
Removing Buffer Overflows In C Programs With Safe Library Replacement
Transformation

by

Dusten James Doggett

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 14, 2013

Copyright 2013 by Dusten James Doggett

Approved by

Munawar Hafiz, Chair, Assistant Professor of Computer Science
Jeffrey L. Overbey, Assistant Research Professor of Computer Science

John A. Hamilton Jr., Alumni Professor of Computer Science
George Flowers, Dean of the Graduate School

Abstract

This work explores how buffer overflow vulnerabilities in C programs, specifically the

ones that originate from the use of unsafe functions, can be fixed by using a source-to-source

program transformation. I implemented a Safe Library Replacement transformation

that replaces unsafe library functions with safe alternatives. The transformation improves

the security of a system, which means that it does not preserve the original behavior of

the program. It preserves good-path behavior, and modifies the behavior only on attack

vectors. Implementing the transformation in C requires sophisticated static analyses that

are typically unavailable in existing program transformation infrastructures for C. I used

OpenRefactory/C, a framework for building correct and complex program transformations

for C; I enhanced the infrastructure to support control flow and alias analysis. I tested the

transformation on 1,778 test cases from the SAMATE reference dataset, and was able to

remove the buffer overflow vulnerability from each case. I also applied the transformation

on 181 instances of unsafe functions in three real C programs. The transformation replaced

the function in 73% of the cases, and did not break the original program in any of the cases.

A program transformation-based approach can integrate with a developer’s coding activity,

much like a refactoring, and allows a developer to fix library-related buffer overflow problems

on demand.

ii

Acknowledgments

I thank my fiancé, Britney, for being supportive and patient while I finish school, my

parents, Geoffrey and Suzan, for believing in me and constantly encouraging me to keep

working, and my brother, John Kyle, for being a great room-mate during my years as a

graduate student. I could not have done this work without my family.

I thank my adviser, Dr. Munawar Hafiz, for guiding me and pushing me to do the best

work that I could, and Dr. Jeffrey Overbey, for always being available to help me when I

was stuck.

Finally, I thank my colleagues in the Software Analysis, Transformation, and Security

lab for being excellent people to work with.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . vii

List of Abbreviations . viii

1 Introduction . 1

1.1 Security On Demand . 2

1.2 Safe Library Replacement Transformation 3

1.3 Safe Type Replacement Transformation 4

1.4 Thesis Statement And Contributions . 5

1.5 Thesis Outline . 6

2 Using Safe Alternatives To Unsafe Library Functions To Remove Buffer Overflows 7

3 OpenRefactory/C . 11

4 Algorithm For Safe Library Replacement Transformation 14

4.1 Replacing strcpy, strcat, sprintf, and vsprintf 16

4.2 Replacing memcpy . 17

4.3 Replacing gets . 18

4.4 Determining Buffer Length . 20

4.4.1 Length Of Buffer From An Assignment Expression 23

4.4.2 Length Of Buffer From An Array Access Expression 24

4.4.3 Length Of Buffer From A Binary Expression 25

4.4.4 Length Of Buffer From A Cast Expression 26

4.4.5 Length Of Buffer From An Identifier Expression 27

iv

4.4.6 Length Of Buffer From An Element Access Expression 29

4.4.7 Length Of Buffer From A Prefix Expression 30

4.4.8 Length Of Buffers From All Other Expressions 31

5 Alias Analysis . 32

5.1 Algorithm For Alias Analysis . 32

5.2 Alias Analysis Implementation For OpenRefactory/C 34

5.3 Recording Variables And Their Relationships 35

5.4 Galois Pointer Analysis Input . 39

5.5 Galois Pointer Analysis Output . 42

6 Evaluation Of Safe Library Replacement Transformation Implementation 44

6.1 SAMATE Test Suite . 44

6.2 Real C Programs . 45

6.2.1 Reasons For Not Replacing A Function 45

7 Related Work . 54

8 Conclusions and Future Work . 58

v

List of Figures

1.1 Safe type for character strings . 4

2.1 Unsafe function buffer overflow example . 9

3.1 Simple example of a partial AST . 12

4.1 Main Safe Library Replacement transformation algorithm 15

4.2 Buffer length algorithm . 21

5.1 High level alias analysis process . 33

5.2 Abstract alias analysis example . 33

5.3 Alias analysis implementation structure . 34

5.4 Alias analysis example C code and corresponding LLVM assembly code 35

6.1 No-replace example from zlib: infback.c line 338 47

6.2 No-replace example from zlib: example.c line 69 48

6.3 No-replace example from gmp: test/trace.c line 257 49

6.4 No-replace example from libpng: pngwutil.c line 252 50

6.5 No-replace example from libpng: pngset.c line 731 51

6.6 No-replace example from libpng: pngpread.c line 632 52

6.7 No-replace example from gmp: printf/asprntffuns.c line 45 53

vi

List of Tables

2.1 Some Unsafe Functions And Their Safe Alternatives 8

4.1 Simple strcpy replacement example . 16

4.2 Simple memcpy replacement example . 18

4.3 Simple gets replacement example . 19

4.4 Assignment replacement example . 23

4.5 Array inside array replacement example . 24

4.6 Binary replacement example . 25

4.7 Cast replacement example . 26

4.8 Pointer replacement example . 27

4.9 Reassigned pointer replacement example . 28

4.10 Element access replacement example . 30

4.11 Struct reference replacement example . 30

5.1 Nodes and constraints generated from the example C program 36

5.2 Galois pointer analysis node and constraint file format 40

5.3 Example Galois pointer analysis node and constraint file 41

5.4 Example pointer analysis results . 42

5.5 Example alias analysis results . 43

6.1 Safe Library Replacement transformation evaluation results for real C pro-
grams . 46

vii

List of Abbreviations

SLR Safe Library Replacement

SOPT Security-Oriented Program Transformation

STR Safe Type Replacement

AST Abstract Syntax Tree

CRED C Range Error Detector

CWE Common Weakness Enumeration

viii

Chapter 1

Introduction

Security is challenging to implement in a software system. It is even more challenging to

add or upgrade security after the system has been implemented. This typically arises when

developers or customers decide they want to add or upgrade security as a new feature, or

when developers or attackers discover a new vulnerability.

The latter is more pressing because the vulnerability needs to be removed as quickly as

possible to stop attacks. Security engineers are constantly trying to keep up with attackers.

Great strides have been made in developing a body of knowledge on potential vulnerabilities

and how to avoid them when implementing software systems. However, attackers have access

to this knowledge too, and their ability to find new vulnerabilities is only limited by their

creativity. Security engineers can employ their own creativity to create patches when new

vulnerabilities are discovered, but they frequently find themselves lagging behind attackers.

One reason attackers have an advantage is that many types of vulnerabilities are ap-

plicable to many different software applications. This allows attackers to be systematic and

use automated tools in their approach to finding vulnerabilities. Those vulnerabilities can

then be exploited in the same way. Another advantage attackers have is that they do not

need source code to find vulnerabilities. They can use their automated tools on executables

and object code as well.

Security engineers, on the other hand, commonly respond to a new vulnerability by

creating a specific patch for that vulnerability in an ad hoc manner. The patch often must

be applied manually to the source code, and may leave other vulnerabilities of the same type

untouched. Adding new security features is also often done in an ad hoc manner. Ad hoc

patching approaches are laborious and time consuming. The difficulty of adding security to a

1

software system after it has been developed has led security experts to believe that “security

cannot be added on, it must be designed from the beginning.” [2]

Redesigning entire software systems when a new vulnerability is found is impractical.

Systematic and automated means of retrofitting security in a software system would have

great value, and level the playing field between security engineers and attackers. A num-

ber of security retrofitting strategies, collectively called Security-Oriented Program

Transformations, have been proposed by Hafiz [12].

1.1 Security On Demand

The idea of Security-Oriented Program Transformations is to add security

to the source code of an existing software system systematically so that there are no vul-

nerabilities in the system for attackers to find. In other words, Security-Oriented Pro-

gram Transformations provide ‘Security On Demand’. Hafiz [12] describes thirty-seven

general purpose Security-Oriented Program Transformations. Program transfor-

mations come in many varieties and have been around for a long time. Compilers transform

high-level language code to a specific machine language code. Refactorings are source code

transformations that change the structure of a program, but do not change its behavior

[10]. Security-Oriented Program Transformations are similar to refactorings, but

they are meant to improve security. They alter the behavior of the program to correct the

program’s response to certain attacks, but all other behavior is left unchanged.

This thesis focuses on implementing and evaluating one of the Security-Oriented

Program Transformations identified by Hafiz, called Safe Library Replacement

transformation. Hafiz narrates the process by which Safe Library Replacement trans-

formation could be performed, and also provides a proof-of-concept Perl script that uses

lexical analysis to try to perform Safe Library Replacement transformation. The Perl

script could not replace the unsafe function in all cases. This implementation will give

2

better coverage of unsafe function replacements because it uses more sophisticated analysis

techniques.

1.2 Safe Library Replacement Transformation

The Safe Library Replacement transformation focuses on the removal of a certain

type of vulnerability called a buffer overflow.

Buffer overflows are one of the most common and well known security vulnerabilities,

especially for C programs. A buffer is a block of contiguous memory. It is overflowed if

memory beyond its boundaries is written to unintentionally. An attacker, through careful

trial and error, can overwrite an important piece of memory if he is given access to a buffer

that he can overflow. The attacker can, at minimum, crash the program. In the worst case

he can cause the program to execute arbitrary code of his own design.

Buffer overflows are common in C programs because C does not have automatic bounds

checking. Developers must ensure that buffer writes are in bounds. There are many ways

buffer overflows can occur in a C program. The Safe Library Replacement transfor-

mation removes buffer overflows by eliminating uses of library functions that contain buffer

overflow vulnerabilities, such as strcpy.

The Safe Library Replacement transformation replaces calls to unsafe library func-

tions with calls to safe alternatives, such as g strlcpy for strcpy. This is more difficult

than a simple textual find and replace because safe library functions almost always require

additional parameters to help them prevent buffer overflows. Table 2.1 shows a table of

unsafe functions and their safe alternatives. One challenge to implementing the Safe Li-

brary Replacement transformation is correctly determining what the values of these new

parameters should be, since the transformation must remove the buffer overflow vulnerability

while preserving all other behavior.

3

1.3 Safe Type Replacement Transformation

In some cases the Safe Library Replacement transformation cannot be done with-

out risk of changing the program’s behavior beyond removing the buffer overflow vulnerabil-

ity. In such cases, another Security-Oriented Program Transformation from Hafiz

[12] may work. It is called Safe Type Replacement transformation.

The Safe Type Replacement transformation removes buffer overflows caused by

uses of character strings by replacing character strings with a safe struct type that contains

the character string. The struct is shown in Figure 1.1. The struct type is safe because

it keeps track of the number of bytes allocated to the character string, and the number of

bytes in the character string that are in use. Every definition and use of the character string

that is being replaced must be replaced with a function specific to the safe struct type. The

replacing function has the same behavior as the replaced definition or use, but also keeps

track of the buffer’s allocation and length, and prevents overflows.

Figure 1.1: Safe type for character strings

struct stralloc {
char *s; // pointer to the first byte of the stralloc’s memory

unsigned int len; // numbers of chars in the stralloc

unsigned int a; // length (in bytes) of the stralloc’s memory

}

The Safe Type Replacement transformation does not directly target overflows due

to unsafe library functions, but it will fix them incidentally if it replaces a character string

that is used as the buffer being written to in an unsafe library function. An implementation

and evaluation of the Safe Library Replacement transformation is not included in this

work, but it is planned for future work.

4

1.4 Thesis Statement And Contributions

Simple program transformations that replace vulnerable library functions can be safely

implemented for C, and they can be effective to secure programs from buffer overflow vul-

nerabilities from those vulnerable functions. This thesis makes the following contributions:

• I implemented a Safe Library Replacement transformation for C programs using

sophisticated static analysis. The transformation supports six unsafe library functions:

strcpy, strcat, sprintf, vsprintf, memcpy, and gets.

• I implemented an alias analysis for C programs. Alias analysis is a highly non-trivial

static analysis that was necessary to correctly implement Safe Library Replace-

ment transformation.

• I evaluated the effectiveness of my Safe Library Replacement transformation im-

plementation on two test corpuses: the Juliet Test Suite for C/C++ from the SAMATE

Reference Dataset [32] and three real C programs, zlib, libpng, and gmp.

– The Juliet Test Suite contains 61,387 test cases on a wide variety of bugs and

weaknesses categorized as Common Weakness Enumerations (CWEs). I selected

1,778 cases that are relevant to the Safe Library Replacement transforma-

tion, and ran the transformation on all of them to determine the frequency with

which it could correctly replace unsafe function calls.

– I used the testing procedure described in [11] to test the Safe Library Re-

placement transformation on zlib, libpng, and gmp. The transformation was

automatically run on every use of the unsafe library functions I targeted in the

three C programs to determine the frequency with which the it could correctly

replace them. Each test case was done independently starting with the original

code.

5

The evaluation showed that my Safe Library Replacement transformation imple-

mentation could replace the unsafe function and remove the buffer overflow vulnerability

while preserving all other behavior in all 1,778 test cases from the Juliet Test Suite. Of

the 181 unsafe functions replaced in the C programs, 73% the transformation replaced cor-

rectly (the programs’ internal test cases still passed), 27% the transformation decided not to

replace, and in no cases did the transformation break the program by doing a replacement.

1.5 Thesis Outline

This work is organized as follows:

• Chapter 2 discusses the idea of replacing unsafe library functions with safe alternatives

to remove buffer overflows.

• Chapter 3 discusses OpenRefactory/C, which is a framework for building source-level

program analyses and transformations for C. I used it to implement Safe Library

Replacement transformation.

• Chapter 4 discusses the algorithm I used in my implementation of the Safe Library

Replacement transformation.

• Chapter 5 discusses my implementation of alias analysis for OpenRefactory/C.

• Chapter 6 discusses the evaluation of my Safe Library Replacement transforma-

tion implementation.

• Chapter 7 discusses work related to this one.

• Chapter 8 concludes.

6

Chapter 2

Using Safe Alternatives To Unsafe Library Functions To Remove Buffer

Overflows

One of the root causes of buffer overflow vulnerabilities in C is the use of unsafe library

functions. The vulnerability of some unsafe function has been recognized and safe alterna-

tives have been written, but the use of unsafe functions is abundant in old C code and they

continue to be used today. Table 2.1 shows a number of unsafe functions and some of their

safe alternatives.

The strcpy, strcat, sprintf, memcpy, gets, and getenv functions are all vulnerable

because they write to a buffer with no guarantee that the write will be within the buffer’s

bounds. Some of the safe alternatives attempt to resolve this by taking an additional pa-

rameter that limits how many bytes are filled in the destination buffer, such as g strlcpy.

Others take a dereference of the buffer pointer so that the buffer can be reallocated if more

memory is needed, such as astrcpy.

The mktemp and tmpnam functions are included to show that library functions can be

unsafe for reasons other than buffer overflow vulnerability. These functions create names for

temporary files that do not conflict with existing files. Attackers can predict the names that

may be created and perform a denial-of-service attack by creating the files before mktemp or

tmpnam can. This is called a time-of-check to time-of-use race condition vulnerability.

The sprintf function also has an additional format string vulnerability. A format

string vulnerability is present when the format string of a formatting function, like sprintf,

comes from unchecked user input. A malicious user can use a combination of the %x and

%n format tokens to execute arbitrary code at some arbitrary address. While the idea of

7

Table 2.1: Some Unsafe Functions And Their Safe Alternatives

Unsafe functions Safe alternatives

g strlcpy from glib library [29],

astrcpy, astrn0cpy from libmib library [8],

strcpy(3) - Copy string strcpy s from ISO/IEC 24731 [18] and SafeCRT library [25],

char *strcpy (char *dst, StringCchCopy, StringCchCopyN from StrSafe [28] library,

const char *src); safestr copy and safestr ncopy from Safestr library [27]

gsize g strlcpy (gchar *dst, const gchar *src

gsize dst size);

char *astrcpy (char **dst address, const char *src);

g strlcat from glib library [29],

astrcat, astrn0cat from libmib library [8],

strcat(3), strncat(3) - Concatenate string strcat s from ISO/IEC 24731 [18] and SafeCRT library [25],

char *strcat (char *dst, StringCchCat, StringCchCatN from StrSafe [28] library,

const char *src); safestr concatenate from Safestr library [29]

gsize g strlcat (gchar *dst, const gchar *src,

gsize dst size);

char *astrcat (char **dst address, const char *src);

g snprintf from glib library [29],

sprintf(3), snprintf(3) - Concatenate string asprintf from libmib library [8],

char *sprintf (char *str, sprintf s from ISO/IEC 24731 [18] and SafeCRT library [25],

const char *format, ...); gint g snprintf (gchar *string, gulong n,

gchar const *format, ...);

int asprintf (char **ppasz, const char *format, ...);

memcpy(3) - Copy memory area memcpy s from ISO/IEC 24731 [18]

void *memcpy (void *dst, errno t memcpy s (void *dst, size t dst size,

const void *src, size t num); const void *src, size t num);

gets s from ISO/IEC 24731 [18], fgets from C99 [19],

gets(3) - Get input from stdin afgets from libmib library [8], gets s from SafeCRT library [25]

char *gets (char *dst); char *gets s (char *destination, size t dest size);

char *fgets (char *dst, int dst size, FILE *stream);

getenv(3) - Get value of an environment variable getenv s function [39]

char *getenv (const char *name); errno t getenv s (size t *return value,

char *dst, size t dst size, const char *name);

mktemp(3), tmpnam(3) - Create a temporary file mkstemp(3) and mkdtemp(3) from standard library

char *mktemp(char *template); int mkstemp(char *template);

char *tmpnam(char *s); char *mkdtemp(char *template);

8

replacing unsafe library functions with safe alternatives can be applied to functions with any

vulnerability, I focus on the functions with buffer overflow vulnerabilities in this work.

Before safe alternatives were available it was up to developers to prevent buffer overflows

by using vulnerable functions carefully. This was done by ensuring that the buffer that might

be overflowed would always have enough room before calling the unsafe function. Relying

on developers inevitably results in occasional human error. Developers may forget to ensure

enough space in the buffer, or they may not check its capacity correctly. A simple example

of buffer overflow from the use of strcpy is shown in Figure 2.1.

Figure 2.1: Unsafe function buffer overflow example

1 void foo() {

2 char destination[50];

3 destination[0] = ‘\0’;

4

5 char source[100];

6 memset(source, ‘C’, 100-1);

7 source[100-1] = ‘\0’;

8

9 strcpy(destination, source);

10 }

In the example, a destination buffer of fifty bytes is allocated and null terminated to

make it an empty C-string on lines two and three. Next a source buffer of one-hundred

bytes is created, filled with ninety-nine ‘C’ characters, and null terminated to make it a one-

hundred byte C-string in lines five to seven. Finally, strcpy is given the destination and

source buffers in line nine. strcpy will continue to copy bytes from source to destination

until it finds the null terminator in source. source’s null terminator is at index one-hundred,

so strcpy will copy one-hundred bytes, overflowing destination.

Developers continue to use unsafe library functions, despite the existence of safe alter-

natives. They may not be aware of the safe alternatives, may forget to use them, or choose

not to use them. There also exists a great amount of C code written before safe alternatives

9

were available. Manually updating old code to use safe alternatives is tedious, time consum-

ing, and again prone to human error. A refactoring tool that automatically replaces unsafe

library functions with correct uses of safe alternatives would be of great value. It could be

used to retrofit old C code, and as a part of the development process.

Finding unsafe functions to replace in a C program can be done with a simple textual

search. Replacing them can be difficult. The easiest step of every replacement is changing

the function name. I do this with a simple textual search of the function call being replaced

for the old name, and then a substring replacement of the old name with the new name.

Most of the replacements also require the addition of one or more new parameters, as can

be seen in Table 2.1. Determining, correctly, what these parameters should be is the major

challenge to replacing unsafe library functions.

A critical requirement of the Safe Library Replacement transformation is that it

remove the buffer overflow vulnerability without changing anything else about the program.

If it alters program behavior in unexpected ways, it is of no use to developers. They will

not use it. Therefore, the replacement must be conservative. If the correct values of the new

parameters cannot be determined with absolute certainty, the replacement cannot be done.

Uncertainty about the correct value of the new parameters can happen for many reasons. The

most common case is that Safe Library Replacement transformation cannot accurately

determine the length of the buffer that might be overflown.

10

Chapter 3

OpenRefactory/C

OpenRefactory/C is a plug-in for OpenRefactory, which is a framework for building

source-level program analyses and transformations. It is written in Java. It is called Open-

Refactory because it is designed to be extensible in the refactorings it can support and the

languages it can refactor. OpenRefactory/C adds support for analysis and refactoring of C

code. OpenRefactory/C is being actively developed by the Software Analysis, Transforma-

tion, & Security lab led Dr. Munawar Hafiz at Auburn University.

Modern languages like Java and C# have many IDEs that support maintenance and

code evaluation with automated refactorings. C, despite its popularity, lacks IDEs with so-

phisticated static analyses and refactorings and static analyses. Without good static analysis

support, it is impossible to create non-trivial program transformations like Safe Library

Replacement and Safe Type Replacement. The goal of OpenRefactory/C is to fill

this need.

The internal program representation of OpenRefactory/C is a rewritable abstract syntax

tree (AST). Figure 3.1 shows a simplified example of a function definition’s AST. All code

analysis in OpenRefactory/C is performed by traversing the AST, and all refactoring is done

by rewriting the AST.

Every syntactic construct in the C language has a corresponding AST node type that

represents it in an AST. For example, the Function Definition node in Figure 3.1 represents

the function definition in the code, and it contains a list of Parameter nodes and a Compound

node which represent its parameters and body.

There is a complex type hierarchy of AST nodes in which there are some abstract node

types that generalize certain families of node types. Two particularly important abstract

11

Figure 3.1: Simple example of a partial AST

void sum(int a, int b)
int c;
c = a + b;
return c;

Function Definition

int a

Parameter

int b

Parameterint c;
c = a + b;
return c;

Compound

int c;

Declaration

c = a + b;

Assignment

return c;

Return

c
Identifier

a + b

Binary

a
Identifier

b

Identifier

types are the Expression node and Statement node. The Expression node abstracts basic C

expressions like identifiers, binary expressions, and array access expressions. The Statement

node abstracts more complex C structures like while loops and if/else statements.

The Safe Library Replacement transformation was implemented in OpenRefac-

tory/C to take advantage of its powerful AST representation and several important static

analyses. Two of these analyses are type and name binding. The type analysis returns the

type of any Expression or Declaration node in the AST. The name binding analysis links all

Identifier nodes for a certain variable to their Declaration node. The name binding can be

used to find the Declaration node of any Identifier node, or all the Identifier nodes that refer

to the same variable of a particular Identifier.

Other important static analyses used in Safe Library Replacement transformation

are reaching definition and alias analyses. The reaching definition analysis returns a list of

12

all the nodes inside a Function Definition that contain definitions. This, in turn, uses a

control flow analysis to determine the order of execution of the nodes. The alias analysis will

see use in many other OpenReafctory/C analyses and transformations, but it was originally

implemented for this project. Implementing it was complex and critical enough to the Safe

Library Replacement transformation that it warrants a description in its own chapter.

The ways these analyses are used by the Safe Library Replacement transformation are

discussed in detail in Chapter 4.

13

Chapter 4

Algorithm For Safe Library Replacement Transformation

The objective of the Safe Library Replacement transformation is to replace an

unsafe function call with a safe alternative. My Safe Library Replacement transfor-

mation algorithm focuses on replacing functions that have buffer overflow vulnerability. The

input to the transformation is a source code file and a selected function call to replace in

that code. The output is a transformed source code file, or the original source code file if

the transformation could not be done. The functions that the implementation can currently

replace are strcpy, strcat, sprintf, vsprintf, memcpy, and gets. Figure 4.1 describes

the algorithm.

The algorithm first checks if the function call is one of the functions it supports. It

takes different steps for each supported function. If the algorithm does not support the

selected function, it stops. If the function call is supported, then the algorithm takes steps

to replace it with a safe alternative. The algorithm may stop during any one of these steps

if it determines that it cannot do the replacement without risk of changing more of the

program’s behavior beyond removing the buffer overflow vulnerability.

There are only minor differences between the steps to replace each supported function.

Determining the length of the buffer being written to is the first step to replacing every

supported function. The steps for strcpy, strcat, sprintf, and vsprintf are the same,

so they are combined. The cases for memcpy and gets have some additional steps in which

additional lines of code may be added.

The steps to replace strcpy, strcat, sprintf, and vsprintf (lines five to eight) are

described in Section 4.1. The steps to replace memcpy (lines element to sixteen) are described

in Section 4.2. The steps to replace gets (lines nineteen to twenty-three) are described in

14

Figure 4.1: Main Safe Library Replacement transformation algorithm

1 SafeLibraryReplacementTransformation(functionCall):

2 - make replacementCall copy of original functionCall

3

4 if (functionCall is strcpy, strcat, sprintf, or vsprintf)

5 - determine length of buffer being written to

6 - add new length parameter to replacementCall

7 - change name of replacementCall

8 - replace functionCall with replacementCall

9

10 else if (functionCall is memcpy)

11 - determine length of buffer being written to

12 if (functionCall’s length parameter is assignable)

13 - add new assignment line above functionCall

14 else

15 - replace length parameter in replacementCall

16 - replace functionCall with replacementCall

17

18 else if (functionCall is gets)

19 - determine length of buffer being written to

20 - add new stream and length parameters to replacementCall

21 - change name of replacementCall

22 - add newLine removal code after functionCall

23 - replace functionCall with replacementCall

24

25 else

26 - stop

15

Section 4.3. The algorithm for determining the length of the buffer being written to (used

on lines five, element, and nineteen) is the most complex step by far, and is a common step

in every replacement; it is described in Section 4.4.

4.1 Replacing strcpy, strcat, sprintf, and vsprintf

The safe alternatives I used for these functions are the glib functions g strlcpy, g strlcat,

g snprintf, and g vsnprintf. Each safe alternative differs from its original only by its func-

tion name and the addition of a new length parameter that limits the number of bytes copied.

As a result, the process to replace these functions is almost identical: determine the length

of the buffer being written to, add that length as a new parameter, and change the name of

the function. Table 4.1 shows a simple example of replacing strcpy.

Table 4.1: Simple strcpy replacement example

Before After
char destination[50]; char destination[50];

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
strcpy(destination, source); g strlcpy(destination, source,

sizeof(destination));

The first step, line five in Figure 4.1, is to calculate the length of the buffer being written

to. This step is described in Section 4.4. In the example, the length of destination can be

calculated by the sizeof function, sizeof(destination), because it is an array.

The next two steps, lines six and seven in Figure 4.1, are to add the length as a new

parameter to the function call, and change the function call’s name. This can be seen in the

last line of the example’s After column.

I chose to replace with the glib functions because they best match the behavior of the

original functions. Some of the other safe alternatives, shown in Table 2.1, have different be-

havior than their unsafe originals, other than simply avoiding buffer overflows. The astrcpy

16

function, for example, may alter the buffer being written to to avoid overflow. This could

have unexpected consequences elsewhere in the program. The g strlcpy function, on the

other hand, has the exact same behavior as strcpy, except that it truncates the copying of

any bytes beyond the limit it is given. This does not change the length or location of the

buffer. If a copy is truncated, the program may behave in a way that is not useful, but it

will not crash. Attackers will not be vindicated by crashing the program, and other users

will be discouraged from bad input by getting useless results.

4.2 Replacing memcpy

Unlike the other supported functions, memcpy already takes a length parameter that

specifies exactly how many bytes to copy. Its destination buffer can still be overflowed if

the length parameter is larger than the length of the destination, however. This can happen

because of developer error. ISO/IEC 24731 describes a safe alternative to memcpy that takes

an additional length parameter, which limits how many bytes can be copied. Another way

to ‘replace’ memcpy, without the use of a new library, is to add a comparison between the

length of the buffer being written to and the given length parameter, so that the smaller of

the two is always used as the length to copy. This can be done with a ternary expression of

the form

bufferLength > givenLength ? givenLength : bufferLength. Table 4.2 shows a sim-

ple example of replacing memcpy.

The first step (line eleven in Figure 4.1) is to calculate the length of the buffer being

written to. This step is described in Section 4.4. In the example, the length of destination

can be calculated by the sizeof function, sizeof(destination).

The next step (line twelve in Figure 4.1) is to determine if the length parameter can be

assigned to. This is done because sometimes the length parameter to a memcpy call is later

used to null terminate the buffer that was written to. This can be seen in the last line of the

example. If the Safe Library Replacement transformation causes a different length to

17

Table 4.2: Simple memcpy replacement example

Before After
char destination[50]; char destination[50];

char source[100]; char source[100];

unsigned int len = 75; unsigned int len = 75;

memcpy(destination, source, len); len = sizeof(destination) > len ?

destination[len+1] = ‘\0’; len : sizeof(destination);

memcpy(destination, source, len);

destination[len+1] = ‘\0’;

be used in the memcpy call, then the null terminator might be in the wrong place. To fix this

the algorithm adds an assignment to the length parameter before the memcpy call, if it can,

so the actual length used in the memcpy call will be read in later lines. Otherwise, it directly

replaces the length parameter.

If the length parameter can be assigned to, the next step (line thirteen in Figure 4.1)

is to add an assignment to the length parameter before the memcpy call. The value assigned

is the result of the ternary expression described before. The example shows this before the

memcpy call in the After column. As a result of the addition of this line, the null terminator

will be assigned at the right location in the last line of the After column. The memcpy call

is left unchanged.

If the length parameter cannot be assigned to, the next step (line fifteen in Figure 4.1)

is to directly change the length parameter to the ternary expression.

4.3 Replacing gets

I use fgets, another function from the standard libraries, to replace gets. These two

functions differ more than the other supported functions do from their safe alternatives. The

fgets function takes two additional parameters. One is a length to limit how many bytes

are placed in the buffer being written to, and the other is a FILE pointer to read from. The

gets function always reads from stdin, so fgets can match that by placing stdin as its

18

FILE pointer argument. As in the replacements described above, the length argument must

be the length of the buffer being written to. Table 4.3 shows a simple example of replacing

gets.

Table 4.3: Simple gets replacement example

Before After
char destination[50]; char destination[50];

gets(destination); gets(destination, sizeof(destination),

stdin);

char *check = strchr(destination, ‘\n’);
if (check) {
*check = ‘\0’;
}

The first step (line nineteen in Figure 4.1) is to calculate the length of the buffer being

written to. This step is described in Section 4.4. In the example, the length of destination

can be calculated by the sizeof operator, sizeof(destination).

The next two steps (lines twenty and twenty-one in Figure 4.1) are to add the new FILE

and length parameters and change the name of the function call. This can be seen in the

second line of the After column of the example.

The next step (line twenty-two in Figure 4.1) is to add a few new lines after the gets

call. These are added because the behavior of fgets is not exactly the same as gets. The

fgets function includes a terminating newline character, if there is one. The gets function

never includes a terminating newline character. This problem can be resolved by adding a

few lines to remove the terminating newline, if it is there. These can be seen in the After

column of the example after the fgets call. The check pointer’s name is selected by a utility

that returns a name that doesn’t conflict with any existing variables.

19

4.4 Determining Buffer Length

Calculating the length of the buffer being written to depends on how the buffer is given to

the unsafe function call. Many different C expressions can be given as the buffer parameter.

For example, the buffer can be a simple identifier like ptr, a pointer arithmetic expression

like ptr + 10, or a function call that returns a pointer like getBuffer(). Figure 4.2 shows

an outline of the buffer length algorithm.

Different steps are taken for each type of expression the buffer may be given as. The

exact steps to calculate the buffer length for the expressions assignment, array access, binary,

cast, identifier, element access, and prefix are described in the Subsections following this

Section.

In every case, one of two functions is used in some way to determine the size of buffers:

sizeof or malloc usable size. The C sizeof operator returns the size, in bytes, of any

variable on the stack. The malloc usable size function return the length, in bytes, of a

block of allocated heap memory.

The stack is an ordered block of memory for the program. When a function is called,

memory for the parameters and local variables of that function is allocated on the stack.

It is then deallocated when the function is complete. A C compiler determines how much

memory to allocate and deallocate for each function. Therefore, the size of stack variables

must be known before the program is compiled, and their size cannot be changed. The

sizeof operator can be used to determine the size of any array or struct at any time during

program execution. It cannot be used on pointers that point to a buffer, however, because

it will return the size of the pointer variable itself, which depends on the size of addresses

on the machine the C program is compiled on.

Determining the length of a buffer pointed to by a pointer requires some knowledge of

what the pointer points to. If it points to an array or a struct, then the sizeof operator

can be used. If it points to heap memory, then the malloc usable size function might

be used. The heap is an unordered block of memory for the program. It is used when

20

Figure 4.2: Buffer length algorithm

1 BufferLength(buffer):

2

3 if (buffer is assignment expression)

4 - return buffer length of the right side of

5 the assignment expression

6

7 else if (buffer is array access expression)

8 if (type of the array is array)

9 - return a sizeof expression

10 - stop

11

12 else if (buffer is binary expression)

13 if (binary op is + or -)

14 - new op is + for -, or - for +

15 - get buffer length of the left side of the

16 binary expression

17 - return left-side-length newOp right-side

18 - stop

19

20 else if (buffer is cast expression)

21 - return buffer length of the expression

22 being cast

23

24 else if (buffer is identifier expression)

25 if (type of the identifier is array)

26 - return a sizeof expression

27 if (type of the identifier is pointer)

28 if (identifier is aliased)

29 - stop

30 else

31 - get most-recent-definition of buffer

32 if (most-recent-def is heap allocation assignment)

33 - return malloc_usable_size expression

34 else if (most-recent-def is assignment)

35 - return buffer length of the right

36 side of the assignment

37 - stop

21

40 else if (buffer is element access expression)

41 if (type of element is array)

42 - return a sizeof expression

43 if (type of element is pointer)

44 if (element’s struct is aliased)

45 - stop

46 else

47 - get most-recent-definition of buffer

48 if (element’s struct is defined after most-recent-def)

49 - stop

50 if (most-recent-def is heap allocation assignment)

51 - return a malloc_usable_size expression

52 else if (most-recent-def is assignment)

53 - return buffer length of the right

54 side of the assignment

55 - stop

56

57 else if (buffer is prefix expression)

58 if (prefix op is &)

59 if (inner expression type is struct)

60 - return a sizeof expression

61

62 else

63 - stop

22

a program needs a block of memory whose size cannot be known at runtime. Allocation

functions are called when a block of heap memory is needed. The allocation function is

given the number of bytes needed, and returns a pointer to the first byte of an unallocated

block of memory somewhere in the heap that is at least as large as the requested number of

bytes. The malloc usable size function can be used to get the length, in bytes, of a block

of allocated heap memory. However, it must be given a pointer to the first byte of the heap

buffer to work correctly. Its behavior is undefined if given a pointer to any other location,

even locations within the buffer.

4.4.1 Length Of Buffer From An Assignment Expression

The step to determine the length of a buffer from an assignment expression is line four in

Figure 4.2. The return value of an assignment expression in C is the value of what is assigned.

Therefore, if the buffer being written to is given to the unsafe function as an assignment

expression, its size can be determined by recursively determining the size of whatever is on

the right side of the assignment expression. A simple example is shown in Table 4.4.

Table 4.4: Assignment replacement example

Will overflow Will not overflow
char buff[50]; char buff[50];

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
char *dest; char *dest;

strcpy(dest = buff, source); g strlcpy(dest = buff, source,

sizeof(buff));

In the example, the buffer is given to strcpy in the Before column as an assignment

of an array to a pointer. The length of the buffer can be determined by calculating the

length of the right side of the assignment, which is buff. buff is an identifier, so its

length is determined by the process described in Section 4.4.5 on identifiers. The size of an

23

array can be determined by the sizeof function. The After column in the example shows

sizeof(buff) added as the length parameter to g strlcpy.

4.4.2 Length Of Buffer From An Array Access Expression

The steps to determine the length of a buffer from an array access expression are lines

eight to ten in Figure 4.2. If the buffer is given as an array access expression, the buffer is

inside an array. Determining the size of a buffer inside an array depends on the type of the

array. If the buffer is an array within an array, then the size can be determined by using

sizeof on the array access expression at the same index. Table 4.5 shows a simple example.

Table 4.5: Array inside array replacement example

Will overflow Will not overflow
char dest[3][50]; char dest[3][50];

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
strcpy(dest[1], source); g strlcpy(dest[1], source,

sizeof(dest[1]));

In the example, the buffer given to strcpy in the Before column is an array inside

an array at index one. The length of that inner array can be calculated with the sizeof

function at the same index. This can be seen added as the length parameter to g strlcpy

in the After column of the example.

Another possibility is that the buffer is a pointer within an array. In that case, it could

be possible to use malloc usable size in the same way sizeof is used on array types, but

only if the pointer at that index points to the first byte of a heap buffer. To decide if the

pointer points to such a location, that pointer would need to be analysed in the same way

identifiers are analysed in Section 4.4.5 below. The problem is that the exact index of every

array access on the array containing the pointer would need to be known. Knowing the

index of every array access on the pointer array would require difficult integer analysis that

24

OpenRefactory/C does not have. Therefore, if the algorithm finds that the buffer is an array

access on a pointer array, it stops.

It is also possible to give an integer inside an array as a pointer as well. The value of

the integer becomes the value of the address the pointer points to. The algorithm stops if

it finds an array access on a integer array. It cannot be known from static analysis what a

pointer points to if it is cast from an integer.

4.4.3 Length Of Buffer From A Binary Expression

The steps to determine the length of a buffer from a binary expression are lines thirteen

to eighteen in Figure 4.2. Binary expressions are formed from C’s binary operators, like + or

>. Buffers usually appear in the form of a binary expression when some offset is being added

to the pointer. In every case a buffer appeared as a binary expression in the code I evaluated

Safe Library Replacement transformation on (see Chapter 6), the actual buffer was on

the left of the expression, and some offset was added or subtracted on the right. As a result,

I make an assumption that the left side of the binary expression is the buffer and the right

side an offset. The length of the buffer is then determined by recursively determining the

length of the left side of the binary expression, and adding or subtracting the offset to that

result. The algorithm stops if it gets a binary expression with an operator other than + or

-. Table 4.6 shows an example that exemplifies the use of recursion.

Table 4.6: Binary replacement example

Will overflow Will not overflow
char dest[50]; char dest[50];

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
strcpy((dest + offset) - 5, source); g strlcpy(dest + 5, source,

(sizeof(dest) - offset) + 5);

25

In the example, the buffer is given to strcpy in the Before column as an array, plus some

offset, minus a constant. The outer binary expression has an inner binary expression on the

left and a constant on the right. The algorithm first recursively determines the buffer length

of the inner binary expression on the left. The inner binary expression has an identifier on the

left and another identifier on the right. It again recursively determines the length of the left

side. This is done by the identifier procedure in Section 4.4.5, and results in sizeof(dest).

The operator for the inner binary is swapped and then the right side subtracted from the

length. The algorithm goes back up to the outer binary expression where the same thing is

done. The operator is swapped and the right side is added to the length that came up from

the left side recursive call. The final result can be seen added as the length parameter to

g strlcpy in the example’s After column.

4.4.4 Length Of Buffer From A Cast Expression

The step to determine the length of a buffer from a cast expression is line twenty-one in

Figure 4.2. Similar to assignment expressions from Section 4.4.1, determining the size of a

cast expression can be done by recursively determining the size of the expression being cast.

Table 4.7 shows a simple example.

Table 4.7: Cast replacement example

Will overflow Will not overflow
char dest[50]; char dest[50];

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
strcpy((char *)dest, source); g strlcpy((char *)dest, source,

sizeof(dest));

In the example, the buffer is given to strcpy as a cast of an array to a char pointer. To

determine the length of the buffer, the cast is peeled off to reveal an identifier. The length

of the identifier is determined by the procedure described in Section 4.4.5 on identifiers. The

26

identifier is an array, so its length can be calculated by the sizeof expression. The addition

of the length parameter can be seen in g strlcpy in the After column.

4.4.5 Length Of Buffer From An Identifier Expression

The steps to determine the length of a buffer from an identifier expression are lines

twenty-five to thirty-seven in Figure 4.2. An identifier expression is simply a variable name.

Calculating the size of a buffer from an identifier depends of the type of the variable. If it is an

array then sizeof can be used on the identifier. If it is a pointer, then malloc usable size

may be used on it, but only if the pointer points to the first block of a heap buffer. It is

difficult to determine what a pointer points to through static analysis alone, and in many

cases it is impossible to be sure about anything. However, the capability to determine the

size of at least some pointers is critical to the usefulness of Safe Library Replacement

transformation. Pointers are frequently used with the unsafe functions I implemented, and a

pointer often is the base case of the recursion of many of the other expression types. Table 4.8

shows a simple example.

Table 4.8: Pointer replacement example

Will overflow Will not overflow
char *dest = (char*)malloc(10); char *dest = (char*)malloc(10);

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
strcpy(dest, source); g strlcpy(dest, source,

malloc usable size(dest));

The algorithm takes a conservative approach by trying to decide if a pointer must always

point to the start of a heap buffer, or if it may not point to the start of a heap buffer. It

does this by first performing OpenRefactory/C’s alias analysis on the pointer. If the pointer

is aliased, the algorithm stops, because the pointer may be changed be through its aliases.

27

It may be possible to investigate all the aliases as well. In the example, the buffer being

written to, dest, is not aliased.

If the pointer is not aliased, the algorithm continues by investigating the most recent

definition of the pointer before its use in the unsafe function call. The most recent definition

is found by OpenRefactory/C’s reaching definition analysis. The simplest case is if the defi-

nition is an assignment to the result of a heap allocation function. In this case, the algorithm

knows malloc usable size can be used safely. In the example, the most recent definition of

dest is a declaration initialization to a call to malloc. malloc is a heap allocation function,

so malloc usable size can be used. The addition of malloc usable size as the length

parameter to g strlcpy can be seen in the After column of the example.

If the most recent definition is an assignment to any other expression, the algorithm

recursively determines the size of the assigned expression. Table 4.9 shows a simple example.

Table 4.9: Reassigned pointer replacement example

Will overflow Will not overflow
char buff[50]; char buff[50];

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
char *dest = (char*)buff; char *dest = (char*)buff;

strcpy(dest, source); g strlcpy(dest, source,

sizeof(buff));

In the example, the most recent definition of dest is an assignment to a cast expression.

The cast expression’s length is recursively determined, as is described in Section 4.4.4 on

casts. Inside the cast expression is another identifier, buff. Its length is recursively deter-

mined as described in Section 4.4.5. buff is an array, so its length can be calculated with

the sizeof expression. The addition of this length can be seen in g strlcpy in the After

column.

28

OpenReafactory/C’s reaching definition analysis only finds definitions within the scope

of a function. It is possible that there not be a definition of the pointer in the local function

before it is used in the unsafe function call. This can happen if the pointer comes in as a

parameter, or if it is declared and never defined. If there is not a definition of the pointer

before the unsafe function call, then the algorithm stops. If the pointer comes in as a

parameter, it may be possible to look at all the function calls of that function in the C

program to investigate what the pointer points to at those points. If all those pointers are

similar enough to have the same length calculation done on them, then the unsafe function

could be replaced.

4.4.6 Length Of Buffer From An Element Access Expression

The steps to determine the length of a buffer from an element access expression are lines

forty-one to fifty-five in Figure 4.2. Element access expressions are accesses of an element

in a struct. Their size is determined in the exact same way as identifiers from Section 4.4.5,

except with two differences. One is that the alias analysis is done on the struct, not the

element. The reason for this is that the alias analysis treats a struct and its elements like

one object. If one of its elements is aliased, then the whole struct is considered aliased.

The other difference is that the algorithm checks to see if the entire struct is redefined

between the most recent definition of the element and the unsafe function call. If the entire

struct is redefined, then the element is redefined as well. The algorithm will not replace if

this is found. Table 4.10 shows a simple example of a successful replacement.

In the example, destStruct.p is a pointer. destStruct is not aliased or redefined.

destStruct.p’s most recent definition is an assignment to a malloc call. As a result,

malloc usable size can be used on destStruct.p. The addition of this length can be seen

in g strlcpy in the After column on the example.

29

Table 4.10: Element access replacement example

Will overflow Will not overflow
structType destStruct; structType destStruct;

destStruct.p = (char*)malloc(10); destStruct.p = (char*)malloc(10);

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
strcpy(destStruct.p, source); g strlcpy(destStruct.p, source,

malloc usable size(destStruct.p));

4.4.7 Length Of Buffer From A Prefix Expression

The steps to determine the length of a buffer from a prefix expression are lines fifty-eight

to sixty in Figure 4.2. A prefix expression is formed by one of C’s prefix operators. Most

prefix expressions do not make sense as a buffer. There is one special case that was seen in

the Safe Library Replacement transformation evaluation (see Chapter 6), however. If

the prefix is the reference operator & and the variable referenced is a struct, then the size

of the buffer can be calculated by calling sizeof on the struct. Table 4.11 shows a simple

example.

Table 4.11: Struct reference replacement example

Will overflow Will not overflow
structType destStruct; structType destStruct;

char source[100]; char source[100];

memset(source, ‘C’, 100-1); memset(source, ‘C’, 100-1);

source[100-1] = ‘\0’; source[100-1] = ‘\0’;
strcpy(&(destStruct), source); g strlcpy(&(destStruct), source,

sizeof(destStruct));

In the example, destStruct is a struct. A pointer to that struct is given to strcpy

as the ‘buffer’. The length of that ‘buffer’ is simply the size of the struct. This can be

calculated by using sizeof on the struct. The addition of this length to g strlcpy can be

seen in the After column of the example.

30

4.4.8 Length Of Buffers From All Other Expressions

The step for handling a buffer from any other expression is line sixty-three in Figure 4.2.

Other expressions that might be given to the unsafe function as the buffer being written to

are function calls, ternary expressions, postfix expressions, and constants. In the case of

function calls, it may be possible to investigate what the function returns. In the case of

ternary expressions, the result of its boolean expression must be known to know which branch

of the ternary to investigate. The result of boolean expressions is difficult to determine

through static analysis. In the case of postfix expressions, only the ++ and -- operators

make sense for a buffer. These could be handled similar to how binary expressions are

handled in Section 4.4.3. I did not see postfix expressions as buffers in the Safe Library

Replacement transformation evaluation (see Chapter 6), however. In the case of constants,

the constant will automatically be cast to a pointer. When an integer is cast to a pointer, it

is impossible to know what it points to. If Safe Library Replacement transformation

finds any of these expressions as the destination buffer, it stops.

31

Chapter 5

Alias Analysis

An alias analysis produces a set of variables and dereferences that may alias some

variable. For example, if a pointer p points to an integer i, then the dereference of p, *p, is

an alias of i. A variable or dereference aliases some other variable if a change to the value of

that variable or dereference may also change the value of the variable it aliases. The Safe

Library Replacement transformation needs an alias analysis to determine if a pointer

it is analyzing is aliased (see Section 4.4.5). If a pointer is aliased, then it may be altered

through its aliases. To accurately analyze what the pointer may point to, any aliases it may

have must also be analyzed. Safe Library Replacement transformation stops when it

finds a pointer that is aliased, instead of trying to check all the aliases. The transformation

cannot be completed if there is any risk of the pointer changing in unexpected ways.

5.1 Algorithm For Alias Analysis

Figure 5.1 illustrates the three major steps in the alias analysis. The alias analysis is

actually backed by a pointer analysis. A pointer analysis produces a graph of which variables

in a C program may point to other variables in the C program. Alias sets can be derived

from the pointer analysis results by propagating aliases down the edges of the graph. The

alias analysis runs the pointer analysis and then generates alias sets from the results.

The pointer analysis algorithm has two major phases. The first phase is to record

information about what variables are in a C program, and the relationships between them.

Figure 5.2 shows an example of the variables and relationships produced from two lines of

code. The algorithm makes a single pass through the code to be analysed, and records

variables and relationships for each line of code. The recorded variables and relationships

32

Figure 5.1: High level alias analysis process

Pointer Analysis

Variable and
Relationship
Generation

Graph
Rewrite

Derive
Alias Sets

create a graph with the variables as nodes and the relationships as edges between them.

In the example, the first line of code, p1 = &i;, adds the variables p1 and i and a points

relationship between them. The second line of code, p2 = p1;, adds the variable p2 and a

copy relationship between it and p1.

Figure 5.2: Abstract alias analysis example

p1 = &i;

p2 = p1;

Code
p1

p2

i
points

copy points

Variables and Relationships

The second phase of the pointer analysis is to rewrite the graph to determine more

accurate points-to information. One of the rewrite rules is that any node with a copy edge

from another node should should have a points edge to all the nodes that the node it is

copying has points edges to. The example shows the addition of such a points edge with a

dotted arrow. After the entire graph is rewritten, the points-to graph can be read from the

relationship graph by looking at the points edges.

The final step of the alias analysis algorithm is to derive alias sets from the points-to

graph. To propagate aliases down the edges of the points-to graph efficiently, a topological

33

sort is done on the graph. Then, in topological order, a dereference of each variable, and

dereferences of any aliases that may have been pushed down earlier, is pushed down as an

alias of all the variables it points to.

5.2 Alias Analysis Implementation For OpenRefactory/C

Figure 5.3 shows the parts of OpenRefactory/C’s alias analysis implementation. When

implementing alias analysis for OpenRefactory/C, I followed the example of a C++ pointer

analysis implemented by Hardekopf [13] for the LLVM compiler infrastructure [21]. Hard-

ekopf’s implementation uses the algorithm described in Section 5.1. I reimplemented the

variable and relationship generation phase from Hardekopf’s implementation in Java for

OpenRefactory/C.

Figure 5.3: Alias analysis implementation structure

From LLVM Galois

Variable and
Relationship
Generation

Galois
Input
Formating

Graph
Rewriting

Derive
Alias Sets

Instead of reimplementing the graph rewriting phase, I directly integrated a Java im-

plementation of that phase by Mendez-Lojo [26]. Mendez-Lojo’s implementation is a par-

allelized reimplementation of the LLVM implementation’s graph rewriting phase using the

Galois framework [34], a framework for executing C++ or Java code in parallel. The Galois

analysis takes the variables and relationships produced in the first phase as input, and does

the graph rewriting phase faster than Hardekopf’s implementation because it rewrites edges

in the graph in parallel.

The following three Sections describe the variable and relationship generation phase,

the Galois input formatting, and the alias set derivation from the Galois output.

34

5.3 Recording Variables And Their Relationships

The first step in the pointer analysis is to record information about what variables are

in a C program and the relationships between them. Hardekopf’s LLVM alias analysis does

its analysis on LLVM’s intermediate code representation. Figure 5.4 shows an example of a

short C program on the left and its corresponding LLVM assembly code on the right. The

LLVM pointer analysis records information about variables as nodes, and the relationships

between them as constraints. Table 5.1 shows the nodes and constraints that would be

generated from the example C program in Figure 5.4.

Figure 5.4: Alias analysis example C code
and corresponding LLVM assembly code

1 void main()

2 {

3 int i;

4 int *p1, *p2;

5 p1 = &i;

6 p2 = p2;

7 }

1 define void @main nounwind {

2 entry:

3 %p2 = alloca i32*

4 %p1 = alloca i32*

5 %i = alloca i32

6 %"alloca point" = bitcast i32 0 to i32

7 store i32* %i, i32** %p1, align 4

8 %0 = load i32** \%p1, align 4

9 store i32* %0, i32** %p2, align 4

10 br label %return

11

12 return:

13 ret void

14 }

35

Table 5.1: Nodes and constraints generated from the example C program

Nodes Constraints

value node:i value node:i - address of - object node:i

object node:i value node:p1 - address of - object node:p1

value node:p1 value node:p2 - address of - object node:p2

object node:p1 value node:p1 - store - value node:i

value node:p2 value node:null1 - load - value node:p1

object node:p2 value node:p2 - store - value node:null1

value node:null1

There are two forms of nodes :

• value nodes

• object nodes

Value nodes loosely represent abstract pointers and are used only in the analysis. Object

nodes represent the variables themselves, and are used to express the result of the analysis

in a graph of object nodes pointing to other object nodes. A value and object node are

always recorded for each variable in a C program, and those nodes remain associated with

that variable. Additional ‘null’ value nodes may be added to help link relationships between

object nodes, but there is always a one-to-one relationship between object nodes and variables.

The example shows that a value and object node are produced for each of the three variables

in the code. There is also an additional ‘null’ value node. It is produced for the LLVM

variable %0 on line 8 of the LLVM code.

There are five forms of constraints :

• address-of constraint

• copy constraint

36

• load constraint

• store constraint

• get-element-pointer (gep) constraint.

For the purpose of this thesis the exact meaning of each constraint type because their

meaning is interpreted in the Galois implementation is unimportant. For more information

see [13]. This stage of the analysis is only concerned with generating the correct constraints

for each instruction in a C program. An address-of constraint is always recorded between

the value and object node added for each variable in a C program. The example shows each

of the three address-of constraints for each variable in the C code.

The constraints and nodes that a particular C instruction should produce cannot be

determined by only reading the LLVM alias analysis. The LLVM alias analysis does its

analysis on LLVM assembly code. Learning some of the LLVM assembly language and

seeing how C instructions translate into LLVM assembly code was the only way to connect

a C instruction with the constraints and nodes it should produce.

The declarations in lines three and four of the C code correspond to the alloca in-

structions in lines three to five of the LLVM assembly. Identifiers in LLVM assembly are

preceded by the % symbol. The LLVM alias analysis adds a value node for each identifier

in the LLVM assembly. The alloca instruction causes the creation of an object node and

the addition of an address-of constraint between the object node and the value node associ-

ated with the identifier the alloca is assigned to. If the example function had parameters,

there would be alloca instructions for each at the beginning of the function definition in

LLVM assembly. This relationship between C code and LLVM assembly is the reason why

the OpenRefactory/C implementation of node and constraint generation adds a value node,

object node, and address-of constraint for each local variable declaration, function definition

parameter, and global variable declaration it finds in the C program.

37

The bitcast instruction in line six of the LLVM assembly is also associated with the

declarations, but it does not add any alias information, so it is ignored.

The assignment in line five of the C code corresponds to the store instruction in line

seven of the LLVM assembly code. The LLVM alias analysis adds a store constraint between

the value nodes that correspond to the two identifiers used in the store instruction for

each store instruction in the LLVM assembly. Any assignment of a reference to a pointer

will always correspond to a store instruction in LLVM assembly. Therefore, the node and

constraint generation in OpenRefactory/C adds a store constraint for every assignment of a

reference to a pointer in the C program.

The assignment in line six of the C code corresponds to the load and store instructions

in lines eight and nine of the LLVM assembly code. The LLVM alias analysis adds a load

constraint between the value node of the identifier it is loading and the value node of the

identifier the load is being assigned to for each load instruction. load instructions always

cause the creation of a new LLVM assembly identifier, and therefore, a new ‘null’ value

node. The assignment of one variable to another will always correspond to a load and

store instruction in LLVM assembly. Therefore, for every assignment of one variable to

another in the C program, the node and constraint generation in OpenRefactory/C adds a

new ‘null’ value node for the new LLVM identifier, a load constraint between the value node

of the variable being assigned and the new value node, and a store constraint for the store

instruction. Assignment of non-pointers to non-pointers is specifically ignored.

The return instructions in lines ten, twelve, and thirteen of the LLVM assembly are

there automatically, even though the C program does not have a return statement. Any

actual return statements in the C program would result in similar LLVM instructions. Inter-

procedural analysis is done in the LLVM alias analysis, but it is omitted from the OpenRefac-

tory/C alias analysis for now. The OpenRefactory/C alias analysis simply ignores function

calls and return statements.

38

Aggregate variables like structs, arrays, and unions are treated like one object in the

OpenReafactory/C node and constraint generation. Any time an element access on these

types of variables is encountered, the element is treated as the entire structure. For example,

in an assignment like myStruct.myElement = myVar, the element access myStruct.myElement

would be associated with the value and object nodes for myStruct itself.

The node and constraint generation phase is complete when all global variables, function

definitions, and their instructions have been processed.

Only a few of the many forms of instructions that can be written in C are shown in

the example here. There are other forms of instructions that the OpenRefactory/C alias

analysis generates nodes and constraints for, but many C instructions obviously have no

bearing on aliases and can be ignored without consideration. There are some instructions

that the LLVM alias analysis generates nodes and constraints for, but that OpenRefactory/C

does not. Greater coverage of more obscure instructions will be added to OpenRefactory/C’s

alias analysis in the future, such as support for inter-procedural analysis.

5.4 Galois Pointer Analysis Input

The next stage of the alias analysis is to format the nodes and constraints for input to

the Galois pointer analysis. The Galois pointer analysis reads from two files for its input, a

file for nodes and a file for constraints. Each file has a specific format, shown in Table 5.2.

The node file starts with the total number of nodes the file contains. The next line gives

the id of the last object node in the file. The next line gives the id of the last node with its

flag set to true. Every node in the LLVM alias analysis has a boolean flag associated with it.

It was not mentioned before because I do not currently understand the purpose of the flag.

It is not set to true in any of the node generation code I translated to OpenRefactory/C

from the LLVM alias analysis. OpenReafactory/C currently only generates nodes whose flag

is false. As a result, the last flaged node id in the node file is currently always 0.

39

Table 5.2: Galois pointer analysis node and constraint file format

Node file format Constraint file format

of nodes # of constraints

id of last object node 0,2,1,0,0

id of last flagged node id,dst,src,type,offset

0,0,0 ...

1,1,0

2,0,0

id,val/obj,flag

...

Each subsequent line in the node file specifies a single node. Each node line starts with

the node’s id, then 0 for value nodes or 1 for object nodes, and finally 0 for a false flag or

1 for a true flag. The nodes must always appear in order of their ids. There are always

three special nodes at the top of the file. The first is a blank node. The second is an object

node that represents an ‘unknown’ variable. This node is used for instructions like integer

to pointer casts, where it is not known what the pointer may point to. The third is a value

node that always points to the ‘unknown’ object node. After the first three special nodes,

there may follow any number of value and object nodes. However, the object nodes must all

come before the value nodes. I do not understand why this is the case, but the Galois alias

analysis will not run otherwise.

The constraint file also starts with the total number of constraints the file contains.

Each subsequent line in the constraint file specifies a single constraint. Each constraint

line starts with the constraint’s id, followed by the ids of the destination and source nodes,

followed by the type of the constraint, and finally an offset. The type is given by 0 for

address-of, 1 for copy, 2 for load, 3 for store, and 4 for gep. Like the flag field in the nodes, I

do not clearly understand the purpose of the offset. It is probably used when dealing with

40

aggregate variables like structs and arrays, but OpenRefactory/C’s alias analysis treats these

structures as a whole, so the offset is always zero. The constraints must always appear in

order of their ids. There is always a special constraint at the top of the file. It adds an

address-of constraint from the special ‘unknown’ value node to the special ‘unknown’ object

node.

Table 5.3 shows the node and constraint files that would be produced for the example

nodes and constraints from Table 5.1. Notice that the nodes have been rearranged so that

all the object nodes come first. The last flagged node value is set to 0 because there are no

flagged nodes in the file.

Table 5.3: Example Galois pointer analysis node and constraint file

Node file Constraint file

10 7

5 0,2,1,0,0

0 1,3,6,0,0 (i:val - address of - i:obj)

0,0,0 2,4,7,0,0 (p1:val - address of - p1:obj)

1,1,0 3,5,8,0,0 (p2:val - address of - p2:obj)

2,0,0 4,6,7,3,0 (p1:val - store - i:val)

3,1,0 (i:obj) 5,7,9,2,0 (null1:val - load - p1:val)

4,1,0 (p1:obj) 6,9,8,3,0 (p2:val - store - null1:val)

5,1,0 (p2:obj)

6,0,0 (i:val)

7,0,0 (p1:val)

8,0,0 (p2:val)

9,0,0 (nul1:val)

Normally the filenames of the node and constraint files are given as command line

arguments to the Galois alias analysis, and Galois reads the files itself. OpenRefactory/C

41

directly calls Galois’ main method and, instead of giving the two filenames, it gives the entire

contents of the two files as arguments, formatted correctly from the nodes and constraints

generated in the first stage. The Galois method that parses the files was modified slightly

so that it directly parses the two arguments, instead of using them to open files.

5.5 Galois Pointer Analysis Output

The final stage of the alias analysis is to get the result of the analysis from Galois and

associate it with the correct variables in the C program. The points-to results for the running

example are shown in Table 5.4.

Table 5.4: Example pointer analysis results

Object node Points-to list

i - 3 []

p1 - 4 [i - 3]

p2 - 5 [i - 3]

The Galois pointer analysis thinks only in id numbers, so an association between the

ids set in the Galois pointer analysis input and the actual variables they correspond to is

kept in memory. The results are taken from the internal representation of object nodes in

the Galois alias analysis. Each internal Galois object node will have a, possibly empty, list of

ids that that object node points to. The ids are translated back to variables using the stored

association, and a hash map is used to record the points-to list of each object node. Reverse

points-to information can be derived from the points-to graph by following edges backwards.

The final step of the alias analysis is to derive alias sets from the points-to results. The

alias results for the running example are shown in Table 5.5.

Alias information is kept as a list of aliases. I consider an alias a combination of a

variable and a number of dereferences. For example, if pointer p points to integer i, then

42

Table 5.5: Example alias analysis results

Object Alias set

i [i, *p1, *p2]

p1 [p1]

p2 [p2]

i has aliases {i and *p}, where i is an alias with zero dereferences and *p is an alias

with one dereference. To propagate alias information down the points-to graph efficiently

a topological sort is done on the graph. Then, in topological order, a dereference of each

variable, and dereferences of any aliases that may have been pushed down earlier, is pushed

down as an alias of all the variables it points to. It is possible for an aggregate variable like

a stuct or array to point to itself. These recursive cycles are irrelevant to aliases, so they

are ignored. There should not be any other cycles in the points-to graph. The alias sets are

stored in a hash map like the points-to sets for efficient access.

43

Chapter 6

Evaluation Of Safe Library Replacement Transformation Implementation

The implementation of the Safe Library Replacement transformation in Open-

Refactory/C was evaluated on two test corpuses. The first was the Juliet Test Suite for

C/C++ from the SAMATE Reference Dataset [32]. The second was comprised of three

real open source C programs: zlib, libpng, and gmp. In each test case there were three

possible results: pass-complete, did-not-replace, and fail. A case passes-complete if it re-

places the unsafe function, removes the buffer overflow vulnerability, and does not change

any other behavior. A case did-not-replace when the Safe Library Replacement trans-

formation determines that it cannot safely do the replacement. A case fails if the Safe

Library Replacement transformation does the replacement but causes errors elsewhere

in the program.

6.1 SAMATE Test Suite

The Juliet Test Suite contains 61,387 test cases on a wide variety of bugs and weaknesses

categorized as Common Weakness Enumerations (CWEs). To identify the cases relevant

to the Safe Library Replacement transformation, all test cases that do not contain

any of the unsafe functions that Safe Library Replacement transformation supports

were removed. That substantially reduced list of cases was then manually investigated to

see which cases contained a buffer overflow from one of Safe Library Replacement

transformation’s six supported functions. This resulted in a list of 1,778 test cases from

CWEs: 121–Stack Based Buffer Overflow, 122–Heap Based Buffer Overflow, and 242–Use of

Inherently Dangerous Function.

44

The test procedure for each case was to run the Safe Library Replacement trans-

formation on the unsafe function that caused a buffer overflow, and then compile and run

the program to see if it was corrected. All 1,778 test cases passed-complete.

6.2 Real C Programs

The Safe Library Replacement transformation implementation was also evaluated

on three real C programs: zlib-1.2.5, libpng-1.2.6, and gmp-4.3.2. The test procedure for an

individual use of a supported unsafe function was to run Safe Library Replacement

transformation on that function, then compile the program, then run the internal tests cases

for the program to see if it had been broken. This test procedure was performed on every use

of the six supported unsafe functions in the three C programs. Table 6.1 shows the results.

73% of the supported functions in the real-world C programs could be replaced without

breaking the program. None of the test cases broke the program by replacing the function.

The Safe Library Replacement transformation implementation could not replace the

function with certainty in all the other cases. The overwhelming majority of the could-

not-replace cases were uses of memcpy. The reason is that memcpy is used in a much wider

variety of ways than the other functions. The following Section discusses each reason Safe

Library Replacement transformation could not replace a function, and gives an example

from the C programs for each.

The gets function is not used in any of the C programs we tested on. The reason is

that they are all libraries, and therefore have no need for user input. Testing on programs

with user interaction will be done in the future to better test the replacement of gets.

6.2.1 Reasons For Not Replacing A Function

Every reason Safe Library Replacement transformation decided it could not cor-

rectly replace the function was the result of investigating a pointer that points to the buffer

being written to.

45

Table 6.1: Safe Library Replacement transformation evaluation results for real C pro-
grams

Function Uses Pass Complete Cannot Replace Fail (Break Program)

zlib

strcpy 11 5 6 0

strcat 4 4 0 0

sprintf 1 1 0 0

memcpy 25 7 18 0

TOTAL 41 17 (41%) 24 0

libpng

strcpy 6 6 0 0

sprintf 18 18 0 0

memcpy 55 40 15 0

TOTAL 79 64 (81%) 15 0

gmp

strcpy 6 6 0 0

strcat 3 3 0 0

sprintf 21 20 1 0

vsprintf 2 1 1 0

memcpy 29 22 7 0

TOTAL 61 52 (85%) 9 0

function totals

strcpy 23 17 6 0

strcat 7 7 0 0

sprintf 40 39 1 0

vsprintf 2 1 1 0

memcpy 109 69 40 0

TOTAL 181 133 (73%) 48 0

Functions not in the table were not used in the program(s).

46

Reason 1: Local buffer pointer is not set equal to a heap allocation function.

Twenty-two unsafe function uses were not replaced for this reason. It is the most

common. In this case, the destination buffer in the unsafe function call is a local pointer

that is not set to the result of a heap allocation function between the point that it is declared

and where it is used in the unsafe function call. In some cases the pointer is part of a local

struct, but the reasoning is the same. It is not certain that the pointer points to the start of

a block of heap memory, so the malloc usable size function cannot safely be used on it.

The only strategy I am aware of that might work to resolve this case is to keep track of

the size of whatever the pointer points to. Safe Type Replacement transformation may

be appropriate for attempting to remove the buffer overflow vulnerability in these cases.

Figure 6.1 shows an example of this case from zlib. The memcpy has a char pointer as

its destination buffer that is declared locally. The destination pointer is never set equal to

the result of a heap allocation function, which invalidates the use of malloc usable size.

Figure 6.1: No-replace example from zlib: infback.c line 338

int ZEXPORT inflateBack(strm, in, in_desc, out, out_desc)

...

{
...

unsigned char *next;

unsigned char *put;

unsigned copy;

... // put is not assigned to a heap allocation function in these lines

memcpy(put, next, copy);

...

}

Reason 2: Parameter buffer pointer is not locally set equal to a heap allocation

function.

Nineteen unsafe function uses were not replaced for this reason. In this case, the buffer

being written to in the unsafe function call is a pointer parameter to the function definition

in which the unsafe function call is found. The pointer is not set to the result of a heap

47

allocation function between the the start of the function and where it is used in the unsafe

function call. Sometimes the pointer is part of a struct parameter, but the reasoning is the

same. It is not certain that the pointer points to the start of a block of heap memory, so the

malloc usable size function cannot safely be used on it.

It might be possible to investigate how the buffer is defined before it is given to function

calls of the function in which it is used unsafely. That would require that every use of

the function be investigated. It is unlikely that malloc usable size could be used on the

pointer in every case.

Using Safe Type Replacement transformation to keep track of the size of the buffer

would also be difficult. Safe Type Replacement transformation would have to replace

the type of the parameter to the function definition, which would require replacing the type

of every variable that is used as a parameter to that function. This case is difficult to

overcome.

Figure 6.2 shows an example of this case from zlib. The strcpy has a char pointer as

its destination buffer that comes in as a parameter to the test compress function. The

destination pointer is never set equal to the result of a heap allocation function, which

invalidates the use of malloc usable size.

Figure 6.2: No-replace example from zlib: example.c line 69

void test_compress(compr, comprLen, uncompr, uncomprLen)

Byte *compr, *uncompr;

uLong comprLen, uncomprLen;

{
int err;

uLong len = (uLong)strlen(hello)+1;

err = compress(compr, &comprLen, (const Bytef*)hello, len);

CHECK_ERR(err, "compress");

strcpy((char*)uncompr, "garbage");

...

}

48

Reason 3: Local buffer pointer is set equal to the result of a ternary expression

which uses one of two different heap allocation functions.

Only one unsafe function use was not replaced for this reason. In this case, the buffer

pointer being written to was set equal to the result of a ternary expression before its use

in the unsafe function call. In both the ternary expression’s ‘then’ and ‘else’ parts a heap

allocation function was used. The pointer is set to the result of a heap allocation function in

either case, so malloc usable size could have safely been used on it. It is unusual to use

a ternary expression to allocate heap memory, however. This case could be handled simply

by checking if both results of the ternary expression are heap allocation functions.

Figure 6.3 shows this case from gmp. The sprintf takes a local char pointer as its

destination buffer. The buffer is assigned to the result of a macro a few lines before it is

given to sprintf. When the macro is expanded it is a ternary expression that results in a

char pointer from one of two gmp specific heap allocation functions, depending on the result

of another function call.

Figure 6.3: No-replace example from gmp: test/trace.c line 257

void

mpn_tracea_file (const char *filename,

const mp_ptr *a, int count, mp_size_t size)

{
char *s;

...

s = (char *) TMP_ALLOC (strlen (filename) + 50);

for (i = 0; i < count; i++)

{
sprintf (s, "%s%d", filename, i);

mpn_trace_file (s, a[i], size);

}
...

}

Reason 4: Buffer pointer is given as an array access on a double pointer.

49

Three unsafe function uses were not replaced for this reason. In this case, the buffer

being written to is given to the unsafe function as an array access dereference at some offset

i on a double pointer. To follow what is done to the pointer at offset i, Safe Library

Replacement transformation must also be able to follow what is done to the double pointer

and the exact indices of any dereference on it. Following the double pointer could be done in

the same way a single pointer is followed, but determining the exact index of any dereference

is a challenge that would not resolve many cases.

Figure 6.4 shows this case from libpng. The pointer pointing to the destination buffer

given to the memcpy comes from dereferencing a double char pointer at some offset using

an array access expression. For example, if the double pointer is pp, then the destina-

tion buffer is given by pp[someOffset]. The exact value of someOffset is not known, so

malloc usable size cannot be used safely.

Figure 6.4: No-replace example from libpng: pngwutil.c line 252

static int /* PRIVATE */

png_text_compress(png_structp png_ptr,

png_charp text, png_size_t text_len, int compression,

compression_state *comp)

{
...

png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf,

png_ptr->zbuf_size);

...

}

Reason 5: Buffer pointer is aliased.

Only one unsafe function use was not replaced for this reason. In this case, the buffer

pointer being written to was part of a struct that the alias analysis determined had aliases.

In cases where the buffer is aliased, it might be possible to follow all the aliases in the same

way the buffer pointer is followed to investigate how the buffer is altered through the aliases.

50

Figure 6.5 shows this case from libpng. The destination buffer pointer is part of struct

that comes in as a parameter to the png set text 2 function. The pointer element is actually

assigned to a heap allocation function before the memcpy such that malloc usable size

could safely be used on it. However, later in the function an element of the struct that

contains the buffer pointer is aliased. The OpenRefactory/C alias analysis considers the

whole struct aliased and is also flow-insensitive. The imprecision of the alias analysis is what

causes this case to not be replaced. OpenRefactory/C’s alias analysis may be improved in

the future.

Figure 6.5: No-replace example from libpng: pngset.c line 731

int /* PRIVATE */

png_set_text_2(png_structp png_ptr, png_infop info_ptr, png_textp text_ptr,

int num_text)

{
info_ptr->text = (png_textp)png_malloc_warn(png_ptr,

(png_uint_32)(info_ptr->max_text * png_sizeof (png_text)));

...

png_memcpy(info_ptr->text, old_text, (png_size_t)(old_max *

png_sizeof(png_text)));

...

png_textp textp = &(info_ptr->text[info_ptr->num_text]);

...

}

Reason 6: Buffer pointer is set equal to a heap allocation function, but it is

part of a struct whose pointer is given to a function call.

Only one unsafe function use was not replaced for this reason. In this case, the buffer

pointer being written to is part of a struct. The pointer element is set equal to the result

of a heap allocation function, but before it is used in the unsafe function a pointer to the

struct is given to a function call. The function may change the elements inside the struct.

Therefore, the malloc usable size function cannot safely be used. It may be possible to

look into the function that the struct is given to to see if the pointer element is changed.

51

Figure 6.6 shows this case from libpng. The destination buffer pointer is part of a struct

that comes in as a parameter to the png push save buffer function. The pointer element

is assigned to a heap allocation function, but before it is given to the memcpy, its struct is

given to a function. The function may change the pointer element, so it is unsafe to use

malloc usable size on the pointer after that point.

Figure 6.6: No-replace example from libpng: pngpread.c line 632

void /* PRIVATE */

png_push_save_buffer(png_structp png_ptr)

{
...

png_ptr->save_buffer = (png_bytep)png_malloc(png_ptr,

(png_uint_32)new_max);

...

png_free(png_ptr, old_buffer);

...

png_memcpy(png_ptr->save_buffer + png_ptr->save_buffer_size,

png_ptr->current_buffer_ptr, png_ptr->current_buffer_size);

...

}

Reason 7: Element access expressions did not match.

Only one unsafe function use was not replaced for this reason. In this case, the buffer

pointer being written to is part of a struct, and it is set equal to the result of a heap allocation

function such that malloc usable size can be used at the unsafe function call. However,

when the pointer is accessed for use in the unsafe function call its struct is surrounded by

parentheses. For example, (myStruct).myPointer. When it is set to the allocation function

the struct does not have parentheses. The Safe Library Replacement transformation

implementation uses string matching to follow element access expressions, so it does not

recognize the allocation function assignment. This case could be fixed by improving the

matching of element access expressions.

52

Figure 6.7 shows this case from gmp. The destination buffer is given as a pointer

element of a struct with some pointer arithmetic done on it. Safe Library Replacement

transformation can handle the pointer arithmetic, and the pointer element is set to the result

of a heap allocation function such that malloc usable size could be used on it, but Safe

Library Replacement transformation does not recognize the heap allocation assignment

because the element access do not string match. When the macro GMP ASPRINTF T NEED

is expanded, it assigns (d)->buff to the result of a heap allocation function, but uses

parentheses in the assignment.

Figure 6.7: No-replace example from gmp: printf/asprntffuns.c line 45

int

__gmp_asprintf_memory (struct gmp_asprintf_t *d, const char *str, size_t len)

{
GMP_ASPRINTF_T_NEED (d, len);

memcpy (d->buf + d->size, str, len);

d->size += len;

return len;

}

53

Chapter 7

Related Work

Most of the research on C buffer overflows concentrates on detection of buffer overflows.

Safe Library Replacement transformation is different from buffer overflow detection

in that it does not try to determine if buffer overflow will happen when an unsafe library

function is used. Instead, Safe Library Replacement transformation simply removes

the possibility of buffer overflows from the use of unsafe library functions by replacing them

with safe alternatives. It is up to developers to remove buffer overflows when they are

found by a buffer overflow detection tool. Buffer overflow detection tools fall into two main

categories: static and dynamic. There are many static analysis tools [7, 22, 23, 38, 40, 42]

and dynamic analysis tools [14, 15, 24, 30, 35] for C buffer overflow detection available.

Splint [7] is a lightweight, extensible static analysis tool for C that leverages annotated

libraries and annotations added to source code by developers to find potential vulnerabilities.

In the case of finding potential buffer overflows, a very simple approach is to issue a warning

for every use of an unsafe library function. Unsafe functions are often used safely, however,

so warning for all of them results in many false positives. To increase accuracy, annotations

are added. For example, consider a use of strcpy with parameters dst and src. The

safety requirement that dst be larger than src can be added by annotating the library’s

declaration of strcpy with a requires clause: /*@requires maxSet(dst) >= maxRead(src)

@*/. maxSet(b) is the largest integer i such that b[i] can safely be an lvalue. maxRead(b)

is the largest integer i such that b[i] can safely be used as an rvalue. If Splint cannot

determine that the requires clause is true for a use of strcpy, it issues a warning.

Wagner et al. [40] describe an integer range analysis technique for detecting buffer

overflows. They model buffers by two integer values: bytes allocated to the buffer (allocation

54

size) and bytes currently in use (length). Detection of buffer overflows is done by checking, for

each buffer, whether the inferred maximum length of the buffer is smaller than the inferred

maximum allocation size. The implementation of the technique has two phases: generation

of integer range constraints and solving the constraint system.

Archer [42] is a static analysis tool that uses path-sensitive, inter-procedural symbolic

analysis to to detect memory access errors. It derives and propagates memory bounds and

variable values by keeping track of constant relations, like x = 4, and symbolic constraint

with unknown values, like j < x < 16. It uses a custom constraint solver to evaluate the

values used in an operation given known constraints at every potentially dangerous memory

access. Archer propagates constraints across procedure boundaries to make the analysis

inter-procedural.

Purify [14] is a dynamic memory access error detection tool. It inserts function calls

before every load and store in the object code produced by the compiler . The calls maintain

a bit table that contains a two-bit state code for every byte of memory used by the program

and checks every memory read and write for access errors. The three possible states for each

byte are unallocated, allocated but uninitialized, and allocated and initialized. One example

of when a memory access error occurs is when a byte that is unallocated is written to.

CRED (C Range Error Detector) [35] is a dynamic buffer overrun detector. It maintains

a table of referent-objects that represent buffers and contain the base address and size of

that buffer. Pointers in the program are associated with a referent-object if they point

to somewhere inside the object. Any arithmetic done on an in-bounds pointer (a pointer

associated with a referent-object) is checked with that pointer’s referent-object to see if the

resulting pointer will also be in-bounds. CRED is implemented as an extension of the GNU

C compiler. The front end of the compiler is modified so that all object creation, address

manipulation, and dereference operations are replaced with routines from their checking

library.

55

STOBO (Systematic Testing Of Buffer Overflows) [15] is another dynamic buffer over-

flow detector. It detects buffer overflows by tracking the size of memory buffers and checking

certain conditions before functions with buffer overflow vulnerability are called. The tool

does this by implementing source code with additional functions. A function call is added

for each buffer declaration and every heap memory management function. Also, a wrapper

function is added in place of every function that may cause buffer overflow, like strcpy. The

added functions keep track of the size of buffers and check for potential overflow from unsafe

functions. A warning is issued if a buffer overflow is detected.

StackGuard [4] and PointGuard [5] are compiler extensions that dynamically prevent

attacks by buffer overflows. StackGuard detects changes to the return address of a function

before the function returns. It does this by placing a canary word next to the return address

on the stack. If the canary word is changed, its assumes the return address has been changed

too. PointGuard protects against buffer overflows by encrypting pointer values, except while

they are in a register. Attackers can only access encrypted pointers because registers are

not addressable via computed addresses. The encryption protects against attacks because

attackers cannot corrupt a pointer such that it decrypts to a predictable value.

Hafiz [12] implemented a simple proof-of-concept Perl script to perform Safe Library

Replacement transformation. The script uses simple string pattern matching to try to

replace unsafe functions. The script has a list of patterns and a replacement procedure

for each pattern. It looks for those patterns in uses of unsafe functions, and if it finds a

pattern that it recognizes, it performs the corresponding replacement procedure. There are

cases where a use of an unsafe function will not match any patterns. In such a case, the

script cannot replace that function. The Safe Library Replacement transformation

implemented in this work provides better replacement coverage and is less likely to break

the original code than the Perl script because it uses more sophisticated static analyses and

an AST code representation.

56

Dahn and Mancoridis [6] describe a different type of transformation to secure programs

against buffer overflows. Their transformation changes a program so that all buffers are

allocated on the heap. The motivation behind this is that performing a successful buffer

overflow attack on a stack buffer is easier than a heap buffer. Overflowing a stack buffer

can overwrite the return address and change the control flow of the program. Performing

an attack of this severity is harder on heap buffers. The transformation is done using a

language specifically designed for program transformations called TXL. TXL must be given

a grammar for the input text so it can parse it into a parse tree similar to OpenRefactory/C’s

AST. It is also given a set of transformation rules that look for sub-trees in the parse tree

that match some pattern, and replace that pattern with something else. The pattern the

transformation looks for is a declaration of an arrays inside a function. These declarations

are replaced by declarations of heap buffers when they are found.

Pointer analysis is a heavily researched topic. It is necessary in many program analyses.

Precise pointer analysis is an NP-hard problem [20], so any practical analysis must trade

precision for efficiency. The most precise algorithms are flow-sensitive and context-sensitive,

which means they account for control flow dependencies and semantics of function calls.

Much study has been devoted to flow-sensitive and/or context-sensitive algorithms [17, 31,

37, 41, 43], but none have been efficient enough to scale to large programs.

The most precise flow-insensitive and context-insensitive pointer analysis algorithm is

currently Andersen’s algorithm [1]. As a result, it was initially one of the least efficient.

Steensgaard’s flow-insensitive and context-insensitive algorithm [36] has near-linear time

efficiency. Many improvements have been made to the efficiency of Andersen’s algorithm

since its publication, however, through the work of Hardekopf [13], Mendez-Lojo [26], and

others [16, 9, 33, 3]. These improvements to its efficiency have given newer implementations

of Andersen’s algorithm one of the best balances of efficiency and precision.

57

Chapter 8

Conclusions and Future Work

I implemented the Safe Library Replacement transformation originally proposed

by Hafiz [12], and evaluated its performance on a large test suite and three real C programs.

The goal of the transformation is to remove buffer overflow vulnerabilities from the use of

unsafe library functions without changing any other part of the program’s behavior. It does

this by replacing unsafe library functions with safe alternatives, and prevents unintended

changes to behavior by not doing the transformation if it cannot guarantee the correctness

of the new parameters to the safe function.

The evaluation of my Safe Library Replacement transformation implementation

showed good results. It was able to safely replace the unsafe function and remove the

buffer overflow in all 1,778 test cases from the Juliet Test Suite. It was able to safely

replace 73% of the 181 unsafe functions found in the real C programs. The remainder of the

unsafe functions were not replaced due to the Safe Library Replacement transformation

implementation’s decision that replacing it might break the test code. In no cases did

the Safe Library Replacement transformation implementation break the test code by

incorrectly replacing an unsafe function.

Safe Library Replacement transformation’s ability to automatically replace, on

average, 73% of unsafe functions in an entire C program has great value. The transformation

can be run on legacy code that needs updating or greater security, and it can be run during

the development process to ensure that no unsafe functions were accidentally used.

I also implemented an alias analysis as a part of the Safe Library Replacement

transformation project. Alias analysis has uses in many other refactorings and transforma-

tions. It will continue to be used as an important static analysis in OpenRefactory/C.

58

The Safe Library Replacement transformation implementation shows promise for

even better coverage in the future. One important future goal is to add support for more

unsafe functions. Given that Safe Library Replacement transformation’s algorithm for

determining buffer size already works well, it would be easy to implement replacements for

other functions that contain buffer overflow vulnerability. In addition, replacing functions

that are unsafe for other reasons may be explored. Another important future goal for the

Safe Library Replacement transformation is to enhance its capability to replace unsafe

functions in a wider variety of uses. Chapter 6 lists all the reasons the transformation could

not replace a function. Many of them have the potential to be resolved.

There are some cases, however, where it is impractical to expect the Safe Library

Replacement transformation to work. In such cases, another Security-Oriented Pro-

gram Transformation described by Hafiz [12], called Safe Type Replacement, may

work better. Safe Type Replacement was briefly described in Section 1.3. Another of our

future goals is to implement and evaluate Safe Type Replacement. Having both Safe

Library Replacement and Safe Type Replacement as development tools would give

developers significant capability to eliminate a large amount of buffer overflow vulnerabilities

from their code.

59

Bibliography

[1] L. O. Andersen. Program Analysis and Specialization for the C Programming Language.

PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report 94/19).

[2] James P. Anderson. Computer security technology planning study. Technical report,

ESD-TR-73-51, Oct 1972.

[3] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie Hendren, and Navindra Umanee.

Points-to analysis using bdds. In Proceedings of the ACM SIGPLAN 2003 conference

on Programming language design and implementation, PLDI ’03, pages 103–114, New

York, NY, USA, 2003. ACM.

[4] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,

Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard: Automatic

adaptive detection and prevention of buffer-overflow attacks. In USENIX, editor, Sev-

enth USENIX Security Symposium proceedings: conference proceedings: San Antonio,

Texas, January 26–29, 1998. USENIX, 1998.

[5] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointGuardTM: Pro-

tecting pointers from buffer overflow vulnerabilities. In Proceedings of the 12th USENIX

Security Symposium, pages 91–104. USENIX, August 2003.

[6] Christopher Dahn and Spiros Mancoridis. Using program transformation to secure

c programs against buffer overflows. In Proceedings of the 10th Working Conference

on Reverse Engineering, WCRE ’03, pages 323–, Washington, DC, USA, 2003. IEEE

Computer Society.

60

[7] David Evans and David Larochelle. Improving security using extensible lightweight

static analysis. IEEE Software, 19:42–51, January 2002.

[8] F. Cavalier III. Libmib allocated string functions. http://www.mibsoftware.com/

libmib/astring/.

[9] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken. Partial online

cycle elimination in inclusion constraint graphs. In Proceedings of the ACM SIGPLAN

1998 conference on Programming language design and implementation, PLDI ’98, pages

85–96, New York, NY, USA, 1998. ACM.

[10] Martin Fowler. Refactoring: Improving The Design of Existing Code. Addison-Wesley,

Jun 1999.

[11] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Marinov. Systematic testing

of refactoring engines on real software projects. In European Conference on Object-

Oriented Programming (ECOOP 2013), pages TO APPEAR, Montpellier, France, 2013.

[12] Munawar Hafiz. Security On Demand. PhD thesis, University of Illinois at Urbana-

Champaign, 2010.

[13] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate pointer

analysis for millions of lines of code. In Proceedings of the 2007 ACM SIGPLAN confer-

ence on Programming language design and implementation, PLDI ’07, pages 290–299,

New York, NY, USA, 2007. ACM.

[14] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access errors. In

Proceedings of the Winter 1992 USENIX Conference, pages 125–136, 1992.

[15] Eric Haugh and Matt Bishop. Testing C programs for buffer overflow vulnerabilities.

In NDSS. The Internet Society, 2003.

61

[16] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using cla: a million

lines of c code in a second. In Proceedings of the ACM SIGPLAN 2001 conference

on Programming language design and implementation, PLDI ’01, pages 254–263, New

York, NY, USA, 2001. ACM.

[17] Michael Hind, Michael Burke, Paul Carini, and Jong deok Choi. Interprocedural pointer

alias analysis. ACM Transactions on Programming Languages and Systems, 21, 1999.

[18] International Organization for Standardization. ISO/IEC 24731: Specification For Se-

cure C Library Functions. 2004.

[19] International Organization for Standardization. ISO/IEC 9899:TC3: Programming

Languages — C. Sep 2007.

[20] William Landi and Barbara G. Ryder. Pointer-induced aliasing: a problem classifica-

tion. In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’91, pages 93–103, New York, NY, USA, 1991. ACM.

[21] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,

Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec

2002. See http://llvm.cs.uiuc.edu.

[22] Wei Le and Mary Lou Soffa. Marple: a demand-driven path-sensitive buffer overflow

detector. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-

dations of software engineering, SIGSOFT ’08/FSE-16, pages 272–282, New York, NY,

USA, 2008. ACM.

[23] Lian Li, Cristina Cifuentes, and Nathan Keynes. Practical and effective symbolic anal-

ysis for buffer overflow detection. In Proceedings of the eighteenth ACM SIGSOFT

international symposium on Foundations of software engineering, FSE ’10, pages 317–

326, New York, NY, USA, 2010. ACM.

62

[24] Davide Libenzi. Guarded memory move (GMM), February 10 2004.

[25] Martyn Lovell. Repel attacks on your code with the Visual Studio 2005 safe C and

C++ libraries. MSDN Magazine, May 2005.

[26] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. Parallel inclusion-based

points-to analysis. In OOPSLA, pages 428–443, 2010.

[27] Matt Messier and John Viega. Safe C string library v1.0.3.

http://www.zork.org/safestr/safestr.html.

[28] Microsoft Developer Network. Using the Strsafe.h functions.

[29] Todd Miller and Theo de Raadt. strlcpy and strlcat — Consistent, safe, string copy

and concatenation. In 1999 Usenix Annual Technical Conference, Monterey, California,

USA, 1999.

[30] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. Soft-

bound: highly compatible and complete spatial memory safety for c. SIGPLAN Not.,

44:245–258, June 2009.

[31] ErikM. Nystrom, Hong-Seok Kim, and Wen-meiW. Hwu. Bottom-up and top-down

context-sensitive summary-based pointer analysis. In Roberto Giacobazzi, editor, Static

Analysis, volume 3148 of Lecture Notes in Computer Science, pages 165–180. Springer

Berlin Heidelberg, 2004.

[32] National Institute of Standards and Technology (NIST). Juliet Test Suite for C/C++

version 1.2. http://samate.nist.gov/SRD/testsuite.php, May 2013.

[33] David J. Pearce. Efficient field-sensitive pointer analysis for c. In In ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, page

2008, 2004.

63

[34] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Has-

saan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario

Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The tao of parallelism in algorithms.

In Proceedings of the 32nd ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’11, pages 12–25, New York, NY, USA, 2011. ACM.

[35] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow detector. In

In Proceedings of the 11th Annual Network and Distributed System Security Symposium,

pages 159–169, 2004.

[36] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL

’96, pages 32–41, New York, NY, USA, 1996. ACM.

[37] TeckBok Tok, SamuelZ. Guyer, and Calvin Lin. Efficient flow-sensitive interprocedural

data-flow analysis in the presence of pointers. In Alan Mycroft and Andreas Zeller,

editors, Compiler Construction, volume 3923 of Lecture Notes in Computer Science,

pages 17–31. Springer Berlin Heidelberg, 2006.

[38] John Viega, J. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4: A static vulnera-

bility scanner for C and C++ code. In 16th Annual Computer Security Applications

Conference. ACM, 2000.

[39] Visual C++ Library. Runtime library reference: getenv s.

[40] David Wagner, Jeffrey Foster, Eric Brewer, and Alexander Aiken. A first step towards

automated detection of buffer overrun vulnerabilities. In NDSS. The Internet Society,

2000.

[41] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 conference

64

on Programming language design and implementation, PLDI ’04, pages 131–144, New

York, NY, USA, 2004. ACM.

[42] Yichen Xie, Andy Chou, and Dawson Engler. Archer: using symbolic, path-sensitive

analysis to detect memory access errors. SIGSOFT Softw. Eng. Notes, 28:327–336,

September 2003.

[43] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited. In Proceedings of

the ACM SIGPLAN 2004 conference on Programming language design and implemen-

tation, PLDI ’04, pages 145–157, New York, NY, USA, 2004. ACM.

65

