkin, IEEE Trans. Microwave Theory Tech. 58, 545 (2010). 



 
 

58 
 

100. D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935). 

101. J. W. Rayleigh, Phil. Mag. 34, 481 (1892). 

102. A. H. Sihvola, IEEE Trans. Geosci. Remote Sens. 29, 679 (1991). 

103. J. C. Maxwell, Electricity and Magnetism, Clarendon Press, Oxford, 1892. 

104. K. W. Wagner, Die Isolierstoffe der Elektrotechnik, Springer, Berlin, 1924. 

105. S. E. Skipetrov, Phys. Rev. B 60, 12705 (1999). 

106. D. Polder and J. H. van Santeen, Physica 12, 257(1946). 

107. R. Landauer, J. Appl. Phys. 23, 779 (1952). 

108. D. S. McLachlan, J. Phys. C. 19, 1339 (1986). 

109. D. S. McLachlan, J. Phys. C. 20, 865 (1987). 

110. D. S. McLachlan, J. Phys. C. 21, 1521 (1988). 

111. T. Hanai, Kolloid, Z. 171, 23 (1960). 

112. S. M. Puranik, A. C. Kunbharkhane and S. C. Mehrotra, J. Mol. Liq. 59, 173 

(1994). 

113. E. tuncer, S. M. Gubanski and B. Nettelblad, J. Appl. Phys. 89, 8092 (2001). 

114. J. P. Calame, J. Appl. Phys. 104, 114108 (2008).  

115. E. F. Knott, IEEE Trans. Antennas Propag. 41, 1167 (1993) 

116. T. Yamada, T. Ueda and T. Kitayama, J. Appl. Phys. 53, 4328 (1982). 

117. T. K. H. Starke, C. Johnston, S. Hill, P. Dobson and P. S. Grant, J. Phys. D: 

Appl. Phys. 39, 1305(2005). 

118. Z. M. Dang, Y. Shen and C.-W. Nan, Appl. Phys. Lett. 81, 4814 (2002).  

119. W.H. Yang, S.H. Yu, R. Sun, and E.X. Du, Acta Mater. 59, 5593 (2011). 



 
 

59 
 

120. P. Murugaraj, D. Mainwaring and N. Mora-Huertas, J. Appl. Phys 98, 

054304 (2005). 

121. E. Tuncer, Y. V. Serdyuk and S. M. Gubanski, IEEE Trans. Dielectrics 

Electr. Insulation 9, 809 (2002). 

122. C. Pecharroman and J. S. Moya, Adv. Mater. 12, 294 (2000). 

123. Z. M. Li, M. D. Atbatti and Z.-Y. Cheng, Macromolecules 37, 79 (2004). 

124. X. H. Zhao, Y. G. Wu, Z. G. Fan and F. Li, J. Appl. Phys. 95, 8110 (2004). 

125. J. P. Calame, J. Appl. Phys. 104, 114108 (2008). 

126. J. B. Kim, T. W. Kim and C. G. Kim, J. Appl. Polym. Sci. 100, 2189 (2006). 

127. Q. Xue, Physica B 344, 129(2004). 

128. T. J. Lewis, J. Phys. D: Appl. Phys. 38, 202 (2005). 

129. M. G. Todd and F. G. Shi, J. Appl. Phys. 94, 4551 (2003). 

130. H. T. Vo and F. G. Shi, Microelectron. J. 33, 409 (2002). 

131. Y. Rao, S. Ogitani, P. Kohl, and C. P. Wong, J. Appl. Polym. Sci. 83, 1084 

(2002). 

132. X. X. Wang, K. H. Lam, X. G. Tang and H. L. W. Chan, Solid State 

Commun. 130, 695 (2004). 

133. D. H. Kuo, C. C. Chang, T. Y. Su, W. K. Wang and B. Y. Lin, Mat. 

Chem.Phys. 85, 201 (2004). 

134. Z. M. Dang, H. Y. Wang, B. Peng and C. W. Nan, J. Electroceram. 21, 381 

(2008). 

135. Z. M. Dang, Y. Zheng and H. P. Xu, J. Appl. Polym. Sci. 110, 3473 (2008). 



 
 

60 
 

136. M. Olszowy, Cz. Pawlaczyk, E. Markiewicz and J. Kułek, Phys. Stat. Sol. (a) 

202, 1848 (2005).  

137. M. Kakimoto, A. Takahashi, T. Tsurumi and J. Hao, Mater. Sci. Eng. B 132, 

74 (2006). 

138.  K. H. Lam, H. L. W. Chan, H. S. Luo, Z. W. Yin and C. L. Choy, 

Microelectron. Eng. 66, 792 (2003). 

139. Y. Bai, Z.-Y. Cheng, V. Bharti, H. S. Xu and Q. M. Zhang, Appl. Phys. Lett. 

76, 3804 (2000). 

140. K. S. Lam, Y. W. Wong, L. S. Tai, Y. M. Poon and F. G. Shin, J. Appl. Phys. 

96, 3896 (2004). 

141. B. Hilczer, J. Kulek, E. Markiewicz, M. Kosec and B. Malic, J. Non-Cryst. 

Sol. 305, 167 (2002). 

142. L. J. Dong, C. X. Xiong, H. Y. Quan and G. Z. Zhao, Scr. Mater. 55, 835 

(2006). 

143. S. U. Adikary, H. L. W. Chan, C. L. Choy, B. Sundaravel and I. H. Wilson, 

Compos. Sci. Technol. 62, 2161 (2002). 

144. L. Zhang, X. B. Shan, P. X. Wu and Z.-Y. Cheng, Appl. Phys. A, 405, 92 

(2012).  

145. B. S. Prakash and K. B. R. Varma, Compos. Sci. Technol. 67, 2363 (2007). 

146.  P. Thomas, K. T. Varughese, K. Dwarakanath and K. B. R. Varma, 

Compos. Sci. Technol. 70, 539 (2010). 



 
 

61 
 

147. F. Amaral, C. P. L. Rubinger, F. Henry, L. C. Costa, M. A. Valente and A. 

Barros-Timmons, J. Non-Cryst. Sol. 354, 5321 (2008). 

148. Z. M. Dang, T. Zhou, S. H. Yao, J. K. Yuan, J. W. Zha, H. T. Song, J. Y. Li, 

Q. Chen, W. T. Yang and J. B. Bai, Adv. Mater. 21, 2077 (2009). 

149. F. J. Wang, D. X. Zhou and Y. X. Hu, Phys. Status Solidi A 206, 2632 

(2009). 

150. X. B. Shan, Ph. D. Dissertation, Auburn University (2010). 

 

   



 
 

62 
 

 
 

CHAPTER 2                                   

Metal-Polymer Dielectric Composites with High Percolation 

Threshold 

2.1. Introduction 

In this chapter, the Ni-polymer nano-composites with a high percolation threshold 

will be discussed, which used a new process of combining the solution casting and hot 

pressing. The percolation threshold larger than 50 vol.% has been obtained due to the 

a new process increases adhesiveness between the filler and the polymer, leading to a 

better homogeneity of filler dispersion. Two different polymer matrix systems, 

P(VDF-TrFE) and P(VDF-CTFE), were used since they both had a high dielectric 

constants and their dielectric constants exhibited a different temperature dependence.   

2.2. Materials and Preparation 

2.2.1. Materials 

The nano Ni powder, with an average diameter of less than 100 nm, was 

purchased from Sigma Aldrich. Based on the manufacturers datasheet, the resistivity 

was around 6.97 μΩ·cm with a density of 8.9 g/cm3 at 20 °C. Figure 2-1 shows the 

identification of the phase of the nano Ni (D<100 nm) with XRD (Bruker D8) [1]. 

Three characteristic peaks for Ni (2θ = 44.8°, 52.0°, 76.7°) were observed, and peaks 

for the oxides were not observed. Figure 2-2 shows the SEM of nano-sized Ni 

powder. P(VDF-CTFE) 88/12 mol% and P(VDF-TrFE) 70/30 mol% copolymers were 
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Figure 2-1. XRD pattern of Ni nano powder. 

 

Figure 2-2. SEM of Ni nano powder. 

2.2.2. Preparation of Composites 

The overall process flowchart for the preparation of Ni-P(VDF-CTFE) 0-3 

nanocomposite fabrication is shown in Figure 2-3. The first step was to make a 

solution-cast film. Compared with solid phase processes (mechanical approaches), the 

solution cast process is better for coating the surface of metal particles. This mixing 

process resulted in a good dispersion of fillers and a stronger interfacial interaction. 

P(VDF-CTFE) copolymer was dissolved in N, N-Dimethyl formamide (DMF) under 
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magnetic stirring for 12 hours. After the copolymer was dissolved in DMF, Ni 

particles were added into the solution. 

 

Figure 2-3. Process flowchart for hot-press solution casting composite. 

Table 2-1 Volumetric ratios in Ni-P(VDF-CTFE) composites samples 

 
P(VDF-CTFE)  

weight(g) 
P(VDF-CTFE) 

vol(cm3) 
Mix 

(vol.%) 
Ni 

vol(cm3) 
Ni 

weight(g) 

1 0.3 0.1705 10% 0.0189 0.1686 
2 0.3 0.1705 20% 0.0426 0.3793 
3 0.3 0.1705 30% 0.0731 0.6502 
4 0.3 0.1705 40% 0.1136 1.0114 
5 0.3 0.1705 45% 0.1395 1.2412 
6 0.3 0.1705 50% 0.1705 1.5171 
7 0.3 0.1705 55% 0.2083 1.8542 
8 0.3 0.1705 60% 0.2557 2.2756 

 

Ni-P(VDF-CTFE) nanocomposites with different Ni volume concentrations (10, 

20, 30, 40, 50, 55, 60 vol.%) were prepared. A volumetric ratio table for 

Ni-P(VDF-CTFE) samples on a quartz substrate with 7.6×7.6 cm (3×3 in, Fisher 

Scientific) is given in Table 2-1. The weight of the polymer was fixed and the weight 
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of Ni was changed based on the volume ratio. As shown in Table 2-1, a fixed amount 

of solvent (10 ml) was used. In an attempt to achieve a uniform distribution of Ni 

powder in the polymer solution, a mixing procedure was taken. First, the solution was 

hand-stirred for 15 minutes as a premixing step. Then the solution was further 

dispersed by plating in an ultrasonic chamber for 1 hour. The final Ni-P(VDF-CTFE) 

solution was cast on a quartz plate at 70ºC for 8 hours. Finally, the cast film was 

released from the quartz substrate by immersing it into D.I. water. The final product 

was a flexible composite film. 

 

Figure 2-4. Process flowchart of hot-press solution casting composite: (a) as cast 
composite film (T: top and B: bottom), and (b) stack of four layers hot pressed into 

one layer. 

Similar to previous works [1-3], it was found that the as-cast film had some 

porosity due to the evaporation of solvent. Therefore, a hot pressing procedure was 

used to improve the uniformity and the density of the composite. During the hot 

pressing process, a stack of four layers of as-cast composite were used with a 

configuration shown in Figure 2-4. That is, the stack was arranged that is the top of 

one as-cast film faced the top of another as-cast film and that the bottom of one 
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as-cast film faced the bottom of another as-cast film. Then, the stack was placed in 

plates and a force of 10 tons was applied at 150 oC. Finally, the hot-press composite 

films were placed between two glass plates and annealed at 140 oC for 8 hours in an 

oven. The thickness of one layer of the as-casted the film was around 50-60µm. After 

4 layers were hot pressed, the thickness was around 110-150µm. 

 

Figure 2-5. SEM of hot pressed Ni-P(VDF-CTFE) composites with different volume 
fractions of Ni: (a) and (b) 30 vol.%, (c) and (d) 55 vol.%, (e) and (f) 60 vol.%. 

The morphologies and the uniformities of the composite films were examined 

using JEOL JSM 7000F FE-SEM (Scanning Electron Microscopy). The SEM pictures 

of hot pressed Ni-P(VDF-CTFE) composites with different volume fraction (30 vol.%, 
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55 vol.% and 60 vol.%) of Ni are shown in Figure 2-5. It indicates the hot-pressed 

composite films are dense and uniform.   

2.2.3. Materials Characterization 

For the characterization of the dielectric properties for the composite, the samples 

were sputtered with gold on top and bottom surfaces as electrodes using a PelcoSC-6 

sputter coater. A special mask was used for coating the electrodes with a diameter of 

3.2 mm. To obtain a uniform coating of gold for the electrode, four times of 30 second 

coating of each side is necessary, which resulted in a gold layer with a thickness about 

40-60 nm. In this work, three individual samples for each concentration were 

measured. The Agilent 4294A impedance analyzer was employed to measure the 

dielectric property of the samples over a frequency range of 100 Hz to 1 MHz using 

Cp~D function. In order to characterize the temperature dependence of the dielectric 

response, the dielectric properties of the samples were characterized at frequencies of 

1 kHz, 10 kHz, 100 kHz and 1 MHz over a temperature range from -70 ºC to 135 ºC 

in Xi’an Jiaotong University, China. The heating rate was 3 oC/min.   

2.3. Dielectric Behavior of Ni-P(VDF-TrFE) Composites 

2.3.1. Frequency Dependence of Dielectric Properties at Room Temperature 

The dielectric properties of the composites with different Ni concentrations were 

measured at room temperature. Figure 2-6 shows the dielectric properties and 

conductivity of the Ni-P(VDF-TrFE) nanocomposites with different Ni concentrations 

from 0 % to 53 vol.% [1].  
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Figure 2-6. Frequency dependence of dielectric properties of Ni-P(VDF-TrFE) 
composites at room temperature : (a) dielectric constant, (b) dielectric loss, (c) 

imaginary part of dielectric constant and (d) conductivity.  

As shown in the Figure 2-6 (a), the dielectric constant of the composites 

increases with increasing filler content. This results in a giant dielectric constant in the 

composite with a high Ni concentration at low frequency. For example, the dielectric 

constant at 100 Hz and 1k Hz is 1790 and 967, respectively, for the composite with 53 

vol.%. This is approximately 160 and 90 times that of the dielectric constant of the 

polymer matrix. From Figure 2-6 (b) and (c), one can found that both tan and ”
r 

increase with increasing frequency for the polymer matrix. However, tan and ”
r  

observed in the composites from 10 vol.% to 30 vol.% show a different frequency 

dependence. At low frequencies, tan and ”
r decrease with increasing frequency, 
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while at high frequencies, tan and ”
r increase with increasing frequency. That is, 

there is a certain frequency at which they reach their minimum. This frequency 

separates the frequency range into two regimes: low and high frequency. This special 

frequency for tan is lower than that for ”
r. From 40 vol.% to 53 vol.%, ”

r decreases 

with increasing frequency continuously. All these indicate that there is a new 

dielectric process appearing in the composites. The contribution of this new dielectric 

process to the dielectric response of the composites increases with increasing Ni 

content.   

To study this new dielectric process, the real part of electric conductivity of the 

composites is plotted in Figure 2-6(d), where the real part of the conductivity is 

calculated from the imaginary part of the permittivity using Eq. (1-9). Clearly, the 

conductivity increases with increasing frequency, which indicates that the composites 

are still dielectric. It seems that the conductivity has a saturated value at low 

frequency, which means the samples have non-zero conductivity. That is, the 

conductivity of the composites, shown in Figure 2-6(d), originates from a real 

conductivity and a dielectric process. The former should be independent of the 

frequency, while the latter is dependent on the frequency. If Johnscher’s universal law, 

Eq. (1-21), is used to analyze the dielectric response (i.e. the ac conductivity), one can 

get,  

      n
meas A  0                                            (2-1) 

where σ0 is the conductivity, ω is the angular frequency, and n is a constant.  
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Figure 2-7. Real part of conductivity of composites versus frequency. The solid lines 
are the fitting results using Eq. (2-1). The Ni content is shown in the figure.    

Equation (2-1) is used to fit the experimental results shown in Figure 2-6 (d). 

Since the polymer matrix has a relaxation process with a relaxation frequency of 106 ~ 

107 Hz and Johnscher’s universal law is for the frequencies much higher or lower than 

the relaxation frequency, the data obtained at frequencies higher than 100 kHz was not 

used in the fitting. Figure 2-7 shows the fitting results. Clearly, Eq. (2-1) fits the 

experimental results very well. All the fitting parameters are presented in Table 2-2 

and plotted in Figure 2-8.  

 

Table 2-2 Parameters of Eq. (2-1) for fitting the conductivity of composites 

Ni vol.%  
Parameter in

n
meas A  0  

σ0 σ0 error A A error n n error R2 

0 1.69E-10 1.74E-11 5.76E-14 3.27E-15 1.2410 3.46E-3 0.9970 

10 4.27E-10 6.23E-11 6.26E-13 5.11E-14 1.1117 7.25E-3 0.9899 

20 5.16E-9 1.26E-10 3.09E-12 1.29E-13 1.0402 3.69E-3 0.9974 

30 1.42E-9 2.75E-10 3.18E-11 1.11E-12 0.8913 3.13E-3 0.9975 

40 5.94E-9 1.95E-10 6.09E-11 6.72E-13 0.9099 9.89E-4 0.9998 

50 9.56E-9 1.50E-10 1.81E-10 7.36E-13 0.9155 3.65E-4 0.9999 

53 5.08E-6 3.07E-9 6.26E-9 2.15E-11 0.7286 2.82E-4 0.9999 
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From the fitting results, it was found that the σ0 of composites slowly increases 

with increasing Ni content for the composites with less than 50 vol.% of Ni, which 

were smaller than 1×10-8 S/m. When the Ni content is higher than 50 vol.%, the σ0 

increases rapidly with increasing φ. For example, the σ0 of 53 vol.% is 530 times of 

conductivity of 50 vol.%, which means that the composite is close to the percolation 

threshold. The value of A increased with increasing Ni content. This means that the 

contribution of the new dielectric process in the composite to the dielectric response 

increased with the Ni content. This is consistent with the direct observation of the 

dielectric loss discussed above.  
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Figure 2-8. Fitting parameters, σ0, A, and n, for different composites.   

Regarding the value of n obtained from the fitting, one can find that n decreased 
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with increasing Ni concentration from 0 % to 30 vol.%, held value around 0.9 from 40 

vol.% to 50 vol.%, then deceased at 53 vol.%. It was very interesting that the value of 

the n changes from larger than one for the composites with low Ni content to smaller 

than one for the composites with high Ni content. Based on the Johnscher’s universal 

law, n larger than one means that the dielectric process has a relaxation frequency, 

which is much higher than the frequency range. For example, for the polymer matrix 

used, its relaxation frequency was higher than 106 Hz. Therefore, the n was 1.24 (>1) 

for the frequency range lower than 100 kHz. However, n smaller than one means the 

dielectric process had a relaxation frequency much lower than the frequency range. 

This means that the new dielectric process observed in the composites was a 

relaxation process with a very low relaxation frequency.  

 
Figure 2-9. Schematic of the dielectric relaxation processes in conductor-polymer 

composites. 

The schematic of the dielectric relaxation processes in conductor-polymer 

composites is shown in Figure 2-9. At the very beginning, if Ni concentration is 0, 

there is only dielectric process of polymer matrix. When Ni filler added in matrix, 
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there are three mechanisms in this conductor-polymer composite: 1) the dielectric 

relaxation process from the polymer matrix, 2) the new dielectric relaxation process 

from the composite, and 3) the conductivity of the conducting filler (Ni). Based on the 

results discussed before, the dielectric properties of the composites with less than 30 

vol.% Ni content is dominated by the polymer matrix. With increasing Ni 

concentration, the value of ”
r from new dielectric relaxation process will increase.  

With high Ni concentration, the dielectric properties obtained in the composites will 

be dominated by the new dielectric process.   

2.3.2. Temperature Dependence of Dielectric Properties  

The temperature dependence of the dielectric properties at different frequencies 

for pure polymer matrix is shown in Figure 2-10. Clearly, both tan and ”
r show a 

peak at certain temperature (-20 oC to +20 oC). The higher the frequency is, the higher 

the peak temperature is and the higher the peak value is. This is a typical relaxation 

process due to the glass transition temperature (Tg). Above the Tg, There is a 

maximum value of dielectric constant which is related to the 

ferroelectric-to-paraelectric phase transition temperature (Tmax) in the P(VDF-TrFE) 

polymer. Tmax is around 100-110 oC. At high temperature, the dielectric loss increases 

with increasing temperature due to the conductivity. 
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Figure 2-10. Temperature dependence of dielectric properties of pure P(VDF-TrFE): 
(a) real part(solid) and loss(open), (b) imaginary part. 

Figure 2-11 to Figure 2-16 show the temperature dependence of dielectric 

properties for Ni-P(VDF-TrFE) composites with different concentration of Ni at 1 

kHz, 10 kHz, 100 kHz, and 1 MHz. 
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Figure 2-11. Temperature dependence of dielectric properties of the composite with 
10 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 10 vol% of Ni shows the similar 

temperature dependence as the polymer matrix. Around Tmax, the dielectric constant 

increases dramatically from 21 (at 80 oC) to 53 (at 109 oC) at 1 kHz for polymer 

matrix, however, the dielectric constant increases continuously and gradually from 39 

(at 80 oC) to 65 (at 108 oC) at 1 kHz for 10 vol% of Ni. As discussed in Figure 1-6, 

the P(VDF-TrFE) polymer changed from the typical ferroelectric phase to relaxor 
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ferroelectric phase after irradiation, which indicated the Ni may decrease the 

crystallization of polymer matrix. The composite exhibited a lower loss at high 

temperature, which results in a weaker temperature dependence of the dielectric loss 

at high temperature than the polymer matrix. Regarding the glass transition process, 

similar to the polymer matrix, the higher the frequency, the higher the peak 

temperature for tan and ”
r.  
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Figure 2-12. Temperature dependence of dielectric properties of the composite with 
20 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 20 vol.% of Ni showed the similar 

temperature dependence as the composite with 10 vol.% of Ni. Again, the composite 

exhibited a lower loss at high temperature than the polymer matrix. Regarding glass 

transition process, although the”
r for the composite was higher than the composite 

with 10 vol.% Ni, the increase at low frequency was clearly higher than at high 

frequencies. For example, the peak of ”
r at 100 kHz was 2.12 and 3.07, for the 

composites with 10 and 20 vol.%, respectively, while it at 1 kHz was 1.36 and 3.72, 

respectively. And the ”
r of the composite at high temperature was also higher than the 

composite with 10vol.% Ni. All these may be the results of an increase in the DC 
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conductivity. This is consistent with the data shown in Table 2-2. 
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Figure 2-13. Temperature dependence of dielectric properties of the composite with 
30 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 30 vol.% of Ni showed the similar 

temperature dependence as the composite with 20 vol.% of Ni. Again, the composite 

exhibited a lower loss at high temperature than the polymer matrix. For ”
r,  the ”

r  

at 1 kHz and 1 MHz peak value of Tmax had the similar value for 20 vol.%. In 30 vol.% 

composite, the peak value of Tmax at 1 kHz was larger than 1 MHz.  

From a pure matrix to 30 vol%, it was easy to identify the glass transition 

temperature from imaginary part of dielectric constant. However, from 40 vol% to 

high volume fraction, the value of the “shoulder” between the peak of Tg and Tmax in 

imaginary part increased due to the increasing loss. It was difficult to find the peak of 

glass transition temperature at high frequency. In 40 vol.% composite, the peak value 

of Tmax at 1 kHz and 10 kHz both were larger than 1 MHz.  
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Figure 2-14. Temperature dependence of dielectric properties of the composite with 
40 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 
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Figure 2-15. Temperature dependence of dielectric properties of the composite with 
50 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 50 vol.% is around 600 at 1 kHz 

near the Tmax, while the loss was around 0.2. Moreover, the dielectric constant of the 

composite with 53 vol.% was around 1500 at 1 kHz near Tmax, while the loss was 

smaller than 0.2. High dielectric constant and low loss near Tmax indicated this system 

may have good dielectric application. It is interesting to find that the loss at 1 kHz 

decreased with increasing temperature. It is possible that there is a new dielectric 

process in the low frequencies. 
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Figure 2-16. Temperature dependence of dielectric properties of the composite with 
53 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

For the composite with 53 vol.% Ni, the new dielectric relaxation process almost 

completely dominated the dielectric loss and the relaxation process was not easy to 

identify. The dielectric constant at peak position of 1 kHz was 2 times of which at 10 

kHz, while the dielectric constant at peak position of 1 kHz was only 1.2 times of that 

at 10 kHz for 50 vol.%. The loss at 1 kHz was close to 1 but still smaller than 0.5 at 

10 kHz, 100 kHz and 1 MHz.  

To compare the dielectric properties of composites with different Ni volume 

fractions clearly, the ’
r, ”

r and tanδ at 1 kHz and 1 MHz are shown in Figure 2-17. 

As a short summary, ’
r, and ”

r increased with the increasing Ni content. The tanδ at 

low temperature increased with the increasing Ni content. At high temperature, except 

the composite with 53 vol.% of Ni, the composites exhibited a lower tanδ at low 

frequency. At high frequency, the new dielectric relaxation process almost completely 

dominated the dielectric properties. The peak of glass transition temperature slightly 

shifted to high temperature from 30vol% to 50 vol%. However, it was difficult to 

quantify the change of shifts for glass transition temperature.  
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(c) at 1kHz
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Figure 2-17. Temperature dependence of ’
r, ”

r and tanδ of composites: (a) to (c) at  
1 kHz and (d) to (f) at 1 MHz.  

In order to study the effect of Ni powder on the peak positions of Tmax for the 

composites, the peak positions at different frequencies were fitted from Figure 2-10 

to 2-16. The results are listed in Table 2-7 and Figure 2-18. In each composite, the 

peak positions slightly increased with frequency when Ni content changed from 30% 
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to 53%. It can be explained that the new dielectric relaxation process dominated in the 

relaxation processes. With increasing Ni content, the peak positions of Tmax decreased 

which is due to the size of crystal becoming smaller or crystallization of composite 

decreasing.  

 

Table 2-3 The peak positions of Tmax of composites at different frequencies 

Freq. 0 vol.% 10 vol.% 20 vol.% 30 vol.% 40 vol.% 50 vol.% 53 vol.% 

1kHz 113.53 110.81 109.89 108.89 108.76 105.05 102.28 

10kHz 112.30 110.53 109.75 108.97 108.77 105.87 103.38 

100kHz 112.65 110.64 110.16 109.29 108.84 107.07 105.27 

1MHz 113.04 110.98 110.51 109.60 109.38 107.36 106.80 
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Figure 2-18. Tmax of composites at 1 kHz. 

2.4. Dielectric Behavior of Ni-P(VDF-CTFE) Composites 

2.4.1. Frequency Dependence of Dielectric Properties at Room Temperature 

The dielectric properties of Ni-P(VDF-TrFE) nano-composites show a high 

percolative threshold. It is interesting to confirm this by using another polymer as a 

matrix. In this section, P(VDF-CTFE) is used because of its following features. Firstly, 

similar with other PVDF-based polymers, P(VDF-CTFE) copolymer at room 

temperature also exhibits a dielectric constant around 10. Secondly, P(VDF-CTFE) 
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copolymers show that its dielectric constant is weakly dependent on the temperature. 

The dielectric properties and percolation behavior of the two composites can be 

compared and the new information about the dielectric mechanism can be realized. 

The composites with different Ni concentration were measured at room 

temperature. Figure 2-19 shows the dielectric properties and conductivity of the 

Ni-P(VDF-CTFE) nano-composites with different Ni concentration from 0 % to 60 

vol.%. 
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Figure 2-19. Dielectric responses: (a) dielectric constant, (b) dielectric loss, (c) 
imaginary part of dielectric constant and (d) conductivity varies with frequency for Ni 

-P(VDF-CTFE) composites with Ni concentrations from 0 % to 60 vol.%. 

As shown in the Figure 2-18 (a), the dielectric constant of the composites 

increased with increasing filler concentration. A high dielectric constant (>600) with a 
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loss less than one was observed at 1 kHz in the composite with 60 vol.% of Ni. This 

dielectric constant was more than 60 times that of the dielectric constant of the 

polymer matrix. The composites with low Ni concentration showed similar frequency 

dependence for the dielectric constant with the polymer matrix. For the composites 

with high Ni content, a stronger frequency dependence of the dielectric constant was 

observed. These are the same as what we observed in Ni-P(VDF-TrFE) composites. 

From Figure 2-18 (b) and (c), it can be found that both tan and ”
r increase with 

increasing frequency for polymer matrix. However, tan and ”
r observed in the 

composites show a different frequency dependence. At low frequencies, they decrease 

with increasing frequency, while at high frequencies, they increase with increasing 

frequency. That is, there is a certain frequency, at which they reach their minimum. 

This frequency separates the frequency range into two regimes: low and high 

frequency. This certain frequency for tan is lower than that for ”
r. All these indicate 

that there is a new dielectric process in the composites. The contribution of this new 

dielectric process to the dielectric response of the composites increased with 

increasing Ni concentration.   

To study this new dielectric process, the real part of electric conductivity of the 

composites was plotted in Figure 2-19 (d), where the real part of the conductivity 

from the imaginary part of the permittivity using Eq. (1-9). Clearly, the conductivity 

increases with increasing frequency. It seems that there is a saturated value for the 

conductivity at low frequency, which means the samples have non-zero conductivity. 

That is, the conductivity of the composites originated from the new dielectric process 
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and the dielectric relaxation from the composites. Similar to Section 2.3.1, Eq. (2-1) 

was used to analyze the dielectric response. 
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Figure 2-20. Real part of conductivity of composites versus frequency. The solid lines 

are the fitting results using Eq. (2-1). 

 

Table 2-4. Parameters of Eq. (2-1) for fitting the conductivity of composites 

Ni vol%  
Parameter in

n
meas A  0  

σ0 σ0 error A A error n n error R2 

0 5.23E-10 1.85E-11 1.18E-14 7.56E-16 1.2503 5.53E-3 0.9969 

10 7.48E-10 6.64E-11 1.05E-13 1.74E-14 1.1766 1.48E-2 0.9690 

20 7.56E-10 1.14E-10 2.18E-12 1.51E-13 1.0490 6.26E-3 0.9918 

30 2.87E-9 1.68E-10 1.19E-11 5.04E-13 0.9182 3.74E-3 0.9967 

40 2.08E-9 1.84E-10 1.16E-11 2.25E-13 0.9275 4.16E-3 0.9959 

45 4.83E-9 1.90E-10 1.69E-11 5.85E-13 0.9101 3.06E-3 0.9978 

50 7.54E-9 5.31E-10 7.39E-11 2.82E-12 0.8415 3.38E-3 0.9971 

55 6.65E-8 1.32E-9 3.57E-10 7.88E-12 0.8116 1.93E-3 0.9991 

60 2.75E-6 7.09E-9 5.55E-9 6.57E-11 0.7023 9.82E-4 0.9998 

  

Equation (2-1) was used to fit the experimental results shown in Figure 2-19 (d). 

Since the polymer matrix had a relaxation process with a relaxation frequency of 106 

~ 107 Hz and Johnscher’s universal law was used for the frequencies much higher or 

lower than the relaxation frequency. The data obtained at frequencies higher than 100 
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kHz was not used in the fitting. Figure 2-20 shows the fitting results. Clearly, 

Equation (2-1) fits the experimental results very well. All the fitting parameters are 

presented in Table 2-3 and plotted in Figure 2-21.  
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Figure 2-21. Fitting parameters, σ0, A, and n, for different composites.   

From the fitting results, it was found that the σ0 of composites slowly increased 

with increasing Ni concentration for the composites with less than 50 vol.% of Ni. 

When the Ni content was higher than 50 vol.%, the σ0 increase with the Ni 

concentration rapidly. For example, the σ0 of the composites with 55 vol.% and 60 

vol.% of Ni was more than 10 and 300 times, respectively, higher than that of the 

composite with 40 vol.% of Ni. The composites with 60 vol.% of Ni exhibited a high 

conductivity, which means that the composite was close to the φc. The value of A 
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increased with increasing Ni concentration. This means that the contribution of the 

new dielectric relaxation process in the composite to the dielectric response increases 

with the Ni concentration. This is consistent with the direct observation of the 

dielectric loss discussed above.  

Regarding the value of n obtained from the fitting, one can find that n decreased 

with increasing Ni concentration. It is very interesting that the value of the n changes 

from larger than one for the composites with low Ni concentration to smaller than one 

for the composites with high Ni content. Based on the Johnscher’s universal law, n 

larger than one means that the dielectric process has a relaxation frequency, which 

was much higher than the frequency range. For example, for the polymer matrix used, 

its relaxation frequency is higher than 106 Hz. Therefore, the n is 1.33 (>1) for the 

frequency range lower than 100 kHz. However, n smaller than one means the 

dielectric process has a relaxation frequency much lower than the frequency range. 

This means that the new dielectric process observed in the composites is a relaxation 

process with a very low relaxation frequency as discussed in Section 2.3.1.   

2.4.2. Temperature Dependence of Dielectric Properties  

The temperature dependence of the dielectric properties at different frequencies 

for pure polymer matrix is shown in Figure 2-22. Clearly, both tan and ”
r show a 

peak at specific temperature (-20 oC to +20 oC). The higher the frequency is, the 

higher the peak temperature is and the higher the peak value is. This was a typical 

relaxation process due to the Tg. Above the Tg, the dielectric constant did not change 

much. At high temperatures, the dielectric loss increased with increasing temperature 
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due to the conductivity.  
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Figure 2-22. Temperature dependence of dielectric properties of pure P(VDF-CTFE): 
(a) real part(solid) and loss(open), (b) imaginary part. 

Temperature dependence of the electrical conductivity can be written as [4, 5]: 

      )exp(0 Tk

E

B

a                                                   (2-2) 

where σ0 is the pre-exponential factor, Ea is an activation energy and kB is the 

Boltzmann constant (=8.616×10-5eV). According to Eq. (1-9), the imaginary part of 

dielectric constant also has the similar relationship with temperature, 

      )exp(
0 Tk

E

B

a
r 


                                                 (2-3) 

Then by taking the nature logarithm of both sides of the Eq. (2-3), we can get, 

      


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a
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1
lnln

0
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The imaginary part of dielectric constant of pure P(VDF-CTFE) versus 1000/T and 

the fitting results are shown in Figure 2-23, and the parameters are listed in Table 

2-5. 
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Figure 2-23. Imaginary part of dielectric constant of pure P(VDF-CTFE) versus 

1000/T. The solid lines are the fitting results using Eq. (2-4). 

Table 2-5. Parameters given by Eq. (2-4) fitting 

Freq. (Hz) lnε''
r0  σ0 (S/m) Ea (eV) R2 

1k  19.29 13.263 0.576 0.9999 
10k 17.05 14.120 0.413 0.9997 

100k 14.78 14.589 0.388 0.9992 
1M 13.04 28.270 0.575 0.9982 

 

Figure 2-24 to Figure 2-31 show the temperature dependence of the dielectric 

properties at 1 kHz, 10 kHz, 100 kHz, and 1 MHz for the composites with different Ni 

concentrations.  

-60 -40 -20 0 20 40 60 80 100120
0

5

10

15

20

25

Ni-P(VDF-CTFE) 10 vol%

'
r

Temperature (oC)

  

 

 

 1kHz
 10kHz
 100kHz
 1MHz

(a)

0.0

0.1

0.2

0.3

0.4

0.5

ta
n

-60 -40 -20 0 20 40 60 80 100120
0

1

2

3

4

Ni-P(VDF-CTFE) 10 vol%

'
' r

Temperature (oC)

  

 

 

 1kHz
 10kHz
 100kHz
 1MHz

(b)

 

Figure 2-24. Temperature dependence of dielectric properties of the composite with 
10 vol.% Ni: (a) real part (solid) and loss (open), (b) imaginary part.  



 
 

88 
 

-60 -40 -20 0 20 40 60 80 100120
0

10

20

30

40 Ni-P(VDF-CTFE) 20 vol%

'
r

Temperature (oC)

  

 

 

 1kHz
 10kHz
 100kHz
 1MHz

(a)

0.0

0.1

0.2

0.3

0.4

0.5

ta
n


-60 -40 -20 0 20 40 60 80 100120
0

2

4

6

8

Ni-P(VDF-CTFE) 20 vol%

'
' r

Temperature (oC)

  

 

 

 1kHz
 10kHz
 100kHz
 1MHz

(b)

 

Figure 2-25. Temperature dependence of dielectric properties of the composite with 
20 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 10 vol.% Ni showed the similar 

temperature dependence as the polymer matrix. However, the composite exhibited a 

lower loss at high temperature, which resulted in a weaker temperature dependence of 

the dielectric constant at high temperature than that of the polymer matrix. Regarding 

the glass transition process, similar to the polymer matrix, the higher the frequency, 

the higher the peak temperature for tan and ”
r. However, the frequency dependence 

of the peak value changed some. For example, the peak value for 10 kHz was higher 

than that for 100 kHz. (1.52 for 10 kHz and 1.49 for 100 kHz). It was also interesting 

to find that there is a temperature range in which the loss is weakly dependent on the 

temperature. For example, at 10 kHz, this temperature range is about ~20 oC to ~60 

oC. This means that in the composite there may be one more dielectric process besides 

the glass transition process.    

 The dielectric constant of the composite with 20 vol.% Ni showed the similar 

temperature dependence as the polymer matrix and composite with 10 vol.% Ni. 

Again, the composite exhibited a lower loss at high temperature than the polymer 
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matrix. Regarding glass transition process, although the ”
r for the composite was 

higher than the composite with 10 vol.% Ni, the increase at low frequency is clearly 

higher than it at high frequency. For example, the peak of ”
r at 1 MHz is 1.68 and 

3.09, for the composites with 10 and 20 vol.%, respectively, while at 1 kHz it is 1.35 

and 2.89, respectively. The ”
r of the composite at high temperature was also higher 

than the composite with 10 vol.% Ni. All these may be the results of increase in the 

DC conductivity. This is consistent with the data shown in Table 2-4.      
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Figure 2-26. Temperature dependence of dielectric properties of the composite with 
30 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

For the composite with 30 vol% Ni, although the loss at high temperature was 

almost identical with the loss observed in the composite with 20 vol.% Ni, at the low 

temperature, especially at low frequency, clearly increased compared to the composite 

with 20 vol.% Ni. Here, the peak of ”
r at 1 kHz was actually higher than it at 1 MHz. 

In other words, the conductivity of the composite was higher than the composite with 

20 vol.%. This is consistent with the data shown in Table 2-4.  
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Figure 2-27. Temperature dependence of dielectric properties of the composite with 
40 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

For the composite with 40 vol.% Ni, the ”
r was higher than that in composite 

with 30 vol.% Ni. Although the loss (tanδ) at low frequency at high temperature was 

lower than the composites with less Ni concentration, the loss at high frequency at 

high temperatures did not change much. At the glass transition temperature, the loss at 

low frequencies was higher than that of composites with less Ni concentration. All 

these indicate the composite had a higher conductivity than the composite with less Ni 

concentration. The peak of ”
r at 1 kHz was again higher than it at 1 MHz. It is 

interest to find that the temperature dependence of the dielectric constant shown there 

was a new process which results in a peak like curve at ~60 oC. As discussed before, 

there were 3 different mechanisms in this system: 1) the dielectric relaxation process 

from the polymer matrix, 2) the new dielectric relaxation process from the composite, 

and 3) the conductivity of the conducting filler (Ni). With increasing Ni concentration, 

the dielectric constant of composites showed a new peak around 60 oC, which 

indicated the interfacial layer show a ferroelectric-like phase.   
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Figure 2-28. Temperature dependence of dielectric properties of the composite with 
45 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

For the composite with 45 vol.% Ni, temperature dependence of the dielectric 

constant was similar with that for 40 vol.% Ni. It was also interesting to find that the 

temperature dependence of the dielectric constant shown there was a new process 

which resulted in a peak like curve at ~60 oC. The loss at low frequency for the 

composite at high temperature was lower than composites with less Ni content, but it 

was higher than the composites with less Ni concentration at lower temperatures. It 

was found that ”
r at the high frequencies was higher than that in composites with 40 

vol.% Ni. Although the loss at low frequency at high temperature was lower than the 

composites with less Ni content, the loss at high frequency at high temperature did not 

change much. At the glass transition temperature, the loss at low frequency was 

higher than that of composites with less Ni concentration. All these indicate the 

composite had a higher conductivity than the composite with less Ni content. The 

peak of ”
r at 1 kHz was again higher than it at 1 MHz.  
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Figure 2-29. Temperature dependence of dielectric properties of the composite with 
50 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 

For the composites with 50 vol.% Ni, temperature dependence of the dielectric 

constant was similar with that for 45 vol.% Ni. That is, there was peak like curve at 

60oC. The loss at low frequency for the composite at high temperature was still lower 

than composites with less Ni concentration. The most important difference from 

composites with less Ni content was that the ”
r of 50 vol.% at 1 kHz was larger than 

high frequency in the whole temperature range, which means the conductivity clearly 

dominate the dielectric loss at low frequency. At the glass transition temperature, the 

loss at low frequency was higher than that of composites with less Ni concentration. 

All these indicated the composite had a higher conductivity than the composite with 

less Ni concentration. The peak of ”
r decreased with the increasing of frequency.  

For the composite with 55 vol.% Ni, the temperature dependence of the dielectric 

constant had some difference compared to the composites with 50 vol.% Ni. Firstly, 

the value difference between each frequency became larger than composites with less 

Ni content. Secondly, the peak value of dielectric constant (~60oC) was only 1.6 times 

of that at low temperatures (-65oC). In 20 to 50 vol.% composites, the peak value of 
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dielectric constant is more than 2 times that compared to low temperatures. For the 

loss part, it was the first time that the loss at 1 kHz is larger than the high frequency 

response in the whole temperature range, which meant the conductivity clearly 

dominated the dielectric loss at low frequency. At glass transition temperature, the 

loss at low frequency was higher than that of composites with less Ni content. All 

these indicated the composite had a new dielectric relaxation process. The peak of ”
r 

decreased with the increasing of frequency.  
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Figure 2-30.Temperature dependence of dielectric properties of the composite with 
55 vol.% Ni: (a) real part(solid) and loss(open), (b) imaginary part. 
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Figure 2-31.Temperature dependence of dielectric properties of the composite with 
60 vol.% Ni: (a) real part, (b) loss and (c) imaginary part. 

For the composites with 60 vol.% Ni, the new dielectric relaxation process almost 

completely dominated the dielectric loss and the relaxation process was not easy to 
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identify. The new process covered a larger temperature range and the peak of the 

dielectric constant was around 80 oC. The loss at 1 kHz was more than 1 but still 

smaller than 0.7 at 10 kHz, 100 kHz and 1 MHz.  
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Figure 2-32. Temperature dependence of dielectric properties of composites: (a) ’
r, 

(b) tanδ, (c) ”
r and (d) ln”

r vs. 1000/T.  

 

Table 2-6. Parameters given by Eq. (2-4) fitting at 1 kHz for composites 

Ni vol.% lnε''
r0  σ0 (S/m) Ea (eV) lnε''

r0 at RT (S/m) σ0 at RT (S/m) R2 

0  19.291 13.263 0.5767 -1.476 9.563×10-10 0.9999 

10 7.334 8.516×10-5 0.2181 -0.438 1.769×10-8 0.9752 

20 7.571 1.079×10-4 0.2024 0.483 4.132×10-8 0.9851 

30 5.942 2.116×10-5 0.1420 1.107 8.497×10-8 0.9745 

40 4.998 8.236×10-6 0.1013 1.772 1.603×10-7 0.9978 

45 4.657 5.856×10-6 0.0875 1.855 1.949×10-7 0.9992 

50 3.272 1.466×10-6 0.0288 2.473 4.786×10-7 0.9873 

55 5.210 1.018×10-5 0.0509 3.431 1.221×10-6 0.7586 

60 9.467 2.962×10-5 0.0727 6.657 3.898×10-5 0.9949 
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Figure 2-33. Temperature dependence of dielectric properties of composites: (a) ’
r, 

(b) tanδ and (c) ”
r. 

To compare the dielectric properties with different Ni volume fraction clearly, the 

’
r, ”

r and tanδ at 1 kHz and 1 MHz are shown in Figure 2-32 and 2-33. As a short 

summary, ’
r, and”

r increased with the increasing Ni content. The loss at low 

temperature increased with the increasing Ni content, while decreased firstly with the 

increasing Ni content then increased due to the higher conductivity at high 

temperature. The relationship between ln”
r and 1000/T is shown in Figure 2-32(d) 

and the parameter is shown in Table 2-6. Compared with polymer matrix, it indicated 

that it is the new dielectric relaxation process not the conductivity contributed the 

”
rat low temperature.  

Regarding the glass transition temperature, it was of interest to know whether the 
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filler had some influence on the Tg. The peak position of ”
r firstly shifted to high 

temperature then back to a low temperature at 1 kHz. It then shifted to a low 

temperature then back to high temperature at 1 MHz. To quantify the analysis, the 

peak temperature of ”
r was determined for all composites as shown in Table 2-7 and 

Figure 2-34. All of the peak positions are fitted by peak fitting over a small 

temperature range from the imaginary parts of the dielectric constant. At 1 kHz and 10 

kHz, the Tg slightly increased with increasing Ni content then decreased at 40 vol.%. 

The logf versus 1000/Tg is shown in Figure 2-35(a).  

 

Table 2-7 The glass transition temperature of relaxation behavior of Ni-P(VDF-CTFE) 
composites with different frequency (in K unit) 

 0 vol.% 10 vol.% 20 vol.% 30 vol.% 40 vol.% 45 vol.% 50 vol.% 55 vol.% 

1kHz 259.79 260.22 261.21 261.59 261.78 259.28 257.99 256.57 

10kHz 268.22 266.89 266.98 266.05 266.74 265.5 264.77 264.75 

100kHz 279.31 278.72 276.76 275.54 276.66 275.72 276.98 277.09 

1MHz 296.82 295.28 295.18 295.66 293.31 292.56 294.1 296.38 
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Figure 2-34. The glass transition temperature of relaxation behavior of 
Ni-P(VDF-CTFE) composites with different frequencies. 
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Figure 2-35. (a)Temperature dependence of the relaxation rate, and (b) temperature 
dependence of the relaxation rate for pure P(VDF-CTFE), black line: Arrhenius 

equation and red line: Vogel–Fulcher equation. 

There are different relationships proposed for the relationship between logf and 

1/Tg. The simplest one is the Arrhenius relation: 

      )exp(0 Tk

E
ff

B

a                                            (2-5)                

where f0 is the pre-exponential factor, Ea is an activation energy and kB is the 

Boltzmann constant (=8.616×10-5eV). The Arrhenius relationship results in a linear 

relation between logf and 1/Tg. This was clearly different with the experimental 

results shown in Figure 2-35(b). Another model is the so-called Vogel–Fulcher (VF) 

relationship: 

      














)(
exp0

fgB

a

TTk

E
ff                                       (2-6)                

where Tf is the static glass transition temperature and the other parameters have the 

same meaning as defined for Eq. (2-5). As shown in Figure 2-35 (b), VF relationship 

can fit the experimental results well.  

 

 



 
 

98 
 

Table 2-8 Parameters given by fitting using Vogel–Fulcher equation 

Ni vol.% f0 (Hz) Ea (eV) Tf (K) R2 

0  1.12×1010 0.03026 210.0 0.9996 
10 1.23×109 0.01926 223.4 0.9966 
20 1.33×108 0.01067 237.1 0.9998 
30 2.51×107 0.00614 245.4 0.9977 
40 1.05×108 0.00937 240.05 0.9963 
45 4.81×108 0.01465 229.34 0.9996 
50 1.03×109 0.01913 220.98 0.9962 
55 1.99×109 0.02384 212.66 0.9999 
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Figure 2-36. f0, Ea, and Tf change with Ni concentrations from 0% to 60 vol.%. 

The fitting parameters from VF relationship are listed in Table 2-8 and plotted in 

Figure 2-36. Based on the parameters obtained for each composite, it was concluded 

that the activation energy decreased with increasing Ni content from 0 vol.% to 30 

vol.%, then it increased with increasing Ni content from 30 vol.% to 55 vol.%. 

Regarding the Tg, it was found that Tg increased with Ni content from 0 % to 30 vol.%, 
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then decreased with increasing Ni content from 30 vol.% to 55 vol.%. The results 

shown in Figure 2-36 are consistent with the results shown in Figure 2-21. That is, 

the composite with ~ 30 vol.% Ni corresponded to a special case. This phenomenon 

can be explained by the crystal-like interfacial layer in composites. From 0 vol.% to 

30 vol.%, the Tg increased due to the volume of interfacial layer increasing. It can also 

be explained by Table 1-2 in Section 1.5.4. 

2.5. Matrix Effects on Percolative Behavior of Ni-Polymer Composites 

Most researchers are focusing on the concentration of the filler approaching the 

φc from the low concentration side since the dielectric constant undergoes a sharp rise. 

The dielectric constant of the composite near this transition point often follows the 

percolation theory, as discussed in the Section 1.4.1, the percolation equation is 

selected to fit the experimental data is:  

s

c

c

m

eff










 








                                 (2-7) 

where φ < φc and s (> 0) is a constant.  

2.5.1. Percolative Behavior of Ni-Polymer Composites at Room Temperature 

The dependence of εr/εm of the Ni-P(VDF-TrFE) and Ni-P(VDF-CTFE) 

composites on Ni volume fraction are plotted in Figure 2-37. Figure 2-38 shows the 

relationship between εr/εm and φ by fitting equation at 1 kHz and 1 MHz for the two 

systems as an example. To study the percolative behavior of the Ni-polymer 

composites at room temperature. The percolation threshold and critical value of 

Ni-P(VDF-TrFE) and Ni-P(VDF-CTFE) composites, which are determined by fitting 
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experimental results using Eq. (2-7), are listed in Table 2-9 and plotted in Figure 

2-39. 
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Figure 2-37. εr/εm vs. frequency with different Ni volume fraction of (a) 
Ni-P(VDF-TrFE) and (b) Ni-P(VDF-CTFE) at room temperature. 
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Figure 2-38. Variation of the dielectric constant of the Ni-P(VDF-TrFE) and 
Ni-P(VDF-CTFE) composites at room temperature with Ni volume fraction in 

comparison with fitting at 1 kHz and 1 MHz. 
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Table 2-9 φc and s vs. different frequencies of Ni-P(VDF-CTFE) and Ni-P(VDF-TrFE) 
composites 

Composites Frequency 

(Hz) 

s

c

fillerc

m

r










 








 

φc φc error s s error R2  

 100 0.62592 0.00327 1.53004 0.0494 0.9992  

 501 0.63034 0.00448 1.46202 0.0587 0.9983  

 1000 0.63464 0.00566 1.46278 0.0681 0.9975  

Ni-P(VDF-CTFE) 5001.8 0.64654 0.00888 1.47912 0.0888 0.9950  

 10000 0.65372 0.01076 1.50235 0.0992 0.9937  

 50118.7 0.67689 0.01738 1.60305 0.1339 0.9900  

 100000 0.69096 0.02165 1.67316 0.1551 0.9884  

 501187.2 0.74328 0.03870 1.96119 0.2386 0.9849  

 1000000 0.77920 0.05117 2.17117 0.3000 0.9840  

 100 0.54543 0.00508 1.42138 0.1029 0.9959  

 501 0.54945 0.00593 1.38936 0.1021 0.9948  

 1000 0.55210 0.00659 1.38824 0.1045 0.9941  

 5001.8 0.55959 0.00854 1.38943 0.1123 0.9928  

Ni-P(VDF-TrFE) 10000 0.56379 0.00967 1.39508 0.1169 0.9923  

 50118.7 0.57716 0.01301 1.43490 0.1295 0.9922  

 100000 0.58507 0.01485 1.46969 0.1365 0.9925  

 501187.2 0.60735 0.01916 1.57968 0.1509 0.9940  

 1000000 0.61763 0.02058 1.63257 0.1541 0.9948  
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Figure 2-39. φc and s for different frequencies of Ni-P(VDF-CTFE) and 
Ni-P(VDF-TrFE). 

The results shown in Figure 2-39 indicated that the φc of both systems 

increased with increasing frequency. Two systems also showed the same trend of s vs. 
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frequency. That is, the s slightly decreased at low frequency then increased at high 

frequency with increasing frequency.   

2.5.2. Percolative Behavior of Ni-Polymer Composites at Different Temperature 

As discussed in Section 2.3, P(VDF-TrFE) and P(VDF-CTFE) have totally 

different temperature dependence of their dielectric properties. The φc and s of both 

composites at some frequencies at different temperatures are studied. The variation of 

εr/εm of the Ni-P(VDF-CTFE) and Ni-P(VDF-TrFE) composites for different 

frequency (1 kHz, 10 kHz, 100 kHz, and 1 MHz) at -40 oC, 0oC, 40 oC, 80 oC and 130 

oC were studied. The variation of εr/εm for both composites at -40 oC and 80 oC as 

examples are shown in Figure 2-40. At different temperature, the εr/εm had the similar 

trend with increasing volume fraction of Ni. Before 50 vol.% Ni in Ni-P(VDF-CTFE) 

and 40 vol% Ni in Ni-P(VDF-TrFE), the εr/εm did not change much with different 

frequencies. 

The fitting results are listed in Table 2-10 and Table 2-11, and the normalized 

φc/φ-40
o

C and s/s-40
o

C are plotted in Figure 2-41 and Figure 2-42. At different 

temperatures, the φc and s were different, which means the fitted φc and s are 

dependent on temperature. The φc always increased with frequency at each 

temperature for both systems. The φc/φ-40
o

C and s/s-40
o

C varied with temperature were 

very similar to the curve of temperature dependence of the dielectric constant. For 

Ni-P(VDF-CTFE) system, the φc/φ-40
o

C and s/s-40
o

C firstly increased then slightly 

decreased with temperature. At high temperature, the s always increases with 

frequency. For Ni-P(VDF-TrFE) system, the φc/φ-40
o

C and s/s-40
o

C may have a peak 
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value between 80 oC and 130 oC, which was similar to the phase transition 

temperature.  
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Figure 2-40. Variation of εr/εm of the composites with different frequency 1 kHz, 10 
kHz, 100 kHz, and 1 MHz: at Ni-P(VDF-TrFE) (a) -40 oC and (b) 80 oC, 

Ni-P(VDF-CTFE) at (c) 40 oC and (d) 80 oC. 
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Table 2-10 φc and s vs. different selected frequency and temperature of 
Ni-P(VDF-TrFE)  

Temperature 

(oC) 

Frequency 

(Hz) 

s

c

fillerc

m

eff










 








 

φc φc error s s error R2  

 

-40 

1k 0.5534 0.0015 1.3196 0.0217 0.9996  

10k 0.5894 0.0034 1.5535 0.0318 0.9996  

100k 0.6242 0.0091 1.6983 0.0675 0.9990  

1M 0.6364 0.0228 1.6845 0.1548 0.9953  

 1k 0.5531 9.22E-4 1.2779 0.0131 0.9998  

0 10k 0.5893 0.0027 1.5045 0.0239 0.9998  

 100k 0.6250 0.0089 1.6849 0.0655 0.9991  

 1M 0.6438 0.0234 1.7526 0.1581 0.9958  

 1k 0.5566 0.0012 1.3408 0.0169 0.9998  

40 10k 0.5969 0.0034 1.5893 0.0301 0.9997  

 100k 0.6359 0.0102 1.7446 0.0718 0.9991  

 1M 0.6438 0.0204 1.7011 0.1332 0.9969  

 1k 0.5647 0.0048 1.4928 0.0611 0.9977  

 10k 0.6420 0.0150 2.0492 0.1199 0.9981  

80 100k 0.7335 0.0301 2.5368 0.1989 0.9983  

 1M 0.7803 0.0499 2.7105 0.3050 0.9972  

 1k 0.5484 0.0020 0.9442 0.0246 0.9989  

130 10k 0.6038 0.0027 1.2714 0.0175 0.9998  

 100k 0.6197 0.0040 1.2435 0.0223 0.9998  

 1M 0.6430 0.0138 1.2795 0.0681 0.9986  
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Figure 2-41. φc/φ-40

o
C and s/s-40

o
C vs. different selected frequency and temperature for 

Ni-P(VDF-TrFE) composites. 
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Table 2-11 φc and s vs. different selected frequency and temperature of 
Ni-P(VDF-CTFE)  

Temperature 

(oC) 

Frequency 

(Hz) 

s

c

fillerc

m

r










 








 

φc φc error s s error R2  

 

-40 

1k 0.6356 0.0072 1.5138 0.0878 0.9946  

10k 0.6420 0.0103 1.4607 0.1102 0.9923  

100k 0.6545 0.0142 1.4854 0.1276 0.9891  

1M 0.6903 0.0258 1.6460 0.1830 0.9831  

 1k 0.6399 0.0117 1.5293 0.1339 0.9868  

0 10k 0.6610 0.0213 1.6179 0.1944 0.9723  

 100k 0.6973 0.0340 1.8227 0.2543 0.9673  

 1M 0.7539 0.0532 2.0883 0.3331 0.9691  

 1k 0.6372 0.0114 1.5191 0.1363 0.9866  

40 10k 0.6626 0.0229 1.6316 0.2063 0.9695  

 100k 0.7318 0.0532 2.0258 0.3591 0.9567  

 1M 0.9497 0.1818 3.1618 0.9764 0.9551  

 1k 0.6280 0.0088 1.4206 0.1175 0.9901  

 10k 0.6495 0.0181 1.5304 0.1799 0.9735  

80 100k 0.7094 0.0437 1.8897 0.3122 0.9572  

 1M 0.9037 0.1565 2.9342 0.8592 0.9508  

 1k 0.6191 0.0056 1.2166 0.0822 0.9941  

130 10k 0.6334 0.0115 1.3092 0.1271 0.9823  

 100k 0.6754 0.0281 1.6176 0.2213 0.9642  

 1M 0.7864 0.0834 2.2391 0.4906 0.9514  
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Figure 2-42. φc/φ-40
o

C and s/s-40
o

C vs. different selected frequency and temperature for 
Ni-P(VDF-CTFE) composites. 
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2.5.3.  Fitting Close to the Percolation Threshold  

As discussed in Section 1.4.1, the effective dielectric constant of a 

conductor-dielectric composite, especially when φφc, was strongly dependent on the 

frequency. For example, if φφc, it was shown that: 

      
1 eff                                  (2-8) 

where  (<1) is a constant and ω is the angular frequency. In these Ni based 

composites, the composites with 60 vol.% of Ni and 53 vol.% of Ni were the closest 

one for Ni-P(VDF-CTFE) and Ni-P(VDF-TrFE). The dielectric constant and the 

fitting curve by Eq.(2-8) are shown in Figure 2-43. Because it was a nonlinear curve 

in log-log scale, the fitting curve is separated to 2 parts, before 3 kHz and after 3 kHz. 

The 1=0.7234 2=0.8155 is for Ni-P(VDF-CTFE) and 1=0.7327 2=0.7573 is for 

Ni-P(VDF-TrFE). The results were close to the normal value from the percolation 

theory which is discussed in section 1.4.1. 
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Figure 2-43. Dielectric constant vs. frequency of composites and fitting curve for (a) 
Ni-P(VDF-TrFE) with 53 vol.% of Ni and (b) Ni-P(VDF-CTFE) with 60 vol.% of Ni. 
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2.6. Conclusions 

1. By combining solution casting and hot-pressed processing, metal-polymer 

composites with high φc were developed. This was due to a uniform dispersion 

of nanoparticles in nanocomposite and was experimentally proven by 

Ni-P(VDF-TrFE) and Ni-P(VDF-CTFE) composite systems. 

2. Compared to the composites with low percolation threshold, composites with 

high percolation threshold had a wider volume fraction range for the 

percolation threshold concentration, making the material reproducible for 

practical applications. 

3. Dielectric constants of more than 1000 were obtained in both systems with a 

low loss. A higher loading of the nano Ni at the percolation threshold gave the 

higher value of dielectric constant for Ni-P(VDF-CTFE) composite, but 

moderate loss. The dielectric loss for the composite film containing 50 vol% 

Ni was smaller than 0.2 at 100 Hz which is attractive for practical use. 

4. The new dielectric process observed in the composites was a relaxation 

process with a very low relaxation frequency. There are three mechanisms in 

this conductor-polymer composite: 1) the dielectric relaxation process from 

the polymer matrix, 2) the new dielectric relaxation process from the 

composite, and 3) the conductivity of the conducting filler (Ni). 

5. Ni had very different contributions to dielectric properties in different polymer 

matrix. For Ni-P(VDF-TrFE) system, Ni introduced may cause the size of 

crystal becoming smaller or crystallization of composite decreasing. For 
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Ni-P(VDF-CTFE) system, Ni introduced may cause the peak-like 

phenomenon in temperature dependence of dielectric constant at high 

temperature. 

6. The percolation behavior in Ni-polymer composites was investigated and it 

was found that the percolation threshold and critical value were dependent on 

the selected frequency and temperature. 
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CHAPTER 3                                   

All-Organic Nanocomposites with High Dielectric Constant  

3.1. Introduction 

Because of the tunable conductivity, low elastic modulus, flexibility and good 

compatibility with the dielectric polymer matrix, conducting polymers are good 

candidates for dielectric composite applications. In this chapter, a new all-organic 

composite system is introduced that is flexible with a high dielectric constant. The 

newly developed 2-D nanoclip conducting polymer polypyrrole (PPy) is used as filler.  

The dielectric properties and behavior of this system are studied. 

3.2. Materials and Preparation 

3.2.1. Materials 

The conducting polymers were prepared at Dr. Xinyu Zhang’s group in 

Department of Polymer and Fiber Engineering, Auburn University. A facile, one-step, 

general “oxidative template assembly” (OTA) approach was proposed to synthesize 

bulk quantities of electronic conducting polymers such as polyaniline (PANI), 

polypyrrole (PPy) and poly (3, 4-ethylenedioxythiophene) (PEDOT), which have an 

unusual nanoclip-like morphology [1, 2]. The as-produced conducting polymers 

possessed 2-dimensional nanostructures instead of granular structures without the 

templates.  

For the preparation, 0.01 M cetrimonium bromide ((C16H33)N(CH3)3Br) (CTAB) 
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was dispersed in 60 mL 1 M HCl under ice bath. After being magnetically stirred 10 

min, 0.03 M ammonium peroxydisulfate (APS) was added into the solution and keep 

stirring for 10 min resulting in a reactive template in the form of white precipitates. 

All solutions were cooled to 0-3 ºC. Pyrrole (0.12 M) was added into the as-prepared 

reactive template solution and self-assembly was conducted at 0-3 ºC for 24 hrs. The 

resulting black precipitate of polypyrrole was suction filtered, washed with copious 

amounts of aq. 1 M HCl (3 x 100 mL) and acetone (3 x 100 mL) and freeze for 12 hrs. 

The structure of polypyrrole nanoclips is shown in Figure 3-1. The length of nano 

clips is around 1 µm and width is around 0.5 µm. The rectangular area in each clips is 

very small and the diameter is around 100-200 nm. The bulk electrical conductivity of 

the conducting polymer nanoclips was measured by a linear four probe measurement 

setup. The conductivity of PPy clips was 2.89 S/cm. 

 

Figure 3-1. The structure of PPy clips. 

3.2.2. Preparation of Composite 

The P(VDF-TrFE) 70/30 mol% and P(VDF-CTFE) 88/12 mol% copolymer were 

used as a dielectric polymer matrix. The PPy-P(VDF-TrFE) and PPy-P(VDF-CTFE) 

composites with different PPy weight concentrations (0, 0.03, 0.04, 0.05, 0.06, 0.07, 

0.08 and 0.09) were prepared. A weight ratios table for PPy-P(VDF-TrFE) and 
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PPy-P(VDF-CTFE) samples is given in Table 3-1. 

Table 3-1 Weight ratios in PPy-matrix composites samples 

PPy wt.% 3 wt.% 4 wt.% 5 wt.% 6 wt.% 7 wt.% 8 wt.% 9 wt.% 

PPy 0.009g 0.012g 0.015g 0.018g 0.021g 0.024g 0.027g 

Matrix* 0.3g 0.3g 0.3g 0.3g 0.3g 0.3g 0.3g 

*
Matrix: P(VDF-TrFE) 70/3 0mol.% or P(VDF-CTFE) 88/12 mol.% copolymer 

The preparation is the same as Ni-polymer nano-composites in Section 2.2. 

Initially, either P(VDF-TrFE) or P(VDF-CTFE) copolymer was dissolved in dimethyl 

formamide (DMF) using magnetic stir bar for 8 hours. This was followed by the 

dispersion of PPy clips into the solution. They were sonicated about 30 mins firstly, 

stirred for 8 hours and sonicated about 30 mins. The final PPy-P(VDF-TrFE) or 

PPy-P(VDF-CTFE) solution was cast on a glass plate at 70 ºC for 8 hours. The 

morphologies and the uniformity of the PPy-polymer composite films were examined 

by JEOL JSM 7000F FE-SEM (Scanning Electron Microscopy). As shown in Figure 

3-2, the PPy clips can be observed from the top and there are some holes on the top 

due to the solvent evaporation.  

To improve the uniformity, the solution cast film was then hot pressed at 150oC. 

During the HP process, four layers of the same as-cast layer were stacked using a 

so-called “sandwich” configuration described in Section 2.2.2, and preheated to 

150oC for 2 min then hot-pressed at 10 tons for 20 seconds, which is similar to the 

preparation of the Ni-polymer composites. All hot-pressed samples were annealed at 

125ºC to enhance homogeneity and dielectric behavior. The thickness of one layer 

as-cast film was around 30-40 µm. After the four layers were hot pressed, the 
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thickness was around 80-110 µm. Figure 3-3 shows the cross-section of 

PPy-P(VDF-TrFE) hot-pressed composites with 5 wt.%. From the cress-section, it is 

difficult to recognize the PPy and matrix separately because it is an all-polymer 

composite. 

 

Figure 3-2. The structure of one layer 5 wt.% PPy-P(VDF-TrFE): cross-section and 
top surface. 

 

Figure 3-3. The cross-section of 4 layers 5 wt.% PPy-P(VDF-TrFE) composites. 
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3.2.3. Materials Characterization 

For dielectric study, all samples were sputtered with gold on the top and bottom 

surfaces as electrodes using a PelcoSC-6 sputter coater as described in Section 2.3.2. 

The Agilent 4294A impedance analyzer was employed to measure the dielectric 

property of the samples over a frequency range of 100 Hz to 1 MHz using the Cp~D 

function. In order to characterize the temperature dependence of the dielectric 

response, the dielectric properties of the samples were characterized at frequencies of 

1 kHz, 10 kHz, 100 kHz and 1 MHz over a temperature range from -60 ºC to 140 ºC 

using an impedance analyzer (Agilent 4294A) in Xi’an Jiaotong University, China.   

3.3. Dielectric Behavior of PPy-P(VDF-TrFE) Composites  

3.3.1. PPy-P(VDF-TrFE) Composites at Room Temperature 

The dielectric properties and conductivity of the PPy-P(VDF-TrFE) 

nano-composites with different PPy concentration from 0 % to 9 wt.% at room 

temperature are shown in Figure 3-4. The dielectric constant of the composites 

increases with increasing filler concentration. A high dielectric constant (>1000) with 

a loss (<2) was observed at 1 kHz in the composite with 8 wt.% of PPy. This 

dielectric constant is about 100 times that of the dielectric constant for the polymer 

matrix itself. The composites with low PPy content showed a similar frequency 

dependence of the dielectric constant with the polymer matrix. For the composites 

with high PPy concentration, a stronger frequency dependence of the dielectric 

constant was observed. From 5 wt.%, the dielectric constant increased abruptly in low 

frequency, from 46 with 4 wt.% to 156 with 5 wt.% at 100 Hz. By increasing the filler 
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content, the dependence of the dielectric properties on frequency becomes stronger. 

However, at 7 wt.% and 8 wt.%, the dielectric constant can be considered as two 

dielectric processes: almost independent of frequency from 100 Hz to 3 kHz and very 

dependent on frequency with a sharp decrease from 3 kHz to 1MHz. 
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Figure 3-4. Dielectric responses (a) dielectric constant, (b) dielectric loss, (c) 
imaginary part of dielectric constant, (d) conductivity as a function of frequency for 

PPy-P(VDF-TrFE) composites with different PPy concentrations. 

From Figure 3-4 (b) and (c), it can be found that both tan and ”
r increase with 

increasing frequency for polymer matrix. However, tan and ”
r observed in the 

composites showed a different frequency dependence. At low frequencies, they 

decreased with increasing frequency, while at high frequencies, they increased with 

increasing frequency. That is, there is a certain frequency, where they reached their 
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minimum. This frequency separated the frequency range into two regimes: low and 

high frequency. This certain frequency for tan was lower than that for ”
r. All these 

indicate that there was a new dielectric process in the composites. The contribution of 

this new dielectric process to the dielectric response of the composites increased with 

increasing PPy content. Moreover, there was a peak of this new dielectric process in 

tan and ”
r which shifted to high frequency with increasing PPy content. As 

discussed for the Ni-polymer composites, the new dielectric process observed in the 

composites is a relaxation process with a very low frequency. There are three 

mechanisms in this conductor-polymer composite: 1) the dielectric relaxation process 

from the polymer matrix, 2) the new dielectric relaxation process from the composite, 

and 3) the conductivity of the conducting filler (PPy). The new dielectric relaxation 

process shows stronger influence in the PPy-P(VDF-TrFE) system than for the 

Ni-P(VDF-TrFE) system. This was due to the surface area of the conducting filler. For 

nano-sized Ni powder, the average diameter of Ni particle is 100 nm, then the surface 

area is around π·104 nm2 for one particles. For PPy clips, the length is around 1µm, 

width is around 0.5 µm and the diameter is around 100-200 nm. The the surface area 

is no less than 3π·105 nm2 for one clip, which is more than 30 times of Ni 

nanoparticles. That is the smaller amount of PPy can have an extraordinary effect on 

the dielectric properties. 

Figure 3-5 shows the dielectric constant and loss with different PPy 

concentrations. The dielectric constant raises gradually with increasing filler contents 

in the composites until the filler content reaches 4 wt.%. Subsequently, the dielectric 
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constant increases abruptly from 4 wt.% to 6 wt.%. In particular, when the PPy wt.% 

increases from 6 wt.% to 8 wt.%, the dielectric constant at 100 Hz rises steeply from 

286 to 1289 about 100 times higher than the dielectric constant of pure P(VDF-TrFE) 

at 100 Hz. As shown in the Figure 3-5 (b), the loss of composites with 0 to 6 wt.% of 

PPy are smaller than 0.5.  
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Figure 3-5. Dependence the dielectric properties (a) dielectric constant (b) loss for 
PPy-P(VDF-TrFE) composites on PPy concentrations at different frequency. 
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Figure 3-6. Conductivity of PPy-P(VDF-TrFE) composites vs. frequency with 
concentrations from 0% to 9wt% and the fitting curve of Johnscher’s universal 

dielectric response law. 

To study this new dielectric process, the real part of electric conductivity of the 

composites is plotted in Figure 3-4(d), where the real part of the conductivity from 
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the imaginary part of the permittivity using Eq. (1-9). When Johnscher’s universal 

dielectric response law is used to fit the experimental data, it is found that the fitting 

curve is not very well matched with the data due to this new relaxation process. The 

equation is shown in Section 2.3. Figure 3-6 shows the conductivity of composites 

and fitting curve of Eq. (2-1) to the conductivity data for all of samples from 100 Hz 

to 100 kHz. The symbols represent the experimental data and the solid line represents 

the fitted data employing Jonscher’s law. The corresponding parameters are listed in 

Table 3-2. 

 

Table 3-2 Parameters of Johnscher’s universal dielectric response law for fitting the 
conductivity of composites 

PPy wt.%  
Parameter in

n
ac A  0  

σ0 σ0 error A A error n n error R2 

0 1.67E-10 1.78E-11 5.89E-14 2.25E-15 1.2390 3.50E-3 0.9968 

3 2.61E-10 5.53E-11 7.08E-13 3.11E-14 1.1301 2.99E-3 0.9971 

4 1.80E-8 1.82E-10 5.81E-12 1.15E-13 1.0206 1.08E-3 0.9996 

5 8.18E-8 2.80E-9 1.12E-10 5.95E-12 0.7895 3.92E-3 0.9973 

6 2.49E-8 3.21E-9 1.44E-9 3.64E-11 0.7518 1.83E-3 0.9996 

7 3.19E-7 5.71E-8 2.87E-9 6.79E-11 0.7348 2.56E-3 0.9985 

8 2.41E-6 6.63E-7 6.69E-9 9.54E-9 0.7369 9.10E-2 0.9990 

9 7.87E-6 4.56E-8 5.11E-9 1.27E-10 0.7744 1.84E-3 0.9987 

 

The parameters σ0, A, and n changed with PPy concentrations from 0% to 9wt% 

in Table 3-2 are plotted in Figure 3-7. Compared with Figure 2-8 and Figure 3-7, n 

changes from bigger than 1 to smaller than 1. The trends of these three are similar 

with the Ni-polymer composites, σ0 and A increase with the increasing of conducting 

filler while n decreases. This means that the contribution of the new dielectric process 

in the composite to the dielectric response increases with the PPy content. This is 
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consistent with the direct observation of the dielectric loss discussed previously. There 

were some abnormal changes from 5 wt.% to 7 wt.% which may be due to the 

relaxation peak.   
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Figure 3-7. σ0, A, and n change from Table 3-2 for PPy-P(VDF-TrFE). 

3.3.2. PPy-P(VDF-TrFE) Composites at Different Temperature 

Figure 3-8 to Figure 3-15 show temperature dependence of the dielectric 

properties for PPy-P(VDF-TrFE) composites with different contents of PPy at 1 kHz, 

10 kHz, 100 kHz, and 1 MHz. 
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Figure 3-8. Temperature dependence of dielectric properties of pure P(VDF-TrFE): (a) 
real part(solid) and loss(open), (b) imaginary part. 
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Figure 3-9. Temperature dependence of dielectric properties of PPy-P(VDF-TrFE)  
3 wt.%: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 3 wt.% PPy shows the similar 

temperature dependence as the polymer matrix. However, this differed from the 

Ni-polymer composites which the composite exhibiting a higher loss across the whole 

temperature range. Regarding the glass transition process, similar to the polymer 

matrix, the higher the frequency, the higher the peak temperature for tan and ”
r. 

However, the peak value of glass transition process at 1kHz increased and is close to 

that at 1MHz. Around the Tmax, the dielectric constant increased dramatically from 21 

(at 80 oC) to 53 (at 109 oC) at 1 kHz for polymer matrix, however, the dielectric 

constant increased continuously and gradually from 66 (at 80 oC) to 150 (at 111 oC) at 
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1kHz for 3 wt.% PPy. As discussed in Figure 1-6 and Ni-P(VDF-TrFE) composites, 

PPy introduced may cause the size of crystal becoming smaller or crystallization of 

composite decreasing.  
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Figure 3-10. Temperature dependence of dielectric properties of PPy-P(VDF-TrFE)  
4 wt.%: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 4 wt.% PPy showed similar 

temperature dependence as the composites with 3 wt.% PPy. The ’
r , tan ,”

r were 

all higher than that of the composite with 3 wt.% PPy. The loss at 1kHz and 10kHz 

had a large increased at 1MHz for high temperatures compared with 3 wt.% PPy. All 

these may be the results of the new relaxation process. This is consistent with the data 

shown in Table 3-2. The conductivity had a 70 times increase from 3 wt.% PPy to 4 

wt.% PPy. The Tg shifted to high temperature compared to the ”
r of 4 wt.% and 3 wt.% 

PPy. In ”
r for 3 wt.%, the ”

r at 100kHz decreased with temperature when 

temperature was higher than Tmax, However, the ”
r at 100 kHz continuously increased 

with temperature when the temperature was higher than Tmax, which was also due to 

the high loss at 100 kHz for high temperature.  
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Figure 3-11. Temperature dependence of dielectric properties of PPy-P(VDF-TrFE)  
5 wt.%: (a) real part(solid) and loss(open), (b) imaginary part. 
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Figure 3-12. Temperature dependence of dielectric properties of PPy-P(VDF-TrFE)  
6 wt.%: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 5 wt.% PPy showed similar 

temperature dependence as the composite with 4 wt.% PPy. The ’
r , tan ,”

r awere 

all high than that of the composite with 4 wt.% PPy. The Tg shifts to high temperature 

compared to the ”
r of 5 wt.% and 4 wt.% PPy. The dielectric properties and 

conductivity of the composite with 5 wt.% and 6 wt.% PPy showed some interesting 

phenomenon. As shown in Table 3-2, the conductivity of 6 wt.% was smaller than 5 

wt.% and 7 wt.% PPy due to the new dielectric relaxation. The value of tan and ”
r 

of 5 wt.% and 6 wt.% were very close. For example, the composite with 5 wt.% PPy 

exhibited a lower loss at high temperature than 6 wt.%. The composite with 5 wt.% 
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PPy exhibited a lower dielectric constant at low temperature at 1 MHz than for the 6 

wt.%. For 6 wt.% composites, the dielectric constant was larger than 450 at Tmax 

(~107oC) and the loss was around 0.45.  
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Figure 3-13. Temperature dependence of dielectric properties of PPy-P(VDF-TrFE)  
7 wt.%: (a) real part(solid) and loss(open), (b) imaginary part. 
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Figure 3-14. Temperature dependence of dielectric properties of PPy-P(VDF-TrFE)  
8 wt.%: (a) real part(solid) and loss(open), (b) imaginary part. 

From the pure matrix to 6 wt.%, it is easy to identify the glass transition 

temperature from imaginary part of dielectric constant. However, from 7 wt.% to the 

high volume fraction, the value of the “shoulder” between the peak of glass transition 

temperature and FE-to-PE phase transition temperature increased due to the new 

relaxation process. It was difficult to find the peak of glass transition temperature at 

high frequencies. Even for the FE-to-PE phase transition peak, the dielectric constant 
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still increased when the temperature was higher than Tmax. For 8 wt.% composite, the 

dielectric constant was larger than 2000 at Tmax (~103oC) and the loss was around 2.8.  
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Figure 3-15. Temperature dependence of dielectric properties of PPy-P(VDF-TrFE)  
9 wt.%: (a) real part(solid) and loss(open), (b) imaginary part. 

The dielectric constant of the composite with 9 wt.% PPy showed similar 

temperature dependence as with the 9 wt.% PPy, but smaller than that of 8wt.%. It is 

interesting to find the loss firstly increased with temperature then decreased before 

Tmax at 1 kHz, which means there was a new dielectric process at low frequency.  

To compare the dielectric properties with different PPy volume fraction clearly, 

the ’
r, ”

r and tanδ at 1 kHz and 1MHz are shown in Figure 3-16. As a short 

summary, ’
r, and ”

r increased with the increasing PPy content. The loss at low 

temperature increased with the increasing PPy content, while decreased from 4 wt.% 

to 6 wt.% with the increasing PPy content then increased due to the high conductivity 

at high temperature. The peak of glass transition temperature of ”
r slightly shifted to 

high temperature from 0 wt.% to 6 wt.%. However, it was difficult to quantify the 

change of shifts for glass transition temperature.  
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Figure 3-16. Temperature dependence of ’
r, ”

r and tanδ of composites: (a) to (c) at 
1kHz and (d) to (f) at 1MHz. 

Table 3-3 The peak positions of Tmax of composites at different frequencies.  

Freq. 0 % 3 wt.% 4 wt.% 5 wt.% 6 wt.% 7 wt.% 8 wt.% 9 wt.% 

1kHz 113.53 113.34 111.96 114.36 107.71 - - - 

10kHz 112.30 112.66 112.53 111.45 106.84 104.47 104.47 114.23 

100kHz 112.65 112.63 111.50 111.35 111.81 107.82 107.81 114.79 

1MHz 113.04 112.98 111.51 111.31 112.23 110.63 111.08 115.63 
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To study the effect of PPy on the Tmax of composites, the Tmax at different 

frequencies are fitted from Figure 3-8 to 3-15. The results are listed in Table 3-3. 

Because of high loss at 1 kHz, the Tmax in 10 kHz is plotted in Figure 3-17. In each 

composite, the peak positions slightly increased with frequency when PPy wt% 

increasing. Compared with Ni-P(VDF-TrFE) composite, the PPy-P(VDF-TrFE) 

composites are much more complex because PPy filler may have a large effect on the 

polymer matrix. With the wt.% of PPy increasing, the peak positions of Tmax slightly 

decreased. This phenomenon also can be explained by there being less crystals or 

there are smaller crystals, and more amorphous with increasing the conducting 

polymer.  
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Figure 3-17. The Tmax of composites at 10 kHz. 
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3.4. Dielectric Behavior of PPy-P(VDF-CTFE) Composites  

3.4.1. PPy-P(VDF-CTFE) Composites at Room Temperature 
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Figure 3-18. Dielectric responses (a) dielectric constant, (b) dielectric loss, (c) 
imaginary part of dielectric constant, (d) conductivity as a function of frequency for 

PPy-P(VDF-CTFE) composites with different PPy concentrations. 

As shown in Figure 3-18 (a), the dielectric constant of the composites raises with 

increasing filler concentration in matrix. The dielectric constant slightly decreased 

with frequency in the low frequency (100 to 100 kHz) with PPy concentration smaller 

than 6 wt.%. From 7 wt.%, the dielectric constant increased abruptly due to the 

increasing of the filler content. The dielectric constant of a composite with 7 wt.% 

was more than 25 times higher than that of the P(VDF-CTFE), rising to 250 at room 

temperature at 100Hz. Compared with PPy-P(VDF-TrFE), the maximum value of 

dielectric constant for P(VDF-CTFE) was smaller than that of PPy-P(VDF-TrFE). As 
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shown in Figure 3-18 (b), the dielectric loss also increased with increasing of filler. 

The loss changed with PPy content of PPy-P(VDF-CTFE) was much more simple and 

clear than for the PPy-P(VDF-TrFE). There were no relaxation peaks observed and 

the loss increased dramatically at low frequency then gradually at high frequency.   
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Figure 3-19. Conductivity of PPy-P(VDF-CTFE) composites vs. frequency with 
concentrations from 0% to 8 wt.% and the fitting curve of Johnscher’s universal 

dielectric response law. 

In order to study further, the Johnscher’s universal dielectric response law was 

used to explain this phenomenon. The equation is shown in Section 2.3. Figure 3-19 

shows the conductivity of composites and fitting curve of Eq. (2-1) to the conductivity 

data for all of samples from 100 Hz to 100 kHz. The symbols represent the 

experimental data and the solid line represents the fitted data employing Jonscher’s 

law. There is a close agreement between the experimental and fitted data. The 

corresponding parameters are listed in Table 3-4.  

The parameters σ0, A, and n changed with PPy concentrations from 0% to 9 wt.% 

in Table 3-4 are plotted in Figure 3-20. From the fitting results, it was found that the 

σ0 of composites increased slowly and continuously with increasing PPy content for 
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the composites. When the PPy concentration was higher than 6wt.%, the σ0 increased 

with the PPy concentration rapidly. For example, the σ0 of the composites with 6 wt.%, 

7 wt.% and 8 wt.% of PPy was more than 9, 220, and 2400 times, respectively, higher 

than that of composite with 5 wt.% of PPy. The composites with 8 wt.% of PPy 

exhibited a high conductivity which was almost independence of frequency at low 

frequency. This means that the composite was around the percolation threshold. The 

value of A increases with increasing PPy concentration. This means that the 

contribution of the new dielectric process in the composite to the dielectric response 

increased with the PPy concentration. This is consistent with the direct observation of 

the dielectric loss discussed above. n changed from 1 to smaller than 1 at 6 wt.% to 7 

wt.%, which was higher than 4 wt.% to 5 wt.% for PPy-P(VDF-TrFE).  

 

Table 3-4 Parameters of Johnscher’s universal dielectric response law for fitting the 
conductivity of composites 

PPy wt.%  
Parameter in

n
meas A  0  

σ0 σ0 error A A error n n error R2 

0 5.23E-10 1.85E-11 1.18E-14 7.56E-16 1.2503 5.53E-3 0.9969 

3 5.61E-10 2.12E-11 5.01E-14 3.05E-15 1.2397 4.90E-3 0.9940 

4 8.18E-10 2.55E-11 8.76E-14 3.84E-15 1.2364 3.52E-3 0.9969 

5 1.49E-9 5.10E-11 4.57E-13 1.55E-14 1.1685 2.75E-3 0.9979 

6 1.35E-8 1.11E-10 4.64E-12 5.83E-14 1.0652 9.97E-4 0.9997 

7 3.33E-7 4.32E-10 1.99E-10 7.67E-13 0.8568 2.93E-4 0.9999 

8 3.67E-6 1.86E-9 3.17E-10 1.61E-12 0.8298 3.60E-4 0.9999 
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Figure 3-20. σ0, A, and n change with PPy concentrations from 0 % to 8 wt.% for 
PPy-P(VDF-CTFE). 

 

3.4.2. PPy-P(VDF-CTFE) Composites at Different Temperature 

The polymer matrix effects on dielectric properties are shown with their 

temperature dependence issue from Figure 3-21 to Figure 3-27. These figures show 

the temperature dependence of the dielectric properties for PPy-P(VDF-CTFE) 

composites with different contents of PPy at 1 kHz, 10 kHz, 100 kHz, and 1 MHz. 
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Figure 3-21. Temperature dependence of dielectric properties of pure P(VDF-CTFE): 
(a) real part(solid) and loss(open), (b) imaginary part. 
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Figure 3-22. Temperature dependence of dielectric properties of PPy-P(VDF-CTFE) 
3 wt.%: (a) real part, (b) loss and (c) imaginary part. 

The dielectric constant of the composite with 3 wt.% of PPy showed a similar 

temperature dependence to the polymer matrix. However, the composite exhibits a 

lower loss at high temperature. Regarding the glass transition process, similar to the 

polymer matrix, the higher the frequencies, the higher the peak temperature for tan 

and ”
r. However, the frequency dependence of the peak value higher than polymer 

matrix.  Moreover, at high frequency, the peak position shifted to low temperature.  

The dielectric constant of the composite with 4 wt.% PPy showed the similar 

temperature dependence to the polymer matrix and for composites with 3 wt.% PPy. 

Again, the composite exhibited a lower loss at high temperature than the polymer 
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matrix. Regarding glass transition process, although the ”
r for the composite was 

higher than the composite with 3 wt.% PPy, the increase at low frequency was clearly 

smaller than it at high frequency. For example, the peak of ”
r at 1 MHz was 1.45 and 

4.0, for the composites with 3 wt.% and 4 wt.% respectively, while at 1 kHz it was 

1.14 and 3.20, respectively. And the ”
r of the composite at high temperature was also 

higher than the composite with 3 wt.% PPy. All these may be the results of new 

relaxation process. This is consistent with the data shown in Table 3-4.      
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Figure 3-23. Temperature dependence of dielectric properties of PPy-P(VDF-CTFE) 
4 wt.%: (a) real part, (b) loss and (c) imaginary part. 

The dielectric constant of the composite with 5 wt.% PPy showed similar 

temperature dependency compared to the polymer matrix and composites with 4 wt.% 

PPy. Again, the composite exhibits a lower loss at high temperatures compared to the 

polymer matrix. Regarding the glass transition process, the ”
r for the composite was 

higher than for the composite with 4 wt.% PPy at 1 kHz, and had very small change at 

1 MHz. The increase at low frequency was clearly lager than at high frequency. 

Moreover, the ”
r at 1kHz was higher than other frequencies across the whole 

temperature range. All these may have been the results of an increase in the 
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conductivity. This is consistent with the data shown in Table 3-4.      
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Figure 3-24. Temperature dependence of dielectric properties of PPy-P(VDF-CTFE) 
5 wt.%: (a) real part, (b) loss and (c) imaginary part. 
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Figure 3-25. Temperature dependence of dielectric properties of PPy-P(VDF-CTFE) 
6 wt.%: (a) real part, (b) loss and (c) imaginary part. 

The dielectric constant of the composite with 6 wt.% PPy showed similar 

temperature dependence as the composites with 5 wt.% PPy. However, the composite 

exhibited a higher loss across the whole temperature range compared to polymer 

matrix and composites with less PPy content. Regarding the glass transition process, 

the ”
r for the composite was much higher than the composite with 5 wt.% PPy at 1 

MHz. Moreover, the ”
r at 1 kHz was higher than other frequencies across the whole 

temperature range. All these may have been due to the new relaxation process.  
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Figure 3-26. Temperature dependence of dielectric properties of PPy-P(VDF-CTFE) 
7 wt.%: (a) real part, (b) loss and (c) imaginary part. 

From a pure matrix to 6 wt.%, it was easy to identify the glass transition 

temperature from imaginary part of dielectric constant. However, for composites with 

7 wt.% and 8 wt.% of PPy, it was difficult to find the peak at high frequency due to 

the new relaxation process dominating the dielectric response. The ’
r , tan ,”

r of the 

composite with 7 wt.% PPy were all high than that of the composite with 6 wt.% PPy. 

The Tg shifted to high temperatures compared to the ”
r of 5 wt.% and 6 wt.% PPy. 

However, it was not easy to quantify the value of Tg. In the composites with 7 wt.% 

PPy, it was the first time the loss at 1 kHz was larger than other frequencies across the  

whole temperature range. The difference of dielectric constant among the four 

different frequencies was larger than that of composites with 3 wt.% to 6 wt.%.  

The dielectric constant of the composite with 8 wt.% PPy showed similar 

temperature dependence as the composite with 7 wt.% PPy. The ’
r of the composite 

with 8 wt.% PPy were smaller to that of the composite with 7 wt.% PPy. The loss of 

the composite with 8 wt.% PPy were higher than that of the composite with 7 wt.% 

PPy at 1 kHz to 100 kHz, but slightly smaller than that at 1 MHz. The Tg shifted to 
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high temperature slightly after compared the ”
r of 8 wt.% and 7 wt.% PPy. However, 

which is not easy to quantify the value of Tg.  
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Figure 3-27. Temperature dependence of dielectric properties of PPy-P(VDF-CTFE) 
8 wt.%: (a) real part, (b) loss and (c) imaginary part. 

To compare the dielectric properties with different PPy concentrations clearly, the 

’
r, ”

r and tanδ at 1 kHz and 1 MHz are shown in Figure 3-28 and Figure 3-29. As a 

short summary, ’
r, and”

r increased with the increasing PPy concentration from 3 wt.% 

to 7 wt.% then decreasing. The loss at low temperature increased with the increasing 

PPy content, while decreased initially with the increasing PPy concentration (from 0 

wt.% to 4 wt.%) then increased due to the high conductivity at high temperatures at 1 

kHz. The relationship between ln”
r and 1000/T is shown in Figure 3-28 (d) and the 

parameter is shown in Table 3-5. Compared with polymer matrix, it indicates that 

there are new dielectric relaxation process contributing to the ”
r and conductivity. 

With the increasing PPy concentration, the ln”
r0 increased from 4 wt.% to 8 wt.%, 

which was related to the conductivity. Compared with Table 3-4, the conductivity of 

composites at room temperature is from the new relaxation process not the 

conductivity of filler.  
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Figure 3-28. Temperature dependence of dielectric properties of composites: (a) ’
r, 

(b) tanδ, (c) ”
r and (d) ln”

r vs. 1000/T. 

 

Table 3-5. Parameters given by Eq. (2-4) fitting at 1 kHz for composites 

PPy wt.% lnε''
r0 σ0 (S/m) Ea (eV) lnε''

r0 at RT (S/m) σ0 at RT (S/m) R2 

0 19.291 13.263 0.5775 -1.476 9.563×10-10 0.9999 

3 23.721 1.14×103 0.7624 -0.624 4.356×10-10 0.9916 

4 22.234 2.51×102 0.5609 0.767 3.497×10-9 0.9934 

5 23.073 5.83×102 0.6561 1.809 5.184×10-9 0.9878 

6 29.790 4.81×105 0.8603 2.671 1.628×10-9 0.9526 

7 33.139 1.37×107 0.9015 4.901 9.403×10-9 0.9531 

8 35.235 1.12×108 0.9721 5.052 4.966×10-9 0.9949 
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Figure 3-29. Temperature dependence of dielectric properties of composites: (a) ’
r, 

(b) tanδ, and (c) ”
r. 

Table 3-6 Glass transition temperature of PPy-P(VDF-CTFE) composites with 
different frequencies (in K unit) 

 0 wt.% 3 wt.% 4 wt.% 5 wt.% 6 wt.% 

1kHz 260.24 260.63 261.98 263.63 267.31 
10kHz 267.72 267.63 269.24 269.84 274.34 
100kHz 278.99 279.0 280.42 280.64 283.6 
1MHz 293.13 291.16 295.06 294.6 298.51 

 

Regarding the glass transition temperature, it was of interest to know whether the 

filler had some influence on the Tg. The peak position of ”
r  shifted to high 

temperature at all four frequencies. The peak of relaxation shifted to high temperature 

with the increased frequency. To quantify the analysis, the peak temperature of ”
r was 

determined for all composites as shown in Table 3-6. All of the peak positions were 
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fitted by peak fitting over a small temperature range from the imaginary parts of the 

dielectric constant. The logf versus 1000/Tg is shown in Figure 3-30. 
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Figure 3-30. Relationship between logf and 1000/Tg of PPy-P(VDF-CTFE) 

composites. 

A nonlinear relationship between logf and 1/Tg was reported and a more accurate 

fitting result was obtained by the Vogel–Fulcher (VF) relationship. The parameters of 

VF fitting are listed in Table 3-7 and Figure 3-31. From the parameters given by 

fitting using Vogel–Fulcher equation, it indicates the activation energy almost 

continuously decreases from 0% to 5 wt.%, meanwhile, the Tf increases. It is different 

from the Ni-P(VDF-TrFE) composites which had a critical value at 30 vol%. The Tf 

increase can be explained by the crystallinity.  

Table 3-7 Parameters given by fitting using Vogel–Fulcher equation 

PPy wt.% f0 (Hz) Ea (eV) Tf (K) R2 

0  1.22×1010 0.037 205.5 0.9984 
3  2.29×1010 0.032 212.6 0.9968 
4  2.30×1010 0.031 213.4 0.9985 
5  4.23×109 0.022 225.5 0.9878 
6  7.92×109 0.024 227.0 0.9995 
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Figure 3-31. f0, Ea, and Tf change with PPy concentrations from 0% to 6 wt.%. 

3.5. Percolative Behavior of PPy-Polymer Composites  

3.5.1. Percolation Behavior of PPy-Polymer Composites at Room Temperature 

The dependence of εr/εm of the PPy-P(VDF-TrFE) and PPy-P(VDF-CTFE) 

composites on PPy weight fraction are plotted in Figure 3-32. There are two main 

differences between the two composites which had a large effect on percolation 

behavior.  First, the dielectric constant or εr/εm of PPy-P(VDF-TrFE) was much 

higher than for PPy-P(VDF-CTFE). Second, there was a strong relaxation behavior in 

the PPy-P(VDF-TrFE) composites. From 1 kHz to 100 kHz, the dielectric constant 

decreased with frequency dramatically. In order to study the percolative behavior of 

the Ni-polymer composites at room temperature, the φc and s of both composites are 

listed in Table 3-8 and plotted in Figure 3-33. 
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Figure 3-32. εr/εm vs. frequency with different PPy weight fraction of (a) 
PPy-P(VDF-TrFE) and (b) PPy-P(VDF-CTFE) composites at room temperature. 

For both composites, the φc is between 7 wt.% to 8 wt.%. However, the φc 

decreased with increasing frequency strongly from 1 kHz to 100 kHz in the 

PPy-P(VDF-TrFE) composites. The φc and s both decreased with frequency and the 

curve was similar to the dependence of dielectric constant on frequency at φc. For 

PPy-P(VDF-CTFE) composites, this case is similar to Ni-polymer composites. The φc 

and s both increased with frequency from 1 kHz to 1 MHz. before 1 kHz, the φc may 

decrease slightly. That is, the φc and s are not constant but dependent on the selected 

different frequency. The φc and s of PPy-P(VDF-CTFE) and PPy-P(VDF-TrFE) 

showed the very different trends, which was different from the case for the 

Ni-polymer composites.    
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Table 3-8 φc and s vs. different frequencies of PPy-P(VDF-TrFE) and 
PPy-P(VDF-CTFE) 

Composites Frequency 

(Hz) 

s

c

fillerc

m

r










 








 

φc φc error s s error R2  

 100 0.08278 2.49E-3 2.4066 0.1980 0.9972  

 501 0.08046 1.55E-3 2.1222 0.1243 0.9985  

 1000 0.07841 1.16E-3 1.9099 0.0969 0.9989  

PPy-P(VDF-TrFE) 5001.8 0.07420 4.60E-4 1.3842 0.0444 0.9996  

 10000 0.07332 4.48E-4 1.2084 0.0442 0.9994  

 50118.7 0.07315 7.98E-4 0.9803 0.0667 0.9973  

 100000 0.07318 9.81E-4 0.9126 0.0759 0.9954  

 501187.2 0.07399 1.89E-3 0.8028 0.1106 0.9827  

 1000000 0.07550 3.10E-3 0.7998 0.1448 0.9658  

 100 0.07383 6.30E-4 1.0925 0.0544 0.9986  

 

 

 

PPy-P(VDF-CTFE) 

501 0.07397 7.17E-4 1.0835 0.0586 0.9982  

1000 0.07424 6.88E-4 1.0876 0.0556 0.9983  

5001.8 0.07511 8.94E-4 1.0929 0.0638 0.9974  

10000 0.07578 1.06E-3 1.0961 0.0702 0.9967  

50118.7 0.07809 1.66E-3 1.1273 0.0896 0.9941  

100000 0.07901 2.02E-3 1.1413 0.1004 0.9925  

501187.2 0.08085 2.98E-3 1.1529 0.1265  0.9879  

1000000 0.08282 3.34E-3 1.1556 0.1349 0.9861  
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Figure 3-33. φc and s of the dielectric data to equation for (a) PPy-P(VDF-TrFE) and 
(b) PPy-P(VDF-CTFE) composites with different frequency at room temperature. 
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3.5.2. Percolative Behavior of PPy-Polymer Composites at Different 

Temperature 

As discussed in Section 3.3 and 3.4, P(VDF-TrFE) and P(VDF-CTFE) have 

totally different temperature dependencies for their dielectric properties. The φc and s 

of both composites at some frequencies and temperatures were studied. The variation 

of εr/εm of the PPy-P(VDF-TrFE) and PPy-P(VDF-CTFE) composites at different 

frequency (1 kHz, 10 kHz, 100 kHz, and 1 MHz) at temperatures of -40 oC, 0 oC, 40 

oC, 80 oC and 130 oC are studied. The variation of εr/εm for both composites at -40 oC 

and 80 oC as examples are shown in Figure 3-34. At each temperature, the εr/εm had 

the similar trend with increasing weight fraction of PPy. At lower than 4 wt.% PPy in 

PPy-P(VDF-TrFE) and 6 wt.% PPy in PPy-P(VDF-CTFE), the εr/εm did not change 

much with different frequencies. 

The fitting results with frequency at different temperature are listed in Table 3-9 

and Table 3-10, and the normalized φc/φ-40
o

C and s/s-40
o

C are plotted in Figure 3-35 

and Figure 3-36. At different temperatures, φc/φ-40
o

C only changes for wt.% smaller 

than 8% and 6% for PPy-P(VDF-TrFE) and PPy-P(VDF-CTFE) respectively, which 

can be considered as independent on the selected temperature. The critical value is 

different, which means the fitted critical value is dependent on the selected 

temperature. The case was similar as Ni-polymer composites. The φc/φ-40
o

C and 

s/s-40
o

C varies with temperature were very similar to the curve of temperature 

dependence of dielectric constant. For the PPy-P(VDF-TrFE) system, the φc/φ-40
o
C and 

s/s-40
o

C had a peak value between 80 oC and 130 oC, which is similar to the phase 

transition temperature. For PPy-P(VDF-CTFE) system, the φc/φ-40
o

C  and s/s-40
o

C first 
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increased then slightly decreased with temperature. However, there was an 

abnormality for 1 MHz in s/s-40
o

C which continuously decreased with temperature. 
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Figure 3-34. Variation of εr/εm of the composites with (a) different frequency different 
frequency 1 kHz, 10 kHz, 100 kHz, and 1 MHz: PPy-P(VDF-CTFE) at (a) -40 oC and 

(b) 80 oC, PPy-P(VDF-TrFE) at (c) 40 oC and (d) 80 oC. 
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Table 3-9 φc and s vs. different selected frequency and temperature of 

PPy-P(VDF-TrFE) 

Temperature 

(oC) 

Frequency 

(Hz) 

s

c

fillerc

m

r










 








 

φc φc error s s error R2  

 

-40 

1k 0.07585 1.23E-3 1.4497 0.0996 0.9975  

10k 0.07465 9.26E-4 1.0588 0.0644 0.9974  

100k 0.07372 9.12E-4 0.7402 0.0516 0.9956  

1M 0.07451 2.64E-3 0.5015 0.0873 0.9667  

 1k 0.07775 1.40E-3 1.6576 0.1079 0.9978  

0 10k 0.07422 6.29E-4 1.1440 0.0504 0.9989  

 100k 0.07417 8.94E-4 0.8307 0.0526 0.9966  

 1M 0.07688 1.69E-3 0.7224 0.0607 0.9927  

 1k 0.07972 2.33E-3 1.9121 0.1773 0.9957  

40 10k 0.07672 1.01E-3 1.4361 0.0736 0.9984  

 100k 0.07541 1.58E-3 0.9719 0.9911 0.9925  

 1M 0.07745 3.32E-3 0.7553 0.1180 0.9745  

 1k 0.07992 3.61E-3 2.3419 0.2726 0.9940  

 10k 0.07977 2.07E-3 1.8094 0.1489 0.9963  

80 100k 0.07931 3.87E-3 1.3721 0.2180 0.9813  

 1M 0.08064 5.93E-3 1.1102 0.2446 0.9580  

 1k 0.07649 1.69E-3 1.4676 0.1297 0.9955  

130 10k 0.07474 1.59E-3 1.0827 0.1117 0.9925  

 100k 0.07595 3.08E-3 0.8825 0.1506 0.9713  

 1M 0.07434 2.21E-3 0.5836 0.0879 0.9730  
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Figure 3-35. φc/φ-40
o

C and s/s-40
o

C vs. different selected frequency and temperature for 
PPy-P(VDF-TrFE) composites. 

 



 
 

145 
 

 

Table 3-10 φc and s vs. different selected frequency and temperature of 
PPy-P(VDF-CTFE) 

Temperature 

(oC) 

Frequency 

(Hz) 

s

c

fillerc

m

r










 








 

φc φc error s s error R2  

 

-40 

1k 0.07479 6.67E-4 1.1655 0.0582 0.9977  

10k 0.07538 8.71E-4 1.1414 0.0591 0.9950  

100k 0.07924 1.91E-3 1.2030 0.0944 0.9830  

1M 0.09063 1.26E-2 1.7976 0.5355 0.9690  

 1k 0.07398 1.08E-3 1.1786 0.0797 0.9971  

0 10k 0.07705 1.16E-3 1.2278 0.0705 0.9976  

 100k 0.07931 1.61E-3 1.2932 0.0795 0.9972  

 1M 0.09464 7.97E-3 1.6839 0.2802 0.9873  

 1k 0.07525 1.28E-3 1.2046 0.0930 0.9961  

40 10k 0.07768 1.40E-3 1.2557 0.0282 0.9968  

 100k 0.07958 2.13E-3 1.3876 0.0968 0.9966  

 1M 0.09314 5.25E-3 1.6729 0.1916 0.9938  

 1k 0.07465 6.92E-4 1.1740 0.0533 0.9987  

 10k 0.07683 1.02E-3 1.2068 0.0621 0.9980  

80 100k 0.07967 2.05E-3 1.3369 0.0949 0.9964  

 1M 0.09102 6.01E-3 1.5715 0.2202 0.9899  

 1k 0.07562 4.84E-4 1.1680 0.0327 0.9995  

130 10k 0.07655 6.59E-4 1.1748 0.0404 0.9991  

 100k 0.07988 1.70E-3 1.2904 0.0783 0.9973  

 1M 0.09110 4.88E-3 1.5148 0.1716 0.9934  
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Figure 3-36. φc/φ-40
o

C and s/s-40
o

C vs. different selected frequency and temperature for 
PPy-P(VDF-CTFE) composites. 
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3.5.3. 	Fitting Close to the Percolation Threshold 

 

After the percolation threshold was determined, the  was obtained from the 

composite which was the closest to the percolation threshold. In these PPy based 

composites, the composites with 7 wt.% of PPy were closest one for both 

PPy-P(VDF-CTFE) and PPy-P(VDF-TrFE). The dielectric constant and the fitting 

curve by Eq. (2-7) are shown in Figure 3-37. Because it is a nonlinear curve in 

log-log scale, the fitting curve is separated to 2 parts, before 3 kHz and after 3 kHz. 

The 1=0.8807 2=0.5821 was determined for PPy-P(VDF-CTFE) and 1=0.9134 

2=0.8119 is for PPy-P(VDF-TrFE). The results are close to the normal value from the 

percolation theory which was discussed in Section 1.4.1. 
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Figure 3-37. Dielectric constant vs. frequency of composites and fitting curve for (a) 
PPy-P(VDF-TrFE) and (b) PPy-P(VDF-CTFE). 
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3.6. Conclusions 

1. All-organic dielectric composites based on PPy nanoclips were prepared by 

solution casting and hot-pressed processing. Low percolation threshold (φc<8 

wt.%) were achieved in both systems. Compared to the composites with high 

percolation threshold, composites with low percolation threshold only needed 

very small amounts of filler with the composites maintaining their flexibility.  

2. A dielectric constant of more than 1000 was obtained for PPy-P(VDF-TrFE) 

with 8 wt.%, which was more than 100 times higher than that of the 

P(VDF-TrFE) matrix. It has found that the observed relaxation peak shifted to 

lower frequency with increasing weight fraction of PPy. This indicated the 

PPy filler has much effect on polymer matrix, even in very small amounts. 

3. There are two main differences between the two composites, which had a 

large effect on the percolation behavior. First, the dielectric constant or εr/εm of 

PPy-P(VDF-TrFE) was much higher than PPy-P(VDF-CTFE). Second, there 

was a very strong relaxation behavior in the PPy-P(VDF-TrFE) composites. 

From 1 kHz to 100 kHz, the dielectric constant decreased with frequency 

dramatically.  

4. Similar to the Ni-polymer composites, there were three mechanisms in this 

conductor-polymer composite: 1) the dielectric relaxation process from the 

polymer matrix, 2) the new dielectric relaxation process from the composite, 

and 3) the conductivity of the conducting filler (PPy). 
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5. Percolation theory in these composites was investigated. It is noted that the 

percolation threshold was almost independent on the selected frequency and 

temperature, while the critical value was dependent on the selected frequency 

and temperature.  
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CHAPTER 4                                   

Further Study of Percolation Behavior of Polymer-based 

Composites 

4.1. Introduction 

In this chapter, the percolation behavior of six conductor-polymer composite 

systems, which were reported in literature, will be studied [1-6]. As discussed in 

Section 1.4.1, The Eq. (1-24) and (1-25) can be written as Eq. (4-1) and (4-2), 

respectively, 

      
s

ceff k  )(                                    (4-1)                
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                                          (4-2)               

By physics and the nature of the composites, the φc and s are independent of the data 

selection at different frequencies and temperature. Eq. (4-1) and (4-2) were used to fit 

the data obtained at different frequencies. For the fitting data, two methods were used. 

For Method A, the fitting equation Eq. (4-1) or (4-2) was used with the same data 

points used in original articles. For Method B, the Eq. (4-2) was used as the fitting 

equation and more experimental data were included in the fitting. According to Eq. 

(4-2), the dielectric constant of the matrix must be in the fitting. It was found that both 

methods gave the same conclusion that the percolation threshold (φc) and critical 

value (s) are both dependent on frequency. 
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4.2. Percolation Behavior of Six Systems of Conductor-Polymer Composites 

4.2.1. System-I: MWNT-PVDF Composites [1] 

Wang et. al reported the dielectric properties of the untreated multiwall 

carbon-nanotubes/ poly(vinylidenefluoride) (MWNT/PVDF) composites with a very 

low percolation threshold. The MWNT/PVDF composites were prepared by simple 

physical blending with a hot-molding process. The MWNT were ultrasonically 

dispersed in DMF for as long as 2 h then the PVDF was dissolved in the DMF solvent 

at 50 °C. These two solutions were mixed and stirred by further ultrasonic treatment 

for 10 min. Then, the solution was heated to 60 °C for 8 h and consequently molded 

by hot-pressing at about 200 °C and 15 MPa. The final samples were disk-shaped 

with a 12 mm diameter and a 1 mm thickness. The low percolation threshold was 

explained due to the large aspect ratio and the high conductivity of the MWNT. The 

author’s fitted data in the log–log plots of the power law gave φc=0.0161 and s=0.31 

according to Eq.(4-1). The data selected for fitting data were dielectric constant at 1 

kHz for composites φMWNT=0, 0.004, 0.008, 0.012 and 0.016.  
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Figure 4-1. Dependence of (a) the dielectric constant, (b) εeff /εm of the MWNT-PVDF 
composites on frequency at room temperature. 
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Figure 4-2. εeff vs. volume fraction φ and the fitting curve by Method A at different 
frequencies: (a) at 1044 Hz and (b) 99789 Hz. 

Table 4-1 φc and s vs. different frequencies of System I by Method A 

Frequency 

(Hz) 
s

ceff k  )(  φMWNT=0, 0.004, 0.008, 0.012 and 0.016 

φc φc error s s error k k error R2 

100 0.01611 2.42E-4 0.3519 0.1188 2.4416 1.4034 0.9948 

477 0.01610 5.64E-5 0.3242 0.0271 2.5969 0.3998 0.9997 

1044 0.01611 9.17E-5 0.2993 0.0384 2.9750 0.5499 0.9990 

2002 0.01618 1.45E-4 0.3070 0.0486 2.8219 0.6543 0.9981 

4984 0.01630 2.04E-4 0.3096 0.0512 2.7545 0.6640 0.9971 

10892 0.01639 2.46E-4 0.3046 0.0510 2.7969 0.6637 0.9965 

20895 0.01648 2.88E-4 0.2990 0.0514 2.8471 0.6745 0.9959 

52017 0.01662 3.45E-4 0.2913 0.0503 2.8997 0.6624 0.9952 

99789 0.01676 3.81E-4 0.2876 0.0477 2.9001 0.6204 0.9952 

476563 0.01728 2.52E-4 0.2830 0.0215 2.7043 0.2510 0.9988 

1041451 0.01769 1.93E-4 0.2857 0.0136 2.4411 0.1397 0.9995 

4973664 0.01825 5.98E-4 0.2654 0.0317 2.0294 0.2610 0.9972 

10869148 0.01827 3.19E-4 0.2445 0.0154 1.9138 0.1194 0.9992 

35113424 0.01808 7.36E-4 0.2127 0.0328 1.8332 0.2454 0.9949 

The dependence of the dielectric constant and εeff /εm on the frequency for the 

MWNT-PVDF composites at room temperature is shown in Figure 4-1. In Method A, 

the fitting equation and selected fitting data were the same as the article selected:  

φMWNT=0, 0.004, 0.008, 0.012 and 0.016 and Eq. (4-1) were used as the fitting 

equation. Figure 4-2 and Table 4-1 show the fitting results. In Method B, the fitting 
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equation is used Eq. (4-2) and the selected fitting data included the peak position: 

φMWNT=0, 0.004, 0.008, 0.012, 0.016 and 0.02. Figure 4-3 and Table 4-2 show the 

fitting results. This fitting must start from the 0 vol.% point according to the 

percolation equation.  
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Figure 4-3. εeff /εm vs. volume fraction φ and the fitting curve by Method B at different 
frequencies: (a) at 1044 Hz and (b) 99789 Hz. 

Table 4-2 φc and s vs. different frequencies of System I by Method B 

Frequency 

(Hz) 

s
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 φMWNT=0, 0.004, 0.008, 0.012, 0.016 and 0.02 

φc φc error s s error R2  

100 0.02142 5.01E-4 1.2580 0.1390 0.9969  

477 0.02091 3.65E-4 1.0823 0.1173 0.9975  

1044 0.02052 2.59E-4 0.8985 0.0993 0.9980  

2002 0.02041 2.11E-4 0.8228 0.0864 0.9984  

4984 0.02026 1.47E-4 0.7236 0.0695 0.9989  

10892 0.02022 1.42E-4 0.6730 0.0680 0.9990  

20895 0.02020 1.18E-4 0.6181 0.0553 0.9990  

52017 0.02023 1.27E-4 0.5514 0.0450 0.9984  

99789 0.02035 1.60E-4 0.5196 0.0470 0.9975  

476563 0.02118 3.61E-4 0.4855 0.0440 0.9946  

1041451 0.02196 4.94E-4 0.4901 0.0426 0.9947  

4973664 0.02363 9.37E-4 0.4761 0.0506 0.9933  

10869148 0.02429 1.33E-3 0.4481 0.0599 0.9905  

35113424 0.02521 2.74E-3 0.3973 0.0953 0.9753  
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The dependence of φc and s on frequency for the results obtained by using 

Method A and B are plotted in Figure 4-4. In Method A, the φc=0.01611 and 

s=0.2992 at 1 kHz were very close to the results from the article (φc=0.0161 and 

s=0.31). For example, the φc increased from 0.01611 at 100 Hz to 0.01827 at 3.5 MHz 

then slightly decreased; the s decreased continuously from 0.3519 at 100 Hz to 0.2127 

at 4 MHz, except the value at 1 kHz. Comparing with Method A, Method B gave a 

larger change in the φc and s. The φc firstly decreased slightly from 0.02142 at 100 Hz 

to 0.02020 at 20895Hz then increased with increasing frequency, a φc of 0.02521 was 

obtained at 3.5 MHz. The s decreased quickly from 1.2580 at 100 Hz to 0.4885 at 

before 500 kHz then slowly decreased with increasing frequency. Both of the fitting 

methods indicated that the percolation threshold and critical constant were change 

with frequency. 
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Figure 4-4. Dependence of percolation threshold (φc) and critical constant (s) on 

frequency by different fitting method: (a) Method A and (b) Method B. 

4.2.2. System-II: CB-BT-VMQ Composites [2] 

Dang et. al studied three-component high-elasticity nanocomposites, methyl 

vinyl silicone rubber (VMQ) as a matrix and nano-sized BT and carbon black (CB) as 

fillers. In this composite system, the volume fraction of BT was 0.40 and the diameter 
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was 100 nm. The size of CB was about 50 nm and surface area was about 60-70 

mm2/g−1. A silane coupling agent (KH550) was used to modify the surface of both BT 

and CB particles. Then the CB and BT were mixed with VMQ in tetrahydrofuran 

solvent and hot pressed to a disk shape. The dielectric properties of the composites are 

shown in Figure 4-5. The dielectric constant had a giant enhancement in the 

composites near the percolation threshold of around 0.035. To determine the φc and s, 

dielectric constant of the composites for φ=0.04 is not considered because the 

dielectric constant increased dramatically between 0.035 and 0.0375. It was obtained 

that φc=0.0375 and s=0.289 using dielectric constant at 1 kHz.  
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Figure 4-5. Dependence of (a) the dielectric constant, (b) εeff /εm of the MWNT/PVDF 
composites on frequency at room temperature. 

In Method A, the data selected were the same as used in the article selected:  

φCB=0, 0.005, 0.01, 0.02, 0.03 and 0.035. Figure 4-6 and Table 4-3 show the fitting 

results at select different frequencies. In Method B, the fitting equation was used Eq. 

(4-2) and selected fitting data including the peak position φCB=0, 0.005, 0.01, 0.02, 

0.03, 0.035 and 0.0375. Figure 4-7 and Table 4-4 show the fitting results at selected 

frequencies by Method B.  
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Figure 4-6. εeff vs. volume fraction φ and the fitting curve by Method A at different 
frequencies: (a) at 1019 Hz and (b) 1080150 Hz. 

0.00 0.01 0.02 0.03 0.04
0

10

20

30

40

50

60



 
 

 

 ef
f /

m

 

At 1019Hz


c
 =0.03753, s=0.5530

(a)

0.00 0.01 0.02 0.03 0.04
0

1

2

3

4

5

6

7



 

 

 

 

 

 ef
f /

m

At 1080150Hz


c
 =0.03798, s=0.4252

(b)

 

Figure 4-7. εeff /εm vs. volume fraction φ and the fitting curve by Method B at different 
frequencies: (a) at 1019 Hz and (b) 1080150 Hz. 

Table 4-3 φc and s vs. different frequencies of System II by Method A 

Frequency 

(Hz) 
s

ceff k  )(  φCB=0, 0.005, 0.01, 0.02, 0.03 and 0.035 

φc φc error s s error k k error R2 

100 0.03541 4.56E-4 0.2748 0.0627 8.3842 2.1759 0.9858 

470 0.03553 5.79E-4 0.2911 0.0715 7.6782 2.2516 0.9823 

1019 0.03556 6.01E-4 0.2899 0.0722 7.6957 2.2732 0.9814 

4793 0.03561 6.67E-4 0.2863 0.0739 7.7750 2.3356 0.9790 

10393 0.03568 7.18E-4 0.2873 0.0750 7.7292 2.3442 0.9776 

48864 0.03584 8.67E-4 0.2870 0.0788 7.7201 2.4255 0.9734 

105952 0.03595 9.74E-4 0.2873 0.0814 7.7044 2.4793 0.9707 

498149 0.03624 1.27E-3 0.2871 0.0879 7.6927 2.6161 0.9638 

1080150 0.03645 1.49E-3 0.2871 0.0928 7.6950 2.7251 0.9589 

3923640 0.03702 2.14E-3 0.2916 0.1063 7.7162 3.0263 0.9481 

11011690 0.03791 3.21E-3 0.3044 0.1275 7.3210 3.2959 0.9370 
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The φc and s obtained at different frequencies using Method A and B are plotted 

in Figure 4-8. In Method A, the φc=0.03556 and s=0.2899 at 1 kHz were very close to 

the results from the article (φc=0.0375 and s=0.289). Both methods resulted in that the 

φc increased slightly with increasing frequency selected. However, the s value 

obtained using Method A was almost independent of frequency, while the s changed a 

lot in Method B, decreasing from 0.5917 at 100 Hz to 0.4272 around 3.9 MHz.   

 

Table 4-4 φc and s vs. different frequencies of System II by Method B 

Frequency 

(Hz) 

s
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 φCB=0, 0.005, 0.01, 0.02, 0.03, 0.035 and 0.0375 

φc φc error s s error R2  

100 0.03753 1.23E-4 0.5917 0.0634 0.9994  

470 0.03753 1.07E-4 0.5877 0.0540 0.9995  

1019 0.03753 8.07E-5 0.5530 0.0401 0.9997  

4793 0.03753 4.74E-5 0.4964 0.0222 0.9998  

10393 0.03753 4.53E-5 0.4747 0.0202 0.9997  

48864 0.03758 5.62E-5 0.4551 0.0201 0.9993  

105952 0.03763 6.84E-5 0.4464 0.0206 0.9989  

498149 0.03782 1.20E-4 0.4303 0.0233 0.9970  

1080150 0.03798 1.90E-4 0.4252 0.0285 0.9924  

3923640 0.03842 3.85E-4 0.4181 0.0373 0.9842  

11011690 0.03925 8.46E-4 0.4272 0.05337 0.9716  
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Figure 4-8. Dependence of percolation threshold (φc) and critical constant (s) on 

frequency by different fitting method: (a) Method A and (b) Method B. 
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4.2.3. System-III: PANI-PVDF Composites [3] 

Yuan et. al investigated the dielectric properties of all-organic 

polyaniline/poly(vinylidene fluoride) (PANI/PVDF) composites with a wide range of 

PANI loading. The average diameter and conductivity of PANI particles was 0.1 μm 

and 6.7 S/m, respectively. PANI/PVDF composites were prepared via a 

solution-grinding and hot-molding route. Figure 4-9 shows the dependence of the 

dielectric constant εeff and εeff /εm on frequency at room temperature. According to Eq. 

(4-1), the φc=0.045 and s=0.167 were obtained from fitting the data at 100Hz.  
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Figure 4-9. Dependence of (a) the dielectric constant, (b) εeff /εm of the PANI-PVDF 

composites on frequency at room temperature. 

In Method A, the selected data were the same as the article selected:  φPANI=0, 

0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04 and 0.045. Figure 4-10 and Table 4-5 show 

fitting results at select different frequencies. According the Method A in this case, the 

results in 498149Hz and 1080150Hz are shown in Figure 4-11. It indicates the 

dielectric constant without including the φPANI=0.05 was not in agreement with the 

percolation theory at very high frequencies. In this case, dielectric constant at 

φPANI=0.05 must be considered as the abrupt point in the percolation theory.   
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Figure 4-10. εeff vs. volume fraction φ and the fitting curve by Method A at different 
frequencies: (a) at 100 Hz and (b) 105952 Hz. 
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Figure 4-11. εeff vs. volume fraction φ and the fitting curve by Method A at different 
frequencies: (a) at 498149 Hz and (b) 1080150 Hz. 

Table 4-5 φc and s vs. different frequencies of System III by Method A 

Frequency 

(Hz) 
s

ceff k  )(  φPANI=0, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04 and 0.045 

φc φc error s s error k k error R2 

100 0.04504 1.50E-4 0.1700 0.0292 6.9212 0.8316 0.9918 

470 0.04513 1.46E-4 0.1610 0.0189 6.6779 0.5124 0.9933 

1019 0.04522 1.82E-4 0.1559 0.0179 6.6583 0.4797 0.9917 

4793 0.04565 3.85E-4 0.1506 0.0200 6.5919 0.5113 0.9841 

10393 0.04608 6.07E-4 0.1494 0.0221 6.5560 0.5462 0.9784 

48864 0.04884 2.24E-3 0.1693 0.0370 6.0141 0.7358 0.9619 

105952 0.05438 6.39E-3 0.2177 0.0714 5.1465 1.0449 0.9522 

498149 0.15218 0.32929 0.9727 0.2499 1.3649 3.6428 0.8781 

1080150 0.72913 14.1000 5.3315 102.35 1.4279 98.501 0.8023 
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In Method B, selected data are φPANI=0, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 

0.04, 0.045 and 0.05. Figure 4-12 and Table 4-6 shows fitting results in at select 

different frequencies by Method B.  

0.00 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25



 

 

 

 


c
 =0.0501, s=0.467

 

 ef
f /

m

At 100Hz(a)

0.00 0.01 0.02 0.03 0.04 0.05
0

1

2

3



 

 

 


c
 =0.05070, s=0.1826

 ef
f /

m

At 105952Hz(b)

 

Figure 4-12. εeff /εm vs. volume fraction φ and the fitting curve by Method B at 
different frequencies: (a) at 100 Hz and (b) 105952 Hz. 

 

Table 4-6 φc and s vs. different frequencies of System III by Method B 
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 φPANI=0, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 

0.04, 0.045 and 0.05 

φc φc error s s error R2  

100 0.05007 1.53E-4 0.4670 0.0469 0.9972  

470 0.05007 1.35E-4 0.3640 0.0343 0.9955  

1019 0.05007 1.23E-4 0.3205 0.0280 0.9950  

4793 0.05011 9.76E-5 0.2618 0.0166 0.9955  

10393 0.05014 8.47E-5 0.2360 0.0121 0.9963  

48864 0.05023 7.98E-5 0.1972 0.0076 0.9969  

105952 0.05032 1.17E-4 0.1826 0.0087 0.9942  

498149 0.05078 4.39E-4 0.1693 0.0170 0.9647  

1080150 0.05145 9.78E-4 0.1735 0.0249 0.9252  

 

The φc and s at frequency by Fitting Method A and B are plotted in Figure 4-13. 

In Fitting Method A, the φc=0.04504 and s=0.1705 at 100 Hz were very close to the 

results from the article (φc=0.045 and s=0.167). In Method A, from 100 Hz to 100 
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kHz, both φc and s both increased slightly.  However, in Method B, the φc value is 

almost independent of frequency. The s continuously decreased from 0.467 at 100 Hz 

to 0.1735 around 1 MHz.  
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Figure 4-13. Dependence of percolation threshold (φc) and critical constant (s) on 

frequency by different fitting methods: (a) Method A and (b) Method B. 

4.2.4. System-IV: Ag-PI Composites [4] 

Dang investigated Ag/polyimide (PI) composite by simple ultrasonic dispersion 

and subsequent in situ polymerization processing. The Ag particles (0.5 μm in 

diameter), 4,4-diamino-diphenyl ether (ODA) and N, N-dimethylacetamide (DMAc) 

were placed in a flask. After 0.5 hours ultrasonic dispersion, pyromellitic dianhydride 

and more DMAc were subsequently added. Finally, the yellow-colored transparent 

Ag/PI hybrid films with a 30 μm thickness were obtained after the mixture stirred for 

3 hours at room temperature. Figure 4-14 shows the dependence of the dielectric 

constant εeff and εeff /εm on frequency at room temperature. The dielectric constant of 

the Ag/PI composite films agree with Eq.(4-1) very well, with φc≈0.122 and s≈0.27 at 

1kHz.  
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Figure 4-14. Dependence of (a) the dielectric constant, (b) εeff /εm of the Ag-PI 

composites on frequency at room temperature. 
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Figure 4-15. εeff vs. volume fraction φ and the fitting curve by Method A at different 
frequencies: (a) at 1019 Hz and (b) 1080150 Hz. 

 

Table 4-7 φc and s vs. different frequencies of System IV by Method A 

Frequency 

(Hz) 
s

ceff k  )(  φAg=0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.11, and 0.12 

φc φc error s s error k k error R2 

1019 0.12206 2.43E-3 0.2682 0.0768 2.3144 0.5442 0.9336 

4793 0.12208 2.45E-3 0.2683 0.0768 2.2960 0.5393 0.9335 

10393 0.12212 2.49E-3 0.2690 0.0774 2.2833 0.5398 0.9326 

48864 0.12220 2.59E-4 0.2708 0.0790 2.2501 0.5411 0.9305 

105952 0.12225 2.63E-3 0.2719 0.0796 2.2311 0.5398 0.9299 

498149 0.12235 2.75E-3 0.2746 0.0813 2.1896 0.5386 0.9281 

1080150 0.12238 2.78E-3 0.2756 0.0818 2.1747 0.5381 0.9277 

2342110 0.12234 2.72E-3 0.2754 0.0811 2.1827 0.5366 0.9289 

5078441 0.12194 2.26E-3 0.2664 0.0740 2.2594 0.5149 0.9380 

8507712 0.12152 1.87E-3 0.2604 0.0695 2.3367 0.5092 0.9456 

 



 
 

163 
 

In Method A, the data selected were the same as the article selected: φAg=0, 0.01, 

0.03, 0.05, 0.07, 0.1, 0.11, and 0.12. Figure 4-15 and Table 4-7 show the fitting 

results at select different frequencies. In Method B, the data selected were φAg=0, 0.01, 

0.03, 0.05, 0.07, 0.1, 0.11, 0.12 and 0.125. Figure 4-16 and Table 4-8 show the fitting 

results at select different frequencies by Method B.  
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Figure 4-16. εeff /εm vs. volume fraction φ and the fitting curve by Method B at 
different frequencies: (a) at 1019 Hz and (b) 1080150 Hz. 

Table 4-8 φc and s vs. different frequencies of System IV by Method B 

Frequency 

(Hz) 

s

c

fillerc

m

eff










 








 φAg=0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.11, 0.12 and 0.125 

φc φc error s s error R2  

1019 0.12506 4.82E-4 0.6312 0.0779 0.9982  

4793 0.12506 4.67E-4 0.6191 0.0750 0.9983  

10393 0.12507 4.71E-4 0.6209 0.0755 0.9979  

48864 0.12507 5.15E-4 0.6594 0.0845 0.9981  

105952 0.12508 5.22E-4 0.6639 0.0856 0.9979  

498149 0.12508 4.93E-4 0.6375 0.0794 0.9978  

1080150 0.12506 3.97E-4 0.5683 0.0614 0.9981  

2342110 0.12506 2.17E-4 0.4619 0.0304 0.9986  

5078441 0.12546 2.92E-4 0.4094 0.0237 0.9930  

8507712 0.12837 1.54E-3 0.4745 0.0458 0.9680  
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Figure 4-17. Dependence of percolation threshold (φc) and critical constant (s) on 

frequency by different fitting methods: (a) Method A and (b) Method B. 

The φc and s at different frequencies by Method A and B are plotted in Figure 

4-17. In Method A, the φc=0.12206 and s=0.2682 at 1 kHz were very close to the 

results from the article (φAg ≈0.122 and s≈0.27). The φc and s both increased from 100 

Hz to 1 MHz slightly then dramatically decreased after 1 MHz. This was due to the 

unstable dielectric constant at the φAg=0.11. In Method B, the φc value was almost 

independent of frequency from 1 kHz to 5 MHz. For the critical value, the s almost 

kept as a constant value around 0.65 then decreased at high frequency due to the 

dielectric constant abruptly decreasing at the φAg=0.125.   

4.2.5. System-V: CF-PVDF Composites [5] 

Dang et. al investigated untreated conductive short carbon fiber (CF)/PVDF 

composites with low concentrations of CF. The CF was the conducting filler with an 

average length and diameter, 100 and 8μm, respectively. Figure 4-18 shows the 

dependence of the dielectric constant εeff and εeff /εm on frequency at room temperature. 

According to Eq. (4-2), the percolation threshold φc=0.066 and critical value s=0.87 

were obtained at 1 kHz, which was very low due to the large slenderness ratio and 

upright shape of the CF.  
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Figure 4-18. Dependence of (a) the dielectric constant, (b) εeff /εm of the CF-PVDF 
composites on frequency at room temperature. 
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Figure 4-19. εeff /εm vs. volume fraction φ and the fitting curve by Method A at 
different frequencies: (a) at 1019 Hz and (b) 498149 Hz. 

The fitting equation used by authors was the same as Eq. (4-2). In Method A and 

B, the same fitting equation was used and the only difference was the selected fitting 

data. In Method A, the selected fitting data were the same as the article selected:  

φCF=0, 0.019, 0.038, 0.047, 0.056, and 0.066. Figure 4-19 and Table 4-9 show the 

fitting results at selected frequencies. In Method B, selected fitting data including the 

peak position φCF=0, 0.019, 0.038, 0.047, 0.056, 0.066 and 0.074. Figure 4-20 and 

Table 4-10 show the fitting results at selected frequencies.  
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Table 4-9 φc and s vs. different frequencies of System IV by Method A 

Frequency 

(Hz) 

s

c

fillerc

m

eff










 








φCF=0, 0.019, 0.038, 0.047, 0.056, and 0.066 

φc φc error s s error R2  

1019 0.09775 9.28E-3 0.7166 0.1151 0.9918  

4793 0.09629 8.79E-3 0.7061 0.1112 0.9916  

10393 0.09563 8.52E-3 0.6972 0.1079 0.9916  

48864 0.09582 0.01045 0.7029 0.1329 0.9875  

105952 0.09638 0.01296 0.7115 0.1647 0.9815  

498149 0.1266 0.04642 1.1228 0.5729 0.9657  

1080150 0.2435 0.2898 2.6264 3.5658 0.9612  
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Figure 4-20. εeff /εm vs. volume fraction φ and the fitting curve by Method B at 
different frequencies: (a) at 1019 Hz and (b) 498149 Hz. 

Table 4-10 φc and s vs. different frequencies of System IV by Method B 

Frequency 

(Hz) 

s

c

fillerc

m

eff










 








φCF=0, 0.019, 0.038, 0.047, 0.056, 0.066 and 0.074 

φc φc error s s error R2  

1019 0.07437 1.72E-4 0.3924 0.0202 0.9982  

4793 0.07445 1.84E-4 0.3981 0.0202 0.9981  

10393 0.07452 1.97E-4 0.3993 0.0201 0.9979  

48864 0.07517 3.35E-4 0.4130 0.0222 0.9961  

105952 0.07825 5.74E-4 0.4329 0.0258 0.9943  

498149 0.08511 0.00349 0.5895 0.0697 0.9819  

1080150 0.11059 0.01624 0.9658 0.2383 0.9760  

 

In Method A, the φc=0.07437 and s=0.3924 at 1 kHz were far from the results 
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from the article (φc=0.066 and s≈0.87). In this case, the same equation Eq. (4-2) was 

used in both Method A and B. The φc and s were both kept as a constant before 100 

kHz then increased at high frequency with increasing frequency.  
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Figure 4-21. Dependence of percolation threshold (φc) and critical constant (s) on 

frequency by different fitting methods: (a) Method A and (b) Method B. 

4.2.6. System-VI: TFP-MWNT-PVDF Composites [6] 

In this section, trifluorophenyl(TFP)-functionalized MWNTs and PVDF 

nanocomposites were studied.  MWNTs were modified with 

3,4,5-trifluorobromobenzene (TFBB) to improve  the dispersal. The strong 

interaction between the trifluorophenyl (TFP)-functionalized MWNTs and PVDF was 

obtained because of the number of fluoride groups existing on the surface of the 

TFP-MWNTs. The film was folded and hot pressed at 200 oC into a disk-shaped 

sample and further strengthened the preferred orientation of the TFP-MWNT in the 

matrix. Figure 4-22 shows the dependence of the dielectric constant εeff and εeff /εm on 

frequency at room temperature. The fitting values of dielectric constant were in 

agreement with percolation theory, with φc=0.08 and s=1.63 at 1 kHz.  
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Figure 4-22. Dependence of (a) the dielectric constant, (b) εeff /εm of the 
TFP-MWNT-PVDF composites on frequency at room temperature. 
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Figure 4-23. εeff vs. volume fraction φ and the fitting curve by Method A at different 
frequencies: (a) at 1019 Hz and (b) 1080150 Hz. 

In Method A, the selected data were the same as the article selected:  φTFP-MWNT 

=0, 0.008, 0.01, 0.014, 0.015, 0.02, 0.03, 0.035, 0.04, 0.05, 0.055 and 0.06. Figure 

4-23 and Table 4-11 show the fitting results at selected frequencies. As shown in 

Figure 4-24, it is difficult to determine the φc range for the fitting. Therefore, in 

Method B, two groups of data were used. One with φTFP-MWNT =0, 0.008, 0.01, 0.014, 

0.015, 0.02, 0.03, 0.035, 0.04, 0.05, 0.055, 0.06 and 0.08, and another including more 

data with φTFP-MWNT =0, 0.008, 0.01, 0.014, 0.015, 0.02, 0.03, 0.035, 0.04, 0.05, 0.055, 

0.06, 0.08, 0.09, 0.11 and 0.12. After the error was compared for φ and s, the fitting 

equation was used Eq. (4-2) and selected data included φTFP-MWNT =0, 0.008, 0.01, 
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0.014, 0.015, 0.02, 0.03, 0.035, 0.04, 0.05, 0.055, 0.06 and 0.08. Figure 4-25 and 

Table 4-12 show the fitting results in at selected frequencies.  

 

Table 4-11 φc and s vs. different frequencies of System VI by Method A 

Frequency 

(Hz) 
s

ceff k  )(  φTFP-MWNT =0, 0.008, 0.01, 0.014, 0.015, 0.02, 0.03, 0.035, 0.04, 

0.05, 0.055 and 0.06 

φc φc error s s error k k error R2 

100 0.23053 0.54598 12.132 30.012 9.42E-8 1.78E-6 0.9654 

407 0.10395 0.0427 3.2762 2.2751 4.31E-3 0.0183 0.9644 

1019 0.09118 0.02443 2.2583 1.1784 0.0366 0.0910 0.9634 

4793 0.08153 0.0124 1.3418 0.4606 0.0317 0.0338 0.9701 

10393 0.07940 9.74E-3 1.0820 0.3093 0.6289 0.4575 0.9700 

48864 0.08050 9.03E-3 0.8135 0.2017 1.2849 0.5881 0.9811 

105952 0.08409 0.01110 0.7646 0.2050 1.4821 0.6529 0.9813 

498149 0.10396 0.02695 0.8426 0.3477 1.3138 0.7861 0.9787 

1080150 0.12477 0.05039 0.9822 0.5586 1.0306 0.8234 0.9765 

2342110 0.13941 0.07221 1.0207 0.7051 0.9393 0.8398 0.9743 

11011690 0.13747 0.07695 0.8319 0.6247 1.0237 0.8199 0.9684 

30904320 0.07575 0.01627 0.2598 0.1332 2.4621 0.7705 0.8937 
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Figure 4-24. εeff /εm vs. volume fraction φ and the fitting curve by Method B for 
different data selected. 
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Figure 4-25.εeff /εm vs. volume fraction φ and the fitting curve by Method B at 
different frequencies: (a) at 1019 Hz and (b) 1080150 Hz. 

Table 4-12 φc and s vs. different frequencies of System VI by Method B 

Frequency 

(Hz) 

s

c

fillerc

m

eff










 








 φTFP-MWNT =0, 0.008, 0.01, 0.014, 0.015, 0.02, 

0.03, 0.035, 0.04, 0.05, 0.055, 0.06 and 0.08 

φc φc error s s error R2  

100 0.12637 7.53E-3 4.3920 0.5196 0.9982  

470 0.10205 3.01E-3 2.6752 0.1771 0.9980  

1019 0.09894 2.66E-3 2.2668 0.1477 0.9976  

4793 0.09597 2.17E-3 1.6736 0.0999 0.9970  

10393 0.09551 1.98E-3 1.4494 0.0805 0.9969  

48864 0.09596 1.71E-3 1.1156 0.0517 0.9971  

105952 0.09667 1.71E-3 0.9918 0.0445 0.9971  

498149 0.09839 2.17E-3 0.7972 0.0417 0.9956  

1080150 0.09862 2.46E-3 0.7092 0.0413 0.9944  

2342110 0.09753 2.48E-3 0.6129 0.0372 0.9936  

11011690 0.10012 3.52E-3 0.5580 0.0433 0.9900  

30904320 0.08642 2.67E-3 0.2800 0.0361 0.9613  

 

In Table 4-11, the parameters had a large error at very low and very high 

frequencies. The φc=0.09121 and s=2.26 at 1 kHz were far from the results from the 

article (φc=0.08 and s=1.63). As shown in Figure 4-26, the φc firstly decreased at low 

frequency then increased at high frequency in both Method A and B. The difference is 

the φc had the similar values at 100 Hz and 1 MHz. The critical constant s 
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continuously decreased from 4.392 at 100 Hz to smaller than 1 at high frequency. The 

R2 and error of parameter of the fitting results indicated Method B was in good 

agreement with the data.  
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Figure 4-26. Dependence of percolation threshold (φc) and critical constant (s) on 

frequency by different fitting method: (a) Method A and (b) Method B. 

4.3. Summary of Six System and Further Study 

Six systems of conductor-polymer composites were studied based on percolation 

theory. These included: System I (MWNT-PVDF), System II (CB-BT-VMQ), System 

III (PANI-PVDF), System IV (Ag-PI), System V (CF-PVDF) and System VI 

(TFP-MWNT-PVDF). In general, it was found that the φc and s obtained at different 

frequencies were different. To make this clear about how the φc and s changed with 

frequency, the normalized values of the φc and s: φc/φ0 and s/s0 are shown in Figure 

4-27 and Figure 4-28, where φ0 and s0 was the first value of φc and s in each system, 

such as φc and s at 100 Hz in system I or at 1 kHz in System IV. As discussed before, 

the percolation threshold and critical constant obtained by fitting changed with 

selected frequency. The percolation threshold and critical constant also had a 

relationship with the shape of filler. In these six systems, the filler of System II 

(diameter of CB: 50 nm), System III (diameter of PANI: 0.1μm) and System IV 
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(diameter of Ag: 0.5μm) are sphere. The corresponding φc in Figure 4-27 is weekly 

dependent on frequency. The filler of System V (CF-PVDF) had a high aspect ratio 

≈12 (W:8 μm and L:100 μm) which may have resulted in the φc and s both increasing 

for high frequency. The filler of System I (MWNT-PVDF) and System VI 

(TFP-MWNT-PVDF) were both multiwall carbon-nanotubes. The size in system VI 

was 10-30 nm in width and 5-15 μm in length. It was found that the φc of both system 

decreased with as increasing frequency then increased for high frequency, even higher 

than 1. 
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Figure 4-27. Dependence of (a) percolation threshold (φc) and (b) critical constant (s) 
on frequency of six systems by Method A. 
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Figure 4-28. Dependence of (a) percolation threshold (φc) and (b) critical constant (s) 
on frequency of six systems by Method B. 
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Figure 4-29. Dielectric constant vs. frequency of composites and fitting curve for six 
systems. 

 

The  from articles and calculated from this chapter are shown in Table 4-13. 

Some  from articles were obtained from conductivity. In these six different systems, 
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the  of the composites were close to the percolation threshold of 0.6-0.8 which is 

close to the normal value from the percolation theory discussed in Section 1.4.1. 

Because the dielectric constant was very “flat” in low frequency, the curve was fitted 

in two separated parts. The fitting results for six systems are shown in Figure 4-29.  

 

 

Table 4-13 The φ and  from articles and from this chapter 

  I II III IV V VI 

From 

articles 

φ 0.016 0.035 - 0.125 0.074 - 

 0.805 1.1469 - 1.22 0.82 - 

From this 

Chapter 

φ 0.02 0.0375 0.05 0.125 0.074 0.08 

1 0.9704 0.8274 0.5572 0.9995 0.9391 0.5594 

 2 0.5702 0.7087 0.7645 -0.4304 0.7230 0.6845 

 

4.4. Simulation 

In order to find the reason why the φc & s are dependent on the frequency 

selection, a new conductor-polymer composite based on Debye Equation and 

percolation theory was introduced. The Debye Equation is expressed as: 

      
2
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where εs is the static dielectric constant, ε∞ is the dielectric constant at high frequency 

limit and τ0 is the characteristic relaxation time. For the case of conductor-polymer 

composite, εs is considered as the εeff obtained from percolation theory. Wagner 

considered a sphere-like conductor with conductivity σ in a non-conducting matrix of 

dielectric constant εm. From the Wagner’s formula [7], there is: 
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Then Eq. (4-3) can be written as: 
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                     (4-6)                

The εeff /εm vs. volume fraction is φ always used as the fitting function, then Eq.(4-6) 

can be as: 
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Therefore, let φc=10 vol.%, s= 0.7 and 2πε0εm/σ is chosen as 10-5, the curves under 

this condition are plotted in Figure 4-30. 
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Figure 4-30. Dependence of εeff /εm of the special case based on Debye equation. 

The dielectric constant of this artificial conductor-polymer composite is shown in 

Figure 4-30. The selected volume fraction is from 0 vol.% to 9.5% and the step is 1 
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vol.%. The dielectric constant of the composite with all volume fractions are 

independent of frequency at low frequency then decrease dramatically with increasing 

frequency. At very high frequencies, all of the curve are close to 0 vol.% which is 

similar to the reality.   
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Figure 4-31. εeff /εm vs. volume fraction φ and the fitting curve at different frequencies: 
(a) at 1000Hz and (b) at 100000Hz. 

The εeff /εm vs. volume fraction φ and the fitting results are shown in Figure 4-31 

at select different frequencies. The corresponding data are listed in Table 4-14 and 

plotted in Figure 4-32. According to the Eq. (4-9), at low frequency, the fitting can 

have a very good result, such as φ is 0.1 and s is very close to 0.7. When the 

frequency is lower than relaxation range (ω0), the φc and s can be considered as 

independence of frequency. In the range of relaxation, the φc decreases from 0.0978 to 

0.09544 and the change is smaller than 5%. It means the percolation threshold almost 

independent on frequency. For critical constant, the value is 0.1301 at 100 kHz, which 

is smaller than 1/5 of 0.7 at very low frequency. For very high frequency, the 

dielectric constant of composites is very close to the dielectric constant of the pure 

matrix, which is not in agreement with percolation theory. 
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Table 4-14 φc and s vs. different frequencies of the special case based on Debye 
equation 

Frequency 

(Hz) 

s

c

fillerc

m

eff










 








 

φc φc error s s error R2  

1000 0.10000 2.74E-7 0.6997 1.03E-5 1.0000  

2600 0.09998 1.85E-6 0.6983 6.98E-5 1.0000  

5012 0.09994 6.80E-6 0.6935 2.56E-4 1.0000  

10000 0.09978 2.61E-5 0.6750 9.77E-4 1.0000  

16032 0.09947 6.25E-5 0.6392 2.31E-3 1.0000  

20184 0.09920 9.28E-5 0.6084 3.40E-3 0.9999  

30200 0.09848 1.70E-4 0.5238 6.07E-3 0.9996  

40272 0.09775 2.37E-4 0.4377 8.26E-3 0.9987  

50119 0.09714 2.85E-4 0.3619 9.68E-3 0.9974  

60256 0.09662 3.17E-4 0.2955 1.05E-2 0.9953  

75858 0.09601 3.36E-4 0.2144 1.09E-2 0.9905  

100000 0.09544 3.31E-4 0.1301 1.05E-2 0.9785  
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Figure 4-32. Dependence of percolation threshold (φc) and critical constant (s) with 

frequency of the special case based on Debye equation. 

The Debye Equation did not fit the experimental results for most of the 

dielectric materials that have a set of relaxation time. Therefore, there are many 

empirical relaxation equations that have been introduced to describe the relaxation 

phenomena. For example, Cole-Cole equation is shown as [8]:  
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where α varies 0<α<1, and the maximum ε”
r occurs at ωτ0=1. Some experimental 

results agree well with Cole-Cole equation with α >0. The real part of the dielectric 

constant can be shown as: 
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After combined with Eq.(4-4), (4-5) and (4-9),  
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      (4-10)                

The α is around 0.5 for some PVDF-based polymer [9, 10]. For a special case, if 

α=0.5, φc=10vol.% and s=0.7, 2πε0εm/σ is chose as 10-5, the dielectric constant of this 

special conductor-polymer composite based on Cole-Cole equation is shown in 

Figure 4-33. The selected volume fraction is from 0 vol.% to 9.5 vol.% and the step is 

1 vol.%. The dielectric constant of the composite with all volume fractions decreases 

with frequency continuously according to the Cole-Cole Equation.  
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Figure 4-33. Dependence of εeff /εm of the special case based on the Cole-Cole 

equation. 

The corresponding data are listed in Table 4-15 and plotted in Figure 4-34. 

According to the Eq. (4-10), at low frequency, the fitting result is not as good as 

Debye Equation, such as s is 0.6742 which is not very close to 0.7. Because the 

relaxation frequency covers a wide range for the Cole-Cole equation, the φc and s 

decrease gradually with frequency.  
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Figure 4-34. Dependence of percolation threshold (φc) and critical constant (s) with 

frequency of the special case based on Cole-Cole equation. 

 



 
 

180 
 

 

Table 4-15 φc and s vs. different frequencies of the special case based on Cole-Cole 
equation 

Frequency 

(Hz) 

s

c

fillerc

m

eff


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 
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


 

φc φc error s s error R2  

1000 0.09975 3.59E-5 0.6742 1.34E-3 1.0000  

2600 0.09960 5.70E-5 0.6584 2.13E-3 1.0000  

5012 0.09945 7.79E-5 0.6424 2.90E-3 1.0000  

10000 0.09924 1.07E-4 0.6193 3.97E-3 0.9999  

16032 0.09905 1.31E-4 0.5987 4.87E-3 0.9998  

20184 0.09894 1.45E-4 0.5870 5.36E-3 0.9997  

30200 0.09873 1.71E-4 0.5639 6.29E-3 0.9996  

40272 0.09856 1.91E-4 0.5451 6.99E-3 0.9995  

50119 0.09842 2.07E-4 0.5295 7.55E-3 0.9993  

60256 0.09830 2.20E-4 0.5155 8.03E-3 0.9992  

75858 0.09814 2.37E-4 0.4969 8.63E-3 0.9990  

100000 0.09793 2.58E-4 0.4731 9.34E-3 0.9987  

151356 0.09761 2.89E-4 0.4350 1.04E-2 0.9980  

301995 0.09703 3.31E-4 0.3646 1.17E-2 0.9962  

501187 0.09663 3.55E-4 0.3121 1.24E-3 0.9942  

1000000 0.09610 3.68E-4 0.2409 1.28E-2 0.9898  

 

According to further studies based on the Debye Equation and Cole-Cole 

Equation, the change of φc and s is strongly dependent on frequency selection.  

4.5. Conclusions 

From the six systems and further study based on the Debye Equation and 

Cole-Cole Equation,  

1) The percolation threshold (φc) and critical constant (s) are dependent on the 

selection of frequency. 

2) Compared with the Method A and B, selected different data have strong effect 

on the φc and s. The maximum value of dielectric constant obtained in the 

composites very close to φc should be included in fitting data.  
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3) The percolation threshold and critical constant also have the relationship with 

the shape of the filler. The change in φc and s for the composite with 

sphere-like fillers are less than that with a fiber or tube. High aspect ratio may 

cause much difference in φc and s with respect to frequency.  

4) According to further study based on the Debye Equation and Cole-Cole 

Equation, the change in φc and s with frequency is very similar to the change 

of dielectric constant of composite (φ→φc) with frequency. 
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CHAPTER 5                                   

Complex Dielectric Constant of Composite Introduced 

Dielectric loss  

5.1. Introduction 

In current research, many theoretical models/methods have been introduced to 

simulate the εeff of a composite using εm, εf, φ and may had one parameter related to 

the shape/size of the filler [1-6]. However, more and more experimental results are 

reported and cannot be explained using these models. The interfacial layer was 

introduced as a new phase to explain the experimentally observed results. The results 

may be well fitted/explained, but the interfacial layer, which had the same 

composition as the polymer matrix, had a very high dielectric constant (102 to 103 

times higher than the εm). Based on the physics of dielectrics, this high dielectric 

constant for the interfacial layer is unreasonable. One of important issue was the 

dielectric loss should be taken into account. In this Chapter, the loss of both 

constituents is included in the simulation of the εeff for a composite in three different 

models. As discussed in Section 1.5.1, the series model is for 2-2 composite, Maxwell 

model is for 0-3 composite and Lichtenecker's logarithmic mixing model is more like 

for 0-0 composite.  

5.2. The Series Model Introduced Dielectric Loss 

For a two-layer composite (2-2 connection), as Figure 1-12 and Figure 1-13 in 

Section 1.5.1 shown, the relationship of capacity with series connection can be given 

by 
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From these equations, the real and imaginary part of dielectric constant of the 

composite can be obtained as: 
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In these equations, the three dielectric parameters are expressed as the function of 

F(ε'1, ε'2, tanδ1, tanδ2, φ).  

5.2.1 The Relationship Between tanδ1, tanδ2 and tanδs 

Because the dielectric was taken into account, it was necessary to check how the 

dielectric loss effected on the dielectric properties of the composite. 
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if tanδ1>tanδ2, 0<φ<1, then 1
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

 s , 1
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
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12 tantantan   s  

Vice versa for tanδ1<tanδ2, 21 tantantan   s  

So )tan,(tantan)tan,(tan 2121  MaxMin s                           (5-6) 

From this model, the dielectric loss of the composite must be in between the value of 

dielectric loss of two materials. Especially, when tanδ1=tanδ2, there is tanδs 

=tanδ1=tanδ2, and ε's = ε'1·ε'2/[(1-φ)·ε'1+ φ·ε'2], which is consistent with classic series 

model. That is, the dielectric loss does not have any influence on the ε's. This is 

because that when tanδ1=tanδ2, there is no charge accumulation on the interface.  

5.2.2 The Relationship Between ε'1 , ε'2 and ε's 

Case 1: When ε'1 = ε'2 & tanδ1=0 or tanδ2=0 

As we known, if the loss is not considered, ε's will be the same value whatever the 

φ when ε'1 = ε’2. However, if the loss is considered, the effective dielectric constant of 

composite ε's and tanδs can be rewritten as follow: 
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ε's and tanδs are the function of the dielectric loss of both materials, and changes with 

the various of φ. 

When one of materials does not have the dielectric loss, the dielectric constant of 

composites can be larger than the dielectric constant of both materials under this 
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condition. Figure 5-1(a) shows the dielectric constant and loss of composites with 

different tanδ1 and tanδ2 when ε'1 = ε'2. Due to the symmetry, it assumes tanδ1=0 and 

tanδ2 various. It is easy to find that there is a peak for certain vol.% concentration due 

to the dielectric constant is the same value for φ =0 and φ=100%. That means: if the 

matrix is an ideal dielectric material without the loss and the filler has the same value 

of dielectric constant as matrix but has very high dielectric loss, the dielectric constant 

of composites will be strongly affected by the value of dielectric loss of the filler. The 

dielectric constant of composites will increase firstly then decrease. This trend is very 

similar with the phenomenon of conducting filler-polymer composites which can be 

explained by percolation theory. Figure 5-1 (b) shows the information of the peak of 

ε's /ε'1 in details extracted from Figure 5-1 (a). When the dielectric loss of filler 

approaches to very high values, the dielectric constant of composites will quickly 

reach to the maximum value and the value will very large.  

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0
1.00
1.01
1.02
1.03
1.04
1.05
1.06

tan



 tan



 tan

 

 tan

 

 tan



 tan



 tan

 '

1
'

2

 

 

 

 

Volume fraction  

'
s/
'

1

(a)

 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30
0

5

10

15

'

='


&tan


=0

 

 

 

(b)

tan

'

='


&tan


=0

M
a

x 
va

lu
e

 o
f

s 
/

1 
 Peak value of 

s
 /

1
 0<x<1

Position of  peak of 
s
 /

1
 0<x<1

 

 

 

P
e

ak
 p

o
si

tio
n

 (
x)

 

Figure 5-1. (a) The ratio of dielectric constant of composites and constituent-1 
various with φ for different dielectric loss. (b) The position and maximum value of 

peak of dielectric constant ratio various with dielectric loss of constituent-2. 
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Case 2: When ε'1 = ε'2 & tanδ1≠tanδ2≠0  

This condition means the two materials have the same relative dielectric constant 

but have different dielectric loss. As shown in Figure 2 (a)-(b), when the dielectric 

loss is very small, the maximum peak position of ε’s/ε’1 is very close to φ=0.5 and the 

value of ε’s/ε’1 is slight larger than 1. When dielectric loss is relative large, the value 

of ε’s/ε’1 increases, and if tanδ1/tanδ2 is very larger than 1 or very smaller than 1, the 

peak position will be far away from φ =0.5.  
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Figure 5-2. The dielectric properties of composites varies with vol% content for 

different dielectric constant and loss of constituent-1 and constituent-2 when ε'1 ≠ε'2: 
(a) effective dielectric constant of composite, (b) dielectric loss of composite. 
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Case 3: When ε'1 ≠ε'2 & tanδ1≠tanδ2≠0  

The equation for dielectric constant of composites is shown as 
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 s              (5-9) 

As discussed before, the dielectric constant of composites can be larger than each 

material when ε'1= ε'2. If the matrix and filler have totally different dielectric constant 

and loss, the situation will be more complex. However, it is still easy to find that for 

certain parameters of ε'1, ε'2, tanδ1, tanδ2, x, one can find the conclusion: 

      ),( 21   Maxeff  and serieseff                                (5-10) 

For the common case, it is very different to predict the peak value and position 

of F(ε'1, ε'2, tanδ1, tanδ2, φ). In this section, 2 special cases are checked. Special Case 

I: If ε'1=10, ε'2=20, tanδ1=0.1, tanδ2=0.05, 0.1, 1, 3, 5, 10, 20 etc, it means the 

constituent-1 only has a low dielectric constant while the constituent-2 has higher 

dielectric constant. Figure 5-3 shows the dielectric properties of composites under 

this condition: ε'1=10, ε'f=20, tanδ1=0.1: (a) ε's with φ, (b) tanδs with φ, (c) ε's with 

tanδ2 changes at different φ, and (d) tanδs with tanδ2 changes at different φ. The peak 

of ε's increases with increasing tanδ2 and the peak position shifts to high volume 

fraction which is very close to 1. If the ε'f is very large (>100), the peak position is 

larger than 99%. In real dielectric-dielectric composites, the dielectric constant is very 

high and loss is lower than 1 for dielectrics, which results no peak is observed. For 

loss part, the tanδs increases with volume fraction and the value is between tanδ1 and 

tanδ2. However, as shown in Figure 5-3 (d), at a fixed volume fraction, the tanδs 

increases then decreases with the tanδ2 increasing. From Figure 5-3, it is very 



 
 

189 
 

important to see that there is a way to prepare the composite with a higher dielectric 

constant but lower loss.  
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Figure 5-3. The dielectric properties of composites under this condition: ε'1=10, 
ε'f=20, tanδ1=0.1: (a) ε's with φ, (b) tanδs with φ, (c) ε's with tanδ2 changes at different 

φ, and (d) tanδs with tanδ2 changes at φ. 

Special Case II: If ε'1=10, ε'2=1, tanδ1=0.1, tanδ2=0.05, 0.1, 1, 3, 5, 10, 20 etc. 

This means the matrix only has a low dielectric constant while the filler also has low 

dielectric constant but with large dielectric loss. This situation is about the same as the 

conductive-filler which has a larger dielectric loss introduced in polymer matrix. 

Figure 5-4 (a) shows the dielectric constant of composites various with φ different 

dielectric loss of constituent-2. At first, the tanδ2 increases from 0.1 to 3, the ε's 

decreases with the vol.% increasing because the ε’2 is smaller than ε'1. When the tanδ2 
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is larger than 3, the curve of ε's changes and the ε's will first increase then decrease. 

This is similar to the percolation theory describes the conductive-filler polymer-based 

composite. It is means the ε's cannot only be larger than ε'parallel, but also larger than 

either ε'1 or ε'2. Compared with Special Case I, the peak position of ε's in Special Case 

I can start from very low volume fraction. The corresponding ε's of composite with 

tanδ2 increasing is shown in Figure 5-4 (c) It is much complex that the ε's increases in 

different curve. This case indicates that the dielectric loss of constituent-2 can have 

tremendous influence on the dielectric properties of final composite, and there is a 

way to prepare the composite with a higher dielectric constant but lower loss.   

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

volume fraction 

'
s

 

 tan
2
=10

 tan
2
=20

 tan
2
=30

 tan
2
=50

 tan
2
=0.05

 tan
2
=0.1

 tan
2
=1

 tan
2
=3

 tan
2
=5

'
1
=10, tan

1
=0.1'

2
=1

 

Based on Series model(a)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

volume fraction 

ta
n

s

 

 tan
2
=10

 tan
2
=20

 tan
2
=30

 tan
2
=50

 tan
2
=0.05

 tan
2
=0.1

 tan
2
=1

 tan
2
=3

 tan
2
=5

'
1
=10, tan

1
=0.1'

2
=1

 

Based on Series model(b)

 

0 10 20 30 40 50
0

10

20

30

40

 tan
2

'
s

 

 =0.3
 =0.5
 =0.7
 =0.8
 =0.9

'
1
=10, tan

1
=0.1'

2
=1

 

Based on Series model(c)

0 5 10 15 20 25 30
0

2

4

6

8

 =0.3
 =0.5
 =0.7
 =0.8
 =0.9

ta
n

s

 tan
2

 

'
1
=10, tan

1
=0.1'

2
=1

 

Based on Series model(d)

 

Figure 5-4. The dielectric properties of composites under this condition: ε'1=10, ε'2=1, 
tanδ1=0.1: (a) ε's with φ, (b) tanδs with φ, (c) ε's with tanδ2 changes at different φ, and 

(d) tanδs with tanδ2 changes at different φ. 
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5.3. The Maxwell-Wagner Model Introduced Dielectric Loss 

The series model is too simple to express the dielectric properties vs. volume 

fraction of filler. As discussed before, the Maxwell-Wagner (also named as 

Maxwell-Garnett) mixing rule, which has been widely employed for calculation of the 

dielectric constant of 0-3 composites [7-9]. If filler particles are spherical in shape, as 

mentioned in Section 1.5.1, Maxwell-Wagner model is much better for further 

simulation. This rule is effective for infinite dilution of the dispersed phase. That is, 

the spherical filler particles are well separated by distances greater than their 

characteristic size. If filler particles are spherical in shape, the following equation is 

obtained for the effective dielectric constant of the composite,  
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Figure 5-5. The dielectric constant of composites varies with vol.% content for 
different dielectric constant and loss of matrix and filler under this condition: ε'm =5, 
ε'f =1 & tanδm=0.01, tanδf=0.1, 1, 2, 5, 8, 10, 20 and 50: (a) effective dielectric 

constant of composite, (b) dielectric loss of composite. 
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Figure 5-6. The dielectric properties of composites varies with vol.% content for 
different dielectric constant and loss of matrix and filler under this condition: ε'm =5, 
ε'f =10 & tanδm=0.01, tanδf=0.1, 1, 2, 5, 8, 10 and 20: (a) effective dielectric constant 

of composite, (b) dielectric loss of composite. 

The result of simulation is similar to the simulation of series model. When ε'm = 

ε'f, if the dielectric loss of matrix and filler are taken into account, the dielectric 

constant of composite can be larger than the dielectric constant of matrix and filler, 

which is the same as series model. Figure 5-5 and 5-6 show the dielectric constant of 

composites various with vol.% content for different dielectric constants and loss for 

the matrix and filler under this condition: ε'm =5 ε'f =1 or 10 & tanδm=0.01, tanδf=0.1, 

1, 2, 5, 8, 10, 20 and 50. The results are similar to Series Model introduced the 

dielectric loss. If the dielectric loss of the filler is very larger that means the filler can 
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be considered as conducting filler, the dielectric constant of the composite is the 

similar to percolative behavior.  
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Figure 5-7. The dielectric properties of composites varies with tanδf under this 
condition: ε'm =5 ε'f =10, tanδf=0.01, 0.05, 0.1, 0.5, 1, 5, 10 and 20: (a) and (b) 

tanδm=0.01, (c) and (d) tanδm=0.5, (e) and (f) tanδm=5. 

The effect of dielectric loss of filler and matrix on ε'eff and tanδeff are shown in 

Figure 5-7. For ε'eff part, the ε'eff at different volume fractions of filler always 
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decreases first then increases with increasing tanδf. The minimum point is the 

tanδm=tanδf. Compared Figure 5-7 (a), (c) and (e), for the same tanδf (tanδm<tanδf), 

the value of ε'eff decreases with increasing tanδm. For loss part, when dielectric loss of 

matrix is small, the trend is similar to Series Model. The peak value of tanδeff 

increases with increasing tanδf and the peak position shifts to high tanδf with 

increasing volume fraction of filler. If the tanδm increases, there is a cross point in the 

figure for tanδeff, which is the point that is the same as the minimum value of tanδeff, 

that is, tanδm=tanδf.  

5.4. The Logarithmic Model Introduced Dielectric Loss 

Lichtenecker's logarithmic mixing model has been used in various literatures 

and generally considered as a quasi-empirical formula. Recently, Lichtenecker treated 

mixtures/composites using statistics as discussed in Section 1.5.1. If the dielectric loss 

of two phases is considered into Lichtenecker's logarithmic model, it can be written 

as,    

      21

21
  eff                                             (5-13) 

Then the complex dielectric constant can be expressed as, 
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Eq.(5-16) shows the real and imaginary parts of dielectric constant, and the 

dielectric loss for Lichtenecker's logarithmic model. From Eq.(5-16c), the loss has 

some contribution to ε'eff but the ε'1 and ε'2 do not have any contribution to the tanδeff, 

which is different from the Series and Maxwell-Wagner models. 

The dielectric properties of composites various with φ for different dielectric 

constant and loss of two constituents under different conditions are shown in Figure 

5-8 and 5-9. Similar to the Series and Maxwell-Wagner model, the dielectric constant 

of composites first increases then decreases with volume fraction. With the loss of 

constituent-1 increases from 0.05 to 1, the peak value of dielectric constant decreases. 

For loss part, since the dielectric constant cannot have effect on loss of composite, the 

Figure 5-8(b), (d) and (f) are very similar. 
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Figure 5-8. The dielectric properties of composites varies with vol.% content for 
different dielectric constant and loss of matrix and filler under this condition: ε'1=5 
ε'2=10& tanδ2=0.01, 0.5, 1, 5, 10, 50 and 100: (a) and (b) tanδ1=0.01, (c) and (d) 

tanδ1=0.5, (e) and (f) tanδ1=1. 

Compared to Series and Maxwell model, the Lichtenecker's logarithmic model is 

relatively simple. At each volume fraction, the dielectric constant ε'eff and tanδeff 

always increase with the tanδ2 increasing, as shown in Figure 5-8. For conducting 

filler concern, as shown in Figure 5-10, the peak position also can start from very low 
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volume fraction. When the tanδ2 is high, close to 100, the peak position is still around 

60 vol.%. 
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Figure 5-9. The dielectric constant of composites varies with φ for different dielectric 
constant and loss of matrix and filler under this condition: ε'1=5 ε'2=100& tanδ2=0.01, 

0.5, 1, 5, 10, 50 and 100: (a) tanδ1=0.01, (b) tanδ1=0.5, (c) tanδ1=1. 
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Figure 5-10. The dielectric constant of composites varies with φ for different 
dielectric constant and loss of matrix and filler under this condition: ε'1=10, ε'2=1, 

tanδ1=0.1and different tanδ2: (a) tanδ2=10 to 100, (b) tanδ2=100 to 1000. 
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5.5. The Maxwell-Wagner Model Introduced Conductivity 

If the dielectric loss is considered, a composite can have a higher dielectric 

constant than the dielectric constant of both constituents. This would break the Wiener 

limits, Eq. (1-34). However, we currently believe that the dielectric loss of a 

composite is between the dielectric losses of two constituents. The above discussion is 

based on ideal dielectrics where the conductivity is zero. Actually, all dielectrics have 

a nonzero conductivity. 

It is well known that for a homogenous dielectric the conductivity σ contributes 

to the measured imaginary part of the complex relative permittivity as 

      






0

"
con                             (5-17) 

where ε0 and ω are the permittivity of vacuum and the angular frequency. Therefore, 

the experimentally measured dielectric loss in a dielectric actually has two parts: one 

is the real dielectric loss (the imaginary part of the permittivity) and another is due to 

the electrical conductivity. For a composite, the conductivity of its constituents would 

make the dielectric response of a composite much more complicated. For a composite 

under an electric field, the electric field is not uniform and its distribution is 

dependent on the dielectric property of each constituent. An electric current is induced 

in each constituent due to the electrical conductivity. The difference in the current 

density between two constituents would result in a charge accumulation around the 

boundary between the two constituents. The charge accumulation would redistribute 

the electric field in the composite, which would change the current density in each 

constituent. Here, the electrical conductivity of each constituent is considered and the 
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influence of their conductivities on the ε'eff is studied using Maxwell model. 

5.5.1. Conductivity Introduced for Special Case: ε"m=0 

If ε"m=0, the Eq.(5-16) can be simplified as below: 
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The imaginary part of filler can be expressed as: 
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Then the complex equation can be rewritten as the form of Debye Equation: 
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Under this condition, we can check different volume fractions and how it effects 

on the dielectric properties of the composites. Figure 5-11 shows parameters from Eq. 

(5-20c) change with volume fraction of filler. ε∞ is the Maxwell equation (Eq.(1-45)) 

and the plot with different ε'f is shown in Figure 5-11(a). The ε∞ is only related to the 

ε'm and increases slowly before φ=0.8 then fast at higher volume fractions. The τ is 

much more complex because both of ε'f and λ can effect on the value of τ. As shown 

in Figure 5-11(c) and (d), the τ always increases with increasing φ. With different ε'f, 

the τ varies slightly difference at low φ. For a certain volume fraction, if λ=103, 104 

and105. φ=0.6, the curve can be expresses as Debye Equation as shown in Figure 

5-12.  
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Figure 5-11. Parameters from Eq. (5-20c) change with volume fraction of filler: (a) ε∞, 
(b) εs, (c) τ with different ε'f, and (d) τ with different λ. 
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Figure 5-12. Simulation of conductivity introduced for special case: ε'm=10, λ=103, 

104 and105, φ=0.6. (Solid, open and solid line are real part, imaginary part and loss of 
dielectric properties). 
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Figure 5-13. Simulation of conductivity introduced for special case: ε'm=10, ε'f=1, 
λ=103, with different frequency. 

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

'
ef

f

'
m
=10, '

f
=1, tan

m
=0, tan

f
 =104/f

 f=100Hz
 f=1kHz
 f=10kHz
 f=100kHz
 f=1MHz

volume content of filler 

 

 

 

 

Based on Maxwell equation

 
0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

ta
n

ef
f

'
m
=10, '

f
=1, tan

m
=0, tan

f
 =104/f

 f=100Hz
 f=1kHz
 f=10kHz
 f=100kHz
 f=1MHz

volume content of filler  

 

 

 

 

Based on Maxwell equation

 

Figure 5-14. Simulation of conductivity introduced for special case: ε'm=10, ε'f=1, 
λ=104, with different frequency. 

The dielectric properties vs. volume fraction under these conditions are also 
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checked and shown in Figure 5-13 and 5-14. There is a peak showing maximum 

value of ε'eff, as marked by the arrow. It is clear that the dielectric properties are 

strongly dependent on frequency, especially at low frequency.  

5.5.2. Nonideal Dielectric Material of Matrix and Filler  

For the general case, the matrix and filler are both non-ideal dielectric material 

which means the high conductivity of the filler and matrix are introduced in the 

Maxwell model. A special case is presented for study. It is assumed 10
0



 m

m  

and 5

0

10



 f
f . As shown in Figure 5-15, the curve of real, imaginary and loss of 

composite are similar as Figure 5-12 at high frequencies. The only difference 

between both cases is in low frequency. The loss of composites is very high due to the 

loss of the matrix. As shown in Figure 6-16 (b), the loss at 1 Hz is almost the same as 

the value of the relaxation peak when the σm is very small (λ=10).  

The conductivity of the matrix and filler both have a much larger effect on the 

dielectric constant and loss. As shown in Figure 5-16 and Figure 5-17, the dielectric 

constant of the matrix and filler are fixed. With the conductivity of the filler 

increasing, the relaxation peaks of composites shifts to high frequencies. With the 

conductivity of matrix increasing, the relaxation peaks of composites do not shift, 

only effects on low frequencies. When λm is close to λf, the relaxation peaks disappear.  
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Figure 5-15. Simulation of conductivity introduced for special case: ε'm=5, ε'f=10 
λm=105, λf=105, φ =0.1, 0.3, 0.5, 0.7 and 0.9: (a) real part, (b) loss, (c) imaginary part 

and (d) loss in log-log scale. 
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Figure 5-16. Simulation of conductivity introduced for special case: ε'm=5, ε'f=10, 
λm=10, λf=103,104 and105, (a) φ=0.5 and (b) φ=0.7 (Solid, open and solid line are real 

part, imaginary part and loss of dielectric properties). 
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Figure 5-17. Simulation of conductivity introduced for special case: ε'm=5, ε'f=10, 
λf=105, λm=10,102 and103, (a) φ=0.5 and (b) φ=0.7 (Solid, open and solid line are real 

part, imaginary part and loss of dielectric properties). 

 

5.6. Conclusions 

In this chapter, the dielectric loss including the electrical conductivity of each 

constituent in a composite is considered. The influence of the loss on the ε'eff is 

examined using three models, which corresponding three types of microstructure of 

the composite. The following conclusions are obtained: 

1. The difference in the dielectric loss of the constituent had a strong influence 

on ε'eff, which makes the ε'eff higher than the results without considering loss. 

The contribution of the loss to the ε'eff is dependent on the microstructure of 

the composite (i.e. the model used in the simulation).   

2. Based on the Series and Maxwell model, if the loss difference is high enough, 

there is a maximum peak obtained in the filler content which is dependent on 

the ε'eff. If the difference in the loss is zero, the ε'eff is the same as the classic 

model and the loss of the composite is the same as the loss of its constituents. 

If the loss if different, as the loss difference increases, the loss of the 
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composite increases initially and then decreases, while the ε'eff increases 

monotonically. That is, if the loss difference is high, a composite with a higher 

ε'eff and a lower loss can be obtained. In other words, the loss of the composite 

does not change with the filler content monotonically if the loss difference is 

high. It is also found that the loss of the composite cannot be higher than loss 

of the constituent with a higher loss, and cannot be smaller/lower than the loss 

of the constituent with a lower loss.   

),( 21   Maxeff   and  serieseff                                (5-21)           

)tan,(tantan)tan,(tan 2121  MaxMin eff                        (5-22) 

3. Based on Lichtenecker's logarithmic model, if the loss difference is high, 

again a maximum peak is observed in the relationship between ε'eff and filler 

content. However, the loss of the composite changes with the filler content 

monotonically.  

4. The conductivity of matrix and filler both have a large effect on the dielectric 

constant and loss. In certain composite, the relaxation peak shifts to low 

frequency with the content of filler increasing. With the conductivity of filler 

increasing, the relaxation peaks of composites shifts to high frequency. With 

the conductivity of matrix increasing, the relaxation peaks of composites do 

not shift and only effects on low frequency. 
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CHAPTER 6                                   

Conclusions and Future Work 

6.1. Conclusions 

1. Composites based on nano Ni particles and copolymers were prepared by 

solution casting and hot-pressed processing. Uniform dispersion of 

nanoparticles in nanocomposite materials was achieved by improvement of the 

processing conditions. By solution casting and hot-pressed processing, high 

percolation threshold (φc>50 vol.%) was achieved in both systems. Dielectric 

constant more than 1000 were obtained in both Ni-P(VDF-TrFE) and 

Ni-P(VDF-CTFE) systems. Compared to the composites with low percolation 

threshold, composites with high percolation threshold had a wider volume 

fraction range of the percolation threshold concentration, making the material 

reproducible for practical applications. 

2. All-organic dielectric composites, PPy-P(VDF-TrFE) and PPy-P(VDF-CTFE) 

systems, based on PPy nanoclips were prepared by solution casting and 

hot-pressed processing. Low percolation threshold (φc<8 wt.%) were achieved 

in both systems. These composites with low percolation threshold only needed 

very small amount filler and the composites are still flexible. Dielectric 

constant of more than 1000 was got in PPy-P(VDF-TrFE). The dielectric 

constant of a composite with 8 wt.% was more than 100 times higher than that 

of the P(VDF-TrFE)70/30 matrix. There were two main differences between 
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the two composites, which have much effect on percolation behavior. First, the 

dielectric constant or εeff/εm  of PPy-P(VDF-TrFE) was much higher than 

PPy-P(VDF-CTFE). Second, there were strong relaxation behaviors in 

PPy-P(VDF-TrFE) composites. From 1 kHz to 100 kHz, the dielectric 

constant decreased with frequency dramatically. 

3. In both conductor-polymer composites, the new dielectric process observed in 

the composites was a relaxation process with a very low relaxation frequency. 

There were three mechanisms in this conductor-polymer composite: 1) the 

dielectric relaxation process from the polymer matrix, 2) the new dielectric 

relaxation process from the composite, and 3) the conductivity of the 

conducting filler.  

4. Percolation theory in these composites was investigated. It was noted that the 

percolation threshold and critical value were dependent on the selected 

frequency and temperature. In order to further study the percolation behavior, 

six systems of conductor-polymer composites, which were reported in 

literature, were studied based on the percolation theory. The φc and s were 

dependent on frequency. The different selected data have strong effect on the 

φc and s. The φc and s also had a relationship with the shape of filler. The 

change of φc and s of the composite with sphere-like filler were less than that 

with fibers or tubes. High length-to-width ratios may have caused large 

differences in φc and s with frequency.  
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5. In the last part, the dielectric loss (or conductivity) was used to explain the 

mechanism behind the dielectric properties of conductor-dielectric composites. 

Based on the Series and Maxwell models, if the loss difference was high 

enough, there would be a maximum peak obtained in the filler content 

dependent on the ε'eff. A composite with a higher ε'eff and a lower loss can be 

obtained. It was also found that the loss of the composite cannot be higher 

than the loss of the constituent with a higher loss, and could not be 

smaller/lower than the loss of the constituent with a lower loss.  Based on 

Lichtenecker's logarithmic model, if the loss difference was high, again a 

maximum peak was observed in the relationship between ε'eff and filler 

content. However, the loss of the composite changed with the filler content 

monotonically. The conductivity of matrix and filler both had a large effect on 

the dielectric constant and loss. In certain composites, the relaxation peak 

shifts to low frequency with increasing the content of filler. With increasing 

the conductivity of filler, the relaxation peaks of the composites shifted to high 

frequencies. With increasing the conductivity of the matrix, the relaxation 

peaks of the composites did not shift, only effected on low frequencies. 

6.2. Future Work 

1. The conductor-dielectric composites exhibited a high dielectric constant when 

the filler concentration was close to the percolation threshold, which resulted 

in the composites having a high dielectric loss and a low Eb. Investigating 
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approaches for increasing the Eb and reducing the dielectric loss in 

conductor-dielectric composites would be interesting.  

2. The shape and size of filler have strong influence on dielectric properties and 

percolation behavior. Also the core-shell particles show some promises and 

further research is needed. The thickness of the shell layer has to be optimized 

based on the desired dielectric constant and loss. 

3. The creation of model to explain both the dielectric-dielectric composite and 

conductor-dielectric composite is a challenge, but a worthwhile pursuit to fully 

understanding the mechanisms occurring in dielectric composites. 

 


