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The “canning problem” occurs when a process has a minimum specification such 

that any product produced below that minimum incurs a scrap/rework cost and any 

product over the minimum incurs a “give-away” cost.  The objective of the canning 

problem is to determine the target mean for production that minimizes both of these 

costs.  An upper screening limit can also be determined; above which give-away cost is 

so high that reworking the product maximizes net profit. 

Examples of the canning problem are found in the food industry (filling jars or 

cans) and in the metal industry (thickness.)  
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In this dissertation, continuous, finite range space distributions are considered, 

specifically the Uniform and Triangular distributions.  For the Uniform distribution, an 

optimum upper screening limit and an optimum value for the mean fill level is found 

using three net profit models.  Each model assumes a fixed selling price and a linear cost 

to produce, but costs differ as follows:  

� Model 1 uses fixed rework/scrap and reprocessing costs 

� Model 2 has linear rework/scrap and reprocessing costs, and  

� Model 3 has fixed rework/scrap and reprocessing costs but adds an 

additional, higher cost associated with a limited capacity of the container. 

A discussion is included relating the selection of an optimum set point for the mean to 

process capability.    

For the Triangular distribution, an optimum upper screening limit and an optimum 

value for the mean fill level is found for both the symmetrical and skewed cases using a 

net profit model that has fixed rework/scrap and reprocessing costs. 
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1.0  Introduction 

An interesting problem in process optimization is the “canning problem” which 

attempts to define the optimum set point for the mean of a manufacturing process to 

minimize scrap and cost (or maximize net profit).  The examples used typically refer to 

filling jars or cans such as in the food industry.  In each case, there is a minimum 

requirement or specification set by the consumer.  Any product produced below that 

minimum is either scrapped or reworked and therefore incurs an associated cost.  On the 

other hand, any product over the minimum is extra product that is given to the customer 

beyond the minimum requirement (and has thus been labeled “give-away” cost).  The 

give-away cost is proportional to the distance between the existing fill level and the 

minimum specification.  If a target is set too low, product will be rejected as not meeting 

the customer requirement (lower specification limit) and reworking or scrap costs will be 

incurred.  If a target is set too high, product will meet customer requirements but at the 

added expense of “giving away” more material than necessary.  The objective of the 

canning problem is to determine the target mean for production that minimizes both of 

these costs, given that process variability is known and in a state of statistical control. 

 In some cases, an upper screening limit, U, can also be determined.  This limit 

identifies a level above which give-away cost is so high that net profit is maximized by 

reworking the product. 
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 Examples of the canning problem can be found in “fill processes” such as the 

amount of coffee in a jar, paint in a can, etc.  Other examples come from the metal 

industry such as steel, aluminum, and copper where metal thickness (gauge) has a 

required minimum, but additional gauge just adds to the cost.  

In this paper, continuous, finite range distributions, specifically the Uniform and 

Triangular distributions will be considered.  The Uniform distribution is presented as a 

common, symmetric finite range distribution and the Triangular distribution is presented 

with varying levels of skewness.  An optimum upper screening limit (Uo) and an 

optimum value for the mean fill level (µo) will be determined for two net profit models – 

one with fixed rework costs and one with linear rework costs.  In the case of the net profit 

model with fixed rework costs, the results for the Uniform distribution will be compared 

with a generalized optimum mean and upper screening limit developed by Liu and 

Raghavachari (1997) for any continuous fill distribution. 
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2.0  Literature Review 

 Springer (1951) introduced the concept of determining an optimum target for a 

process given fixed costs associated with product falling outside of specifications (both 

lower specification limit (LSL) and upper specification limit (USL.))  He identified a 

general approach for calculating a process mean target that minimizes the total cost of 

rejection for both a Normal and Pearson Type III (or Gamma) distribution.  Bettes (1962) 

wrote a similar article that identified a method for determining the process target when a 

set lower specification but an arbitrary upper specification is given.  He specifically used 

a “foodstuff” example in which items below the lower specification and above the upper 

specification were reprocessed at a fixed cost.  Both Springer’s and Bette’s solutions 

involved a tabulation of factor W .  W is a factor which varies depending on the values of 

( )U L

σ
−

 and L

U

C

C
, the cost ratio between rejecting a part with fill level < L and rejecting a 

part with fill level > U.  The optimum mean is o L Wµ σ= +  when L UC C≤  and 

o U Wµ σ= −  when L UC C≥  where  
1

log
2

L

U

CU L
W

U L C

σ
σ

 −   = +     −     
.  (Note:  

Springer uses the notation LC  and UC  to define the costs associated with rejected 

material.  In subsequent articles and in this research, the notation LR  and UR  is used.) 

  To avoid tabulation, Nelson (1979) presented a simplified approach to 

Springer’s solution using a nomograph. 
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Hunter and Kartha (1977) identified a similar problem with a lower specification 

limit, where items produced below the specification were sold at a reduced price and 

give-away cost was linear.  Since their approach does not provide a closed-form solution, 

Nelson (1978) provides an approximating function for use in a calculator or computer 

allowing an error of about three-decimal accuracy. 

The “canning problem” is not specific to cans.  Any process that has a minimum 

specification and costs associated with “under-fill” (and “over-fill”) can be classified as a 

“canning problem.”  Another application of the canning problem is the production of 

steel beams.  The beams have minimum web and flange widths. Beams produced below 

the width specification cannot be sent to customers.  Those with width levels above the 

minimum use more steel (and therefore cost significantly more) than those produced at 

minimum. What makes the steel beam example different from the traditional canning 

problem is that beams produced below the minimum cannot be reworked as in the typical 

canning problem (more steel cannot be added).  The rejected beams are either sold at a 

reduced price or scrapped and reprocessed.  Beams with thickness levels greater than U 

are most likely melted down and reprocessed.  Carlsson presented this example (1984) 

with the two classes of rejects previously mentioned and give-away cost is measured on a 

cost per unit basis. 

Bisgaard, Hunter, and Pallesen (1984) pointed out that Hunter and Kartha’s 

assumption that under-filled items can be sold for a fixed price implied that even empty 

cans could be sold. They expanded Hunter and Kartha’s model to determine the optimum 

mean, but instead of using a constant selling price for under-filled items, they used a 

proportional price.  They also addressed the possibility and associated costs of reworking 
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under-filled items.  Dodson (1993) provided a similar model with his specific example of 

rolled aluminum sheet metal.  Using the characteristic of footage on a finished coil, he 

identified two costs: when footage is below the lower specification, the entire coil is 

scrapped (at a cost proportional to footage) and when product is produced above the 

upper specification, the extra footage is scrapped. He provided a method using graphs or 

a spreadsheet to identify the target process mean. 

Gohlar (1987) first coined the term “canning problem”.  He addressed the specific 

case where over-filled cans are sold for a fixed price (and thus incur a “give-away” cost) 

and under-filled cans are emptied and refilled at a fixed reprocessing cost.  Gohlar and 

Pollock (1988) added the determination of an upper specification limit for cases where a 

manufacturer may choose to empty and refill expensive product when the fill level is too 

high.  Gohlar (1988) provided a Fortran program to calculate these values. 

Many variations of the original models have been written to include other 

constraints.   Schmidt and Pfeifer (1989) determined the cost benefit associated with 

reducing variability based on a percentage reduction in standard deviation.  Their model 

extends Gohlar (1987) in which under-filled product is emptied and reprocessed at a 

fixed cost and over-filled product is sold at the regular price.  In 1991, Schmidt and 

Pfeifer also extended the analysis to include limited capacity as a constraint.  Usher, 

Alexander, and Duggins (1996) recognized that handling rejects reduces efficiency, so 

they extended Gohlar and Pollock (1988) to include the effect that the target mean and 

upper limit have on the efficiency of a production line.  Cain and Janssen (1997) 

identified a target value when there is asymmetry in the cost function in the cases of 

asymmetric linear, asymmetric quadratic, and combined linear and quadratic costs.  Pulak 
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and Al-Sultan (1997) developed Fortran programs for solving nine selected targeting 

models: Hunter and Kartha ’77, Bisgaard, Hunter, and Pallesen ’84, Carlsson ’84, Gohlar 

’87, Schmidt and Pfeifer ’91, Boucher and Jafari ’91 (sampling), Gohlar and Pollock ’88, 

Arcellus and Rahim ’90 (sampling), and Al-Sultan ’94 (two machines in series with 

sampling.) 

Many articles have been written that extend the target selection problem to 

processes that are subjected to acceptance sampling rather than 100% inspection.  

Carlsson (1989) identified a method for determining the target mean when using variable 

data, a one-sided specification, a known variance, and a sampling plan such as MIL-STD-

414B.  Lee and Elsayed (2002) calculated optimum process mean and screening limits by 

maximizing profit when a 2-stage screening process is used with a surrogate variable.  

Lee, Hong, and Elsayed (2001) calculated the optimum process mean and screening 

limits for a correlated variable under single- and 2-stage screening.  In their article, the 

single screening was based on the quality characteristic being measured and the 2-stage 

screening was being done on a correlated variable first, then on the quality characteristic 

of interest. 

 Recent articles have explored the objective functions and use of a fixed variance.  

Pfeifer (1999) identified two competing objectives: expected profit per fill attempt and 

expected profit per can to be filled.  Rather than setting the first derivative of expected 

profit equal to zero and solving for the optimum target, he evaluated expected profit over 

a range of values and found one that maximized expected profit using spreadsheets and 

search routines.  Misiorek and Barnett (2000) examined the effect of a change in variance 

on the solution of optimum mean and expected profit.  They also explored the 
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implications to “Weights and Measures” requirements.  In this article, over-fill was either 

recaptured or lost and under-filled containers were emptied and material re-used or they 

were “topped-up”.   Kim, Cho, and Phillips (2000) calculated the optimum mean while 

keeping the process capability at a predetermined level.  They used a cost function that 

increased as variance decreased which seems counter to Taguchi’s loss function and 

would be difficult to quantify in practical application. 

Liu and Raghavachari (1997) generalized the determination of an optimal process 

mean for the canning problem and an upper screening limit for any continuous 

distribution.  They used a simple profit model given by Schmidt and Pfeifer (1991) and 

determined an optimal value of U (upper screening limit) and µ which maximized the 

expected net profit for any continuous fill distribution.  Their work addressed infinite-

range distributions that they truncated on the low end. 

A flow chart of articles reviewed for this research follows: 
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FIGURE 1.  References that Address the Canning Problem With 100 % Inspection 

LSL and USL 
given 

Springer, 1951 
Nelson, 1979 
Dodson, 1993 

Bettes, 1962 
Gohlar & Pollack, 1988 
Gohlar, 1988 
Liu & Raghavachari, 1997 

Reason for 
Reject 

Set Mean 

Set Mean & 
USL 

Under-fill 

Over-fill 

Both 
Selling 
Price 

Constant 

Proportional 

Hunter & Kartha, 1977 
Nelson, 1978 

Bisgaard, Hunter,  & 
       Pallesen, 1984 

Misiorek & Barnett, 2000 

Carlsson, 1984 
Gohlar, 1987 
Cain & Janssen, 1997 

LSL only 

Optimization 
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FIGURE 2.  Other References that Address the Canning Problem 
 

Other 
Variations 

Lim Capacity–Schmidt & Pfeifer, 1991 
Line Efficiency–Usher, Alexander, &       
                           Duggins, 1996 
Fortran Programs–Pulak & Al-Sultan, 1997 
Competing Obj Functions – Pfeifer, 1999 
 

With 
Sampling Bai & Lee, 1993 

Tang & Lo, 1993 
Lee & Kim, 1994 

Lee & Jang, 1997 
Lee, Hong, & Elsayed, 2001 
Lee & Elsayed, 2002 

Correlated 
Variables 

Multi-Class 
Inspection 

Carlsson, 1989 
Boucher & Jafari, 1991 
Tango & Lo, 1993 
Al-Sultan, 1994 

Impact of Change in 
Variance 

Schmidt & Pfeifer, 1989 
Misiorek & Barnett, 2000 
Kim, Cho, & Phillips, 2000 
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Since many different models of net profit have been used in literature (with many 

different forms of notation), they are summarized in Table 1 using the following notation:   

 

X = the random variable, fill level 

x = a specific value of X 

A = selling price of an acceptable product 

D = selling price of a non-conforming product 

C = variable cost per unit to produce 

Co = fixed cost per unit to produce 

LR = cost to scrap or rework product if x < L 

UR = cost to scrap or rework product if x > U 

R  = cost to scrap or rework product if LR = UR  

 L = lower specification limit 

 U = upper specification limit (if given) 

 oU  = optimum upper screening limit 

 oµ  = optimum target mean 

 m = the modal point 

 

 

 



 

 11 

TABLE 1.  Net Profit Model Comparison from Literature Review 

Author (Date) of 

Reference 

Net Profit Model Calculate oU  in 

addition to oµ  

Springer (1951), 

Nelson (1979)  

 

Springer and Nelson 

do not use a net 

profit model, just the 

cost of rejection: 

- LR  if x < L 

- UR  if x > U 

No 

 

 

Bettes (1962) First application of 

give-away cost, no 

net profit model, 

costs are as follows: 

- LR  if x < L 

-Cx  if x > oU  

Yes 

Hunter & Kartha (1977), 

Nelson (1978) 

D-Cx  if x < L 

A-Cx if x ≥ L 

No 

Carlsson (1984) (Differs from Hunter 

& Kartha in that cost 

to produce is both 

fixed and variable.) 

D-(Co+Cx) if x < L 

A-( Co+Cx) if x ≥ L 

No 

Bisgaard, Hunter, & 

Pallesen (1984) 

(D-C)x-Co if x < L 

A-Cx- Co if x ≥ L 

No 

Gohlar (1987) A-R-Cx if x < L 

A-Cx if x ≥ L 

No 
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TABLE 1 (continued).   Net Profit Model Comparison from Literature Review 

 
Author (Date) of 

Reference 

Net Profit Model Calculate oU  in 

addition to oµ  

Gohlar & Pollock (1988) ( ),P Uµ -R  if x < L, 

where ( ),P Uµ  is 

the expected profit at 

the new level when 

the can is refilled. 

A-Cx  if L ≤ x  ≤ oU  

( ),P Uµ -R   if x > 

oU  

Yes 

Schmidt & Pfeifer 

(1991), Liu & 

Raghavachari (1997) 

A-Cx if L ≤ x  ≤ U 

-R otherwise 

No 

Yes 

Dodson (1993) (A-C)x if L ≤ x  ≤ U 

- LR x if x < L 

- UR x  if x > U 

No 

 

 

  The differences in Table 1 come from several sources.  One variation is the 

selling price.  In some models, selling price is fixed, in others it is proportional, and in 

still other models, there may be more than one selling price if rejected material can be 

sold in a secondary market.  Another variation in the models addresses how material is 

handled if it is rejected.  Some models assume a fixed rejection cost (whether due to 

scrap or rework) and some models treat rejection cost as proportional to x (again this cost 

may be due to scrap or rework.)  In the following chapter, the two net profit models used 
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assume a fixed selling price, no secondary market for selling rejected product, and fixed 

rejection costs for the first model and proportional rejection costs for the second model. 
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3.0 Uniform distribution 

Most of the work in the literature regarding the canning problem has focused on 

the Normal distribution with many different net profit functions.  All assume a 

continuous distribution and an infinite range.  In actual practice, however, finite 

distributions may sometimes be more plausible models for a canning process.   Few 

authors use a truncated distribution and those who do (Liu and Raghavachari, 1997) only 

truncate on the low end of the distribution.  This research is preliminarily focused on the 

application of the canning problem to two standard statistical distributions that have a 

finite range:  the Uniform distribution (with two different net profit models) and the 

Triangular distribution (with fixed rework/reprocessing costs.)  

 

3.1 Uniform underlying distribution – constant scrap cost 

In every case, analysis should begin with a distribution fit ( 2χ  Goodness of Fit 

Test for example) of the data’s dimension (fill level, metal thickness, etc.), to determine 

the appropriate distribution to use in the analysis.  In this chapter, it is assumed that such 

an analysis has been completed and data are found to be most closely approximated by a 

Uniform distribution. 

In this first application, the basic profit function used in the Liu and Raghavachari 

(1997) article is used, so results for the continuous Uniform distribution can be compared 

to their’s for any continuous distribution for that particular profit model.  In the net profit 

function, first introduced by Schmidt and Pfeifer (1991), the cost of reworking product 
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below L or above U is fixed and the product is only sold if fill level, x, falls within the  

limits of L and U.  A slight modification of Schmidt and Pfeifer’s (1991) net profit model 

is defined below.  This net profit model is generalized such that RL need not be equal to 

RU.   

 

The Net Profit function: 

,

,
( )

,

0,

L

U

R a x L

A Cx L x U
P x

R U x b

otherwise

− ≤ <
 − ≤ ≤= − < ≤


 

 

where L = lower specification limit, below which the customer will not accept the 

product.  For example, if a jar is to be filled with L = 8 oz. of an ingredient, anything less 

than L = 8 oz. is not allowed.  U = an upper screening limit (to be determined) which is 

not based on customer preferences but is a value that minimizes giveaway cost such that 

any fill level above U costs more in giveaway cost than would be received in income.  LR  

= the rejection cost per container when x L< , UR = the rejection cost per container when 

x U> , A = revenue received for an acceptable container, and C = the production cost per 

unit of ingredient.  The constants A, LR , UR , C, and L are known and > 0.  In the Liu and 

Raghavachari (1997) article, L UR R R= = , but since the cost of rejecting a unit with fill 

level less than L may be different from the cost of rejecting a unit with fill level greater 

than U, a slight generalization is made for this model.  For example, in the steel industry, 

if sheets of steel are being produced to a minimum thickness specification, L, then sheets 

with thickness less than L may be scrapped or sold in a secondary market, while sheets 
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with thickness greater than U, may be reprocessed, melted down and used as raw 

material.  The machine’s “fill level” per attempt will be used throughout this research to 

describe the random variable, X.  The unit of measure will depend on the application.  For 

example, “per unit” may be per ounce (in the case of filling a container) or per fraction of 

an inch (in the case of steel thickness.) 

In order to determine the optimum value of U, Uo, the equation for maximizing 

expected profit must be determined and then the first derivative with respect to U is set 

equal to zero to solve for Uo. 

The Uniform distribution has the following probability density function: 

 

1
,

( )
0,

a x b
f x b a

otherwise

 ≤ ≤= −


 

      
1

,
2
0,

a x b
k

otherwise

 ≤ ≤= 


 

where 2b a k− = . 

Graphically, the density function appears as: 

 

( )f x  

 

 

            x  
              a       µ    b  
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where a = µ - k, b = µ + k, and 2k is a constant value that describes the spread of the 

Uniform distribution such that b – a = 2k, and variance of X is ( )
2

3

k
V x =  (Appendix D.) 

 

3.1.1  Optimum upper screening limit 

With respect to the canning problem, there is a cost ( LR ) when the quantity falls 

below the lower specification, L (L ≥  a).  There is also an arbitrary upper screening limit, 

U (U < b), such that the profit (A Cx− ) above U is actually less than the cost to rework 

or reprocess when fill level is too high, UR . 

 

 

( )f x  

 

 

            x 

         a=µ-k     L               U     b=µ+k            

 
Assume that the filling machine variability is such that the process range is kµ ± where 

a kµ= − and b kµ= + .  The objective is to maximize the expected net profit, which is 

obtained first by combining the equation for the net profit, ( )P x , and the probability 

density function of x given by ( ) 1

2
f x

k
= , a x b≤ ≤ . 

Assuming thatL Uµ≤ ≤ , a k Lµ= − ≤ , and b k Uµ= + ≥ , the expected net 

profit is given by 
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( ) ( ) kL U
UL

k L U

RR A Cx
E P X dx dx dx

b a b a b a

µ

µ

+

−

−= − + + −   − − −∫ ∫ ∫  

 

= - |
L

L

k

R x

b a µ−−
  + 

21

2
|
U

L

Cx
Ax

b a

 
− −  

 - |
kU

U

R x

b a

µ+

−
 

 

= ( ) ( ) ( ) ( )
2 2

1

2 2L U

C U L
R k L A U L R U k

k
µ µ

 −
 − − + − − + − −
  

 

 
 

    = ( ) ( )1

2 2 2U L U L

CU CL
U R A R k R k L A R

k
µ µ    + − + − − + + − −    

    
         (1) 

 
 
 

In order to solve for the optimum value of the upper limit, UU , the first derivative 

of the expected profit equation with respect to U is set equal to zero: 

  

   
[ ] ( )( ) 1

2 U

E P x
R A CU

U k

∂
= + −

∂
            (2) 

 

The second derivative with respect to U is 
2

C

k
−  which is < 0.  Since the second 

derivative is < 0, the function is strictly concave and setting the first derivative = 0 will 

yield a maximum expected net profit. 

Setting Equation (2) equal to zero, 

( )1

2 U UR A CU
k

+ −  = 0 →   ( )U UR A CU+ −  = 0 

or, 
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 U
U

R A
U

C

+=              (3) 

In the case where R = RU = RL, the optimum point obtained in Equation (3) matches the 

solution found by Liu and Raghavachari (1997) for any distribution.   

Substituting UU into the expected net profit equation, Equation (1), yields the 

following optimum expected net profit: 

( )oE P X      =    

( ) ( )1

2 2 2
U U

U L U L

R A R A CL
R A R k R k L A R

k C
µ µ + +    + − + − − + + − −    

    
 

 

=    
( ) ( ) ( )

2

1

2 2 2
U

L U L

R A CL
R k R k L A R

k C
µ µ

 +   + − − + + − −   
 

 

 

=  
( ) ( ) ( )

2

1

2 2 2
U

L U L U L

R A CL
R R k R R L A R

k C
µ

 +   + − − + + − − 
   

. 

Because the variance of the Uniform density is given by ( ) ( )2 2

12 3

b a k
V x

−
= = , 

 ( ) ( ) ( ) ( )
2

1
3

2 22 3
U

o L U L U L

R A CL
E P X R R R R L A R

C
µ σ

σ

 +     = + − − + + − −      

    (4) 
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In the case where L UR R R= = , Equation (4) simplifies further to 

 

   ( ) ( )2
1

2 22 3
o

R A CL
E P x L A R R

Cσ

 +    = + − − −       
.                             (5) 

 

Equations (4) and (5) show that as process variability is reduced, the expected net profit 

increases.  Further, ( )oE P x    decreases as costs (R and C) increase.   

If U LR R> , it is clear based on the net profit model in Figure 3, that when 

2 Uk U L> − , fill level should be positioned below L rather than aboveUU , so in 

determining the optimum value for µ the probability of Ux U>  will be zero.  However, if 

( )L UR P U− > , a higher profit can be realized if µ is set lower thanUU k− .  UU  was 

determined to be the “break-even” point for costs related to UR , but in the case where 

U LR R> , even within the range between L and UU , the cost for a given fill attempt, Cx, 

may be higher than the selling price, A, such that net profit becomes negative, and if A-Cx 

< -RL, then the cost to rework when fill level is less than L is actually less than the cost to 

produce and sell at the given fill level (below UU .) 
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FIGURE 3.  Net Profit Model When U LR R> . 

 
 

In the case whereU LR R> , an alternative upper limit exists at UL = LR A

C

+
 for the 

purpose of determiningoµ . UU , in Equation (3), was determined to be the “break-even” 

point for costs related to UR , but when U LR R> , another “break-even” point occurs 

when ( )LR P x− = .  This occurs when LA Cx R− = −  and leads to an alternative upper 

screening limit for determining oµ : 

L
L

R A
U

C

+=              (6) 

L
L

R A
U

C

+
=  is the “break-even point” for net profit with the cost of reprocessing 

material with fill level below L.  If it costs less to scrap and reprocess under-fills than to 

fill and sell product with fill level > LU , then the production process should be centered 

such that reject occur below L  rather than above LU . 

   

UR−
LR−  

A Cx−  

L 
LU  UU  

( )P x  

x 
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So, the optimum value for the upper screening limit is 

( )min , min , UL
o L U

R AR A
U U U

C C

++ = =  
 

          (7) 

 

3.1.2  Optimum target set point for the mean 

The next step is to determine an optimum machine set point for the mean.  Of 

course, for a Uniform distribution,
2

a bµ += , so the actual mean is defined.  In this 

chapter, the optimum set point for the mean will be determined that maximizes expected 

net profit per unit.  Rather than fixing a or b, in this analysis, the assumption is that the 

filling machine has a fixed amount of variability, but the set point can be adjusted such 

that b – a = 2k is fixed, and the optimum mean,oµ , is accordingly determined. 

The ideal (though technically impossible) optimum situation would occur if the 

process mean was centered at L and there was no variability.  The fact that variability 

exists in all processes, however, makes the canning problem a practical issue. 

For a Uniform distribution with L and k given, the optimum set point for µ , oµ , is 

based on the equations for expected net profit.  There are two cases to be considered:  

Case 1: 2 ok U L≤ −  and Case 2: 2 ok U L> − .  Within each case, the equations for 

expected net profit are different, for different ranges of µ . 

 

Case 1:  2 ok U L≤ − : 

When 2 ok U L≤ − , there are five different scenarios: 
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a) k Lµ + ≤  

 

FIGURE 4.  Distribution of fill level when 2 ok U L≤ −  and k Lµ + ≤ . 

b) k Lµ − ≤  and oL k Uµ≤ + ≤  

 

FIGURE 5.  Distribution of fill level when 2 ok U L≤ − , k Lµ − ≤  and oL k Uµ≤ + ≤ . 

L 
  kµ −  kµ +  

oU  

( )f x  

x 

L 
  kµ −  kµ +  

oU  

( )f x  

x 
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c)  k Lµ − ≥  and ok Uµ + ≤  

 

FIGURE 6.  Distribution of fill level when 2 ok U L≤ − ,  k Lµ − ≥  and ok Uµ + ≤ . 

d)  oL k Uµ≤ − ≤  and ok Uµ + ≥  

 

FIGURE 7.  Distribution of fill level when 2 ok U L≤ − ,  oL k Uµ≤ − ≤ , and ok Uµ + ≥ . 

L 
  kµ −  kµ +  

oU  

( )f x  

x 

L 
  kµ −  kµ +  

oU  

( )f x  

x 
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e)  ok Uµ − ≥  

 

FIGURE 8.  Distribution of fill level when 2 ok U L≤ −  and ok Uµ − ≥ . 

These scenarios and the formulas for expected net profit are summarized in Table 2: 

L 
  kµ −  kµ +  

oU  

( )f x  

x 
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TABLE 2.  Case 1:  Expected Net Profit for Ranges of µ  when 2 ok U L≤ − . 

Scenario Range of µ  Expected Net Profit, ( )E P x    

a k L kµ≤ ≤ −  
LR−  

b L k L kµ− ≤ < +  ( ) ( )

( ) ( )2 2

1

2
2

L

L

R k A k

Ck R A L k L

µ µ

µ

 − + + −
 
  + − + −   

 

c 
oL k U kµ+ ≤ < −  A Cµ−  

d 
o oU k U kµ− ≤ < +  ( )( ) ( )

( )22

1

2
2

U o U

o

A R U k A R

Ck U k

µ

µ

 + − + − −
 
  − −   

 

e 
oU k µ+ ≤  UR−  

 

 

Expected Net Profit equations are calculated below and an attempt is made to find 

through differentiation the optimum set point for µ , oµ , to maximize expected net profit: 

 

Case 1 (a) k L kµ≤ ≤ − : 

( ) ( )k

Lk
E P x R f x dx

µ

µ

+

−
  = −  ∫ ( ) ( ){ }1

2 L LR k k R
k

µ µ = − + − − = −   

So, there are no critical points in( ),k L k− . 
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Case 1 (b) L k L kµ− ≤ < + : 

( ) ( ) ( )( )
L k

Lk L
E P x R f x dx A Cx f x dx

µ

µ

+

−
  = − + −  ∫ ∫  

( ) ( ) ( )2 21

2 2L

C
R L k A k L k L

k
µ µ µ     = − − − + + − − + −       

 

( ) ( ) ( ) ( )2 21

2 2L L

C
R k A k R A L k L

k
µ µ µ  = − + + − + − + −   

 

Now, in order to find the optimum value of µ, the equation for expected net profit is 

differentiated with respect to µ: 

( ) ( ) ( )1

2 LE P x R A C k
k

µ
µ
∂

   = + − +   ∂
 

The second derivative with respect to µ, ( )
2

2 2

C
E P x

kµ
∂

  = − ∂
, is less than zero, so 

setting the first derivative equal to zero will result in a maximum: 

 ( ) ( )1
0

2 LR A C k
k

µ + − + = ⇒   L
o L

R A
k U k

C
µ += − = −  

But, L k L kµ− ≤ ≤ + , and 2 ok U L≤ −  is assumed in Case 1.  Since 

( )min ,o U LU U U= , L oU U≥ , so L oU k U k L k− ≥ − > + , and o LU kµ ≠ −  in this 

range. 

 

Case 1 (c) oL k U kµ+ ≤ < − : 

( ) ( )( )
k

k
E P x A Cx f x dx

µ

µ

+

−
  = −  ∫  

( ) ( ) ( ) ( )2 21

2 2

C
A k k k k

k
µ µ µ µ   = + − − − + − −     
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A Cµ= −               

So, there are no critical points in( ), oL k U k+ − . 

            

Case 1 (d) o oU k U kµ− ≤ < + : 

( ) ( ) ( )( )
o

o

U k

Uk U
E P x A Cx f x dx R f x dx

µ

µ

+

−
  = − + −  ∫ ∫  

( ) ( ) ( )221

2 2o o U o

C
A U k U k R k U

k
µ µ µ     = − − − − − − + −      

 

( )( ) ( ) ( )221

2 2U o U o

C
A R U k A R U k

k
µ µ  = + − + − − − −   

 

Now, differentiating with respect to µ, 

( ) ( ) ( )1

2 UE P x C k R A
k

µ
µ
∂

   = − − +   ∂
 

Here, the second derivative with respect to µ is 0
2

C

k
> , so setting the first derivative 

equal to zero will result in a minimum, not a maximum net profit. 

 

Case 1 (e) oU k µ+ ≤ : 

( ) ( )k

Uk
E P x R f x dx

µ

µ

+

−
  = −  ∫  

( ) ( ){ }1

2 U UR k k R
k

µ µ = − + − − = −   

So, there are no critical points when oU kµ > − . 
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In each case, differentiation does not lead to a solution for oµ , so the extreme 

points for each interval are calculated to determine the optimum value of , oµ µ , to 

maximize ( )E P x   .   

Case 1(a):    At L kµ = − , ( ) LE P x R  = −   

Case 1(b):  At L kµ = − , ( ) LE P x R  = −  , 

At L kµ = + , ( ) ( )E P x A C L k  = − +   

Case 1(c):  At L kµ = + , ( ) ( )E P x A C L k  = − +  , 

At oU kµ = − , ( ) ( )oE P x A C U k  = − −   

Case 1(d):  At oU kµ = − , ( ) ( )oE P x A C U k  = − −  , 

At oU kµ = + , ( ) UE P x R  = −   

Case 1(e):    At oU kµ = + , ( ) UE P x R  = −   

Since 2 ,o ok U L L k U k≤ − + ≤ − , so ( ) ( )oA C L k A C U k− + > − − .  Because 

oU  is calculated using Equation (7), LL k U+ < , so ( ) LA C L k R− + > −  and 

UL k U+ < , so ( ) UA C L k R− + > − . Therefore, the optimum value of µ  when 

2 ok U L≤ − , is: 

     o L kµ = +              (8) 

and     

    ( ) ( )oE P x A C L k  = − +             (9) 
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Example 1 (2 ok U L≤ − .)  

Let A = $40, C = $0.10, RL =$5, RU = $6, k = 50, and L = 200.  oU  can be calculated using 

Equation (7) to be oU  = 450.  Using Equation (8), µo = 250.  Various values for µ  are 

presented in Figure 9 with the corresponding expected net profit, ( )E P x   , to show that 

µo =250 does, in fact, give the highest expected net profit (at $15): 

 
FIGURE 9.  Example of Expected Net Profit for Different Values of µ when 
2 ok U L≤ − . 
 

Uniform Distribution - Fixed Cost Profit Model
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Case 2:  2 ok U L> −   

As in Case 1, for Case 2 where 2 ok U L> − , there are five different scenarios.  The 

ranges of µ  change since 2 ok U L> − , but the expected net profit equations remain the 

same as in Case 1 with the exception of Case 2(c). Case 2(c) differs from Case 1(c) in 

that with 2 ok U L> − , fill level will fall below L and/or above oU as illustrated below: 

c)  k Lµ − ≤  and ok Uµ + ≥  

 

FIGURE 10.  Distribution of fill level when 2 ok U L> − , k Lµ − ≤  and ok Uµ + ≥ . 

 

These scenarios and the formulas for expected net profit are summarized in Table 3: 

L 
  kµ −  kµ +  

oU  

( )f x  

x 
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TABLE 3.  Case 2:  Expected Net Profit for Ranges of µ  when 2 ok U L> − . 

Scenario Range of µ  Expected Net Profit, ( )E P x    

a k L kµ≤ ≤ −  
LR−  

b 
oL k U kµ− ≤ < −  ( ) ( )

( ) ( )2 2

1

2
2

L

L

R k A k

Ck R A L k L

µ µ

µ

 − + + −
 
  + − + −   

 

c 
oU k L kµ− ≤ < +  ( ) ( )

( ) ( )2 2

1

2
2

L o

o U o

R k L A U L

Ck U L R k U

µ

µ

 − − + − −
 
 − − + −
  

 

d 
oL k U kµ+ ≤ < +  ( )( ) ( )

( )22

1

2
2

U o U

o

A R U k A R

Ck U k

µ

µ

 + − + − −
 
  − −   

 

e 
oU k µ+ ≤  UR−  

 

Expected Net Profit equations were calculated the same as with Case 1 with the exception 

of 2(b) and 2(c). 

 

Case 2 (b) oL k U kµ− ≤ < − : 

As in Case 1, taking the first derivative with respect to µ  of the equation for expected net 

profit in the range L k L kµ− ≤ < + , leads to L
L

R A
k U k

C
µ +

= − = − .  However, when 

2 ok U L> − , L
L

R A
k U k

C
µ +

= − = −  is a feasible value for oµ . 
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Case 2 (c) oU k L kµ− ≤ < + : 

( ) ( ) ( ) ( )( )
o

o

L U k

L Uk L U
E P x R f x dx A Cx f x dx R f x dx

µ

µ

+

−
  = − + − + −  ∫ ∫ ∫  

( ) [ ] ( )2 21

2 2L o o U o

C
R L k A U L U L R k U

k
µ µ     = − − − + − − − − + −      

 

( ) ( ) ( ) ( )2 21

2 2L o o U o

C
R k L A U L U L R k U

k
µ µ = − − + − − − − + −  

 

Now, in order to find the optimum value of µ, the equation for expected net profit is 

differentiated with respect to µ: 

( ) ( )1

2 L UE P x R R
kµ

∂
  = − ∂

 

which leads to no closed form solution for µ . 

With the exception of Case 2(b),  differentiation does not lead to a solution for 

oµ , so the extreme points for each interval are calculated to determine the optimum set 

point for , oµ µ .   

Case 2(a):    At L kµ = − , ( ) LE P x R  = −   

Case 2(b):  At L kµ = − , ( ) LE P x R  = −  , 

At oU kµ = − , 

 ( ) ( ) ( ) ( )2 21
2

2 2L o o o

C
E P x R U L k A U L U L

k
   = − − + − − −    

 

Case 2(c):  At oU kµ = − ,  

   ( ) ( ) ( ) ( )2 21
2

2 2L o o o

C
E P x R U L k A U L U L

k
   = − − + − − −    

, 
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At L kµ = + , 

( ) ( ) ( ) ( )2 21
2

2 2U o o o

C
E P x R U L k A U L U L

k
   = − − + − − −    

 

Case 2(d):  At L kµ = + , 

( ) ( ) ( ) ( )2 21
2

2 2U o o o

C
E P x R U L k A U L U L

k
   = − − + − − −    

, 

At oU kµ = + , ( ) UE P x R  = −   

Case 2(e):    At oU kµ = + , ( ) UE P x R  = −   

Clearly, the maximum expected net profit occurs either at LU kµ = − , from the 

differentiation in Case 2(b), at L kµ = +  (from Case 2(c)) where 

( ) ( ) ( )2 21
[ ( )] 2

2 2L o o o

C
E P x R U L k A U L U L

k
 = − − + − − −  

, or at oU kµ = −  (from 

Case 2(c)) where ( ) ( ) ( ) ( )2 21
2

2 2U o o o

C
E P x R U L k A U L U L

k
   = − − + − − −    

.  Which 

value of µ  provides a higher expected net profit depends on the relationship between LR  

and UR .  If L UR R> , then the expected net profit when L kµ = +  is 

( ) ( ) ( )2 21
2

2 2L o o o

C
R U L k A U L U L

k
 − − + − − −  

 which is greater than the expected net 

profit when oU kµ = − , or ( ) ( ) ( )2 21
2

2 2U o o o

C
R U L k A U L U L

k
 − − + − − −  

.  This is 

consistent with Case 2(b), because when U LR R> , o LU U= , so o LU k U kµ = − = − . 

Therefore, if L UR R> , 

o L kµ = +                       (10) 
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 and  

( ) ( ) ( ) ( )2 21
2

2 2o L o o o

C
E P x R U L k A U L U L

k
   = − − + − − −    

             (11) 

If U LR R> , then  

o oU kµ = −             (12) 

and  

( ) ( ) ( ) ( )2 21
2

2 2o U o o o

C
E P x R U L k A U L U L

k
   = − − + − − −    

         (13) 

In the case where U LR R R= = , Equations (11) and (13) are equal and the optimum set 

point for µ is any value in the range 

[ ],o oU k L kµ ∈ − +            (14) 

and  

( ) ( ) ( ) ( )2 21
2

2 2o o o o

C
E P x R U L k A U L U L

k
   = − − + − − −    

      (15) 

 

If o oU kµ = − , then 2oa U k L= − <  and ( )o ob U k k U= − + =  where there are no rejects 

on the high side, but the proportion rejected on the low side is 
( )2

2
o

L

L U k
p

k

− +
= .  

Further, as oU L−  approaches 2k , 0Lp → .  On the other hand, if o L kµ = + , then 

a L=  and 2 ob L k U= + >  where there are no rejects on the low side, but the proportion 

rejected on the high side is 
( )2

2
o

U

L k U
p

k

+ −
= .  Again, as oU L−  approaches 2k , 

0Up → .  Note that, as expected, L Up p= . 
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Example 2 (2 ok U L> −  and L UR R> .) 

Let A = $40, C = $0.10, RL = $6, RU = $5, k = 150, and L = 200.  oU  is calculated using 

Equation (7) to be  oU = 450.  Using Equation (10), µo = 350.  Various values for µ  are 

presented in Figure 11 with the corresponding expected net profit, ( )E P x   , to show that 

calculating µo by Equation (10) does, in fact, give the maximum expected net profit (at 

$5.42): 

 

FIGURE 11.  Example of Expected Net Profit for Different Values of µ when 
2 ok U L> −  and U LR R< . 
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Example 3 (2 ok U L> −  and U LR R> .) 

Let A = $40, C = $0.10, RL =  $5, RU = $6, k = 150, and L = 200.  oU  can be calculated 

using Equation (7) to be  oU = 450.  Using Equation (12), µo = 300.  Various values for µ 

are presented in Figure 11 with the corresponding expected net profit, ( )E P x   , to show 

that µo =300 does, in fact, give the highest expected net profit (at $5.42.) 

 

FIGURE 12.  Example of Expected Net Profit for Different Values of µ when 
2 ok U L> −  and U LR R> . 
 

 

Example 4 (2 ok U L> −  and L UR R R= = .) 

Let A = $40, C = $0.10, RL =  RU = $5, k = 150, and L = 200.  Uo can be calculated using 

Equation (7) to be Uo = 450.  Using Equation (14), [ ]300,350oµ ∈ . Various values for µ  
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are presented in Figure 13 with the corresponding expected net profit, ( )E P x   , to show 

that [ ]300,350oµ ∈  does, in fact, give the highest expected net profit (at $5.42.) 

 
FIGURE 13.  Example of Expected Net Profit for Different Values of µ  when 
2 ok U L> − and L UR R R= = . 

 

 
To summarize, for fill level that follows a Uniform distribution when there is a 

constant scrap cost, the optimum value for the upper screening limit was determined to be 

( )min , min , UL
o L U

R AR A
U U U

C C

++ = =  
 

 

The optimum target set point for the process mean was obtained for the various scenarios: 

Case 1: 2 o ok U L L kµ≤ − → = +  

Case 2:  2 ok U L> − : 
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If U L oR R L kµ< → = +  

If U L o oR R U kµ> → = −   

If [ ],U L o oR R U k L kµ= → ∈ − +  

 

 

3.2   Uniform underlying distribution – linear scrap cost  

In this section, the optimum upper screening limit and optimum target mean are 

obtained for a different net profit model: one with a linear scrap cost.  This net profit 

model is appropriate when the majority of the scrap/rework/reprocessing cost is from the 

cost of the material, for example in the gauge of steel beams.  Using a model similar to 

that used by Dodson (1993), the net profit model is: 

 

,
( )

,

Rx x L
P x

A Cx x L

−      <
=  − ≥

 

 

The above model differs from Dodson (1993) in that in his model, price for conforming 

product was also linear.  This model maintains a constant selling price, A, for comparison 

with the previous model. 

 

Modifying the model to match the finite Uniform distribution, 

,

,
( )

,

0,

L

U

R x a x L

A Cx L x U
P x

R x U x b

otherwise

−      ≤ <
 −     ≤ ≤= −      < ≤

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where a kµ= −  and b kµ= + .  

 

3.2.1 Optimum upper screening limit  

Using the same approach as in section 3.1.1, the expected net profit equation 

when L Uµ≤ ≤ , a k Lµ= − ≤ , and b k Uµ= + ≥ , is given by: 

( ) ( )
2 2 2

L U k
UL

k L U

A Cx R xR x
E P x

k k k

µ

µ

+

−

− −−= + +   ∫ ∫ ∫  = 

 

2 2 21

2 2 2 2

kL U

UL

Lk U

RR C
x Ax x x

k

µ

µ

+

−

   − + − − =     
 

 

( )( ) ( ) ( ) ( )( )2 22 2 2 21

2 2 2 2
UL RR C

k L A U L L U k U
k

µ µ − − + − + − − + − =  
 

 

( ) ( ) ( ) ( )
2

2 22 21

2 2 2 2 2
UL

L

RR L C
k A U L C R U U k

k
µ µ  − + − + − − + − +   

        (16) 

 

To determine the optimum upper screening limit, oU , the derivative of ( )E P x    with 

respect to U is calculated and set equal to zero: 

 

( )E P x
U

∂
  ∂

 =    [ ]1

2 UA CU R U
k

− +  

 

0UA CU R U− + = ⇒  
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-o
U

A
U

C R
=            (17) 

 

oU  in Equation (17) differs from the optimum value of oU  from Section 3.1.1, 

Equation (7), which was min ,U L
o

R A R A
U

C C

+ + =  
 

.  With the previous profit model, 

selling price (A) and rework cost (R) were fixed and only per unit production cost (C) was 

linear.  In this model, both material cost (C) and rework cost (R) are linear.   

Note that Equation (17) requires UC R> , which means the per unit cost to 

produce must be greater than the incremental cost to reprocess in order to calculate an 

optimum upper screening limit.  If UC R< , no upper screening limit is necessary, 

because net profit will be higher to just produce all product with fill level greater than L, 

sell at A and absorb the “give-away” cost.  However,  UC R>  implies that it costs more 

to manufacture the part than to manufacture and scrap or rework it.  Therefore, an upper 

screening limit is not appropriate for this model.  The remainder of this section will 

assume a fixed value of U that is set by customer requirements or defined by limitations 

of the container or the production equipment and that U is determined such that 

( ) 0A C U− ≥ . 
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3.2.2 Optimum target set point for mean   

To determine an optimum target mean,oµ , the two cases (Case 1: 2k U L≤ −  and 

Case 2: 2k U L> − ) and the same five ranges of µ  that were presented in Section 3.1.2 

also apply for the linear model as presented in Tables 4 and 5.  

Table 4 lists the formulas for expected net profit for different ranges of µ  for 

Case 1: 2k U L≤ − : 

 

TABLE 4.  Case 1:  Expected Net Profit for Ranges of µ  when 2k U L≤ − . 

Scenario Range of µ  Expected Net Profit, ( )E P x    

a k L kµ≤ ≤ −  
LR µ−  

b L k L kµ− ≤ < +  
( ) ( )

( )

22

2 2

1 2
2

2

LR
L k A k L

k C
k L

µ µ

µ

−  − − + + − −   
 
  + −

   

 

c L k U kµ+ ≤ < −  A Cµ−  

d U k U kµ− ≤ < +  ( ) ( )

( )

22

2 2

1 2
2

2
U

C
A U k U k

Rk
k U

µ µ

µ

   − − − − − −    
 
  + −

   

 

e U k µ+ ≤  
UR µ−  

 

Expected Net Profit equations are calculated below and an attempt is made to find 

through differentiation the optimum set point for µ , oµ , to maximize expected net profit: 
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Case 1 (a) k L kµ≤ ≤ − : 

( ) ( )k

Lk
E P x R xf x dx

µ

µ

+

−
  = −  ∫  ( ) ( )2 21

2 2
L

L

R
k k R

k
µ µ µ−  = + − − = −   

 

So, there are no critical points in( ),k L k+ . 

 

Case 1 (b) L k L kµ− ≤ < + : 

( ) ( ) ( )( )
L k

Lk L
E P x R xf x dx A Cx f x dx

µ

µ

+

−
  = − + −  ∫ ∫  

( ) ( ) ( )2 22 21

2 2 2
LR C

L k A k L k L
k

µ µ µ−     = − − + + − − + −      
 

Now, in order to find the optimum value of µ, the equation for expected net profit is 

differentiated with respect to µ: 

( ) ( ) ( )1

2 LE P x R k A C k
k

µ µ
µ
∂

   = − + − +   ∂
 

The second derivative with respect to µ, ( ) ( )
2

2

1
0

2 LE P x R C
kµ

∂
  = − < ∂

 iff LC R> .  

So, setting the first derivative equal to zero will result in a maximum when LC R> : 

 ( ) ( )1
0

2 L
L

A
R k A C k k

k R C
µ µ µ − + − + = ⇒ = +  −

.  But, when LC R> , 

L

A
k k

R C
µ = + <

−
 and then 0kµ − < which is not feasible. 

 

Case 1 (c) L k U kµ+ ≤ < − : 

( ) ( )( )
k

k
E P x A Cx f x dx

µ

µ

+

−
  = −  ∫  
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( ) ( ) ( ) ( )2 21

2 2

C
A k k k k

k
µ µ µ µ   = + − − − + − −     

 

A Cµ= −  

So, there are no critical points in( ),L k U k+ − . 

            

Case 1 (d) U k U kµ− ≤ < + : 

( ) ( ) ( )( )
o

o

U k

Uk U
E P x A Cx f x dx R xf x dx

µ

µ

+

−
  = − + −  ∫ ∫  

( ) ( ) ( )2 22 21

2 2 2
URC

A U k U k k U
k

µ µ µ     = − − − − − − + −       
 

Now, differentiating with respect to µ, 

( ) ( ) ( )1

2 UE P x A C k R k
k

µ µ
µ
∂

   = − + − − +   ∂
 

Here, the second derivative with respect to µ is ( )1
0

2 UC R
k

− <  iff UR C> , so setting 

the first derivative equal to zero will result in a maximum expected net profit if UR C> : 

( ) ( ) ( ) ( )1
0

2
U

U
U

A C R k
E P x A C k R k

k C R
µ µ µ

µ
+ +∂

   = − + − − + = → =   ∂ −
.  But this 

value of µ  leads to a maximum expected net profit in this range only if UR C> .  And, if 

UR C> , then 
( )

0U

U

A C R k

C R
µ

+ +
= <

−
 which is not feasible. 

 

Case 1 (e) U k µ+ ≤ : 
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( ) ( )k

Uk
E P x R xf x dx

µ

µ

+

−
  = −  ∫  ( ) ( )2 21

2 2
U

U

R
k k R

k
µ µ µ  = − + − − = −   

 

So, there are no critical points when U kµ > − . 

In each case, differentiation does not lead to a solution for oµ , so the extreme 

points for each interval are calculated to determine the optimum value of , oµ µ .   

Case 1(a):    At L kµ = − , ( ) ( ) 0LE P x R L k  = − − <   

Case 1(b):  At L kµ = − , ( ) ( ) ( )221
2 0

2 2
L

L

R
E P x L L k R L k

k

−    = − − − − <     
 

At L kµ = + , 

( ) ( ) ( ) ( )2 21
2 2

2 2

C
E P x A k L k L A C L k

k
    = − + − = − +     

 

Case 1(c):  At L kµ = + , ( ) ( )E P x A C L k  = − +   

At U kµ = − , ( ) ( )E P x A C U k  = − −   

Case 1(d):  At U kµ = − , 

( ) ( ) ( ) ( )221
2 2

2 2

C
E P x A k U U k A C U k

k
    = − − − = − −     

 

At U kµ = + ,  

( ) ( ) ( )2 21
2 0

2 2
U

U

R
E P x U k U R U k

k

    = − + − = − + <     
 

Case 1(e):    At U kµ = + , ( ) ( ) 0UE P x R U k  = − + <   

Since 2 ,k U L L k U k≤ − + ≤ − , so ( ) ( )A C L k A C U k− + > − − and clearly, 

( ) ( )LA C L k R L k− + > − −  and ( ) ( )UA C L k R U k− + > − + , so the maximum expected 
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net profit occurs at L kµ = +  with ( ) ( )E P x A C L k  = − +  .  Therefore, the optimum 

value of µ  when 2 ok U L≤ − , is: 

      o L kµ = +           (18) 

and 

( ) ( )E P x A C L k  = − +           (19) 

This conclusion is illustrated in Figure 14 below. 

 

Example 5 (2k U L≤ − .) 

Let A = $40, C = $0.10, RL = $0.20, RU = $0.05, k = 50, L = 200, and / 400U A C= = .  

Using Equation (18), o L kµ = +  = 250.  Various values for µ are presented in Figure 14 

with the corresponding expected net profit, ( )E P x    to show that o L kµ = +  = 250 does, 

in fact, give the highest expected net profit (at ( )oE P x   =$15.) 
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FIGURE 14.  Example of Expected Net Profit for Different Values of µ when  
2k U L≤ − . 
 

 

Case 2: 2k U L> −  

If 2k U L> − , the fill level distribution is illustrated by Figure 15: 

 
 
   ( )f x  
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FIGURE 15.  Distribution of Fill Level when 2k > U - L . 
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The optimum set point for the mean, oµ , to maximize net profit will depend on the 

relationship between the values of , , ,andL UR R C A as illustrated in Figure 16. 

 
FIGURE 16.  Net Profit Equation when U LR R>  

 

If UR C> , it is clear that there is no optimum value for oU , as discussed in 

Section 3.2.1.  Even if UR C< , such that the optimum upper screening limit is defined by 

Equation (17), the fact that the cost is a linear function of fill level, means that it would 

be unlikely that a business would choose to allow fill level to run that high, since the cost 

is so great.  More likely, a fixed upper limit is given.   

Table 5 lists the formulas for expected net profit for different ranges of µ  when 

2k U L> − .  Note that (as in Case 2 of the fixed cost model in Section 3.1.2) the ranges 

of µ  are different from Case 1 because 2k U L> − . 

 

LR x−
 

A Cx−  

L 

 

( )P x  

x 

UR x−  

U  
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TABLE 5.  Case 2:  Expected Net Profit for Ranges of µ  when 2k U L> − . 

Scenario Range of µ  Expected Net Profit, ( )E P x    

a L kµ ≤ −  
LR µ−  

b L k U kµ− ≤ < −  
( ) ( )

( )

22

2 2

1 2
2

2

LR
L k A k L

k C
k L

µ µ

µ

−  − − + + − −   
 
  + −

   

 

c U k L kµ− ≤ < +  
( ) ( )

( ) ( )

2 2

22 2 2

1 2
2

2 2

L

U

R
k L A U L

Rk C
L U U k

µ

µ

  − − + − +   
 
  − + − +

   

 

d L k U kµ+ ≤ < +  ( ) ( )

( )

22

2 2

1 2
2

2
U

C
A U k U k

Rk
k U

µ µ

µ

   − − − − − −    
 
  + −

   

 

e U k µ+ ≤  
UR µ−  

 

Expected Net Profit equations are calculated as in Case 1 with the exception of Case 2(c) 

which is presented below: 

 

Case 2 (c): 

( ) ( ) ( ) ( )( )
L U k

L Uk L U
E P x R xf x dx A Cx f x dx R xf x dx

µ

µ

+

−
  = − + − + −  ∫ ∫ ∫  

( ) ( ) ( ) ( )2 22 2 2 21

2 2 2 2
UL RR C

k L A U L L U U k
k

µ µ    = − − + − + − + − +     
 

Now, differentiating with respect to µ, 
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( ) ( ) ( )1

2 L UE P x R k R k
k

µ µ
µ
∂

   = − − +   ∂
 

Here, the second derivative with respect to µ is ( )1
0

2 L UR R
k

− <  iff U LR R> , so setting 

the first derivative equal to zero will result in a maximum expected net profit if U LR R> : 

( ) ( ) ( ) ( )1
0

2
L U

L U
L U

k R R
E P x R k R k

k R R
µ µ µ

µ
+∂

   = − − + = → =   ∂ −
.  But this value of 

µ  leads to a maximum expected net profit in this range only if U LR R> .  And, if 

U LR R> , then 
( )

0L U

L U

k R R

R R
µ

+
= <

−
 which is not feasible. 

In each range of µ , differentiation does not lead to a solution for oµ , so the 

extreme points for each interval are calculated to determine the optimum value of , oµ µ .   

Case 2(a):    At L kµ = − , ( ) ( ) 0LE P x R L k  = − − <   

Case 2(b):  At L kµ = − , ( ) ( ) ( )221
2 0

2 2
L

L

R
E P x L L k R L k

k

−    = − − − − <     
 

At U kµ = − , 

( ) ( ) ( ) ( )22 2 21
2

2 2 2
LR C

E P x L U k A U L U L
k
    = − − − + − − −     

 ( ) ( ) ( )2 2 2 2 21
4 4

2 2 2
LR C

U kU k L A U L U L
k
 = − + − + − − − 
 

 

( ) ( ) ( ) ( )2 2 2 21

2 2 2
L

L

R C
U L A U L U L R U k

k
 = − + − − − − − 
 

 

( ) ( )( ) ( )
2 2

L
L

U L R C U L
A R U k

k

 − − +
= + − − 

 
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Case 2(c):  At U kµ = − ,  

( ) ( ) ( ) ( )2 2 2 21
2

2 2 2
LR C

E P x U k L A U L L U
k
    = − − + − + −     

 

( ) ( ) ( )2 2 2 2 21
4 4

2 2 2
LR C

U kU k L A U L U L
k
 = − + − + − − − 
 

 

( ) ( )( ) ( )
2 2

L
L

U L R C U L
A R U k

k

 − − +
= + − − 

 
 

  At L kµ = + ,  

( ) ( ) ( ) ( )22 2 21
2

2 2 2
URC

E P x A U L L U U L k
k

    = − + − + − +     
 

( ) ( ) ( )2 2 2 2 21
4 4

2 2 2
URC

A U L U L U L kL k
k

 = − − − + − − − 
 

 

( ) ( )( ) ( )
2 2

U
U

U L R C U L
A R L k

k

 − − +
= + − + 

 
 

Case 2(d):  At L kµ = + , 

( ) ( ) ( ) ( )22 2 21
2

2 2 2
URC

E P x A U L U L L k U
k

    = − − − − + −     
 

( ) ( ) ( )2 2 2 2 21
4 4

2 2 2
URC

A U L U L L kL k U
k

 = − − − − + + − 
 

 

( ) ( )( ) ( )
2 2

U
U

U L R C U L
A R L k

k

 − − +
= + − + 

 
 

At U kµ = + ,  

( ) ( ) ( )2 21
2 0

2 2
U

U

R
E P x U k U R U k

k

    = − + − = − + <     
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Case 2(e):    At U kµ = + , ( ) ( ) 0UE P x R U k  = − + <   

 

So, o L kµ = +  if  

( ) ( )( ) ( ) ( ) ( )( ) ( )
2 2 2 2

U L
U L

U L R C U L U L R C U L
A R L k A R U k

k k

   − − + − − +
+ − + > + − −   

   
 Otherwise, o U kµ = − . 

Simplifying, 

( ) ( )( ) ( ) ( ) ( )( ) ( )
2 2 2 2

U L
U L

U L R C U L U L R C U L
A R L k A R U k

k k

   − − + − − +
+ − + > + − − →   

   
 

( ) ( ) ( ) ( )
2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + > − −
      

 

 

Therefore, the optimum value of µ  when 2k U L> − is: 

o L kµ = +  if 
( ) ( ) ( ) ( )

2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + > − −
      

                  (20) 

with   ( ) ( ) ( )( ) ( )
2 2

U
o U

U L R C U L
E P x A R L k

k

 − − +
  = + − +  

 
       (21) 

and 

o U kµ = −  if 
( ) ( ) ( ) ( )

2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + ≤ − −
      

           (22) 

with   ( ) ( ) ( )( ) ( )
2 2

L
o L

U L R C U L
E P x A R U k

k

 − − +
  = + − −  

 
       (23) 
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The following examples illustrate these conclusions: 

   

Example 6: 2k U L> −  and 
( ) ( ) ( ) ( )

2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + > − −
      

 

Let A = $40, C = $0.10, RL = $0.40, RU = $0.10, k = 75, and L = 100, U=200.  In this case, 

( ) ( ) ( ) ( )
2 2 2 2

7.5 10.5
4 4U L

U L U L
R L k R U k

k k

   − −
   − + = − > − − = −
      

, so based on 

Equations (20 and 21), 175o L kµ = + =  with an expected net profit of $9.17.  Various 

values for µ  are presented in Figure 17 with the corresponding expected net profit to 

show that o L kµ = +  does, in fact, provide the maximum expected net profit. 

FIGURE 17.  Example of Expected Net Profit for Different Values of µ when 2k > U – L, 

o L kµ = + . 

   

Uniform Distribution - Fixed Cost Profit Model
2k>U-L, RU=0.1<RL=0.4
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 54 

Example 7: 2k U L> −  and 
( ) ( ) ( ) ( )

2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + ≤ − −
      

 

Let A = $40, C = $0.10, RL = $0.10, RU = $0.30, k = 75,  L = 100, and U=200.  In this 

case, 
( ) ( ) ( ) ( )

2 2 2 2

22.5 2.5
4 4U L

U L U L
R L k R U k

k k

   − −
   − + = − ≤ − − = −
      

, so based on 

Equations (22 and 23), 125o U kµ = − =  with an expected net profit of $14.67.  Various 

values for µ are presented in Figure 18 with the corresponding expected net profit to 

show that o U kµ = −  does, in fact, provide the maximum expected net profit. 

 

FIGURE 18.  Example of Expected Net Profit for Different Values of µ when 2k > U – L 
and o U kµ = − . 

 

Uniform Distribution - Fixed Cost Profit Model
2k>U-L, RU=0.3>RL=0.1
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To summarize, for fill level that follows a Uniform distribution when there is a linear 

scrap cost, the optimum target set point for the process mean was obtained for the various 

scenarios: 

  Case 1:2k U L≤ −  

   o L kµ = +  

  Case 2: 2k U L> −  

o L kµ = +  if 
( ) ( ) ( ) ( )

2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + > − −
      

    

o U kµ = −  if 
( ) ( ) ( ) ( )

2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + ≤ − −
      

  

 

3.3  Fixed scrap cost with capacity constraint 

In practice, there may be some maximum capacity, CAP, such that if fill level 

exceeds CAP, an additional (usually very high) cost is incurred.  This cost may be due to 

spillage over the maximum capacity of the container, for example, which results in clean 

up, downtime, restarting the equipment, etc. 

 

The additional cost results in a new net profit equation: 

 

( ) ( )min ,
L

U

R x L

A Cx L x U CAP
P x

R U x CAP

Q x CAP

− <
 − ≤ ≤= 

− < ≤
− >

 



 

 56 

 

When the fill level is described by a Uniform distribution, the calculation of oU  

as shown below is the same as that found in Section 3.1.1 where Equation (7) is  

min ,U L
o

R A R A
U

C C

+ + =  
 

. 

 

If  oU CAP≤ , 2 ok U L> − , and L Uµ≤ ≤  the expected net profit can be calculated as 

follows: 

( ) ( ) ( ) ( ) ( ) ( )
kL U CAP

L U

k L U CAP

E P x R f x dx A Cx f x dx R f x dx Q f x dx
µ

µ

+

−

  = − + − + − + −  ∫ ∫ ∫ ∫  

( ) ( ) ( ) ( ) ( )
2 2

1

2 2L U

C U L
R k L A U L R U CAP Q CAP k

k
µ µ

 −
 = − − + − − + − + − −
  

 

( ) ( )

( )

21

2

2

U L U

L

CU
U R A R k R CAP

k CL
L A R Q CAP k

µ

µ

  + − + − − +  
  =

  − − + − −  
  

                 (24) 

 

Since the second derivative with respect to U is 
2

C

k
−  which is < 0, setting the 

first derivative of Equation (24) with respect to U  equal to zero will provide an optimum 

value of the upper limit, Uo: 

( )1
0

2
U

U o

R A
R A CU U

k C

++ − = → =   

Which is the same as Equation (3).  
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Differentiating Equation (24) with respect to µ, ( ){ } [ ]1

2 LE P x R Q
kµ

∂
  = − ∂

 

which results in no closed form solution.  The impact on the optimum set point for the 

mean, oµ , of a capacity constraint is to add to all of the scenarios in Section 3.1.2 the 

condition that if CAP k− is less than the optimum value calculated for that scenario, then 

oµ =CAP k− .  Specifically, the target set point for the process mean defined for the 

various scenarios: 

Case 1:  ( )2 min , o ok CAP L U L L kµ< − − → = +  

Case 2:  ( )2 min , ok CAP L U L≥ − −  

( )min ,U L oR R L k CAP kµ< → = + −  

( )min ,U L o oR R U k CAP kµ> → = − −   

( ),min ,U L o oR R U k L k CAP kµ  = → ∈ − + −   

When oCAP U< , the effect is that CAP replaces oU  in equations for expected net profit 

with the higher cost, Q, replacing UR .  An example follows: 

 

Example 8:  oCAP U<  and 2k CAP L> −  

Let A = $40, C = $0.10, $6LR = , 5UR = , CAP=400, Q=$500, k = 175, and L = 

100.  In this case, min , 450U L
o

R A R A
U

C C

+ + = = 
 

, so oCAP U< , 2k CAP L> − , and 

L UR R> , so ( ) ( )min , min 275,225 225o L k CAP kµ = + − = = .  Various values for µ  
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are presented in Figure 19 with the corresponding expected net profit to show that 

225oµ = , does in fact lead to the maximum expected net profit at $12. 

Uniform Distribution - Fixed Cost Profit Model with Capacity
2k >= CAP-L, CAP=400 < Uo=450

A=40, C=.1, RL=6, RU=5,k=175, L=100, CAP=400,Q=500
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FIGURE 19.  Example of Expected Net Profit for Different Values of µ when oCAP U<  

and 2k > CAP – L. 
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4.0  Relationship between canning problem and process capability 

The optimum target mean and upper screening limit for the canning problem is 

determined to maximize expected net profit, and net profit is increased as the rejection 

rate is decreased.  The selection of oµ  to maximize expected net profit is consistent with 

the goal of improving process capability.  In this chapter, the relationship between the 

canning problem and process capability is explored. 

 The term “process capability” refers to the likelihood that a process meets 

customer requirements or specifications as measured by a ratio of those requirements to 

process variation. Before process capability can be determined for a process, the process 

must be shown (e.g. using a control chart) to be stable over time.  This means that only 

common causes of variation are present and the process parameters can accurately be 

estimated from empirical (or sample) data. 

     

4.1  Relationship between process capability and the selection of oU : 

There is no relationship between process capability and the selection of oU , since 

oU depends only on the values of A, LR , UR , and C and not on process variation.  There 

is, however, a relationship between process capability and the selection of oµ  which is 

presented in Section 4.2.   
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4.2  Relationship between process capability and the selection of oµ : 

Specific measures of process capability include ,PC ,PKC ,PLC  ,PUC and PMC .  Each 

measure will be defined and discussed in this section as it relates to the canning problem. 

 

4.2.1  Process Capability Measure, PC  

PC  is the most general capability index which compares the width of the 

specifications to the spread of the distribution (i.e. the natural tolerance of the quality 

characteristic, fill level.)  It is generally calculated as the ratio between the blueprint (BT) 

and natural tolerances (NT) of the process: P

BT USL LSL
C

NT UNL LNL

−= =
−

 where USL = upper 

specification limit, LSL = lower specification limit, UNL = upper natural tolerance limit 

of the distribution and LNL = lower natural tolerance limit of the distribution.  The 

natural tolerance is defined as the middle 99.73% of the distribution, so for a normal 

distribution PC  is calculated as 
6P

USL LSL
C

σ
−= .    For a Uniform distribution, 

( ).99865 .00135 .9973 2P

USL LSL USL LSL
C

x x k

− −= =
−

.   Since, for a Uniform distribution, 
2

12 12

b a kσ −= = , 

2 2 3k σ= , and thus ( ).9973 2 3
P

USL LSL
C

σ
−= . The typically used definition of capability is 

that a process (that is in-control) is “potentially capable” if the width of the natural 

tolerance is smaller than the width of the specifications. This corresponds to 1PC ≥ .  
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Since PC  is independent of the position of µ, it is only an effective measure of 

process capability if the target and the process mean are both centered inside the 

specification, which is not the case in the canning problem.  In cases where the mean is 

not centered (as in the canning problem), PKC  may be a better estimate. PKC  will be 

addressed in Section 4.2.2 

Clearly, for any distribution, as variance decreases, the width of the natural 

tolerances of the distribution decreases, and the value of PC  increases.  It has been shown 

that in the canning problem, as variance decreases, net profit increases. This means that 

as process capability is improved (and the value of PC  increases), variability decreases, 

and the mean can be set closer to L, so that ( )oE P x    increases. 

With the canning problem, a lower specification limit, L, is defined by the 

customer, but (in the case of the fixed cost model) no upper specification is given, so PC  

is not an appropriate measure of process capability. PC  can only be calculated when an 

upper specification exists (as in the case of the linear cost or capacity constrained 

models), or when PC  is calculated using oU as the upper specification limit.  But even 

when an upper specification limit is used, the target for the canning process is not the 

center of the specifications.  In cases of a one-sided specification, PKC  is a better measure 

and is discussed in the next section. 
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4.2.2  Process Capability Measure, PLC  

In the canning problem, only a lower specification is given, so the PLC  index can 

be calculated.  For a process that can be approximated with a normal distribution,  

( )
3PL

L
C

µ
σ
−

= .  In the case of the Uniform distribution, 
( ) ( )

( ).00135 .49865 2PL

L L
C

x k

µ µ
µ

− −
= =

−
.  

1PLC ≥  means that ≤  0.135% of the distribution of the specific quality characteristic is 

expected to fall below the lower specification. 

Since process capability is inversely related to process standard deviation, it 

relates directly to the canning problem.  As the standard deviation decreases, PLC  

increases, and the process mean can be moved closer to L.  As the mean is moved closer 

to L, cost decreases and net profit increases. 

When a process has an upper specification, PUC can be calculated in a similar 

fashion. In the case of a process with both an upper and lower specification limit, 

( )min ,PK PL PUC C C= .  Since the canning problem has only a lower specification, clearly 

these measures of process capability do not apply. 

 

4.2.3  Process Capability Measure, PMC  

 PKC , PLC , and PUC  all assume the process target is centered inside the 

specifications.  PMC  is a measure of process capability that considers deviation from 

target rather than the center of the specifications.  Since the canning problem has a target 

not centered inside specification, it may be a better measure of process capability.  In the 

special case of the canning problem, the target is actually the lower specification limit if 
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there is no variation.  Fill level below L is rejected, while fill level above L is accepted, 

but net profit is highest when fill level is equal to L.  Given that fill level has variation, 

the target is actually some value above L, specifically oµ .  Once oµ  is determined, PMC  

could be calculated as a measure of process capability.  However, 
( )2

2
1

P
PM

C
C

Tµ
σ

=
−

+

 

where T = the target.  So, to calculate PMC , one must first calculate PC  which requires 

both lower and upper specification limits. 

 

4.3 Summary of Relationship between Canning Problem and Process Capability 

Any measure of process capability compares the process variation to 

specifications or requirements.  Higher levels of process capability result when process 

variation decreases.  In the canning problem, this means that as process capability is 

improved, variability decreases, and the mean can be set closer to L, so that ( )oE P x    

increases. 

At least one article has addressed the relationship between process capability and 

the canning problem.  Kim, Cho, and Phillips (2000) show an economic model to 

determine the optimum process mean while maintaining a specific PC  value when fill 

level can be approximated by a Normal distribution.  They assume that achieving a 

smaller variance leads to an increase in manufacturing costs that they incorporate into the 

net profit model.  They provide a case study and sensitivity analysis. 
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5.0 Triangular distribution 

Another finite distribution that can be a plausible model for a canning process is 

the Triangular distribution.  In this chapter, the Triangular distribution is studied to 

determine an optimal set point for the mean of the production operation.  An optimum 

upper limit is first calculated which provides a “cut-off” to maximize expected net profit 

by minimizing “give-away” cost.   

Again, the basic profit function of Liu and Raghavachari (1997) article is used, so 

that Triangular results can also be compared to their’s which pertained to continuous 

distributions.   

 

The Net Profit function: 

,

( ) ,

,

L

U

R x L

P x A Cx L x U

R x U

− ≤
= − 〈 〈
− ≥

 

 

where L = lower specification limit, below which the customer will not accept the 

product.  For example, if a jar is to be filled with 8 oz. of an ingredient, anything less than 

L=8 oz. is not allowed.  U = an upper limit (U is either set by the producer as an upper 

specification limit, USL, or determined as a value that minimizes giveaway cost such that 

any fill level above U costs more in giveaway cost than would be received in income.  
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LR  = the rejection cost per container when fill level is less than L, UR = the rejection cost 

per container when fill level is greater than U, A = revenue received for an acceptable 

container, and C = the production cost per unit of ingredient.  A, LR , UR , C, and L are 

known and > 0. 

 

A Triangular distribution has the following probability density function: 

( )
( )( )

( )
( )( )

2
,

2
( ) ,

0,

x a
a x m

b a m a

b x
f x m x b

b a b m

otherwise

 −
≤ ≤ − −




−
= ≤ ≤ − −






 

where m is the mode and graphically the distribution appears below in Figure 20. 

        
    

( )f x  
 
 
 
            
 
        

    a      L         m                 U                  b  

 

FIGURE 20.  The triangular probability density function with lower specification, L, and 

upper screening limit, U. 
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With respect to the canning problem, there is a cost ( LR ) when the quantity falls 

below the lower specification, L (L ≥  a), and a cost (UR ) when the fill level falls above 

an arbitrary upper specification, U (U < b).  Giveaway cost above U is greater than the 

cost of simply scrapping the unit (UR .)   

 

5.1 Symmetric Triangular underlying distribution 

First, a symmetric Triangular distribution will be analyzed using the fixed rework 

cost model from the previous chapter.  Then the impact of skewness will be examined.  

Assuming a symmetric Triangular distribution, the probability density function is given 

below: 

 

2

2

,

( ) ,

0,

x m k
m k x m

k

m k x
f x m x m k

k

otherwise

− + − ≤ ≤


 + −= ≤ ≤ +






 

 

where m is the modal point and 2k represents the spread of the distribution and it can be 

verified (in the Appendix) that the ( )
2

6

k
V x = .  In this chapter, om , the optimum set point 

for m is computed for the case where 1m k L− < , 2m k U+ > , and L m U≤ < . 
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5.1.1.  Optimum upper screening limit 

If there is no upper specification limit given, an optimum upper limit can be 

calculated as in previous chapters.  The equation for expected net profit for the 

symmetrical triangular distribution is found below: 
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( )

( )

2 2

2 2

L m

L

m k L

U m k

U

m U

x m k x m k
R dx A Cx dx

k k
E P x
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A Cx dx R dx

k k

−

+

 − + − +   − + − +       =    + − + −    − + − =       
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U
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+

    − − − −            − + − − + −            = 
    + − + −           − + − + 
         
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      ( )E P x    = 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
2

2 3 3 3 2 2
2

2 2 21

3 2 2 2

L

U
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L m k A k L U

k m L U RL U
C m k m k m k U

  − −
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    
 

 + + 
 − + − + + − + −   
    

        (25) 
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Equation (25) assumes that the distribution is such that m k L− <  and m k U+ >  and 

shows that the expected net profit is inversely proportional to the ( )
2

6

k
V x = . 

Differentiating Equation (25) with respect to U, results in the following: 

 

( ) ( ) ( ) ( ){ }2
2

1
UE P x A m k U CU m k CU R m k U

U k

∂ = + − − + + + + − =          ∂
 

 

( )( ) ( ){ }2
2

1
U UA R m k A R C m k U CU

k
+ + − + + + +    

 

To determine the optimum value of U, oU , the first derivative with respect to U is set 

equal to zero.  (This will be an optimum value for U if 
( )

2 2
U

o U

m kA R
U U

C

++< + = .) 

 

( ){ } 0E P x
U

∂ = ⇒  ∂
 

 

( ) ( )( )2 0o U o UCU A R C m k U A R m k− + + + + + + =    

 

Let ( )1 Uc A R C m k= + + +    and ( )( )2 Uc A R m k= + + , then, 2
1 2 0o oCU cU c− + = , which means 

that 
2

1 1 24

2o

c c Cc
U

C

± −
=  
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A R C m k A R C m k C A R m k
U
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 69 

 

( ) ( ) ( ) ( )( ) ( ) 22
2

2

U U UA R C m k A R C A R m k C m k

C

   + + + ± + − + + + +    =  

( ) ( ) ( ) ( ) 2
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U UA R C m k A R C m k

C

   + + + ± + − +    =  

( ) ( ) ( ) ( )
2

U UA R C m k A R C m k

C

   + + + ± + − +     

 

Case 1:   
( ) ( ) ( ) ( )

2
U UA R C m k A R C m k

C

   + + + + + − +    =       

    
[ ]2

2
U U

o

A R A R
U

C C

+ +
⇒ =          (26) 

 

This is consistent with the value found for oU in previous sections. 

 

Case 2: 
( ) ( ) ( ) ( )

2

U UA R C m k A R C m k
m k

C

    + + + − + − +     = +  which is not < U  

(since 2k U L> − .) 

So, the optimum value for oU is given in Equation (26). 
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5.1.2 Optimum target set point for m  

The objective is to maximize the expected net profit.  Since the profit function is 

defined as: 

 

,

( ) ,

,

L

o

U o

R x L

P x A Cx L x U

R x U

− ≤
= − < <
− ≥

 

 

where L is the customer driven lower specification limit as defined in previous chapters 

and oU  is the optimum upper screening limit given in Equation (26.)   

As in the case of the Uniform distribution, since the Triangular distribution is 

finite, various cases must be considered.  Here, the only cases considered are those where 

L m U≤ ≤ .  (In the case of the symmetric Triangular distribution, 1 2k k k= = .) 

Case 1: 

        
    

( )f x  
 
 
 
            
 
        

          m-k1     L           m      m+-k2    U                    

 

FIGURE 21.  The triangular probability density function with lower specification, L, and 
upper screening limit, U when 1m k L− <  and 2L m k U< + ≤ . 
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Case 2: 

        
    

( )f x  
 
 
 
            
 
        

          m-k1     L           m       U             m+k2  

 

FIGURE 22.  The triangular probability density function with lower specification, L, and 
upper screening limit, U when 1m k L− <  and 2m k U+ > . 

 

Case 3: 

        
    

( )f x  
 
 
 
            
 
        

         L m-k1          m       U               m+k2  

 

FIGURE 23.  The triangular probability density function with lower specification, L, and 
upper screening limit, U when 1L m k U≤ − ≤  and 2m k U+ > . 

 

Due to the complexity of the distribution, the only case considered in this work is Case 2, 

Figure 22, when L m U≤ ≤ , 1m k L− < , and 2m k U+ > . 
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To determine the optimum value of m to maximize the average net profit, the first 

derivative of Equation (25) with respect to m is calculated below: 

( )E P x
m

∂ =  ∂

( ) [ ]

( ) ( )2 2 2 2

2 ( )
1

1

2

L o

o U o

R L m k A m L U

k C m L U R m k U

 − − − − + +   
   − + − + −       

        (27) 

 

If  the second derivative with respect to m is less than zero, then Equation (27) can be set 

to zero to solve for the value of m that maximizes the expected net profit: 

( )
2
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E P x

m
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[ ]2

1
2 2L UR A Cm R

k
− − + −  

The above second derivative is less than zero only if 
2

2
L UR R A

m
C

+ +<        (28) 

Setting Equation (27) equal to zero results in a quadratic equation: 
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Thus, the optimum set point for m is given by, 
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In the case where L UR R R= = , 
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( ) ( )( ) ( )2 2 2
2

2
o

o

C L U
R A C R A L U

+
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( ) ( )( ) ( )2 2
2

2
o

o

C L U
R A C R A L U

 +
 + > + + −
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In the case where L UR R R= = , the expected net profit Equation (25), can be simplified 

as follows:  

( )E P x    = 

( ) ( ){ } ( ) ( ) ( )
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    (30) 

 

There are two possible values of m from Equation (29), 

Case 1:   ( )( )2 2 2

1 2
o o

R A L U L UR A R A
m

C C C

+ +  ++ + = + − +   
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Case 2:  ( )( )2 2 2

2 2
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R A L U L UR A R A
m

C C C

+ +  ++ + = − − +   
   

 

 

To determine which value of m maximizes net profit, substitute each value of m into 

Equation (28) which is the requirement for maximizing net profit. 
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When L UR R R= = , 

2

2
L UR R A

m
C

+ +<   ⇒   
R A

m
C

+<  

Clearly, this is only true for Case 2, so the optimum value of m must be: 

 

( )( )2 2 2

2 2
o o

o

R A L U L UR A R A
m m

C C C

+ +  ++ + = = − − +   
   

                   (31) 

 

The optimum ( )E P x    is obtained by inserting om  from Equation (31) into Equation 

(25.) 

 

Example 11. 

An example similar to that used in the previous chapter follows.  Assume that  L = 

the lower specification for fill level (L=100.)   If an upper specification limit, USL, is 

given for fill level, let U=USL (USL=200.)  The revenue if fill level is between L and U 

is A = $20.  C is the unit cost to produce and C = $0.10.  The scrap / reprocessing cost if 

fill level is less than L or greater than U is R = $6.  The spread of the distribution is 

characterized by k such that the process limits are m - k and m + k and in this example, k 

= 100.   

 



 

 76 

TABLE 6.  Example of expected net profit calculations for symmetric triangular 

distribution with 2k U L> −  with a fixed value of U. 

A C R k U L m E[P(x)]

20 0.1 6 100 200 100 139.1695 2.387498

        

20 0.1 6 100 200 100 10 -5.92167

20 0.1 6 100 200 100 20 -5.69333

20 0.1 6 100 200 100 30 -5.325

20 0.1 6 100 200 100 40 -4.82667

20 0.1 6 100 200 100 50 -4.20833

20 0.1 6 100 200 100 60 -3.48

20 0.1 6 100 200 100 70 -2.65167

20 0.1 6 100 200 100 80 -1.73333

20 0.1 6 100 200 100 90 -0.735

20 0.1 6 100 200 100 100 0.333333

20 0.1 6 100 200 100 110 1.276667

20 0.1 6 100 200 100 120 1.92

20 0.1 6 100 200 100 130 2.283333

20 0.1 6 100 200 100 140 2.386667

20 0.1 6 100 200 100 150 2.25

20 0.1 6 100 200 100 160 1.893333

20 0.1 6 100 200 100 170 1.336667

20 0.1 6 100 200 100 180 0.6

20 0.1 6 100 200 100 190 -0.29667

20 0.1 6 100 200 100 200 -1.33333

20 0.1 6 100 200 100 210 -2.355

20 0.1 6 100 200 100 230 -3.95833

20 0.1 6 100 200 100 240 -4.56

20 0.1 6 100 200 100 250 -5.04167

20 0.1 6 100 200 100 260 -5.41333

20 0.1 6 100 200 100 270 -5.685

20 0.1 6 100 200 100 280 -5.86667

20 0.1 6 100 200 100 290 -5.96833

20 0.1 6 100 200 100 300 -6

20 0.1 6 100 200 100 310 -6
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According to Equation (29), the optimum set point for the mean is m = 139.17.  At that 

point, the expected net profit is $2.39. 

A graph of expected net profit for the various values of m is shown in Figure 24.  

With U set at 200, there is a decrease in net profit as the distribution approaches that 

point.  Clearly, profit would be higher if U was set higher.  In the next example, an 

optimum value of U, oU , is determined. 
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FIGURE 24.  Expected net profit model for symmetric triangular distribution with 

2k U L> −  and a fixed value of U. 

 

Example 12. 

Now the information from Example 11 is presented, but using the optimum upper 

screening limit, oU , instead of a given upper limit, 

20 6
260

.10
U

o o

A R
U U

C

+ += ⇒ = =  
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 TABLE 7.  Expected net profit calculations for symmetric triangular distribution with 

2k U L> −  with a calculated value of U. 

 A C R k U L m E[P(x)]

20 0.1 6 100 260 100 146.8629 2.80481

        

20 0.1 6 100 260 100 0 -6

20 0.1 6 100 260 100 10 -5.92167

20 0.1 6 100 260 100 20 -5.69333

20 0.1 6 100 260 100 30 -5.325

20 0.1 6 100 260 100 40 -4.82667

20 0.1 6 100 260 100 50 -4.20833

20 0.1 6 100 260 100 60 -3.48

20 0.1 6 100 260 100 70 -2.65167

20 0.1 6 100 260 100 80 -1.73333

20 0.1 6 100 260 100 90 -0.735

20 0.1 6 100 260 100 100 0.333333

20 0.1 6 100 260 100 110 1.305

20 0.1 6 100 260 100 120 2.026667

20 0.1 6 100 260 100 130 2.508333

20 0.1 6 100 260 100 140 2.76

20 0.1 6 100 260 100 150 2.791667

20 0.1 6 100 260 100 160 2.613333

20 0.1 6 100 260 100 170 2.236667

20 0.1 6 100 260 100 180 1.68

20 0.1 6 100 260 100 190 0.963333

20 0.1 6 100 260 100 200 0.106667

20 0.1 6 100 260 100 210 -0.79167

20 0.1 6 100 260 100 220 -1.64

20 0.1 6 100 260 100 230 -2.42833

20 0.1 6 100 260 100 240 -3.14667

20 0.1 6 100 260 100 250 -3.785

20 0.1 6 100 260 100 260 -4.33333

20 0.1 6 100 260 100 270 -4.785

20 0.1 6 100 260 100 280 -5.14667

20 0.1 6 100 260 100 290 -5.42833

20 0.1 6 100 260 100 300 -5.64
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TABLE 7 (continued).    Expected net profit calculations for symmetric triangular 

distribution with 2k U L> −  with a calculated value of U. 

 
20 0.1 6 100 260 100 310 -5.79167

20 0.1 6 100 260 100 320 -5.89333

20 0.1 6 100 260 100 330 -5.955

20 0.1 6 100 260 100 340 -5.98667

20 0.1 6 100 260 100 350 -5.99833

20 0.1 6 100 260 100 360 -6

20 0.1 6 100 260 100 370 -6

20 0.1 6 100 260 100 380 -6

20 0.1 6 100 260 100 390 -6

20 0.1 6 100 260 100 400 -6

 

 

And, graphically, the expected net profit for various values of m (when an optimum value 

of U, oU , is determined) is shown in Figure 25. 
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FIGURE 25.  Expected net profit model for symmetric triangular distribution with 

2k U L> −  and a calculated value for U. 
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The optimum set point for m is om =146.86.  At that point, the expected net profit 

is $2.80 which is higher than it was in the previous example when U was set lower (at 

200) than oU . 

In general, the value of U should be set as the minimum of an upper specification 

limit or the optimum value of U, Uo.  min( , )oU USL U=  

 

5.2 Skewed Triangular underlying distribution  

In the case of a skewed triangular distribution, the lower limit of the distribution, 

a, is set equal to 1m k−  and the upper limit of the distribution, b, is set equal to 2m k+  

such that the probability density function is: 
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The expected net profit is given by: 
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∫ ∫

 

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

22 2 3
1

1 1

1 1 2
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2
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2
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U
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m k xx x x
R m k x A m k x C

k k k

m k xx x x
A m k x C R m k x

k k k

−

+

  −   
 − − − + − − − −      +      +  
  

  +    + − − − − + −     +       

= 

( )

[ ] ( ) ( )

( )( )

( )

( ) ( ) ( )( )

( )

2
2

1 1

2 23 31 1 2 1

2 2 23 3
2

2

2 1 2 2

2

( )
2 22

3 2

2 2 3 2

2

L

U

m LR
L m k A k m L

k k k L m m km L
C

U m m km U m U
A k m U C

k k k
R

U m k

  −
 − − − − − − − 
    + +  − − −

 + 
    

    − +− −  − + − − + 
       +  

 − − +   

       (32) 

 

Note that when the distribution is symmetrical, 1 2k k k= = and Equation (32) reduces to 

Equation (25).  Further, the ( )E P x    is inversely proportional to the spread of the 

distribution, 1 2k k+ . 

 



 

 82 

5.2.1 Optimum upper screening limit 

 In order to determine the optimum value of U, the first derivative of the Equation 

(32) with respect to U is calculated below: 

 

( ) ( ) ( ) ( ) ( ){ }2
2 2 2

2 1 2

2
UE P x A m U k C U U m k R U m k

U k k k

∂
 = − + + − + − − +           ∂ +

      (33) 

 

The second derivative with respect to U is less than zero (hence expected net profit is at a 

maximum) only if 

 

( ) ( )2 2

2 2 2
U U

A R C m k m kA R
U

C C

+ + + ++< = +         (34) 

Setting Equation (33) equal to zero to solve for the value of U, oU , that maximizes 

expected net profit results in the following: 

( ) ( ) ( )( ){ }2
2 2

2 1 2

2
0U UCU A R C m k U A R m k

k k k
− + + + + + + =  +

 

( ) ( )( )2
2 2 0U UCU A R C m k U A R m k− + + + + + + =    

Let ( )5 2Uc A R C m k= + + +    and ( )( )6 2Uc A R m k= + + , then 2
5 6 0o oCU c U c− + = , 

which means that 

2
5 5 64

2o

c c Cc
U

C

± −
=  

( ) ( ) ( )( )2

2 2 24

2

U U U

o

A R C m k A R C m k C A R m k
U

C

+ + + ± + + + − + +          = =  
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( ) ( ) ( )( ) ( ) ( )( )22

2 2 2 22 4

2

U U U UA R C m k A R C A R m k C m k C A R m k

C

+ + + ± + + + + + + − + +       =  

 

( ) ( ) ( )( ) ( )2 22
2 2 22

2
U U UA R C m k A R C A R m k C m k

C

+ + + ± + − + + + +   =  

 

( ) ( ) ( ) 2

2 2

2

U UA R C m k A R C m k

C

+ + + ± + − +       =  

 

( ) ( ) ( )2 2

2
U UA R C m k A R C m k

C

+ + + ± + − +       =  

 

Case 1: 

( ) ( ) ( )2 2
1 2

U UA R C m k A R C m k
U

C

+ + + + + − +      = = ( )2

2
U U

A R A R

C C

+ +=  

Which is consistent with previous results. 

 

Case 2: 

( ) ( ) ( )2 2
2 2

U UA R C m k A R C m k
U

C

+ + + − + − +      = = ( )2
2

2

2

C m k
m k

C

+
= +  

However, Equation (34) requires that setting Equation (33) equal to zero will lead to an 

optimum value of U  iff 
( )2

2 2
U

m kA R
U

C

++< + , i.e. oU = UA R

C

+  iff  

( )2
22 2

U U U
m kA R A R A R

m k
C C C

++ + +< + → < + .  Therefore 2m k+ cannot be the optimum 

value for U , and thus 
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oU =  UA R

C

+            (35) 

 

5.2.2  Optimum target set point for m 

Similarly, the optimum value of m, om , can be found by setting the first 

derivative of Equation (32) with respect to m equal to zero: 

 

( )

[ ] ( ) ( )

( )( )

( )

( ) ( ) ( )( )

( )

2
2

1 1

2 23 31 1 2 1

2 2 23 3
2

2

2 1 2 2

2

( )
2 22

3 2

2 2 3 2

2

L

oo o
o

U
o

m LR
L m k A k L m

k k k L m m km L
C

m
U m m km U m U

A k m U C

k k k
R

U m k

   −
  − − − − + − 
      + +  − − −  − + 
∂     ∂      − +− −   − + − − + 
         +  

 − − +     













 

 

( ) [ ] ( )

( ) ( ) ( )

2 2

1 1 1
1 1 2

2 2

2 2 2
2 1 2

2
( )

2

2

2

L

o
o U o

L m
R L m k A m k L C mk

k k k

U m
A m k U C mk R U m k

k k k

   − 
 − − − − − − + +    +     

 
  −     − + − − − + − +      +     

         (36) 

 

Note that in the case of the skewed triangular distribution, m is not equal to ( )E x µ=  

(See Appendix D for the first four moments.) 

The second derivative with respect to m is negative if  

( )
( ) ( ) ( ) ( )1 2

1 2 1 2

2
0L UR A C m k A R C m k

k k k k

    − + + − − + + + + <    +      
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( ) ( )
( )

2 1

1 2

L UR A k A R k
m

C k k

+ + +
<

+
                    (37) 

(Note that when 1 2k k k= =  and L UR R R= = , Equation (37) simplifies to 

o

R A
m U

C

+< =  as before.) 

 

Setting Equation (36) equal to zero and solving for om  results in 
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   
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+
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o
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+ + − +  

  
 + + + − +   

  + − −    
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Given the requirement from Equation (37) that ( ) ( )
( )

2 1

1 2

L U
o

R A k A R k
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C k k

+ + +
<

+
,  it follows 

that 
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k R A k R A
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CUCL
C k k k R A L k k R A U k

C k k

+ + +
= −

+

 + + + − 

    + + + − + + − −   
     

+

       (38) 

 

Which reduces to Equation (31) when 1 2k k=  and L UR R= . 

 

Example 13. 

For example, when A=20, C=.1, LR = 5, UR = 6, 1k = 20, 2k = 180, and L=100, oU =260 

and om = 107.47 from Equation (38). 

 

It can be shown (in the Appendix), that the mean of a skewed triangular distribution is 

[ ] 2 1

3

k k
E X mµ −= = + , so the optimum value of the mean is given below: 

2 1

3o o

k k
mµ −= +                                                       (39) 

 

5.2.3 Sensitivity analysis of skewness 

Note that the triangular distribution is negatively skewed when 1 2k k>  and 

positively skewed when 2 1k k> .  Variations of Example 13 are presented below to 

illustrate the impact of skewness on the calculation of om . 
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Example 14. 

When A=20, C=0.10, LR = 5, UR = 6, and L=100, oU =260, values of om  are shown in 

Table 8 for various levels of skewness and the expected net profit is calculated by 

substituting om  for the value of m in Equation (32): 

 

TABLE 8.  om  and the expected net profit for various levels of skewness  

1k  2k  om  ( )E P x    

20 180 107.47 3.334 
80 120 136.06 2.953 

100 100 144.43 2.948 
120 80 156.32 2.781 
180 20 208.00 1.755 

 

As illustrated in this example, as the distribution becomes negatively skewed, the 

optimum set point must be higher.  In the canning problem, where only a lower 

specification is given, a positively skewed distribution allows for a lower optimum set 

point and a higher expected net profit. 

 

 5.3  Process capability with underlying Triangular distribution  

As presented in Chapter 4, a process is generally deemed capable if 1.0PC ≥  

which means, if the process is centered inside the specifications, then the middle 99.73% 

of the distribution will fall inside the specification limits.  For a normal distribution, this 

translates to / / 6PC BT NT BT σ= = .  However, for a Triangular distribution, the limits 

defined by 3µ σ± do not define the middle 99.73% of the distribution.  In fact, the limits 
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defined by 3µ σ±  actually fall outside the complete range of the distribution defined by 

( )1 2,m k m k− + : 

2 2
2 1 1 1 2 23
3 2

k k k k k k
mµ σ − + +± = + ±  

Thus, the 6-sigma spread for a triangular distribution is given by 
2 2

1 1 2 22
2

k k k k+ +
.  As a 

result, as is the case with the Uniform distribution, the 6-sigma spread 

( ) ( ) ( )22 2 2 2
1 1 2 2 1 2 1 2 1 22 k k k k k k k k k k+ + = + + + > +  so that the 99.73% natural 

tolerances of the Triangular distribution must be obtained from .99865x  - .00135x . 

 It can be shown that the cdf of any Triangular distribution is given by 

( )

( )
( )
( )
( )

1

2

1
1

1 1 2

2

2
2

1 2 2

2

0,

,

1 ,

1,

x m k

x m k
m k x m

k k k
F x

m k x
m x m k

k k k

x m k

≤ −


− + − ≤ ≤ += 
+ − − ≤ ≤ + +

 ≥ +

 

 

Let px  be the pth quantile (or fractile) of x, then  upon inverting the above cdf, the 

following percentile function is obtained: 

 

( ) ( )

( ) ( )( )

1
1 1 2 1

1 2

1
2 2 1 2

1 2

, 0

1 , 1
p

k
m k k k k p p

k k
x

k
m k k k k p p

k k

 − + + ≤ ≤ += 
 + − + − ≤ ≤
 +
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The PC  index by definition is 
.99865 .00135

P

USL LSL
C

x x

−=
−

, where the middle 99.73% of the 

spread of the distribution is given by 

( ).99865 .00135 2 1 2 1 2 10.036741x x k k k k k k − = + + − +
 
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6.0  Conclusion 

The work presented in this dissertation extends the previous research on the canning 

problem (which focused on infinite range distributions, specifically the normal 

distribution, for fill level) to finite distributions.  Three finite distributions were 

analyzed: Uniform, Symmetric Triangular, and Skewed Triangular.  In each case, an 

optimum set point for the mean fill level was determined to maximize expected net 

profit. When appropriate, an upper screening limit for fill level was also determined.   

In the case of the Uniform distribution, three net profit models were studied: fixed 

rework/reprocessing costs, linear rework/reprocessing costs, and capacity constrained.  

Few closed form solutions were obtained by differentiation for determining an optimum 

set point for the mean to maximize the expected net profit.  However, the optimum set 

point was determined to maximize expected net profit by evaluating expected net profits 

at the extreme points for each range of µ . 

 

6.1 Summary of Results 

For fill level that follows a Uniform distribution when there is a constant scrap 
cost, the optimum value for the upper screening limit was determined to be  

( )min , min , UL
o L U

R AR A
U U U

C C

++ = =  
 
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The optimum target set point for the process mean was obtained for the various scenarios: 

Case 1: 2 o ok U L L kµ≤ − → = +  

Case 2:  2 ok U L> − : 

 If U L oR R L kµ< → = +  

If U L o oR R U kµ> → = −   

If [ ],U L o oR R U k L kµ= → ∈ − +  

For fill level that follows a Uniform distribution when there is a linear scrap cost, 

the optimum target set point for the process mean was obtained for the various scenarios: 

  Case 1: 2k U L≤ −  

   o L kµ = +  

  Case 2: 2k U L> −  

o L kµ = +  if 
( ) ( ) ( ) ( )

2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + > − −
      

    

o U kµ = −  if 
( ) ( ) ( ) ( )

2 2 2 2

4 4U L

U L U L
R L k R U k

k k

   − −
   − + ≤ − −
      

  

The target set point for the process mean, oµ , of a profit model with a capacity 

constraint was defined for the various scenarios: 

Case 1:  ( )2 min , o ok CAP L U L L kµ< − − → = +  

Case 2:  ( )2 min , ok CAP L U L≥ − −  

( )min ,U L oR R L k CAP kµ< → = + −  

( )min ,U L o oR R U k CAP kµ> → = − −   
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( ),min ,U L o oR R U k L k CAP kµ  = → ∈ − + −   

  For both the symmetric and skewed Triangular distributions, a net profit model 

with fixed rework/reprocessing costs was assumed.  Assuming that L m U≤ ≤ ,  

1m k L− < , and 2m k U+ > , the optimum set point for m was determined to be:   

( ) ( )
( )

( ) ( )

( ) ( )( ) ( )( )

( )

2 1

1 2

2

2 1

22

1 2 2 1 1 2

1 2

2
2 2

L U
o

L U

o
L U o

k R A k R A
m

C k k

k R A k R A

CUCL
C k k k R A L k k R A U k

C k k

+ + +
= −

+

 + + + − 

    + + + − + + − −   
     

+

 

which reduces to ( )( )2 2 2

2
o o

o

R A L U L UR A R A
m

C C C

+ +  ++ + = − − +   
   

 when 1 2k k=  and 

L UR R= . 

Throughout the research, examples were provided and proofs, where necessary, 

were outlined. 

 

6.2  Practical Applications 

This research shows that when fill level is not normally distributed, the optimum set 

points for a canning problem can still be determined if the distribution can be modeled, 

even if the distribution range is not infinite.  In at least one case (steel thickness), the 

Uniform distribution has semmed to be an appropriate fit.  However, in most cases, 

practical application of this work may be somewhat limited, since fill level is best 

estimated by an infinite range distribution that is bounded rather than an actual finite 

distribution.  
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6.3  Recommendations for Future Work 

 Given the similarities between the Uniform distribution, symmetric Triangular 

distribution, and the Normal distribution (symmetric, continuous within the range, and 

mean centered,) it may be interesting to compare the results presented here with results 

when a Normal distribution is incorrectly assumed for fill level which is best modeled by 

a Uniform distribution..  Fill level data generated from a Uniform distribution could be 

used to calculate the optimum upper screening limit and the optimum mean using the 

formulas presented here.  Those results could then be compared with results from the 

formulas from research using the same net profit model, but assuming a Normal 

distribution of fill level.  It would be interesting to see how the results differ in terms of 

magnitude of oµ  and in terms of expected net profit. 

Another extension of this work would be to extend the analysis of the Triangular 

distribution to the other cases presented in Figures 21 and 23.  and to more thoroughly 

complete a sensitivity analysis of skewness using the formula for skewness in Appendix 

D.    
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Appendix A:  Formulas for Excel spreadsheet for calculating expected net profit for 

various levels of µ  with a Uniform distribution and fixed scrap cost. 

 
 
H2=IF(2*E2<=F2-G2,G2+E2,IF(C2>D2,G2+E2,F2-E2)) 
 
I2==IF(H2<=G2-E2,-C2,IF(AND(H2<G2+E2,H2>=G2-E2),L2,IF(AND(H2<F2-
E2,H2>=G2+E2),M2,IF(AND(H2>=F2-E2,H2<F2+E2),N2,-D2)))) 
 
J2==IF(H2<=G2-E2,-C2,IF(AND(H2<F2-E2,H2>=G2-
E2),L2,IF(AND(H2<G2+E2,H2>=F2-E2),O2,IF(AND(H2>=G2+E2,H2<F2+E2),N2,-
D2)))) 

K2==IF(2*E2<=F2-G2,I2,J2) 
 
L2=(1/(2*E2))*(C2*(H2-E2)+A2*(H2+E2)-(C2+A2)*G2-(B2/2)*((H2+E2)^2-G2^2)) 
 
M2=A2-B2*H2 
 
N2==(1/(2*E2))*((A2+D2)*(F2-H2)+E2*(A2-D2)-(B2/2)*(F2^2-(H2-E2)^2)) 
 
O2 =(1/(2*E2))*(C2*(H2-E2-G2)+A2*(F2-G2)-(B2/2)*(F2̂2-G2^2)-D2*(H2+E2-F2)) 
 
 

A B C D E F G H
A C RL RU k U L MU

40 0.1 5 6 50 450 100 100
 
 

I J K L M N O
<U-L 
Case

>U-L 
Case E[P(x)]    

11.25 11.25 11.25 11.25 30 78 59.25
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Appendix B:  Formulas for Excel spreadsheet for calculating expected net profit for 

various levels of µ  with a Uniform distribution and linear scrap cost. 

 
 
H2 =IF(2*E2<=F2-G2,G2+E2,IF(D2*((F2^2-G2^2)/(4*E2)-(G2+E2))>C2*((F2^2-
G2^2)/(4*E2)-(F2-E2)),G2+E2,F2-E2)) 
 
I2 =IF(H2<=G2-E2,-C2*H2,IF(AND(H2<G2+E2,H2>=G2-E2),L2,IF(AND(H2<F2-
E2,H2>=G2+E2),M2,IF(AND(H2>=F2-E2,H2<F2+E2),N2,-D2*H2)))) 
 
J2 =IF(H2<=G2-E2,-C2*H2,IF(AND(H2<F2-E2,H2>=G2-
E2),L2,IF(AND(H2<G2+E2,H2>=F2-E2),O2,IF(AND(H2>=G2+E2,H2<F2+E2),N2,-
D2*H2)))) 
 
K2 =IF(2*E2<=F2-G2,I2,J2) 
 
L2 =(1/(2*E2))*(-C2/2*(G2^2-(H2-E2)^2)+A2*(H2+E2-G2)-(B2/2)*((H2+E2)^2-
G2^2)) 
 
M2 =A2-B2*H2 
 
N2 =(1/(2*E2))*((A2*(F2-(H2-E2))-(B2/2)*(F2^2-(H2-E2)^2)-(D2/2)*((H2+E2)^2-
F2^2))) 
 
O2 =(1/(2*E2))*((C2/2)*((H2-E2)^2-G2^2)+A2*(F2-G2)-(B2/2)*(F2^2-
G2^2)+(D2/2)*(F2^2-(H2+E2)^2)) 
 
 

A B C D E F G H
A C RL RU k U L MU

40 0.1 0.2 0.05 50 800 200 250

 
 

I J K L M N O
<U-L 
Case 

>U-L 
Case E[P(x)]     

15 15 15 15 15 77.5 77.5 
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Appendix C:  Formulas for Excel spreadsheet for calculating expected net profit for 

various levels of m with a symmetric Triangular distribution. 

 
 
I2=IF(H2<=G2-E2,-C2,IF(AND(H2<=G2+E2,H2<=F2-E2,H2>G2-
E2),L2,IF(AND(H2<=G2+E2,H2>F2-E2),M2,IF(AND(H2>F2-
E2,H2>G2+E2,H2<F2+E2),O2,-C2)))) 
 
 
L2= =IF(H2>G2,(1/(E2^2))*(-(C2+A2)/2*(G2-H2+E2)^2-B2*(-
H2^3/3+(H2+E2)^3/6+G2^2/2*(H2-E2)-G2^3/3))+A2,(1/(E2^2))*((A2+C2)/2*(H2+E2-
G2)^2-B2*((H2+E2)^3/6-G2^2/2*(H2+E2)+G2^3/3))-C2) 
 
M2= =(1/E2^2)*(-C2/2*(G2-H2+E2)^2-A2*(H2^2-H2*(G2+F2)-E2*(F2-
G2)+0.5*(F2^2+G2^2))-B2*(-H2^3/3+H2/2*(G2^2+F2^2)+E2/2*(F2^2-G2^2)-
(F2^3/3+G2^3/3))-C2/2*(H2+E2-F2)^2) 
 
N2= =A2-B2/(E2^2)*(-H2^3/3+(H2-E2)^3/6+(H2+E2)^3/6) 
 
O2= =IF(H2<F2,A2+(1/E2^2)*(-(A2+C2)/2*(H2+E2-F2)^2-B2*(-H2^3/3+(H2-
E2)^3/6+F2^2*(H2+E2)/2-F2^3/3)),(1/E2^2)*((A2+C2)/2*(F2-H2+E2)^2-B2*(F2^3/3-
(H2-E2)*F2^2/2+(H2-E2)^3/6))-C2) 
 
 
 

A B C D E F G H
A C R k U L m

20 0.1 6 100 260 100 146.8629
 
 

I J K L M N O 
E[P(x)]     

2.80481  2.8048099822.8010315.313708 5.30993 
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Appendix D:  Derivation of the first four moments of the skewed Triangular distribution 
 
 

 
First Moment: 

[ ] ( ) ( )2

1

2 2
1 1 2

1 2 1 2

2 1 1m m k

m k m
E X x m k x dx m k x x dx

k k k k
µ

+

−

 
   = = − − + + −    +  

∫ ∫  

 
 

( )3 2 3 2 2 33 3 2 2 3
1 1 1 11 1 1

1

3 2 2 3 3 2 3 2 2 3 31 2
2 2 2 2 2 2 2

2

3 33 31

3 22

3 3 3 31

2 3

m m k m k m k m km m k m k m k

k

k k m k m k m k m k m m k m k m k m

k

  − + + + − −− − + +  + +
   =  +   + + + − − + + + −−  

  

 

 
2 3 2 3

1 1 2 2

1 2 1 2

2 1 1

2 6 2 6

k m k k m k

k k k k

     = − + +    +      
 

 
 

( ) ( )2 2
1 2

1 2
1 2

1

3

k k
k k m

k k

 −
 = + −

+   

 

 
 

 

[ ] 2 1

3

k k
E X m

−= +  
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Second Moment: 

( )2 2 1
2 ;

3

k k
E X mµ µ µ − = − = +   

 
 

( ) ( ) ( )

( ) ( )

1

2

2

2 1
1

1 1 2

2 2

2 1
2

2 1 2

2

3

2

3

m

m k

m k

m

k k
x m x m k dx

k k k
V X

k k
x m m k x dx

k k k

µ
−

+

 − − − − + +  +  = = 
−  − − + −  +  

∫

∫
       (40) 

 
 

In the first integral on the right hand side of Equation (40), let 1y x m k= − +  and 

in the second integral, let 2y m k x= + − , 2y x m k− = − −  so that ( )V x  in Equation (40) 

beomes 

 

[ ] ( ) ( ) ( )1

2

2 2
0

2 1 2 1
1 20

1 1 2 2 1 2

2 2

3 3

k

k

k k k k
V X y k ydy k y y dy

k k k k k k

− −   = − − + − − −   + +   ∫ ∫  

 

( ) ( )
1 2

2 2

1 2 2 1

0 0
1 1 2 2 1 2

2 22 2

3 3 3 3

k kk k k k
y ydy y ydy

k k k k k k
   = − − + − +   + +   ∫ ∫  

 

( )

( )

1

2

2 24 2 2 3 3 2
1 2 1 2 1 2

1 1 2 0

2 22 4 2 3 2 3
2 1 2 1 2 1

2 1 2 0

4 4 2 42

4 9 2 9 2 3 3 3 3 9 2

4 4 4 22

9 2 4 9 2 3 3 9 2 3 3

k

k

k k k k k ky y y y y y

k k k

k k k k k ky y y y y y

k k k

  
+ + − − + +  +  = 

 
+ + − + −  +  
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3 3 2 3
2 21 1 2 1 2 2

1 1 1
1 2

2 3 2
3 2 22 2 1 1 1

2 2 2 2 2
1 2

2 4 2 22

4 9 18 9 9 9

2 2 22 4
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k k

  
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Third Moment:   

Skewness:  
2

3
3 3

2

µα
µ

= = 3
3

µ
σ

 

 

( ) ( )

( ) ( )
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2 1
1
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2
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m

m k
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m

k k
x m x m k dx

k k k

k k
x m m k x dx

k k k

µ
−

+

 − − − − + +  +  = 
−  − − + −  +  

∫

∫
 

 

In the first integral on the right hand side, set 1y x m k= − +  and in the second 

integral, set 2y m k x= + − , so 2y x m k dy dx dx dy− = − − → − = → = −  
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= 
( )3 3 2 2

2 1 1 2 1 22 3

270

k k k k k k− + −
 = ( ) ( )2 1 2 2

2 1 1 22 2 5
270

k k
k k k k

−
+ +  

 

 

( )( )
( )

2 2
2 1 2 1 1 23

3 1.53
2 2

2 1 2 1

2 2 5 / 270

/18

k k k k k k

k k k k
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( )( )

( )
2 2

2 1 2 1 1 2
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5

k k k k k k

k k k k

− + +
=

+ +
        (41) 

 

Equation (41) clearly shows that the triangular distribution is positively skewed iff 

2 1k k> . 
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If  2 1k k> , then 1 2k rk= , where 0 1r< <  and 1

2

kr k= .  Substituting for 1 2k rk=  

in Equaion (41) results in 

( )( )
( )

2 2 2 2
2 2 2 2 2

3 1.52 2 2 2
2 2 2

2 2 5
0.08

k rk k r k rk

k rk r k
α

− + +
=

+ +
 

 

( )( )
( )

2
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1 2 2 5
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1

r r r

r r

− + +
=

+ +
 

 

Taking the first derivative of skewness, 

 

( )( ) 1.52 3 23 0.08 2 3 3 2 1
d d

r r r r r
dr dr

α − = + − − + +  
 

 

( )( ) ( ) ( )( )1.5 2.52 2 2 2 30.08 3 6 6 1 1.5 1 1 2 2 3 3 2r r r r r r r r r r
− − = − − + + − + + + + − −  

 

 

( ) ( )( ) ( )( )2.52 2 2 2 30.08 1 3 6 6 1 1.5 1 2 2 3 3 2r r r r r r r r r r
−

 = + + − − + + − + + − −   

 

( ) ( )2.52 20.08 1 13.5 13.5r r r r
−
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( )
( )2.52

1
14.58 0

1

r r

r r

+
= − <

+ +
 for all r within 0 1r< < .  Hence, the maximum of 3α  occurs 

at r = 0 and all triangular distributions have skewness values in the interval 

30.32 0.32α− ≤ ≤ .  Further, all right-triangular distributions have 1 0k =  and 0r = , 

so that 3 0.32α = − , and all left-triangular distributions have 1r = , so that 3 0.32α = .  

When 1 2 0k k= = , 3 0α = . 

Similarly, it can be shown that the kurtosis of all triangular distributions is given 

by 
4

4 4 3 3 2.4 3 0.60
x

E
µβ α

σ
 − = − = − = − = −  
   

. 

So, to summarize, for the Triangular distribution 

 

[ ] 2 1

3

k k
E X m

−= +  

 

[ ]
2 2

1 2 1 2

18

k k k k
V X

+ +=  

 

( )( )
( )

2 2
2 1 2 1 1 2

3 1.52 2
2 1 2 1

2 2 5
0.08

k k k k k k

k k k k
α

− + +
=

+ +
 

 

and  4 4 3 0.60β α= − = −  
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Note that for a symmetric Triangular distribution, the above equations simplify to 

 

[ ]E X m= , [ ]
2

6

k
V X = , 3 0α = , and 4 4 3 0.60β α= − = − . 

 

 
 


