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The “canning problem” occurs when a process hasmamam specification such
that any product produced below that minimum in@ussrap/rework cost and any
product over the minimum incurs a “give-away” coshe objective of the canning
problem is to determine the target mean for pradadhat minimizes both of these
costs. An upper screening limit can also be ddtexd) above which give-away cost is
so high that reworking the product maximizes nefipr

Examples of the canning problem are found in teel fimdustry (filling jars or

cans) and in the metal industry (thickness.)



In this dissertation, continuous, finite range gpdistributions are considered,
specifically the Uniform and Triangular distribut® For the Uniform distribution, an
optimum upper screening limit and an optimum vdbtreghe mean fill level is found
using three net profit models. Each model asswarfe®d selling price and a linear cost
to produce, but costs differ as follows:

= Model 1 uses fixed rework/scrap and reprocessistsco
= Model 2 has linear rework/scrap and reprocessistscand
= Model 3 has fixed rework/scrap and reprocessingsdmgt adds an
additional, higher cost associated with a limita@acity of the container.
A discussion is included relating the selectiomfoptimum set point for the mean to
process capability.

For the Triangular distribution, an optimum upperegning limit and an optimum

value for the mean fill level is found for both theygmmetrical and skewed cases using a

net profit model that has fixed rework/scrap anuroeessing costs.
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1.0 Introduction

An interesting problem in process optimizatiorhis tcanning problem” which
attempts to define the optimum set point for themef a manufacturing process to
minimize scrap and cost (or maximize net profithe examples used typically refer to
filling jars or cans such as in the food industhy.each case, there is a minimum
requirement or specification set by the consurdary product produced below that
minimum is either scrapped or reworked and theeefiocurs an associated cost. On the
other hand, any product over the minimum is extogpct that is given to the customer
beyond the minimum requirement (and has thus kbesidd “give-away” cost). The
give-away cost is proportional to the distance leetwthe existing fill level and the
minimum specification. If a target is set too Igwoduct will be rejected as not meeting
the customer requirement (lower specification ljraitd reworking or scrap costs will be
incurred. If a target is set too high, product wiket customer requirements but at the
added expense of “giving away” more material thacessary. The objective of the
canning problem is to determine the target meaproduction that minimizes both of
these costs, given that process variability is kmawd in a state of statistical control.

In some cases, an upper screening liohitgan also be determined. This limit

identifies a level above which give-away cost ihggh that net profit is maximized by

reworking the product.



Examples of the canning problem can be foundilhpifocesses” such as the
amount of coffee in a jar, paint in a can, etché@dtexamples come from the metal
industry such as steel, aluminum, and copper wimettal thickness (gauge) has a
required minimum, but additional gauge just addhéocost.

In this paper, continuous, finite range distribngpspecifically the Uniform and
Triangular distributions will be considered. Theitdrm distribution is presented as a
common, symmetric finite range distribution and Tmangular distribution is presented
with varying levels of skewness. An optimum upgereening limitJ,) and an
optimum value for the mean fill levels) will be determined for two net profit models —
one with fixed rework costs and one with linear oekvcosts. In the case of the net profit
model with fixed rework costs, the results for thaform distribution will be compared
with a generalized optimum mean and upper scredmmigdeveloped by Liu and

Raghavachari (1997) for any continuous fill digtition.



2.0 Literature Review

Springer (1951) introduced the concept of detemngirain optimum target for a
process given fixed costs associated with prodallihdy outside of specifications (both
lower specification limit (LSL) and upper specifiica limit (USL.)) He identified a
general approach for calculating a process megetténat minimizes the total cost of
rejection for both a Normal and Pearson Type ItiGamma) distribution. Bettes (1962)
wrote a similar article that identified a method d@termining the process target when a
set lower specification but an arbitrary upper dption is given. He specifically used
a “foodstuff” example in which items below the lavgpecification and above the upper
specification were reprocessed at a fixed costh Bpringer's and Bette’s solutions

involved a tabulation of factaV . W is a factor which varies depending on the values of

(u-1)

and =%, the cost ratio between rejecting a part withléillel <L and rejecting a

part with fill level >U. The optimum mean iz, =L+Wo whenC_ < G, and

M, =U -Wg whenC,_ =C, whereWzl(U_L]{ g jlog S . (Note:
2\ o U-L G

Springer uses the notati@) andC, to define the costs associated with rejected
material. In subsequent articles and in this resedhe notatiorR and R, is used.)

To avoid tabulation, Nelson (1979) presentedrgbfied approach to

Springer’s solution using a nomograph.



Hunter and Kartha (1977) identified a similar pevhlwith a lower specification
limit, where items produced below the specificatioere sold at a reduced price and
give-away cost was linear. Since their approadsawt provide a closed-form solution,
Nelson (1978) provides an approximating functionuse in a calculator or computer
allowing an error of about three-decimal accuracy.

The “canning problem” is not specific to cans. Amgpcess that has a minimum
specification and costs associated with “undetfdhd “over-fill”) can be classified as a
“canning problem.” Another application of the camqproblem is the production of
steel beams. The beams have minimum web and flaijles. Beams produced below
the width specification cannot be sent to customé&twse with width levels above the
minimum use more steel (and therefore cost sigamtiy more) than those produced at
minimum. What makes the steel beam example diftdrem the traditional canning
problem is that beams produced below the minimunmagbe reworked as in the typical
canning problem (more steel cannot be added). rdjeeted beams are either sold at a
reduced price or scrapped and reprocessed. Bedmthigkness levels greater thiin
are most likely melted down and reprocessed. Samlpresented this example (1984)
with the two classes of rejects previously mentibard give-away cost is measured on a
cost per unit basis.

Bisgaard, Hunter, and Pallesen (1984) pointediattunter and Kartha’s
assumption that under-filled items can be soldaftixked price implied that even empty
cans could be sold. They expanded Hunter and Kanthedel to determine the optimum
mean, but instead of using a constant selling gacender-filled items, they used a
proportional price. They also addressed the pib$giand associated costs of reworking

4



under-filled items. Dodson (1993) provided a sanihodel with his specific example of
rolled aluminum sheet metal. Using the charadterg footage on a finished coil, he
identified two costs: when footage is below thedowpecification, the entire coil is
scrapped (at a cost proportional to footage) anelhwdroduct is produced above the
upper specification, the extra footage is scrappedprovided a method using graphs or
a spreadsheet to identify the target process mean.

Gohlar (1987) first coined the term “canning prable He addressed the specific
case where over-filled cans are sold for a fixadepfand thus incur a “give-away” cost)
and under-filled cans are emptied and refilled fted reprocessing cost. Gohlar and
Pollock (1988) added the determination of an ugpecification limit for cases where a
manufacturer may choose to empty and refill expengroduct when the fill level is too
high. Gohlar (1988) provided a Fortran programdlzulate these values.

Many variations of the original models have beeittem to include other
constraints. Schmidt and Pfeifer (1989) deternhithe cost benefit associated with
reducing variability based on a percentage redaéticsctandard deviation. Their model
extends Gohlar (1987) in which under-filled prodisctmptied and reprocessed at a
fixed cost and over-filled product is sold at tiegular price. In 1991, Schmidt and
Pfeifer also extended the analysis to include Bohitapacity as a constraint. Usher,
Alexander, and Duggins (1996) recognized that hagdkjects reduces efficiency, so
they extended Gohlar and Pollock (1988) to inclimeeffect that the target mean and
upper limit have on the efficiency of a productlore. Cain and Janssen (1997)
identified a target value when there is asymmaetrhe cost function in the cases of
asymmetric linear, asymmetric quadratic, and coetdbimear and quadratic costs. Pulak

5



and Al-Sultan (1997) developed Fortran programséidving nine selected targeting
models: Hunter and Kartha 77, Bisgaard, Hunted, Ballesen '84, Carlsson '84, Gohlar
'87, Schmidt and Pfeifer '91, Boucher and Jafati (8ampling), Gohlar and Pollock 88,
Arcellus and Rahim '90 (sampling), and Al-Sultad ‘@vo machines in series with
sampling.)

Many articles have been written that extend thgetiaselection problem to
processes that are subjected to acceptance samgiimeg than 100% inspection.
Carlsson (1989) identified a method for determirtimg target mean when using variable
data, a one-sided specification, a known variaacd,a sampling plan such as MIL-STD-
414B. Lee and Elsayed (2002) calculated optimuncgss mean and screening limits by
maximizing profit when a 2-stage screening processed with a surrogate variable.
Lee, Hong, and Elsayed (2001) calculated the optimptocess mean and screening
limits for a correlated variable under single- @astage screening. In their article, the
single screening was based on the quality charstitebeing measured and the 2-stage
screening was being done on a correlated variailte then on the quality characteristic
of interest.

Recent articles have explored the objective famstiand use of a fixed variance.
Pfeifer (1999) identified two competing objectivespected profit per fill attempt and
expected profit per can to be filled. Rather thatting the first derivative of expected
profit equal to zero and solving for the optimungt, he evaluated expected profit over
a range of values and found one that maximizeda&gdeprofit using spreadsheets and
search routines. Misiorek and Barnett (2000) eranhithe effect of a change in variance
on the solution of optimum mean and expected prdfitey also explored the

6



implications to “Weights and Measures” requirementsthis article, over-fill was either
recaptured or lost and under-filled containers veenptied and material re-used or they
were “topped-up”. Kim, Cho, and Phillips (200@laculated the optimum mean while
keeping the process capability at a predetermiereell They used a cost function that
increased as variance decreased which seems ctufitgguchi’s loss function and
would be difficult to quantify in practical applican.

Liu and Raghavachari (1997) generalized the detextiain of an optimal process
mean for the canning problem and an upper scrediniitgfor any continuous
distribution. They used a simple profit model givizy Schmidt and Pfeifer (1991) and
determined an optimal value Of (upper screening limit) andwhich maximized the
expected net profit for any continuous fill distriton. Their work addressed infinite-
range distributions that they truncated on the éo.

A flow chart of articles reviewed for this reseafoliows:



LSL only

Optimization Set Mean &
< Goal? > > USL

b

Bettes, 1962

Gohlar & Pollack, 1988
Gohlar, 1988

Liu & Raghavachari, 1997

Hunter & Kartha, 1977

/ Misiorek & Barnett, 2000

Constant

Set Mean _¥| Nelson, 1978
Over-fill
Reason for
Reject
Under-fill
—
Selling
Both Price
\ 4

Carlsson, 1984
Gohlar, 1987
Cain & Janssen, 1997

LSL and USL

Proportional

Bisgaard, Hunter, &
Pallesen, 1984

Springer, 1951
Nelson, 1979

given

Dodson, 1993

FIGURE 1. References that Address the Canningl®&rolVith 100 % Inspection



With
Sampling

Correlated
Variables

Multi-Class
Inspection

.

Carlsson, 1989
Boucher & Jafari, 1991
Tango & Lo, 1993
Al-Sultan, 1994

Bai & Lee, 1993

[ Tang & Lo, 1993

Lee & Kim, 1994

Lee & Jang, 1997
Lee, Hong, & Elsayed, 2001
Lee & Elsayed, 2002

Fortran Programs—Pulak & Al-Sultan, 1997
Competing Obj Functions — Pfeifer, 1999

Impact of Change in Schmidt & Pfeifer, 1989
Variance Misiorek & Barnett, 2000
Kim, Cho, & Phillips, 2000
Other Lim Capacity—Schmidt & Pfeifer, 1991
Variations Line Efficiency—Usher, Alexander, &
Duggins, 1996

FIGURE 2. Other References that Address the Cgripinoblem




Since many different models of net profit have besed in literature (with many

different forms of notation), they are summarized able 1 using the following notation:

X = the random variable, fill level
x = a specific value oK
A = selling price of an acceptable product
D = selling price of a non-conforming product
C = variable cost per unit to produce
o = fixed cost per unit to produce

R = cost to scrap or rework produckik L
R, = cost to scrap or rework produckit> U
R = cost to scrap or rework productff =R,
L = lower specification limit

U = upper specification limit (if given)

U, = optimum upper screening limit

M, = optimum target mean

m = the modal point

10



TABLE 1. Net Profit Model Comparison from LiteraéuReview

Author (Date) of
Reference

Net Profit Model

Calculate U, in

addition to 4,

Springer (1951),
Nelson (1979)

Springer and Nelson
do not use a net
profit model, just the
cost of rejection:

-R ifx<L

-R, ifx>U

No

Bettes (1962)

First application of
give-away cost, no
net profit model,
costs are as follows:
-R ifx<L

-Cxifx>U,

Yes

Hunter & Kartha (1977),
Nelson (1978)

D-Cx if x<L
A-Cxif x=>L

No

Carlsson (1984)

(Differs from Hunte
& Kartha in that cost
to produce is both
fixed and variable.)
D-(Co+Cx) if x <L
A-(CotCx) if x =L

rNo

Bisgaard, Hunter, &
Pallesen (1984)

(D-O)x-Cyif x <L
A-Cx- Gif x=>L

No

Gohlar (1987)

A-R-Cxif x < L
A-Cxif x =L

No

11




TABLE 1 (continued). Net Profit Model Comparisfsom Literature Review

Author (Date) of Net Profit Model Calculate U, in

Reference addition to 4,

Gohlar & Pollock (1988) |5(,u,U)-R ifx<L, |Yes

where P(u,U) is

the expected profit at
the new level when
the can is refilled.
ACxifLsx <U,

P(uU)-R ifx>

Uo
Schmidt & Pfeifer A-Cxif Lsx sU No
(1991), Liu & -R otherwise Yes
Raghavachari (1997)
Dodson (1993) (A-Oxif L=sx <U | No
-R xif x<L
-R, X ifx>U

The differences in Table 1 come from several sasir One variation is the
selling price. In some models, selling price x&#, in others it is proportional, and in
still other models, there may be more than onénggfirice if rejected material can be
sold in a secondary market. Another variatiorhminodels addresses how material is
handled if it is rejected. Some models assumeedl fiejection cost (whether due to
scrap or rework) and some models treat rejectich & proportional tg (again this cost

may be due to scrap or rework.) In the followilgoter, the two net profit models used
12



assume a fixed selling price, no secondary madkesddlling rejected product, and fixed

rejection costs for the first model and proportiaegection costs for the second model.

13



3.0 Uniform distribution

Most of the work in the literature regarding th@miag problem has focused on
the Normal distribution with many different net ftdunctions. All assume a
continuous distribution and an infinite range.abitual practice, however, finite
distributions may sometimes be more plausible n®ofitela canning process. Few
authors use a truncated distribution and thosedeh(.iu and Raghavachari, 1997) only
truncate on the low end of the distribution. Titasearch is preliminarily focused on the
application of the canning problem to two standsedistical distributions that have a
finite range: the Uniform distribution (with twaftitrent net profit models) and the

Triangular distribution (with fixed rework/reproc#sg costs.)

3.1 Uniform underlying distribution — constant scrg cost
In every case, analysis should begin with a distidn fit ( y* Goodness of Fit

Test for example) of the data’s dimension (fillégunetal thickness, etc.), to determine
the appropriate distribution to use in the analysmsthis chapter, it is assumed that such
an analysis has been completed and data are folberost closely approximated by a
Uniform distribution.

In this first application, the basic profit funatised in the Liu and Raghavachari
(1997) article is used, so results for the contusudniform distribution can be compared
to their’s for any continuous distribution for thadrticular profit model. In the net profit

function, first introduced by Schmidt and Pfeif@®91), the cost of reworking product
14



belowL or abovel is fixed and the product is only sold if fill lelye, falls within the
limits of L andU. A slight modification of Schmidt and Pfeifer$991) net profit model

is defined below. This net profit model is genized such thaR_ need not be equal to

Ru.

The Net Profit function:

-R, as x< L

A-C L< x< U
POY= "

-R,, U<x<b

0, otherwise

whereL = lower specification limit, below which the custer will not accept the
product. For example, if a jar is to be filled kit = 8 0z. of an ingredient, anything less
thanL = 8 oz. is not allowedU = an upper screening limit (to be determined) Wi

not based on customer preferences but is a vadtierimimizes giveaway cost such that

any fill level aboveJ costs more in giveaway cost than would be receivéncome. R

= the rejection cost per container wher L, R, = the rejection cost per container when
x>U, A=revenue received for an acceptable containerCanthe production cost per
unit of ingredient. The constamsR ,R,, C,andL are known and 0. In the Liu and
Raghavachari (1997) articl® = R = R, but since the cost of rejecting a unit with fill

level less thah may be different from the cost of rejecting a wmith fill level greater
thanU, a slight generalization is made for this modebr example, in the steel industry,
if sheets of steel are being produced to a minirthiokness specificatior,, then sheets

with thickness less thdnmay be scrapped or sold in a secondary markele wheets
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with thickness greater thdh may be reprocessed, melted down and used as raw
material. The machine’s “fill level” per attemptlMbe used throughout this research to
describe the random variabk, The unit of measure will depend on the applicatior
example, “per unit” may be per ounce (in the cdddlimg a container) or per fraction of
an inch (in the case of steel thickness.)

In order to determine the optimum valuelhfU,, the equation for maximizing
expected profit must be determined and then tledigrivative with respect 19 is set
equal to zero to solve fd,.

The Uniform distribution has the following probatyildensity function:

i as<x<b
f(xX)=<b-a’ T
0, otherwise
i, asx<b
=42k
0, otherwise
whereb—a=2k.
Graphically, the density function appears as:
f(x)
X
a Y7 b

16



wherea = - k,b = ¢+ k, and2kis a constant value that describes the spredukof t

2

Uniform distribution such thdi — a = 2k and variance oK is V (x) :% (Appendix D.)

3.1.1 Optimum upper screening limit

With respect to the canning problem, there is & 08s) when the quantity falls

below the lower specificatioh, (L = a). There is also an arbitrary upper screeningt)imi

U (U < b), such that the profitA— Cx) above U is actually less than the cost to rework

or reprocess when fill level is too higR, .

f(X)

a=u-k L U bgatk

Assume that the filling machine variability is sutiat the process range st k where

a=u-kandb =+ k. The objective is to maximize the expected nefipmwhich is

obtained first by combining the equation for thé prefit, P(x) , and the probability

density function ok given by f (x) :2_1k’ a< x< b.

Assuming that < y<U,a=pu-k< L,andb =+ k= U, the expected net

profit is given by

17



E[ P(X j R\ dx+j(A C»d j %d:

- Rxpe 1 (AX_%)“ RJ_|”+k
b

au(ra-L)e R 9Bl b (SR @

In order to solve for the optimum value of the uplpait, U, , the first derivative

of the expected profit equation with respectts set equal to zero:

OE[ P( x)]

50 (RJ + A- CU) (2)

The second derivative with respectias —% which is< 0. Since the second

derivative is< O, the function is strictly concave and settingfirgt derivative = 0 will
yield a maximum expected net profit.

Setting Equation (2) equal to zero,
1
E(|:\>J+A—qu) =0~ (R +A-CU)=

or,

18



U, = tA 3)

In the case wherR = R, = R, the optimum point obtained in Equation (3) magctiee
solution found by Liu and Raghavachari (1997) foy distribution.

SubstitutingU, into the expected net profit equation, Equation yiBlds the

following optimum expected net profit:

_ 1|(R+A e cL

= E[THR’L(,U K- R (u+ K+ = A Bj]

_ 1| (R*+A e cL_

- g[z—cw(a R)-KR+ B)+ {—2 A Rj]
Because the variance of the Uniform density ismivgV (x) = (b;:) =k—;,

EO[P(X)]=2;@[(RJ2::A) +u(R - B)-0V3( R+ R)* EQ— A Rj] @)

19



In the case wher& = R, = R, Equation (4) simplifies further to

E,[ P(X ] : [(R+A)2+L(E—A— F\’j]—F. (5)

T 20yJ3| 2C 2

Equations (4) and (5) show that as process vaitialslreduced, the expected net profit
increases. Furthek, [ P( x):| decreases as cosBdndC) increase.

If R, > R, itis clear based on the net profit model in [F&y8, that when
2k >U, - L, fill level should be positioned belowrather than abowg, , so in
determining the optimum value fprthe probability ofx>U,, will be zero. However, if
-R > P(U, ), a higher profit can be realizedfis set lower thad, —k. U, was
determined to be the “break-even” point for costated toR, , but in the case where

R, > R, even within the range betwekrandU ,  the cost for a given fill attemp€x,

may be higher than the selling priée,such that net profit becomes negative, afd@x
< -R., then the cost to rework when fill level is lesarth is actually less than the cost to

produce and sell at the given fill level (beldy .)

20
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v
|
Ry

FIGURE 3. Net Profit Model WheR, > R .

I:\)LJrAforthe

In the case whef], > R, an alternative upper limit existsét =

purpose of determining, . U, , in Equation (3), was determined to be the “brea&n”
point for costs related t&, , but whenR, > R , another “break-even” point occurs
when-R = P( ). This occurs wherA-Cx=~-R and leads to an alternative upper

screening limit for determiningy, :

u =222 6)

+
U = RLC A is the “break-even point” for net profit with tleest of reprocessing

material with fill level below L. If it costs leds scrap and reprocess under-fills than to

fill and sell product with fill level 3U_, then the production process should be centered

such that reject occur beloly rather than above, .
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So, the optimum value for the upper screening lisit

U,=min(U_U,)= min( RL; A,R’g Aj (7)

3.1.2 Optimum target set point for the mean

The next step is to determine an optimum machihpaat for the mean. Of

. o a+b : , .
course, for a Uniform dIStrIbutIOVJIFT, so the actual mean is defined. In this

chapter, the optimum set point for the mean wilblb&rmined that maximizes expected
net profit per unit. Rather than fixiragor b, in this analysis, the assumption is that the
filling machine has a fixed amount of variabiliyt the set point can be adjusted such
thatb — a = 2kis fixed, and the optimum meam,, is accordingly determined.

The ideal (though technically impossible) optimutaation would occur if the
process mean was centered @ind there was no variability. The fact that Vaitigy
exists in all processes, however, makes the campisigjem a practical issue.

For a Uniform distribution witl. andk given, the optimum set point for, £, is
based on the equations for expected net profierdhare two cases to be considered:

Case 1: R<U_ -L and Case 2:K>U_ - L. Within each case, the equations for

expected net profit are different, for differenhgas of /.

Case 1: 2k<U_ -L:

When X<U_ - L, there are five different scenarios:
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v
X

FIGURE 4. Distribution of fill level whenkR<U_ -L andy+k<L.

b) yu-k<L andL<spu+k<U,

(%)

v
X

Utk

FIGURE 5. Distribution of fill level whenkR<U - L, y—k<L andL<pu+k<U,.
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c) u—k=2L andu+k<sU,

f(x) #

v
X

M=K pu+Kk

FIGURE 6. Distribution of fill level whenR<U, - L, y-k=L andy+k<U,.

d Lsu-ks<U, andpy+k=2U,

(%)

v
X

FIGURE 7. Distribution of fill level whenR<U, - L, L<uy-k<U ,andy+k=U,.
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v
X

M=K H+K

FIGURE 8. Distribution of fill level whenR<U_ - L and y-k=U,.

These scenarios and the formulas for expectedrogt are summarized in Table 2:

25



TABLE 2. Case 1. Expected Net Profit for Rangeg/owhen X<U_ - L.

Scenario Range of i/ Expected Net Profit, E[ P(X) |

a k<su<L-Kk -R

b L-k<su<L+k 1{&(’“_@4. A(,u+k)— }
oL _C 2 o
2k (R +AL E[(;H K) L}

Cc L+kspu<U, -k A-Cu

d U, —ksu<U,+k 1{(A+%)(Uo—u)+k( A- Fs)—}
S, 1C 2 () L)2
2k E|:Uo (/J k)}

e U ,+tksu -R,

Expected Net Profit equations are calculated beod/an attempt is made to find

through differentiation the optimum set point far, £, to maximize expected net profit:

Casel (ak=su<L-k:

E[P(X]=]/"-R (Y= {-R[(4+K-(u- K] =-R

So, there are no critical points(k L-k).
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Case 1 (b)L-k<su<L+k:

E[P()]=], ~R f(Jde [ ( A Ox { Ko
:%{_R[L—(ﬂ—k)ﬁ Al = -3 ' E}}

=R Awe (R A =S (e ¥~ 1))

Now, in order to find the optimum value gf the equation for expected net profit is

differentiated with respect @

onELPOI]= 5 [(R+ A= s 4]

ou
L . 9° _ C .
The second derivative with respecl;a;oa—2 E[ P( x)} = _E’ is less than zero, so
7

setting the first derivative equal to zero willué#sn a maximum:

1 - _R+A_, _
E[(RL"'A‘)_C(IU'FK)]_O: Ho=—5 -k=U -k

But, L-k<pu<L+k,and X<U_ - L isassumed in Case 1. Since

U, =min(U,,U, ), U, 2U,, soU -k=U,-k>L+k,andy, #U -k in this

range.

Casel (c)L+k=spu<U, -k:

E[P(X]=]""(A-cy (o

(3] -G ]

27



=A-Cu

So, there are no critical points(in+k,U, = k).

Case 1 (dU,-k=s u<U, +Kk:
E[P(Y]=] " (A-Cy {(Jae [~ R ( ke

- LA, = (u- K-S0 - (- 0] R (s §- ]

- (AR ) () K A B)-S[ W (- ]

Now, differentiating with respect i@,

SaELPO)]= [l B=(B + 4]

Here, the second derivative with respect/is % >0, so setting the first derivative

equal to zero will result in a minimum, not a maximnet profit.

Case 1 (e, +k< u:
E[P(X]=["-R (Yo

= ol R+ R=(a- 1] =R

So, there are no critical points wher> U —K.
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In each case, differentiation does not lead tduatiso for £, so the extreme

points for each interval are calculated to deteentive optimum value of, /4, , to

maximize E[ P() ].

Case1(a): Aw=L-k, E[P(x]=-R

Case 1(b):  Atw=L-k, E[P(X)]

At =L+k, E[P(X)]= A-C( L+ K
[P(¥]

Case 1(c):  A=L+k, E[P(X)|= A- [ L+ K,
Case 1(d):  Aw=U, -k, E| P(X

Case 1(e):  Aw=U,+k, E[P(X)|=-R
Since Xx<U -L,L+k<U, -k, so A-C(L+k)> A- C(U,- K. Because
U, is calculated using Equation (7}, +k <U,_, so A-C(L+k)>-R and
L+k<U,,soA-C(L+k)>-R . Therefore, the optimum value gf when
2k<sU_ -L,is:
M, =L+k (8)

and

E,[P(Y]= A-(L+ K ©)
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Example 1 2k<U, - L.)

Let A=%$40,C=$0.10,R_=%$5,Ry= $6,k = 50, and- = 200. U, can be calculated using
Equation (7) to b&J , = 450. Using Equation (8), = 250. Various values fqgr are
presented in Figure 9 with the corresponding exquenet profitE[ P( x)] to show that

Mo =250 does, in fact, give the highest expectegrafit (at $15):

Uniform Distribution - Fixed Cost Profit Model
2k<=U-L, R =5, Ry=6
A=40, C=0.10, k=50, L=100, U,=450

E[P(X)]
U1
\

Value of Mu

FIGURE 9. Example of Expected Net Profit for Difat Values oz when
2k<U,-L.
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Case 2: 2k>U_-L
As in Case 1, for Case 2 wherk 22U - L, there are five different scenarios. The
ranges ofy change sincek>U_ - L, but the expected net profit equations remain the

same as in Case 1 with the exception of Case Q&se 2(c) differs from Case 1(c) in

that with X >U_ - L, fill level will fall below L and/or aboveéJ  as illustrated below:

c) u—-ksLandu+kz=U,

f (%)

v
X

H+k

FIGURE 10. Distribution of fill level whenk>U_ - L, y-k<Landu+k=U,.

These scenarios and the formulas for expectedroBt are summarized in Table 3:
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TABLE 3. Case 2: Expected Net Profit for Rangeg/owhen X >U_ - L.

Scenario Range of u/ Expected Net Profit, E[ P(X) ]
a k<su<L-k -R
b L_kSﬂ<Uo_k 1 RL(,U—k)+A(,U+k)—

2k (R +A L—%[(,u+ k)2 - If}

Cc U,-ksu<L+k L R(u#-k-1+ AU -1D-
& S(0 1) R, [+ k-U,)

d L+k<su<U, +k 1 (A+R)(U, - )+ k( A~ R)-
H[Gloe-tuwr]

e U, +ksu -R,

Expected Net Profit equations were calculated #meesas with Case 1 with the exception

of 2(b) and 2(c).

Case 2 (b)L-k=<s u<U, -k:
As in Case 1, taking the first derivative with respto i of the equation for expected net

R+A

profit in the rangelL —k < g < L+Kk, leads toy = -k=U, —k. However, when

R+A . :
2k>U,-L, u= c -k =U,_ -k is a feasible value for, .
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Case 2 (cJ,-kspu<L+k:

E[P(Q]=[, ~R f(J e[ (A Ox { ko[~ R(f)x ¢

=R [L-(u=9] AU - 4-S[ - - R[(u+ §- U]}

R (ke 9 AU -S(ur 0)- R (ur ke )]

Now, in order to find the optimum value gf the equation for expected net profit is

differentiated with respect o

0
3 ELP(9]= 5 (R~ B)

which leads to no closed form solution for.
With the exception of Case 2(b), differentiatiayed not lead to a solution for

M, , so the extreme points for each interval are dafed to determine the optimum set
point for u, 1, .

Case2(a): Aw=L-k, E[P(¥]=-R

Case 2(b):  Aw=L-k, E[P(X]=-R,

At y=U, -k,

Case 2(c): A =U_ -k,



e[P(9]= 5| R(U- =20+ Au- )-5(w- o)

Case 2(d): Aty =L+k,

Case 2(e):  Aw=U,+k, E[P(X)]

-R
Clearly, the maximum expected net profit occursegiatz =U, -k, from the

differentiation in Case 2(b), at =L + k (from Case 2(c)) where

E[P(X)]=2—lk[R(Uo— L-2 K+ A Y- Q—%( y? - E)]orat,uzuo—k (from

Case 2(c)) wher&| P(X) | = Zlk{ (U-L-2K+ A Y- I)——( - )}.Which

value of i provides a higher expected net profit dependfemndlationship betweeR

andR,. If R > R, then the expected net profit whesm= L +K is

2—1k[RL( -L-2Kk)+ AU -1~ ( LZ)} which is greater than the expected net

profitwheny:UO—k,orz—lk{F{,( - L-2k)+ AU, - - C( Lz)} This is

consistent with Case 2(b), because wiker> R , U, =U ,sou=U -k =U -Kk.
Therefore, ifR > R,

py=L+k (10)
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and

e [P(9)= 5| R(U- 28+ Au- 9-S(w-8)] @
If R, >R, then
u =U, -k (12)

and
e [POY)= | R(U--29s Au-)-S(u-19)] a3
In the case wher&, = R = R, Equations (11) and (13) are equal and the optirseim
point for iis any value in the range
#, O[U, =k, L+K] (14)

and

e [P(3]= | MU~ 129+ Au- )-S(u-8)] a9

If 4, =U,~-k,thena=U, - k<L andb=(U, -k)+ k= U, where there are no rejects

o S . (L-U, +2k)
on the high side, but the proportion rejected @nldhv side isp, :T.

Further, adJ - L approachegk, p, — 0. On the other hand, i, =L +k, then
a=L andb=L+ X>U, where there are no rejects on the low side, uptbportion

(L+2k-U,)

rejected on the high side 3, = ”

. Again, asJ, - L approachegk,

p, — 0. Note that, as expecte@, = p,
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Example 2 2k >U, - L andR >R, .)

LetA=$40,C=$0.10,R.= $6,Ry = $5,k = 150, and- = 200. U, is calculated using
Equation (7) to beU = 450. Using Equation (10), = 350. Various values fqr are
presented in Figure 11 with the corresponding ebgakcet profitE[ P( x)] to show that

calculatingy, by Equation (10) does, in fact, give the maximwpezted net profit (at

$5.42):
Uniform Distribution - Fixed Cost Profit Model
2k>U-L, R~5<R, =6
A=40, C=0.10, k=150, L=200, U,=450
10
5
£ oof
L (OQ
_5 Pl *
-10
Value of Mu

FIGURE 11. Example of Expected Net Profit for Bint Values ofr when
2k>U,-L andR, <R.
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Example 3 2k >U, - L andR, > R .)

LetA=$40,C=$0.10R.= $5,Ry=$6,k =150, and. = 200. U, can be calculated
using Equation (7) to b&J = 450. Using Equation (12), = 300. Various values fagr
are presented in Figure 11 with the correspondipgeted net profiE[ P( x)] to show

that 1, =300 does, in fact, give the highest expectegruit (at $5.42.)

Uniform Distribution - Fixed Cost Profit Model
2k>U-L, Ry=6>R =5
A=40, C=0.10, k=150, L=200, U,=450

E[P(X)]

o o
=) \
% |

Value of Mu

FIGURE 12. Example of Expected Net Profit for Bi#nt Values ofr when
2k>U,-LandR, >R.

Example 4 2k>U,-Land R =R = R)
Let A=$40,C=$%$0.10,R = Ry=$5,k =150, and. = 200. U, can be calculated using

Equation (7) to b&, = 450. Using Equation (14)i, D[300,35C}. Various values fou
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are presented in Figure 13 with the correspondipgeted net profiE[ P( x)} to show

that 4, 0[300,35( does, in fact, give the highest expected net pfafi$5.42.)

Uniform Distribution - Fixed Cost Profit Model
2k>U-L, R~R =5
A=40, C=0.10, k=150, L=200, U,=450

E[P(X)]

Value of Mu

FIGURE 13. Example of Expected Net Profit for Bi#nt Values ofs when
2k>U,-LandR =R =R
To summarize, for fill level that follows a Unifordistribution when there is a

constant scrap cost, the optimum value for the uppeening limit was determined to be

U,=min(U_U,)= min(RLJr A,RJ i A]
C C

The optimum target set point for the process meas obtained for the various scenarios:

Case l: RsU_ -L - y,=L+k

Case2: R>U -L:
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It R, <R - 4= L+ k
fR >R - 4, =U -k

f R =R - 40[U-k L+ ]

3.2 Uniform underlying distribution — linear scrap cost

In this section, the optimum upper screening lamtl optimum target mean are
obtained for a different net profit model: one wéthinear scrap cost. This net profit
model is appropriate when the majority of the stepork/reprocessing cost is from the
cost of the material, for example in the gauge@élsbeams. Using a model similar to

that used by Dodson (1993), the net profit model is

-RX, X< L

P(X):{A—Cx, x= L

The above model differs from Dodson (1993) in thdtis model, price for conforming
product was also linear. This model maintainsrastant selling priceA, for comparison

with the previous model.

Modifying the model to match the finite Uniform thidution,

-R % as x< L

A-C L< x< U
P(={" "

-R, % U<x<b

0, otherwise
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wherea= -k andb=pu+Kk.

3.2.1 Optimum upper screening limit
Using the same approach as in section 3.1.1, thectxd net profit equation

whenL<pu<U,a=pu-k<L,andb=pu+k=U, is given by:

ACX Utk —
E[p(x])=], R, P LAZCH) e Rux

i{%((u—k)z - 1)+ A(U- L)+92( LZ—UZ)—%((;H k) - uﬂ -

E{i( —k)*+ A(U- |_)+L;(c R)- C Ré[uz—(w k)z}} (16)

To determine the optimum upper screening litdif, the derivative ofE[ P(X) | with

respect tdJ is calculated and set equal to zero:

0 1
G E P(x] = E[A—cu+ R U]

A-CU+RU=0=
40



-_A
UO_C_RJ (17)

U, in Equation (17) differs from the optimum valuelf from Section 3.1.1,

o

Equation (7), which wall | = min( RJ; A, RLS Aj. With the previous profit model,

selling price A) and rework costR) were fixed and only per unit production cdSj (vas
linear. In this model, both material co§)) @nd rework costR) are linear.

Note that Equation (17) requir€s> R, , which means the per unit cost to
produce must be greater than the incremental casfprocess in order to calculate an
optimum upper screening limit. @ <R, , no upper screening limit is necessary,
because net profit will be higher to just prodult@aoduct with fill level greater thah,
sell atA and absorb the “give-away” cost. Howevé& > R, implies that it costs more
to manufacture the part than to manufacture arapsar rework it. Therefore, an upper
screening limit is not appropriate for this mod&he remainder of this section will

assume a fixed value bfthat is set by customer requirements or definelinmyations

of the container or the production equipment armd this determined such that

A-C(U)=0.
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3.2.2 Optimum target set point for mean
To determine an optimum target mean, the two cases (Case Ik 2U - L and
Case 2.2k >U - L) and the same five ranges gfthat were presented in Section 3.1.2

also apply for the linear model as presented irl€a#h and 5.

Table 4 lists the formulas for expected net priofitdifferent ranges ofs for

Case 12k<U-L:

TABLE 4. Case 1: Expected Net Profit for Rangeg/ofivhen X <U - L.

Scenario|  Range of /| Expected Net Profit, E[ P() ]

a ksu<L-k -R u
b L-k<su<L+k -
1 %[LZ—(y—k)2J+A(/J+ k- L)-
2k |C 2 )
E[(,u+k) L}
c L+ksu<U-k | A-Cu

d U-ksu<U+k

e U+ksu -R, U

Expected Net Profit equations are calculated belod/an attempt is made to find

through differentiation the optimum set point far, £, to maximize expected net profit:
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Casel(aksu<sL-k:

E[P(x)] :I:_*kk_a xf( 3 d: =2—1k{_7[(,u+ k)2 _(ﬂ_k)z}}=—ﬁ,u

So, there are no critical points(k L+ k).

Case 1l (b)L-k<su<L+k:

E[P(X]=] ,~R (e[ A O ( ke

2Bl ] Al 9= - - ]

Now, in order to find the optimum value gf the equation for expected net profit is

differentiated with respect (@

S ELPO =5 [R (4= B A s §)

ou

-1

L ) 0°
The second derivative with respeciito—E| P( x
pecktor +E[ P(X)] =

(R-Q<0iff C>R.

So, setting the first derivative equal to zero welult in a maximum whe@ > R :

Z—UR(#‘W A-Clu+ R]=0=pu=

A C+ k. But, whenC >R,

A

M= +k < k and theni —k <Owhich is not feasible.

Casel (c)L+k=<su<U-k:

E[P(X]=[" (A3 (o
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A= (=91 (- B}
=A-Cu

So, there are no critical points(in+k,U - k).

Case 1l (dU -k<su<U +k:
E[P(Y]=[," (A-Cy (Yo [~ R xf ke
— 1 _ _ _E 2 _ _ 2 _& 2 R
_E{A[U (=K)]-S[ 07 = (- =D+ - U ]}
Now, differentiating with respect i,
2 E[P(Y]= o[- A+ o(u-H- B (u+ §]
ou 2k
Here, the second derivative with respec/is 2—1k(C -R/)<0iff R, >C, so setting

the first derivative equal to zero will result immaximum expected net profit R, > C:

%E P(x)]zz—lk[—A+ u- K- B(u+ §]=0- u= A+((:C_+RJR’) k. But this

value of i leads to a maximum expected net profit in thigeaonly if R, > C. And, if

R, > C, thenu = <0 which is not feasible.

A+(C+R) K

Case 1l (eU +k< u:
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So, there are no critical points wherU -k .

In each case, differentiation does not lead tdatisa for 4, , so the extreme

points for each interval are calculated to deteentive optimum value ofr, 1, .

Case 1(a):

Case 1(b):

Case 1(c):

Case 1(d):

Case 1(e):

Au=L-k, E[P(x]=-R(L-K<0

Al=L -k, E[P(x)]:z_lk{%[f ~( L—2k)1}—

A

(- §<0
A= Lok,

E[P(9]= 5| A20-S[(Lr2d - E]f= a1 )
Aw=L+k, E[P(X)]= A= L+ K

At 1=U -k, E[P(X)]= A- C(U- K

A=U -k,
E[P(9]= 5| A29-S[ U -(u-24 = A Uy
A u=U +,
E[p(x)jzz_lk{—&z[(mzkf-uzj}:—pg,(m §<0

A =U +k, E[P(X)]=-R (U+ K<0

Since2k<U -L, L+k<U-k, so A-C(L+k)> A- C[ U- Kand clearly,

A-C(L+k)>-R(L- K andA-C(L+k)>-R (U+ K, so the maximum expected
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net profit occurs ap = L +k with E[ P(X)|= A- ¢ L+ K. Therefore, the optimum

value of # when X<U_-L,is:
f, =LK (18)

and

E[P(X]=A-C(L+ K (19)

This conclusion is illustrated in Figure 14 below.

Example 5 2k<U-L.)
Let A=$40,C=$0.10,R = $0.20,R, = $0.05,k = 50,L = 200, andJ = A/ C =400.

Using Equation (18)4, = L+k = 250. Various values fgrare presented in Figure 14
with the corresponding expected net prcﬁﬁ,P( x)] to show thaty, =L +k = 250 does,

in fact, give the highest expected net profitEaf P(x) |=$15.)
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E[P(X)]

Uniform Distribution - Linear Cost Profit Model
2k<=U-L, R =0.2, R=0.05
A=40, C=0.10, k=50, L=200, U=400

Value of Mu

FIGURE 14. Example of Expected Net Profit for Difat Values oz when

2k<U-L.

Case 2:2k>U - L

If 2k >U - L, the fill level distribution is illustrated by Figerl5:

f(x)

' X
M=K L 7 HU+K U
Fill Level

FIGURE 15. Distribution of Fill Level whekk > U - L.
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The optimum set point for the meag,, to maximize net profit will depend on the

relationship between the valuesRf, R, C and A as illustrated in Figure 16.

P(x)

v

FIGURE 16. Net Profit Equation wheR, > R

If R, >C, itis clear that there is no optimum value by, as discussed in
Section 3.2.1. Even iR, < C, such that the optimum upper screening limit isneel by

Equation (17), the fact that the cost is a lineaction of fill level, means that it would
be unlikely that a business would choose to alléiierel to run that high, since the cost
is so great. More likely, a fixed upper limit isvgn.

Table 5 lists the formulas for expected net priofitdifferent ranges ofz when
2k >U - L. Note that (as in Case 2 of the fixed cost mad@&action 3.1.2) the ranges

of u are different from Case 1 becaude>2J - L.
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TABLE 5. Case 2: Expected Net Profit for Rangeg/oivhen2k >U - L.

Scenario Range of y/ Expected Net Profit, E[ P(X)]

a usL-K -R u
b L-k<pu<U-k _ )
SHS 1 %[Lz—(,u—k) }+A(/,1+ k- L)~
2k %[(/J+ k)z B LZ}
“k< K ,
c U SuU<L+ 1 %[(,u—k) —L2}+A(U—L)+
k 2 2 2 2
2 %(L -U )+i2[u —(u+K) J
d L+k< U+k 2
S R R B U
Kk 2 .2
2 %[(,u+k) -U }
e U+ksu -Ru

Expected Net Profit equations are calculated &ase 1 with the exception of Case 2(c)

which is presented below:

Case 2 (c):

E[P(X]=] ,~R (oo [ ( A Ox { Joax[ ™~ R §F)x:

- LR [k -] - 0 (-0 B (e k]

Now, differentiating with respect i,
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T-E[P(9]= 5 [R (4= 4= B(u+ }]

ou
Here, the second derivative with respecttis 2—1k(RL - R )<0iff R, >R, so setting

the first derivative equal to zero will result irmaximum expected net profit §, > R :

k
%E P(x)]=2—1k[ﬁ( - K- B(u+ I)]=O—>,u=%. But this value of

M leads to a maximum expected net profit in thiggeaanly if R, > R . And, if

< 0 which is not feasible.

k(R +R)
, th = 7
R, >R, thenyu R -

In each range of, differentiation does not lead to a solution fgr, so the

extreme points for each interval are calculatedet@rmine the optimum value of, £, .

Case2(a): Au=L-k, E[P(X)]=-R(L-K<0

Case 2(b): A =L-k, E[P(X)]:Z—:L{%[Lz—(L—Zk)z}}— R(L-K<O

At u=U -k,

E[P(¥)]= Zi{—%[f—(u—zkf} A U- Q_E(Uz_ E)}

:iki( 2 —4KU +4k° - )+ A(U- L) - ( Lz)}

" 2k| 2

gy,

T2k

-R(U-K
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Case 2(c): A =U -k,

<[P (=24 - €] Au- 9§ v

Zlk{RL( 2-4kU +4K? - 12)+ A(U- L) - 2(u2 LZ)}

Tk ~R(U-K

(v —L){(RL—C)(U+ L)+A}
2
At y=L+Kk,

E[P(¥]= ik{A(U L)+ ( - U%)+ R;[uz—(uzk)z}}

1 C 2 2 2 2 2
:E{A(U—L)—E(U —L)+&2(U — L2 - 4kL- 4k )}

_ (uz—i(l_){(Rd —C)Z(u+ L) +A}

-R (L+ K

Case 2(d): Aw=L+k,
E[P(X)]= {A(U )- (Uz £)- Ré[(LJer)z_UZJ}
2lk{A(U L) (;(UZ_L2)_i2(|_2+4k|_+4k2_u2)}

_ (Uz—kL){(RJ —C)Z(u+ L) +A}

= -R (L+K
At y=U +Kk,

[P()]= o |- (ur2) - =g (U g <o
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Case2(e): Aw=U+k, E[P(X)]=-R (U+ K<0

So, i, =L +Kk if

(U—L)[(RJ—C)(U+ L)+A}—RJ(L+ k)>(U2;L){(R—Q(U+ ), A}_ R(U-

2k 2 2
Otherwise,x, =U -K.

Simplifying,

(u—q{(&—c)z(wL)+A}_%(L+k)>(u2; ){(a— 2(U+0+A}Fg(u_%

2k

Therefore, the optimum value @f when X >U - Lis:

,uO:L+kifF{,[(U24—;L2)—(L+k)}> F{[%—(U— k)} (20)
with E,[P(X)]= (UZLL){(RJ _C)Z(LH Y, A}— R(L+HK (21)
and

U, =U -k if RJ[(U24;L2)—(L+ k)]s R[(U 24;L2)—(U— } (22)

with E,[P(X)]= (UZLL){(RL —c)2(u+ Y, A}- R(U- K (23)
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The following examples illustrate these conclusions

L) (o k)]

Example 6: 2k >U - L andR (UZ_LZ) L+ Kk R
xample 6: -L an ~— " —(L+k)|>

P 4k ( ) 4k
LetA=$40,C=$0.10,R = $0.40,Ry= $0.10k = 75, and_ = 100,U=200. In this case,

R, [#—( L+ k)} =-75>R {%—( u- k)] =-10.5, so based on

Equations (20 and 21), = L +k =175 with an expected net profit of $9.17. Various

values foru are presented in Figure 17 with the correspondipgcted net profit to

Uniform Distribution - Fixed Cost Profit Model
2k>U-L, R,=0.1<R =0.4
A=40, C=0.10, k=75, L=100, U=200

E[P(X)]

Value of Mu

show thatz, =L +k does, in fact, provide the maximum expected nefitpr

FIGURE 17. Example of Expected Net Profit for Difat Values ofz when2k > U— L,
Mu =L+Kk.
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Example 7: 2k >U - L andR, {%—(U k)]s R[T—(U— Iﬂ

LetA=$40,C=$0.10,R = $0.10,R,= $0.30k = 75, L = 100, andJ=200. In this

case,R, l%—( L+ k)} =-225< R [%—( u- @] =-2.E, so based on

Equations (22 and 23)y, =U —k =125 with an expected net profit of $14.67. Various

values foru are presented in Figure 18 with the correspondipgeted net profit to

Uniform Distribution - Fixed Cost Profit Model
2k>U-L, Ry=0.3>R =0.1
A=40, C=0.10, k=75, L=100, U=200

E[P(X)]
N,
o

Value of Mu

show thatz, =U —k does, in fact, provide the maximum expected nefitpr

FIGURE 18. Example of Expected Net Profit for Difat Values ojz when2k > U— L
and u, =U -Kk.
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To summarize, for fill level that follows a Unifordistribution when there is a linear
scrap cost, the optimum target set point for tlee@ss mean was obtained for the various
scenarios:
Case 12k<U-L
u, =L+KkK
Case2: R>U-L

o1

U, =L+kif &[%—(L+k)}> R[T—(U— lﬂ

U, =U -k if &[%—(u k)]s R[#—(u— k)}

3.3 Fixed scrap cost with capacity constraint

In practice, there may be some maximum capacity,,GAeh that if fill level
exceeds CAP, an additional (usually very high) eostcurred. This cost may be due to
spillage over the maximum capacity of the contaife@rexample, which results in clean

up, downtime, restarting the equipment, etc.

The additional cost results in a new net profitagon:

-R X< L

- L< X< mi A
p(x) = f\ Cx < x<min( U, CAR

R, U< x< CAP

—-Q x> CAP
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When the fill level is described by a Uniform distition, the calculation of)

as shown below is the same as that found in Se8tihd where Equation (7) is

U, =min(RJ +A,RL+A).
C C

If U,<CAP, 2k>U,-L,andL < u<U theexpected net profit can be calculated as

follows:
E[P(9]= ] -R () o f( Ak (ko[- RO o] - Q)
=2—1k[RL(/J— k- L)+ A(U- L)—C(LZ_LZ)+ R(U- CAB+ @ CAPu- X
CU
1 U(R“A‘T]* R (4= K- B(CApr ”

2 L(%—A—F{)+ Q( CAP-u- B

Since the second derivative with respeditis —% which is< 0, setting the

first derivative of Equation (24) with respectWoequal to zero will provide an optimum

value of the upper limitJ,:

1 R, +A
= A-CU)=0- U, =
ZK(RJ+ ) ° C

Which is the same as Equation (3).
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Differentiating Equation (24) with respectm%{ E[ P( x)}} :2—1k[ R-d

which results in no closed form solution. The imipan the optimum set point for the

mean, 4, , of a capacity constraint is to add to all of sleenarios in Section 3.1.2 the
condition that ifCAP- kis less than the optimum value calculated for sigahario, then
U, =CAP- k. Specifically, the target set point for the prexenean defined for the
various scenarios:
Case 1:2k <min(CAP- LU, - L) - i, = L+ k
Case 2: 2k = min(CAP- LU, - L)
R, <R - 4 =min( L+ k CAP- §
R, >R - 4, =min(U, - k CAP- §
R =R - #4,0[ U~ kmin( L+ k CAP- K]
When CAP< U_, the effect is thaCAP replacedJ  in equations for expected net profit

with the higher cosQ, replacingR, . An example follows:

Example 8: CAP< U, and 2k >CAP- L

LetA=%40,C=$%0.10,R =$%$6, R, =5, CAP=400,Q=$500,k = 175, and. =

: . +AR+A
100. In this casd), = mln(R’C ,RLC j: 450, soCAP< U,, 2k > CAP- L, and

R >R, soy, =min(L +k,CAP- K = min( 275,22%= 22. Various values fox
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are presented in Figure 19 with the correspondipgeted net profit to show that

U, =225, does in fact lead to the maximum expected nétt@p$12.

Uniform Distribution - Fixed Cost Profit Model with Capacity
2k >= CAP-L, CAP=400 < U,=450
A=40, C=.1, R, =6, Ry=5,k=175, L=100, CAP=400,Q=500

20

-20

-40

E[P(X)]

-60

-80

-100

-120

Value of Mu

FIGURE 19. Example of Expected Net Profit for Diéfat Values oz when CAP< U,
and2k > CAP- L.
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4.0 Relationship between canning problem and pross capability
The optimum target mean and upper screening lonitife canning problem is
determined to maximize expected net profit, andonefit is increased as the rejection

rate is decreased. The selectiongfto maximize expected net profit is consistent with

the goal of improving process capability. In tbigpter, the relationship between the
canning problem and process capability is explored.

The term “process capability” refers to the likelod that a process meets
customer requirements or specifications as meadyredratio of those requirements to
process variation. Before process capability caddtermined for a process, the process
must be shown (e.g. using a control chart) to aklstover time. This means that only
common causes of variation are present and thegsqrarameters can accurately be

estimated from empirical (or sample) data.

4.1 Relationship between process capability and ¢hselection ofU  :

There is no relationship between process capalilitythe selection df , since
U,depends only on the valuesAfR , R, , andC and not on process variation. There
is, however, a relationship between process capaaiid the selection of,, which is

presented in Section 4.2.
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4.2 Relationship between process capability and ¢fselection ofz, :
Specific measures of process capability incl@eC,, , C, , C,,,andC,,,. Each

measure will be defined and discussed in this@ees it relates to the canning problem.

4.2.1 Process Capability MeasureC,
C, is the most general capability index which compahe width of the

specifications to the spread of the distributioa. (ihe natural tolerance of the quality
characteristic, fill level.) It is generally calated as the ratio between the blueprBif)(

BT _ USL- LSL
NT UNL- LNL

and natural tolerancebIT) of the processC, = whereUSL = upper

specification limit,LSL =lower specification limitUNL = upper natural tolerance limit
of the distribution andNL = lower natural tolerance limit of the distributioithe
natural tolerance is defined as the middle 99.78%edistribution, so for a normal

distribution C, is calculated a€, = w‘ For a Uniform distribution,
o
USL- LSL _ USI- LSI

X 99865 ~ X.00135_ '997:x 2<) .

b-a_ 2k
NPT

C, = Since, for a Uniform distributiorg =

USL- LSL

2k = 20\/5 and thusC, =——M— .
i .9973( 27\/_3)

The typically used definition of capability is

that a process (that is in-control) is “potentialgpable” if the width of the natural

tolerance is smaller than the width of the speaiians. This corresponds @, >1.
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SinceC, is independent of the position afit is only an effective measure of

process capability if the target and the processmage both centered inside the
specification, which is not the case in the canmrablem. In cases where the mean is

not centered (as in the canning proble@), may be a better estimat€,, will be

addressed in Section 4.2.2
Clearly, for any distribution, as variance decreaeswidth of the natural

tolerances of the distribution decreases, anddhevofC,, increases. It has been shown
that in the canning problem, as variance decreas¢grofit increases. This means that
as process capability is improved (and the valu€pincreases), variability decreases,
and the mean can be set closelr,teo thatE, [ P( x)] increases.

With the canning problem, a lower specificationitirh, is defined by the
customer, but (in the case of the fixed cost modelyipper specification is given, €3
iS not an appropriate measure of process capalilifycan only be calculated when an

upper specification exists (as in the case ofitleal cost or capacity constrained

models), or wherC, is calculated using) ,as the upper specification limit. But even

when an upper specification limit is used, theeafgr the canning process is not the

center of the specifications. In cases of a odeesspecificationC,, is a better measure

and is discussed in the next section.
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4.2.2 Process Capability MeasureC,,
In the canning problem, only a lower specificati®given, so theC, index can
be calculated. For a process that can be appreedhvath a normal distribution,

(#-L) (u-L) _ (u-L)

H = Xoo135 ) -49865( 2<) .

Cpo = . In the case of the Uniform distributio@,, =

C,. 21 means thak 0.135% of the distribution of the specific qualityaracteristic is

expected to fall below the lower specification.
Since process capability is inversely related tcpss standard deviation, it

relates directly to the canning problem. As tlendard deviation decrease€s,

increases, and the process mean can be moved wdseAs the mean is moved closer
to L, cost decreases and net profit increases.

When a process has an upper specificaii@yy,can be calculated in a similar
fashion. In the case of a process with both an uapeé lower specification limit,
Cp =min(C,,,Cpy ). Since the canning problem has only a lower $jgation, clearly

these measures of process capability do not apply.

4.2.3 Process Capability MeasureC,,,
Cec» Co, andC,, all assume the process target is centered insede t
specifications.C,,, is a measure of process capability that considievation from

target rather than the center of the specificatiddisice the canning problem has a target
not centered inside specification, it may be advetteasure of process capability. In the

special case of the canning problem, the targattisally the lower specification limit if
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there is no variation. Fill level belolwis rejected, while fill level above is accepted,
but net profit is highest when fill level is equalL. Given that fill level has variation,
the target is actually some value abayspecifically 7,. Oncey, is determined(C,,,

CP
2
L (u=T)

0.2

could be calculated as a measure of process capalsiowever,C,,, =

1

whereT = the target. So, to calcula®,, , one must first calculat€, which requires

both lower and upper specification limits.

4.3Summary of Relationship between Canning Problem an@rocess Capability
Any measure of process capability compares thegsmoeariation to
specifications or requirements. Higher levelsmicess capability result when process

variation decreases. In the canning problem,tf@ans that as process capability is

improved, variability decreases, and the mean easebcloser th, so thatE, [ P( x)]

increases.
At least one article has addressed the relatioristtyween process capability and
the canning problem. Kim, Cho, and Phillips (2088pw an economic model to

determine the optimum process mean while maintgiaispecificC, value when fill

level can be approximated by a Normal distributidimey assume that achieving a
smaller variance leads to an increase in manufagteosts that they incorporate into the

net profit model. They provide a case study amditigity analysis.
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5.0 Triangular distribution

Another finite distribution that can be a plausibiedel for a canning process is
the Triangular distribution. In this chapter, theangular distribution is studied to
determine an optimal set point for the mean ofpiteeluction operation. An optimum
upper limit is first calculated which provides aiteff” to maximize expected net profit
by minimizing “give-away” cost.

Again, the basic profit function of Liu and Raghekari (1997) article is used, so
that Triangular results can also be compared to'shehich pertained to continuous

distributions.

The Net Profit function:

-R, X< L
P(x) ={ A- Cx K X U
-R,, x=U

whereL = lower specification limit, below which the custer will not accept the

product. For example, if a jar is to be filled kv 0z. of an ingredient, anything less than
L=8 oz. is not allowedU = an upper limit|{ is either set by the producer as an upper
specification limit,USL, or determined as a value that minimizes giveageasy such that

any fill level abovdJ costs more in giveaway cost than would be receivédcome.
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R_ = the rejection cost per container when fill leigelless thar, R, = the rejection cost

per container when fill level is greater thdnA = revenue received for an acceptable

container, an = the production cost per unit of ingredieiX, R , R, , C, andL are

known and > 0.

A Triangular distribution has the following probbtyi density function:

_2(x-a) A< x<m
(b-a)(m-3g° )
X) = M m< x<
GG Sk
0, otherwise

wherem is the mode and graphically the distribution appéelow in Figure 20.

f(X)

IS

FIGURE 20. The triangular probability density ftioa with lower specificationl,., and

upper screening limit).
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With respect to the canning problem, there is & @8s) when the quantity falls
below the lower specificatiom, (L = a), and a costlg, ) when the fill level falls above

an arbitrary upper specificatiod, (U < b). Giveaway cost abouég is greater than the

cost of simply scrapping the uniR( .)

5.1 Symmetric Triangular underlying distribution

First, a symmetric Triangular distribution will b@alyzed using the fixed rework
cost model from the previous chapter. Then theachpf skewness will be examined.
Assuming a symmetric Triangular distribution, thielgability density function is given

below:

Xx—m+ k
— m-K< X< m
k
m+ k— X
f(x) = e ms< X< m+ k
0, otherwise

wherem is the modal point andkZepresents the spread of the distribution andritle

verified (in the Appendix) that the (x) =k€2. In this chapterm,, the optimum set point

for mis computed for the case where- k < L, m+k, >U,andL<m<U.
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5.1.1. Optimum upper screening limit

If there is no upper specification limit given, eptimum upper limit can be

calculated as in previous chapters. The equatipeXpected net profit for the

symmetrical triangular distribution is found below:

X m+k oA x- m+ K “
I b e e

lj(A—Cx)[erkk X}d+mjtk FS[ k )jdx:

m

—a[[ ] {[x— waw [_ me, kﬂi‘_

K2 A[[(m+k) ]] C{mxz I _ﬂ R[[n%@ f]

2 2 2

—%[L—(m—k)]2+A{—rﬁ+ nf .+ U+ K U I)—l( g+ f_)}—

K2 c{ms m_ L omE_ ki mU@ kU U i ﬂ&z[mk U]

B L-(m-k]- A{(m‘zL)z +(m‘2U)2 P L u)}

“ c[‘(m3+ L+U0°) 12

b (m-g z(w@]—%uw—qz
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Equation (25) assumes that the distribution is shahm- k< L andm+ k> U and

2
shows that the expected net profit is inverselypprbonal to thé\/(x) = %

Differentiating Equation (25) with respectlh results in the following:
0 _1 2 _
SGELP(I]=Z{ A(m+ B-U- ey m k+ co+ J( m e P=

Z{(A+R)(me [ A4 B+ ¢ m | U cg

To determine the optimum value df U, the first derivative with respect this set

m+ K
equal to zero. (This will be an optimum value tbif U < A+ R +( ) =U,.)

2C 2
a%{E[P(x)]}=O:

CU/-[A+R +(m B] Y+( A4 R)( m J=0

Let =] A+R + C( m+ §] andc, =(A+R)(m+ K, then,cu. -qU, + ¢, =0, which means

2_
thaty, =35VG 4C6

2C

o, [ R) e cme e [( 4 B)+ € m R -0 € & B m)k

° 2C
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[(A+R)+C(m+ B+ (& R -2 ¢ & B( m e[ € m)F

2C
[(A+R))+C(m+ @]i\/[( A R)- ¢ m )<]2 _
2C
[(A*R)+C(mr B£[( A4 B)- ¢ m )
2C

[(A+R)+C(m BI+[( A B)- ¢ m K _

2C

Case 1:

2[A+RJ]:>U _A+R, (26)
2C °C

This is consistent with the value found fdgin previous sections.

[(A+R)+ O(m+ B]-[( A B)-[ & m K]

2C

Case 2: =m+ k which is not <U

(since kx>U-1L.)

So, the optimum value fdd is given in Equation (26).
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5.1.2 Optimum target set point form
The objective is to maximize the expected net prdince the profit function is

defined as:

-R, X< L
P(X)=4 A- Cx < x< Y
R, x= U,

whereL is the customer driven lower specification linst@efined in previous chapters
andU, is the optimum upper screening limit given in Eipa (26.)

As in the case of the Uniform distribution, sinbe friangular distribution is
finite, various cases must be considered. Heeeotity cases considered are those where
L<m<U. (Inthe case of the symmetric Triangular disttitn, k, =k, = k.)

Case 1:

f(X)

m-k L m m+-k U

FIGURE 21. The triangular probability density ftioa with lower specificationl,., and
upper screening limit) whenm-k < LandL<m+k, < U.
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Case 2:

f(X)

IS

FIGURE 22. The triangular probability density ftioa with lower specificationl., and
upper screening limit) whenm-k < Landm+k, > U.

Case 3:

f(X)

L m-k m U mzk

FIGURE 23. The triangular probability density ftioa with lower specificationl,., and
upper screening limit) whenL<m-k < U andm+k, > U.

Due to the complexity of the distribution, the oolse considered in this work is Case 2,

Figure 22, wherL<m<U, m-k < L,andm+k,>U.
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To determine the optimum value mfto maximize the average net profit, the first
derivative of Equation (25) with respectrtois calculated below:
; R[L-(m-K]- A2m( 1+ Y)]+

1
%E P(X)]= k2 C(mz_%(l_z+U02)j_ R[(m R- U] @0

If the second derivative with respectas less than zero, then Equation (27) can be set

to zero to solve for the value ofthat maximizes the expected net profit:

62
om?

E[P(¥]= k—lz[-RL -2A+2Cm- R

R+R +2A (28)

The above second derivative is less than zeroibnty< 2

Setting Equation (27) equal to zero results in adgatic equation:

| RI (9] A2 1 0)]+ ¢ a3 0))- B(m e g]=0=

cri-(R+R+2 A m R k) bt Yo { b 5[ e g0

Let c¢=R+R+2A
and ¢, =R (L+K+ A L U)+ R(U- §-S( ).

then, Cm’-¢m+ ¢=0
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Thus, the optimum set point faris given by,

c, /¢’ —4Cg,

2C

rnO:

(R+R+2A°-
(R+R +24z Aa(u 9+ A Lru)+ R(4-§- CELzuzﬂ

2C

rnO:

In the case wher® =R = R,

2(R+A)1J(2R+z/y_4{g U+ £ b y)- {;Uzﬂ

2C

rnOZ

\/(R,, A)Z_c{(m Al 1+ Y)- "22+U§2ﬂ

= +
- c?

C

_R+A, (R+ A)Z_(R+ AL U,) (L2+U? (29)
¢ (L c C 2

2
This requires[RJr Aj J(R+A(L+Y,) _[Lz +U02]
C C 2
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c* (L +u,?)

(R+ A > O Re A 15 )=~

c(r+uy?)

(R+ A*>Cl(R+ A( L+ Y)- ;

In the case wher& = R, = R, the expected net profit Equation (25), can bephfrad

as follows:

e[P()] -

& ‘5{[L3'(m_k)}2+[(m+ §-uT}- {3““;@ £ Y-y g v Y- (30)
k c{_m?J’LG(LerUoz)Jrg(U"Z_LZ)_[U_;Jr_;H

There are two possible valuesmfrom Equation (29),

Case 1 ml:R+A+J[ R AT_(R“\)(L* Uo){LZ*Uozj

C C C 2

oz 232 [ AR

To determine which value off maximizes net profit, substitute each valuenohto

Equation (28) which is the requirement for maximgnet profit.
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WhenR =R =R,

+
m<w: m< R A

Clearly, this is only true for Case 2, so the optimvalue ofm must be:

_ o _R+tA_[[Re A _(RTtA(L+UY,) (L2+U;
mEMmTTe \/( cj C ( 2 ] D)

The optimumE[P( x)] Is obtained by inserting), from Equation (31) into Equation

(25.)

Example 11.

An example similar to that used in the previougptbafollows. Assume thalt =
the lower specification for fill levelL=100.)  If an upper specification limiy)SL, is
given for fill level, letU=USL (USL=200) The revenue if fill level is betwednandU
is A=$20. Cis the unit cost to produce a@d= $0.10. The scrap / reprocessing cost if
fill level is less tharl or greater thak) is R= $6. The spread of the distribution is
characterized bl such that the process limits ane- kandm + kand in this examplex

=100.
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TABLE 6. Example of expected net profit calculasdor symmetric triangular

distribution with 2k >U - L with a fixed value ofJ.

A
20

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

C
0.1

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

R

D OO O O O O O O O OO O O O O O 0O O O O O 0O O 0O O O o o o o O

k
100

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

76

U
200

200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

L

m

100 139.1695

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
230
240
250
260
270
280
290
300
310

E[P()]
2.387498

-5.92167
-5.69333
-5.325
-4.82667
-4.20833
-3.48
-2.65167
-1.73333
-0.735
0.333333
1.276667
1.92
2.283333
2.386667
2.25
1.893333
1.336667
0.6
-0.29667
-1.33333
-2.355
-3.95833
-4.56
-5.04167
-5.41333
-5.685
-5.86667
-5.96833
-6

-6



According to Equation (29), the optimum set poortthe mean isn = 139.17 At that
point, the expected net profit$2.39.

A graph of expected net profit for the various eswfmis shown in Figure 24.
With U set at 200, there is a decrease in net profti@slistribution approaches that
point. Clearly, profit would be higherd was set higher. In the next example, an

optimum value otJ, U, is determined.

Expected Net Profit
Symmetric Triangular Distribution

E[P(x)]
< o
159 |
20 -
By -
80
110 -
140 -
170
200
30 -
60 -
290 -
320

Value of m

FIGURE 24. Expected net profit model for symmetriangular distribution with
2k >U - L and a fixed value dfl.

Example 12.
Now the information from Example 11 is presentad,using the optimum upper

screening limitU , instead of a given upper limit,

y _A*R _ |, _20+6

. . =260
C 10
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TABLE 7. Expected net profit calculations for ayw@tric triangular distribution with

2k >U - L with a calculated value &f.

A
20

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

C
0.1

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

R

SRR e N A L 2 B <2 B 22 2 B = B D B = e )R e ) M o B <) B o) M« B e ) M« ) R o) M o B « ) W o ) M« ) B ) M @ M o ) M @ ) R o) M o ) B o))

k
100

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

78

260

260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260

L

m

100 146.8629

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

E[P()]
2.80481

-6
-5.92167
-5.69333

-5.325
-4.82667
-4.20833

-3.48
-2.65167
-1.73333
-0.735
0.333333
1.305
2.026667
2.508333
2.76
2.791667
2.613333
2.236667
1.68
0.963333
0.106667
-0.79167
-1.64
-2.42833
-3.14667

-3.785
-4.33333

-4.785
-5.14667
-5.42833

-5.64



TABLE 7 (continued). Expected net profit caldidas for symmetric triangular

distribution with 2k >U - L with a calculated value &f.

20 0.1 6 100 260 100 310 -5.79167
20 0.1 6 100 260 100 320 -5.89333
20 0.1 6 100 260 100 330 -5.955
20 0.1 6 100 260 100 340 -5.98667
20 0.1 6 100 260 100 350 -5.99833
20 0.1 6 100 260 100 360 -6
20 0.1 6 100 260 100 370 -6
20 0.1 6 100 260 100 380 -6
20 0.1 6 100 260 100 390 -6
20 0.1 6 100 260 100 400 -6

And, graphically, the expected net profit for vaisoralues om (when an optimum value

of U, U, is determined) is shown in Figure 25.

Expected Net Profit
Symmetric Triangular distribution

E[P(X)]

Value of m

FIGURE 25. Expected net profit model for symmetriangular distribution with

2k >U - L and a calculated value fo.
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The optimum set point fanis m =146.86. At that point, the expected net profit
is $2.80 which is higher than it was in the pregiexample wheb) was set lower (at
200) thanU, .

In general, the value &f should be set as the minimum of an upper spetiitca

limit or the optimum value of), U,. U =min(USL, U,)

5.2 Skewed Triangular underlying distribution
In the case of a skewed triangular distributiom, [twer limit of the distribution,

a, is set equal tan— k and the upper limit of the distributiob, is set equal tan+ k,

such that the probability density function is:

2(x-m+ k) ke ve

(k+k) mokExsm
f(X): M m< x< rn+l§

ko (ki + k)

0, otherwise
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The expected net profit is given by:

E[P(X)]= nja_RL {%} dx+]j( A-C [w} dx
o2 T2

(32)

Note that when the distribution is symmetridak k; = k, and Equation (32) reduces to

Equation (25). Further, thE[ P(x) ] is inversely proportional to the spread of the

distribution, k; +k, .
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5.2.1 Optimum upper screening limit
In order to determine the optimum valuelfthe first derivative of the Equation

(32) with respect tdJ is calculated below:

aiUE P(x)]zﬁ{/{(m—uﬁ K+ U-Um K- B v( m 4] (33)

The second derivative with respectias less than zero (hence expected net profitas at

maximum) only if

U<A+RJ+C(m+I§):A+F{J+(n+ K)

(34)
2C 2C 2

Setting Equation (33) equal to zero to solve ferthlue olU, U, that maximizes

expected net profit results in the following:

2 2 |A+R +C[ m+ m =
lergleu LA R+ olme ] ur( A B)( m A} =0

CU-[A+R +C(m k)| Ur( A R)( m §=0
Letc,=[ A+ R + C( m+ k)| andc, =(A+ R )( m+ k), thencu?-cU, +¢ =0,

which means that

U = SEVG —4CG

? 2C

L [ArRc(me ][ & B ¢ m AT -4 B A B MK
° C

2
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[A+R +C(m+ K)]x( A+ BF+2 € A B( m e[ €m K -4 (CAK +m)k
2C

[A+R +C(mr k)] (A B -2 € A B( m kr € m K _

2C

[A+R+C(me g)]=\[( & B)- & m 4 _

2C

(AR, + (s K)]=[( & B)- ¢ m ]
2C

Case 1:

u (AR O )]+ [(& B)- ¢ m A]_2(A+R)_A+R
' 2C 2C [

Which is consistent with previous results.

Case 2:

Uzz[A+RJ+C(m+ ))-[( A §)- €m B]_2c(m+k)

2C 2C &

However, Equation (34) requires that setting Eque{B83) equal to zero will lead to an

optimum value ofJ iff U <

AtR  (MHK) 5oy =A*R i
2 c

A+R, _ A+R (m+k) AR

<m+k,. Thereforem+ k, cannot be the optimum
C 2C 2

value forU , and thus
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c (35)

5.2.2 Optimum target set point form

Similarly, the optimum value ah, m,, can be found by setting the first

derivative of Equation (32) with respectrtoequal to zero:

_ 2 Ly _
, —%[Hm—ko] —/{—( 5 Lok 1- n)]
kl(kl+k2) _C{ms_l_3+(|_2_m2)(m_ )] +
0 3 2
om A{(m_u°)2+k2(m—u)}{ms_uos+(u°2_mz)(m+ K)}
2 ° 3 2
(k) 2
_ Uy~ (m k)] |

2

kl(kﬁkz){Fi[L—(m— 0] - A(m K- - {“‘Zmﬂ m%}
R L e

(36)

Note that in the case of the skewed triangularidigtion, mis not equal toE(x) =u
(See Appendix D for the first four moments.)

The second derivative with respecintos negative if

R
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S (REAK+H(AR) k (37)
C(k +k)

(Note that wherk =k =k, andR = R, = R, Equation (37) simplifies to

R+ A
m<

=U, as before.)

Setting Equation (36) equal to zero and solvingnprresults in

{R[L-(m 0] A g - {Lz;mﬁ e

At

7\_||—\ .?\_lH

%[%+%Jm2+{_kli(—a— A- cg)+_k12(— A Ck- LIR)} m
1

2R (L) AL )= [o L Au-g-SU g u- 9o

St 552 8 A

Ll (R +Alu-k)- S5 -0

s 35242 5 K (R = AL )
2k k, kK,
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C(k12+k2)m2-[k2(3+ A+ k(BR+ A m ){( R+ 1)(_%_2}

o (R + A(u- k)-S5 <o

Letc, =—2 27 (kl kZ) G=k(R+A+Kk(R+ A and

6 =k| (R* AL K-S |+ H (B N u- 9-S0 | thenemi-ams c=0
which means that

_GEyG —4cG

= %

F{+A)+I5 R+ A_
C(k +k)

m, =

k(R +A+k B+,ﬂ 2@ k+ K

C(k+k)

Given the requirement from Equation (37) that< (R+ A(‘Z/(kzk:(k/:; B) ll(, it follows
+

that
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_k(R+A+k(R+ A_

m,

C(k +k)
[ (R+ A+ k(R+ A - >
2c(ki+k2){k{(|%+ Al 1+ |§)—C2L21|+ &{( R+ N Y- Q—Cl;oz}}

C(k+k)
Which reduces to Equation (31) whgn=k, andR = R,.

Example 13.
For example, wheA=20,C=.1, R =5, R, =6, k; =20, k, =180, and-=100,U =260

andm, =107.47 from Equation (38).

It can be shown (in the Appendix), that the meaa skewed triangular distribution is

MU= E[ X] = m+%, so the optimum value of the mean is given below:

K~k
3

Hy=m, + (39)

5.2.3 Sensitivity analysis of skewness

Note that the triangular distribution is negativekewed wherk; > k, and

positively skewed whek, > k. Variations of Example 13 are presented below to

illustrate the impact of skewness on the calcufatibm, .
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Example 14.

WhenA=20,C=0.10, R =5, R, =6, andL=100,U =260, values ofn, are shown in

Table 8 for various levels of skewness and the eegenet profit is calculated by

substitutingm, for the value of m in Equation (32):

TABLE 8. m, and the expected net profit for various levelsla#wness

K, k, m | E[P(X]
20 180 107.47 3.334
80 120 136.06 2.953

100, 100 144.43 2.948
120 80 156.32 2.781
180 20 208.00 1.755

As illustrated in this example, as the distributimctomes negatively skewed, the
optimum set point must be higher. In the cannirgpfem, where only a lower
specification is given, a positively skewed digitibn allows for a lower optimum set

point and a higher expected net profit.

5.3 Process capability with underlying Triangulardistribution

As presented in Chapter 4, a process is gener@dlynéd capable €, 21.0

which means, if the process is centered insidspleeifications, then the middle 99.73%
of the distribution will fall inside the specifigan limits. For a normal distribution, this

translates taC, = BT/ NT= BT/60 . However, for a Triangular distribution, the lisi

defined by £ 30 do not define the middle 99.73% of the distributidn fact, the limits
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defined by + 30 actually fall outside the complete range of thariution defined by

(m=k, m+ k):

/'IiBU:m+k2_kli k12+lﬁk2+ k22
3 \ 2

2 2
Thus, the 6-sigma spread for a triangular distidvuis given by2, f% . Asa

result, as is the case with the Uniform distribatithe 6-sigma spread

\/2(kf +lok, + k) =\/( k+ k) +( K+ K)> k+ kso that the 99.73% natural
tolerances of the Triangular distribution must béamed fromXggeqs - Xo135-

It can be shown that the cdf of any Triangulatrihstion is given by

0, Xx<m-k
(x=m+ k)" _
o Klerk) T TTREET
(%)= ,
1—M, ms< x< m+ k
(k+k) K
1, Xzm+k

Let x, be the B quantile (or fractile) ok, then upon inverting the above cdf, the

following percentile function is obtained:
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The C, index by definition isC, = Ust- LSt , Where the middle 99.73% of the

Xo0865 ~ X 00135

spread of the distribution is given by

Xg0g65 ~ X 00135~ \/ k+k {\/ ks ki 0'03674(\/?2"' \/—kﬂ
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6.0 Conclusion

The work presented in this dissertation extendptbeious research on the canning
problem (which focused on infinite range distrilba, specifically the normal
distribution, for fill level) to finite distributios. Three finite distributions were
analyzed: Uniform, Symmetric Triangular, and Skewedngular. In each case, an
optimum set point for the mean fill level was datered to maximize expected net
profit. When appropriate, an upper screening lfoniffill level was also determined.

In the case of the Uniform distribution, three pedfit models were studied: fixed
rework/reprocessing costs, linear rework/reproogssosts, and capacity constrained.
Few closed form solutions were obtained by diffésgion for determining an optimum
set point for the mean to maximize the expectegratt. However, the optimum set
point was determined to maximize expected net pbyfevaluating expected net profits

at the extreme points for each rangeuaf

6.1 Summary of Results

For fill level that follows a Uniform distributiowhen there is a constant scrap
cost, the optimum value for the upper screening kivas determined to be

U,=min(U_U,)= min(RLJr A,RJ i A]
C C
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The optimum target set point for the process meas obtained for the various scenarios:
Casel: RsU_ -L - gy, =L+k
Case 2: R>U - L:
If Ry, <R -y, =L+k
fR >R - 4, =U -k
If R, =R - #,0[U~-k L+ {
For fill level that follows a Uniform distributiowhen there is a linear scrap cost,
the optimum target set point for the process meas abtained for the various scenarios:
Case 1:R<U-L
H, =L+Kk

Case 22k >U -L

U, =L+k if F{,[%—(L+k)}> F{[@—(U— k)}

4k

4k

U, =U -k if &[%—(L+ k)]s R[w_(u_ k)}

The target set point for the process meap,of a profit model with a capacity

constraint was defined for the various scenarios:
Case 1:2k <min(CAP- LU, - L) - i, = L+ k
Case 2: 2k = min(CAP- LU, - L)
R, <R - # =min( L+ k CAP- §

R, >R - 4, =min(U, - k CAP- §
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R =R - 4,0 U~ kmin( L+ k CAP- K]
For both the symmetric and skewed Triangularithstions, a net profit model
with fixed rework/reprocessing costs was assunfgsuming that. <m< U,

m-k < L,andm+ k, > U, the optimum set point fan was determined to be:

k(R+A+k(R+ A
C(k+k)
(R + A+ k(R AT-
2 k) (R A 9= e f(Re K - 925
C(k+k)

rnO:

2 2 2
which reduces ten, = R(’; A_\/( RZ: Aj _(R+ A)((:LJr u,) +(L +2Uo J whenk, =k, and

R=R.
Throughout the research, examples were providegperafs, where necessary,

were outlined.

6.2 Practical Applications

This research shows that when fill level is notmalty distributed, the optimum set
points for a canning problem can still be deterririehe distribution can be modeled,
even if the distribution range is not infinite. dhleast one case (steel thickness), the
Uniform distribution has semmed to be an approptiit However, in most cases,
practical application of this work may be somewlimaited, since fill level is best
estimated by an infinite range distribution thabaginded rather than an actual finite

distribution.
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6.3 Recommendations for Future Work
Given the similarities between the Uniform distition, symmetric Triangular

distribution, and the Normal distribution (symmetrcontinuous within the range, and
mean centered,) it may be interesting to comparedbults presented here with results
when a Normal distribution is incorrectly assumedfill level which is best modeled by
a Uniform distribution.. Fill level data generatiedm a Uniform distribution could be
used to calculate the optimum upper screening lma the optimum mean using the
formulas presented here. Those results couldikerompared with results from the
formulas from research using the same net profdehdut assuming a Normal
distribution of fill level. It would be interestinto see how the results differ in terms of
magnitude ofy, and in terms of expected net profit.

Another extension of this work would be to extehe &nalysis of the Triangular
distribution to the other cases presented in Fgy@deand 23. and to more thoroughly

complete a sensitivity analysis of skewness udiegarmula for skewness in Appendix

D.
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Appendix A: Formulas for Excel spreadsheet focehating expected net profit for

various levels ofy with a Uniform distribution and fixed scrap cost.

H2=IF(2*E2<=F2-G2,G2+E2,IF(C2>D2,G2+E2,F2-E2))

12==IF(H2<=G2-E2,-C2,IF(AND(H2<G2+E2,H2>=G2-E2),LB(AND(H2<F2-
E2,H2>=G2+E2),M2,IF(AND(H2>=F2-E2,H2<F2+E2),N2,-DR)

J2==IF(H2<=G2-E2,-C2,IF(AND(H2<F2-E2,H2>=G2-

E2),L2,IF(AND(H2<G2+E2,H2>=F2-E2),02,IF(AND(H2>=GE2, H2<F2+E2),N2, -
D2))))

K2==IF(2*E2<=F2-G2,12,J2)
L2=(1/(2*E2))*(C2*(H2-E2)+A2*(H2+E2)-(C2+A2)*G2-(BR)*((H2+E2)"2-G22))
M2=A2-B2*H2
N2==(1/(2*E2))*((A2+D2)*(F2-H2)+E2*(A2-D2)-(B2/2)*E2"2-(H2-E2)"2))

02 =(1/(2*E2))*(C2*(H2-E2-G2)+A2*(F2-G2)-(B2/2)*(FR2-G22)-D2*(H2+E2-F2))

A B C D E F G H
A C RL RU k U L MU
40 0.1 5 6 50 450 100 100
| J K L M N O
<U-L >U-L

Case Case E[P(X)]
11.25 11.25 11.25 11.25 30 78  59.25
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Appendix B: Formulas for Excel spreadsheet focaalting expected net profit for

various levels ofy with a Uniform distribution and linear scrap cost.

H2 =IF(2*E2<=F2-G2,G2+E2,IF(D2*((F2"2-G2/2)/(4*E 2B 2+E2))>C2*((F2"2-
G2/2)/(4*E2)-(F2-E2)),G2+E2,F2-E2))

12 =IF(H2<=G2-E2,-C2*H2,IF(AND(H2<G2+E2,H2>=G2-ERR, IF(AND(H2<F2-
E2,H2>=G2+E2),M2,IF(AND(H2>=F2-E2,H2<F2+E2),N2,-022))))

J2 =IF(H2<=G2-E2,-C2*H2,IF(AND(H2<F2-E2,H2>=G2-
E2),L2,IF(AND(H2<G2+E2,H2>=F2-E2),02,IF(AND(H2>=GE®,H2<F2+E2),N2,-
D2*H2))))

K2 =IF(2*E2<=F2-G2,12,J2)

L2 =(1/(2*E2))*(-C2/25(G2/2-(H2-E2)"2)+A2*(H2+E2-GR(B2/2)*((H2+E2)"2-
G22))

M2 =A2-B2*H2

N2 =(1/(2*E2))*((A2*(F2-(H2-E2))-(B2/2)*(F2"2-(H2-B)"2)-(D2/2)*((H2+E2)2-
F212)))

02 =(1/(2*E2))*((C2/2)*((H2-E2)"2-G2/2)+A2*(F2-G2[B2/2)*(F2"2-
G272)+(D2/2)*(F2"2-(H2+E2)"2))

A B C D E F G H
A C RL RU k U L MU
40 0.1 0.2 0.05 50 800 200 250
I J K L M N O
<U-L >U-L
Case Case E[P(X)]
15 15 15 15 15 77.5 77.5
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Appendix C: Formulas for Excel spreadsheet foculating expected net profit for

various levels of m with a symmetric Triangulartdizution.

12=IF(H2<=G2-E2,-C2,IF(AND(H2<=G2+E2,H2<=F2-E2,H23G
E2),L2,IF(AND(H2<=G2+E2,H2>F2-E2),M2,IF(AND(H2>F2-
E2,H2>G2+E2,H2<F2+E2),02,-C2))))

L2= =IF(H2>G2,(1/(E22))*(-(C2+A2)/2*(G2-H2+E2)"2-B (-
H2/3/3+(H2+E2)"3/6+G2/2/2*(H2-E2)-G2/3/3))+A2, (LZE2))*((A2+C2)/2*(H2+E2-
G2)"2-B2*((H2+E2)"3/6-G2"2/2*(H2+E2)+G2/3/3))-C2)

M2= =(1/E2/2)*(-C2/2*(G2-H2+E2)"2-A2*(H2/2-H2*(G2+B)-E2*(F2-
G2)+0.5%(F2/2+G2/2))-B2*(-H2/3/3+H2/2%(G2/2+F2/2) PR+ (F2/2-G2/2)-
(F273/3+G213/3))-C2/2*(H2+E2-F2)"2)

N2= =A2-B2/(E2/2)*(-H2/3/3+(H2-E2)"3/6+(H2+E2)"3/6)
02= =IF(H2<F2,A2+(1/IE2/2)*(-(A2+C2)/2*(H2+E2-F2)"B2*(-H2/3/3+(H2-

E2)A3/6+F2/2*(H2+E2)/2-F2/3/3)),(1/E2/2)*((A2+C2ME2-H2+E2)"2-B2*(F2/3/3-
(H2-E2)*F212/2+(H2-E2)"3/6))-C2)

A B C D E F G H
A C R k U L m

20 0.1 6 100 260 100 146.8629
I J K L M N O

E[P(X)]
2.80481 2.8048099822.8010315.313708 5.30993
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Appendix D: Derivation of the first four momentstbe skewed Triangular distribution

First Moment:

LR L EES A (E O R

1| m-nf-3k*mr 3k i+ Jg+(—m3)+mzl§+ m+3 K m3 k- R .
2 |k 3 2

1

k2

[m3+3kzmz+3I52mr K- m- km M3 k3 ,km,k T
2 3

__2 Ji1ikm K 1 k'm K
k+k |kl 2 6] k|l 2 6

.1 [(k1+k2) m-(kf;kzz)]

k +k

— k,— K
E[X]=m+ 3
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Second Moment:

K

=[x s =l

2 mo( o k—k )
—kl(k1+k2)jm—k1(x m-—t—= j(x m+ k) dx

mj‘:%(x—m—%J (m+ k- 3 dx

V(X)=p,= (40)

In the first integral on the right hand side of Btan (40), lety = x— m+ k and
in the second integral, lgt=m+ k, - x, -y =Xx-m-k so that\/(x) in Equation (40)

beomes
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4 9 18
2 [2k?
9

et T B

k' Kk’ _4,3.2k, 2 2k >
kﬁj”ﬁ& 9k2+ gkz gkz}

2 [£+kl_k22+£+ kZK—Z}: 1 )[k13+k23+2k1k22+2k12kz]

k+k,|36 18 36 18 18k + k,
_(k+ ko) (K + K+ kk)

18(k, +k,)

_k’+k+kk,

18
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Third Moment:

2
Skewness:a, = f/J—33 =i§
K O

ﬁﬂ:&(X—m_ kz;kljs(x— m+ k) dx

2 e k,—k\’
—kz(k1+k2)jm kz(x—m— 3klj(m+|§—>)dx

Hy =

In the first integral on the right hand side, get x— m+ K and in the second

integral, sety=m+ k - x,so-y=x-m-k - —dy= dx- dx- d

2 2k kY 2 (2 L kY
" kl(kﬁkg)jo(y 2 3) ydy+kz(|5+|5)jkz(3 y+ 3j( ydy

Let cm:%(Zkﬁ k,) andc, = (2k +k), then

2
k(K + k)

ke
e (e y ya

K 3 2
— d +

#(ﬁ_%‘ﬁ ras kl]

|kl s
2 a5k
_kz(kl+kz)(°1 TSy ey 5]_
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=—klfki£-3cmkl *Co k= cl3ki+clfk2 Gy ks + 3011"2 k;J

=klfkikl ;kz +2(ak - 6ok) + 67 K- o7 ki ol &}

oK A () ke —(2k k) K3 (2K K K-(206e B K]+

)
el (oK r k) (2K k) K]
2 ') kg) # 3 (2t rleke?- 2K - koK) 2( 4K+ 4K k- 4K 4k k) +
o 5—14(8k2 #1207+ 67K+ K k- 8K'= 12K k- 6 K= Kk §)

2k14_2k2“+k4+k1k23_k14_|<ZK3+8K4+8K3‘$_
_ 1 15 5 2 2 2 9 9
k+lk | 8k' _8kk' | 8k' 11k’ 8k' 11Kk

9 9 27 21 271 27

e i e (e (5

NI

—hey]

1 (kz“-kfﬂrkikf-kszj: 1 (2k;‘—2k;‘+5klkf—5&3kzj
5 2 27(k, +k,) 10
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_ 2k -k?) 3Kk - Kk (k- k)
270 270

(2K, +2K? + Bk k,)

(k,—k)(2k? +2k? + 5k k) /270
|:(k22 + klkg+ kiz)/18]15

_H _
a,==%=
o

(V18] (k- ) (25 + 26 + 5K k)
270 (k22 + kK, + klz)l.s

(Vi8/3)" (k, - k) (2K? + 2Kk + 5k k)
100 (kP kot k)

(V2] (kK (2K 2k + 5Kk)
(V2)(s)  (k+hkkr i)

_ V2 (k,—k)(2k + 2k’ + 5k k)
5 (ki)

(41)

Equation (41) clearly shows that the triangulatribstion is positively skewed iff

k, > k.
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If k,>k, thenk =rk,, whereO<r <landr = % . Substituting fork, = rk,
2

in Equaion (41) results in

(k, = rk,)(2k;? +2r°k,> + 5rk,?)

a, =+0.08 —
(k22 + rk22 + r2k22)

(1-r)(2+2°+5)
(1+r+r2)l.5

=+/0.08

Taking the first derivative of skewness,

%a/ﬁ%[( 2+ 3- 82— 2°)( #r +r 2)‘”’}
:m[(} 6-82)(r+r?) - Lfarw?) (2r( 2r3rd-r 2)}
:M(lﬂ +r2)_2'5[(3— 6 - 62)( o4 2)— 1.6 1 rz)( 2r3r 8-r 2)]

=/0.08( 1+ +r2)*°(- 136 - 1315)
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=—y/14. 58& < (for allr within O<r <1. Hence, the maximum af, occurs
1+r +r?

atr = 0 and all triangular distributions have skewnessi@galin the interval

-J0.32< a, < J0.3Z. Further, all right-triangular distributions hake=0 andr =0
so thata, = -J/0.32, and all left-triangular distributions have=1, so thata, = J0.32.
Whenk =k, =0, a,=0.

Similarly, it can be shown that the kurtosis oftelngular distributions is given

4
by B,=a,-3= EHX_”] }—3= 2.4 3= - 0.6(.
g

So, to summarize, for the Triangular distribution

— kK, —k
E[X]=m+ 3

vIx] KTk

a0, = Jogae k)2 2+ Sk
(k? + Kk + K?)

and B,=a,-3=-0.6C
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Note that for a symmetric Triangular distributidime above equations simplify to

2
E[X]=m, v[x]:%, a,=0,and B, =a,-3=-0.6C.
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