
Resolution and Boundary Placement Effects on
Discontinuous Galerkin Simulations of Counter-rotating

Vortex Interaction in a Confined Domain

by

Rachel J. Reitz

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 14, 2013

Keywords: discontinuous Galerkin method, computational fluid dynamics, two-dimensional
vortex interaction

Copyright 2013 by Rachel J. Reitz

Approved by

Andrew Shelton, Chair, Assistant Professor of Aerospace Engineering
Roy Hartfield, Woltosz Professor of Aerospace Engineering

Brian Thurow, Reed Associate Professor of Aerospace Engineering
George Flowers, Professor of Mechanical Engineering, Dean of Graduate School

Abstract

The wakes of fixed-wing and rotary-wing aircraft present some of the most complex

and challenging problems for numerical simulation, as fully capturing the interaction of

the various vortices and coherent structures requires immense computational power and

time. With current methods, the cost of performing such simulations is prohibitive or even

impossible, so it is thought that a more advanced and efficient algorithm is needed to make

such investigations feasible now, rather than waiting for computational power to increase

over time. One promising option that has the potential to provide such efficiency is the

discontinuous Galerkin method.

The discontinuous Galerkin method is a locally conservative, robust, flexible, and high-

order accurate numerical scheme. It is relatively new to applications in the field of com-

putational fluid dynamics, so its sensitivity to certain parameter changes is not thoroughly

documented. This work uses a test case of two-dimensional vortex interaction to catalogue

the effects of varying resolution through the use of polynomial degree and cell density. The

vortices are confined to a box with reflective boundaries, so the effect of moving the bound-

aries closer or further is also investigated while applying a new initialization to ensure an

initial condition that is consistent with the boundary conditions. Changes are noted by con-

sidering comparisons of vortex trajectory and kinetic energy error for each case. The results

present data for polynomials as high as 14th order and confirm that the method not only

works with large cell sizes, but actually excels.

ii

Acknowledgments

First, I would like to thank Auburn University for providing such a wonderful environ-

ment in which to complete my graduate work. I would also like to thank the Aerospace

department and my committee for their continued patience, guidance, and support during

the last three years. I owe a special thanks to Dr. Shelton, whose incredible depth of knowl-

edge is inspiring, for being both kind and patient enough to pass on some small part of that

knowledge to me. I hope I use it well and make you proud.

I also could not have successfully made the transition from physics to aerospace without

my fellow graduate students, who were always so willing to help when I was struggling and

provide conversation when I needed a break. You are the heart and soul of our department

and it’s been great getting to know all of you.

Finally, to my family, thank you for always being so proud and supportive of whatever

I set my sights on. These have been the most difficult but rewarding years so far, and I am

grateful for the encouragement and understanding from everyone. To Brian, thank you for

making my time here (and wherever else we may end up) so enjoyable. I truly couldn’t have

done it without you.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Towards a New Method . 4

1.3 Objective . 10

2 Formulation of the Method . 11

2.1 Choice of Numerical Flux Function . 14

2.1.1 Lax-Friedrichs Flux Function . 15

2.1.2 AUSM+-up Flux Function . 16

2.2 Basis Function Selection . 17

2.3 Putting it Together . 22

2.4 Implementation . 25

2.4.1 In Two Dimensions . 25

2.4.2 Advancing in Time . 27

3 Lagrangian Vortex Simulation . 29

3.1 Vortex Selection . 30

3.2 System Setup . 31

3.3 Boundary Conditions . 33

3.4 Van Wijngaarden Acceleration . 37

iv

3.5 Domain Size . 38

4 Modeling Counter-rotating Vortices with DG . 43

4.1 Problem Setup . 43

4.2 Selecting Parameters . 47

5 Results . 51

5.1 Degree . 53

5.2 Domain Size . 62

5.3 Cell Density . 75

5.4 Further Investigation . 88

5.4.1 Large domain size . 88

5.4.2 Coarsest Cell Density . 95

5.5 Computational Time . 103

6 Conclusions . 105

6.1 Future Work . 106

Bibliography . 107

A Lagrangian System Simulation . 109

v

List of Figures

2.1 The interface between two cells shown from above. 13

2.2 The interface between two cells shown from the side. 13

2.3 Outward facing normals on a standard [-1,1] cell 14

2.4 Legendre polynomials in P5 . 18

2.5 Lagrange polynomials in P5 . 19

2.6 The Gauss-Lobatto nodal locations ξ with their associated weights ω for a 4th

degree polynomial . 21

2.7 A sample 2D cell with Gauss-Lobatto points for a 4th degree polynomial 22

2.8 Boundary nodes. Red are used for Lx and blue are used for Ly 26

2.9 Sample 2D lifting matrices for a 4th degree polynomial 27

3.1 Induced velocity from vortex j on vortex i . 30

3.2 Comparison of velocity profiles . 32

3.3 4 vortex setup . 33

3.4 Diagram of vortices to be modeled . 33

3.5 Lagrangian simulation of unbounded vortex system 34

vi

3.6 Vortices effectively created by the reflective boundaries 36

3.7 Small domain . 39

3.8 Medium domain . 40

3.9 Small vs. Medium domain (compared to unbounded case) 41

3.10 Lagrangian solutions on bounded domains . 42

4.1 Diagram of vortices to be modeled . 43

4.2 Vortex ring setup . 44

4.3 Impact of vortex array on initial conditions . 45

4.4 Scale factor ramp during initialization . 46

4.5 Sample residuals during initialization . 47

4.6 Domain sizing. Cell size and cell count are representative only. 49

4.7 Cell count comparison for DG vs. FV to obtain same DOF 50

5.1 Trajectory error: Degree 3 vs. 9 vs. 14 (Small domain, Coarse grid) 54

5.2 KE error: Degree 3 vs. 9 vs. 14 (Small domain, Coarse grid) 55

5.3 Trajectory error: Degree 3 vs. 9 vs. 14 (Small domain, Fine grid) 56

5.4 KE error: Degree 3 vs. 9 vs. 14 (Small domain, Fine grid) 57

5.5 Trajectory error: Degree 3 vs. 9 vs. 14 (Medium domain, Coarse grid) 58

5.6 KE error: Degree 3 vs. 9 vs. 14 (Medium domain, Coarse grid) 59

vii

5.7 Trajectory error: Degree 3 vs. 9 vs. 14 (Medium domain, Fine grid) 60

5.8 KE error: Degree 3 vs. 9 vs. 14 (Medium domain, Fine grid) 61

5.9 Trajectory error: Small vs. Medium domain (Degree 3, Coarse grid) 63

5.10 KE error: Small vs. Medium domain (Degree 3, Coarse grid) 64

5.11 Trajectory error: Small vs. Medium domain (Degree 9, Coarse grid) 65

5.12 KE error: Small vs. Medium domain (Degree 9, Coarse grid) 66

5.13 Trajectory error: Small vs. Medium domain (Degree 14, Coarse grid) 67

5.14 KE error: Small vs. Medium domain (Degree 14, Coarse grid) 68

5.15 Trajectory error: Small vs. Medium domain (Degree 3, Fine grid) 69

5.16 KE error: Small vs. Medium domain (Degree 3, Fine grid) 70

5.17 Trajectory error: Small vs. Medium domain (Degree 9, Fine grid) 71

5.18 KE error: Small vs. Medium domain (Degree 9, Fine grid) 72

5.19 Trajectory error: Small vs. Medium domain (Degree 14, Fine grid) 73

5.20 KE error: Small vs. Medium domain (Degree 14, Fine grid) 74

5.21 Trajectory error: Coarse vs. Fine density (Small domain, Degree 3) 76

5.22 KE error: Coarse vs. Fine density (Small domain, Degree 3) 77

5.23 Trajectory error: Coarse vs. Fine density (Small domain, Degree 9) 78

5.24 KE error: Coarse vs. Fine density (Small domain, Degree 9) 79

viii

5.25 Trajectory error: Coarse vs. Fine density (Small domain, Degree 14) 80

5.26 KE error: Coarse vs. Fine density (Small domain, Degree 14) 81

5.27 Trajectory error: Coarse vs. Fine density (Medium domain, Degree 3) 82

5.28 KE error: Coarse vs. Fine density (Medium domain, Degree 3) 83

5.29 Trajectory error: Coarse vs. Fine density (Medium domain, Degree 9) 84

5.30 KE error: Coarse vs. Fine density (Medium domain, Degree 9) 85

5.31 Trajectory error: Coarse vs. Fine density (Medium domain, Degree 14) 86

5.32 KE error: Coarse vs. Fine density (Medium domain, Degree 14) 87

5.33 Lagrangian results for Large domain trajectory and trajectory error (compared

to unbounded case) . 90

5.34 Trajectory error: Small vs. Medium vs. Large domain (Degree 3, Coarse grid) . 91

5.35 KE error: Small vs. Medium vs. Large domain (Degree 3, Coarse grid) 92

5.36 Trajectory error: Small vs. Medium vs. Large domain (Degree 3, Fine grid) . . 93

5.37 KE error: Small vs. Medium vs. Large domain (Degree 3, Fine grid) 94

5.38 Trajectory error: Coarsest vs. Coarse vs. Fine density (Medium domain, Degree

9) . 98

5.39 KE error: Coarsest vs. Coarse vs. Fine density (Medium domain, Degree 9) . . 99

5.40 Trajectory error: Coarsest vs. Coarse vs. Fine density (Large domain, Degree 3) 100

5.41 KE error: Coarsest vs. Coarse vs. Fine density (Large domain, Degree 3) 101

ix

5.42 Trajectory for Coarsest density case (Degree 3, Large domain) compared to La-

grangian trajectory . 102

5.43 Effect of degree on computational time, normalized by time for degree 3 case . . 104

5.44 Effect of density on computational time, normalized by time for coarse density

case . 104

x

List of Tables

4.1 Grid sizes for test cases . 50

5.1 Expanded test cases . 95

5.2 Run time for 1000 steps (seconds) . 103

5.3 Run time for full case (hours) . 104

xi

Chapter 1

Introduction

1.1 Motivation

As more and more complex problems are requiring simulation, more efficient ways to

do so are being sought to bridge the gap between the computational power required and the

power that is actually available. While it is true that technology and computing capability

doubles approximately every two years, the size of problems and the capability they require

vastly exceeds that rate and the gap is only widening. Take, for instance, the flow field

behind a heavy transport aircraft in a landing configuration, or the self-interacting wake of

a rotorcraft. These are highly complex flow fields with many vortices constantly interacting,

growing, and ultimately deteriorating at different rates. However, fully simulating a prob-

lem that large and complicated requires immense time and other resources that render it

impractical to model in its entirety using currently available numerical methods.

One solution to this problem is to develop a more advanced algorithm that incorporates

the best aspects of some of the traditional methods, such as geometric flexibility, local

approximation, high order, and of course, speed. Then, this method can be used to more

efficiently simulate and accurately capture some of the dynamics in three-dimensional flow

that until now have been impossible or impractical to capture numerically. One relatively

new method that seems to fulfill all of these needs is the discontinuous Galerkin method.

However, with a newer method, there are invariably questions that arise about accuracy and

discoveries to be made about how it performs under certain circumstances, since it lacks the

documentation of other more well-established methods.

Therefore, before being able to jump into the ultra large-scale problems suited for a

more efficient method, these issues must be addressed. With that in mind, this work seeks

1

to apply the discontinuous Galerkin method to the older and more fundamental problem

of two-dimensional vortex interaction with the goal of building towards modeling complex

aircraft wakes. Standard practice for modeling confined vortices disregards the effects of re-

flective boundaries and presents initial conditions that do not match the physics implied by

the boundary conditions. Therefore, this work simultaneously aims to rectify the disagree-

ment by proposing an alternate initialization procedure. By studying the core parameters

of the discontinuous Galerkin method in a more controlled and computationally cheaper

environment, it is hoped that their effect on the method can be better understood. With the

foundation laid, that knowledge can then be put to use and the most efficient combination

of parameters can be confidently implemented in the more complex cases.

1.2 Background

Since this work is rooted in aircraft wakes, vortex interaction, and the discontinuous

Galerkin method, a brief overview of each follows in order to provide context. Vortices and

vortex interaction have been topics of study for decades, due to their appearance in a wide

variety of naturally-occurring phenomena. The study of coherent structures in turbulent

flows has led to a hope that a better understanding of vortices will give meaning and pattern

to the seemingly random motion of turbulence [1]. Single vortices of the isentropic variety

also serve as an excellent test case for numerical studies, as they should simply convect

with the free-stream velocity, and any decay or deviation from this can be attributed to the

numerical scheme.

When it comes to modeling pairs of vortices, the work is usually framed in the context

of aircraft wake, and especially so when the pair are counter-rotating. Aircraft separation at

airports across the globe is one of the most practical problems that has yet to be addressed

very effectively, so any better understanding of the physics occurring in aircraft wake that

can lead to a safe reduction in take-off and landing separation between aircraft is valued.

In a 1998 paper, Philippe Spalart outlined some of both the analytical and experimental

2

work that had been done at that point to contribute to aircraft wake knowledge [2]. He

pointed out some of the limitations of each, admitting that numerical simulations made too

many assumptions to really be useful and that wind tunnel tests provided data of a smaller

scope than is ideal. On the other hand, full-scale flight testing was cost-prohibitive and

could be limited as well if only commercial flights were considered in order to save on cost.

With these factors considered, he conceded that more work was needed, but also admitted

that a truly useful wake model would have to account for various atmospheric conditions in

addition to the vortex dynamics in order to really improve upon the current system. For

these reasons, the same general spacing rules based on weight class have remained in use

since the publication of his paper.

However, more concerted efforts have since been made in the United States and abroad

with programs specifically dedicated to understanding aircraft wake and ultimately reducing

aircraft spacing. European research programs include Fundamental Research on Aircraft

Wake Phenomena (FAR-Wake) and Wake Vortex Characterization and Control (C-WAKE).

FAR-Wake was a three-year program from 2005-2008 that involved collaboration between

17 organizations in 8 countries, and investigated vortex instabilities and decay, along with

vortex interactions with jets and wakes [3]. They employed a multi-faceted approach that

combined experimental, theoretical, and numerical methods to aid in wake characterization

and prediction, with the long term goal of alleviating aircraft wakes once their behavior was

better understood. Although most of their work centered on more simplified test cases, it

produced new results concerned with the fundamental behavior of vortices.

In the United States, the primary wake research program known as Aircraft Vortex

Spacing System (AVOSS) began in 1994 and involved six years of research by NASA that

culminated in a demonstration at Dallas Fort Worth (DFW) airport in July of 2000 [4].

The idea behind AVOSS was that under Visual Flight Rules (VFR), pilots were given the

freedom to control their own spacing, and oftentimes it was less than the prescribed spacing

mandated under Instrument Flight Rules (IFR) conditions. This has lead to the general

3

belief that the FAA spacing requirements that rely on worst-case weight differences and long

wake lifespans are overly conservative and commercial airports could benefit from a system

such as AVOSS that recommends shorter (but still safe) separation distances. Therefore,

the goal of AVOSS was to provide a real-time system that receives current meteorological

conditions and exact aircraft type (not a broad weight class) and unifies it with known

understanding of vortex convection and decay [5, 6]. It should be noted that the goal was

not to model the actual wake, but to provide an estimated range of the wake so that it could

be avoided. AVOSS proved at least moderately successful, as during its implementation at

DFW in 2000, it resulted in a theoretical 6% average increase (up to a maximum of 16%) in

throughput under IFR conditions. The success of AVOSS lead to further efforts, like a joint

FAA/NASA program and a project at NASA Ames called Wake Vortex Avoidance System

(WakeVAS).

Other more individual efforts toward vortex understanding include those by Winckel-

mans [7] and Chatelain [8], who both employed vortex methods to study counter rotating

vortices in the context of aircraft wakes. Specifically, Winckelmans is a proponent of the

Lagrangian methods (mainly particle methods) for the negligible dispersion error and conser-

vation of energy. He looked at both 2-D and 3-D interaction, utilizing particle redistribution

to maintain accuracy. Chatelain also employed vortex particle methods, but focused on

the implementation with parallel computers, which enabled the usage of well over a billion

particles. Both researchers’ main focus was accurately capturing the small-scale instabilities

that arise in vortex interaction.

1.2.1 Towards a New Method

The work described above, whether experimental or numerical, involved immense cost

and would certainly benefit from further development of CFD methods, but where does the

most room for improvement exist? When considering schemes especially well-suited to CFD,

some of the most-sought-after qualities relate to the “mesh,” or discretization of the domain,

4

as oftentimes the solution is only as good as the mesh. For instance, a scheme that limits the

cells to a certain shape or distribution would not be as helpful as one that can accommodate

flexible or irregular cells. Another important quality is that the method be as accurate as

possible without paying an enormous price with speed and efficiency. Lastly, the method

should not be so computationally expensive that simulations are overly limited in size and

scope or require gross estimations or assumptions.

It has already been suggested that the discontinuous Galerkin method delivers on all of

the above qualities, but in the world of numerical simulation, there are already three very

widely used approaches: the finite difference, finite element, and finite volume methods.

Given their well-documented performance, why the need for a fourth method at all? Each

method’s key properties are outlined below and assessed according to their ability to meet

all of the criteria for an ideal CFD scheme.

Finite Difference Method

The finite difference (FD) method is centered on replacing a partial derivative with an

expression based on Taylor series expansions. The first step toward that expression is to

define a relationship between the velocities at two points in the grid like in Equation 1.1,

where ui+1,j is the x velocity at point (i + 1, j) and ui,j is defined likewise. The grid is

assumed to be uniform and cartesian in this case, where ∆x is the cell size.

ui+1,j = ui,j +

(
∂u

∂x

)
i,j

∆x+

(
∂2u

∂x2

)
i,j

(∆x)2

2
+

(
∂3u

∂x3

)
i,j

(∆x)3

6
+ ... (1.1)

It should be noted that ui+1,j and ui,j are somewhat arbitrary selections, as they just must

be two different points with Equation 1.1 adjusted accordingly. There are some common

choices, and in some cases, the two points are neighbors, as in the choice of ui−1,j and

ui,j, but sometimes not, as in the choice of ui−1,j and ui+1,j. The specific choice is what

determines whether the method is a forward, backward, or central difference (Equation 1.1

5

demonstrates a forward difference, since only information to the right of gridpoint (i, j) is

used). The distribution of points used in the scheme is called the ‘stencil’ and having many

points in the stencil or a very wide stencil is typically more complicated (and expensive).

Since the real goal is to have an approximation for a partial derivative, Equation 1.1 is

rearranged and solved for ∂u
∂x

in order to get the equation needed:

(
∂u

∂x

)
i,j

=
ui+1,j − ui,j

∆x
−
(
∂2u

∂x2

)
∆x

2
−
(
∂3u

∂x3

)
i,j

(∆x)2

6
− ... (1.2)

Theoretically, Equation 1.2 would be exact if it had infinite terms. However, since infinite

terms are impossible, unnecessary, and inefficient, Equation 1.2 must be truncated at some

point. Any terms that still have partial derivatives in them are dropped, leaving just the

“finite difference” portion, and the terms dropped constitute the truncation error associated

with the method. Depending on the formulation, and whether the method is forward, back-

ward, or central, the error is generally first or second order. For example, Equation 1.2 is an

instance of first order error, since the first dropped term is on the order of ∆x. While there

is the potential for accuracy beyond second order with FD methods, it becomes increasingly

more difficult due to the stencil breadth required and the increase in computation time to

implement it. A broad stencil near the boundary is also an issue, as it requires data at points

that don’t exist.

In conclusion, the finite difference method is simple and fast, since the solution is built

one point at a time. It is also beneficial that higher order accuracy (above second order)

is achievable, but the cost is prohibitive. Since the error is a function of ∆x, reducing the

spacing between points is an easy and straightforward way to reduce error, but this also

quickly increases computational cost. Also, the geometric flexibility is complicated by the

local smoothness requirement and discontinuities are not allowed. All in all, finite difference

is a good scheme, but is not ideal since it limits mesh properties.

6

Finite Element Method

In contrast to the point-defined FD method, the finite element method (FEM) is based

on a domain that is represented by non-overlapping elements or cells. These elements are

highly flexible and can easily adapt to complex geometries. However, the solution is not

expressed locally, and is rather defined globally with piecewise polynomials on the cells. The

use of polynomials allows for high order accuracy, but the implicit (global) formulation is

expensive. Also, since the entire domain is solved at once (and not one node at a time

like with finite difference), no inherent direction can be built in to simulate the physics of

the flow. Incorporating information about the flow field is an important feature for fluid

dynamics, so this especially makes it less desirable for CFD applications. Lastly, the global

solution means that using more cells quickly increases the size of the matrices that have to

be inverted during iterations to create the solution, so if a lot of cells are needed, it gets

even more expensive. Thus, FEM would be much more useful for CFD if it were not globally

defined.

Finite Volume Method

Perhaps the most popular of the three methods for applications in CFD is the finite

volume (FV) method, as some version of it is at the foundation of many commercial codes.

Instead of discretizing the partial differential form of the governing equations, the approach

is to discretize the integral form of the equations. Much like with FEM, the domain is

divided into cells, and these are also quite flexible and can handle complex geometries and

unstructured meshes. The cells are centered on the grid points, so that the boundaries

between cells lie half way between neighboring grid points. The solution is composed of

cell averages (in other words, piecewise constant approximations), so discontinuities between

cells with different values are addressed with numerical flux functions. The method is locally

conservative and explicit in time (meaning that the solution is built cell by cell and is much

cheaper than an implicit scheme). Due to the local nature, upwinding can be used to more

7

accurately simulate the physics of the flow if there is a certain direction to the problem

(one of the things lacking with FEM). The FV method is quite a robust option and all

of the benefits explain why it is so widely used in fluid dynamics. However, the piecewise

constant representation of the solution is very low order and can make it hard to accurately

capture certain flow features. The solution is to either decrease the cell size or find a way

to increase the order of the method. However, attempts at higher order are complicated

by large stencils and difficult boundary treatment and decreasing cell size small enough to

capture small scales is very expensive.

Argument for a Fourth Method

When considering the desire for a method that is fast, flexible, and high-order accurate,

each of the above methods fails in some regard. The elements of FD are not very flexible,

FEM is implicit in time, and FV lacks high order capabilities. Thus, the ideal method would

combine the flexible high-order elements of FEM with the local properties of FV, and this idea

of merging the best qualities of the two into one method is how the discontinuous Galerkin

finite element method (DG-FEM, or just DG for short) came about. By utilizing cells of high

degree, instead of constant value, the cell count can be decreased (which lowers cost), and

the explicit formulation makes it computationally fast and cheap. The discontinuity between

cells persists, but the extensive history of numerical fluxes can be applied in a similar way

as in FV.

The DG method was first proposed in a 1973 paper by Reed and Hill to solve the

neutron transport equation on triangular elements [9]. Analyses were carried out by Lesaint

and Raviart [10] in 1974 and again in 1986 by Johnson [11], but beyond that, the method

was not used much at first. However, during the 1990’s, gradual advancements were made in

making the method more flexible and capable. The first attempts to extend the original DG

method beyond linear problems and apply it to nonlinear problems initially led to implicit

schemes, which are computationally expensive. In an effort to keep the method explicit

8

(cheap), the Runge-Kutta DG methods were developed. Next, the methods were extended

to convection-diffusion systems, which spawned another type of DG method known as the

local DG (LDG) method. Since then, there has been a surge in the use of DG methods for a

wide variety of applications [12]. Yet, it is only relatively recently that the method has been

considered for fluid dynamics use [13] [14].

As one of the more prolific researchers of the DG method, Cockburn wrote a paper

outlining the method and its main properties [15]. In it, he discusses the implications of the

method’s discontinuous nature, which leads to block-diagonal matrices that enable it to be

parallelizable. Not only does he show it to be parallelizable, but also to be extremely efficient

in parallel, as even with 256 processors, total parallel efficiency remains above 97%. He also

mentions that DG methods are especially well-suited for using with adaptive algorithms and

are locally conservative, which is very important in fluid dynamics applications.

In another publication by Cockburn and Shu [16], they review the Runge-Kutta dis-

continuous Galerkin (RKDG) methods. They are used for non-linear convection-dominated

problems and are popular in the fluid dynamics community. They uniquely merge a spe-

cial class of Runge-Kutta time discretization with a finite element space discretization that

incorporates numerical fluxes and slope limiters, which yields a scheme that is non-linearly

stable regardless of accuracy. They show that high degree polynomials do not degrade the

resolution of strong shocks and is more efficient on smooth regions.

Other work involving the DG methods includes that by Bassi and Rebay, who applied the

method to numerically solve the compressible Navier-Stokes equations [17]. They began by

extending a method initially intended for the Euler equations and treated the viscous terms

with a mixed formulation. Performance was analyzed by considering laminar compressible

flow on a flat plate as well as three conditions of flow around a NACA0012 airfoil. It was

found that accurate solutions could be computed even on coarse meshes as long as higher

degree elements were used.

9

1.3 Objective

Since much of the work in the literature addresses the small scale behavior of vortex

interaction, including instabilities and turbulence modeling, this research does not seek to

duplicate those results or expound on them. The focus will be less on the goal of exactly

modeling a particular phenomenon and more on the observable differences that arise due to

different settings. Thus, whereas most vortex research encompasses flows with a variety of

Reynolds numbers, viscosities, and vortex strengths, this work will center on a single flow

regime simulated using different combinations of case-defining parameters.

The discontinuous Galerkin method requires at least three fundamental parameters to

be chosen before the simulation can even begin: polynomial degree, domain size, and cell

density (essentially cell size). Considering that these three values can have a huge impact

on both the accuracy and computational time of the method, their selection is not trivial.

Thus, these three parameters will be systematically varied to discover how they impact the

solution through analysis of error, kinetic energy decay, and vortex trajectory. The result

should be a more thorough understanding of appropriate choices for a discontinuous Galerkin

simulation, and how one can expect those choices to affect the error and computational time

compared to other parameter options. Along the way, a different initialization process will

also be developed to remedy the problem of inconsistent initial and boundary conditions

when reflective boundaries are used.

10

Chapter 2

Formulation of the Method

As with many numerical methods, the first step in outlining the Discontinuous Galerkin

(DG) method is to decide how to discretize the domain Ω into elements. The domain can

be divided into K distinct elements Dk that do not overlap, but just touch and conform to

the boundary, such that Ω is well-approximated by the elements:

Ω '
K⋃
k=1

Dk (2.1)

Then we say that the state q(x, t) can be approximated by

q(x, t) w qh(x, t) =
K⊕
k=1

qkh(x, t) (2.2)

where qh denotes an approximate state that is made up of representations on the same

K piecewise continuous elements (cells) referred to in Equation 2.1. Each qkh(x, t) can be

expressed with a basis

qkh(x, t) =
N∑
j=0

q̃kj (t)bkj (x) (2.3)

where each q̃kj is a coefficient, and each bkj is a basis function of some degree N to be

determined later, but can be any of various polynomials or Fourier series. Essentially, the

data is broken down by cells and represented on those cells by weighted functions, where the

weights are determined by the value of the function at that point. This idea of expressing

functions with bases is a central idea in the DG method and will come into play often.

In order to further explore the DG method, we can consider a generic conservation law

for the state q (where q = [ρ, ρu, ρet] in one dimension). Since no numerical method is exact,

11

we say that there must be a residual:

Rk
h(x, t) =

∂qkh
∂t

+
∂f(q)kh
∂x

(2.4)

However, we can multiply each side by a (still unspecified) basis function and require the

residual to vanish: ∫
Dk

bki R
k
h dx =

∫
Dk

bki

(
∂qkh
∂t

+
∂fkh
∂x

)
dx = 0 (2.5)

Taking only the right portion and expanding the expression, the vanishing residual requires

∫
Dk

bki
∂qkh
∂t

dx +

∫
Dk

bki
∂fkh
∂x

dx = 0 (2.6)

The second term in Equation 2.6 can be integrated by parts by realizing that
∂

∂x
(bf) =

∂b

∂x
f + b

∂f

∂x
can be rearranged to give b

∂f

∂x
=

∂

∂x
(bf)− ∂b

∂x
f , which is the same form as the

second term in Equation 2.6. Once applied, the result is

∫
Dk

bki
∂qkh
∂t

dx+

∫
Dk

∂

∂x
(bki f

k
h)dx−

∫
Dk

∂bki
∂x

fkh dx = 0 (2.7)

With the middle term simplified, it becomes

∫
Dk

bki
∂qkh
∂t

dx+

∫
∂Dk

bki f
k
h n

k
x ds −

∫
Dk

∂bki
∂x

fkh dx = 0 (2.8)

At this point, one might notice that the middle term of Equation 2.8 involves integrating

around the edges ∂Dk of the element, which means using values at the interface between two

neighboring elements and an outward facing normal nkx. This presents a problem because

the elements are piecewise continuous, but not continuous across cell boundaries. Therefore,

if a value is needed at the interface, which of the two prevails - the left or the right?

Figures 2.1 and 2.2 illustrate the predicament, where there are two distinctly different

values at each location on the interface between the two cells. In the figures, the grid point

12

Figure 2.1: The interface between two cells shown from above.

Need for flux function

Figure 2.2: The interface between two cells shown from the side.

spacing is only representative, but the number of points shows what would be comparable

to a fourth order polynomial for the cells. The red line denotes where the problem occurs at

the interface, and the shading represents the magnitude of some value like density or velocity

across the cell. From above, it is hard to appreciate where the problem arises, but the view

from the side demonstrates that what appears to be one node location from above is actually

two - each with a different value. Therefore, the question then becomes how to condense two

values at a particular point to just one. There are infinite options for doing this, including

a simple average of the two or else some weighting formula that counts the value from one

side of the interface more heavily than the other. All of these are known as numerical flux

13

functions, although there are several preferred options that have proven stable and effective

in the Finite Volume (FV) community, where discontinuity between cells is also an issue.

Their main role is to provide stability by incorporating the physics and direction of the flow.

2.1 Choice of Numerical Flux Function

Since there are so many ways of going about reducing two values to one, there are some

restrictions that must be placed to ensure stability and accuracy. In order for any given

numerical flux function to qualify, a few basic criteria must be met: given two identical

states, the flux function must return the original state, and the flux at an interface should

be equal and opposite if only the order of states is swapped and the direction of the normal

vector is reversed. The direction of the outward facing normals (which provide mathematical

rules for what is considered the ‘left’ and ‘right’ states) is shown in Figure 2.3. With f ∗

(-1,-1)

(-1,1) (1,1)

(1,-1)

Figure 2.3: Outward facing normals on a standard [-1,1] cell

denoting a numerical flux and q− and q+ referring to the left and right sides of the interface

14

respectively, these conditions are expressed mathematically as

f ∗(q, q ; nx) ≡ f(q)nx

f ∗(qk,−h , qk,+h ;nk,−x) = −f ∗(qk,+h , qk,−h ;nk,+x)
(2.9)

While there are admittedly many choices that satisfy these requirements, the particular

choice does matter and is the key influencer of stability - an essential consideration in any

computational scheme. Two particular schemes that have proven stable and effective are the

Lax-Friedrichs and AUSM+ -up flux functions, and their basic qualities are outlined below.

2.1.1 Lax-Friedrichs Flux Function

Given that a flux function takes two states (q+h and q−h) on opposite sides of an interface

as well as a normal vector (nx) and produces a flux vector f ∗, the Lax-Friedrichs (LF) flux

is defined as:

f ∗ =
f(q+h) + f(q−h)

2
− |f ′(qh)|max

q+h − q
−
h

2
n−x (2.10)

Since the LF flux considers both q+ and q−, it is known as a central flux, which is to be

distinguished from other fluxes that are perhaps upwind (those that consider information

only from the direction it is coming). It is also significant to note that the ‘stencil’, or

breadth of points needed to construct the flux, is relatively narrow in that only the directly

neighboring information is needed. Other schemes can require information from two cells or

more away, but that presents problems near boundaries, where it becomes unclear how best

to construct data that is not physically there. The LF flux is a simple and straightforward

option, but is not always the most accurate because of the nature of a central flux. Since

they draw some information from downstream, information is included in the flux calculation

which does not physically affect the point or interface.

15

2.1.2 AUSM+-up Flux Function

Another option is the AUSM+-up scheme, which is closely related to AUSM+ (Advection

Upstream Splitting Method), but the ‘-up’ denotes that it has been modified to accommo-

date all Mach numbers - namely those approaching zero. Considering the flow does indeed

approach M = 0 at the vortex centers and near the edges of the domain, this quality is

important.

The AUSM+ -up scheme is more complex than the LF flux, and begins with splitting

the inviscid flux into convective and pressure fluxes such that

f ∗ = ṁ1/2


~ψL if ṁ1/2 > 0,

~ψR otherwise,
+ p1/2 (2.11)

where in one dimension, ~ψL/R = (1, uL/R, et + p
ρ
)T and

ṁ1/2 = a1/2M1/2

 ρL if M1/2 > 0,

ρR otherwise
(2.12)

The subscripts L or R denote either the left or right state (to be consistent with the

method in literature), and the “1/2” subscripts indicate the value is at the interface between

the two cells. Unwinding is employed, as the left state is always used when M1/2 is positive,

or the ‘wind is blowing’ from left to right, and the right state is used when the ‘wind’ is

blowing from right to left (or M1/2 is negative). Since the scheme incorporates the physics

of the flow by upwinding and is quite robust, it is a good choice and was selected to be used

for all of the work herein. For more extensive information about the AUSM+ -up flux, see

work by Liou [18, 19].

Now that a numerical flux is being employed, Equation 2.8 reads

∫
Dk

bki
∂qkh
∂t

dx+

∮
∂Dk

bki f
∗(qk,−h , qk,+h ;nk,−x) ds−

∫
Dk

∂bki
∂x

fkh dx = 0 (2.13)

16

with the understanding that f ∗ will be calculated in the AUSM+-up fashion.

2.2 Basis Function Selection

Now that the problem with the middle term of Equation 2.8 has been resolved, it is time

to consider a choice for the basis function. While many functions would work, polynomials

are a logical choice for our familiarity with them. Still, even polynomials provide various

options. Narrowing even further, we might consider a polynomial of either a modal or nodal

variety for their specific properties to be discussed later. Recalling the earlier formulation

of Equation 2.3, which had some coefficient multiplied by some basis function, the state can

be expressed with a basis on a standard element (ξ ∈ [−1, 1]) as follows:

qh(ξ) =
N∑
m=0

q̃mπm(ξ) =
N∑
n=0

q̂n`n(ξ) (2.14)

Here, the q’s are still coefficients, but the basis b has been replaced by either πm or `n to

represent a modal or nodal basis, respectively. The two versions are numerically equivalent,

but their respective formulation leads to pros and cons for each. Examples of each type of

basis are plotted in Figures 2.4 and 2.5 up to fifth degree.

Based on the plots, the modal and nodal approaches are clearly quite different from each

other, so it is important to assess the benefits and drawbacks that each may present before

choosing one. In taking a closer look at the modal basis, it turns out that the coefficients q̃m

are found through a matrix inversion. Matrix inversions are notoriously problematic, as they

can be quite difficult (and time consuming) to perform, and more importantly, to perform

accurately. The accuracy of inversion is measured by the condition number, κ(A), and for

some choices within the modal basis family, the condition number grows very quickly with

increasing polynomial order (the condition number should be close to 1 for a well-conditioned,

and thus accurately invertible, matrix).

17

−1 −0.5 0 0.5 1

−2

0

2

π
0

−1 −0.5 0 0.5 1

−2

0

2

π
1

−1 −0.5 0 0.5 1

−2

0

2

π
2

−1 −0.5 0 0.5 1

−2

0

2

π
3

−1 −0.5 0 0.5 1

−2

0

2

π
4

−1 −0.5 0 0.5 1

−2

0

2

π
5

Figure 2.4: Legendre polynomials in P5

A good option within the modal basis realm that does not lead to a poorly condi-

tioned matrix involves using an orthonormal basis. Again, there are several variations, but

Legendre polynomials are a well-known type and have an important property due to their

orthonormality. Namely:

∫ 1

−1
πi(ξ)πj(ξ)dξ = δij

.
=

 1 if i = j

0 if i 6= j
(2.15)

In other words, the integrated product of two of the same polynomials over a standard cell

will be 1 and the integrated product of two different polynomials will be 0. This is obviously

18

−1 −0.5 0 0.5 1
−1

0

1

`0

−1 −0.5 0 0.5 1
−1

0

1

`1

−1 −0.5 0 0.5 1
−1

0

1

`2

−1 −0.5 0 0.5 1
−1

0

1

`3

−1 −0.5 0 0.5 1
−1

0

1

`4

−1 −0.5 0 0.5 1
−1

0

1

`5

Figure 2.5: Lagrange polynomials in P5

a desirable property if the product of two bases arises, as the answer is straightforward and

could lead to cancellation of terms altogether if i 6= j.

Moving on to the nodal approach, the most notable difference is that all of the poly-

nomials are of degree N (they don’t build sequentially from 0 up to N as in the modal

Legendre polynomials). The nodal approach works like it sounds, as it involves interpolat-

ing between certain points, or nodes. Lagrange polynomials are a well-known interpolating

polynomial, and are plotted in Figure 2.5. The open circles depict the points ξ0, ξ1, ..., ξN to

19

be interpolated, and the polynomials are described by

`n(ξ) =
N∏
i=0
i 6=n

ξ − ξi
ξn − ξi

=

(
ξ − ξ0
ξn − ξ0

)
...

(
ξ − ξn−1
ξn − ξn−1

)(
ξ − ξn+1

ξn − ξn+1

)
...

(
ξ − ξN
ξn − ξN

)
(2.16)

Lagrange polynomials also possess a useful property, which is that the polynomial eval-

uates to zero at every point but one (where it happens to equal 1). Since the polynomial

is only valued 1 once, the coefficients q̂n in Equation 2.14 are easily found and are sim-

ply the function values at those points - no matrix inversion necessary. This is expressed

mathematically as

`j(ξi) = δij
.
=

 1 if i = j

0 if i 6= j
(2.17)

and put even more simply, means that `j(ξj) = 1.

Although the Legendre and Lagrange polynomials seem very different, they are in fact

related via a simple transformation. If the Legendre polynomials are evaluated at the same

points as the Lagrange polynomials, the result is none other than the Lagrange polynomials

themselves. The matrix used to achieve this transformation is called the Vandermonde

matrix (V). Using the Vandermonde matrix means that going from modal (denoted by

tildes) to nodal (denoted by hats) is quite easy, and the converse is also true as long as V is

accurately invertible.

V q̃ = q̂ ⇐⇒ q̃ = V −1q̂ (2.18)

modal→ nodal modal← nodal

Again, the invertibility of V raises some concerns, and since V is created by evaluating

the Legendre polynomials at the same points as the Lagrange polynomials, it makes sense

that the choice of where to place those N points for the Lagrange polynomials could affect the

invertibility of V . This is indeed true, and a special relation defines the Gauss-Lobatto (GL)

quadrature points which have several unique properties, the first of which is that they ensure

20

the best possible conditioning for V . Furthermore, it should be noted that “quadrature” is

the approximation of an integral and involves a weighted sum at certain points so that the

integral of some function f is approximated as

∫ 1

−1
f(ξ)dξ '

Np∑
j=1

ωjf(ξj) (2.19)

where ωj are the quadrature weights, and ξj are the quadrature nodes (the specific points

at which the weights will be applied to get the overall integral). It turns out that for

polynomials at least, equally spaced points are not the best option and instead, the slightly

offset Gauss-Lobatto quadrature points are a better choice and actually yield exact results.

For a look at some sample weights and nodal locations in a cell, see Figures 2.6 and 2.7.

Notice that the nodes are displaced more toward the edges of the cell compared to their

locations if they were equally spaced.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

ξ

ω

Node locations
Quadrature weights

Figure 2.6: The Gauss-Lobatto nodal locations ξ with their associated weights ω for a 4th

degree polynomial

In conclusion, a nodal basis makes the most sense because its pointwise properties

make getting boundary data straightforward (no matrix inversion is needed) and handles the

discontinuous flux issues of Section 2.1 with relative ease. Even though it means losing the

orthonormality of the modal basis, those benefits can be accessed by using the Vandermonde

matrix to switch back and forth depending on the situation. Additionally, the use of the

Gauss-Lobatto points guarantees accuracy both in any inversions of V and in integration.

21

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 2.7: A sample 2D cell with Gauss-Lobatto points for a 4th degree polynomial

2.3 Putting it Together

Now that the general theory has been outlined and an appropriate numerical flux and

basis have been chosen, the results from the preceding sections can be collected to further

develop the DG method and prepare it for use in simulation. To begin, since the standard

computational cell on the [−1, 1] interval is generally a different size than the physical cell,

a transformation is needed when converting between the two. If the node locations on the

standard cell are ξi and correspond to the physical node locations xi, those locations can be

found with

xi = xa +
ξi + 1

2
(xb − xa) (2.20)

where xa and xb are the left and right edges of the cell, respectively.

Another transformation is needed when using differentials, as the cell side-length is also

different for the computational and physical cells. While the side length for the computa-

tional cell is always 2, the side length of the physical cell will vary depending on the number

of cells chosen to represent the domain (more cells will result in a smaller side length). To

accurately account for this, the ratio of the lengths must be considered, and the result is the

Jacobian, J :

dxk = J k dξ, J k =
xkb − xka

2
(2.21)

22

If all the cells are the Cartesian and the same, the values calculated with Equation 2.21 will

be identical for all cells, but if an adaptive or unstructured grid is employed, dxk and J k

will need to be calculated for each cell individually. However, since all grids used for this

work were uniform structured Cartesian grids, the k will be dropped and the Jacobian will

be denoted as simply J , as it remains constant for all cells in the domain (along with ∆x).

To incorporate the conclusions of Sections 2.1 and 2.2 and develop some useful operators,

we now revisit Equation 2.13:

∫
Dk

bki
∂qkh
∂t

dx︸ ︷︷ ︸
1

+

∮
∂Dk

bki f
∗(qk,−h , qk,+h ;nk,−x) ds︸ ︷︷ ︸

2

−
∫
Dk

∂bki
∂x

fkh dx︸ ︷︷ ︸
3

= 0

From here forward, bi will be replaced with `i to denote the choice of Legendre polynomials

as the basis function. In the following derivations, it is important to remember that any

function qh can be expressed with a basis so that qh(ξ) =
N∑
i=0

q̂i`i(ξ). Looking at term 1 , the

time derivative term can be decomposed with a basis by letting
∂qkh
∂t

=
∂

∂t

(
N∑
j=0

q̂kj (t)`kj (x)

)
,

and after some rearranging, the term can be simplified to

∫
Dk

`ki
∂qkh
∂t

dx = J
N∑
j=0

Mij

dq̃kj
dt

(2.22)

where Mij is the mass matrix and is defined

Mij
.
=

∫ 1

−1
`ki (ξ)`

k
j (ξ)dξ (2.23)

Much like with term 1 , the numerical flux in term 2 can also be written with a basis

function and simplified to

∮
∂Dk

`ki f
∗(qk,−h , qk,+h ;nk,−x) ds =

N∑
m=0

(La)im(f̃ ∗a)km +
N∑
n=0

(Lb)in(f̃ ∗b)kn (2.24)

23

where La and Lb are the lifting matrices:

(La)ij
.
= `i(−1)`m(−1), (Lb)ij

.
= `i(1)`n(1) (2.25)

They are so named because they “lift” the boundary data by one dimension - for example,

1D to 2D. They involve the basis evaluated at the boundaries because the numerical flux

does not exist inside the element.

Finally, term 3 can similarly be rewritten using a basis to yield

∫
Dk

∂`ki
∂x

fkh dx =
N∑
j=0

(ST)ij f̃
k
j (2.26)

where S is the stiffness matrix and is defined

Sij
.
=

∫ 1

−1
`i(ξ)

d`j(ξ)

dξ
dξ (2.27)

Here, it should be pointed out that f̃kj is the cell flux (not to be confused with the numerical

flux). In one dimension, each node has a state value of q = (ρ, ρu, ρet) that can be used to

construct an associated flux vector where f̃ = (ρu, ρu2, (ρet + p)u) and k has been omitted

for clarity. For instance, this means that a cell with Np nodes would have a cell flux matrix

that is Np x 3.

Combining the results from terms 1 , 2 , and 3 , Equation 2.13 can now be expressed

in matrix-vector form as

JMdq̃k

dt
+ La(f̃

∗
a)k + Lb(f̃

∗
b)k − S f̃k = 0 (2.28)

Solving for
dqk

dt
results in the equation needed to propagate the solution in time.

dq̃k

dt
= J −1M−1

[
S T f̃k − La(f̃ ∗a)k − Lb(f̃ ∗b)k

]
(2.29)

24

The result is valid for each cell k and can be implemented one cell at a time to construct the

solution over the entire domain for each time step. This ability to solve the equation one

cell at a time is much faster and more efficient than solving the whole domain at once and

is one of the biggest benefits of the DG method.

2.4 Implementation

Equation 2.29 is a big step toward implementing the DG method, but it still isn’t

clear exactly how to create the operators M, S,and L. However, using the fundamental

relationship that `i(ξ) =
∑N

j=0(V
−T)ijπj(ξ), they can be derived as follows and implemented

in MATLAB or Fortran.

M−1 = V V T (2.30)

ST =
(
VξV

−1)T (V V T)−1 (2.31)

La = ~e0, Lb = ~eN (2.32)

Vij
.
= πj(ξj), (Vξ)ij

.
= π′j(ξi) (2.33)

2.4.1 In Two Dimensions

All theory discussed so far has been in one dimension for simplicity’s sake. Fortunately,

extension of the DG method from one dimension to two is relatively straightforward. The

first major modification is that the state changes from q = (ρ, ρu, ρet) to q = (ρ, ρu, ρv, ρet).

The other changes are mainly composed of expanding all of the operators by a factor of Np

in each direction and adding a y-component of each operator. For instance, S is replaced by

Sx and Sy and goes from Np x Np to Sx and Sy being N 2
p x N 2

p each, and all other operators

like V and M are similarly altered.

The lifting matrices are also subdivided into Lx and Ly, but are a little trickier because

the cell edge changes so much. In one dimension, the edges of a cell are one point each,

with the lifting matrix for the left boundary being ~e0 and the lifting matrix for the right

25

boundary being ~eN . However, in two dimensions, the boundary is no longer composed of

just one point and is rather a set of points - the specific ones depend on which edge of the

cell (left/right for Lx and top/bottom for Ly). Figure 2.8 shows how the nodes in a cell

are numbered and which ones are used for each lifting matrix so that the structure of the

matrices in Figure 2.9 is more easily understood. It can be seen that the new size for the

lifting matrix in two dimensions is now N2
p x Np instead of Np x 1. The blue markers show

where there are nonzero entries, and the rows that are nonzero correspond to the number of

the node located on the cell edge. As before, a and b denote whether the lifting is applied

to the left (a) or right (b) side of the cell.

1
2 3 4 5 1

21 22 23 24 25

6

11

16

21

5

10

15

20

25

Figure 2.8: Boundary nodes. Red are used for Lx and blue are used for Ly
.

To recap, for two dimensions, equation 2.29 now looks like:

dq̃k

dt
= (J k)−1M−1

[
STx f̃

k + STy g̃
k − Lxa(f̃ ∗a)k − Lxb(f̃ ∗b)k − Lyc(f̃ ∗c)− Lyd(f̃ ∗d)

]
(2.34)

The c and d subscripts on the lifting matrices and numerical fluxes indicate that they are

for the top and bottom boundaries of the cells, and the a and b still refer to the left and

right sides of the cell. The cell flux, f̃ , is now comprised of four terms, such that f̃ =

[ρu, ρu2+p, ρuv, (ρet+p)u], and there is a y-counterpart, g̃ = [ρv, ρuv, ρv2+p, (ρet+p)v].

26

0 5

0

5

10

15

20

25

(a) Lxa

0 5

0

5

10

15

20

25

(b) Lxb

0 5

0

5

10

15

20

25

(c) Lyc

0 5

0

5

10

15

20

25

(d) Lyd

Figure 2.9: Sample 2D lifting matrices for a 4th degree polynomial

Equation 2.34 now fully describes the basic DG method as it is used in this work to model

two-dimensional flows.

2.4.2 Advancing in Time

Once the state is constructed for the entire domain, the only remaining question is how

to advance the solution in time. The first consideration is what size time step to use, and

it is restricted by the CFL condition - an expression that includes cell size and polynomial

degree. The result is an equation for ∆t that limits how large the time step can be:

∆t =
C∆x

λmaxd 2
(2.35)

Here, λmax is the maximum wave speed and C is the CFL number. As one can see, either

increasing the degree of the polynomial or decreasing the size of the cells (in other words,

27

increasing cell density) will both result in a smaller time step. Therefore, the smallest time

step is required for those cases with both a high cell density and high degree.

With the time step decided and dq/dt calculated, it only remains to determine how

dq/dt should be used to update the state. In this work, a 3-stage Runge-Kutta time-update

was used with the following coefficients, where the first column contains the coefficients for

stage 1, and so on.

αi,s =


1 3

4
1
3

0 1
4

2
3

1 1
4

2
3



28

Chapter 3

Lagrangian Vortex Simulation

Now that the groundwork has been laid for the DG method, it can be applied to a test

problem. As outlined in Chapter 1, the ultimate goal is to better understand three dimen-

sional vortex interaction, but less complex cases must first be considered in order to discover

some of the nuances of choosing parameters for the DG method. Two-dimensional counter-

rotating vortices were chosen as a test problem for their simplicity and well-documented

behavior.

Before implementing the DG method to obtain any CFD results, however, another

method is needed for comparison. To that end, a four-vortex system is modeled with a

Lagrangian approach. In contrast to CFD, where the entire domain is subdivided and

modeled with elements, a Lagrangian method treats a vortex as a point that induces a

velocity field felt by the other vortices.

The basic idea of the method is depicted in Figure 3.1, which shows vortex j located at

(Xj, Yj) and the velocity v it induces on vortex i. The induced velocity causes vortex i to

move, and that motion is described by

d

dt
Xi =

N∑
j=1
j 6=i

Γj
2πr2ij

(−∆yij) (3.1a)

d

dt
Yi =

N∑
j=1
j 6=i

Γj
2πr2ij

(+∆xij) (3.1b)

where ~rij is the distance between the two vortices, Γj is the circulation of vortex j, and ∆xij

and ∆yij are the x- and y- components of ~rij, respectively. The summation ensures that the

effect of all vortices except itself (i in this case) are included so that the motion is due to all

29

vortices nearby. In Figure 3.1, there is only one other vortex, but Equation 3.1 also applies

to an array of vortices.

+

+

(Xj, Yj)

(Xi, Yi) rij

v

Δ xij

Δyij

Figure 3.1: Induced velocity from vortex j on vortex i

3.1 Vortex Selection

The first step is to choose a vortex profile to use, as there are many options, including

high order algebraic, Lamb-Oseen, isentropic/Taylor, and so on. For this work, a Gaussian

profile was selected for the realistic properties and simple formulation. The size of the vortex

is easily controlled by setting the radius where the maximum velocity occurs and is denoted

by rc. Since all lengths used in this work were nondimensionalized by rc, it was set to 1

(after being normalized by itself).

Regardless of the vortex type used, the initial state is built by adding perturbations

to the free stream flow, where the circulation profile Γ(r) determines the shape and charac-

teristics of the vortex produced. The tangential velocity profile is related through uθ(r) =

30

Γ(r)/2πr. The perturbations to the velocities u and v are then constructed as follows:

∆u = −f∆y (3.2a)

∆v = f∆x (3.2b)

where the variable f is a convenient quantity used to represent uθ(r)/r. The specific form

of f for Gaussian vortices is described by

f =
Γ0

2πr2

(
1− e−1.256(

r
rc

)
2)

(3.3)

where Γ0 is the total circulation, rc is the radius of the vortex, and r is the distance between

a point (x, y) and the center (x0, y0) of the vortex, so that r = ((x − x0)
2 + (y − y0)

2)1/2

[20]. Figure 3.2 shows a comparison between Taylor (isentropic) and Gaussian vortices for

approximately the same maximum velocity. The inner profile is similar, but beyond the

maximum velocity (denoted by the red line positioned at rc), the profile is much different

and the Gaussian vortex’s influence extends much farther. This is more consistent with

vortices observed experimentally and with those found in classic theory.

3.2 System Setup

The general idea of Section 3.1 is then extended to a system of four vortices, with the

intention that they represent the two wing and two tail vortices of a fixed-wing aircraft.

Rather than choose arbitrary numbers, Boeing 747 information is used to set vortex radii,

circulation, and wingspan values, since it is exactly the type of large transport aircraft that

creates strong wakes. The 747 has a wingspan of 64.4 meters, so once normalized by its 2.6

meter wing vortex radius, the centers of the vortices are located at [-12.385, -3.715, 3.715,

12.385].

31

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

r

V
el

oc
ity

Gaussian
Taylor
r
c

Figure 3.2: Comparison of velocity profiles

For a visualization of the four-vortex system, see Figures 3.3 and 3.4. The red vortices

correspond to the wing and the blue vortices are from the tail. Taken together, they are

two sets of counter-rotating vortices - one set on each side of the aircraft. The particular

circulation values for the vortices come about because total circulation Γ0 for the system is

defined so that lift balances weight. Then, the tail is used to trim the airplane by producing

downward force which also creates vortices of opposite sign and lower strength than the wing

vortices. If Γ1 corresponds to the wing vortices and Γ2 to the tail vortices, the relationship

is as follows:

Γ0 = Γ1 + Γ2 (3.4a)

Γ0 = .7 Γ1 (3.4b)

Γ2 = −.3 Γ1 (3.4c)

A ratio of -.3 between Γ1 and Γ2 was selected because of findings in the FAR-Wake program

that showed it to be optimal [21].

32

-Γ2

-Γ1
Γ2

Γ1

+ + + +

Figure 3.3: 4 vortex setup

Figure 3.4: Diagram of vortices to be modeled

3.3 Boundary Conditions

Due to the nature of Lagrangian simulations and the fact that each vortex is visited

instead of a node in a grid, the domain size becomes irrelevant. That is to say, the vortices

can be modeled as if there are no boundaries at all. Trajectories of the vortex centers for

such a case are plotted in Figure 3.5, where the tail vortex can be seen to rotate about the

wing vortex and the pair convect in a general downward direction.

However, the Lagrangian results are meant to serve as an ‘exact’ result for comparison

to CFD results, and CFD results can not be obtained without first defining where the bound-

aries should be located and how they should be treated. Thus, the Lagrangian approach

33

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

y

z

Wing
Tail

Figure 3.5: Lagrangian simulation of unbounded vortex system

can give a good idea of how unbounded vortices behave, but restricting them in a similar

fashion as CFD also provides information about how bounded vortex systems behave, which

can then be used for comparison with CFD results.

Unfortunately, confining the vortices is no simple task, as boundary conditions (and

how to come up with them) are one of the most contested aspects of CFD. Should they be

periodic or reflective, and where should they be defined? An ideal CFD simulation would

place nonreflective boundaries so far away that their effect is negligible, but in reality, this

is so complex and expensive that it is impractical. A more practical and common approach

is to place the boundaries much closer and make them reflective. After all, almost all

experimental results are obtained in wind or water tunnels with reflective walls, and even

experiments conducted outside a laboratory are still subject to influence from the ground.

With these reasons in mind, this work places the vortices in a ‘box’ with reflective boundaries

much like a wind tunnel, as it seems more realistic than other options.

34

Once decided, the process of actually placing the boundaries and enforcing the reflective

condition is relatively straightforward, but arriving at an initial condition that is consistent

with the boundary conditions is not. Reflective boundary conditions are essentially the same

as removing the boundaries and placing vortices of opposite sign as if reflected across the

boundary. The process is continued until the original domain is surrounded by concentric

‘rings’ of vortices with alternating signs. Figure 3.6 depicts the first of these rings, where

red outlines the actual domain boundary and orange outlines the first ‘ring’ of imaginary

vortices, with the understanding that there are more rings in the same pattern that are not

pictured. Since the induced velocity from a vortex is proportional to distance squared, the

effects of the vortices in the more distant rings is minimal and can eventually be excluded

as inconsequential.

It is important to note that the dashed vortices in Figure 3.6 don’t physically exist,

but their effects do because of the nature of reflective boundary walls. They are simply an

illustration to help understand the implications of having reflective boundary conditions and

how the implied vortices impact the four main vortices being modeled. The problem arises

when the effects from the reflected vortices are not incorporated into the initial condition.

If assumptions are made so they are not (as is often the case in literature), the result is an

initial condition that does not match the boundary conditions. This work seeks to rectify

that by including the effects of the reflected vortices in the initial condition to get the most

accurate starting point possible.

To do that, the effects of 42 rings of vortices were sequentially added to the four main

ones. While the distance of the furthest rings probably rendered their contribution negligible,

it ensures complete convergence. Each of the four main vortices is visited so the effect of all

the other vortices in the array (those from the 0th through the 42nd ring) on it can be found.

The x and y velocity contributions are then stored in matrices u and v that are n x 4, where

each row corresponds to one of the n rings and each column corresponds to one of the four

main vortices. Thus, u(11,3) is the x-velocity contribution from the 11th ring on the third

35

n = 0

n = 1

Figure 3.6: Vortices effectively created by the reflective boundaries

vortex. The matrices u and v are constructed with the following recursion:

u(n, i) = u(n, i)− si ∗ sj ∗ dy ∗ f (3.5a)

v(n, i) = v(n, i) + si ∗ sj ∗ dx ∗ f (3.5b)

The distances dx and dy are calculated from the ith vortex (one of the main four) to

any given ‘contributor’ vortex, which can be any vortex in the array but itself. The rotation

direction for the contributor vortex is then determined by the product si ∗ sj, where si

and sj alternate between -1 and +1, depending on the contributing vortex’s location. For

36

instance, a vortex that has only been reflected once in the x-direction would have values of

si = −1 and sj = +1, but a vortex that has been reflected in both the x and y directions

would have values of si = −1 and sj = −1. Essentially, it means that a vortex that has been

reflected an odd number of times will result in si∗sj = −1 and an even number of reflections

will produce si ∗ sj = +1. It is a complicated way of determining if the contributor vortex

rotates in the same direction as the main vortex, as -1 means it does not and +1 means

that it does (which conveniently reproduces Equation 3.2). It should also be noted that the

process builds, so that if a contribution has already been calculated for a particular ring, the

new contribution is added to it. This is why any row in u or v includes the effects of all the

vortices in that ring, and not just one vortex.

3.4 Van Wijngaarden Acceleration

While the matrices u and v give each ring’s effect on the vortices, they still don’t provide

the total effect of all the rings on the vortices. As the rings move further and further out,

they contribute less and less to the velocity field, so the total effect of all the rings can be

thought of as a series slowly converging to a value. Because of the form of Equation 3.5, it

can be recognized specifically as an alternating series, and there are methods to accelerate

its convergence.

Unsurprisingly, using more terms (rings in this case) ensures better accuracy, which is

why so many rings are employed. The first step in converging a series s with K terms is to

compute partial sums:

s0,k =
k∑

n=0

(−1)nan = a0 − a1 + a2 − a3 + ...ak for k = 0, 1, 2, ..., K (3.6)

Each s0,k builds on the previous, so that s0,4 = s0,3 + a4 and s0,K includes all available

an terms. Then, adjacent terms from the 0th row are averaged to produce s1,k and so on,

37

according to:

sj+1,k =
sj,k + sj,k+1

2
(3.7)

The averaging normally continues until the single value sK,0 is reached, but Adriaan van

Wijngaarden discovered that not only is it faster, but oftentimes more accurate, to stop 2/3

of the way through. This means that for 42 rings, rather than using s42,0 as the converged

value, s28,14 should be used.

3.5 Domain Size

With the boundary treatment and initial condition decided, domain sizes for the CFD

comparison cases have to be selected. The size of the ‘box’ around the vortices is known to

influence the solution, but exactly how much is unknown. Of the three parameters being

studied in this work (with the other two being polynomial degree and cell density), it is

in many ways the least predictable and yields the most noticeable changes in the solution.

It’s obvious that the larger the size of the box, the closer the solution should be to the

unbounded result, but since computational time and power limit what can practically be

modeled, the goal is twofold: determine a domain size that is an acceptable approximation

of the unbounded case, and determine what the effect is to use a smaller domain if needed.

Given that the Lagrangian results are ultimately intended for comparison with CFD

results, the dimensions of the various box sizes are chosen accordingly. For instance, thinking

ahead to the CFD, it does not make sense to waste a lot of resources modeling a very wide

domain, when Figure 3.5 proves the vertical direction is the one of interest. Thus, a tall and

skinny rectangular domain is a better use of domain space than a square domain since it

doesn’t unnecessarily model domain that won’t be used. However, it is common practice in

CFD to only model half of the problem when the geometry is symmetric because it allows

accurate modeling of the problem with only half the cells (and therefore half the time). This

38

means that the tall and skinny box for the CFD will only encompass two vortices and needs

to be doubled in width to obtain the corresponding Lagrangian domain sizes.

With Figure 3.5 as a guide, two initial box sizes were selected: one intended to be

highly restrictive and another to allow the vortices to convect more freely. The smaller size,

which is denoted as ‘small’ from here forward, places the lower boundary at z = −32 and

the right boundary at y = 40. It is expected that the solution will be much different from

the unbounded case, but it serves as an interesting case numerically and also approximates

the proximity of wind tunnel walls in experimental results. Figure 3.7 depicts the behavior

of the vortices in the Small domain for two revolutions, where red outlines the Lagrangian

domain size and the dashed blue line divides it to show the corresponding CFD domain. As

expected, the lower boundary significantly impedes the downward motion of the vortex pairs

and even pushes them to the side.

Figure 3.7: Small domain

39

The dimensions of the domain for the ‘small’ box are then doubled to obtain the second

size, which will be called ‘medium’. This puts the lower boundary at z = −64 and the right

boundary at y = 80. Two revolutions are shown in Figure 3.8, where the medium box clearly

provides much more space around the vortices. The pairs are able to convect downward and

are not pushed apart. However, a close look reveals that even though the boundary appears

to be well away from the vortex trajectory, it still prevents the pairs from moving down as

far as in the unbounded case.

Figure 3.8: Medium domain

Figure 3.9 shows each of the bounded trajectories plotted with the unbounded case

and their corresponding error, where error at any given time is calculated as the distance

between the vortex centers for the bounded and unbounded trajectories. The error is then

normalized by the wing span so that the distance can be thought of as a fraction of the

wingspan. By the end of the two revolutions, the vortices confined to the small box are more

40

than a full wing span away from where they should be according to the unbounded case.

The medium box has less effect on the vortex system, as the error is reduced by a factor of

four and the vortices are about a third of a wing span from the unbounded results at the

end of the simulation. Figure 3.10 affords a closer and less cluttered look at the details of

the trajectories and plots them with the same limits as the unbounded case, regardless of

where the domain boundaries are.

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

y

z

Wing, Small
Tail, Small
Wing, Unbounded
Tail, Unbounded

(a) Small domain trajectory

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) Small domain error

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

y

z

Wing, Medium
Tail, Medium
Wing, Unbounded
Tail, Unbounded

(c) Medium domain trajectory

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(d) Medium domain error

Figure 3.9: Small vs. Medium domain (compared to unbounded case)

The Lagrangian results outlined in this chapter will serve as the ‘exact’ results for

assessing how well the DG method performs. Comparison will keep domain sizes consistent

41

so that any CFD results on the small domain will likewise be compared to the Lagrangian

results on the small domain, and so on.

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

y

z

Wing
Tail

(a) Small

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

y

z

Wing
Tail

(b) Medium

Figure 3.10: Lagrangian solutions on bounded domains

42

Chapter 4

Modeling Counter-rotating Vortices with DG

4.1 Problem Setup

With the groundwork for the method laid and exact results obtained with the Lagrangian

simulation, the counter-rotating vortices can finally be modeled with the DG method. Some

of the same methods outlined in Chapter 3 still apply, like the vortex profile, circulation,

and radius. The main difference is that instead of modeling all four airplane vortices, only

one wing and one tail vortex is actively modeled, while the other two are modeled through

symmetry. Modeling all four vortices with the Lagrangian approach does not add any cost,

but it would be twice as expensive to do so with DG and no benefit would be gained.

Therefore, using symmetry where possible is extremely important. The change is reflected

in Figure 4.1, where the dashed arrows represent the vortices modeled through symmetry.

Figure 4.1: Diagram of vortices to be modeled

43

n = 0

n = 1

n = 2

Figure 4.2: Vortex ring setup

44

Another part that carries over from the Lagrangian simulation is the idea of vortex

‘rings’ to help construct an initial condition that is consistent with the choice of reflective

boundary conditions. Figure 4.2 illustrates that with the Lagrangian domain divided in two,

the vortices are now off center and placed next to the left boundary. Again, the effects of 42

rings are added to the velocity fields produced by the two vortices in the actual domain (ring

0) and accelerated with Van Wijngaarden acceleration to obtain the total effect. The major

result of the initialization is that it drives the velocities to 0 at the corners, since the only

way to accommodate four vortices rotating in different directions is for the velocity to be 0.

Figure 4.3 demonstrates this effect, where 0 rings in (a) is represents a case when reflective

boundaries are not accounted for when creating the initial condition and nonzero velocities

occur at the corners. By incorporating the effects of the mirrored vortices, Figure 4.3 (b) is

believed to be a better and more consistent starting point for the simulation.

(a) 0 rings (b) 42 rings

Figure 4.3: Impact of vortex array on initial conditions

45

Unfortunately, the only problem with adding the perturbations of the vortices in the

rings is that only the velocities can legally be added - adding the pressures and densities

yields non-physical results because they are nonlinear. Thus, the velocity field obtained

through the initialization is the only part that can be used, and the other values have to be

produced by another method.

To rectify this situation, the initial state is replaced with [ρ, ρu, ρv, ρet] =

[
1, 0, 0,

1

γ(γ − 1)

]
and the velocity field obtained with the vortex rings is used as a source term and introduced

slowly with a scale factor using a DG scheme. Figure 4.4 shows that the scale factor starts

at 0 and is gradually increased in a cosine ramp until it reaches 1 at a simulation time of 100.

After that, it is held constant, and the velocities are held to those of the source term while

the pressure and density values gradually settle to their physically correct values. The result

is an entire initial condition that agrees with the reflective boundary conditions without

making any assumptions that the boundary is far enough away to be negligible.

0 100 200 300 400 500 600
0

0.5

1

Simulation Time

Sc
al

e
fa

ct
or

Scale Factor Ramp During Initialization

Figure 4.4: Scale factor ramp during initialization

Carrying this procedure out to a time of at least 600 ensures that the residuals drop

from their maximum value at least three orders of magnitude, at which point the state is

stable and ready for the full simulation. The residuals for the initialization of one case are

shown in Figure 4.5, where the normalized residual peaks at 7.59× 105, but falls to 722 by

the end of initialization. Even just by the end of the source term ramp, the residuals come

down more than two orders of magnitude.

46

0 100 200 300 400 500 600

10
0

10
2

10
4

10
6

Simulation Time

N
or

m
al

iz
ed

 D
en

si
ty

 R
es

id
ua

l

Figure 4.5: Sample residuals during initialization

4.2 Selecting Parameters

The next step is to run the actual DG simulation of the vortex interaction, but before

that can happen, some preliminary case-defining parameters have to be set. As mentioned

previously, these are primarily domain size, polynomial degree, and cell density (the latter

two of which constitute grid resolution). A few options for each are chosen so the various

combinations of parameters can give insight into how they affect the accuracy and perfor-

mance of the DG method.

During the setup of the Lagrangian cases, box size was considered and defined for

two separate sizes, which were termed ‘small’ and ‘medium’. The DG simulations are also

conducted on these domains so they can be compared directly. They are rectangular to allow

as much downward movement as possible, with the small box’s dimensions being [0,40] x

[-32,32] and the medium’s being [0,80] x [-64,64].

With box sizes defined, the next parameter to be decided is polynomial degree. Low,

moderate, and high polynomial degree are covered by using degrees of 3, 9, and 14. In

tandem with polynomial degree, cell density is used to determine how many cells should be

47

used to represent the domain. Cell density is controlled through degrees of freedom (DOF)

per unit, where DOF/unit = d + 1/∆x and d is polynomial degree and ∆x is the cell size.

By controlling cell density instead of cell count, the results can more readily be compared

across varying degrees and domain sizes. Much like with box size, two densities are chosen

for comparison: 7.5 and 15 degrees of freedom per unit in the x-direction.

The process used to create the four basic grids is outlined in Figure 4.6. The two

grids on the left represent the ‘coarse’ cell density (7.5 DOF/unit) and the two on the right

represent the ‘fine’ density (15 DOF/unit). Similarly, the top two are the ‘small’ box size

and the bottom two are the ‘medium’ size. By taking a look at the time step restriction

from Equation 2.35, which is restated here:

∆t =
C∆x

λmaxd 2

one can see that doubling the cell density (the same as halving ∆x) requires halving the

time step, but also quadruples the number of cells for any given domain. The result is an

approximate 8x increase in computational time to refine the cell density. Similarly, doubling

the domain also quadruples the number of cells and computational time, but since the cell

size does not change, neither does the time step and it is only about 4 times more costly. It

reiterates why the ability to use larger cells is so important - huge time savings exist when

larger cells can be used by applying a high-order polynomial.

48

Double cell density

Maintain domain size

Maintain cell density

Double domain size

(in each direction)

Double cell density

AND

Double domain size

(in each direction)

Figure 4.6: Domain sizing. Cell size and cell count are representative only.

49

With the above parameter selections, 12 preliminary cases are defined and outlined in

Table 4.1, where small and medium refer to the domain size and the two columns under each

are the coarse and fine cell densities. Since degrees of freedom are held constant for each

column, fewer cells are required for the higher degrees. In fact, this is one of the biggest

benefits of DG over the FV method. Looking at the 9th degree case for the ‘small coarse’

grid, only 1440 cells are needed to obtain 144,000 degrees of freedom (in 2D), while FV

would have required 144,000 cells - 100 times more than DG. A smaller-scale example is

depicted in Figure 4.7, which shows a generalization of cell counts for a fourth-degree DG

method compared to a FV method. The data points provided by the high cell count in FV

are recovered by the polynomial nodes in the DG method.

Table 4.1: Grid sizes for test cases
Degree Small Medium

3 75 x 120 150 x 240 150 x 240 300 x 480
9 30 x 48 60 x 96 60 x 96 120 x 192
14 20 x 32 40 x 64 40 x 64 80 x 128

Figure 4.7: Cell count comparison for DG vs. FV to obtain same DOF

50

Chapter 5

Results

Since the primary focus of this research is to determine the effect of certain parameters

on the solution, the results are organized and separated by parameter that was studied, so

that the effects are more readily apparent with each parameter evaluated individually. The

first parameter presented is polynomial degree, then domain size, followed by cell density.

The effects are evaluated by comparing plots of trajectory error and kinetic energy and

assessing any differences. Each grouping of plots is organized so that whatever parameter is

being investigated is changed while moving down the page and the data is plotted with the

same limits wherever possible to make comparison easier. Since there are three parameters,

each group of plots shows the effect of changing one parameter while the other two remain

the same. The captions for each group make it clear by stating the changing parameter first

and putting the two that stay the same in parentheses. For instance, a caption of ‘Degree 3

vs. 9 vs. 14 (Small domain, Coarse grid)’ means that degree is varied, but domain size and

cell density are the same for the three plots.

Each plot is labeled with a unique identifier where d- - is the degree and h- - is the cell

count in the y direction (so d03 h75 is the degree 3, 75x120 case). The first set of plots

presented is always trajectory error, and denotes the distance between the DG vortex center

and the Lagrangian vortex center at any given time for the same case (so a DG case on the

small domain is always compared to a Lagrangian case on the small domain). As in Chapter

3, the error is then normalize by wing span.

Tracking the vortex trajectory for the CFD solutions requires locating the vortex centers,

which are the points where the highest and lowest (most negative) vorticity occurs. The

highest vorticity corresponds to the wing vortex and the lowest corresponds to the tail

51

vortex, where vorticity ω is defined as

ω =
∂v

∂x
− ∂u

∂y
(5.1)

In order to get ∂v
∂x

and ∂u
∂y

, expressions for the derivatives of ρu and ρv have to be rearranged

as follows:

∂

∂x
(ρv) = ρ

∂v

∂x
+ v

∂ρ

∂x
(5.2a)

∂v

∂x
=

1

ρ

[
∂

∂x
(ρv)− v ∂ρ

∂x

]
(5.2b)

∂

∂y
(ρu) = ρ

∂u

∂y
+ u

∂ρ

∂y
(5.3a)

∂u

∂y
=

1

ρ

[
∂

∂y
(ρu)− u∂ρ

∂y

]
(5.3b)

Then, the two terms on the right of Equations 5.2b and 5.3b can both be recognized as part

of the spatial derivative of the state q = [ρ, ρu, ρv, ρet]. In order to get the derivative of

the state with respect to x and y, all that remains is to apply the DG method for a spatial

derivative, which results in:

∂q

∂x
= J −1M

[
−S Tu+ Lbu

∗ − Lau∗
]

(5.4)

The general formulation of Equation 5.4 is very similar to the method outlined in Chap-

ter 2, except instead of a numerical flux, a simple average, u∗, of the two adjacent states is

used. Also, since the flux function is not present to take the normal vector as an argument,

the sign on La has been reversed to account for the opposite-facing normal vector.

The second set of plots for every comparison look at kinetic energy, which is used as a

diagnostic because it should be conserved and stay as close to the initial value as possible if

the method performs well. To make the behavior clear, the kinetic energy plots are therefore

52

normalized by the initial value so that the values become a fraction of the original kinetic

energy with a goal of maintaining 1. Kinetic energy results are also displayed as error from

the initial value by considering the absolute value of the difference between kinetic energy

at a certain time and the initial value and then dividing by the initial value. Once plotted

on a logarithmic scale, it gives a good idea of order of magnitude differences between cases.

5.1 Degree

By looking at Figures 5.1 through 5.8, it can be seen that increasing the degree from

3 to 9 to 14 decreases overall error for both the wing and tail vortices, although the effect

is most noticeable in the tail vortex. In the coarse grids, increasing the degree also reduces

the noise in the data, especially between the degree 3 and degree 9 cases. However, the data

appears to become slightly noisier and less focused again when increasing further to degree

14. This same pattern appears in the fine grids as well, but it is not as pronounced because

the data is much more focused to begin with. This suggests that degree 9 may be an ideal

balance between high order and computation time.

The plots of kinetic energy reveal similar trends, as degree 3 does not conserve kinetic

energy as well as the corresponding degree 9 and 14 cases. The effect is most pronounced

in the coarse grid cases (Figures 5.2 and 5.6), where the normalized value steadily declines

and drops by about .1% (still a small amount) while the other two remain closer to 1 and

hold steady. The kinetic energy error plots quantify the increase in error as approximately

one order of magnitude.

Another interesting finding is that the kinetic energy error plots seem to confirm what

the error plots suggested - that at least for the coarse grids, degree 9 may be a better option

than degree 14, since the overall KE error is slightly lower. The fine grids are less conclusive

for determining degree’s effect on the method, since the increased number of points seems

to make all three degrees perform roughly the same. Degree 3 still exhibits slightly higher

kinetic energy error, but the degree 9 and 14 errors are almost indistinguishable.

53

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h75

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h30

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(c) d14 h20

Figure 5.1: Trajectory error: Degree 3 vs. 9 vs. 14 (Small domain, Coarse grid)

54

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Degree 3
Degree 9
Degree 14

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Degree 3
Degree 9
Degree 14

(b) Kinetic Energy Error

Figure 5.2: KE error: Degree 3 vs. 9 vs. 14 (Small domain, Coarse grid)

55

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h150

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h60

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(c) d14 h40

Figure 5.3: Trajectory error: Degree 3 vs. 9 vs. 14 (Small domain, Fine grid)

56

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Degree 3
Degree 9
Degree 14

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Degree 3
Degree 9
Degree 14

(b) Kinetic Energy Error

Figure 5.4: KE error: Degree 3 vs. 9 vs. 14 (Small domain, Fine grid)

57

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h150

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h60

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(c) d14 h40

Figure 5.5: Trajectory error: Degree 3 vs. 9 vs. 14 (Medium domain, Coarse grid)

58

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Degree 3
Degree 9
Degree 14

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Degree 3
Degree 9
Degree 14

(b) Kinetic Energy Error

Figure 5.6: KE error: Degree 3 vs. 9 vs. 14 (Medium domain, Coarse grid)

59

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h300

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h120

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(c) d14 h80

Figure 5.7: Trajectory error: Degree 3 vs. 9 vs. 14 (Medium domain, Fine grid)

60

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Degree 3
Degree 9
Degree 14

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Degree 3
Degree 9
Degree 14

(b) Kinetic Energy Error

Figure 5.8: KE error: Degree 3 vs. 9 vs. 14 (Medium domain, Fine grid)

61

5.2 Domain Size

The effect of domain size was assessed by considering two sizes: a small domain and

a medium domain (which is twice as large in both directions). The results are presented

in Figures 5.9 through 5.20, which reveal that doubling the domain size has little to no

effect on the error when compared to the correlating exact solution, as most of the cases

exhibit almost identical error for the small and medium domains. The only exception is the

third-degree coarse case, where less error is observed in the smaller domain case.

Each of the kinetic energy plots also show little or no change between cases where the

only difference is domain size. If the normalized value decreases for the small case, it also

decreases for the medium case, and so on. Even minute differences are almost nonexistent,

as the KE error plots are remarkably similar. Taken with the trajectory error findings, the

conclusion is that while boundary placement certainly affects the solution (in terms of the

trajectory), it does not have any effect on the DG method itself, which performs equally well

for either domain size.

62

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h75

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d03 h150

Figure 5.9: Trajectory error: Small vs. Medium domain (Degree 3, Coarse grid)

63

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Small
Medium

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Small
Medium

(b) Kinetic Energy Error

Figure 5.10: KE error: Small vs. Medium domain (Degree 3, Coarse grid)

64

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d09 h30

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h60

Figure 5.11: Trajectory error: Small vs. Medium domain (Degree 9, Coarse grid)

65

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Small
Medium

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Small
Medium

(b) Kinetic Energy Error

Figure 5.12: KE error: Small vs. Medium domain (Degree 9, Coarse grid)

66

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d14 h20

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d14 h40

Figure 5.13: Trajectory error: Small vs. Medium domain (Degree 14, Coarse grid)

67

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Small
Medium

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Small
Medium

(b) Kinetic Energy Error

Figure 5.14: KE error: Small vs. Medium domain (Degree 14, Coarse grid)

68

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h150

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d03 h300

Figure 5.15: Trajectory error: Small vs. Medium domain (Degree 3, Fine grid)

69

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Small
Medium

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Small
Medium

(b) Kinetic Energy Error

Figure 5.16: KE error: Small vs. Medium domain (Degree 3, Fine grid)

70

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d09 h60

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h120

Figure 5.17: Trajectory error: Small vs. Medium domain (Degree 9, Fine grid)

71

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Small
Medium

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Small
Medium

(b) Kinetic Energy Error

Figure 5.18: KE error: Small vs. Medium domain (Degree 9, Fine grid)

72

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d14 h40

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d14 h80

Figure 5.19: Trajectory error: Small vs. Medium domain (Degree 14, Fine grid)

73

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Small
Medium

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Small
Medium

(b) Kinetic Energy Error

Figure 5.20: KE error: Small vs. Medium domain (Degree 14, Fine grid)

74

5.3 Cell Density

Cell density effects on the DG method are analyzed by comparing two cell densities

denoted as coarse and fine. The data in Figures 5.21 through 5.32 shows that the most

noticeable difference between the two densities is that the trajectory error data points are

much more focused for the fine density cases. For example, whereas the points seem spread

out and more linear in Figure 5.21 (a), a clear oscillatory pattern emerges in the fine case

(c) that corresponds to the vortex trajectories. The tradeoff, however, is that although the

data is more focused, the overall error and curve fit show slightly higher error for the fine

cases. This suggests that the DG method actually performs better when its ability to use

fewer cells with higher polynomials is exploited.

The effect of cell density on kinetic energy seems to be the opposite. The normalized

values are more oscillatory for the coarse cases, and sometimes even lower (as in the degree 3

cases of Figures 5.22 and 5.28). Also, the kinetic energy error plots consistently show higher

KE error for the coarse cases, with the increase anywhere from roughly half an order of

magnitude to a little over one order of magnitude. Thus, a coarser cell density will produce

lower trajectory error, but slightly higher kinetic energy error.

75

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h75

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d03 h150

Figure 5.21: Trajectory error: Coarse vs. Fine density (Small domain, Degree 3)

76

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Coarse
Fine

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Coarse
Fine

(b) Kinetic Energy Error

Figure 5.22: KE error: Coarse vs. Fine density (Small domain, Degree 3)

77

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d09 h30

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h60

Figure 5.23: Trajectory error: Coarse vs. Fine density (Small domain, Degree 9)

78

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Coarse
Fine

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Coarse
Fine

(b) Kinetic Energy Error

Figure 5.24: KE error: Coarse vs. Fine density (Small domain, Degree 9)

79

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d14 h20

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d14 h40

Figure 5.25: Trajectory error: Coarse vs. Fine density (Small domain, Degree 14)

80

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Coarse
Fine

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Coarse
Fine

(b) Kinetic Energy Error

Figure 5.26: KE error: Coarse vs. Fine density (Small domain, Degree 14)

81

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h150

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d03 h300

Figure 5.27: Trajectory error: Coarse vs. Fine density (Medium domain, Degree 3)

82

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Coarse
Fine

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Coarse
Fine

(b) Kinetic Energy Error

Figure 5.28: KE error: Coarse vs. Fine density (Medium domain, Degree 3)

83

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d09 h60

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h120

Figure 5.29: Trajectory error: Coarse vs. Fine density (Medium domain, Degree 9)

84

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Coarse
Fine

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Coarse
Fine

(b) Kinetic Energy Error

Figure 5.30: KE error: Coarse vs. Fine density (Medium domain, Degree 9)

85

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d14 h40

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d14 h80

Figure 5.31: Trajectory error: Coarse vs. Fine density (Medium domain, Degree 14)

86

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Coarse
Fine

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Coarse
Fine

(b) Kinetic Energy Error

Figure 5.32: KE error: Coarse vs. Fine density (Medium domain, Degree 14)

87

5.4 Further Investigation

5.4.1 Large domain size

Since the preliminary cases outlined above were only intended as a starting point, it

is unsurprising that the results from those cases suggested the need for additional cases.

The first parameter that seems to warrant more exploring is domain size. It is clear from

the Lagrangian cases that when comparing to the unbounded case, the medium case is a

much better match than the small domain, which severely constrains the vortices. Thus, it

is not a stretch to suggest that doubling the domain again from the medium size would be a

still better approximation to the unbounded interaction, but the real question is how much

better. Since doubling the domain size is so expensive computationally (roughly four times

as costly), both a coarse and a fine grid for degree 3 are used to save the additional time a

degree 9 or 14 case would take. Continuing in the pattern, this means the coarse case uses

300 x 480 cells to model a domain of [0,160] x [-128,128] and the fine case uses 600 x 960

cells.

Before implementing DG on a large domain, Lagrangian methods of Chapter 3 are first

used to create an exact result for comparison, and Figure 5.33 reveals that, as expected, the

large domain does the best job yet of matching the unbounded vortex trajectory. The limits

for the error plot are the same as in Figure 3.9 and it’s clear that the error for the large case

is much lower even than for the medium case. With a final error of about .05, or 5% of the

wingspan, the Large domain seems to be a good tradeoff between computational time and

error. More than likely, any further doubling of the domain would increase computational

time significantly without a correspondingly vast reduction in error.

With the exact results for comparison, the ‘large coarse’ and ‘large fine’ cases are run,

and the results are shown in Figures 5.34 and 5.36. When compared with the degree 3 cases

from the small and medium domains, the error remains largely unaffected or increases only

88

minimally, so domain size does not appear to have much effect on the DG method itself

where trajectory error is concerned.

The general kinetic energy results from Section 5.2 are expanded and shown to continue

with the large domain matching the small and medium domain values closely. In Figure

5.35 (a), the normalized value decreases, but since they all decrease in the same way, the

domain size has no effect. It is very likely that a third-degree coarse grid on a domain size

double or even quadruple that of the large domain would still exhibit the same trend. The

KE error quantifies the similarities in Figure 5.35 (b), where there is a slight decrease in

error with the larger domain sizes early on in the simulation, but ultimately converges to

the same value. Figure 5.37 (b) displays errors for the fine case that are nearly identical for

the entire simulation.

89

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

y

z

Wing, Large
Tail, Large
Wing, Unbounded
Tail, Unbounded

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

Figure 5.33: Lagrangian results for Large domain trajectory and trajectory error (compared
to unbounded case)

90

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h75

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d03 h150

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(c) d03 h300

Figure 5.34: Trajectory error: Small vs. Medium vs. Large domain (Degree 3, Coarse grid)

91

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Small
Medium
Large

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Small
Medium
Large

(b) Kinetic Energy Error

Figure 5.35: KE error: Small vs. Medium vs. Large domain (Degree 3, Coarse grid)

92

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h150

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d03 h300

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(c) d03 h600

Figure 5.36: Trajectory error: Small vs. Medium vs. Large domain (Degree 3, Fine grid)

93

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Small
Medium
Large

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Small
Medium
Large

(b) Kinetic Energy Error

Figure 5.37: KE error: Small vs. Medium vs. Large domain (Degree 3, Fine grid)

94

5.4.2 Coarsest Cell Density

As the other parameter with only two values for comparison, cell density is another good

option for further exploration. As a review, the plots in Section 5.3 showed slightly higher

trajectory error and slightly lower error kinetic energy for the fine cases when compared to

the coarse density. Thus, rather than investigating an even finer density that may yield even

higher trajectory error at a much higher cost, a density denoted as ‘coarsest’ makes for a

more interesting third option that gives insight into the fine balance between cost and error.

Plus, this draws on the strength of the DG method, which allows the use of larger cells with

higher degree polynomials to provide the degrees of freedom instead of relying on high cell

count with low polynomial degree.

Following in the pattern outlined in Chapter 4, the cell counts are found by halving

those of the ‘coarse’ case. Instead of repeating all of the domain sizes and degrees with this

coarsest grid, two were chosen selectively: degree 9 for the medium domain size and degree

3 for the large domain size. The reasoning behind this is that the small domain has been

clearly found to be too small and constricting to the vortices, so no additional cases on that

domain size would be helpful. Secondly, degree 3 on the large domain would complete the

trio of coarsest, coarse, and fine densities for that size, and rather than also using degree 3

to complete the medium domain, degree 9 would add another complete and distinct set for

the medium domain that could reveal different behaviors. The following complete sets for

the two domain sizes are obtained:

Table 5.1: Expanded test cases

Degree Coarsest Coarse Fine
Medium Domain 9 30 x 48 60 x 96 120 x 192

Large Domain 3 150 x 240 300 x 480 600 x 960
DOF/unit 3.75 7.50 15.00

The results for the medium case (degree 9) are presented first in Figure 5.38, where it

can be seen that despite having the fewest cells, the coarsest case exhibits the lowest error,

95

although the data is more sporadic and doesn’t exhibit the same oscillatory pattern as the

coarse and fine grids. However, considering that the ‘coarsest’ density correlates to a large

cell size (when compared to Finite Volume) of over 2.5 units and still maintains low error is

a huge benefit.

Again, the kinetic energy plots show that the large cells come with the tradeoff of more

oscillatory normalized KE values and overall higher error compared to the the coarse or

fine cell densities. It is certainly a tradeoff to accept higher KE error for lower trajectory

error, but perhaps most importantly, finding that the degree 9 polynomial can accurately

accommodate cell densities as low as 3.75 DOF/unit equates to a computational time of

roughly one eighth that of the ‘coarse’ case. The decrease is from a four times reduction due

to fewer cells and a further two times reduction because of the larger time step afforded by

the larger cell size (which also allows half the overall steps to achieve the same final time).

As stated in Chapter 1, one of the main goals in this work is to better understand

how the various choices of parameters for the DG method interact and affect the quality

of the solution. Up to this point, all test cases have provided varying solutions, but all

were still acceptable. Figure 5.40, however, illustrates what happens when the limits of the

DG method are exceeded. Although the ‘coarsest’ cell density worked (and even excelled)

for the degree 9 case, it is clear that it is too coarse for a polynomial as low as degree 3.

The error has no clear pattern at all and the normalized kinetic energy in Figure 5.41 (a)

plummets and does not appear to be slowing down. The amount of energy in the system is

not being held constant and is rapidly decaying. Figure 5.41 (b) shows more than an order of

magnitude higher error when compared to the coarse case and over two orders of magnitude

when compared to the fine case.

Figure 5.42 gives a closer look at the vortex trajectory. Small but noticeable deviations

from the smooth path are present, while other cases show no visible trajectory difference.

Ultimately, even though the simulation runs, 3.75 DOF/unit proves to be too coarse for a

degree 3 polynomial and it is probably best to stay within the ‘fine’ cell density range of 15

96

DOF/unit for lower polynomials like degree 3 to prevent KE deterioration. The results are

bad enough that an argument can’t be made that the lower cost justifies the higher kinetic

energy error like with the degree 9 case.

97

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d09 h30

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d09 h60

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(c) d09 h120

Figure 5.38: Trajectory error: Coarsest vs. Coarse vs. Fine density (Medium domain,
Degree 9)

98

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Coarsest
Coarse
Fine

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Coarsest
Coarse
Fine

(b) Kinetic Energy Error

Figure 5.39: KE error: Coarsest vs. Coarse vs. Fine density (Medium domain, Degree 9)

99

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(a) d03 h150

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(b) d03 h300

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Simulation time

E
rr

or
 (

no
rm

al
iz

ed
 b

y
w

in
g

sp
an

)

Wing
Tail

(c) d03 h600

Figure 5.40: Trajectory error: Coarsest vs. Coarse vs. Fine density (Large domain, Degree
3)

100

0 2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Simulation time

N
or

m
al

iz
ed

 K
in

et
ic

 E
ne

rg
y:

 K
E

/K
E

(0
)

Coarsest
Coarse
Fine

(a) Normalized Kinetic Energy

0 2000 4000 6000 8000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Simulation time

K
in

et
ic

 E
ne

rg
y

E
rr

or
: |

K
E

−
K

E
(0

)|
/K

E
(0

)

Coarsest
Coarse
Fine

(b) Kinetic Energy Error

Figure 5.41: KE error: Coarsest vs. Coarse vs. Fine density (Large domain, Degree 3)

101

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

y

z

Wing, DG
Tail, DG
Wing, Exact
Tail, Exact

Figure 5.42: Trajectory for Coarsest density case (Degree 3, Large domain) compared to
Lagrangian trajectory

102

5.5 Computational Time

Since one of the most important factors in any numerical method is its efficiency and

how long it takes to compute a solution, Table 5.2 lists the wallclock times to run each case

to 1000 steps. The cases were compiled identically using the Intel Fortran compiler and run

on 8 processors. While it is clear that higher degree cases are more costly than lower degree,

these numbers don’t take into account that the cases with smaller cell sizes will also mandate

a smaller time step - so 1000 steps for a coarse case will be twice as far into the simulation

as the fine case.

Table 5.2: Run time for 1000 steps (seconds)

Small Medium Large
Degree Coarse Fine Coarsest Coarse Fine Coarsest Coarse Fine

3 18.63 78.06 83.54 342.52 82.70 324.22 1225.81
9 29.00 121.17 26.24 111.95 428.34
14 45.26 183.95 181.22 719.69

A better reflection of how long a particular case will take is given in Table 5.3, which

uses the time step, wallclock time per step, and total number of steps to calculate a total

wallclock time for the case (again on 8 processors). Each time is calculated assuming a total

simulation time of 11,303. Figures 5.43 and 5.44 show the relative cost of increasing degree

or density, respectively. While they both result in a higher overall cost, it is interesting to

see that the method becomes more efficient as more cells are used. In general, the times

reveal that increasing the domain size is roughly four times as costly (there are four times

the cells) and doubling the cell density is about eight times as costly, meaning that doing

both (e.g. going from medium coarse to large fine) costs about 32 times as much. This does

not take into account that the lifting and stiffness matrices are sparse and the higher degree

cases could benefit from coding that takes advantage of the sparseness to speed up matrix

multiplication. It was excluded to maintain as much similarity between cases as possible and

thereby make head-to-head comparisons more meaningful.

103

Table 5.3: Run time for full case (hours)

Small Medium Large
Degree Coarse Fine Coarsest Coarse Fine Coarsest Coarse Fine

3 2.64 22.14 11.85 97.15 5.87 45.98 347.67
9 7.40 61.86 3.35 28.58 218.68
14 18.63 151.59 74.57 593.07

Figure 5.43: Effect of degree on computational time, normalized by time for degree 3 case

Figure 5.44: Effect of density on computational time, normalized by time for coarse density
case

104

Chapter 6

Conclusions

Taken together, all of the results presented thus far have revealed some general trends

for the DG method as they pertain to the interaction of two-dimensional vortices. They are

as follows:

• Increasing the polynomial degree decreases overall error, but is more costly because

it requires a smaller time step (and thus more total steps). A moderate polynomial

degree of 9 seems to be a good trade-off between computational cost and accuracy.

• Domain size (boundary placement) is most influential on the solution itself and can

cause huge differences in trajectory. Beyond that, increasing the domain size has

little effect on error or kinetic energy when compared to the exact solution for that

particular case. When compared to an unbounded case, however, a larger domain

obviously produces better results.

• Lower cell density performs better, since the error is lower and is much cheaper, but

comes with the tradeoff of slightly higher kinetic energy error. However, the lower limit

for cell density depends on the degree of the polynomial, as 3.75 DOF/unit works well

for degree 9 but produces poor results for degree 3.

• Doubling the domain size is proportionally not as computationally expensive as dou-

bling the cell density, since doubling the cell density is roughly eight times more ex-

pensive whereas doubling the domain size is only about four times as expensive. The

result is that decreasing the density, where possible, is the biggest time saver.

105

6.1 Future Work

While this work succeeded in its goal of outlining the effects each parameter has on the

discontinuous Galerkin method for the specific case of counter-rotating vortices, further work

is needed for confirmation and to continue towards the ultimate goal of better understanding

complex fixed-wing and rotorcraft wakes. Some ideas for continuing research include:

• Perform similar studies with other simple flow fields to see if the same conclusions about

the effects of polynomial degree, domain size, and cell density hold true. Some specific

options include the same cases but with co-rotating and/or equal-strength vortices.

• Incorporate the selective artificial viscosity to dampen any spurious oscillations where

needed.

• Implement other numerical flux functions to make sure results are not flux function

dependent.

• Investigate even higher polynomial degrees and both higher and lower cell densities to

determine if the trends continue linearly or if they behave in some other manner.

• Expand the capabilities to model three-dimensional flows and eventually more complex

cases, while utilizing some of the lessons learned in this research (e.g. very fine grids

will not only be costly, but also less accurate).

106

Bibliography

[1] Saffman, P. G., Vortex Dynamics , Cambridge University Press, 1992.

[2] Spalart, P. R., “Airplane Trailing Vortices,” Annual Review of Fluid Mechanics , Vol. 30,
No. 1, 1998, pp. 107–138.

[3] “FAR-Wake Project Description,” far-wake.irphe.univ-mrs.fr/IMG/project/

project.html [retrieved 7 November 2012].

[4] Dasey, T. J., Cole, R. E., Heinrichs, R., Matthews, M., and Perras, G., “Aircraft vortex
spacing system (AVOSS) initial 1997 system deployment at Dallas/Ft. Worth (DFW)
Airport,” 1998.

[5] Hinton, D., “An aircraft vortex spacing system (AVOSS) for dynamical wake vortex
spacing criteria,” 1996.

[6] Proctor, F. H., The NASA-Langley wake vortex modelling effort in support of an oper-
ational aircraft spacing system, AIAA, 1998.

[7] Winckelmans, G., Cocle, R., Dufresne, L., and Capart, R., “Vortex methods and their
application to trailing wake vortex simulations,” Comptes Rendus Physique, Vol. 6, No.
45, 2005, pp. 467 – 486.

[8] Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., and Koumout-
sakos, P., “Billion vortex particle direct numerical simulations of aircraft wakes,” Com-
puter Methods in Applied Mechanics and Engineering , Vol. 197, No. 1316, 2008, pp. 1296
– 1304.

[9] Reed, W. H. and Hill, T., “Triangular mesh methods for the neutron transport equa-
tion,” Los Alamos Scientific Laboratory Report, LA-UR-73-479 , 1973.

[10] Lesaint, P. and Raviart, P.-A., On a finite element method for solving the neutron
transport equation, Univ. Paris VI, Labo. Analyse Numérique, 1974.

[11] Johnson, C. and Pitkaranta, J., “An analysis of the discontinuous Galerkin method
for a scalar hyperbolic equation,” Mathematics of computation, Vol. 46, No. 173, 1986,
pp. 1–26.

[12] Hesthaven, J. S., “2008 Rocky Mountain Mathematics Consortium Summer School Lec-
tures: Discontinuous Galerkin Methods,” 2008, www.cfm.brown.edu/people/jansh/

page16/page36/page36.html [retrieved 21 March 2012].

107

[13] Cockburn, B., Karniadakis, G. E., and Shu, C.-W., The development of discontinuous
Galerkin methods , Springer, 2000.

[14] Hesthaven, J. S. and Warburton, T., Nodal Discontinuous Galerkin Methods , Vol. 54 of
Texts in Applied Mathematics , Springer, 2008.

[15] Cockburn, B., “Discontinuous Galerkin Methods,” ZAMM-Journal of Applied Mathe-
matics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik , Vol. 83,
No. 11, 2003, pp. 731–754.

[16] Cockburn, B. and Shu, C.-W., “Runge–Kutta discontinuous Galerkin methods for
convection-dominated problems,” Journal of scientific computing , Vol. 16, No. 3, 2001,
pp. 173–261.

[17] Bassi, F. and Rebay, S., “A High-Order Accurate Discontinuous Finite Element Method
for the Numerical Solution of the Compressible NavierStokes Equations,” Journal of
Computational Physics , Vol. 131, No. 2, 1997, pp. 267 – 279.

[18] Liou, M.-S., “A sequel to AUSM, Part II: AUSM+-up for all speeds,” Journal of Com-
putational Physics , Vol. 214, No. 1, 2006, pp. 137–170.

[19] Liou, M.-S., “A Sequel to AUSM: AUSM+,” Journal of computational Physics , Vol. 129,
No. 2, 1996, pp. 364–382.

[20] Lonfils, T., Cocle, R., Daeninck, G., Cottin, C., and Winckelmans, G., “Numerical inves-
tigations of end-effects associated with accelerated/decelerated wings: time-developing
and space-developing simulations,” FAR-Wake Technical Report 1.1. 2 , Vol. 6, 2007.

[21] Desenfans, O., Lonfils, T., Daeninck, G., Cocle, R., Bricteux, L., Dufresne, L., and
Winckelmans, G., “Numerical simulations of counter-rotating four-vortex systems,”
FAR-Wake Technical Report 1.2. 2 , Vol. 2, 2007.

108

Appendix A

Lagrangian System Simulation

clear a l l

% Set v a l u e s f o r v o r t e x c i r c u l a t i o n and l o c a t i o n

c = [−1.0 , 0 . 3 , −0.3 , 1 . 0] ∗ 700 ./ (2 . 6∗295 .39) ;
x = [−1.0 , −0.3 , 0 . 3 , 1 . 0] ∗ 0 . 5 ∗ 6 4 . 4 / 2 . 6 ;
y = [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0] ∗ 0 . 5 ∗ 6 4 . 4 / 2 . 6 ;

xx = [−40 ,40] ; % dimensions o f p l o t box
yy = [−60 ,10] ;

dt = 1 . ;
Nstep = 11303 ; % f i n a l s i m u l a t i o n time

Nstage = 3 ;
rk = zeros (3 , Nstage) ;

rk (1 , :) = [1 . , 3 . / 4 . , 1 . / 3 .] ;
rk (2 , :) = [0 . , 1 . / 4 . , 2 . / 3 .] ;
rk (3 , :) = [1 . , 1 . / 4 . , 2 . / 3 .] ;

xsave = zeros (Nstep+1, length (c)) ;
ysave = zeros (Nstep+1, length (c)) ;
time = zeros (Nstep+1, 1) ;

xsave (1 , :) = x ;
ysave (1 , :) = y ;
time (1) = 0 . ;

x0 = x ;
y0 = y ;
for s tep = 1 : Nstep

for s tage = 1 : Nstage
[u , v] = i n d u c e d v e l o c i t y (c , x , y) ;
x = rk (1 , s tage)∗x0 + rk (2 , s tage)∗x + rk (3 , s tage)∗ dt∗u ;

109

y = rk (1 , s tage)∗y0 + rk (2 , s tage)∗y + rk (3 , s tage)∗ dt∗v ;
end

time (s tep +1) = step ∗dt ;
x0 = x ;
y0 = y ;
xsave (s tep +1 , :) = x ;
ysave (s tep +1 , :) = y ;

end

function [u f , v f] = i n d u c e d v e l o c i t y (c , x , y)

n r i n g s =42; % the number o f v o r t e x r i n g s to be used
rows =(2 ./3 .)∗ n r i n g s ; % f o r Van−Wijngaarden a c c l e r a t i o n
c o l s =(1 ./3 .)∗ n r i n g s ;

N vortex = length (c) ;
u = zeros (n r i n g s +1, N vortex) ;
v = zeros (n r i n g s +1, N vortex) ;

du=zeros (n r i n g s +1 ,1) ;
dv=zeros (n r i n g s +1 ,1) ;

u f=zeros (1 , N vortex) ;
v f=zeros (1 , N vortex) ;

g =1.781;
b=1.256;
rc =1;

xg=0; % c e n t e r o f computation box
yg =0. ;

xmax=40; % smal l box
ymax=32;

Lx=2∗xmax ;
Ly=2∗ymax ;

du vw=zeros (rows+1, n r i n g s +1, N vortex) ;
dv vw=zeros (rows+1, n r i n g s +1, N vortex) ;

for m=1: N vortex

110

for n=1: N vortex

for j=−n r i n g s : n r i n g s
for i=−n r i n g s : n r i n g s

i f (j==0) && (i ==0) % means i n s i d e domain
i f (n˜=m) % ensures 2 d i f f v o r t i c e s
k=max(abs (i) , abs (j))+1; % v o r t e x r i n g

s i =(−1)ˆabs (i) ;
s j =(−1)ˆabs (j) ;
x1=x (m) ;
x2=(i ∗Lx+xg)−(xg−x (n))∗ s i ;
dx=x1−x2 ;
y1=y (m) ;
y2=(j ∗Ly+yg)−(yg−y (n))∗ s j ;
dy=y1−y2 ;
r2 = dxˆ2 + dy ˆ2 ;
f = c (n)∗(1−exp((−b∗ r2)/ (rc ˆ 2))) / (2∗pi∗ r2) ;

u (k ,m)=u(k ,m)− s i ∗ s j ∗dy∗ f ;
v (k ,m)=v (k ,m)+ s i ∗ s j ∗dx∗ f ;

end

else % when o u t s i d e domain
k=max(abs (i) , abs (j))+1;
s i =(−1)ˆabs (i) ;
s j =(−1)ˆabs (j) ;
x1=x (m) ;
x2=(i ∗Lx+xg)−(xg−x (n))∗ s i ;
dx=x1−x2 ;
y1=y (m) ;
y2=(j ∗Ly+yg)−(yg−y (n))∗ s j ;
dy=y1−y2 ;
r2 = dxˆ2 + dy ˆ2 ;
f = c (n)∗(1−exp((−b∗ r2)/ (rc ˆ 2))) / (2∗pi∗ r2) ;
u (k ,m)=u(k ,m)− s i ∗ s j ∗dy∗ f ;
v (k ,m)=v (k ,m)+ s i ∗ s j ∗dx∗ f ;

end

end
end

end

111

end

% Van Wijngaarden a c c e l e r a t i o n :

for m=1: N vortex
du cum sum (: ,m)=cumsum(u (: ,m)) ;
dv cum sum (: ,m)=cumsum(v (: ,m)) ;

du vw (1 , : ,m)=du cum sum (: ,m) ;
dv vw (1 , : ,m)=dv cum sum (: ,m) ;

for row=2: rows+1
for c o l =1: n r i n g s

du vw (row , co l ,m)=(du vw (row−1, co l ,m) . . .
+du vw (row−1, c o l +1,m)) / 2 ;

dv vw (row , co l ,m)=(dv vw (row−1, co l ,m) . . .
+dv vw (row−1, c o l +1,m)) / 2 ;

end
end

end

% f i n a l v e l o c i t i e s a f t e r a c c e l e r a t i o n
u f=du vw (rows+1, c o l s +1 , :) ;
v f=dv vw (rows+1, c o l s +1 , :) ;

u f=reshape (u f , 1 , N vortex) ;
v f=reshape (v f , 1 , N vortex) ;

end

112

