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Abstract 

 

Low back pain is a common musculoskeletal disorder that affects 80 percentages of 

people at some point in their lives. In the United States it is the most common cause of job-

related disability, a leading contributor to missed work and health care expenditures related to 

low back pain can be substantial. In recent years, the United States has been facing skyrocketing 

health care cost, with health care expenditures reaching $1.2 trillion and accounting for 13.6 

percentage of the gross domestic product.  

The aim of this study was to develop a test procedure to study the effect of carrying a 

unilateral load or laptop bag or briefcase on the posture and trunk biomechanics when walking 

(Gait). The objective was to quantify movements of the trunk during walking using traditional 

and non-linear methods. The study was approved by the Institutional Review Boards (IRB) of 

Auburn University, AL as well as the Palmer College of Chiropractic, IA. Nine participants were 

recruited from the population of the Palmer College of Chiropractic students and employees. All 

volunteers signed IRB approved informed consent. Data were recorded from 8 healthy 

participants after being screened for eligibility by licensed clinicians during walking. Participants 

were asked to walk back and forth at their comfortable speed carrying loads on one hand on the 

right hand side of 0,5,10, 15, 20, and 25 pounds on a wooden walking platform (5 ft * 8 ft) for a 

maximum of 30 steps/cycles. Participants walked with self-selected speed to ensure that any 

potential discomfort is minimized during walking. Motion data were recorded from T1, L1, L3, 
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and S1 vertebrae at a frequency of 120 Hz. Range of Motion (ROM), Correlation Dimension 

(CoD), and Approximate Entropy (ApEn) was determined using custom written MatLab 

programs. EMG data were recorded from six muscle groups bilaterally ( right and left): Erector 

Spinae, Multifidus, Latissimus Dorsi, Internal Obliques, External Obliques and Rectus 

Abdominis at a frequency of 1200 Hz. For EMG, root mean square EMG values, Mean and 

Median Frequency of the EMG data were calculated to see the effect of increasing load on 

muscle fatigue using custom developed MatLab program.  Ground reaction force data were 

collected using a force plate. Vertical ground reaction forces, 1st peak force (Fz1), 2nd Peak force 

(Fz3) and minimum force (Fz2) between 1st peak and 2nd peak forces were calculated during gait 

cycle. 

The ROM values varied from 2.6 – 3.2 deg. for Lumbar LB, 6.7- 8.7 deg. for Thoracic 

LB. ApEn values ranged from 0.20-0.40 for Lumbar motion and 0.30– 0.50 for Thoracic motion. 

No significant difference (p>0.05) were found for ROM values and ApEn values for lumbar LB 

and Thoracic LB as the load increased from 0 lb to 25 lb. And the CoD values ranged from 1.20 

– 1.40 for lumbar LB and 1.20-1.30 for Thoracic LB. No significant difference (p>0.05) were 

found for CoD values for Thoracic LB but for Lumbar LB, significant difference (p<0.05) were 

found for CoD values as load increased from 0lb to 25 lb. Normalized GRF (Fz1, Fz2 and Fz3) 

increased during walking with increased load. No significant difference (p>0.05) were found for 

mean and median frequencies values from muscles activity during walking as load increased 

from 0lb to 25 lb.  

In conclusion, both traditional linear and nonlinear tools were applied successfully to 

study the spinal motion and trunk muscle activation during walking with increased loads. Our 

finding revealed that variability of spinal motion did not change significantly during walking as 
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load increased. Also significance difference (P<0.05) were found for vGRF parameters during 

walking as load increased. The EMG results (Mean and Median Frequency) indicated that 

fatigue was not induced during walking in participant’s muscles as load increased which might 

have helped them provide required neuromuscular response to increasing loads.  

Future studies are needed to consider some recommendations for obtaining more meaningful 

data based on healthy subjects. This developed test procedure can apply on low back pain 

participants may provide results helpful for low back pain treatment. Data acquisition part needs 

to be smoother. Wireless EMG electrodes and motion sensor can be used to avoid noise in data 

captured because of wires sway during walking. The test procedure developed from this study 

need to be fine tuned before it can be applied on larger population.
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CHAPTER 1 
 
 

INTRODUCTION 

1.1. Low back pain  

Low back pain is a common musculoskeletal disorder that affects 80% of people at some 

point in their lives [29]. In the United States it is the most common cause of job-related 

disability, a leading contributor to missed work and health care expenditures related to low back 

pain can be substantial. In recent years, the United States has been facing skyrocketing health 

care cost, with health care expenditures reaching $1.2 trillion and accounting for 13.6% of gross 

domestic product [2, 60]. 

Although, most occurrences of low back pain go away within a few days, others take 

much longer to resolve or lead to more serious conditions. Low back pain can be caused by 

injury or over use of muscles, ligament and joints and may be triggered by repeated vibration or 

motion during athletics or every day activities. Most of the time; it is due to a sprain or strain in 

the muscles and soft tissues of the back and aging is often a factor. Low back pain is categorized 

as either acute, sub chronic or chronic. Acute low back pain last from few days to several weeks 

and is generally mechanical in nature. It may be caused by a sports injury, work around the 

house or in the garden, or a sudden jolt such as a car accident or other stress on spinal bones and 

tissues. Symptoms may range from muscle ache to shooting or stabbing pain, limited flexibility 

and/or range of motion, or an inability to stand straight. Low back pain that lasts for 2 to 3 
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months is considered sub-chronic. Low back pain that lasts for more than 3 months is considered 

chronic. It is often progressive and the cause can be difficult to determine [2].  

Roy  [73] highlighted the clinical need for an objective technique to assess the muscle 

dysfunction associated with chronic lower back pain went on to examine the reliability and 

validity of his proposed technique by testing both chronic low back pain patients and control 

subjects without back pain. Median frequency parameters of the EMG power density spectrum 

were monitored to quantify localized muscle fatigue and Roy reported high reliability estimates 

for repeated trials. He observed significant differences (P less than 0.05) in median frequency 

parameters between lower back pain patients and control subjects for specific combinations of 

contractile force level and muscle site tested and Median Frequency parameters correctly 

classified lower back pain and control subjects using a two-group discriminate analysis 

procedure [73]. 

Life is becoming ever more hectic nowadays and laptop computers have become essential 

tools for many people with both professional and students using them every day. Carrying a 

laptop unilaterally on a regular basis may seriously affect on body characteristics; laptop bags are 

generally single strap bags, carried over one shoulder and the weight of the laptop can cause 

considerable low back pain and strain on the shoulder muscles as well as restricting blood flow, 

and pinching nerves. Carrying a laptop bag daily for long periods of time can cause poor walking 

posture placing strain on several different parts of the body especially the back. This may be 

particularly important of younger people: a study conducted at Auburn University reported that 

book bags that are too heavy for their wearers may threaten developing spines [1]. 

1.2. Variability  
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Variability is a central characteristic of all human movement and is the result of random 

processes. As Giakas et al. [42] said “Variability is a natural phenomenon associated with any 

movement over repeated trials”. Some degree of variation is inherent within all biological 

systems and can be characterized as the normal changes that occur in motor performance across 

multiple repetitions of tasks. The variability in kinematic, kinetic and temporal variables can be 

computed using both traditional and non-traditional approaches. Goldberger and colleagues 

suggested that every healthy system has a certain amount of variability that is not random but 

contains order, and can be characterized via nonlinear descriptors. Consequently, nonlinear 

methods have increasingly been used to describe complex conditions that cannot be well 

characterized by linear tools [42]. Range, standard deviation, variance, and coefficient of 

variance are commonly used measures variability analyses. Range is the difference between the 

largest and smallest observations; variance is the mean of the squared deviations of a set of 

measurements, and standard deviation is the square root of the variance.  Coefficient of variation 

is defined as the ratio of the standard deviation to the mean and is given as a percentage. Not 

surprisingly, people suffering from low back pain perform differently from people without low 

back pain during functional tasks. 

1.3. Quantification of variability  

1.3.1. Linear Methods 

Masani [54] investigated the variability of ground reaction forces during treadmill 

walking at different speeds. Three components of the GRF were recorded for 35 consecutive 

steps for each leg. Five indexes (the first and second peaks of Fz, the first and second peaks of 

Fy, and the Fx peak where Fz, Fy and Fx represent the x, y and z component of GRF 

respectively) were defined. Coefficients of variation were calculated for each of these five 
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indexes to evaluate the GRF variability for each walking speed. The results showed that the 

variability of Fz and Fx   increased with incremental increases in walking speed, whereas there 

was a speed (5.5–5.8 km/h) at which variability was at a minimum for the first and second peaks 

of Fy, and these were related to forward propulsion of the body [54].  

Ten year later Simpson studied the effect of vertical load position on the gait and 

subjective responses of female hikers. Although, load carriage has been linked an enhanced risk 

of musculoskeletal disorders in the back and upper limbs in hikers. Simpson found that neither 

high, medium nor low load positions could be preferentially recommended for healthy, 

experienced, female hikers carrying 30% of their body weight. Instead, the hikers should choose 

the load position they find the feel most comfortable [53]). 

At about the same time, Qu [85] studied the effect of load carriage and fatigue on gait 

characteristics utilizing both gait variability measures and kinematics measures. This study found 

that gait width variability, hip range of motion and trunk range of motion increased with fatigue 

and with a heavy load. These findings clearly illustrate how increasing load and fatigue can 

affect gait characteristics.  

It has been argued that asymmetric loading during walking can increase lower limb joint 

stress and will also affect dynamic balance. Matsuo investigated balance is affected by 

asymmetric load-carrying and how loading affects lower limb coordination during gait among 

different age group. The study showed that the contralateral hip abduction torque increased and 

ipsilateral hip torque decreased in all participants when carrying an asymmetric load. Those in 

the oldest group of abducted their shoulders to a greater extent even when walking without a bag 

[79].  
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1.3.2. Nonlinear Methods 

Nonlinear tools are becoming more popular as a way to examine the variability in human 

movement as linear models are limited in many cases and are certainly not the best models for 

understanding the nonlinear human system [23].  The commonly used nonlinear methods include 

Lyapunov Exponents, Approximate Entropy, and Correlation Dimension. The Lyapunov 

Exponent approach calculates the rate at which adjacent trajectories converge or diverge in 

reconstructed state space. Approximate Entropy (ApEN) calculates the predictability of a given 

time series, and Correlation dimension is quantifies chaos in given time series [23, 46, 51, and 

80]. Approximate Entropy measures the logarithmic probability that a series of data points a 

certain distance apart will exhibit similar relative characteristics on the next incremental 

comparison within the state space. Two main parameters are needed to calculate ApEN: m, the 

number of observation windows to be compared and r, the tolerance factor. Generally m=2 for 

all ApEn calculations while r ranges from 0.1 to 0.25 SD of the data. ApEn provides a direct 

measurement of feedback and connection. A low ApEn value often indicates predictability and 

high regularity of time series data, whereas a high ApEn value indicates unpredictability and 

random variation [22, 68, and 69]. 

Many researchers have investigated human motion using nonlinear tools but although 

many studies have examined the effect of increased speed on the human gait using nonlinear 

methods, little research has focused on changes in human gait with different form of loads using 

nonlinear tools.  

Ahsan Khandoker conducted a comparative study on approximate entropy measure and 

Poincaré plot indexes of minimum foot clearance variability in the elderly during walking. 

Minimum Foot Clearance (MFC) data was gathered during treadmill walking for 14 healthy 
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elderly and 10 elderly participants with balance problems and a history of falls (risk of falls) and 

analysed using a PEAK-2D motion analysis system. ApEn and Poincaré plot indexes of all the 

MFC data sets were calculated and compared. Khandoker found significant relationships for the 

mean MFC with ApEn (r = 0.74, p < 0.05) in the elderly group at risk of falling as compared to 

the healthy elderly group. The ApEn values in the risk of falls group (mean ApEn = 0.18 ± 0.03) 

were significantly (p < 0.05) higher than in the healthy group (mean ApEn = 0.13 ± 0.13). The 

higher ApEn values in the risk of fall group could indicate increased irregularities and 

randomness in their gait patterns and an indication of loss of gait control mechanism. Khandoker 

suggested that ApEn analysis of MFC might provide a valuable opportunity to initiate pre-

emptive measures to avoid injurious falls [22].  

Another researcher who used nonlinear analysis methods to analyze gait parameters, Ugo 

H. Buzzi et al 2003 measured the variability present in time series generated from gait 

parameters in a comparison of young and elderly females subjects using nonlinear methods. 

Aging may cause some changes in motor variability during walking which may explain falls in 

elderly. Buzzi’s finding revealed that the Lyapunov exponents differed significantly between the 

two age groups, with the elderly participants demonstrating significantly larger Lyapunov 

exponents and correlation dimensions for all the parameters evaluated indicating local instability. 

Linear measures indicated that the elderly demonstrated significantly higher variability, while the 

nonlinear analysis revealed that the fluctuations in the time series of certain gait parameters were 

not random but displayed a deterministic behavior. Buzzi & Ulrich went on to study the dynamic 

stability of gait cycles as a function of speed and system constraints in children.  The stability of 

the lower extremity segments of preadolescent children (8–10 years old) with and without Down 

syndrome (DS) were evaluated as the children walked on a motorized treadmill at varying 
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speeds. Nonlinear dynamics tools, maximum Lyapunov exponent, and approximate entropy were 

used. Their finding suggested that dynamic stability decreased during walking in all segments for 

the children with DS and that this could be a consequence of inherently different subsystem 

constraints compared to their non-DS peers. [80]  

Dingwell et al. [34] examined changes in local dynamic stability associated with ground 

and treadmill walking in healthy adults. Their results showed a poor correlation between 

nonlinear and traditional measures for both ground and treadmill conditions, suggesting that 

nonlinear measures quantify different aspects of walking behavior than traditional measures. 

They argued that traditional discrete measures of variability do not provide an accurate means for 

assessing the stability of the locomotor system, because they masked stride-to-stride fluctuations, 

and that nonlinear measures could be more appropriate for addressing questions related to the 

control of locomotor stability and balance.  

England & Granata et al. 2007 investigated the role of walking velocity in stability during 

normal gait by measuring local dynamic stability using maximum finite-time Lyapunov (λ max) 

exponents where as smaller λ max indicate more stable walking dynamics. Their results 

suggested that slower walking velocities lead to increases in stability and this approach may 

expose more comprehensive information on the behavior of the neurocontroller than variability-

based analyses alone.  

Justin J Kavanagh et al. [51] examined the effect of walking speed on an individual’s 

lower trunk motion. Subjects performed 5 walking trials at a self-selected pace: slow, preferred 

and fast. A triaxial accelerometer was used to collect data from the muscles involved. Stride-to-

stride acceleration amplitude, regularity and repeatability were examined with RMS acceleration, 

Approximate Entropy and Coefficient of Multiple determination respectively. The study showed 
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that RMS acceleration amplitude increased with gait speed in all directions, while the value of 

Approximate Entropy decreased as the walking velocity increased. Walking at speeds slower 

than preferred primarily altered lower trunk accelerations in the frontal plane. Despite greater 

amplitudes of trunk acceleration at fast speeds, the lack of regularity and repeatability differences 

between the preferred and fast speeds suggested that features of trunk motion are preserved 

between the same conditions.  

James T Cavanaugh et al. [46] examined the short term effect of secondary cognitive task 

performance on postural control in healthy young adults calculating  ApEn values, root mean 

square (RMS) displacement, and equilibrium scores (ES) from anterior posterior (AP) and 

medial-lateral (ML) center of pressure (COP) component time series. There was no significant 

effect of cognitive task for either the ApEn values of COP ML time series, the RMS 

displacement (AP or ML) or ES and Cavanaugh concluded that utilizing ApEn as a measure for 

characterizing the temporal dynamics of COP variability shows promise for detecting the 

immediate, short-term effect of secondary cognitive task performance on postural control during 

quiet standing, even among healthy subjects whose postural sway in this position is minimal.  

Anastasios et al. [23] examined the variability of the ACL deficient knee during walking. 

Data were collected from 10 subjects (diagnosed with complete ACL rupture using MRI scans 

volunteered for the ACL deficient group) during walking on a treadmill at a self-selected speed 

with the variability assessed using ApEn. Their results showed that significantly smaller ApEn 

values were observed in the subjects with an ACL deficient knee for all speeds (p=0.022) and 

these ApEn values increased significantly with increasing walking speed. The altered properties 

of the ACL deficient knee, which exhibits more regular and less variable patterns than the 
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contralateral intact knee, may decrease the adaptability of the system rendering it less able to 

adjust to perturbations. 

1.4. Spinal motion during walking 

Many researchers are now focusing on the effect of low back pain on trunk movements, 

but although there has been considerable research into spinal motion during walking, few studies 

have looked at spinal motion during walking with different forms of loads. Instead the spine is 

generally treated as either a whole unit or as a set of different segments, such as the lumbar 

segment and thoracic segments of the spine. Kinematic and kinetic quantities are usually 

assumed to be periodic or pseudo periodic based on body characteristics and personal ability to 

control the lumbar spine. However, with neuromuscular and musculoskeletal pathologies or 

injuries, these movements may not be periodic and may result in increased instability of the 

lumbar spine [67].The effect of age, load amount and load symmetry on lower extremity 

kinematics during different carrying tasks was studied by Gillette whose subjects carried loads of 

0 %, 10% and 20% of their body weight either unilaterally or bilaterally. Reflective markers 

were used to collect the data and total joint ROM and maximum joint angle were calculated. The 

child/teenager age groups displayed significantly greater maximum hip extension, hip adduction, 

and hip internal rotation angles than adults. Although, setting carrying guidelines for the 8-10 

year old group appeared to be particularly critical since this age group was tested at lower loads 

than commonly observed in the field, they still displayed the greatest maximum hip internal 

rotation angles [47].  

Fowler et al. [38] quantified the kinematics of the spine and stature loss induced by 

asymmetric load carriage. Data were collected from 6 healthy males walking at their self-

selected pace for 8500 m with and without a standard RoyalMail bag (model MB36) containing 
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17.5% of the participant’s body mass. The load was reduced gradually during the task. Increased 

forward leaning (up to 6 degree) and lateral bending of the spine (up to 12 degree) was observed 

with a load. Thoracic adjustments occurred in the sagittal plane, while changes in the lumbar 

area occurred in the frontal plane.  

Crosbie et al. 1995 & 1997 investigated the patterns and ranges of movement of the lower 

thoracic and lumbar spinal segments and the pelvis in subjects walking at two self-selected 

speeds. In this analysis, the spine was divided into lower thoracic, lumbar and pelvic segments 

and data were recorded using a video-based system. Crosbie observed an increased range of 

motion in each segment with increased walking speed, although there were few gender-related 

differences in patterns or ranges of motion and a significant reduction in spinal range of motion 

with advancing age. He considered that these age-related changes were more likely to be step-

length dependent than an intrinsic feature of aging [31, 32]. 

Malgorzata [62] studied the segmental movement patterns of the spine during normal 

treadmill walking task with the spine movement of ten healthy subjects has being investigated 

using an optoelectronic measuring system. In this study, the spine was divided into seven 

segments, from C7 to S2 and the subjects walked with their normal speed. All data were 

normalized to percentage of the gait cycle and the normal patterns of the spine segment 

movements were obsereved in the sagittal and frontal planes. Malgorzata’s results showed that 

the behavior of the spine can be described as the motion of a stiff element with superimposed 

small, inter-segmental movements. These small inter-segmental movements were found both in 

the sagittal and the frontal planes. The small inter-segmental movements could play an important 

role in reducing of the energy consumption during motion and in maintaining the equilibrium. 
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Rowe and White developed a new system for the clinical measurement of spinal 

kinematics during gait and demonstrated its use to measure the motion of lumbar spine during 

level, free, and speed, walking in a group of ten nurses returning to work following one or more 

episodes of mild musculoskeletal back pain. Their results implied that the nurses tested had 

normal gait patterns [72].  

Devroey studied the effects of increasing load (0%, 5%, 10%, and 15% of body weight) 

and changing the placement of the load on the spine (thoracic vs. lumbar placement) during 

standing and walking in 20 college-aged students by collecting physiological, biomechanical and 

subjective data. Their results indicated significant increases in thorax flexion; reduced activity of 

M. erector spinae vs. increased activation of abdominals; and increased heart rate and Borg 

scores for the heaviest loads. A trend towards increased spinal flexion reduced pelvic anteversion 

and rectus abdominis muscle activity was observed for the lumbar placement. These findings 

suggest that carrying loads of 10% of body weight and above should be avoided, since these 

loads induce significant changes in electromyography, kinematics and subjective scores in the 

study participants. [30]  

 Frigo [39] studied the physiological pattern of trunk and shoulders movements during 

walking in order to provide a reference for further studies on spine deformities. Data were 

recorded from 18 young, healthy female participants using retroreflective markers positioned on 

the main spine processes and acromions to be detected by a TV-based motion analysis system. 

Movements in the main reference planes and in relation to the pelvis were analyzed. Frigo’s 

results showed that the trunk was on average bent forward by 3.4 degree compared to the 

standing position; of the two physiological curves in the sagittal plane only lordosis changed 

during walking. In the frontal plane, however, a dynamic spine deformation appeared that was at 
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a maximum at the heel strike-early stance; the trunk was bent contralaterally of the foot on the 

ground, while the shoulders remained stable and in the horizontal plane, the shoulders rotated 

contralaterally to the pelvis. In the sample population, all the segmental movements analyzed 

were smaller than 5 degree during gait except for the angle of proximal curvature in the frontal 

plane, shoulder rotation, and the angle between shoulders and pelvis. All the measured angles 

were far below their possible ranges of motion.  

1.5. Ground reaction forces (GRF) while carrying unilateral loads 

Carrying an asymmetric load while walking is a common activity and a regular part of 

daily life. However tasks such as carrying a laptop unilaterally on daily basis may have a 

deleterious effect on body characteristics. Laptop bags, for example are generally single strap 

bags designed to be carried over one shoulder. Unilateral load carrying is known to be more 

hazardous to the musculoskeletal system than a bilateral load and has been shown to cause 

increased trunk muscle activity (Devita et al. 1991) and greater spinal shear and compressive 

forces (Marras and Granata et al. 1997), thus potentially contributing to the development of 

dorsal and low back pain. Such loads can encourage the lateral bending of the spine. The weight 

of the laptop can cause considerable low back pain, strain on the shoulder muscles, restricting 

blood flow, and pinching nerves. Carrying a laptop bag day after day for long periods of time can 

lead to poor posture when walking, placing strain on several different parts of the body, but 

especially the back. This is particularly a concern in young people. A study conducted at Auburn 

University reported that book bags that are too heavy for their wearers may threaten developing 

spines. [1]  

Many researchers have studied the effects of carrying a backpack or other athletics bag or 

unilateral and bilateral load on musculoskeletal pain and altered spinal curvature. [36, 47, 53, 79, 
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and 85]. People face unilateral load-carrying conditions every day when they carry things in one-

hand. There have also been a great many studies focusing on gait at different speed but few 

studies have combined the two to examine the effect on gait of different loads. 

Unilateral load carriage is known to be more hazardous to the musculoskeletal system 

than bilateral loading. Zhang examined the effect of asymmetric carriage on postures and gait 

symmetry by recording the ground reaction force (GRF) during walking. Kinematics and GRF 

for 19 adults were recorded while walking under five load conditions: no load and a dumbbell 

(weighing 10 and 20% of their body weight) held in either the right or left hand. The vertical 

ground reaction forces increased with increasing loads. [84]  

 An [36] examined the gait parameters of young women using various methods to carry a 

single-strap bag while walking. The bag-carrying methods were no bag, over the shoulder, on the 

forearm and by hand. An conducted that when carrying a single-strap bag, the over-the-shoulder 

method has the least effect on gait parameters relative to other bag carrying methods. 

The study of ground reaction forces (GRF) during load carriage can provide relevant 

information about the mechanisms of gait, and provide a measure of the impact forces acting on 

the foot. Load or weapon carriage is an essential and inevitable part of military life and many 

studies have looked at how soldiers carry heavy loads [25, 33, 43, and 78]. For example, Birrell 

reported that rifle carriage during walking significantly affects the ground reaction forces. Data 

were collected from 15 participants walking with different loads on an 8.4 m walkway. Kinetic 

data were normalized and expressed as Newton’s per unit body mass. Birrell found that both 

vertical and anteroposterior GRF parameters increase proportionally when load is added in 8 kg 

increments to a UK standard issue ‘90 Pattern LCS. A similar study by Majumdar [33] evaluated 

kinematic responses to existing load carriage operations and provided guidelines for the future 
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design of heavy military backpacks (BPs) to enhance soldier’s performance. Walking trials were 

recorded using 3-D Motion Analysis System. Significant increases were observed in ankle and 

hip ROM and trunk forward inclination (≥10°) with lighter loads, such as a BP (10.7 kg), BP 

with rifle (14.9 kg) and BP with a light machine gun (17.5 kg), may cause joint injuries. These 

finding suggest that the existing BP design could be improve for use in low intensity conflict 

environments and the data gathered could help optimize load carriage and the design of 

ensembles, especially a more user-friendly heavy BP for military operations. 

Wang investigated the influence of load carriage and muscular fatigue on ground reaction 

forces and ground reaction loading rates during walking. Data were collected from 18 healthy 

males during the following tasks: unloaded and unfatigued walking, loaded and unfatigued 

walking, fatiguing exercise, loaded and fatigued walking, and unloaded and fatigued walking. 

They found that muscular fatigue and load carriage both have a significant effect on peak vertical 

ground reaction force and loading rate (p < 0.01). The resulting large increases in the ground 

reaction forces and loading rates may contribute to the high incidence of lower extremity overuse 

injuries in the military. [43] 

Kinoshita studied the effects of two different systems on selected biomechanical 

parameters of the walking gait, while carrying loads of varying magnitude. The three 

components of the ground- reaction-force were measured for ten trials for each subject condition 

using a Kistler force platform interfaced to a Tektronix computer. And the components of the 

ground-reaction-force-time curves examined. Their results revealed that both light and heavy 

loads substantially modified the normal walking gait pattern and suggested that the double pack 

system was more effective than the conventional backpack system, especially for carrying  heavy 

load. [44] 
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The effect of gait speed and load carrying on the reliability of ground reaction forces 

were studied by Hsiang [76]who collected data from 15 participants walking on a treadmill under 

fifteen conditions (five load positions X three speeds) by recording the vertical ground reaction 

forces for a number of consecutive steps. The first four statistical moments (i.e. mean, standard 

deviation, skewness and kurtosis) of the distributions of several kinetic parameters were 

calculated based on the series of recorded steps Hsiang’s result suggested that adding a 30-lb 

load to various parts of the body and increasing the walking speed generally increase the 

magnitude of WA (Fz1) and PO (Fz3) the mean value of WA also increased as the speed 

increased from 2 to 4 mph. In addition, WA had the highest value for two-hand carrying and the 

lowest in the no-load conditions at any speed. Changes in the higher moments suggested that 

some loading positions and higher speeds reduced the reliability of the execution of gait patterns 

while other loading positions may actually increase the reliability [76]. In a similar study, Bas 

Kluitenberg et al.2012 compared the vertical ground reaction forces during ground and treadmill 

running. 

McCrory compared the VGRF of a group of subjects who had undergone hip arthroplasty 

with a group of normal control subjects. Data were collected using a treadmill equipped with two 

force plates (Kistler Instrument Corporation, Amherst, NY) during walking. GRF parameters 

such as loading force (first peak), push off (2nd peak), loading rate, push off rate and so on were 

calculated.  The first and second peak forces, loading rate, impulse, and stance time were 

significantly lower, while the time to first peak force was significantly greater on the affected leg 

of the hip arthroplasty subjects when compared to both their unaffected leg, or to the control 

group. The hip arthroplasty group also showed greater asymmetry of ground reaction forces than 
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the control group so bilateral asymmetric limb loading clearly persists well after unilateral hip 

replacement surgery. [48]  

1.6. EMG measurements during walking and carrying weights 

Electromyography (EMG) is a technique that is widely used for evaluating and recording 

the electrical activity produced by skeletal muscles. EMG is performed using an instrument 

called an electromyograph, to produce a record called an electromyogram. An electromyograph 

detects the electrical potential generated by muscle cells when these cells are electrically or 

neurologically activated. The signals can be analyzed to detect medical abnormalities, activation 

level, and recruitment order or to analyze the biomechanics of human or animal movement. 

EMG is frequently used to capture muscle activity during different motor tasks. Two kinds of 

EMG are currently available: surface EMG and intramuscular (needle and fine-wire) EMG. [9]  

EMG frequencies can be recorded during functional activities such as walking in order to 

evaluate muscle functions. Nissan Kunju (2009), Van Gestel (2011), and Joseph Mizrahi found 

the range for mean and median frequency was in between 60-140 Hz during different functional 

activities. 

Kunju [56] discussed the use of EMG for analyzing different phases of walk by acquiring 

the surface EMG from the gastrocnemius and soleus muscles of the leg with the subjects walking 

at two self-selected paces- fast and slow. The median frequency decreased with increasing 

walking speed in both muscles. The RMS value of the signal amplitude tended to increase from 

the slow to the fast walk for both muscles in both limbs which can be attributed to the increase in 

motor activity with increasing speed of movement.  

Prosser and Gestel investigated muscle activity during walking in young children with 

cerebral palsy (CP) compared with children with typical development (TD). They looked the 
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potential of the muscle activation and mean EMG frequency, recorded during 3D gait analysis 

(3DGA), in order to evaluate the functional muscle strength. In both muscles a consistent pattern 

of increasing mean EMG frequency with decreasing muscle strength was observed. It seems 

likely that both walking velocity and muscle strength have an impact on EMG, but the 

contribution of muscle strength is always higher. [58, 70] 

Joseph [50] studied the EMG activity and fatigue patterns of iliocostalis lumborum and 

multifidus muscles during a trunk holding test. To reflect the activity level and fatigue rate of the 

muscles, EMG amplitude (RMS values) and a frequency variable (median frequency [MF]) were 

measured. He found that monitoring frequency changes in the EMG signals may enable 

therapists to quantify the fatigue changes of individual muscles during the trunk holding test. The 

higher fatigue rate shown in the multifidus muscle compared with the iliocostalis lumborum 

muscle may be due to the higher activity level of the multifidus muscle during the trunk holding 

contraction. This greater activity of the multifidus muscle during the contraction might be 

explained by the functional differences between these two muscles. 

Sabut (2010) examined the effect of functional electrical stimulation (FES) in the 

management of drop foot in stroke subjects with surface electromyographic (sEMG) analysis 

from the tibialis anterior (TA) muscle. Sabuts results revealed an increase in the mean-absolute-

value (MAV), and RMS and also improved the amplitude (0.022 to 0.048) and median frequency 

(MF 71.4 Hz to 82.7 Hz) of the sEMG power spectrum when monitoring the improvement of the 

tibialis anterior muscle during maximum voluntary contractions [74].  

Hong [86 and 87] investigated the effect of prolonged walking with load carriage on 

muscle activity and fatigue in children. EMG signals from the upper trapezius (UT), lower 

trapezius (LT) and rectus abdominis (RA) were recorded at several time intervals (0, 5, 10, 15 
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and 20 min) while carrying different loads and were normalized to the signals collected during 

maximum voluntary contraction. Power spectral frequency analysis was applied to evaluate 

muscle fatigue in terms of the shift in median power frequency (MPF). Their results showed that 

both the 15% and 20%body weight loads significantly increased muscle activity in the lower 

trapezius. In the upper trapezius, no increase of muscle activity was found within the 20-min 

period, although, muscle fatigue was observed from 10 min onwards. No increased muscle 

activity or muscle fatigue was found in rectus abdominis. They concluded that that backpack 

loads for children should be restricted to no more than 15% of their body weight for walks of up 

to 20 min duration to avoid muscle fatigue. 

Olsen [64] investigated prolonged physical activities that could introduce risks for low 

back injury due to the adapted neuromuscular response of the system once neuromuscular fatigue 

is present. Trunk extensor muscles were fatigued in 14 healthy women to observe myoelectric 

changes in the trunk musculature during walking trials performed before and after fatigue 

conditions. EMG from the lumbar paraspinal (LP), rectus abdominis (RA), external oblique (EO) 

muscles were recorded during fatigue conditions and pre and post fatigue walking trials. Their 

results revealed that  LP and RA activity burst peaks shifted in time at contralateral heel contacts 

(p < 0.05) in the 70% condition, while RA amplitude increased (p < 0.05) and EO burst peak 

temporal shifts (p < 0.05) were present in the 50% condition. 

 Escamilla [71] studied the effectiveness of traditional and nontraditional abdominal 

exercises in activating abdominal and extraneous musculature. Surface EMG were used to 

capture muscle activity from the upper and lower rectus abdominis, external and internal oblique, 

rectus femoris, Latissimus dorsi and lumbar paraspinal muscles while each exercise was 

performed. The Power Wheel, hanging knee-up with straps, and reverse crunch inclined 30 
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degrees were not only the most effective exercises in activating abdominal musculature but also 

were the most effective in activating extraneous musculature. Howevere, Escamilla noted that 

the relatively high rectus femoris muscle activity obtained with the Power Wheel (pike and knee-

up), reverse crunch inclined 30 degrees, and bent-knee sit-up may be problematic for some 

people with low back problems.  

Christoph Anders et al. [27] investigated trunk muscle activation during gait at different 

speeds by using surface EMG to collect data from 15 healthy subjects from five trunk muscles at 

speeds of 2, 3, 4, 5, and 6 km/h. Anders found that a speed dependent modulation of activation of 

the trunk muscles occurred within the investigated range of walking speeds.  

Walking requires an upset of the delicate balance of the trunk, which is maintained by 

minimal muscle activity when standing at rest. During ambulation the pelvis undergoes 

significant translational and rotary motion in the sagittal, coronal and transverse planes. 

Therefore, the requirements for balancing the trunk by action of the trunk muscles are much 

more complex than during standing. Edwin Y Hanada [37] studied the abdominal and low back 

muscle activation amplitudes of older subject with and without chronic low back pain walking on 

a level surface at self-selected pace. EMG was used to collect data from the back muscles as this 

provides a useful means for detecting changes in trunk muscle activation during walking. This 

study focused on neuromuscular alterations in personnel aged between 50-80 years with low 

back pain in order to develop subject-specific management regimes designed to maintain spinal 

stability.  
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1.7. Objective 

The purpose of this investigation is to develop a test procedure to study the effect of carrying a 

unilateral load or laptop bag or briefcase on the posture and trunk biomechanics during walking 

(Gait) using Traditional and Non-Linear methods. 

• Develop a testing procedure methodology during gait carrying increasing loads. 

• Measure ground reaction forces, trunk motion and trunk muscles activation when walking 

carrying increasing loads.  

• Analysis of motion data using traditional linear (ROM) and non-linear (approximate 

entropy and correlation dimension) methods to study the effect of increasing loads on 

variability or stability during gait. 

• Analysis of EMG data to study effect of increasing loads on muscle fatigue. 

• Analysis of vertical ground reaction force data. 
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CHAPTER 2 
 
 

ANATOMY OF THE HUMAN SPINE 
 

2.1. The vertebral column 

The vertebral column, also known as the backbone or spine, is a bony structure found 

in vertebrates. The human spine consists of a total of 33 bones known as vertebrae, 24 of which 

are articulating and 9 fused, with the latter combining to form the sacrum and the coccyx.  The 

spine is situated in the dorsal aspect of the torso, separated by intervertebral discs. The vertebrae 

are mounted in a vertical column and form the main part of the spine, running from the base of 

the skull to the pelvis. At the base of the spine there is a bony plate called the sacrum which is 

made of five fused vertebrae. The sacrum forms the back part of the pelvis. At the bottom of the 

sacrum is a small set of four partly fused vertebrae, the coccyx or tailbone.  

 

Figure 1: Vertebral Column 
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The upper, articulated, section of the human spine is composed of three regions: the 

cervical spine, the thoracic spine and the lumbar spine, grouped as follows: the cervical (7 

vertebrae C1-C7), the thoracic (12 vertebrae T1-T12) and the lumbar (5 vertebrae L1-L5), 

according to the regions they occupy. [3, 4] Viewed laterally, the vertebral column presents 

several curves that correspond to the different regions of the column, namely 

the cervical, thoracic, lumbar, and pelvic regions (Figure 1). 

The spinal vertebrae are separated from each other by intervertebral discs. These discs are 

made of collagen fibers and cartilage and provide padding and shock absorption for the 

vertebrae. Each pair of vertebrae forms a movable unit. The spinal cord runs within the vertebral 

canal formed by the back parts of the vertebrae. Thirty-one pairs of nerves branch out from the 

spinal cord through the vertebrae, carrying messages between the brain and every part of the 

body. Aging, diseases, accidents and muscular imbalances can cause compression and thinning 

of the intervertebral discs. These results in pressure on the spinal nerves and wear on the bony 

vertebrae, and these conditions are common sources of back pain. 

There are four natural curves in the spine, although the three that comprise the cervical, 

thoracic, and lumbar portions of the spine are more commonly referred to, the sacrum and 

coccyx also forms a curved section. The spinal curves provide architectural strength and support 

for the spine. They distribute the vertical pressure on the spine, and balance the weight of the 

body. If the spine were absolutely straight, it would be more likely to buckle under the pressure 

of the weight of the body.  

When all the natural curves of the spine are present, the spine is a neutral position. This is 

its strongest position and usually the safest when exercising. In perfect posture, the curves of the 
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spine help the body maintain its balance. Human beings evolved to walk and stand in the neutral 

spine position (Marguerite Ogle, About.com).  

2.1.1. Thoracic vertebrae 

In vertebrates, the thoracic vertebrae compose the middle segment of the vertebral 

column, between the cervical vertebrae and the lumbar vertebrae. In humans, these are 

intermediate in size between those of the cervical and lumbar regions, increasing in size as down 

the spine with the upper vertebrae being much smaller than those in the lower thoracic region 

 

Figure 2: Thoracic Vertebra (Wikipedia.org) 

The structure of a typical thoracic vertebra is shown in Figure 2. They are distinguished 

by the presence of facets on the sides of the bodies for articulation with the heads of the ribs, and 

facets on the transverse processes of all except the 11th and 12th for articulation with the 

tubercles of the ribs. The cervical vertebrae run into the cranium and are hence of less interest for 

23 
 



 

this research. By convention, the human thoracic vertebrae are numbered, with the first one (T1) 

located closest to the skull and higher numbered vertebrae (T2-T12) proceeding away from the 

skull and down the spine. [5] 

2.1.2. Lumbar Vertebrae 

The lumbar vertebrae are the five vertebrae between the rib cage and the pelvis and are 

the largest segments of the movable part of the vertebral column. They are characterized by the 

absence of the foramen transversarium within the transverse process, and by the absence of 

facets on the sides of the body. They are designated L1 to L5, starting at the top (Figure 3). 

 

Figure 3: Lumbar Vertebra 

Each lumbar vertebra consists of a vertebral body and a vertebral arch. The vertebral 

arch, consisting of a pair of pedicles and a pair of laminae, encloses the vertebral foramen 

(opening) and supports seven processes. They allow significant flexion and extension as well as 
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moderate lateral flexion (side bending). The discs between these vertebrae create 

a lumbarlordosis (curvature that is concave posteriorly) in the human spine. [6] 

2.1.3. Sacrum Vertebrae 

The sacrum is a large, triangular bone at the base of the spine and at the upper and back 

part of the pelvic cavity, where it is inserted like a wedge between the two hip bones. Its upper 

part connects with the last lumbar vertebra, and the bottom part with the coccyx (tailbone). It 

consists of five initially unfused vertebrae in most cases that begin to fuse between ages 16–18 

and are usually completely fused into a single bone by the age of 34 (Figure 4). 

 

Figure 4: Sacrum Vertebra 

The sacrum is curved in upon itself and is placed obliquely (tilted forward). It 

is kyphotic, i.e. concave facing forward. The base projects forward as the sacral 

promontory internally, and articulates with the last lumbar vertebra to form the 

prominent sacrovertebral angle. The central part is curved outward toward the posterior, allowing 
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greater room for the pelvic cavity. The two lateral projections of the sacrum are called ala 

(wings), and articulate with the ilium at the L-shaped sacroiliac joints. [7] 

2.2. Low Back Muscles: 

In this study, six muscle groups have been used to collect Electromyography (EMG) data, as 

follows: 

2.2.1. Erector Spinae 

The Erector spinae is a muscle group of the back in humans and animals that extends the 

vertebral column (bending the spine such that the head moves posteriorly while the chest 

protrudes anteriorly). It is known as the sacrospinalis in older texts, but a more modern term 

is extensor spinae.  

 

Figure 5: the Erector Spinae muscle 
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It is not composed of a single muscle, but is instead made up of a bundle 

of muscles and tendons. It occurs in pairs that run more or less vertically, extending throughout 

the lumbar, thoracic and cervical regions, and lies in the groove to the side of the vertebral 

column (Figure 5). 

The erector spinae are covered in the lumbar and thoracic regions by the thoracolumbar 

fascia, and in the cervical region by the nuchal ligament. This large muscular and tendinous mass 

varies in size and structure in different parts of the vertebral column. In the sacral region it is 

narrow and pointed, and at its origin chiefly tendinous in structure. In the lumbar region it is 

larger, and forms a thick fleshy mass which, on being followed upward, is subdivided into three 

columns that gradually diminish in size as they ascend to be inserted into the vertebrae and ribs. 

The erector spinae arise from the anterior surface of a broad and thick tendon attached to the 

medial crest of the sacrum, to the spinous processes of the lumbar and the eleventh and twelfth 

thoracic vertebræ, and the supraspinous ligament, to the back part of the inner lip of the iliac 

crests and to the lateral crests of the sacrum, where they blend with 

the sacrotuberous and posterior sacroiliac ligaments. [8] 

2.2.2.  Multifidus 

The multifidus muscle consists of a number of fleshy and tendinous fasciculi that fill the 

groove on either side of the spinous processes of the vertebrae from the sacrum to the axis. The 

multifidus is a very thin muscle. Deep in the spine, it spans three joint segments, and works to 

stabilize the joints at each segmental level. The stiffness and stability it imparts makes each 

vertebra work more effectively and slows the degeneration of the joint structures (Figure 6) 

(Wikipedia.com). 
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Figure 6: Multifidus 

2.2.3. Latissimus Dorsi 

The latissimus dorsi, which is Latin for the 'broadest muscle of the back', is the larger, 

flat, dorso-lateral muscle on the trunk, posterior to the arm, and partly covered by the trapezius 

on its median dorsal region (Figure 7).  

 

Figure 7: Latissimus Dorsi 
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The latissimus dorsi is responsible for extension, adduction, transverse extension (also known as 

horizontal abduction), flexion (from an extended position), and (medial) internal rotation of the 

shoulder joint. It also has a synergistic role in extension and lateral flexion of the lumbar spine. 

(Wikipedia.com) 

2.3. Abdominus Muscles: 

2.3.1.  External Oblique 

The external oblique muscle (of the abdomen) is the largest and the most superficial 

(outermost) of the three flat muscles of the lateral anterior abdomen. The external oblique is 

situated on the lateral and anterior parts of the abdomen. It is broad, thin, and irregularly 

quadrilateral, its muscular portion occupying the side, its aponeurosis the anterior wall of the 

abdomen. In most humans (especially females), the oblique is not visible, due to subcutaneous 

fat deposits and the small size of the muscle (Figure 8). 

The external oblique functions to pull the chest downwards and compress the abdominal 

cavity, which increases the intra-abdominal pressure as in a valsalva maneuver. It also has 

limited actions in both flexion and rotation of the vertebral column. One side of the obliques 

contracting can create lateral flexion. It also contributes to compression of abdomen 

(Wikipedia.com). 

2.3.2.  Internal Oblique 

The internal oblique muscle (of the abdomen) is the intermediate muscle of the abdomen, 

lying just underneath the external oblique and just above (superficial to) the transverse 

abdominal muscle. 
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Its fibers run perpendicular to the external oblique muscle, beginning in the 

thoracolumbar fascia of the lower back, the anterior two-thirds of the iliac crest (upper part of 

hip bone) and the lateral half of the inguinal ligament. The muscle fibers run from these points 

superiomedially (up and towards the midline) to the muscle's insertions on the inferior borders of 

the 10th through the 12th ribs and the linea alba (abdominal midline seam) (Figure 8).  

 

Figure 8: Abdominal Muscles (External Oblique, Internal Oblique and Rectus 
Abdominus) 

The internal oblique performs two major functions. First, it acts as an antagonist 

(opponent) to the diaphragm, helping to reduce the volume of the thoracic (chest) cavity 

during exhalation. When the diaphragm contracts, it pulls the lower wall of the chest cavity 

down to increase the volume of the lungs which then fill with air.  
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Secondly, its contraction rotates and bends the trunk sideways by pulling the rib cage and 

midline towards the hip and lower back, of the same side. It acts with the external oblique 

muscle of the opposite side to achieve this torsional movement of the trunk.  

2.3.3. Rectus Abdominus 

The rectus abdominis muscle, commonly known as "abs," consists of a pair 

of muscles running vertically on each side of the anterior wall of the human abdomen. The two 

parallel muscles are separated by a midline band of connective tissue called the linea 

alba ("white line") that extends from the pubic symphysis, pubic crest and pubic 

tubercle inferiorly, to the xiphoid process and costal cartilages of ribs V to VII superiorly (Figure 

8). 

The rectus abdominis is a long flat muscle that extends along the whole length of the 

front of the abdomen. The muscle is inserted by three portions of unequal size into the cartilages 

of the fifth, sixth, and seventh ribs. The upper portion, attached principally to the cartilage of the 

fifth rib, usually has some fibers of insertion into the anterior extremity of the rib itself. Some 

fibers are connected to the costoxiphoid ligaments and the side of the xiphoid process. 

The rectus abdominis is an important postural muscle that is responsible for flexing the 

lumbar spine, as when doing a "crunch" The rib cage is brought up to where the pelvis is when 

the pelvis is fixed, or the pelvis can be brought towards the rib cage (posterior pelvic tilt) when 

the rib cage is fixed, such as in a leg-hip raise. The two can also be brought together 

simultaneously when neither is fixed in space. The rectus abdominis assists with breathing and 

plays an important role in respiration when forcefully exhaling after exercise and in conditions 

where exhalation is difficult such as emphysema. It also helps in keeping the internal organs 
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intact and in creating intra-abdominal pressure, such as when exercising or lifting heavy weights, 

during forceful defecation or parturition (childbirth) (Wikipedia.com). 

Escamilla [71] studied the effectiveness of traditional and nontraditional abdominal 

exercises in activating abdominal and extraneous musculature by using surface EMG to capture 

muscle activity from the upper and lower rectus abdominis, external and internal oblique, rectus 

femoris, Latissimus dorsi and lumbar paraspinal muscle while each exercise were performed. 

The Power Wheel, hanging knee-up with straps, and reverse crunch inclined 30º were the most 

effective exercises in activating abdominal musculature and also the most effective in activating 

extraneous musculature. The relatively high rectus femoris muscle activity obtained with the 

Power Wheel (pike and knee-up), reverse crunch inclined 30º, and bent-knee sit-up may be 

problematic for some people with low back problems. Dickstein also focused on the EMG 

activity of the lumbar erector spinae (ES), latissimus dorsi (LD), rectus abdominis (RA), and 

external oblique (EO) muscles in their study of trunk flexion-extension of post-stroke 

hemiparetic subjects. (Dickstein et. al. 2004) 

 Marras and Granata collected ten channels of EMG data from bipolar surface electrodes 

over the right and left sides of the erector spinae, rectus abdomini, latissimus dorsi, external 

abdominal obliques, and internal abdominal oblique muscles for their study of spine loading 

during trunk lateral bending motion. (Marras et. al. 1997) 

 Similarly, in their study of trunk rotation Ng et. al. 2002 monitored the rectus abdominis, 

external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus muscles 

in their study of the EMG activity of trunk muscles and torque output during isometric axial 

rotation exertion (Joseph K.-F Ng et al. 2002). 
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CHAPTER 3 
 
 

METHODS AND TECHNIQUES 

As the literature review in the previous chapter makes clear, there remains a need for an 

in-depth analysis of the effect of carrying a unilateral load on posture and trunk biomechanics 

when walking. We often carry a unilateral load in the form of a laptop bag or briefcase during 

the course of our everyday lives, but doing so for extended periods of time on a regular basis 

may have a significant effect on our body characteristics. Laptops are generally transported in a 

single strap bag carried over one shoulder. The weight of the laptop, which typically weighs up 

to 7 lbs, along with other items in the bag such as the power cable and any paperwork or books, 

can cause considerable low back pain and strain on the shoulder muscles, as well as restricting 

blood flow and pinching nerves. Carrying a laptop bag day after day for long periods of time can 

cause users to walk with poor posture and place serious strain on several different parts of the 

body, especially the back. This is particularly critical for younger users; a study conducted at 

Auburn University reported that book bags that are too heavy for their wearers may threaten 

developing spines. [1] 

  The study reported here was therefore designed to study the effect of carrying a unilateral 

load (maximum 25 lbs) during gait on posture and trunk biomechanics using nonlinear methods. 

Suitable areas on each participant’s low back and spine were chosen for attaching surface 

electromyography (EMG) sensors and motion sensors, namely the low back, along the lower ribs 
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on each side and on the abdomen [71] and attached using double sided tape. Participants walked 

back and forth on a wooden platform at a comfortable walking speed and monitored as they 

carried varying loads (sand bags) weighing 0, 5, 10, 15, 20, and 25 pounds in one hand at 

intervals of 30 steps each three separate times. EMG data and motion data were collected using a 

computer. Individual participants were tested only once for this study. 

Approvals were obtained from Institutional Review Boards (IRB) of both Auburn University 

(Protocol # 12-190EP1207) and Palmer College of Chiropractic, IA (IRB Assurance # 

2012G144).  

3. Methods: 

3.1. Subject selection: 

All participants were recruited via word of mouth. Potential participants interested in the 

study called the research clinic to schedule an appointment or scheduled an appointment in 

person. Participants attended a baseline visit where they reviewed the informed consent 

document with a study coordinator and received an eligibility examination. Signed informed 

consent documents were obtained from each participant following the informed consent process. 

Consented participants then underwent an eligibility examination to ensure that risks to their 

health and safety were minimized. All participants were between 18 and 65 years of age and 

capable of reading and understanding English. Participants who currently, or within the past 

month, had suffered from a musculoskeletal injury that altered their gait were not eligible for the 

study. Following clinical evaluation and examination, clinicians verified eligibility status for 

each participant. Participants who, in the opinion of the examining clinician, were at risk of 

injury while conducting this test were also deemed ineligible. Enrolled participants did not 
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experience any pain while performing the test. Gender and ethnicity were representative of those 

attending the Palmer College of Chiropractic (PCC) and the general population within the Quad 

Cities area (Davenport, IA, Bettendorf, IA, Rock Island, IL, Moline, IL, and East Moline, IL) 

where the clinic is located. Students and employees of PCC and volunteers from the Quad City 

community were invited to participate in this study. There was no penalty for individuals who 

did not want to participate. The Informed Consent document (ICD) were kept with each 

participant’s research clinic chart, and a photocopy of the ICD provided to participants 

Sample Size –  

To ensure success, a biomedical study must have a well-defined problem and an 

appropriate population, as well as a reliable procedure and instruments and any other necessary 

resources. In particular, the sample size must be large enough to avoid wasting resources on an 

inconclusive study but small enough to yield useful results in a timely manner. Also, in 

experiments involving human or animal subject’s ethical issues come into play: an over-

populated experiment will expose an unnecessarily high number of participants to potentially 

hazardous tests, while under-populated studies expose subjects to potentially hazardous tests 

without advancing the knowledge base. [59] 

Finally, the study should be of sufficient size relative to the goal of the study. The present 

study was a preliminary study, so time and cost were the main constraints. A sample size of ten 

subjects was considered sufficient for this study; 9 subjects (6 male and 3 female) were actually 

recruited (Table 1) and Due to bad data from one participant, data analysis were done for 8 

participants.  
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Table 1: Demographic data 

 Age (yrs) Height (cm) Weight (kg) 

Mean (SD) 29.6 (7.4) 173.3 (6.4) 69.3 (6.6) 

 

3.2. Inclusion and exclusion Criteria for the participants: 

Inclusion Criteria –  

1. Participant must be adults (≥18 and ≤65) and capable of reading and understanding 

English language.  

2. A signed informed consent document must be obtained for each. 

Exclusion Criteria –  

1. Participants who currently, or within the past month, had suffered from a musculoskeletal 

injury causing altered gait.  

2. Participants experiencing pain while performing any of the motions required by the 

testing protocol. 

3. Participants identified with a condition, in the opinion of the examining clinician that 

would compromise collection of EMG or motion sensor data. 

4. Participants unable to tolerate or perform the study procedures without symptom 

aggravation. 

5. Participants with an implanted pacemaker, defibrillator or other non-removable metal 

appliance. 

6. Participants suspected of drug or alcohol dependence or abuse by the examining 

clinician. 
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7. Participants who were pregnant or seeking to become pregnant. 

8. Participants reporting sensitivity to the adhesive. 

9. Participants with uncontrolled hypertension. 

10. Participants seeking or receiving compensation for any disability. 

11. Participants for whom diagnostic procedures were deemed necessary in the opinion of the 

examining clinician or Case Review Panel. 

3.3. Preparation: 

Once a participant was deemed eligible and had received their safety review and authorization by 

a research clinician, the participants were scheduled for a test visit at the Biomechanics lab at 

PCCR. Preparation of the participant for testing included the identification of anatomical land 

marks, and trunk muscle sites at which to attach the surface electromyographic (sEMG) 

electrodes and motion sensors.  EMG activities were recorded using surface electrodes to 

examine the muscle activity in the low back and along the lower ribs and on the outer abdomen 

[27, 71]. The anatomical landmarks for the motion sensors were the T1, L1, L3, and S1 

vertebrae. Participants wore scrubs and shorts during the test. Surface EMG sensors and motion 

sensors were attached using double sided tape. The EMG electrode and motion sensor sites were 

prepared using an alcohol wipe and a mild abrasive pad to allow better sensor contact with the 

skin. The areas where the electrodes were to be attached were shaved using a disposable razor or 

sterilized electric razor if necessary with the participant’s consent; they could refuse this 

procedure. During this preparation a brief description of the test procedure was given to the 

participant. 

3.4. Data Acquisition:  
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For this study, Motion Data, Force Plate Data and EMG data were obtained. EMG 

sensors measured the electrical activity of the muscles and motion sensors measured the spinal 

posture and variation during walking. The motion data was obtained using a Liberty 24/8 

(Polhemus, Vermont, USA) system at 120 samples per second. A fourth order Butterworth filter 

with low pass frequency of 20 Hz was used to filter the motion data [27]. The EMG data was 

recorded using a DELSYS Bagnoli - 12 Channel EMG System at 1200 samples per second. The 

EMG signals were amplified 1000 times and band passed between 20 Hz and 500 Hz [27, 88]. 

Force Plate Data was recorded at 120 samples per second. The literature review revealed that 

different types of EMG systems were used by previous researchers. For example, Christoph [27] 

used a bipolar surface EMG system (SEMG, 5–700 Hz, Biovision, Wehrheim, Germany). Raw 

surface EMG was centered and high-pass filtered using 4th-order Butterworth filter with cut-off 

frequency of 20 Hz to avoid influences from movement artifacts. 

Frequencies below 20 Hz do not suffer from noise due to wire sway, whereas frequencies 

over 500 Hz eliminate the need to compensate for the noise arising due to surface contact 

between the electrodes and the skin [61]. Motion Monitor 7.0 software (Innovative Sports 

Training, Inc.) was used to collect both Motion and EMG data. 

The sensors were then attached to the skin using double sided tape (Figures 9, 10 and 11). 

EMG data was obtained from 6 muscles groups, namely Multifidus, Erector Spinae, Latissimus 

Dorsi, Internal Obliques, External Obliques and Rectus Abdominis (Table 2). The locations for 

the placement of the sEMG sensors were determined based on previous studies. [27,71and 83] 

Participants warmed up for 2-3 minutes in the Biomechanics lab. During warm up each 

subject achieved a self selected comfortable walking pace. Once the data acquisition started, 

participants were asked to walk back and forth at their comfortable speed carrying a load in one 
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Figure 9: sEMG and motion sensors attached to back muscles and vertebrae 
respectively 

 

Figure 10: sEMG sensors attached to abdominal muscles 
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Figure 11: Participant with load 

Table 2: EMG sensor placement 

 

Muscle Side Location 

Erector 
Spinae 

Left Over the largest muscle mass found by palpation and 4 cm from 
midline of the spine at the third lumbar vertebrae. Right 

Rectus 
Abdominus 

Left 3 cm from the midline of the abdomen and 2 cm above the 
umbilicus. Right 

External 
Oblique 

Left 10 cm from the midline of the abdomen and 4 cm above the ilium 
at an angle of 45º. 

 
Right 

Internal 
Oblique 

Left Positioned horizontally 2 cm inferomedial to the ASIS within a 
triangle outlined by the inguinal ligament, the lateral border of 

the rectus sheath, and a line connecting the anterior superior iliac 
spine (ASISs). 

Right 

Multifidus Left Bilaterally at the level of L5 and aligned parallel between the line 
of the posterior-superior iliac spine (PSIS) and the interspinous 

space of L1 and L2. 
Right 

Latissimus 
Dorsi 

Left Positioned obliquely (approximately 25° from horizontal in the 
inferomedial direction) 4 cm below the inferior angle of the 

scapula. 
Right 
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hand (either right or left hand) weighing 0,5,10, 15, 20, and 25 pounds, in turn, on a wooden 

walking platform (5 ft × 8 ft) for a maximum of 30 steps/cycle. Participants walked at a self-

selected speed to minimize any potential discomfort during walking. Data were collected on the 

EMG activity of trunk muscles and motion of the trunk and spine using Motion Monitor software 

on a desktop computer. Three trials were performed for each load. Data were collected for each 

trial followed by a 2 minute break. The total estimated duration of the test was approximately 

1hour. Participants were tested once. The data was then exported from the motion monitors using 

the preference file created (see Appendix). The data was exported twice, once for motion data 

and Force Plate data, and then for EMG data. 

3.5. Data analysis: 

  The raw data (EMG and motion) were exported and saved on a password protected 

network drive. Motion Data were filtered using the motion monitor and EMG data were filtered 

using the motion monitor and a fourth order Butterworth band pass filter using the MatLab 

program. The data was saved in separate Excel files for the 0 lb, 5 lb, 10 lb, 15 lb, 20 lb, and 25 

lb loads. For the motion data, Range Of Motion (ROM), Correlation Dimension (CoD), and 

Approximate Entropy (ApEn) were calculated. For EMG, root mean square EMG values, Mean 

and Median Frequency of the EMG data were calculated using a custom developed MatLab 

program.  For Force Plate Data, 1st peak force (Fz1), 2nd Peak force (Fz3) and minimum force 

(Fz2) between the 1st peak and 2nd peak forces were calculated.  

3.5.1. Motion data: 

3.5.1.1. Time series –  
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In statistics, signal processing, econometrics and mathematical finance, a time series is a 

sequence of data points measured at successive time instants over uniform time intervals. Time 

series analyses are then used to extract meaningful statistics and other characteristics from the 

data. Time series forecasting refers to the use of a model to predict future values based on 

previously observed values. Time series are usually plotted via line charts [11]. A time series can 

be represented by a function x (t) where t has the discrete value t=t0,t1, t2,….tn where the time 

interval delta t= tn+1-tn. The motion data obtained here took the form of a time series. Examples 

occur in a variety of fields ranging from engineering to economics. Time series analyses may be 

divided into two classes: frequency-domain methods and time-domain methods. For example, 

measuring the value of retail sales each month of the year would comprise a time series. Other 

examples include daily stock market prices or pressure readings from pressure gauges at some 

factories (Chatfield Chris, ‘The Analysis of Time Series: An Introduction’). The best way to see 

how a physical quantity changes with time is to plot a graph. Figure 12 shows a time series 

consisting of a simple periodic function, while Figures 13 and 14 show typical examples of the 

data collected for this study. 

Non-linear methods were applied to calculate the chaos in the dynamic system being studied, but 

before this could be done it was important to ensure that the system is indeed chaotic. Chaos 

theory is used to study the behavior of dynamical systems that are highly sensitive to initial 

conditions, an effect which is popularly referred to as the butterfly effect. Small differences in 

initial conditions yield widely diverging outcomes for chaotic systems, rendering long-term 

prediction impossible in general [13]. 
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Figure 12: Time series for Sine Curve 

 

Figure 13: Time series for Walking with 25 lb load for Lumbar LB for subject 4 
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Figure 14: Time series for Walking with 25 lb resistance, Thoracic LB, subject 4 

  State Space 

To examine the dynamic behavior of the time series data, it is first necessary to examine 

the structural characteristics of a time series by creating a state space where the behavior of the 

system is embedded. State space is a vector space where a dynamic system such as a moving 

body during locomotion can be defined at any point. Phase space or a phase plane plot is a 

representation of the dynamic behavior of a system in state space [77]; phase space or state space 

is an abstract mathematical space in which coordinates represent the variables needed to specify 

the phase (or state) of a dynamic system. It includes all the instantaneous states the system can 

have. To complement the common time-series plot, a phase space plot provides a different view 

of the evolution of motion. Although some time series can be very long and therefore difficult to 

show on a single graph, a phase space plot condenses all the data into a manageable space on a 
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graph. Consequently, chaos theory generally deals with phase space [40] either in the form of 

standard phase space or pseudo phase space.  

3.5.1.1.1. Standard Phase Space 

Standard phase space (or phase space) is an abstract space in which coordinates represent 

the variables needed to specify the state of a dynamic system at a particular time. On a graph, a 

plotted point neatly and compactly defines the system's condition for some measuring occasion, 

as indicated by the point's coordinates (values of the variables). For example, a baby's height can 

be plotted against its weight. Any plotted point represents the state of the baby (a dynamic 

system) at a particular time, in terms of height and weight. The next plotted point is the same 

baby's height and weight one time interval later, and so on. Thus, the succession of plotted points 

shows the growth of the baby over time and comparing successive points shows how height has 

changed relative to weight, over time t. 

 

 

Figure 15: Example of standard phase space 
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(a) 

 

(b) 

Figure 16: Phase space plot (a) for periodic time series, (b) For Thoracic LB during 
walking at 25 lb for subject 5. 

 
  As Figure 16 shows, periodic data give a closed orbit with complete overlapping of the 

trajectories and absolutely no divergence, but a phase plot of chaotic data gives an elegant 
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picture that is not apparent when only the time series is observed. The phase space plot of a 

random series exhibits no clear pattern. 

3.5.1.1.2. Pseudo Phase Space 

Each axis on a standard phase space graph represents a different variable, as in the 

example shown in Figure 16. In contrast, a graph of the one-dimensional map plots two 

successive measurements (xt+1 versus xt) of one measured feature, x (Figure 17). Because xt and 

xt+1 each have a separate axis on the graph, chaosologists (those who study chaos) think of xt 

and xt+1 as separate variable ("time-shifted variables") and of their associated plot as a type of 

phase space. However, this is not a conventional phase space because the axes all represent the 

same feature (e.g., stock price) rather than different features. Also, each plotted point represents 

sequential measurements rather than a concurrent measurement. Hence, the graphical space for a 

one-dimensional map is really a pseudo phase space. Pseudo phase space is an imaginary 

graphical space in which the axes represent values of a single physical feature, taken at different 

times.  In the most common type of pseudo phase space, different temporal measurements of the 

variable are taken at uniform time intervals (Garnett P. Williams et al., 1997). 

 

Figure 17: Pseudo phase space plot of experimental data 
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3.5.1.2. Time Lag: 

In order to classify time series with nonlinear tools, it is first necessary to reconstruct a 

state space where the behavior of the system is embedded. It is essential to quantify an 

appropriate time delay and embedding dimension for the investigated time series. Investigation 

of the characteristics of the state space is a powerful tool for examining a dynamic system 

because it provides information that is not apparent by simply observing the time series [21, 24]. 

To reconstruct the state space, a state vector must first be created from the time series. This 

vector was composed of mutually exclusive information about the dynamics of the system (Eq. 

(1)). 

y(t) = [x(t), x(t-T1), x(t-T2)…………]                                        (1) 

where y(t) is the reconstructed state vector, x(t) is the original data, and x(t – Ti) represents the 

time delayed copies of x(t). The time delay (Ti) for creating the state vector was determined by 

estimating when information about the state of the dynamic system at x(t) would be different 

from the information contained in its time-delayed copy. If the time delay chosen is too small 

then successive points in the state space may be too close together to be sufficiently independent 

and no additional information about the dynamics of the system would be contained in the state 

vector. Conversely, if the time delay chosen is too large then information about the dynamics of 

the system may be lost, resulting in random information [21, 24]. Selection of the appropriate 

time delay was performed using an average mutual information algorithm; Abarbanel, 1996).  

Ix(t), x(t+T) = ∑ P(x(t), x(t+T))log2
𝑃(𝑥(𝑡),𝑥(𝑡+𝑇))

𝑃�𝑥(𝑡)�𝑃(𝑥(𝑡+𝑇))                          (2) 

where T is the time delay, x(t) is the original data, x(t + T) represents the time delay data, P(x(t), 

x(t + T)) is the joint probability for the measurement of x(t) and x(t + T), P(x(t)) is the 

probability for the measurement of x(t), and P(x(t + T)) is the probability for the measurement of 
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x(t + T). The probabilities were constructed from the frequency of x(t) occurring in the time 

series. Average mutual information was iteratively calculated for various time delays and the 

time delay selected was located at the first local minimum of the iterative process (Figure 18) 

[21, 77]. This selection was based on previous investigations that have determined that the time 

delay at the first local minimum contains sufficient information about the dynamics of the system 

to reconstruct the state vector [21]. 

 

Figure 18: Time lag during walking with load = 0, Lumbar LB, subject 4 

3.5.1.3. Embedding Dimension 

Knowing the time delay T, the embedding dimension d for the dynamic system can be 

computed. The embedding dimension is the minimum number of variables required to form a 
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valid state space from a given time series, i.e. the minimum number of variables required to 

define a given dynamic system. The embedding dimension was estimated using the “global false 

nearest neighbors” algorithm proposed by Kennel et al. (1992) and Abarbanel et.al. 1996. This 

algorithm is based on the idea that in the passage from dimension d to d + 1, it is possible to 

differentiate between points on the orbit that are true neighbors and those that are not. If the 

embedding dimension d is too small, then too many false nearest neighbors will arise when the 

point Xi is considered as a point in the d dimensional state space, while if the embedding 

dimension is too large, the point become so distant in the d dimension state space that again they 

are essentially random (Figure 19). 

 

 

Figure 19: Embedding Dimension during walking without load = 0, Lumbar LB, subject 4 

3.5.1.4. Correlation Dimension (CoD): 
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  Once the time delay T and embedding dimension d have been calculated the time series 

can be classified using nonlinear tools such as Correlation Dimension. Correlation dimension 

approximates the fractal dimension of the region in state space occupied by the dynamic system 

[17, Theiler, 1986]. In chaos theory, the correlation dimension is a measure of the dimensionality 

of the space occupied by a set of random points. The most popular measure of dimension, it can 

be used to evaluate how the data points in a time series from a dynamic system are organized 

within the state space (Sprott and Rowland, 1992). Compared to other methods of measuring 

dimension (e.g. the box-counting dimension, and the information dimension), correlation 

dimension is straightforward and quickly calculated, less noisy when only a small number of 

points is available, and is often in agreement with other calculations of dimension [14]. The 

information dimension is usually based on spreading a grid of uniformly sized compartments 

over the trajectory like a quilt, which is akin to moving a measuring device over the object by 

equal, incremental lengths. Analysis for the correlation dimension could also take that approach, 

but instead the usual technique is to center a compartment on each successive data point in turn, 

regardless of how many points a region has and how far apart the points may be. 

  Many types of exponent dimension are essentially impossible to compute in practice, 

either because they apply to some unattainable limit (such as ε→0) or they are computationally 

very inefficient. The correlation dimension avoids those problems. Also, for a given dataset, it 

probes the attractor to a much finer scale than, say, the box-counting dimension. Two data points 

that plot close together in phase space are highly correlated spatially and one value is a close 

estimate of the other. However, depending on the trajectory's route between them, those same 

two points can be totally unrelated with regard to time, as the time associated with one point may 

be vastly and unpredictably different from the time of the other. The correlation dimension only 
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tests points for their spatial interrelations and ignores time, which is also true of the information 

dimension 

  Before moving on to the measuring procedure for CoD, both the Time Delay and 

Embedding Dimension must be determined. Visual Recurrence Analysis software can be used to 

compute the correlation dimensions as well as the Time lag or delay and the embedding 

dimension (Figure 20). 

 

Figure 20: CoD during walking without load for Thoracic LB for subject 4 

3.5.1.5. Quantify Correlation Dimension – 

Once the lag is specified, the procedure usually begins with an embedding dimension of 

two (two-dimensional pseudo phase space) and proceeds as follows. First, situate the measuring 

cell such that its center is a datum point in the pseudo phase space. Next, count the number of 

data points in the cell. After that, center the cell on the reconstructed trajectory's next point (in 

the ideal approach) and make a new count. Keep repeating that same procedure, systematically 

moving the cell's center to each successive point on the trajectory. Consider an example with five 
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data points. First center the circle on point 1 (Figure 21). Within the circle, points 2 and 3 

qualify. (The reference point is not included in the count.) Keeping that same radius and 

systematically centering the circle on each point, in turn, count the qualifying points within each 

circle. Once through the entire dataset with the same radius, add up the total number of 

qualifying points for that radius. Once through the entire dataset with the same radius, add up the 

total number of qualifying points for that radius. 

 

 

Figure 21: Identifying qualifying neighbors from (a) point 1 and (b) point 2 

For example, Figure 21 has a total of eight points for the radius indicated: two points 

when the circle is centered at point 1, two more when it is on point 2, two again at point 3, and 

one point each for centering on points 4 and 5. Having obtained the total for the radius chosen, 

work only with that total rather than with the numbers pertaining to any particular point, referred 

to as the "total number of points within radius ε" or the "total number of qualifying points."  

The total number of points defining the trajectory (i.e., the size of the basic-dataset) 

obviously influences the total count for a given radius. For instance, the count of qualifying 

points for a given radius is much smaller for a trajectory made up of ten points than for a 

trajectory of 10,000 points. For comparison purposes, therefore, normalize each count of 

qualifying points to account for the total number of points available on the trajectory by dividing 
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each total of qualifying points by some maximum reference constant. Here, this is the maximum 

number of total points obtainable by applying the circling-and-counting procedure to each point 

throughout the dataset, for a given radius. The normalized result is the correlation integral or 

correlation sum, Cε, for the particular radius: 

Cε = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 𝜀

𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 

= 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 𝜀

𝑁(𝑁−1)                                                                                      (3) 

in which N is the total number of points in the dataset (i.e., on the trajectory). 

In the technical literature, Equation 24.2 often appears in an imposing symbol form, as follows: 

Cε = lim
𝑛→∞

 
1
𝑁.𝑁 ∑ ∑ 𝐺(𝜀 − |𝑥𝑖 − 𝑥𝑗|)𝑁

𝑗=1
𝑁
𝑖=1                                   (4) 

Here, xi refers to the center of the measuring circle and xj is each of the other points on the 

trajectory. For each center point, the absolute distance between xi and xj is |xi - xj|. The distance 

formula gives that absolute distance. Subtracting that distance from the radius e by computing ε - 

|xi - xj|, if the answer is negative then the measured distance |xi-xj| is greater than ε and point xj is 

beyond the circle of radius ε and therefore will not qualify for inclusion. I ε - |xi - xj| is positive, 

then | xi-xj | is smaller than ε, and the point xj is within the circle. 

G is used to label each qualifying point — that is, each point for which ε - |xi - xj| is 

positive (>0). If ε-|xi-xj| is positive, the point xj has to be counted and for all those cases the 

computer program assigns a value of 1 to the entire expression G (ε - |xi - xj|). If, instead, ε - |xi - 

xj| is negative, the point xj is beyond the radius of the measuring device and the computer 

program assigns a value of 0 to G (ε - |xi - xj|). 

Equation 4 also normalizes the data by dividing the total number of qualifying points by 

the total number of available points. Strictly, the total number of available points is N (N-1) so 

the counted total should be multiplied by 1/ [N (N-1)].  
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Having determined the correlation sum for the first radius, the radius is increased and the 

process repeated for the new radius. Enlarging the radius includes more points than the smaller 

radius, and thus a larger total number of qualifying points (the numerator in Equation 3). The 

normalization constant N2 depends only on the size of the basic dataset and so is constant 

regardless of the radius ε. Hence, the larger ε yields a larger correlation sum. 

The procedure is repeated using larger and larger radii, with each new radius producing a 

larger and larger total of qualifying points and a larger correlation sum to generate a dataset of 

successively larger radii and their associated correlation sums. Those radii and correlation sums 

apply only to the two-dimensional pseudo phase space and it is necessary to move on to a three-

dimensional pseudo phase space (an embedding dimension of three) and compute a similar 

dataset. All computed distances with the distance formula now involve three coordinates instead 

of two. Once the radii and associated correlation sums for three-dimensional pseudo phase space 

are assembled, this is extended four embedding dimensions, then five, and so on. A typical 

analysis involves computing a dataset for embedding dimensions of up to ten, depending on the 

plot of the data obtained. 

 

Figure 22: Idealized plot of Correlation Sum vs. Radius for increasing Embedding 
Dimension 
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The slope of the scaling region gives us the value of the CoD for that particular 

embedding dimension. Figure 22 shows the plots of correlation sum vs. measuring radius for 

successive embedding dimensions and illustrates how, the slopes of the scaling regions for the 

successive embedding dimensions tend to saturate to one particular value. This value of the slope 

is the CoD for the given time series. 

Deterministic and Random Correlation Dimensions:  

The correlation dimension or exponent for a given embedding dimension is represented 

by the slope of the straight line for that dimension in Figure 22. The steeper the slope, the greater 

the correlation dimension. Therefore, correlation dimension increases with increasing embedding 

dimension.  

However, for highly deterministic or chaotic data, although the correlation dimension initially 

increases with increasing embedding dimension, eventually it becomes constant. The lower 

curve in Figure 23 shows an idealized relation, where the line for chaotic data flattens 

andbecomes approximately horizontal at some final correlation dimension. If the 

correlationdimension is 2.68, for example, three variables might be enough to model the system.  

 
Figure 23: Hypothetical behavior (on arithmetic scales) of correlation dimension with 

increase in embedding dimension, for chaotic as compared to random data. 
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Random data, in contrast, continually fills the allotted space as the embedding dimension 

increases, at least for an infinite number of observations. Consequently, the slope (correlation 

dimension) continues to increase without any indication of becoming asymptotic, as shown in the 

upper curve in Figure 23 (Garnett P. Williams, 1997. Chaos Theory Tamed). 

 
3.5.1.6. Approximate Entropy (ApEn)  

Entropy is a statistical concept first introduced by Shanon and Weaver in 1963 as a 

measure of uncertainty or variability. The Approximate Entropy (ApEn) technique is used to 

quantify the amount of regularity and the unpredictability of fluctuations over time-series data.  

Accurate entropy calculations require vast amounts of data and the results will be greatly 

influenced by system noise, making it impractical to apply these methods to experimental data. 

ApEn was developed by Pincus [68, 69] to handle these limitations by modifying an exact 

regularity statistic, Kolmogorov-Sinai entropy. ApEn was initially developed to analyze medical 

data but was later extended to areas such as finance, psychology, and human factors engineering 

[15]. Pincus defined ApEn as a specific method to determine complexity that can quantify the 

regularity or predictability of a time series. Approximate Entropy measures the logarithmic 

probability that a series of data points a certain distance apart will exhibit similar relative 

characteristics on the next incremental comparison within the state space [68,69]. If a time series 

has repetitive patterns of fluctuation, it renders that time series more predictable than a time 

series in which such patterns are absent. ApEn provides a direct measurement of feedback and 

connection. A low ApEn value often indicates predictability and high regularity of time series 

data, whereas a high ApEn value indicates unpredictability and random variation. ApEn values 

typically range between 0 and 2, with values close to 2 indicating greater complexity and those 

close to 0 indicating more predictability [22, 82]. Data points that exhibit greater possibilities of 
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remaining the same distance apart upon comparison will result in lower ApEn values, while 

those with large differences in distance between them will result in higher ApEn values.  

3.5.1.7. Calculation of ApEn: 

Calculating ApEn requires the selection of two parameters: m, the number of observation 

windows to be compared, and r, the tolerance factor. ApEn is defined mathematically according 

to the following procedure:  

Step –1: Form a time series of data u (1), u (2) ………….u (N). These are N raw data values 

from measurements taken at equally spaced points in time.  

Step 2: Fix input parameters m, as an integer, and r, as a positive real number. The input 

parameter m represents the length of compared runs, and r represents the tolerance that specifies 

a filtering level.  

Step 3:  Form a sequence of vectors x(1), x(2)……..x(N - m + 1) in Rm, real m-dimensional 

space, defined by x(i ) = [u(i)…..u(I + m - 1)].  

Step 4: Use the sequence x(1), x(2)…..x(N - m + 1) to construct for each I, 1 ≤ i ≤ N - m + 1.  

Cim(r) = (number of x(j) such that d[x(i), x(j)]≤ r)/(N - m+1).  

It is first necessary to define d[x(i), x(j)] for vectors x(i) and x(j).  

  

where the u(a) are the m scalar components of x. d represents the distance between the vectors 

x(i) and x(j), given by the maximum difference in their respective scalar components.  

Step 5: Define 

Φm(r) = (N - m + 1)-1 Σi=1N-m+1 In Cim(r),  

where ln is the natural logarithm.  

Step 6: Define Approximate Entropy (ApEn) as: 
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ApEn (m, r, N) = Φm(r) - Φm+1(r) 

In order to compare the results, these parameters, along with the data length, must be kept the 

same for all calculations [22, 68, 69, and 82]. 

Typically m = 2 or 3; r depends on the application. The choice of m is made to ensure that the 

conditional probabilities, defined in the equation below for fixed m and r, are reasonably 

estimated from the N input data points. Theoretical calculations indicate that reasonable 

estimates of these probabilities, for fixed m and r chosen as discussed below, are achieved with 

between 10m and 30m points, analogous to the findings reported by Pincus [68, 69]. 

  ApEn can be computed for any time series, chaotic or otherwise. The number of input 

points for ApEn computations typically ranges from 50 to 5,000 points. Using fewer than 50 data 

points yields less meaningful results, especially for m = 2 or 3, while using more than 5,000 

points will result in unacceptably long computational times. For noiseless, theoretically 

described systems such as Henon maps and logistic maps it has been shown that if entropy (A) ≤ 

entropy (B), then ApEn (m, r) (A) ≤ ApEn (m, r) (B) and vice versa. Moreover, for both 

theoretical and experimental systems, if ApEn (m1, r1) (A) ≤ ApEn (m1, r1) (B), then ApEn (m2, 

r2) (A) ≤ ApEn (m2, r2) (B) and vice versa. This ability of ApEn to preserve the order is a relative 

property and is an important utility of ApEn [17, 18]. As a result, one should not conclude that 

for the same systems ApEn (m1, r1) (A) ≤ ApEn (m2, r2) (B), as ApEn values differ with different 

m and r values. The strength of ApEn is its ability to compare systems. 

  To calculate ApEn, two critical parameters (m and r) must be set in order to achieve 

reasonable results. Different m and r values would result in different results: ApEn (2, 0.1, N) 

may be different from ApEn (3, 0.01, N). ‘r’ is effectively a filter level and in order to eliminate 

the effect of noise in the ApEn calculation, ‘r’ must be chosen such that its value is above most 
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of the noise. In order to achieve reasonable results the magnitude of noise should rarely reach ‘r’. 

Another key factor in choosing the value of r is that it should be large enough to achieve 

numerically stable conditional probability estimates. If the ‘r’ value is small, unstable conditional 

probability estimates are obtained, while larger ‘r’ values result in detailed system information 

being lost due to filter coarseness. In the current study a value of 2 was used for m and r was 0.2 

[22, 68, 69, and 82].  

3.5.2. EMG Data Analysis –  

3.5.2.1. Identifying muscle activation pattern–  

For this study, EMG data were obtained from 12 low back and abdomen muscles (Erector 

Spinae Left and Right, Multifidus Left and Right, Latissimus Dorsi Left and Right, Internal 

Obliques Left and Right, External Obliques Left and Right, and Rectus Abdominis Left and 

Right) using 12 channels of DELSYS sEMG sensors. EMG sensors measured the electrical 

activity of the muscles during walking. The EMG data was recorded using a DELSYS Bagnoli - 

12 Channel EMG System at 1200 samples per second. The EMG signals were amplified 1000 

times and band passed between 20 Hz and 500 Hz [27, 88]. EMG signal analysis identified the 

muscle activation pattern from recruited low back and abdomen muscles during gait while 

carrying a unilateral load. A time series was created from EMG signals and then analyzed. If a 

muscle was not recruited, then the spike in muscle activity was absent throughout the motion, 

indicating that that muscle was not involved in that motion. 

3.5.2.2. Fast Fourier Analysis 

Time series analyses are generally divided into two classes: frequency-domain methods 

and time-domain methods. Frequency domain analysis treats the data as a function of frequency 

and time domain analysis as a function of time [12, 77]. Frequency domain analysis is a powerful 
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data analysis tool employed by variety of disciplines, including mathematics, optics, genetics, 

and physics. The frequency domain transform most commonly used in biomechanics is the Fast 

Fourier Transform. In human movement, most data is collected in the time domain, but this is 

not the only way to examine the data. The data can be described as a sum of simple sinusoids 

each having specific frequency using Fourier transformations. A frequency domain 

representation can also include information on the phase shift that must be applied to each trace 

in order to recombine the frequency components and thus recover the original time signal. The 

Fourier transform decomposes a function into the sum of a (potentially infinite) number of sine 

wave frequency components. The 'spectrum' of frequency components is the frequency domain 

representation of the signal. This study will apply non-linear methods to calculate the chaos in a 

dynamic system, but it is first necessary to ensure that the system is indeed chaotic, as noted 

earlier. There are several ways this can be done, including Fast Fourier Transformation (FFT) 

and Phase Plane plots [57]. A fast Fourier transform (FFT) is an efficient algorithm to 

compute the discrete Fourier transforms (DFT) and it’s inverse.  

 

Figure 24: FFT of a periodic sine curve 
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Figure 25: FFT of experimental motion data 

Let x0, ...., xN-1 be complex numbers. The DFT are defined by the formula 

 

The FFT plots in Figures 26 and 27 show that the experimental data contain continuous 

spectra over a limited range, as opposed to an FFT of a simple sine wave, which returns a single 

frequency. This is an indication that the experimental data might be chaotic. The next step is 

therefore to estimate the Power Spectral Density.  

3.5.2.3. Power Spectral Density 

Another way to examine the contribution of frequencies to the signal is by calculating the 

power spectral Density (PSD) of the signal (Thomson, 1982; Welch, 1967). The power spectrum 

of a given signal is unique and represents the square of the magnitude of the signal’s Fourier 

transform. The Power Spectrum and PSD of the kinematics data and kinetic data have a high 

power at lower frequencies and vice-versa (winter et al.1974). In the case of the EMG data, this 
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represents a random process that makes the power spectrum noisy (Figure 26) as opposed to the 

estimated PSD, which represents a relatively smooth, process. Generally, PSD are used in the 

analysis of EMG signals, especially during fatigue protocols. It has been observed (DeAngelis 

et.al.1990; DeLuca et al. 1984; Linsseen et al. 1993) that the firing rate of muscles becomes 

slower with the onset of fatigue. 

 

Figure 26: PSD for ES Left during walking with 10 lbs for participants 7. 

3.5.2.4. Sampling Frequency 

To ensure the data have been collected at the right sampling frequency, Shannon’s 

sampling theorem (Hamill et al. 1997) must be applied. This states that a band limited at the 

frequency of f (Nyquist Frequency) signal should be recorded at a rate of at least 2f. If a 

frequency lower than the Nyquist Frequency it utilized, vital information will be hidden. For 

example, consider the human eye. If it samples at approximately 14 pictures per seconds (14Hz), 

when a bicycle moves slowly we can easily see its wheels rotating forward, but when the wheel 
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rotates with higher velocity, the wheel appears to rotate backward. This is because they eye does 

not sample fast enough to capture the fast movement of the wheel. This has implications for data 

storage, however, as a higher sampling frequency requires more space to store the resulting data. 

In this study, for the Kinetic data and Kinematics Data a 120 Hz sampling frequency was 

selected and for the EMG data a 1200 Hz sampling frequency [46, 51, 77].   

3.5.2.5. Mean and Median Frequency of SEMG signals –  

The next step was to calculate the mean and median frequencies of the recorded sEMG 

signals from the calculated PSD. The median frequency is the frequency at which 50% of the 

total power of signal is reached. Mean frequency is the frequency at which the average power of 

signal is reached (BIOPAC Systems Inc., Application notes). Previous research has shown that 

the mean and median frequencies decrease with fatigue induced in muscles (Bilodeau et. al., 

2003; Mannion et. al., 1997). It would therefore be interesting to see how the mean and median 

frequencies in the different muscles behave during walking with increasing loads. Here, mean 

and median frequencies were extracting using Power Spectral Density (Fourier analysis) using 

customized MATLAB programs in the Biomechanics et. al. Toolbox (BEAT) created by Ian 

Kremenic and Ali Sheikhzadeh from the Nicholas Institute of Sports Medicine and Athletic 

Trauma. The mean was calculated as the ratio of sum of product of signal amplitude and 

frequency to sum of amplitudes, whereas the median frequency was calculated as the frequency 

which divides the spectrum into two equal parts and has been demonstrated to be valid measure 

of frequency shift or compression associated with fatigue [49] (Joseph K-F et al. 1997; Stulen 

and DeLuca, 1981; Medved, 2001). Several factors may affect the EMG frequencies, including 

changes in the motor unit firing rate, number of active motor units, age, load and decreases in 

movement velocity. Here, mean and median frequencies are used to define muscle fatigue. From 
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a neurophysiological perspective, neuromuscular fatigue is manifested as a reduction of the 

frequency content constituting the power density spectrum of the propagating myoelectric signal 

(Komi and Tesch, 1979; Viitasalo and Komi, 1977). Muscular fatigue, however, is observed 

biomechanically as a reduced capacity of the muscle to maintain a specified force output [54]. 

3.5.3. Ground Reactions Forces (GRF) 

  The ground reaction force (GRF) is the force exerted by the ground on a body in contact 

with it. The ground reaction force is equal in magnitude and opposite in direction to the force 

that the body exerts on the supporting surface through the foot. For example, a person standing 

motionless on the ground exerts a contact force on it equal to the person's weight, and at the 

same time an equal and opposite ground reaction force is exerted by the ground on the person. 

The use of the word reaction derives from Newton's third law, which essentially states that if a 

force, or action, acts upon a body, then an equal and opposite force, the reaction, must act upon 

another body. The component of the GRF parallel to the surface is the frictional force. When 

slippage occurs, the ratio of the magnitude of the frictional force to the normal force yields the 

coefficient of static friction [19]. 

 

Figure 27: Ground Reaction Force 
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Figure 27 shows the three components (Fx, Fy, and Fz) of GRF. GRF data were collected during 

the stance phase using a force plate at 120 samples per second while participants walked back 

and forth on a wooden platform carrying increasing loads. The Force Plate (BERTEC 4060-NC) 

was embedded into the wooden platform. Whenever participants stepped on the force plate, it 

recorded the GRF. The data collection was then exported for further analysis. Force 

plates   measure the ground reaction forces generated by a body standing on or moving across 

them to quantify balance, gait and other parameters of biomechanics [20]. For this analysis, only 

vertical ground reaction force (vGRF) was used. To quantify the vGRF pattern, the mean and 

standard deviation of the magnitude and time of occurrence of the vGRF were extracted from the 

force plate data using custom programs written in MATLAB R2010a. All steps recorded during 

the treadmill measurement were used for analysis to determine how increasing loads affect GRF.  

 

Figure 28: Identification of the four functional phases of gait 

Figure 28 shows an example of a typical vGRF profile during walking (stance phase). 

The stance phase is from heel contact to toe off. During gait, the stance phase can be divided into 
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the Early Stance or Loading Phase (from heel contact to foot flat); Mid-Stance (from foot flat to 

heel off); and Late Stance or Terminal Phase (from heel off to toe off). 

 

 
 

Figure 29: vGRF profile during walking 
 

Figure 29 shows how the vertical ground reaction force consists of three component 

forces: Fz1, Fz2 and Fz3. Fz1 is the first peak on the vGRF profile, also known as the loading 

force, Fz3 is the peak force on the vGRF profile, also known as the unloading or propulsive 

force, and Fz2 is the minimum force between the first peak force and the 3rd peak force, known 

as the mid stance force.   

Normalization is used to adjust values measured on different scales to a notionally 

common scale, often prior to averaging. The vGRF for each participant was normalized to their 

body weight for data analysis. 

Normalized vGRF= vGRF in Newtons / Body weight 
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CHAPTER 4 

RESULTS 

4.1. Ground Reaction Forces 

The one of the objective of the study was to assess the effects of increased load on 

vertical ground reaction forces during walking. Ground Reaction Force data were recorded using 

embedded force plate (BERTEC 4060-NC) in walkway at 120 samples per second while 

participants walked on wooden platform back and forth with carrying increasing loads. To 

quantify the vGRF pattern, the magnitude and time of occurrence of the vGRF were extracted 

from the force plate data. Mean and standard deviation were calculated for vGRF and its 

magnitude normalized to each participant’s body weight. 

Tables 3 and 4 show the magnitude (mean and SD) of the 1st peak (Fz1), 2nd peak (Fz3) 

and Fz2 of the Vertical Ground Reaction Forces (in Newtons) and normalized vGRF during 

walking with increasing loads for all 9 participants. In Table 3, the magnitude (Fz1, Fz3 and Fz2) 

shown is the mean for all 9 participants. In Table 4, the forces are normalized to each 

participant’s body weight. 

As the data in the tables 3 & 4 demonstrates, both vGRF (N) and normalized vGRF 

increased as the load increased from 0 lb to 25 lbs during walking.  All three of the forces (Fz1, 

Fz2, and Fz3) increased with increasing load, which is consistent with the normalized vGRF 

data. Interestingly, the Propulsive or Unloading Force (Fz3) was always greater than the Loading 

Force (Fz1) for participants walking with increasing loads.  
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Table 3: Vertical Ground Reaction Forces (N) during walking carrying different loads 

vGRF  0 lb 5 lb 10 lb  15 lb 20 lb 25 lb 

Fz1 698.4 (74.5) 719.7 (69.1) 737.7 (74.9) 762.4 (79.9) 794.9 (78.4) 815.5 (78.7) 

Fz2 662.3 (77.7) 680.9 (75.7) 703.2 (72.9) 723.9 (74.1) 766.4 (78.0) 788.7 (77.7) 

Fz3 712.2 (89.4) 737.1 (89) 758.8 (89.5) 783.6 (87.8) 821.8 (88.9) 836.9 (91.1) 

 

Table 4: Normalized vGRF during walking carrying different loads 

 

 

vGRF (BW) 0 lb 5 lb 10 lb  15 lb 20 lb 25 lb 

Fz1 1.02 (.04) 1.05 (.03) 1.08 (.04) 1.11 (.04) 1.13 (.03) 1.16 (.03) 

Fz2 0.97 (.02) 0.99 (.02) 1.03 (.02) 1.06 (.02) 1.09 (.02) 1.12 (.02) 

Fz3 1.04 (.05) 1.08 (.04) 1.11 (.04) 1.15 (.05) 1.17 (.05) 1.19 (.05) 
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(a) 

 

(b) 

Figure 30: First peak Force a) vGRF (N) and b) Normalized vGRF during walking 
carrying varying loads 

 

Figure 30 shows the 1st peak loading force for eight of the participants.  In the averaged 

data, both vGRF (N) and normalized vGRF increased during walking as the loads increased from 

0 lb to 25 lbs and the same pattern is visible in the data for the individual participants.  As load 

increased, both vGRF (N) and normalized vGRF for each individual also increased. 

Figure 31 shows the Fz2 (Mid-Stance Force) data for eight of the individual participants 

and the same pattern is again visible.  As the load increased, both vGRF (N) and normalized 

vGRF for each individual also increased. 
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Figure 32 shows the 2nd peak force (Fz3, Unloading or propulsive Force) for eight 

individual participants, which once again display the same pattern as in the previous graphs.  As 

the load increased, both vGRF (N) and normalized vGRF for each individual also increased. 

 
(a) 

 

 
(b) 

 
Figure 31: 2nd  peak Force a) vGRF (N) and b) Normalized vGRF during walking carrying 

varying loads 
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Figure 32: 3rd  peak Force a) vGRF (N) and b) Normalized vGRF during walking 
carrying varying loads 

Table (5) shows the time of occurrence of different gait events with increasing loads. 
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Table 5: Average time during different phases of gait 

   Time (s) 0 lb 5 lb 10 lb  15 lb 20 lb 25 lb 

Loading  0.29 (.05) 0.28 (.06) 0.30 (.09) 0.41 (.03) 0.32 (.09) 0.32 (.10) 

Mid-

stance 

0.17 (.03) 0.17 (.03) 0.19 (.04) 0.19 (.04) 0.19 (.02) 0.19 (.02) 

0.27 (.03) 0.26 (.05) 0.40 (.05) 0.22 (.05) 0.23 (.03) 0.23 (.05) 

Unloading 0.33 (.06) 0.28 (.03) 0.32 (.05) 0.31 (.06) 0.30 (.04) 0.32 (.05) 
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Figure33: vGRF (N) vs. % Gait Cycle during walking carrying varying loads 

Figure 33 shows the vertical ground reaction force profile during walking with increasing 

loads. According to the experimental protocol, participants stepped on the force plate 15 times. 

The above graphs represent the vertical ground reaction force profile for 15 steps. There was 

considerable consistency in all 15 of the steps monitored when walking with increasing loads, 

with very little time differences during different gait events even with increasing loads. This 

indicates that loading force (Fz1), Mid-Stance force (Fz2) and Unloading force (Fz3) occur at 

around the same time in spite of the increasing loads (0 lb – 25lb).  
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One-way ANOVA revealed significance differences (p < 0.05) in the forces themselves, 

namely Fz1, Fz2, and Fz3, during walking with increased loads even though the timing was 

unaffected. 

4.2. EMG: 

Data were collected from 12 muscles (Erector Spinae Left and Right, Multifidus Left and 

Right, Latissimus Dorsi Left and Right, Internal Obliques Left and Right, External Obliques Left 

and Right, and Rectus Abdominis Left and Right) using the DELSYS system. Data were 

recorded at a sampling frequency of 1200 Hz and the raw EMG data were then filtered and 

processed using a custom Matlab program. EMG data were analysed in 2 ways: first, to identify 

the muscle recruitment during walking with varying loads for each participant and then to 

calculate the mean and median frequency using Fast Fourier Transformation during walking with 

varying loads. 

Identify the muscles recruitment during gait for each participant: 

Interestingly, the participants recruited different numbers of muscles when walking with 

varying loads. Here, the root mean square values (RMS) during walking were compared with the 

MVC RMS values. Table 6 shows details regarding which muscle was recruited and by how 

many participants during walking with varying loads. The muscle activation was categorized in 4 

phases: Active (above 60% MVC), Moderately Active (30-60% MVC), Low Activity (10-30% 

MVC) and Not Active (less than 10% MVC).  

As the table 6 shows, for ES Left, 8 participants recruited that muscle for loads from 0 lb 

to 15 lb and all the participants recruited it for loads of 20 lb to 25 lb, while ES Right all 

participants recruited that muscles from 0 lb to 25 lb. 
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Table 6: Muscles recruitment during Walking by number of participants. 
Where A: Active, MA: Moderate Active, LA: Low Active 

Muscle No. of participants who used that muscle during walking varying loads 

 0 lb 5 lb 10 lb 15  lb 20 lb 25 lb 

 A M
A 

L
A A M

A 
L
A A M

A 
L
A A M

A 
L
A A M

A 
L
A A M

A 
L
A 

ES Left 6 2  7 1  7 1  7 1  7   7   
ES Right 7 2  7 2  7 2  7 2  5 2  5 2  
RA Left 4 2 3 4 2 3 4 3 2 4 3 2 3 3 1 3 3 1 
RA 
Right 5 1 2 5 1 2 5 1 2 5 1 2 3 1 2 3 2 2 

EO Left 2 4 2 3 4 1 3 5 1 3 5 1 4 2 1 4 2 1 
EO 
Right 2 4 1 2 3 2 2 4 1 2 5  1 3 2 1 3 2 

IO Left 2 4 3 3 4 2 2 6 1 3 5 1 4 2 1 4 2 1 
IO Right 3 4 2 3 4 2 2 5 2 2 5 2 2 3 2 2 3 2 
LD Left 6 3  6 2  6 3  7 2  5 2  5 2  
LD 
Right 8 1  

8 1  9   9   7 1  7 1  

MF Left 8 1  8 1  9   9   7   7   
MF 
Right 8 1  

8 1  8 1  8 1  6 1  6 1  

 
 

 For RA Left, all the participants recruited the muscle for loads from 0 lb to 25 lb, while 

for RA Right, 8 participants recruited that muscle for loads from 0 lb to 15 lb and 6 participants 

recruited it for loads from 20 lb to 25 lb. For EO Left, 8 participants recruited the muscle for 

loads from 0 lb to 15 lb and all the participants recruited it for loads from 20 lb to 25 lb, while 

for EO Right 7 participants recruited the muscle for loads from 0 lb to 15 lb and 6 participants 

recruited it for loads from 20 lb to 25 lb. For all the remaining muscles, namely IO Left, IO 

Right, LD Left, LD Right, MF Left and MF Right, all the participants recruited these muscles for 

all the loads carried. 

Mean and Median Frequency during Walking with varying loads –  
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The figures 34 below show the results of the mean and median frequency calculations for 

the data obtained from all muscles during walking with varying loads. The range of the mean 

frequency during walking with varying loads was between 80-210 Hz and the range of the 

median frequency during walking with varying loads was between 55-180 Hz. 

 

Figure 34: ES Left – Mean Frequencies and Median Frequencies during walking with 
varying loads 

 

 Figure 35: ES Right - Mean Frequencies and Median Frequencies during walking with 
varying loads 
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Figure 36: EO Left - Mean Frequencies and Median Frequencies during walking with 
varying loads 

 

 

Figure37: EO Right - Mean Frequencies and Median Frequencies during walking with 
varying loads 
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Figure 38: IO Left - Mean Frequencies and Median Frequencies during walking with 
varying loads 

 

 

Figure 39: IO Right - Mean Frequencies and Median Frequencies during walking with 
varying loads 
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Figure 40: RA Left - Mean Frequencies and Median Frequencies during walking with 
varying loads 

 

 

Figure 41: RA Right - Mean Frequencies and Median Frequencies during walking with 
varying loads 
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Figure 42: LD Left - Mean Frequencies and Median Frequencies during walking with 
varying loads 

 

 

Figure 43: LD Right - Mean Frequencies and Median Frequencies during walking with 
varying loads 
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Figure 44: MF Left - Mean Frequencies and Median Frequencies during walking with 
varying loads 

 

 

Figure 45: MF Right - Mean Frequencies and Median Frequencies during walking with 
varying loads 
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Table 7: Mean (SD) values of Mean Frequencies during walking with increasing loads. 

Muscle Mean (SD) value of Mean Frequencies in Hz  

 0 lb 5 lb 10 lb 15 lb 20 lb 25 lb 

ES Left 158.56 (9.8) 155.1 (12.1) 156.1 (15.8) 156 (15.7) 155.1 (17.5) 152.5 (15.6) 

ES Right 154.7 (11.1) 154.3 (11.4) 153.8 (11.6) 155.9 (14.3) 151.4 (14.8) 152.7 (16.1) 

RA Left 165.4 (30.9) 164.9 (31.7) 163.2 (31.8) 159.4 (30.7) 157.8 (33) 156.1 (30.9) 

RA Right 161.3 (33.9) 163.4 (36.2) 163.6 (36.4) 162.8 (36.8) 156.7 (40.4)  156 (39.8) 

EO Left 153.5 (14.8) 149.8 (16.5) 146.2 (16.5) 143.3(16.9) 140.4 (17.2) 138.6 (18.5) 

EO Right 162.8 (9.7) 166.9 (10.6) 167.9 (10.4) 166.5 (10.5) 169.1 (11.1) 167.7 (11.5) 

IO Left 164.2 (20.5) 162.7 (20.9) 158.6 (19.1) 156.7 (19.5) 154.4 (18.7) 152.3 (18.1) 

IO Right 149.8 (17.4) 148.4 (19.9) 146.3 (21.9) 147.3 (19.6) 141.6 (23.3) 143.4 (18.5) 

LD Left 140.4 (8.9) 137.7 (8.2) 137.4 (6.5) 138.2 (6.3) 136.6 (8.1) 136.3 (8.7) 

LD Right 135.9 (11.2) 136.7  135.4 (10.5) 135.8 (11.3) 136.3 (13.6) 135.4 (15.4) 

MF Left 165.8 (19.1) 164.2 (18.2) 164.1 (19.1) 162.5 (18.9) 159.5 (20.9) 157.9 (21.8) 

MF Right 166.1 (11.6) 165.3 (12.7) 165.5 (14.6) 163.9 (15.4) 161.4 (18.3) 162.8 (15.9) 

 

Above table (7) shows mean and standard deviation values of mean frequencies during 

walking with increasing loads from 0 lb to 25 lb from all participants. From Above Table, for ES 

Left, ES Right, RA Left, EO Left, IO Left, IO Right, LD Left, MF left, and MF Right, mean 

frequency is decreasing with increasing loads from 0 lb to 25 lb. 

Table 8 p-values for mean frequency 

Mean Frequency  
Muscles  p-value 
ES Left 0.980 

ES Right 0.989 
RA Left 0.987 

RA Right 0.997 
EO Left 0.464 

EO Right 0.877 
IO Left 0.804 
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IO Right 0.968 
LD Left 0.917 

LD Right 1.000 
MF Left 0.966 

MF Right 0.989 
 

The results of the one-way ANOVA test (Table 8) revealed no significant difference 

(p>0.05) in the mean frequency values for all muscles during walking as the load increased from 

0 lb to 25 lb. 

Table 9: Mean (SD) values of Median Frequencies during walking with increasing loads. 

Muscle Mean (SD) value of Median Frequencies in Hz (S.D.) 

 0 lb 5 lb 10 lb 15 lb 20 lb 25 lb 

ES Left 119.2 (17.5) 116.7 (19.5) 119.1 (23.3) 119.3 (22.7) 119.6 (23.7) 116.9 (20.6) 

ES Right 114.9 (15.9) 114.1 (14.9) 112.6 (15) 114.2 (17.5) 109.2 (17.9) 112.3 (20.5) 

RA Left 122.5 (40.2) 122.5 (39.2) 121.3 (38.6) 116.1 (35.8) 115.3 (37.4) 112.9 (34.4) 

RA Right 117.1 (36.5) 120.7 (40.3) 121.5 (40.4) 121.2 (39.9) 114.7 (43.7) 113.9 (42.5) 

EO Left 104.4 (13.9) 101.9 (13.2) 99.7 (12.4) 99.1 (12.4) 97.2 (12.5) 96.5 (12.6) 

EO Right 116.5 (16.1) 121.7 (16.1) 123.4 (15.7) 121.8 (15.3) 125.2 (16.3) 123.8 (17.1) 

IO Left 124.5 (19.9) 123.0 (19.6)  117.5 (17.8) 115.4 (17.2) 112.5 (15.9) 110.5 (14.5) 

IO Right 101.3 (23.9) 99.8 (26.5) 98.6 (28.1) 99.2 (26.5) 95.9 (27.9) 96.5 (24.7) 

LD Left 97.1 (10.1) 95.9 (10.3) 96.3 (9.3) 96.8 (8.7) 97.2 (10.8) 96.8 (10.7) 

LD Right 95.6 (8.9) 96.6 (9.4) 95.7 (8.6) 95.1 (9.8) 97.2 (8.9) 95.2 (10.6) 

MF Left 130.9 (23.6) 129.8 (22.7) 130.3 (24) 129.0 (23.8) 126.8 (26.9) 125.5 (27.7) 

MF Right 131.7 (14.8) 130.5 (16.7) 130.9 (18.6) 129.3 (19.4) 127.8 (23.7) 129.5 (20.3) 
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Table 9 shows the mean and standard deviation values of the median frequencies during 

walking with increasing loads from 0 lb to 25 lb for all the participants. As the data in the table 

shows, median frequency decreased with increasing load from 0 lb to 25 lb for RA Left, EO Left, 

IO Left, IO Right, LD Right and MF left, but the remaining muscles showed no definitive 

pattern. 

Table 10: p-values for median Frequency 

Median Frequency  
Muscles  p-value 
ES Left 1.000 

ES Right 0.988 
RA Left 0.992 

RA Right 0.998 
EO Left 0.826 

EO Right 0.909 
IO Left 0.551 

IO Right 0.999 
LD Left 1.000 

LD Right 0.997 
MF Left 0.998 

MF Right 0.999 
 

The one-way ANOVA test (Table 10) revealed no significant differences (p>0.05) for 

median frequency values for any of the muscles during walking as the load increased from 0 lb 

to 25 lb.  

4.3. Approximate Entropy (ApEn) 

 ApEn provides a direct measurement of feedback and connection, and a low ApEn value 

often indicates predictability and high regularity of time series data, whereas a high ApEn value 

indicates unpredictability and random variation. ApEn values typically range between 0 and 2, 

with values closer to 2 indicating greater complexity and those closer to 0 indicating more 
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predictability [22, 82]. The results for ApEn of Lumbar Flexion/Extension(FE), Lateral 

bending(LB) and Rotation (ROT) and Thoracic Flexion/Extension, Lateral bending and Rotation 

data recorded during walking carrying increased loads from 0 lb to 25 lb are given in turn below. 

Lumbar segment:  

Table 11 shows the results for the ApEn values for lumbar FE, LB and ROT recorded 

during walking with increased loads. All the ApEn values recorded were in the range between 0 

and 2, as expected based on the literature review.  

Table 11: ApEn values for Lumbar FE, LB, and ROT 

 0 lb 5 lb 10 lb 15 lb 20 lb 25 lb 

FE 0.27 (0.12) 0.28 (0.13) 0.28 (0.12) 0.28 (0.13) 0.26 (0.19) 0.25 (0.19) 

LB 0.22 (0.07) 0.23 (0.07) 0.23 (0.07) 0.24 (0.08) 0.22 (0.08) 0.22 (0.09) 

ROT 0.37 (0.09) 0.39 (0.09) 0.38 (0.08) 0.37 (0.08) 0.38 (0.09) 0.37 (0.09) 

 

 

Figure 46: ApEn results for Lumbar Flexion Extension during increasing loads  
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Figure 47: ApEn results for Lumbar Lateral Bending during increasing loads 

 

Figure 48: ApEn results for Lumbar Rotation during increasing loads  
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Table 12: one-way ANOVA test for ApEn values for Lumbar FE, LB & ROT vs 
loads 

One-way ANOVA: Lumbar FE versus Loads (lb) 

Source DF SS MS F P-value 

Loads 5 0.0059 0.0012 0.07 0.997 

Error 44 0.7548 0.0172 
  Total 49 0.7606 

   
One-way ANOVA: Lumbar LB versus Loads (lb) 

Source DF SS MS F P-value 

Loads 5 0.00156 0.0031 0.06 0.998 

Error 44 0.24820 0.00564 
  Total 49 0.24977 

   
One-way ANOVA: Lumbar ROT versus Loads (lb) 

Source DF SS MS F P-value 

Loads 5 0.00269 0.0054 0.06 0.997 

Error 44 0.36489 0.0829 
  Total 49 0.36758 

    

The one-way ANOVA test (Table 12) revealed no significant differences (p>0.05) in the 

ApEn values for lumbar FE, LB and ROT during walking as the load increased from 0 lb to 25 

lb.  

Thoracic segment: 

Table 13 shows the results for the ApEn values for Thoracic FE, LB and ROT during 

walking with increased loads. Once again, all values were between 0 and 2.  
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Table 13: ApEn values for Thoracic FE, LB, and ROT 

 0 lb 5 lb 10 lb 15 lb 20 lb 25 lb 

FE 0.33 (0.08) 0.33 (0.09) 0.33 (0.09) 0.33 (0.1) 0.32 (0.1) 0.32 (0.11) 

LB 0.43 (0.06) 0.42 (0.06) 0.42 (0.05) 0.42 (0.05) 0.41 (0.06) 0.41 (0.07) 

ROT 0.39 (0.07) 0.39 (0.07) 0.38 (0.07) 0.38 (0.07) 0.39 (0.07) 0.38 (0.08) 

 

 

Figure 49: ApEn results for Thoracic FE 

 

Figure 50: ApEn results for Thoracic LB 
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Figure 51: ApEn results for ROT 

Table 14 one-way ANOVA test for ApEn values for Thoracic FE, LB & ROT vs 
loads 

One-way ANOVA: Thoracic FE versus Loads (lb) 
Source DF SS MS F P-value 
Loads 5 0.0058 0.0012 0.01 1.000 
Error 44 0.43007 0.0977 

  Total 49 0.43065 
   One-way ANOVA: Thoracic LB versus Loads (lb) 

Source DF SS MS F P-value 
Loads 5 0.00185 0.0037 0.11 0.989 
Error 44 0.14676 0.00334 

  Total 49 0.14861 
   One-way ANOVA: Thoracic ROT versus Loads (lb) 

Source DF SS MS F P-value 
Loads 5 0.00040 0.00008 0.01 1.000 
Error 44 0.25448 0.00578 

  Total 49 0.25488 
    

The one-way ANOVA test (Table 14) revealed no significant difference (p>0.05) in the ApEn 

values for Thoracic FE, LB and ROT during walking as the load increased from 0 lb to 25 lb.  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 lb 5 lb 10 lb 15 lb 20 lb  25 lb 

Ap
En

 

Loads (lbs) 

ApEn vs loads 
Thorax Rotation 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

Subject 5 

Subject 6 

Subject 7 

Subject 8 

90 
 



 

4.4. Correlation Dimension 

The correlation dimension is a measure of the dimensionality of the space occupied by a 

set of random points. Correlation Dimension (CoD) for the motion data during walking with 

increasing loads was calculated using an algorithm developed by Grassberger and Procaccia 

[17]). The CoD for Lumbar LB and Thoracic LB were calculated for participants walking with 

different loads. Below are the results for the CoD of experimental data recorded during walking 

against 0 lb, 5 lb, 10 lb, 15 lb, 20 lb and 25 lb resistance. 

Table 15: mean (SD) of CoD for lumbar LB and Thoracic LB during walking with 
increased loads from all subjects 

 0 lb 5 lb 10 lb 15 lb 20 lb 25 lb 

Lumbar LB 1.32 (0.04) 1.33 (0.03) 1.28 (0.05) 1.29 (0.04) 1.28 (0.03) 1.27 (0.04) 

Thoracic LB 1.25 (0.03) 1.24 (0.04) 1.25 (0.02) 1.26 (0.02) 1.26 (0.03) 1.26 (0.03) 

 

 

Figure 52: CoD results for Lumbar LB 
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Table 16: one-way ANOVA test for CoD values for Lumbar LB vs increasing loads 

One-way ANOVA: lumbar LB versus Loads (lb) 
Source DF SS MS F P-value 
Loads 5 0.02304 0.00461 2.63 0.039 
Error 38 0.06646 0.00175 

  Total 43 0.08950 
    

The one-way ANOVA test (Table 16) revealed a significant difference (p<0.05) for the 

CoD values for Lumbar Lateral Bending during walking as the load increased from 0 lb to 25 lb.  

 

Figure 53: CoD results for Thoracic LB 
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The one-way ANOVA test (Table 17) revealed no significant difference (p>0.05) for 

CoD values for Thoracic Lateral Bending during walking as the load increased from 0 lb to 25 

lb.  

4.5. ROM Results 

Table 18 shows the results for range of motion (ROM) for Lumbar Lateral Bending and 

Thoracic Lateral bending during walking with increased load. 

Table 18: mean (SD) values for ROM for Lumbar LB and Thoracic LB during 
walking with increased loads 

 0 lb 5 lb 10 lb 15 lb 20 lb 25 lb 

Lumbar LB 
Right Step 

3.13 (1.20) 2.95(1.01) 2.94 (1.02) 2.82 (0.92) 3.36 (1.01) 2.82 (1.16) 

Lumbar LB 
Left Step 

2.92 (1.35) 2.67 (0.88) 2.95 (1.13) 2.96 (0.86) 2.99 (0.68) 2.79 (0.65) 

Thoracic LB 
Right Step 

6.70 (2.86) 7.84 (2.26) 7.69 (1.88) 7.27 (1.99) 7.08 (1.50) 6.74 (1.50) 

Thoracic LB 
Left Step 

7.65 (3.02) 8.15 (2.06) 8.01 (2.08) 7.60 (1.99) 8.63 (2.35) 8.01 (2.06) 
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(b) 

Figure 54: ROM vs. Loads a) Lumbar LB Right Step b) Lumbar LB Left Step  
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(b) 

Figure 55: ROM vs. Loads a) Thoracic LB Right Step b) Thoracic LB Left Step  

As Table 18 and Figures 54 and 55 shows, the ROM values for Lumbar LB are much 

smaller than the ROM values for Thoracic LB.  

Table 19: p-values for ROM 

ROM  
Motion p-value 

Lumbar LB Right Step 0.938 
Lumbar LB Left Step 0.987 

Thoracic LB Right Step 0.857 
Thoracic LB Left Step 0.968 

  

The one-way ANOVA test revealed that the ROM for Lumbar LB and Thoracic LB did 

not change significantly (p > 0.05) as the load increased from 0 lb to 25 lb during walking.  
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CHAPTER 5 
 
 

DISCUSSION 

The objective of this study was to develop a test procedure to study the effect of carrying 

a unilateral load or laptop bag or briefcase on posture and trunk biomechanics during walking 

(Gait) using Non-Linear methods. Kinematics, kinetic and EMG data were collected from 9 

healthy participants. Linear (Mean, Standard Deviation & Range) methods and Non-Linear 

(ApEn and CoD) methods were used for kinematics (motion) data analysis, kinetic data (force 

plate data) analysis was performed using linear methods, and EMG data analysis was done using 

mean frequency and median frequency calculations. 

 Kinematics, kinetics and EMG data were recorded from study participants using the 

protocols approved by the Institutional Review Boards of Auburn University and Palmer College 

of Chiropractic, IA. Data from one of the subjects could not be used due to problems with the 

data acquisition. Following data collection, data were exported and reduced for further analysis. 

Motion data was analysed using ROM, ApEn and CoD calculations. 

  Range of motion (ROM) is the difference between the largest and smallest 

observations during motion. ROM for lumbar LB and thoracic LB were calculated during 

walking with increasing loads, with rotation about the y-axis described as lateral bending in for 

the purposes of this study. In the lumbar and thoracic regions, the displacement was towards the 

load bearing side. Lumbar LB and thoracic LB both demonstrated consistent pattern within steps 

and between participants.  As the data presented in Table 18 demonstrate, ROM decreased as the 
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load increased from 0 lb (ROM=3.13 (1.20)) to 15 lb (ROM=2.82 (0.92)), increased from 15 lb 

to 20 lb (ROM=3.36 (1.01)), and then finally decreased for lumbar LB during a right step on the 

force plate. This pattern was not repeated in lumbar LB for a left step on the force plate, where 

instead ROM increased as the load increased from 0 lb (ROM=6.70 (2.86)) to 5 lb (ROM=7.84 

(2.26)), decreased from 5 lb to 25 lb (ROM=6.74 (1.50)), and then decreased again for Thoracic 

LB.   

The data in Table 18 and the accompanying graphs (Figures 54 and 55) indicating that 

the ROM for lateral bending in the lumbar region exhibited less displacement than ROM for 

thoracic LB is consistent with the findings of previous research. The values for ROM for Lumbar 

LB obtained in the present study are smaller than those in earlier reports but similar to those 

observed for thoracic LB. For example, Crosbie et al. 1997 reported ROM values of 9.0 (3.0) for 

lumbar LB during walking and 7.0(3.5) for thoracic LB and Dalichau et al. 1998 reported a 

ROM value of 6.5 for lumbar LB during gait, which is also higher than that found in the present 

investigation. The findings of other studies have been closer to the results reported here: Rowe 

and White [72] reported ROM of 4.0 for lumbar LB during gait, and Callaghan [45] investigation 

of three dimensional low back loads, spinal motions and trunk muscular activity found that ROM 

for lumbar LB varied from 1.12º to 7.13º.  The current study found similar patterns in the lumbar 

LB and thoracic LB profiles during walking, and increasing load did not appear to affect the 

lateral bending during walking significantly. 

A one-way ANOVA test revealed that the ROM for lumbar LB and thoracic LB did not 

change significantly (p > 0.05) as the load increased from 0lb to 25 lb during walking. No 

significant change in the variability was observed. 
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The ROM does not explain the effect of increasing load on either lumbar LB or thoracic 

LB during walking, so nonlinear methods were applied to the data to better understand the 

dynamics of low back motion. Traditional linear tools can mask the true structure of variability 

in the gait pattern, since a few strides are averaged to generate a ‘‘mean’’ picture of the subject’s 

gait, but in the course of this averaging procedure, any temporal variations of the gait pattern are 

lost. Instead, nonlinear techniques focus on understanding how gait pattern changes over time. 

From a statistical point of view, the use of traditional linear tools to study variability assumes 

that variations between strides during gait are random and independent, but recent studies have 

shown that such variations may actually be deterministic in origin [34, 80]. Traditional linear 

tools also give different answers to nonlinear tools regarding stability and complexity [34 77, 82] 

as traditional linear tools does not describe the effect of increasing resistance on motion. 

Nonlinear tools readily describe deterministic dynamics and hence are better suited to helping us 

understand the dynamics of gait [77]   

Entropy is a widely accepted measure of uncertainty or variability; Approximate Entropy 

(ApEn) is often used to quantify the amount of regularity and the unpredictability of fluctuations 

over time-series data, especially to quantify the regularity or predictability of a time series [68, 

69]. If a time series is composed of repetitive patterns of fluctuation, it renders that time series 

more predictable than a time series in which such patterns are absent. ApEn thus provides a 

direct measurement of feedback and connection; a low ApEn value often indicates predictability 

and high regularity of time series data, whereas a high ApEn value indicates unpredictability and 

random variation. ApEn values typically range between 0 and 2, with values closer to 2 

indicating greater complexity and those closer to 0 indicating more predictability [22, 23, 51, 68, 

69, and 82] 
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As the data presented in Table 13 show, the ApEn values for both lumbar motion (FE, LB 

and ROT) and thoracic motion (FE, LB and ROT) did not vary significantly. There was no 

consistent pattern for either lumbar motion (FE, LB and ROT) or thoracic motion (FE, LB and 

ROT) observed during walking with increased loads.  

For lumbar FE, and LB, ApEn values increased for loads of 0 lb to 5 lb, remained 

constant from 5 lb to 15 lb, then decreased for 20 lb to 25 lb. There was no similar pattern for 

lumbar ROT. The results of a one-way ANOVA test revealed no significant difference (p>0.05) 

for ApEn values for lumbar FE, LB and ROT during walking as the load increased from 0 lb to 

25 lb. ApEn values for lumbar FE, LB and ROT reported by previous researchers ranged 

between 0.20 and 0.40 [22, 82]  

For thoracic FE, ApEn values were constant for 0 lb to 15 lb, and then decreased for 20 lb 

to 25 lb. For LB, ApEn values decreased over the whole range from 0 lb to 25 lb. There was no 

similar pattern for ROT. A one-way ANOVA test revealed no significant difference (p>0.05) for 

ApEn values for thoracic FE, LB and ROT during walking as the load increased from 0 lb to 25 

lb. The thoracic FE, LB and ROT ApEn values all lay between 0.30 and 0.50, with little change 

in variability in the walking pattern with increasing load. 

The literature review does not support the above finding. Many studies have been done 

on the effect of increased speed or other factors during human gait using nonlinear methods, but 

little research has focused on human gait with different forms of loads using nonlinear tools. 

Kavanagh and Anastasios [23, 51] found that ApEn values increased with increasing speed, with 

values ranging from 0.1 to 0.95. Buzzi & Ulrich [81] studied the dynamic stability of gait cycles 

in children with and without Downs Syndrome and found ApEn values differed significantly 

(p<0.05), with children with Downs Syndrome exhibiting increasing ApEn value during walking 
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in all segments, signifying a reduction in mean dynamic stability. Arif et al. 2004 found 

variability in walking pattern also increased with age, again revealing a reduction in stability.  

The findings of the current study did not reveal a consistent change in walking pattern 

with increased load in healthy young participants, although the range of ApEn values obtained 

were similar to the results reported in other studies conducted on healthy participants to study 

variability [22, 23, 68, 69, 82]. Here, the ApEn values for lumbar motion and thoracic motion 

were close to zero, which indicates predictability and high regularity of time series data so the 

data is more predictable and not random. ApEn values for lumbar motion (0.20 to 0.40) and 

thoracic motion (0.30 to 0.50) all lay between 0 to 2, as expected, but were noticeably smaller for 

lumbar motion as compared to thoracic motion. This indicates that lumbar motion is more 

predictable and regular than thoracic motion. The analysis revealed little change in variability in 

walking pattern with increasing load in healthy young participants.  

Correlation dimension approximates the fractal dimension of the region in state space 

occupied by a dynamic system (Grassberger and Procaccia, 1983b; Theiler, 1986). . In chaos 

theory, the correlation dimension is a measure of the dimensionality of the space occupied by a 

set of random points. The Correlation Dimension (CoD) for the motion data obtained during 

walking with increasing loads was calculated using an algorithm developed by Grassberger and 

Procaccia [17].  

As the data in Table 15 and Figures 52 and 53 reveal, there was no consistent pattern in 

CoD values for either lumbar LB or thoracic LB during walking with increasing loads for 

healthy participants. This finding for lumbar LB supports previous findings, but this is not the 

case for the thoracic LB. For lumbar LB, a one-way ANOVA test revealed a significant 

difference (p<0.05) for CoD values during walking as the load increased from 0 lb (1.32) to 25 lb 
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(1.27). Buzzi and Stergiou [77, 80] studied the effect of aging on variability during gait using 

nonlinear methods and found that CoD values for variation in knee angle for young people were 

2.3º compared to 2.7º for old people. In particular, they found significantly increased 

dimensionality in the elderly (CoD values above 3) when compared to young adults (CoD values 

below 2) during treadmill walking. Dingwell and Cusumano [34] also found differences between 

controls and patients with peripheral neuropathy during over ground walking. However, no such 

consistent pattern during walking was observed in the current study.  

A one-way ANOVA test revealed no significant difference (p>0.05) in CoD values for 

Thoracic Lateral Bending during walking as the load increased from 0 lb (1.25) to 25 lb (1.26). 

The values of the CoD results reported here were similar to results obtained in several 

other studies conducted on healthy participants to study variability. The CoD values for lumbar 

LB and thoracic LB fell between 1.2 and 1.4 during walking as loads increased in a healthy 

population. The correlation dimension was found to be larger for lumbar LB than for thoracic 

LB. Buzzi [80] reported CoD values for a periodic time series of 1.167, for a chaotic time series 

of 1.941, and for a random time series of 4.723. Our results suggest that lumbar LB and thoracic 

LB time series data are not random; the data in Table 15 and Figures 52 and 53 reveal little 

change in variability during walking as the loads increased. 

Overall, the results for both ApEn and CoD indicate little change in variability as the 

loads increased during walking.  

It must be noted that the aim of this exercise was to develop a test procedure to study the 

effect of carrying a unilateral load such as a laptop bag or briefcase on an individual’s posture 

and trunk biomechanics during walking (Gait) using Non-Linear methods. The sample size used 
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for this initial study was relatively small and the results of the statistical analysis may not be 

sufficiently rigorous to generalize the results over the entire healthy population. This procedure 

needs to be fine tuned in future before a larger pilot study is conducted. Statistical analysis of a 

much larger population will give a better estimate of variability during walking with increasing 

loads.  

Electromyography is widely used in gait analysis to describe the muscular activity in the 

body’s lower extremities. However, few researchers have focused specifically on the lower back 

muscles and abdomen muscles during gait. In the current study EMG data were recorded from 9 

healthy participants from 12 muscles (Erector Spinae Left and Right, Multifidus Left and Right, 

Latissimus Dorsi Left and Right, Internal Obliques Left and Right, External Obliques Left and 

Right, and Rectus Abdominis Left and Right) at 1200 Hz. Data were exported and reduced for 

further analysis. Mean and median frequencies were extracted from a power spectral density 

estimation of EMG data and PSD estimation was done via Fast Fourier Transformation. Mean 

frequency and median frequency from recorded EMG signals were calculated to examine how 

increasing loads affect different muscles during walking. The literature review revealed evidence 

to suggest that muscle fatigue typically decreases both the mean and median frequencies and 

increases the RMS amplitude values. Several factors may results in this decreased EMG mean 

and median frequency, such as decreased motor unit firing rate, decreased number of active 

motor units, age, loads, and increase in movement velocity [50, 56, 58, 63, 66, and 74]. Joseph 

[49] found that the increase in amplitude observed during a fatiguing task may be attributed to 

the recruitment of additional motor units and an increased firing frequency of motor units in 

order to maintain force output. He stated that the change in EMG amplitude is especially 
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pronounced near the mechanical failure point, whereas the MF decrease is more evident at the 

beginning of a sustained contraction.  

 

 

Figure 56: Mean and Median Frequency results for LD Left muscle for participant 5 
during walking with increasing load 

Figure 56 shows how both the mean and median frequencies for participant 5’s 

Latissimus Dorsi Left decrease as the load during walking increases. This indicates that fatigue is 

being induced in these muscles as the load increases. This is not consistent for all muscles.  
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Figure 57: Mean and Median Frequency results for ES Right muscle for participant 8 
during walking with increasing load 

Figure 57 shows the mean and median frequency results for the ES Right muscle of 

participant 8 during walking with increasing loads. Here, the mean and median frequencies 

increased as the load increased during walking. There are several reasons this may happen, 

including an increased motor unit firing rate, younger age, and/or an increased number of active 

motor units. [58]  

In previous research, Hong [87] reported median frequency decreased with increases in 

walk speed. Olson [64] reported median frequencies of the power density spectrum of the EMG 
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signal from individuals were compressed during fatigue conditions, indicating neuromuscular 

signs of fatigue. They reported that the frequency content of the Lumbar Paraspinal (LP) muscle 

group decreased significantly over time from 80 ± 15 to 61.9 ± 15 Hz in the 50% condition. Both 

the LP (73 ± 15 to 61.9 ± 30.7 Hz) and Biceps Femoris (BF) (88 ± 12 to 74.4 ± 11.4 Hz) muscles 

showed signs of neuromuscular fatigue in the 70% condition. However, their study excluded data 

for the RA and EO muscles since there was no significant change in the median frequency of the 

power density spectrum for these muscle groups. 

We examined muscle activation in human subjects during walking with increasing loads. 

The overall effects of increasing loads during walking were consistent with those reported by 

previous researchers [50, 56, 58, 63, 66, and 74]. From Table 7, for ES Left, ES Right, RA Left, 

EO Left, IO Left, IO Right, LD Left, MF left, and MF Right, the mean frequency decreased with 

increasing load from 0 lb to 25 lb, but this is not consistent for the other muscles. Similarly, the 

data in Table 9 reveal that for RA Left, EO Left, IO Left, IO Right, LD Right and MF left, the 

median frequency decreased with increasing load from 0 lb to 25 lb, while once again the pattern 

in the remaining muscles is not consistent. This confirms that as expected, muscle fatigue was 

induced in the participants during walking due to increasing loads. 

Tables 8 and 10 reveal that overall there was no significance change (p>0.05) in mean 

and median frequencies during walking with increase in loads and no muscle fatigue was 

induced in the participants during walking due to the increasing loads. The overall results 

(Tables 7-10) show that mean and median frequencies either remained constant or decreased 

slightly as the loads carried when walking increased. 
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Reports in the literature suggest that the range for mean and median frequency generally 

falls between 60-140 Hz for different functional activities [50, 56, 58, 63, 66, and 74]. Our 

results were broadly in agreement, with a range of mean frequency and median frequency during 

walking with varying loads of between 55-210 Hz. 

One of the main objectives of this study was to assess the effects of increased load on 

vertical ground reaction forces during walking. Ground reaction force has three force 

components (Fx, Fy, and Fz), but here only the vertical ground reaction force (vGRF; Fz) was 

used. To quantify the vGRF pattern, the magnitude and time of occurrence of the vGRF was 

extracted from the force plate data (Tables 3, 4 and 5). Vertical ground reaction force consists of 

three components: Fz1, Fz2 and Fz3. Fz1 is the first peak on the vGRF profile which is also 

known as the loading force, Fz3 is the peak force on the vGRF profile known as the unloading or 

propulsive force, and Fz2 is the minimum force between the first peak force and the third peak 

force. Mean and standard deviation were calculated for vGRF and the magnitude of vGRF was 

also normalized to individual participants’ body weights. 

 

Figure 58: Typical vGRF profile 
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The vGRF patterns were similar to those identified in the literature review, as shown in 

Figure 58. The data in Tables 3 and 4 show that both vGRF (N) and Normalized vGRF (BW) 

increase as the load increases from 0 lb to 25 lbs during walking. Fz1, Fz2 and Fz3 all increased 

as the load increased from 0 lb to 25 lb. This is also consistent with the results for the 

Normalized vGRF, which increased from 1.02 at 0 lb to 1.16 at 25 lb for Fz1. The same pattern 

was observed for Fz2 and Fz3, with normalized Fz2 increasing from 0.97 at 0 lb to 1.12 at 25 lb 

and normalized Fz3 increasing from 1.04 at 0 lb to 1.19 at 25 lb. Figures 32-34 reveal that as 

load increases, both vGRF (N) and normalized vGRF for each individual also increase. 

This finding supports those of previous studies [43, 44, 48, 54, 65, 76, 78, 84 which 

found that vGRF (N) and normalized vGRF (BW) (Fz1, Fz2, and Fz3) during gait increased with 

increasing loads. Birrell [78] found that both vertical and anterior-posterior ground reaction 

forces (GRF) produced during gait increased when a load was applied to a body. They found that 

the maximum propulsive force (BW) increased from 0.222 to 0.321 during different loads 

conditions. Our finding also supported by Wang [43], who reported that undert different loading 

conditions, normalized vertical ground reaction force increased from 1.27 to 1.99. They also 

found that walking in a fatigued state was accompanied by increased vertical ground reaction 

force.  Zhang [84] found that vGRF (body weight) increased from 1.6 at 0% BW to 2.5 at 20% 

BW. McCrory [48] reported that both the first and second vertical force peaks were lower on the 

affected leg of arthroplasty subjects than in either their unaffected leg or the control group, 

noting that the 1st peak force (BW) in the control was 1.05, an affected limb 1.02, and an 

unaffected limb 1.06. The 2nd peak force (BW) in the control was 1.02, an affected limb 1.0 and 

an unaffected limb 1.02. However, there was little difference in the time profile of different 

events in these subjects. Damavandi and Hsiang [65, 76] both reported that adding weight to the 
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body increase the overall vertical ground reaction forces (GRFs) the body is subjected to. It is 

also likely that an increase in walking speed will cause an increase in GRFs as the overall 

momentum of the body increases. The results for vertical ground reaction forces reported here 

are therefore in agreement with previous reports in the literature. Another interesting finding of 

the current study is that the magnitude of the Propulsive Force or Unloading Force (Fz3) is 

always greater than that of the Loading Force (Fz1) during walking with increasing loads. 

However, the main objective of this study was the development of a test protocol for the 

analysis of trunk biomechanics during gait. The test procedure developed here needs further fine 

tuning before it can be applied to a larger population. Future studies need to consider developing 

a set of recommendations for obtaining more meaningful data based on healthy subjects. In 

further analyses, the calculation of a Lyapunov Exponent could be usefully deployed to obtain 

more accurate results. Wireless EMG electrodes and motion sensor could also be used to avoid 

noise problems during the data capture phase caused by the wires swaying during walking. Also, 

once the protocol is perfected, further testing needs to be carried out on a larger sample size in 

order to generalize the results.  
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CHAPTER 6 
 
 

CONCLUSIONS 

The aim of the study was to develop a test procedure with which to study the effect of 

unilateral loads on the posture and trunk biomechanics of walkers using traditional and nonlinear 

methods. Spinal motions, Force Plate Data and muscle activity in the lower back and abdomen 

muscles were investigated during walking with increasing loads. The results of spinal motion 

(Lumbar LB and Thoracic LB) analysis during walking revealed that variability in the lumbar 

LB and thoracic LB does not change with increasing loads. Kinematics analysis was performed 

using both traditional methods (means and standard deviation values) and nonlinear methods 

(ApEn and CoD).  The result of motion analysis using the traditional method was supported by 

the non-linear methods (ApEn and CoD) to study the effect of increased loads on spinal motions. 

Force plate data were analyzed using traditional methods (means and standard deviation). The 

findings revealed that there is a significance difference (p < 0.05) in vGRF (Fz1, Fz2, and Fz3) 

during walking with increasing loads, with vGRF increasing as the load increased. Mean and 

median frequencies were computed to analyze the muscle activity in the lower back and 

abdomen muscles. The range of the mean frequency during walking with varying loads fell 

between 80-210 Hz and the range of the median frequency during walking with varying loads 

was between 55-180 Hz. This study revealed no significant difference (p>0.05) for mean 

frequency values and median frequency for any of the muscles during walking as the load 

increased from 0 lb to 25 lb. This indicates that the increased loads during walking did not 
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induce serious fatigue in the muscles of the study’s participants, which may have helped the 

participants to provide the required neuromuscular response to increasing loads.  

The population used in this study was small and the results of the statistical analysis were 

therefore not adequate to generalize the results over the entire healthy population. Statistical 

analyses for a much larger population is needed to provide a better estimate of the effect of 

increasing loads on variability during walking. In future, this study will form the basis for a more 

detailed and in-depth study to assess the trunk biomechanics during gait, but before this is 

possible more testing needs to be done to provide a solid database of the characteristic values for 

healthy subjects.  

Both traditional and non-linear methods gave similar results, which confirm the findings 

of previous studies. Therefore, both methods are equally promising to serve as a useful way to 

assess variability during gait in future research in this area.  
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APPENDIX 

A. Auburn University IRB Approval Document: 
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Participants Informed Consent Form: 
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B. Palmer College Of Chiropractic IRB Approval Document: 
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C. Data Collection: 

1. Switch on all the equipment: 

i. Turn on the computer, and A/D board.  

ii. Switch on Bertec Amplifier: Auto Zero by pressing Auto zero buttons and 

Gain should be 1 If it is not than set gain =1 by rotating Gain Switch.  

 

iii. Switch on EMG DELSYS system. 

 

 

2. Log in Computer. 

3. To Start The Motion Monitor Software:  
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i. Open Motion Monitor by click on Motion Monitor Icon on Desktop >> 

Please select your ID: TEST >>ok.  

ii. New window pop up >> Select data to collect:  

1. Position/Orientation Sensor Data: Biomechanical Data 

2. Data Acquisition board data:  

a. Force Plate Data  

b. EMG Data  

4. Load Preference File:  

i. Go to File menu >> Load preference file >> Setup Analysis.  

ii. New window will pop-up: Preference File Option >> Ok.  

iii.  Please Select the preference file: Motion and EMG Vikas Thesis >> Ok.  

 

5. Activate Sensors:  

i. Go to Setup>> Activate sensor>> Ok.  

ii. Initializing Sensors >> wait for few seconds until initializing done.  
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6. Sensor Attachment:  We cleaned the identified sensors site using alcohol pads. 

Then we attached the EMG sensors and Motion Sensors at identified sensor sites 

using double sided tape. We attached EMG Strober unit to participant pant or 

pocket. 

 

7. Reconfigure the force plate:  

i. Go to Administration >> Edit force plate parameter.  

ii. New window pop – up: Force plate parameters.  
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iii. Force plate 0: click on Configure>> New window will pop-up: Bertec 

Plate Parameters >> click on calibrate.  

 

iv. new window will pop up: Remove all weight from force plate >> Ok

 

 

130 
 



 

v. Wait until Offset voltage values change. 

 

8. Set up Subject Sensors: (participant must stand still and straight position during 

setup subjects sensors) 

i. Go to Set up Menu >> Click on Setup Subject Sensor.  

ii. New window will pop-up: Setup Subject Sensor >> Enter weight and 

height of participant manually >> OK 
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9. Data Recording: 

i. Press Record  

ii. Recording activity >> when done:  Click on Stop. 

 

10. Result Window:   

 

 

11.  Save Data As:  
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i. Go to File menu >> Save as  

ii. Save as activity >> Select user activity >> OK.  

iii. Save this activity as: Filename >> Ok. 

 

Filename: “ParticipantID _MOTEMG_Walk _Trial_load_Date”.   

For Example: “G54704_MOTEMG_Walk_trial1_0lb_11_16_2012”. 

12. Repeat Step 9-11 for Different trials. 

13. Close The Motion Monitor. 

D. Data Exporting: 
 

1. Open Motion Monitor >> Please select your User ID >> Test >> Ok.  

2. Select data to collect: 

i. Select Data-acquisition board data,  

ii. Force/torque transducer data, 

iii. Force scale data,  

iv. EMG data. 
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3. Load Preference File: File >> Load Preference File >> Click on Setup and 

analysis.  

i. Preference File Option >> Ok. 

ii. Please select the preference file to use:  For EMG Data: 

EXPORT_EMG_BIOGAIT_02_18_2013. 

 

 For Motion and Force Plate Data: 

EXPORT_MOT_BIOGAIT_02_18_2013. 
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4. File >> Click on New. 

5. Export: Analyze >> Export Multiple >> Click on User Reports. 

 

 

Figure: Orthopedic Angle Selection 
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Figure: Force Plate Data 
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Figure: EMG data 

6. Open Activity >> User Activity >> Ok. 
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7. Please Select the activities to open >> choose activities >> Ok. 

 

8. Export Location >> Default Folder >> Ok. 

9. Export Done. 
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