On the role of 1-LC and semi 1-LC properties in determining

THE FUNDAMENTAL GROUP OF A ONE POINT UNION OF SPACES

Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information.

Emilia Moore

Certificate of Approval:

Phillip Zenor
Professor
Mathematics and Statistics

Andras Bezdek
Professor
Mathematics and Statistics

Krystyna Kuperberg, Chair
Professor
Mathematics and Statistics

On the role of 1-LC and semi 1-LC properties in determining THE FUNDAMENTAL GROUP OF A ONE POINT UNION OF SPACES

Emilia Moore

A Thesis

Submitted to the Graduate Faculty of

Auburn University
in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 11, 2006

Emilia Moore

Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

Vita

Emilia Anna Moore, daughter of Piotr and Anna Lusnia, was born on October 3, 1982, in Garwolin, Poland. She graduated from Loveless Academic Magnet Program High School in Montgomery, Alabama, in 2000. She then attended Huntingdon College in Montgomery, Alabama, for three years and graduated magna cum laude with Bachelor of Art degrees in Mathematics and Computer Science in May 2003. She entered the PhD program at Auburn University, in June 2003.

Thesis Abstract

On the role of 1-LC and semi 1-LC properties in determining the fundamental group of a one point union of spaces

Emilia Moore

Master of Science, May 11, 2006
(B.A., Huntingdon College, 2003)

64 Typed Pages
Directed by Krystyna Kuperberg

Concerning the fundamental group of spaces written as a union of two topological spaces, the following result by Seifert and van Kampen is well known and frequently used.

Theorem 0.1 Let $X=U \cup V$, where U and V are open in X; assume U, V, and $U \cap V$ are path connected; let $x_{0} \in U \cap V$. Let H be a group, and let $\phi_{1}: \pi_{1}\left(U, x_{0}\right) \rightarrow H$, and $\phi_{2}: \pi_{1}\left(V, x_{0}\right) \rightarrow H$ be homomorphisms. Let $i_{1}: \pi_{1}\left(U \cap V, x_{0}\right) \rightarrow \pi_{1}\left(U, x_{0}\right), i_{2}:$ $\pi_{1}\left(U \cap V, x_{0}\right) \rightarrow \pi_{1}\left(V, x_{0}\right), j_{1}: \pi_{1}\left(U, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right), j_{2}: \pi_{1}\left(V, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ be the homomorphisms induced by inclusion. If $\phi_{1} \circ i_{1}=\phi_{2} \circ i_{2}$, then there is a unique homomorphism $\Phi: \pi_{1}\left(X, x_{0}\right) \rightarrow H$ such that $\Phi \circ j_{1}=\phi_{1}$ and $\Phi \circ j_{2}=\phi_{2}$.

Over the years there have been various theorems published on the topic of fundamental groups of the unions of spaces. A portion of those theorems deal with spaces whose intersection is a one point set. In 1954 Griffiths' result was published stating the following theorem [6].

Theorem 0.2 If one of the spaces X_{1} or X_{2} is 1-LC at x, and both X_{1} and X_{2} are closed in X and satisfy the first axiom of countability, then

$$
\left(i_{1} \wedge i_{2}\right): \pi_{1}\left(X_{1}, x\right) * \pi_{1}\left(X_{2}, x\right) \simeq \pi_{1}(X, x)
$$

where $X=X_{1} \cup X_{2}$ and $X_{1} \cap X_{2}=\{x\}$.

The goal of this paper is to show that the 1-LC property in Griffiths' result cannot be generalized to semi 1-LC. Spanier indicated this problem in one of his homework exercises [2]. This result is not, however, contained in Griffiths' paper or Spanier's book. To provide the necessary proof two spaces are constructed with the following properties:

1. X is semi $1-\mathrm{LC}$ (but not $1-\mathrm{LC}$)
2. $\pi_{1}\left(X, x_{0}\right)$ is trivial
3. the fundamental group of the one point union of X with itself is not trivial.

Acknowledgments

The author wishes to express her appreciation for her family members Jakub, Pawel, Anna and Piotr who have given of their love throughout her life. She would like to thank her husband Robert for his abundant support, guidance and love. The author would also like to thank the numerous families who have supported her throughout her life, the Jinrights, the Henrys, the Lindleys and the Stakelys.

The author would also like to thank the professors from her advisory committee for their contribution to this thesis, with special thanks to Dr. Krystyna Kuperberg for the considerable time, thought, and energy which she used in order to further the author's progress in her studies of algebraic topology.

Style manual or journal used Journal of Approximation Theory (together with the style known as "aums"). Bibliography follows van Leunen's A Handbook for Scholars.

Computer software used The document preparation package $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (specifically $\left.\mathrm{LAT}_{\mathrm{E}} \mathrm{X}\right)$ together with the departmental style-file aums.sty.

Table of Contents

List of Figures x
1 Introduction 1
1.1 Fundamental Group 2
2 Fundamental Groups of unions of spaces 13
2.1 Seifert-Van Kampen Theorem 13
2.2 Griffiths' Paper 15
3 Expansion of the theorem 23
3.1 Introduction 23
3.2 First counterexample 24
3.2.1 Description of the space X 24
3.2.2 Local connectedness and Semi Local Connectedness of X 28
3.2.3 The fundamental group of X 28
3.2.4 The fundamental group of a one point union of two copies of X 33
3.3 Second counterexample 45
3.3.1 Description of the space Y 45
3.3.2 The fundamental group of a one point union of two copies of Y 47
Bibliography 54

List of Figures

3.1 Space X 24
3.2 Union of two copies of X 34
3.3 Space Y 46
3.4 Union of two copies of Y 47

Chapter 1

Introduction

One of the fundamental problems in the field of topology is determining whether two topological spaces are homeomorphic. In general, there is no method for solving this problem. Showing that two spaces are homeomorphic is equivalent to constructing a continuous bijection between them with a continuous inverse, called a homeomorphism. To show that two spaces are not homeomorphic requires proof that such a mapping does not exist. The topological properties, also known as topological invariants, of spaces provide us with some methods of showing the lack of a homeomorphism. A topological invariant of a space X is a property that depends only on the topology of the space, i.e. it is shared by any topological space homeomorphic to X. If we can show that two topological spaces differ in some topological property (such as compactness, second countability, etc) we know that they cannot be homeomorphic. Throughout this paper we will consider spaces which are Hausdorff. In the following chapters we will discuss a concept that helps us show which topological spaces are not homeomorphic. We will introduce the idea of a fundamental group, and observe that two spaces that are homeomorphic have isomorphic fundamental groups (i.e. fundamental group is a topological invariant). This will help us distinguish between spaces by showing their fundamental groups are not isomorphic. We will discuss theorems that help us calculate the fundamental group of spaces that can be written as unions of topological spaces. Let us state some definitions and theorems that will be useful throughout this paper.

1.1 Fundamental Group

Let us quote Munkres' definitions of several terms that will be used in this paper [1].

Definition 1.1 A topology on a set X is a collection τ of subsets of X having the following properties:

1. \emptyset and X are in τ.
2. The union of the elements of any subcollection of τ is in τ.
3. The intersection of the elements of any finite subcollection of τ is in τ.

A topological space is a set X together with a collection τ. If X is a topological space with topology τ, we say that a subset U of X is an open set of X if U belongs to the collection τ. A set K is closed if $X \backslash K$ is open.

Throughout this paper, unless otherwise specified, X is a topological space, $x_{0} \in X$ is a point in X and $I=[0,1]$.

Definition 1.2 A function $f: X \rightarrow Y$ is continuous if for every open set $U \subset Y$ the set $f^{-1}(U)$ is open in X.

Definition 1.3 Let X and Y be topological spaces; let $f: X \rightarrow Y$ be a bijection. If both the function f and the inverse function $f^{-1}: Y \rightarrow X$ are continuous, then f is called a homeomorphism.

Definition 1.4 A space X is said to be compact if every open covering of X contains a finite subcollection that also covers X.

Definition 1.5 Let X be a topological space, and $x_{0}, x_{1}, x_{2} \in X$, then f is called a path in X from x_{1} to x_{2} if $f: I \rightarrow X$ is a continuous function such that $f(0)=x_{1}$ and $f(1)=x_{2} ; f$ is called a loop in X based at x_{0} if $f: I \rightarrow X$ is a continuous function such that $f(0)=x_{0}$ and $f(1)=x_{0}$.

Definition 1.6 A space X is said to be path connected if every pair of points of X can be joined by a path in X.

Definition 1.7 If f is a path in X from x_{0} to x_{1}, and if g is a path in X from x_{1} to x_{2}, we define the product $f * g$ of f and g to be the path h given by the equations

$$
h(s)= \begin{cases}f(2 s) & \text { for } s \in\left[0, \frac{1}{2}\right] \\ g(2 s-1) & \text { for } s \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Definition 1.8 Two paths f and f^{\prime} in X, are path homotopic if they have the same initial point x_{1} and the same final point x_{2}, and if there is a continuous map $H: I \times I \rightarrow$ X such that

$$
\begin{array}{ll}
H(s, 0)=f(s) & H(s, 1)=f^{\prime}(s), \\
H(0, t)=x_{1} & H(1, t)=x_{2},
\end{array}
$$

for each $s \in I$ and each $t \in I$. We call H a path homotopy between f and f^{\prime}. If f is path homotopic to f^{\prime}, we write $f \simeq f^{\prime}$.

Definition 1.9 An equivalence relation on a set A is a relation \sim on A having the following properties:

1. (Reflexivity) $x \sim x$ for every x in A.
2. (Symmetry) If $x \sim y$, then $y \sim x$.
3. (Transitivity) If $x \sim y$ and $y \sim z$, then $x \sim z$.

Throughout our discussion of homotopy groups we will frequently use the following lemma called the Pasting Lemma[[1], p.108].

Lemma 1.10 Let $X=A \cup B$, where A and B are closed in X. Let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ be continuous. If $f(x)=g(x)$ for every $x \in A \cap B$, then f and g combine to give a continuous function $h: X \rightarrow Y$, defined by setting $h(x)=f(x)$ if $x \in A$, and $h(x)=g(x)$ if $x \in B$.

Proof of Lemma: Let K be a closed subset of Y. We will show that the inverse image of K under h is closed. Notice that $h^{-1}(K)=f^{-1}(K) \cup g^{-1}(K)$. Since both f and g are continuous, $f^{-1}(K)$ is closed in A and $g^{-1}(K)$ is closed in B. Therefore they are both closed in X. A union of two sets closed in X is closed in X, hence $h^{-1}(K)$ is closed in X and h is continuous. \square

Lemma 1.11 The relation \simeq (path homotopy) is an equivalence relation.

If f is a path, we will denote its path-homotopy equivalence class by $[f][[1], \mathrm{p} .324]$.
Proof of Lemma: First, let us show that \simeq is reflexive. Given f, the map $F(x, t)=f(x)$ is a homotopy between f and itself. Hence $f \simeq f$. Next, let us show that \simeq is symmetric. Let f and g be paths such that $f \simeq g$ and $F(x, t)$ be the homotopy between them. Then
$H(x, t)=F(x, 1-t)$ is a homotopy between g and f, since $H(x, 0)=F(x, 1)=g(x)$ and $H(x, 1)=F(x, 0)=f(x)$. Hence $g \simeq f$. Lastly, let us show that \simeq is transitive. Let f, g, and h be paths and $F(x, t)$ be a homotopy between f and $g(f \simeq g)$, and $H(x, t)$ a homotopy between g and $h(g \simeq h)$. Then consider $G(x, t)$ defined by

$$
G(x, t)= \begin{cases}F(x, 2 t) & \text { for } t \in\left[0, \frac{1}{2}\right] \\ H(x, 2 t-1) & \text { for } t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

By the Pasting Lemma, $G(x, t)$ is well defined and continuous since $F\left(x, 2\left(\frac{1}{2}\right)\right)=F(x, 1)=$ $g(x)$ and $H\left(x, 2\left(\frac{1}{2}\right)-1\right)=H(x, 0)=g(x)$. It is a homotopy between f and h, since $G(x, 0)=F(x, 0)=f(x)$ and $G(x, 1)=H(x, 1)=h(x)$. Hence $f \simeq h$.

Let us define the product operation on equivalence classes of loops based at x_{0}. Let $[f] *[g]=[f * g]$. We need to show this operation is well defined, i.e. if $f \simeq g, h \simeq j$, then $f * h \simeq g * j$. Let $F: I \times I \rightarrow X$ be a homotopy of f to g, and $G: I \times I \rightarrow X$ be a homotopy of h to j. Consider the map $H: I \times I \rightarrow X$ defined by:

$$
H(s, t)= \begin{cases}F(2 s, t) & \text { for } s \in\left[0, \frac{1}{2}\right] \\ G(2 s-1, t) & \text { for } s \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

By the Pasting Lemma, $H(s, t)$ is well defined and continuous since

$$
H\left(\frac{1}{2}, t\right)=F(1, t)=f(1)=h(0)=G(0, t) .
$$

It is a homotopy between $f * h$ and $g * j$, since

$$
H(s, 0)= \begin{cases}F(2 s, 0)=f(2 s) & \text { for } s \in\left[0, \frac{1}{2}\right] \\ G(2 s-1,0)=h(2 s-1) & \text { for } s \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

and

$$
H(s, 1)= \begin{cases}F(2 s, 1)=g(2 s) & \text { for } s \in\left[0, \frac{1}{2}\right] \\ G(2 s-1,1)=j(2 s-1) & \text { for } s \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Definition 1.12 The set of path homotopy classes of loops based at x_{0}, with the operation $*$, is called the fundamental group of X relative to the base point x_{0}. It is denoted by $\pi_{1}\left(X, x_{0}\right)$.

Definition 1.13 Let G be a nonempty set together with a binary operation \circ. G is a group under this operation if the following properties are satisfied:

1. Associativity. The operation is associative; that is, $(a \circ b) \circ c=a \circ(b \circ c)$ for all $a, b, c \in G$.
2. Identity. There is an element e (called the identity) in G, such that $a \circ e=e \circ a=a$ for all $a \in G$.
3. Inverses. For each element a in G, there is an element b in G (called an inverse of a) such that $a \circ b=b \circ a=e$.

Definition 1.14 Let G and G^{\prime} be groups with group operation \circ in each. A homomorphism $f: G \rightarrow G^{\prime}$ is a map such that $f(x \circ y)=f(x) \circ f(y)$ for all x, y.

When the context is clear the group operation symbol is omitted, i.e. we write $x_{1} x_{2} x_{3}$ instead of $x_{1} \circ x_{2} \circ x_{3}$.

Definition 1.15 Let G be a group, let $\left\{G_{i}\right\}_{i \in J}$ be a family of subgroups of G such that every element $x \in G$ can be written as a finite product of elements of groups G_{i}. This means that there is a sequence $\left(x_{1}, \ldots, x_{n}\right)$ of elements of the groups G_{i} such that $x=x_{1} \ldots x_{n}$. Such a sequence is called a word (of length n) in the groups G_{i}; it is said to represent the element x of G. If x_{i} and x_{i+1} both belong to the same group G_{j}, we can group them together, obtaining the word $\left(x_{1}, \ldots, x_{i-1}, x_{i} x_{i+1}, x_{i+2}, \ldots, x_{n}\right)$ of length $n-1$, which also represents x. If any x_{i} equals 1 , we can delete x_{i} from the sequence. A word obtained by applying these reductions until no group G_{j} contains two consecutive elements of the sequence and no $x_{i}=1$ is called a reduced word.

Definition 1.16 Let G be a group, let $\left\{G_{i}\right\}_{i \in J}$ be a family of subgroups of G such that every element $x \in G$ can be written as a finite product of elements of groups G_{i}. We say that G is the free product of the group G_{i} if for each $x \in G$, there is only one reduced word in the groups G_{i} that represents x.

Definition 1.17 The kernel of a homomorphism $f: G \rightarrow G^{\prime}$ is the set $f^{-1}\left(e^{\prime}\right)$, where e^{\prime} is the identity of G^{\prime}.

Definition 1.18 Let G be a group with group operation o. H is a normal subgroup of G if $x \circ h \circ x^{-1} \in H$ for each $x \in G$ and each $h \in H$.

Theorem 1.19 The fundamental group of X at the point $x_{0}, \pi_{1}\left(X, x_{0}\right)$, is a group.

Proof: First, let us show that $*$ is associative. Let f, g, and h be loops based at x_{0}. We want to show that $(f * g) * h \simeq f *(g * h)$. Since all three loops are based at the same
point, the product operation is defined, and it suffices to find a homotopy between the above loops. Consider a function $H: I \times I \rightarrow X$ defined as follows:

$$
H(s, t)= \begin{cases}f\left(\frac{4 s}{1+t}\right) & 0 \leq s \leq \frac{t+1}{4} \\ g(4 s-1-t) & \frac{t+1}{4} \leq s \leq \frac{t+2}{4} \\ h\left(1-\frac{4(1-s)}{2-t}\right) & \frac{t+2}{4} \leq s \leq 1\end{cases}
$$

This homotopy is well defined and continuous by the Pasting Lemma, since:

$$
\begin{gathered}
f\left(\frac{4\left(\frac{t+1}{4}\right)}{1+t}\right)=f(1)=x_{0}, \\
g\left(4\left(\frac{t+1}{4}\right)-1-t\right)=g(0)=x_{0}, \\
g\left(4\left(\frac{t+2}{4}\right)-1-t\right)=g(1)=x_{0}, \\
h\left(1-\frac{4\left(1-\frac{t+2}{4}\right)}{2-t}\right)=h(0)=x_{0} .
\end{gathered}
$$

It is a path homotopy between $(f * g) * h$ and $f *(g * h)$ since:

$$
\begin{aligned}
& H(0, t)=f(0)=x_{0}, \\
& H(1, t)=h(1)=x_{0}, \\
& H(s, 0)=(f * g) * h, \\
& H(s, 1)=f *(g * h) .
\end{aligned}
$$

This concludes the proof of associativity. Second, let us show the existence of an identity. Let $e: I \rightarrow X$ be the constant map such that $e(a)=x_{0}$ for all $a \in I$. Let f be a loop
based at x_{0}. We want to show that $e * f \simeq f$ and $f * e \simeq f$. Let us define the homotopy between f and $e * f, H: I \times I \rightarrow X$, by

$$
H(s, t)= \begin{cases}x_{0} & 0 \leq s \leq \frac{1}{2} t \\ f\left(\frac{2 s-t}{2-t}\right) & \frac{1}{2} t \leq s \leq 1\end{cases}
$$

This homotopy is well defined and continuous by the Pasting Lemma, since:

$$
f\left(\frac{2\left(\frac{1}{2} t\right)-t}{2-t}\right)=f(0)=x_{0} .
$$

It is a path homotopy between f and $e * f$ since:

$$
\begin{aligned}
& H(0, t)=x_{0}, \\
& H(1, t)=f(1)=x_{0}, \\
& H(s, 0)=f(s), \\
& H(s, 1)=\left\{\begin{array}{ll}
x_{0} & \text { for } 0 \leq s \leq \frac{1}{2}, \\
f(2 s-1) & \text { for } \frac{1}{2} \leq s \leq 1
\end{array}=(e * f)(s) .\right.
\end{aligned}
$$

Now, let us define the homotopy between f and $f * e, H: I \times I \rightarrow X$, by

$$
H(s, t)= \begin{cases}f\left(\frac{2 s}{2-t}\right) & 0 \leq s \leq 1-\frac{1}{2} t \\ x_{0} & 1-\frac{1}{2} t \leq s \leq 1\end{cases}
$$

This homotopy is well defined and continuous by the Pasting Lemma, since:

$$
f\left(\frac{2\left(1-\frac{1}{2} t\right)}{2-t}\right)=f(1)=x_{0} .
$$

It is a path homotopy between f and $f * e$ since:

$$
\begin{aligned}
& H(0, t)=f(0)=x_{0}, \\
& H(1, t)=x_{0}, \\
& H(s, 0)=f(s), \\
& H(s, 1)=\left\{\begin{array}{ll}
f(2 s) & \text { for } 0 \leq s \leq \frac{1}{2}, \\
x_{0} & \text { for } \frac{1}{2} \leq s \leq 1
\end{array}=(f * e)(s) .\right.
\end{aligned}
$$

This concludes the proof of the existence of the identity. Finally, let us show the existence of inverses. Let f be a loop based at x_{0} and \bar{f} be the reverse of f defined by $\bar{f}(t)=f(1-t)$. We want to show that $f * \bar{f} \simeq e$, and $\bar{f} * f \simeq e$. Let us define the homotopy between x_{0} and $f * \bar{f}, H: I \times I \rightarrow X$, by

$$
H(s, t)= \begin{cases}f(2 s) & 0 \leq s \leq \frac{1}{2} t \\ f(t) & \frac{1}{2} t \leq s \leq 1-\frac{1}{2} t \\ f(2-2 s) & 1-\frac{1}{2} t \leq s \leq 1\end{cases}
$$

This homotopy is well defined and continuous by the Pasting Lemma, since:

$$
f\left(2\left(\frac{1}{2} t\right)\right)=f(t)
$$

$$
f\left(2-2\left(1-\frac{1}{2} t\right)\right)=f(t) .
$$

It is a path homotopy between x_{0} and $f * \bar{f}$ since:

$$
\begin{aligned}
& H(0, t)=f(0)=x_{0}, \\
& H(1, t)=f(0)=x_{0}, \\
& H(s, 0)=f(0)=x_{0}, \\
& H(s, 1)= \begin{cases}f(2 s) & \text { for } 0 \leq s \leq \frac{1}{2}, \\
\bar{f}(2 s) & \text { for } \frac{1}{2} \leq s \leq 1 .\end{cases}
\end{aligned}
$$

Now, let us define the homotopy between x_{0} and $\bar{f} * f, H: I \times I \rightarrow X$, by

$$
H(s, t)= \begin{cases}f(1-2 s) & 0 \leq s \leq \frac{1}{2} t \\ f(1-t) & \frac{1}{2} t \leq s \leq 1-\frac{1}{2} t \\ f(2 s-1) & 1-\frac{1}{2} t \leq s \leq 1\end{cases}
$$

This homotopy is well defined and continuous by the Pasting Lemma, since:

$$
\begin{gathered}
f\left(1-2\left(\frac{1}{2} t\right)\right)=f(1-t) \\
f\left(2\left(1-\frac{1}{2} t\right)-1\right)=f(1-t)
\end{gathered}
$$

It is a path homotopy between x_{0} and $\bar{f} * f$ since:

$$
\begin{aligned}
& H(0, t)=f(1)=x_{0}, \\
& H(1, t)=f(1)=x_{0}, \\
& H(s, 0)=f(1)=x_{0}, \\
& H(s, 1)= \begin{cases}\bar{f}(2 s) & \text { for } 0 \leq s \leq \frac{1}{2}, \\
f(2 s) & \text { for } \frac{1}{2} \leq s \leq 1 .\end{cases}
\end{aligned}
$$

This concludes the proof of existence of inverses. Hence, $\pi_{1}\left(X, x_{0}\right)$ is a group[[5], p.59].

Chapter 2

Fundamental Groups of unions of spaces

2.1 Seifert-Van Kampen Theorem

One way to calculate the fundamental group of a space is to express the space as a union of two other spaces whose fundamental groups are already known, or easily computed. There must, of course, be some guidelines for such a process. The Seifertvan Kampen Theorem provides us with a way of determining such fundamental groups. There are many forms of this theorem, below are two versions found in Munkres [[1], p. 426,431].

Theorem 2.1 Let $X=U \cup V$, where U and V are open in X; assume U, V, and $U \cap V$ are path connected; let $x_{0} \in U \cap V$. Let H be a group, and let $\phi_{1}: \pi_{1}\left(U, x_{0}\right) \rightarrow H$, and $\phi_{2}: \pi_{1}\left(V, x_{0}\right) \rightarrow H$ be homomorphisms. Let $i_{1}: \pi_{1}\left(U \cap V, x_{0}\right) \rightarrow \pi_{1}\left(U, x_{0}\right), i_{2}:$ $\pi_{1}\left(U \cap V, x_{0}\right) \rightarrow \pi_{1}\left(V, x_{0}\right), j_{1}: \pi_{1}\left(U, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right), j_{2}: \pi_{1}\left(V, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ be the homomorphisms induced by inclusion. If $\phi_{1} \circ i_{1}=\phi_{2} \circ i_{2}$, then there is a unique homomorphism $\Phi: \pi_{1}\left(X, x_{0}\right) \rightarrow H$ such that $\Phi \circ j_{1}=\phi_{1}$ and $\Phi \circ j_{2}=\phi_{2}$.

Theorem 2.2 Let $X=U \cup V$, where U and V are open in X; assume U, V, and $U \cap V$ are path connected; let $x_{0} \in U \cap V$. Let H be a group, and let $\phi_{1}: \pi_{1}\left(U, x_{0}\right) \rightarrow H$, and $\phi_{2}: \pi_{1}\left(V, x_{0}\right) \rightarrow H$ be homomorphisms. Let $i_{1}: \pi_{1}\left(U \cap V, x_{0}\right) \rightarrow \pi_{1}\left(U, x_{0}\right), i_{2}:$ $\pi_{1}\left(U \cap V, x_{0}\right) \rightarrow \pi_{1}\left(V, x_{0}\right), j_{1}: \pi_{1}\left(U, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right), j_{2}: \pi_{1}\left(V, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ be the homomorphisms induced by inclusion. Let $j: \pi_{1}\left(U, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ be the homomorphism of the free product that extends homomorphisms j_{1} and j_{2} induced
by inclusion. If $\phi_{1} \circ i_{1}=\phi_{2} \circ i_{2}$, then j is surjective, and its kernel is the least normal subgroup N of the free product that contains all elements represented by words of the form

$$
\left(\left[i_{1}(g)\right]^{-1}, i_{2}(g)\right),
$$

for $g \in \pi_{1}\left(U \cap V, x_{0}\right)$.

Assuming the hypothesis of the Seifert-van Kampen theorem we can state the following:

Corollary 2.3 If $U \cap V$ is simply connected, then there is an isomorphism

$$
k: \pi_{1}\left(U, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right) .
$$

The following version of the theorem is found in Engelking's book[[8], p.166].
Theorem 2.4 If a polyhedron X is the union of connected polyhedra X_{1} and X_{2} whose intersection is simply connected, then the fundamental group $\pi_{1}\left(X, x_{0}\right)$, where $x_{0} \in X_{1} \cap$ X_{2}, is isomorphic to the free product of the groups $\pi_{1}\left(X_{1}, x_{0}\right)$ and $\pi_{1}\left(X_{2}, x_{0}\right)$.

The following result by Van Kampen can be found in a paper by Paul Olum [[10], p.667].

Theorem 2.5 Let $X=X_{1} \cup X_{2}$ be a separable, regular topological space. Let $X_{1} \cap X_{2}$ be closed in $X, X_{1}-\left(X_{1} \cap X_{2}\right), X_{2}-\left(X_{1} \cap X_{2}\right)$ open in X, X_{1} and X_{2} locally connected at $X_{1} \cap X_{2}, X_{1} \cap X_{2}$ locally connected and $X_{1}, X_{2}, X_{1} \cap X_{2}$ path connected. If $x_{0} \in X_{1} \cap X_{2}$ then the fundamental group $\pi_{1}\left(X, x_{0}\right)$ is isomorphic to the free product of the groups $\pi_{1}\left(X_{1}, x_{0}\right)$ and $\pi_{1}\left(X_{2}, x_{0}\right)$.

In this paper we are concerned with one point unions of spaces. A one point set is obviously simply connected and closed. Therefore a one point union of two spaces satisfying
the conditions of the Seifert-van Kampen Theorem will have a fundamental group equal to the free product of the fundamental groups of the spaces composing it.

2.2 Griffiths' Paper

In 1954 a paper by H.B. Griffiths was published in Quarterly Journal of Mathematics. The paper contained the following result[[6], Theorem 1].

Theorem 2.6 If one of X_{1}, X_{2} is 1-LC at x, and both X_{1} and X_{2} are closed in X, Hausdorff, and satisfy the first axiom of countability, and $X_{1} \cap X_{2}=\{x\}$, then

$$
\left(i_{1} \wedge i_{2}\right): \pi_{1}\left(X_{1}, x\right) * \pi_{1}\left(X_{2}, x\right) \simeq \pi_{1}(X, x)
$$

where $X=X_{1} \cup X_{2}$.

Let us first clarify the notation used. If X_{1}, X_{2}, and X are groups with injection homomorphisms $j_{i}: \pi_{1}\left(X_{i}, x\right) \rightarrow \pi_{1}(X, x)$ for $i=1,2$, then $\left(j_{1} \wedge j_{2}\right)$ is a homomorphism of the free product $\pi_{1}\left(X_{1}, x\right) * \pi_{1}\left(X_{2}, x\right) \rightarrow \pi_{1}(X, x)$ defined by

$$
\left(j_{1} \wedge j_{2}\right)\left(a_{1} b_{1} \ldots a_{m} b_{m}\right)=\left(j_{1} a_{1}\right)\left(j_{2} b_{1}\right) \ldots\left(j_{1} a_{m}\right)\left(j_{2} b_{m}\right),
$$

where $a_{i} \in \pi_{1}\left(X_{1}, x\right), b_{i} \in \pi_{1}\left(X_{2}, x\right)$.

Definition 2.7 A space X is said to have a countable basis at the point \boldsymbol{x} if there is a countable collection $\left\{U_{n}\right\}_{n \leq \infty}$ of neighborhoods of x such that any neighborhood U of x contains at least one of the sets U_{n}. A space X that has a countable basis at each of its points is said to satisfy the first countability axiom.

Definition 2.8 A homomorphism is trivial if it maps everything to the identity element.

Definition 2.9 A space is $\mathbf{1 - L C}$ at \boldsymbol{x} (locally simply connected at x) if for every open set $U \ni x$ there exists an open set $V \subseteq U, V \ni x$ such that the homomorphism i_{*} : $\pi_{1}(V, x) \rightarrow \pi_{1}(U, x)$ is trivial.

Definition 2.10 A space is semi 1-LC at \boldsymbol{x} (semilocally simply connected at x) if there exists an open set $U \ni x$ such that the homomorphism $i_{*}: \pi_{1}(U, x) \rightarrow \pi_{1}(X, x)$ is trivial.

The goal of this paper is to show that the 1-LC property in Griffiths' theorem cannot be replaced with the semi 1-LC property. Griffiths stated that Theorem 2.6 is an immediate consequence of the following two theorems [[6], p.176]:

Theorem 2.11 If X_{1} and X_{2} are Hausdorff and X_{1} is 1-LC at x, then the homomorphism $\left(i_{1} \wedge i_{2}\right): \pi_{1}\left(X_{1}, x\right) * \pi_{1}\left(X_{2}, x\right) \rightarrow \pi_{1}(X, x)$ is onto, where X is the one point union of X_{1} and X_{2}.

Theorem 2.12 If both X_{1} and X_{2} are closed in X, Hausdorff, and satisfy the first axiom of countability, and $X_{1} \cap X_{2}=\{x\}$, then the homomorphism ($i_{1} \wedge i_{2}$) has a zero kernel.

Only the proof of Theorem 2.11 requires the 1-LC property, therefore the proof of Theorem 2.12 will be omitted.

Proof of Theorem 2.11: Let $f: I \rightarrow X$ be a loop based at x. Since $[0,1]$ is compact, X is Hausdorff, and f is continuous, then $F=f([0,1])$ is closed in X ; since X_{1} and X_{2} are closed in X, we have $F_{1}=F \cap X_{1}$ and $F_{2}=F \cap X_{2}$ closed in X_{1} and X_{2} respectively.

Therefore $F_{i}^{\prime}=f^{-1}\left(F_{i}\right)$ is closed in $[0,1]$ for $i=1,2$.
Claim 1: Every open set in \mathbb{R} can be written as the countable union of disjoint open intervals[[3], p.136].

Proof of Claim 1: Let $U \subseteq \mathbb{R}$ be open. For each $x \in U$, let I_{x} be the union of open intervals J containing x. $I_{x}=\bigcup_{J_{p} \subseteq U, x \in J_{p}} J_{p}$ exists for every x since U is open, hence every point $x \in U$ is an interior point. I_{x} is an open interval, since it is the union of open intervals. Notice that if $x_{1} \neq x_{2}, x_{1}, x_{2} \in U$ then either $I_{x_{1}}=I_{x_{2}}$ or $I_{x_{1}} \cap I_{x_{2}}=0$. Let $a \in I_{x_{1}} \cap I_{x_{2}}$, then $I_{x_{1}} \cup I_{x_{2}}$ is an open interval containing both x_{1} and x_{2}. Hence $I_{x_{1}} \cup I_{x_{2}} \subseteq I_{x_{1}}$, and $I_{x_{1}} \cup I_{x_{2}} \subseteq I_{x_{2}}$. Therefore $I_{x_{1}}=I_{x_{2}}$. Finally, let us fix a rational number in each I_{x}. Since the rational numbers are countable, there are only countable many disjoint open intervals. Obviously, each $x \in U$ is in some I, namely I_{x}. End of Claim 1.

Hence the open set $[0,1] \backslash F_{2}^{\prime}$ is the union of a countable set of disjoint intervals I_{i}, each I_{i} being open in $[0,1]$. Because the space X_{1} is first countable and 1-LC at x, we can construct the following sequence. Let U_{1} be a neighborhood of x in X_{1}. Let $\left\{V_{i}\right\}$ be the countable collection of open sets in X_{1} containing x such that any open set in X_{1} containing x contains at least one member of $\left\{V_{i}\right\}$. Since X_{1} is 1-LC there is an open set $V \subseteq U_{1}$ such that $\pi_{1}(V, x) \rightarrow \pi_{1}\left(U_{1}, x\right)$ is trivial. Let $U_{2}=V_{i}$ such that $V_{i} \subseteq V$. Then obviously $\pi_{1}\left(U_{2}, x\right) \rightarrow \pi_{1}\left(U_{1}, x\right)$ is trivial. Continuing in the above manner we obtain a sequence

$$
X_{1} \supseteq U_{1} \supseteq \ldots \supseteq U_{m} \supseteq \ldots
$$

of neighborhoods of $x \in X_{1}$, such that

$$
\bigcap_{m=1}^{\infty} U_{m}=x
$$

and, for each $m>1$, the injection

$$
j_{m}: \pi_{1}\left(U_{m}, x\right) \rightarrow \pi_{1}\left(U_{m-1}, x\right)
$$

is trivial. For each m, let S_{m} be the collection of all those $I_{i} \in S$ for which $f\left(I_{i}\right) \subseteq U_{m}$. Since f is uniformly continuous on $[0,1]$ and $\bigcap U_{m}=x$, we have that

$$
S_{m}-S_{m+1}=\left\{I_{m 1}, I_{m 2}, \ldots, I_{m p(m)}\right\}
$$

is a finite set. Also each $\dot{I}_{m n} \subseteq F_{2}^{\prime} \cap F_{1}^{\prime}(\dot{I}$ represents the frontier of I; i.e. $\dot{I}=\bar{I} \cap \overline{\mathbb{R} \backslash I})$, so that $f\left(\dot{I}_{m n}\right)=x$; thus $f_{m n}=\left(f \mid I_{m n}\right)$ defines an element of $\pi_{1}\left(U_{m}, x\right)$. This means that $F_{m n}=f_{m n} \circ \alpha_{m n}$ is an element of $\pi_{1}\left(U_{m}, x\right)$, where $\alpha_{m n}:[0,1] \rightarrow I_{m n}$ is a linear map. Therefore, if $m>1$, then $F_{m n}$ is path homotopic to the trivial loop in U_{m-1} (with x kept fixed during the homotopy), say by homotopy

$$
\psi_{m n}: \overline{I_{m n}} \times I \rightarrow U_{m-1} .
$$

Every $a \in[0,1]$ is either in F_{2}^{\prime} or in some (unique) $I_{m n}$, and so we can define without ambiguity a homotopy

$$
\psi: I \times I \rightarrow X
$$

by

$$
\psi(a, t)= \begin{cases}f(a) & \text { if } a \in F_{2}^{\prime} \cup I_{11} \cup \ldots \cup I_{1 p(1)}, \\ \psi_{m n}(a, t) & \text { if } a \in I_{m n}(m>1)\end{cases}
$$

We must prove ψ continuous at all points $z \in I \times I$. Consider $z \in(0,1) \times I$. If $z \in I_{m n}$, $m>1$ then $\psi=\psi_{m n}$ is continuous at z by continuity of $\psi_{m n}$. If $z=(a, t)$ such that $a \in F_{2}^{\prime} \cup I_{11} \cup \ldots \cup I_{1 p(1)}$ then $\psi=f$ is unique and hence continuous at z by continuity of f at a. We are dealing with two continuous functions, defined on disjoint sets of points. $\psi_{m n}(a, t)$ is continuous for every $(a, t) \in I_{m n} \times[0,1]$ where $m \neq 1$. Since all $I_{m n}$ are open intervals, we do not need to consider continuity of $\psi_{m n}$ at the endpoints of each $I_{m n} . f$ is continuous for every $a \in[0,1]$, however $f(0)=f(1)$. Therefore, the continuity follows for all z except when $z \in\{0,1\} \times I$, and here by definition of continuity it suffices to show that, given U_{q}, there exists a neighborhood $V=V(z) \subseteq I \times I$ such that $\psi(V) \subseteq U_{q}$. If the point 0 is in some $I_{m n}$, then the continuity of ψ for all $z=(0, t)$ follows from that of $\psi_{m n}$. Suppose then that 0 is not in the closure of any interval $I_{m n}$. Now f is continuous at 0 , so there is a neighborhood $W=W(0) \in[0,1]$ for which $f(W) \subseteq U_{q}$. The uniform continuity of f on $[0,1]$ also implies that

$$
\lim _{m \rightarrow \infty}\left\{l u b_{1 \leq n \leq p(m)}\left(\text { length } I_{m n}\right)\right\}=0 .
$$

Claim 2: We can assume W to be such that every $I_{m n}$, which meets W is contained in W.

Proof of Claim 2: Let $b_{m n} \in I_{m n} \cap W$. Since $I_{m n} \backslash W \neq \emptyset$, let $a_{m n} \in I_{m n} \backslash W$. Clearly, $d\left(b_{m n}, a_{m n}\right)>0$. Since

$$
\lim _{m \rightarrow \infty}\left\{l u b_{1 \leq n \leq p(m)}\left(\text { length } I_{m n}\right)\right\}=0
$$

we have $\lim _{m \rightarrow \infty} d\left(b_{m n}, a_{m n}\right)=0$. Therefore for every $\epsilon>0$, there exists an $n_{\epsilon} \in \mathbb{N}$ such that $d\left(b_{m n}, a_{m n}\right)<\epsilon$ for every $m \geq n_{\epsilon}$. If $I_{m n} \cap W \neq \emptyset$ and $I_{m n} \backslash W \neq \emptyset$, let $W=W \backslash\left(I_{m n} \cap W\right)$. By the above, there are only finitely many $I_{m n}$'s that intersect but are not contained in W, hence this would be repeated at most finitely many times giving us the desired set W. End of Claim 2.

We can also assume that the $I_{m n}$'s mentioned above are so small that $\psi_{m n}\left(I_{m n} \times I\right) \subseteq U_{q}$. Hence, if $a \in W$, then either $a \in F_{2}^{\prime}$ or a is in some $I_{m n}$. If $a \in F_{2}^{\prime}$, then $\psi(a, t)=f(a)$ for all t , and $f(a) \in f(W) \subseteq U_{q}$; and if $a \in I_{m n}$, then $a \in W$, hence $\psi(a, t) \in \psi_{m n}\left(I_{m n} \times\right.$ $I) \subseteq U_{q}$. Therefore $\psi(W \times I) \subseteq U_{q}$, i.e. ψ is continuous at all points $(0, t) \in I \times I$. Similar argument shows that ψ is continuous at all points $(1, t)$. Hence ψ is continuous everywhere in $I \times I$, as desired.

Clearly $\psi(a, 0)=f(a) ;$ define f^{\prime} by $f^{\prime}(a)=\psi(a, 1)$, so that $f^{\prime} \simeq f$ in X (with x kept fixed during the homotopy). We now express $[0,1]$ as

$$
[0,1]=J_{1} \cup I_{11} \cup J_{2} \cup I_{12} \cup \ldots \cup J_{p} \cup I_{1 p} \cup J_{p+1},
$$

where $p=p(1)$, the J 's are closed intervals disjoint from the I 's and each other, and the numbering is such that, if

$$
s \in J_{i}, \quad q \in I_{1 j}, \quad r \in J_{i+1},
$$

then $s<q<r$ for each appropriate i. By definition $I_{1 j} \cap I_{1 k}=\emptyset$ for all $j \neq k$. Since each $I_{1 j}$ is open, $0 \notin I_{1} j$ for all j. Let $I_{11}=\left(a_{1}, a_{2}\right)$ and define $J_{1}=\left[0, a_{1}\right]$. Let $I_{12}=\left(a_{3}, a_{4}\right)$ and define $J_{2}=\left[a_{2}, a_{3}\right]$. Continue in such a way by defining $J_{k}=\left[a_{2(k-1)}, a_{2(k-1)+1}\right]$ where $I_{1 k}=\left(a_{2(k-1)+1}, a_{2 k}\right)$ for $k \leq p$. Define J_{p+1} as $J_{p+1}=\left[a_{2 p}, 1\right]$. Clearly the collection of $I_{1 j}$ and J_{j} as defined above satisfies the conditions listed. Write

$$
f_{j}=f^{\prime}\left|\bar{I}_{1 j}, \quad \quad g_{j}=f^{\prime}\right| J_{j}
$$

Then $f_{j}\left(\bar{I}_{1 j}\right) \subseteq X_{1}$ and $g_{j}\left(J_{j}\right) \subseteq X_{2}$, so that f^{\prime} is the product mapping

$$
f^{\prime}=g_{1} f_{1} g_{2} f_{2} \ldots g_{p} f_{p} g_{p+1} .
$$

Therefore, if homotopy classes in $\pi_{1}(X, x), \pi_{1}\left(X_{i}, x\right)$ are denoted by $R(),. R_{i}($.$) , respec-$ tively, we have

$$
\begin{aligned}
R f=R f^{\prime} & =R\left(g_{1} f_{1} g_{2} f_{2} \ldots g_{p} f_{p} g_{p+1}\right) \\
& =\left(R g_{1}\right)\left(R f_{1}\right) \ldots\left(R g_{p}\right)\left(R f_{p}\right)\left(R g_{p+1}\right) \\
& =\left(i_{2} R_{2} g_{1}\right)\left(i_{1} R_{1} f_{1}\right) \ldots\left(i_{2} R_{2} g_{p}\right)\left(i_{1} R_{1} f_{p}\right)\left(i_{2} R_{2} g_{p+1}\right) \\
& =\left(i_{1} \wedge i_{2}\right)\left\{\left(R_{2} g_{1}\right)\left(R_{1} f_{1}\right) \ldots\left(R_{2} g_{p}\right)\left(R_{1} f_{p}\right)\left(R_{2} g_{p+1}\right)\right\} \\
& =\left(i_{1} \wedge i_{2}\right) \delta,
\end{aligned}
$$

where $\delta \in \pi_{1}\left(X_{1}, x\right) * \pi_{1}\left(X_{2}, x\right)$. Therefore $\left(i_{1} \wedge i_{2}\right)$ is onto, as desired.

Chapter 3

Expansion of the theorem

3.1 Introduction

It is a common practice in the field of mathematics to generalize already existing theorems. In the previous chapter we introduced Griffiths' result for the fundamental group of one point union of spaces with the 1-LC property. One might ask if this result can be generalized for semi 1-LC spaces. The claim of this paper is that the theorem presented by Griffiths cannot be generalized to semi 1-LC spaces. We will consider two spaces that will contradict the statement: "If one of X_{1}, X_{2} is semi 1-LC at x, and both X_{1} and X_{2} are closed in X and satisfy the first axiom of countability, then

$$
\left(i_{1} \wedge i_{2}\right): \pi_{1}\left(X_{1}, x\right) * \pi_{1}\left(X_{2}, x\right) \simeq \pi_{1}(X, x)
$$

where $X=X_{1} \cup X_{2}$ and $X_{1} \cap X_{2}=\{x\}$." In the next section we will construct two spaces with the following properties:

1. X is semi 1-LC (but not 1-LC)
2. $\pi_{1}\left(X, x_{0}\right)$ is trivial
3. the fundamental group of the one point union of X with itself is not trivial.

Obviously if the above spaces exist they would provide the necessary contradiction. Clearly if $\pi_{1}\left(X_{1}, x_{0}\right) \approx 0$, and $\pi_{1}\left(X_{2}, x_{0}\right) \approx 0$ then $\pi_{1}\left(X_{1}, x_{0}\right) * \pi_{1}\left(X_{2}, x_{0}\right) \approx 0 \neq$ $\pi_{1}\left(X, x_{0}\right)$.

Figure 3.1: Space X

3.2 First counterexample

3.2.1 Description of the space X

In this section we will be dealing with a space that we will refer to as X . Let us first define the space carefully. X is the cone over the space B defined as the union of circles with radius approaching 0 . The largest circle, call it S_{1}, has radius $r_{1}=\frac{1}{4}$, and each consecutive circle S_{n} has radius $r_{n}=\frac{1}{2^{n+1}}$. The center of each S_{n} is $c_{n}=\left(\frac{3}{2^{n+1}}, 0,0\right)$ and the point of intersection of two consecutive circles is $z_{n}=S_{n} \cap S_{n-1}=\left(\frac{1}{2^{n}}, 0,0\right)$. Let us label the "tip" of the cone, $p=(1,0,1)$. Let $x_{0}=(0,0,0)$ and $S=x_{0} t+p(1-t)$ the straight line segment between x_{0} and p.

Another way to describe X is as $X=\bigcup_{n \in N} \operatorname{Con}\left(S_{n}\right) \cup S$ where

$$
\operatorname{Con}\left(S_{n}\right)=\left\{(x, y, z) \mid(x, y, z)=a_{n} t+p(1-t) \text { for } a_{n} \in A_{n}, t \in[0,1]\right\}
$$

and

$$
A_{n}=\left\{(x, y, 0) \left\lvert\, y= \pm \sqrt{\left(\frac{1}{2^{n+1}}\right)^{2}-\left(x-\frac{3}{2^{n+1}}\right)^{2}}\right., \frac{1}{2^{n}} \leq x \leq \frac{1}{2^{n-1}}\right\} .
$$

In this notation $B=\bigcup_{n \in N} A_{n} \cup\left\{x_{0}\right\}$. Let

$$
\operatorname{Con}\left(S_{n}^{+}\right)=\left\{(x, y, z) \mid(x, y, z)=a_{n}^{+} t+p(1-t) \text { for } a_{n}^{+} \in A_{n}^{+}, t \in[0,1]\right\}
$$

where

$$
A_{n}^{+}=\left\{(x, y, 0) \left\lvert\, y=\sqrt{\left(\frac{1}{2^{n+1}}\right)^{2}-\left(x-\frac{3}{2^{n+1}}\right)^{2}}\right., \frac{1}{2^{n}} \leq x \leq \frac{1}{2^{n-1}}\right\}
$$

Let

$$
\operatorname{Con}\left(S_{n}^{-}\right)=\left\{(x, y, z) \mid(x, y, z)=a_{n}^{-} t+p(1-t) \text { for } a_{n}^{-} \in A_{n}^{-}, t \in[0,1]\right\}
$$

where

$$
A_{n}^{-}=\left\{(x, y, 0) \left\lvert\, y=-\sqrt{\left.\left(\frac{1}{2^{n+1}}\right)^{2}-\left(x-\frac{3}{2^{n+1}}\right)\right)^{2}}\right., \frac{1}{2^{n}} \leq x \leq \frac{1}{2^{n-1}}\right\}
$$

For each sequence $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots\right)$ with $\epsilon_{i}= \pm 1$ the set $X_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots}=\bigcup_{i=1}^{\infty} \operatorname{Con}\left(S_{n}^{\epsilon_{i}}\right) \cup S$ is homeomorphic to the solid triangle T with vertices $(0,0,0),(1,0,0),(1,0,1)$.

Let us state the Tube Lemma[[1], p. 168] used in the proof of the next Claim.

Lemma 3.1 Consider the product space $X \times Y$, where Y is compact. If N is an open set of $X \times Y$ containing the slice $x_{0} \times Y$ of $X \times Y$, then N contains some tube $W \times Y$ about $x_{0} \times Y$, where W is a neighborhood of x_{0} in X.

Claim 1: The projection $h: X_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots} \rightarrow T, h(x, y, z)=(x, 0, z)$ is a homeomorphism.
Proof of Claim 1: Notice that $X_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots} \subseteq T \times\left[-\frac{1}{2}, \frac{1}{2}\right]$, so h is a restriction of a projection of $\pi: T \times\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow T$. It is a well known fact that a projection of a product space onto one of its components is continuous, and a restriction of a continuous function is continuous. Hence h is continuous. Let us show h is injective. Assume $\left(x_{1}, 0, z_{1}\right)=$ $\left(x_{2}, 0, z_{2}\right)$, then $y_{1}=y_{2}$, since $y= \pm \sqrt{\left(\frac{1}{2^{n+1}}\right)^{2}-\left(x-\frac{3}{2^{n+1}}\right)^{2}}$ and the points are limited to $\operatorname{Con}\left(S_{n}^{+}\right)$or $\operatorname{Con}\left(S_{n}^{-}\right)$. Hence $\left(x_{1}, y_{1}, z_{1}\right)=\left(x_{2}, y_{2}, z_{2}\right)$ and h is one-to-one. Let us show h is onto. For any $(x, 0, z) \in T$, take $(x, y, z) \in X_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots}$. such that $(x, y, z) \in \operatorname{Con}\left(S_{n}^{+}\right)$ or $(x, y, z) \in \operatorname{Con}\left(S_{n}^{-}\right)$for some n. Such point exists since $(0,0,0) t+(1,0,1)(1-t)$ is a side of the triangle $\mathrm{T},(1,0,0) t+(1,0,1)(1-t)$ is a side of the triangle T , and $0 \leq x \leq 1, z=0$ is a side of the triangle T. The rest of the points form a path connected convex space between these edges. Hence there is a y such that $(x, y, z) \in \operatorname{Con}\left(S_{n}^{+}\right)$or $(x, y, z) \in \operatorname{Con}\left(S_{n}^{-}\right)$for some n. So h is onto.

Claim 2: A closed subset of a compact space is compact.
Proof of Claim 2: Let A be a closed subset of a compact space X. Let $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots\right\}$ be an open covering of A. Then $\mathcal{U} \cup(X \backslash A)$ is an open covering of X. Since X is compact, there is a finite subcollection of the above sets, say V that covers X. Either $(X \backslash A)$ is in that finite collection, in which case we remove $(X \backslash A)$ from V, or $(X \backslash A)$ is not in the subcollection, in which case we already have a finite subcollection of U covering A. Hence A is compact. End of Claim 2.

Claim 3: A product of two compact spaces is compact.
Proof of Claim 3: Let $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots\right\}$ be an open covering of $X \times Y$, where both X and Y are compact. Let $p \in X$, then $p \times Y$ is homeomorphic to Y, hence it is
compact. We can cover $p \times Y$ with finitely many elements of \mathcal{U}, say $U_{1}, U_{2}, \ldots, U_{n}$. Let $V=U_{1} \cup U_{2} \cup \ldots \cup U_{n}$. Then V is an open set containing $p \times Y$. By the Tube Lemma, V contains an open set $H \times Y \supseteq p \times Y$, where H is an open set in X. Hence $H \times Y$ can be covered by finitely many elements $U_{1}, U_{2}, \ldots, U_{n}$. Take $x \in X$, then we can choose an open set H_{x} in X such that $H_{x} \times Y$ can be covered with finitely many elements of \mathcal{U}. Since we can choose H_{x} for every $x \in X$, the collection $\left\{H_{x}\right\}_{x \in X}$ covers X. Since X is compact, we can cover X with finitely many members of $\left\{H_{x}\right\}_{x \in X}$, say $H_{x_{1}}, H_{x_{2}}, \ldots, H_{x_{n}}$. Then $H_{x_{1}} \times Y, H_{x_{2}} \times Y, \ldots, H_{x_{n}} \times Y$ covers $X \times Y$. Since there are finitely many of these sets, and each one of them can be covered with finitely many elements of $\mathcal{U}, X \times Y$ can be covered with finitely many members of \mathcal{U}. Hence $X \times Y$ is compact. End of Claim 3.

Therefore, we have that $T \times\left[-\frac{1}{2}, \frac{1}{2}\right]$ is compact. Take any infinite sequence of points in $X_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots}$. Either there is an n such that all but finitely many points of the sequence lie in $\operatorname{Con}\left(S_{n}\right)$ or only a finite number of points lie in each $\operatorname{Con}\left(S_{n}\right)$ implying that the points (just as $\operatorname{Con}\left(S_{n}\right)$) limit to the segment S . In the first case the sequence limits to a point in the specified $\operatorname{Con}\left(S_{n}\right)$ and since each $\operatorname{Con}\left(S_{n}\right)$ is closed, the limit point is in $X_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots}$. In the second case, the limit point of the sequence is in $S \subseteq X_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots}$. Therefore $X_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots .}$ is a closed subset of $T \times\left[-\frac{1}{2}, \frac{1}{2}\right]$, hence it is compact. Since h is a continuous, one-to-one, and onto function on a compact set it is a homeomorphism. End of Claim 1.

3.2.2 Local connectedness and Semi Local Connectedness of \mathbf{X}

Definition 3.2 A space X is said to be contractible if the identity map $i_{X}: X \rightarrow X$ is homotopic to a constant map.

Let us show that X as described above is semi 1-LC at x_{0} but not 1-LC at x_{0}. By Theorem 3.3, $\pi_{1}\left(X, x_{0}\right)=0$. Therefore the homomorphism $i_{*}: \pi_{1}\left(U, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is trivial for any $x_{0} \in X$. Hence, X is semi 1-LC. Now let us show X is not 1-LC. Take any open set $U \ni x_{0}$. By definition of X, $U \supseteq D_{n}$ for some n, where $D_{n}=B \backslash\left\{S_{i}\right\}_{i \leq n} \cup\left\{z_{n}\right\}$. Any set $V \subseteq U, V \ni x_{0}$ will again have the property that $V \supseteq D_{m}$ for some $m \geq n$. Notice that if $p \notin U, U \supseteq D_{n}$ but U does not contain D_{n-1} then $\pi_{1}\left(U, x_{0}\right) \approx \pi_{1}\left(D_{n}, x_{0}\right)$. Since $\pi_{1}\left(D_{m}, x_{0}\right) \rightarrow \pi_{1}\left(D_{n}, x_{0}\right)$ is not trivial for any $m, n \in N, m \geq n$, we have that $\pi_{1}\left(V, x_{0}\right) \rightarrow \pi_{1}\left(U, x_{0}\right)$ is not trivial for any $V \subseteq U$. Hence X is not 1-LC.

3.2.3 The fundamental group of X

Theorem 3.3 If X is the space defined in this section, and $x_{0}=(0,0,0) \in X$, then $\pi_{1}\left(X, x_{0}\right)$ is trivial.

Two proofs will be provided for the above theorem. The first proof will use the fact that X is a cone, and the second one will involve construction of a homotopy.

First Proof of Theorem 3.3:
Let us introduce the concept of quotient spaces[[9], p.161].

Definition 3.4 Let X be a space and S an equivalence relation on X. Then S partitions X into a family X / S of equivalence classes. The quotient topology for X / S is defined by the following condition: A set U of equivalence classes in X / S is open if and only if
the union of the members of U is open in X. The quotient space of X modulo S is the set X / S with the quotient topology.

Let B be the infinite chain of circles with radius approaching zero union the point $\left\{x_{0}\right\}$ as defined previously. Define the relation on $B \times I$ by $(x, t) \sim\left(x^{\prime}, t^{\prime}\right)$ if $t=t^{\prime}=1$. Denote the equivalence class of (x, t) by $[x, t]$. Let $X=B \times I / \sim$ be the cone over B.

Step 1: Let us show that X is contractible to $p=[x, 1]$. Define a map $F: X \times I \rightarrow X$ by $F([x, t], s)=[x,(1-s) t+s]$. Obviously $F([x, t], 0)=[x, t]$ and $F([x, t], 1)=[x, 1]=p$. We have a deformation retraction of X to p, hence X is contractible to p.

Step 2: Show that the fundamental group at x of any space contractible to x is trivial (in this case $\pi_{1}(X, p) \approx 0$). Take any path $\alpha: I \rightarrow X$, use the map defined above as the homotopy of α to p. Hence, any path in X is homotopic to the constant map at p (i.e. $\left.\pi_{1}(X, p) \approx 0\right)$.

Step 3: Show that if X is path connected and $x, x^{\prime} \in X$ then $\pi_{1}(X, x) \approx \pi_{1}\left(X, x^{\prime}\right)$. Let $\gamma: I \rightarrow X$, be such that $\gamma(0)=x$ and $\gamma(1)=x^{\prime}$. We will write $[f] *[g]$ as $[f][g]$ when it is clear we are dealing with products of paths. Define a map $\Psi: \pi_{1}(X, x) \rightarrow \pi_{1}\left(X, x^{\prime}\right)$ by $\Psi([f])=\left[\gamma^{-1}\right][f][\gamma]$ where $f \in \pi_{1}(X, x)$. This map is a homomorphism since:

$$
\begin{aligned}
\Psi([f]) * \Psi([g]) & =\left[\gamma^{-1}\right][f][\gamma]\left[\gamma^{-1}\right][g][\gamma]= \\
& =\left[\gamma^{-1}\right][f][g][\gamma]=\Psi([f][g]) .
\end{aligned}
$$

Since γ is fixed $\left[\gamma^{-1}\right][f][\gamma]=\left[\gamma^{-1}\right][g][\gamma]$ implies $[f]=[g]$, hence Ψ is one-to-one. To show Ψ is onto, let $[g] \in \pi_{1}\left(X, x^{\prime}\right)$. Then $[\gamma][g]\left[\gamma^{-1}\right] \in \pi_{1}(X, x)$ and $\Psi\left([\gamma][g]\left[\gamma^{-1}\right]\right)=$ $\left[\gamma^{-1}\right][\gamma][g]\left[\gamma^{-1}\right][\gamma]=[g]$. Hence Ψ is onto. Therefore Ψ is an isomorphism and $\pi_{1}(X, x) \approx$
$\pi_{1}\left(X, x^{\prime}\right)$.
We conclude that since $\pi_{1}(X, p) \approx 0$, and $\pi_{1}(X, p) \approx \pi_{1}\left(X, x_{0}\right)$, then $\pi_{1}\left(X, x_{0}\right) \approx 0$.
Second Proof of Theorem 3.3:
Let $f: I \rightarrow X$ be such that $f(0)=f(1)=x_{0}$. Let $\alpha: I \rightarrow X$ be the straight line segment between x_{0} and $p, \alpha(t)=(1-t) x_{0}+t p$, and $\bar{\alpha}$ the reverse of α defined as $\bar{\alpha}(t)=\alpha(1-t)$. Let $g(s, t)=(1-t) f(s)+t p$. Notice that $g(0, t)=\alpha(t)$ and $g(1, t)=\alpha(t)$. Define the homotopy of f to $\alpha * \bar{\alpha}, \bar{H}: I \times I \rightarrow X$, by:

$$
\bar{H}(s, t)=\left\{\begin{array}{lll}
\alpha(2 s) & & 0 \leq s \leq \frac{1}{2} t \\
\left\{\begin{array}{lll}
g\left(\frac{2 s-t}{2-2 t}, t\right) & \text { if } t \neq 1 & \frac{1}{2} t \leq s \leq 1-\frac{1}{2} t, \\
g(s, 1)=p & \text { if } t=1
\end{array}\right. \\
\alpha(2-2 s) & 1-\frac{1}{2} t \leq s \leq 1 .
\end{array}\right.
$$

Let us check that this homotopy is well defined and continuous.
First, $\lim _{t \rightarrow 1} g(s, t)=p$, hence that part is continuous. Now let us check if the Pasting Lemma can be applied:

$$
\alpha\left(2\left(\frac{1}{2} t\right)\right)=\alpha(t) .
$$

For $t \neq 1$ we have:

$$
\begin{gathered}
g\left(\frac{2\left(\frac{1}{2} t\right)-t}{2-2 t}, t\right)=g(0, t)=\alpha(t) \\
g\left(\frac{2\left(1-\frac{1}{2} t\right)-t}{2-2 t}, t\right)=g(1, t)=\alpha(t) .
\end{gathered}
$$

For $t=1$, we have

$$
g(s, 1)=p=\alpha(1),
$$

and lastly

$$
\alpha\left(2-2\left(1-\frac{1}{2} t\right)\right)=\alpha(t) .
$$

Hence \bar{H} is well defined and continuous by the Pasting Lemma. Also,

$$
\begin{array}{ll}
\bar{H}(s, 0)=g(s, 0)=f(s) & \bar{H}(0, t)=\alpha(0)=x_{0}, \\
\bar{H}(s, 1)=\alpha * \bar{\alpha} & \bar{H}(1, t)=\alpha(0)=x_{0} .
\end{array}
$$

Define a homotopy of $\alpha * \bar{\alpha}$ to $x_{0}, \widetilde{H}: I \times I \rightarrow X$, by

$$
\widetilde{H}(s, t)= \begin{cases}\alpha(2 s) & 0 \leq s \leq \frac{1}{2}-\frac{1}{2} t \\ \alpha(1-t) & \frac{1}{2}-\frac{1}{2} t \leq s \leq \frac{1}{2} t+\frac{1}{2} \\ \alpha(2-2 s) & \frac{1}{2} t+\frac{1}{2} \leq s \leq 1\end{cases}
$$

Let us check that this homotopy is well defined and continuous.

$$
\begin{gathered}
\alpha\left(2\left(\frac{1}{2}-\frac{1}{2} t\right)\right)=\alpha(1-t), \\
\alpha\left(2-2\left(\frac{1}{2} t+\frac{1}{2}\right)\right)=\alpha(1-t) .
\end{gathered}
$$

Hence \widetilde{H} is well defined and continuous by the pasting lemma. Also,

$$
\begin{array}{ll}
\widetilde{H}(s, 0)=\alpha * \bar{\alpha} & \widetilde{H}(0, t)=\alpha(0)=x_{0}, \\
\widetilde{H}(s, 1)=\alpha(0)=x_{0} & \widetilde{H}(1, t)=\alpha(0)=x_{0} .
\end{array}
$$

Define a homotopy of f to $x_{0}, H: I \times I \rightarrow X$, by

$$
H= \begin{cases}\bar{H}(s, 2 t) & \text { for } t \in\left[0, \frac{1}{2}\right] \\ \widetilde{H}(s, 2 t-1) & \text { for } t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Let us check that this homotopy is well defined and continuous:

$$
\bar{H}\left(s, 2 \cdot \frac{1}{2}\right)=\bar{H}(s, 1)=\alpha(2 s) * \alpha(2-2 s)
$$

and

$$
\widetilde{H}\left(s, 2 \cdot \frac{1}{2}-1\right)=\widetilde{H}(s, 0)=\alpha(2 s) * \alpha(2-2 s) .
$$

Hence H is well defined and continuous by the Pasting Lemma.

Let us check that the following are satisfied:

$$
\begin{aligned}
& H(s, 0)=f(s) \quad H(0, t)=x_{0}, \\
& H(s, 1)=x_{0} \quad H(1, t)=x_{0} . \\
& H(s, 0)=\bar{H}(s, 0)=g(s, 0)=f(s), \\
& H(s, 1)=\widetilde{H}(s, 1)=\alpha(1-1)=\alpha(0)=x_{0}, \\
& H(0, t)=H(1, t)=\alpha(0)=x_{0} .
\end{aligned}
$$

Hence we have a homotopy between any path in X originating at x_{0} and a constant path at x_{0}. This concludes the second proof.

3.2.4 The fundamental group of a one point union of two copies of X

In this section we will consider the one point union of two copies of the space X as described above. We will call the first copy of this cone space X_{1} and the second copy X_{2}. The space X will be defined as $X=X_{1} \cup X_{2}$ where $X_{1} \cap X_{2}=\left\{x_{0}\right\}, x_{0}$ is the limiting point as defined in previous section, $x_{0}=(0,0,0)$. The points p_{1} and p_{2} are the "tips" of the spaces X_{1} and X_{2} respectively (i.e. $p_{1}=(1,0,1)$ and $p_{2}=(-1,0,1)$). When we described the space in the previous section we had the concept of z_{n} and c_{n}. From now on $-z_{n}=\left(-\frac{1}{2^{n}}, 0,0\right)$ is the equivalent of z_{n} in X_{2}. In other words $z_{n} \in X_{1}$ and $-z_{n} \in X_{2}$. Also, X_{1} is the cone over B_{1} and X_{2} is the cone over B_{2}.

Figure 3.2: Union of two copies of X

Let us define the metric d_{X} on X as follows:

$$
d_{X}(a, b)= \begin{cases}d\left(a, x_{0}\right)+d\left(b, x_{0}\right) & \text { for } a \in X_{1}, b \in X_{2} \text { or } a \in X_{2}, b \in X_{1} \\ d(a, b) & \text { for } a, b \in X_{1} \text { or } a, b \in X_{2}\end{cases}
$$

where d is the default metric on \mathbb{R}^{2} and $a, b \in X$. Let us show that d_{X} is truly a metric on X. First let us recall the definition of a metric [[1], p.119].

Definition 3.5 A metric on a set X is a function

$$
d: X \times X \rightarrow \mathbb{R}
$$

having the following properties:

1. $d(x, y) \geq 0$ for all $x, y \in X ; d(x, y)=0$ if and only if $x=y$.
2. $d(x, y)=d(y, x)$ for all $x, y \in X$.
3. $d(x, y)+d(y, z) \geq d(x, z)$ for all $x, y, z \in X$.

Let us verify the above for d_{X}.
First, $d_{X}(x, y) \geq 0$ since d is a metric and hence $d\left(x, x_{0}\right)+d\left(y, x_{0}\right) \geq 0$ and $d(x, y) \geq 0$ for all $x, y \in X$. Also, if $x=y$ then $x, y \in X_{1}$ or $x, y \in X_{2}$, hence $d_{X}(x, y)=d(x, y)=0$. If $x, y \in X_{1}$ or $x, y \in X_{2}$ we have $d_{X}(x, y)=d(x, y)=d(y, x)=d_{X}(y, x)$. If $x \in X_{1}$ and $y \in X_{2}$, then $d_{X}(x, y)=d\left(x, x_{0}\right)+d\left(y, x_{0}\right)=d\left(y, x_{0}\right)+d\left(x, x_{0}\right)=d_{X}(y, x)$. Symmetric argument works when $x \in X_{2}$ and $y \in X_{1}$.

If $x, y, z \in X_{1}$ or $x, y, z \in X_{2}$ we have $d_{X}(x, y)+d_{X}(y, z)=d(x, y)+d(y, z) \geq d(x, z)=$ $d_{X}(x, z)$. If $x, y \in X_{1}$ and $z \in X_{2}$, then $d_{X}(x, y)+d_{X}(y, z)=d(x, y)+d\left(y, x_{0}\right)+d\left(z, x_{0}\right) \geq$
$d\left(x, x_{0}\right)+d\left(z, x_{0}\right)=d_{X}(x, z)$. Similar argument follows for $x \in X_{1}$ and $y, z \in X_{2}$.
This concludes the proof of d_{X} being a metric on X.
An open set in the topology on X induced by this metric is of the form $B_{\epsilon}(a)=$ $\left\{(x, y) \in X_{2} \mid x^{2}+y^{2}<\left(\epsilon-d\left(a, x_{0}\right)\right)^{2}\right\} \cup\left\{(x, y) \in X_{1} \mid d(a,(x, y))<\epsilon\right\}$ for $a \in X_{1}$ and $B_{\epsilon}(a)=\left\{(x, y) \in X_{1} \mid x^{2}+y^{2}<\left(\epsilon-d\left(a, x_{0}\right)\right)^{2}\right\} \cup\left\{(x, y) \in X_{2} \mid d(a,(x, y))<\epsilon\right\}$ for $a \in X_{2}$. The following Lemma will be used in the proof of the next Theorem.

Lemma 3.6 $\pi_{1}\left(B_{1}, x_{0}\right) \simeq \pi_{1}\left(X_{1} \backslash\left\{p_{1}\right\}, x_{0}\right)$, and $\pi_{1}\left(B_{2}, x_{0}\right) \simeq \pi_{1}\left(X_{2} \backslash\left\{p_{2}\right\}, x_{0}\right)$.

Proof of Lemma 3.6: First let us introduce a definition used in the proof of this Lemma [[7]p.209].

Definition 3.7 Let A be a subspace of X. Then A is a strong deformation retract of X if there is a continuous map $F: X \times I \rightarrow X$ such that

$$
\begin{aligned}
& F(x, 0)=x \text { for all } x \in X \\
& F(x, 1) \in A \text { for all } x \in X \\
& F(a, t)=a \text { for all } a \in A \text { and } t \in I .
\end{aligned}
$$

Step 1: We will show that if A is a strong deformation retract of X and $x_{0} \in A \subseteq X$, then the inclusion map $j:\left(A, x_{0}\right) \rightarrow\left(X, x_{0}\right)$ induces an isomorphism of fundamental groups, $j_{*}: \pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$. Let r be the strong deformation retraction of $X, r: X \rightarrow A$, $r(x)=F(x, 1)$, where $F: X \times I \rightarrow X$ is such that $F(X, 1)=A, F(a, t)=a$ for all $a \in A$ and $t \in[0,1], F(x, 0)=x$ for all $x \in X$. Then $r j=i d_{A}$, hence $r_{*} j_{*}=i d_{\pi_{1}\left(A, x_{0}\right)}$, and j_{*} is injective. Let $[g] \in \pi_{1}\left(X, x_{0}\right), j_{*}$ is surjective if there exists $[f] \in \pi_{1}\left(A, x_{0}\right)$
such that $j_{*}([f])=[g]$. Since $F \circ g$ is a homotopy from a loop g in X to a loop in A, $[g] \rightarrow[f] \in \pi_{1}\left(A, x_{0}\right), j_{*}$ is surjective. Therefore j_{*} is an isomorphism.

Step 2: Next we will show that B_{1} is a strong deformation retraction of $X_{1} \backslash\left\{p_{1}\right\}$. Consider the map $F: X_{1} \backslash\left\{p_{1}\right\} \times I \rightarrow X_{1} \backslash\left\{p_{1}\right\}$ defined by $F([x, s], t)=[x, s(1-t)]$. By definition of a cone, points in B_{1} are of the form $[x, 0]$ and points in $X_{1} \backslash\left\{p_{1}\right\}$ are of the form $[x, t]$ for $t \in[0,1)$. Clearly $F([x, 0], t)=[x, 0]$ (i.e. $F(a, t)=a), F([x, s], 1)=[x, 0]$ (i.e. $F(X, 1)=A$), and $F([x, s], 0)=[x, s]$ (i.e. $F(x, 0)=x)$.Therefore B_{1} is a strong deformation retract of $X_{1} \backslash\left\{p_{1}\right\}$. We conclude that $\pi_{1}\left(B_{1}, x_{0}\right) \simeq \pi_{1}\left(X_{1} \backslash\left\{p_{1}\right\}, x_{0}\right)$. Similar argument shows that $\pi_{1}\left(B_{2}, x_{0}\right) \simeq \pi_{1}\left(X_{2} \backslash\left\{p_{2}\right\}, x_{0}\right)$.

Theorem 3.8 With X the space described above, $\pi_{1}\left(X, x_{0}\right) \neq 0$.

To prove the above theorem it is enough to show that there is a loop f in X based at x_{0} and there is no homotopy between f and x_{0} in X . Consider a loop $f: I \rightarrow X$ defined by:

$$
\begin{aligned}
& f(0)=x_{0}=(0,0,0), \\
& f(s)= \begin{cases}\left(4 n \frac{1}{2^{n}}[(n+1) s-1], y, 0\right) y \geq 0 & \text { for } \frac{1}{n+1} \leq s \leq \frac{4 n+1}{4 n(n+1)}, \\
\left(-\frac{4 n[(n+1) s-1]+3}{2^{n+1}}, y, 0\right) y \leq 0 & \text { for } \frac{4 n+1}{4 n(n+1)} \leq s \leq \frac{2 n+1}{2 n(n+1)}, \\
\left(\frac{4 n[(n+1) s-1]-1}{2^{n+1}}, y, 0\right) y \geq 0 & \text { for } \frac{2 n+1}{2 n(n+1)} \leq s \leq \frac{4 n+3}{4 n(n+1)}, \\
\left(\frac{-4\left(n^{2} s-n+n s-1\right)}{2^{n}}, y, 0\right) y \leq 0 & \text { for } \frac{4 n+3}{4 n(n+1)} \leq s \leq \frac{1}{n},\end{cases}
\end{aligned}
$$

for n odd, where n is the largest integer smaller than $\frac{1}{s}$, and $y= \pm \sqrt{\left(\frac{1}{2^{n+1}}\right)^{2}-\left(x-\frac{3}{2^{n+1}}\right)^{2}}$.

$$
f(s)= \begin{cases}\left(-4 n \sum_{i=n+1}^{\infty} \frac{1}{2^{i}}((n+1) s-1), y, 0\right) y \geq 0 & \text { for } \frac{1}{n+1} \leq s \leq \frac{4 n+1}{4 n(n+1)}, \\ \left(\frac{4 n(n+1)}{2^{n+1}} s-\frac{1}{2^{n}}-\frac{4 n+1}{2^{n+1}}, y, 0\right) y \leq 0 & \text { for } \frac{4 n+1}{4 n(n+1)} \leq s \leq \frac{2 n+1}{2 n(n+1)}, \\ \left(-\frac{4 n(n+1)}{2^{n+1}} s-\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}+\frac{2(2 n+1)}{2^{n+1}}, y, 0\right) y \geq 0 & \text { for } \frac{2 n+1}{2 n(n+1)} \leq s \leq \frac{4 n+3}{4 n(n+1)}, \\ \left(4 \sum_{i=n+1}^{\infty} \frac{1}{2^{i}}(n+1)(n s-1), y, 0\right) y \leq 0 & \text { for } \frac{4 n+3}{4 n(n+1)} \leq s \leq \frac{1}{n},\end{cases}
$$

for n even, where n and y are defined as above. We need to show $f(0)=f(1)=$ $x_{0}=(0,0,0)$ and f is continuous. By definition $f(0)=x_{0}$. If $s=1, n=1$ so $f(1)=\left(-\sum_{i=2}^{\infty} \frac{1}{2^{i}} 4(1)(2)(1)+\sum_{i=2}^{\infty} \frac{1}{2^{i}} 4(2), y, 0\right)=(0, y, 0)=(0,0,0)=x_{0}$. To show continuity we use the pasting lemma. We need to show the definition of f agrees on all the intersections. If $s=0, \lim _{s \rightarrow 0^{+}} \frac{1}{s}=\infty$.

Consider $f(0)=\left(\sum_{i=\infty}^{\infty} \frac{1}{2^{i}} 4 n(n+1) 0-\sum_{i=\infty}^{\infty} \frac{1}{2^{i}} 4 n, y, 0\right)=(0, y, 0)=(0,0,0)=x_{0}$.

Now consider:

$$
\begin{aligned}
f\left(\frac{4 n+1}{4 n(n+1)}\right) & =\left(\sum_{i=n+1}^{\infty} \frac{4 n+1}{2^{i}}-\sum_{i=n+1}^{\infty} \frac{4 n}{2^{i}}, y, 0\right)=\left(\frac{1}{2^{n}}, y, 0\right)=z_{n}, \\
f\left(\frac{4 n+1}{4 n(n+1)}\right) & =\left(-\frac{4 n+1}{2^{n+1}}+\frac{1}{2^{n}}+\frac{4 n+1}{2^{n+1}}, y, 0\right)=z_{n}, \\
f\left(\frac{2 n+1}{2 n(n+1)}\right) & =\left(-\frac{4 n+2}{2^{n+1}}+\frac{1}{2^{n}}+\frac{4 n+1}{2^{n+1}}, y, 0\right)= \\
& =\left(-\frac{1}{2^{n+1}}+\frac{1}{2^{n}}, y, 0\right)=\left(\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}, y, 0\right)=z_{n+1}, \\
f\left(\frac{2 n+1}{2 n(n+1)}\right) & =\left(\frac{4 n+2}{2^{n+1}}+\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}-\frac{4 n+2}{2^{n+1}}, y, 0\right)=\left(\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}, y, 0\right)=z_{n+1}, \\
f\left(\frac{4 n+3}{4 n(n+1)}\right) & =\left(\frac{4 n+3}{2^{n+1}}+\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}-\frac{4 n+2}{2^{n+1}}, y, 0\right)= \\
& =\left(\frac{1}{2^{n+1}}+\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}, y, 0\right)=\left(\frac{1}{2^{n}}, y, 0\right)=z_{n}, \\
f\left(\frac{4 n+3}{4 n(n+1)}\right) & =\left(-\sum_{i=n+1}^{\infty} \frac{4 n+3}{2^{i}}+\sum_{i=n+1}^{\infty} \frac{4 n+4}{2^{i}}, y, 0\right)=\left(\frac{1}{2^{n}}, y, 0\right)=z_{n} .
\end{aligned}
$$

So the function is continuous for n odd. Since $f\left(\frac{1}{n}\right)=(0,0,0)$ for all $n \in \mathbb{Z}$ the function stays continuous during the change from odd to even and vice versa. Lastly, let us show
f is continuous for n even:

$$
\begin{aligned}
f\left(\frac{4 n+1}{4 n(n+1)}\right) & =\left(-\sum_{i=n+1}^{\infty} \frac{4 n+1}{2^{i}}+\sum_{i=n+1}^{\infty} \frac{4 n}{2^{i}}, y, 0\right)=\left(-\frac{1}{2^{n}}, y, 0\right)=-z_{n}, \\
f\left(\frac{4 n+1}{4 n(n+1)}\right) & =\left(\frac{4 n+1}{2^{n+1}}-\frac{1}{2^{n}}-\frac{4 n+1}{2^{n+1}}, y, 0\right)=-z_{n}, \\
f\left(\frac{2 n+1}{2 n(n+1)}\right) & =\left(\frac{4 n+2}{2^{n+1}}-\frac{1}{2^{n}}-\frac{4 n+1}{2^{n+1}}, y, 0\right)= \\
& =\left(\frac{1}{2^{n+1}}-\frac{1}{2^{n}}, y, 0\right)=\left(-\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}, y, 0\right)=-z_{n+1}, \\
f\left(\frac{2 n+1}{2 n(n+1)}\right) & =\left(-\frac{4 n+2}{2^{n+1}}-\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}+\frac{4 n+2}{2^{n+1}}, y, 0\right)=\left(-\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}, y, 0\right)=-z_{n+1}, \\
f\left(\frac{4 n+3}{4 n(n+1)}\right) & =\left(-\frac{4 n+3}{2^{n+1}}-\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}+\frac{4 n+2}{2^{n+1}}, y, 0\right)= \\
& =\left(-\frac{1}{2^{n+1}}-\sum_{i=n+2}^{\infty} \frac{1}{2^{i}}, y, 0\right)=\left(-\frac{1}{2^{n}}, y, 0\right)=-z_{n}, \\
f\left(\frac{4 n+3}{4 n(n+1)}\right) & =\left(\sum_{i=n+1}^{\infty} \frac{4 n+3}{2^{i}}-\sum_{i=n+1}^{\infty} \frac{4 n+4}{2^{i}}, y, 0\right)=\left(-\frac{1}{2^{n}}, y, 0\right)=-z_{n} .
\end{aligned}
$$

This concludes the proof of continuity of f.
Theorem 3.8 is a direct consequence of the following theorem.

Theorem 3.9 The loop f, as described above, is not homotopic to a constant map at x_{0} in X.

Proof of Theorem 3.9: First, let us try to visualize the loop f. It alternates between "circles" in X_{1} and "circles" in X_{2}. It starts at x_{0}, runs along the top of the circles to z_{n}, loops once around the circle S_{n+1} in X_{1} and returns to x_{0} via the bottom of the circles. It then follows a similar pattern in X_{2}; it runs on top of the circles to $-z_{n}$, loops
around the circle $-S_{n+1}$ in X_{2} once, then returns to x_{0} via the bottom of the circles. This repeats for every other circle (i.e. f loops around S_{n} in X_{1} only for odd n, and in X_{2} only for even n). Consider any homotopy $H: I \times I \rightarrow X$ of f to x_{0}. We will show that H is not continuous. Since $X=X_{1} \cup X_{2}$ and $X_{1} \cap X_{2}=\left\{x_{0}\right\}$ we have that $A=H^{-1}\left(x_{0}\right)$ separates $H^{-1}(X)$ into components $\left\{C_{i}\right\}$ and $\left\{D_{j}\right\}$ where $C_{i} \subseteq H^{-1}\left(X_{1}\right)$ and $D_{j} \subseteq H^{-1}\left(X_{2}\right)$ for every i and every j.

Claim 1: There are infinitely many components C_{i} such that $C_{i} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}, n$ odd or there are infinitely many components D_{j} such that $D_{j} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}, n$ even.

Proof of Claim 1: Let us assume that there are finitely many components $\left\{C_{i}\right\}$. Then we know that at least one component C_{i} must contain infinitely many intervals $I_{n}=$ $\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for n odd. Let $N \in \mathbb{N}$ and assume that $C_{k} \cap C_{l}=\emptyset$, where C_{k} contains infinitely many intervals $I_{n}, n \geq N$ odd and C_{l} contains infinitely many intervals I_{n}, $n \geq N$ odd. Clearly there exist $s, r, p \in \mathbb{N}$ such that $r<p<s, I_{r}, I_{s} \subseteq C_{k}$, and $I_{p} \subseteq C_{l}$. Since I_{r} and I_{s} are contained in C_{k} then C_{k} contains an arc, say L, joining the points $p_{r} \in \operatorname{int}\left(I_{r}\right)$ and $p_{s} \in \operatorname{int}\left(I_{s}\right)$. This means that there is a function g : $[0,1] \rightarrow C_{k}$ such that $g(0)=p_{r}$ and $g(1)=p_{s}$. Consider the simple closed curve $J=L \cup\left(\{0,1\} \times\left[-\frac{1}{2}, 1\right]\right) \cup\left(\left(\left[0, p_{s}\right] \cup\left[p_{r}, 1\right]\right) \times\left\{-\frac{1}{2}\right\}\right) \cup([0,1] \times\{1\}) \cup\left(\left\{p_{s}, p_{r}\right\} \times\left[-\frac{1}{2}, 0\right]\right.$. As a simple closed curve J separates the plane into two components, say Z_{1} and Z_{2}. Without loss of generality let $I_{p} \subseteq Z_{1}$, then Z_{2} contains the intervals I_{n} for $n>s, n$ odd. Consider the sets $Z_{1} \cap C_{l}$ and $Z_{2} \cap C_{l}$. Since $Z_{1} \cup Z_{2}=\mathbb{R} \backslash J$ and $J \cap C_{l}=\emptyset$ we have $C_{l} \subseteq Z_{1} \cup Z_{2}$. Therefore $\left(Z_{1} \cap C_{l}\right) \cup\left(Z_{2} \cap C_{l}\right)=C_{l}$. By connectedness of C_{l} either $Z_{1} \cap C_{l}=\emptyset$ or $Z_{2} \cap C_{l}=\emptyset$. Since $I_{p} \subseteq Z_{1}$ and $I_{p} \subseteq C_{l}, Z_{1} \cap C_{l} \neq \emptyset$. Hence
$Z_{2} \cap C_{l}=\emptyset$. However, $\bigcup_{n>s} I_{n} \subseteq Z_{2}$ for n odd, so C_{l} does not contain I_{n} for any $n>s$ odd. Therefore if there are finitely many components C_{i}, there is an i and $N \in \mathbb{N}$ such that C_{i} contains all intervals I_{n} for $n \geq N, n$ odd. We know that for n even, $I_{n} \subseteq D_{j}$ for some j. Let $\bigcup_{n \geq N} I_{n} \subseteq C_{i}$ where n are odd. Let $p_{n} \in \operatorname{int}\left(I_{n}\right)$ and let g_{n} be an arc from p_{n} to p_{n+2} in C_{i}. By assumption C_{i} contains all g_{n} for n odd. For a fixed $n \in \mathbb{N}$, $n \geq N$, let $J_{n}=\bigcup_{n \geq k \geq N} g_{k} \cup\left(\{0,1\} \times\left[-\frac{1}{2}, 1\right]\right) \cup([0,1] \times\{1\}) \cup\left(\left(\left[p_{N}, 1\right] \cup\left[0, p_{n+2}\right]\right) \times\right.$ $\left.\left\{-\frac{1}{2}\right\}\right) \cup\left(\left\{p_{N}, p_{n+2}\right\} \times\left[-\frac{1}{2}, 0\right]\right) . J_{n}$ separates the plane since it is a simple closed curve. Say J_{n} separates the plane into components $J_{1 n}$ and $J_{2 n}$. Consider a component D_{l}. Let $s, r \in \mathbb{N}$ such that $r>n>s>N, r, s$ even and $I_{s} \subseteq D_{l}$. Assume that $I_{s} \subseteq J_{1 n}$. Just as above $J_{1 n} \cup J_{2 n}=\mathbb{R} \backslash J_{n}$ and $J_{n} \cap D_{l}=\emptyset$ implies $D_{l} \subseteq J_{1 n} \cup J_{2 n}$. Therefore $\left(J_{1 n} \cap D_{l}\right) \cup\left(J_{2 n} \cap D_{l}\right)=D_{l}$. By connectedness of D_{l} either $J_{1 n} \cap D_{l}=\emptyset$ or $J_{2 n} \cap D_{l}=\emptyset$. We have that $I_{s} \subseteq J_{1 n}$ and $I_{s} \subseteq D_{l}$, hence $J_{2 n} \cap D_{l}=\emptyset$. Since $\bigcup_{k>n} I_{k} \subseteq J_{2 n}$ for n even, D_{l} does not contain I_{k} for any $k>n$ even. Therefore each component D_{j} can contain at most finitely many I_{n} 's for n even. The existence of infinitely many intervals I_{n} implies that there are infinitely many components D_{j}. A similar argument follows if we assume there are finitely many D_{j} 's. End of Claim 1.

Claim 2: In every component C_{i} such that $C_{i} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}, n$ odd, there is a point $\left(x, t_{x}\right) \in C_{i}$ such that $H\left(x, t_{x}\right)=p_{1}$ and in every component D_{j} such that $D_{j} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}, n$ even, there is a point $\left(y, t_{y}\right) \in D_{j}$ such that $H\left(y, t_{y}\right)=p_{2}$.
Proof of Claim 2: Let us consider the collection $\left\{C_{i}\right\}$ where $C_{i} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}$, n odd. Assume there is an element of this collection, say C_{k}, such that $H\left(x, t_{x}\right) \neq p_{1}$ for all $\left(x, t_{x}\right) \in C_{k}$. Then consider the homotopy $F: I \times I \rightarrow X_{1} \backslash\left\{p_{1}\right\}$,
defined by

$$
F(x, t)= \begin{cases}H(x, t) & \text { if }(x, t) \in \overline{C_{k}} \\ x_{0} & \text { if }(x, t) \notin C_{k}\end{cases}
$$

Since $\left([0,1] \times[0,1] \backslash C_{k}\right) \cap \overline{C_{k}} \subset A$ this function is continuous by the Pasting Lemma. We know that $C_{k} \supseteq \bigcup_{p \leq n \leq t}\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $p, t \in \mathbb{N}$. Let g be f restricted to $\bigcup_{p \leq n \leq t}\left[\frac{1}{n+1}, \frac{1}{n}\right]$. Let $\alpha_{n}:[0,1] \rightarrow\left[\frac{1}{n+1}, \frac{1}{n}\right]$ be a linear map and $a_{n}:[0,1] \rightarrow X$ defined as $a_{n}=f \circ \alpha_{n}$. We have shown in Chapter 1 that $f *(g * h) \simeq(f * g) * h$. This result can be generalized to any finite product of paths. Let us define $f_{1} \bar{*} f_{2} \bar{*} \ldots \bar{*} f_{n}$ as follows: On $\left[0, \frac{1}{n}\right]$ it equals the positive linear map of $\left[0, \frac{1}{n}\right]$ to $[0,1]$ followed by f_{1}; on $\left[\frac{1}{n}, \frac{1}{n-1}\right]$ it equals the positive linear map of $\left[\frac{1}{n}, \frac{1}{n-1}\right]$ to $[0,1]$ followed by f_{2}; continue the pattern and on $\left[\frac{1}{2}, 1\right]$ it equals the positive linear map of $\left[\frac{1}{2}, 1\right]$ to $[0,1]$ followed by f_{n}. By Step 2 of the proof of Theorem 51.2 by Munkres in [1], the path $e \bar{*} a_{t} \bar{\Psi} e \bar{*} \ldots \bar{*} a_{p} \bar{*} e$ is homotopic to the product of the same paths with any parenthesis placements. Therefore we will write $h=e * a_{t} * e * \ldots * a_{p} * e$ without the parenthesis. Let us show that F is a homotopy of h to a constant map at x_{0} in $X_{1} \backslash\left\{p_{1}\right\}$. If $(x, 0) \in \overline{C_{k}}$ then $x \in \bigcup_{p \leq n \leq t}\left[\frac{1}{n+1}, \frac{1}{n}\right]$ and $F(x, 0)=H(x, 0)=f(x)$. If $(x, 0) \notin \overline{C_{k}}$ then $F(x, 0)=x_{0}$. Since $f\left(\frac{1}{n+1}\right)=f\left(\frac{1}{n}\right)=x_{0}$, we have that $F(x, 0)=h$. If $(x, 1) \in \overline{C_{k}}$ then $F(x, 1)=H(x, 1)=x_{0}$. Therefore $F(x, 1)=x_{0}$. Lastly, $F(0, t)=x_{0}$ and $F(1, t)=x_{0}$. Since $H(x, t) \neq p_{1}$ for all $(x, t) \in C_{k}$, and $F(x, t)=x_{0} \neq p_{1}$ for all other points, $F([0,1] \times[0,1]) \subseteq X_{1} \backslash\left\{p_{1}\right\}$. Hence we have a homotopy of h to a constant map at x_{0} in $X_{1} \backslash\left\{p_{1}\right\} ; h$ is homotopic to g. However g is not homotopic to a constant map at x_{0} in B_{1}. By Lemma 3.6, this implies that g is not homotopic to the constant map at x_{0} in $X_{1} \backslash\left\{p_{1}\right\}$. This causes a contradiction.

Therefore the homotopy F as described above cannot exist and hence every component C_{i} contains a point $\left(x, t_{x}\right)$ such that $H\left(x, t_{x}\right)=p_{1}$. A similar argument shows the result for components D_{j}. End of Claim 2.
Claim 3: For every $i>0$, let $B_{\epsilon_{i}}$ be an open ball of radius ϵ_{i} centered at (x_{i}, t_{i}), where $\left(x_{i}, t_{i}\right)$ is a point in C_{i} such that $H\left(x_{i}, t_{i}\right)=p_{1}$, and $B_{\epsilon_{i}} \subseteq C_{i}, B_{\epsilon} \backslash C_{i} \neq \emptyset$ for every $\epsilon>\epsilon_{i}$. If the collection $\left\{C_{i}\right\}$ is infinite then $\lim _{i \rightarrow \infty} \epsilon_{i}=0$. Similarly, if $B_{\epsilon_{j}} \subseteq D_{j}$ and the collection $\left\{D_{j}\right\}$ is infinite then $\lim _{j \rightarrow \infty} \epsilon_{j}=0$.

Proof of Claim 3: If $\lim _{t \rightarrow \infty} \epsilon_{i} \neq 0$ then there is an $M \in \mathbb{R}$ such that $\epsilon_{i} \geq M$ for infinitely many i 's. Consider the collection of open balls of radius $\epsilon_{i},\left\{B_{\epsilon_{i}}\right\}$, such that $B_{\epsilon_{i}} \subseteq C_{i}$. The area of each $B_{\epsilon_{i}}$, say A_{i}, is greater than or equal to $T=\pi(M)^{2}$. Since there are infinitely many C_{i} 's and $C_{i} \cap C_{j}=\emptyset$ for all $i \neq j$, there are infinitely many $B_{\epsilon_{i}}$'s such that $B_{\epsilon_{i}} \cap B_{\epsilon_{j}}=\emptyset$ for all $i \neq j$. Therefore the area S of the square $[0,1] \times[0,1]$ is $S \geq \sum_{i=1}^{\infty} A_{i} \geq T \times \infty=\infty$. However, the area of the unit square is 1 . This contradiction shows that the radius of the open balls contained in the sets C_{i} approaches 0 as i approaches infinity. The same argument works for the collection $\left\{D_{j}\right\}$. End of Claim 3.

Since H is a continuous function on a compact set $[0,1] \times[0,1]$ it is uniformly continuous. Therefore we have that for every $\epsilon>0$ there exists a $\delta>0$ such that if $(x, t),\left(y, t^{\prime}\right) \in$ $[0,1] \times[0,1]$ are such that $d\left((x, t),\left(y, t^{\prime}\right)\right)<\delta$, then $d\left(H(x, t), H\left(y, t^{\prime}\right)\right)<\epsilon$. Let $\epsilon=\frac{1}{2}$, then there exists a $\delta>0$ satisfying the above condition. If there are infinitely many $C_{i} \supseteq I_{n}$ for some $n \in \mathbb{N}$, n odd, then the collection $\left\{C_{i}\right\}$ is infinite. If there are infinitely many $D_{j} \supseteq I_{n}$ for some $n \in \mathbb{N}, n$ even, then the collection $\left\{D_{j}\right\}$ is infinite. By Claim 1, either $\left\{C_{i}\right\}$ is infinite or $\left\{D_{j}\right\}$ is infinite. Without loss of generality, let $\left\{C_{i}\right\}$ be an infinite
collection. Let $\epsilon_{i}<\delta,\left(x_{i}, t_{i}\right) \in B_{\epsilon_{i}} \subseteq C_{i}$ such that $H\left(x_{i}, t_{i}\right)=p_{1}$ and $\left(a, t_{a}\right) \in A \cap \overline{B_{\epsilon_{i}}}$. Then $d\left(\left(x_{i}, t_{i}\right),\left(a, t_{a}\right)\right) \leq \epsilon_{i}<\delta$, and $d\left(H\left(x_{i}, t_{i}\right), H\left(a, t_{a}\right)\right)=d\left(p_{1}, x_{0}\right)<\frac{1}{2}$. This causes a contradiction, because p_{1} and x_{0} were defined in such a way that $d\left(p_{1}, x_{0}\right)>1$. Therefore H is not continuous. Hence there does not exist a homotopy $H: I \times I \rightarrow X$ of f to x_{0}. This concludes the proof of Theorem 3.9.

3.3 Second counterexample

3.3.1 Description of the space Y

In this section we will be dealing with a space that we will refer to as Y. This space was suggested in an Exercise in a book by Spanier [[2], p.59]. Let us first define the space carefully. Let W be defined as the union of circles C_{n}, where C_{n} has center $c_{n}=\left(\frac{1}{n(n+1)}, 0,0\right)$ and radius $r_{n}=\frac{1}{n(n+1)}$ for all positive integers n. Y is the set of points on the closed line segments joining the point $q=(1,0,1)$ to W . Let $y_{0}=(0,0,0)$. Another way to describe Y is as $X=\bigcup_{n \in N} \operatorname{Con}\left(C_{n}\right) \cup C$ where

$$
\operatorname{Con}\left(C_{n}\right)=\left\{(x, y, z) \mid(x, y, z)=v_{n} t+q(1-t) \text { for } v_{n} \in V_{n}, t \in[0,1]\right\},
$$

where $V_{n}=\left\{(x, y, 0) \left\lvert\, y= \pm \sqrt{-x^{2}+\frac{2}{n(n+1)} x}\right.\right\}$. In this notation $W=\bigcup_{n \in N} V_{n} \cup\left\{y_{0}\right\}$. Let

$$
\operatorname{Con}\left(C_{n}^{+}\right)=\left\{(x, y, z) \mid(x, y, z)=v_{n}^{+} t+q(1-t) \text { for } v_{n}^{+} \in V_{n}^{+}, t \in[0,1]\right\},
$$

where $V_{n}^{+}=\left\{(x, y, 0) \left\lvert\, y=\sqrt{-x^{2}+\frac{2}{n(n+1)} x}\right.\right\}$. Let

$$
\operatorname{Con}\left(C_{n}^{-}\right)=\left\{(x, y, z) \mid(x, y, z)=v_{n}^{-} t+q(1-t) \text { for } v_{n}^{-} \in V_{n}^{-}, t \in[0,1]\right\},
$$

Figure 3.3: Space Y

Figure 3.4: Union of two copies of Y
where $V_{n}^{-}=\left\{(x, y, 0) \left\lvert\, y=-\sqrt{-x^{2}+\frac{2}{n(n+1)} x}\right.\right\}$.
Theorem 3.10 If Y is the space defined in this section, and $y_{0}=(0,0,0) \in Y$, then $\pi_{1}\left(Y, y_{0}\right)$ is trivial.

The proof of Theorem 3.10 is exactly the same as the proof of Theorem 3.3.
By the argument in section 3.2.2, Y is semi 1-LC but not 1-LC.

3.3.2 The fundamental group of a one point union of two copies of Y

In this section we will consider the one point union of two copies of the space Y described above. We will call the first copy of this cone space Y_{1} and the second copy Y_{2}. The space Y will be defined as $Y=Y_{1} \cup Y_{2}$ where $Y_{1} \cap Y_{2}=\left\{y_{0}\right\}$, $y_{0}=(0,0,0)$
is the limiting point as defined previously. The space Y_{1} is the cone over W_{1} and the space Y_{2} is the cone over W_{2}. The points q_{1} and q_{2} are the "tips" of the spaces Y_{1} and Y_{2} respectively (i.e. $q_{1}=(1,0,1)$ and $\left.q_{2}=(-1,0,1)\right)$. Let $-c_{n}=\left(-\frac{1}{n(n+1)}, 0,0\right)$ be the center of $-C_{n}$, where $-C_{n}$ is the $n^{t h}$ circle in Y_{2}.

Lemma 3.11 The fundamental group of W_{1} is isomorphic to the fundamental group of $Y_{1} \backslash\left\{q_{1}\right\}$ and the fundamental group of W_{2} is isomorphic to the fundamental group of $Y_{2} \backslash\left\{q_{2}\right\}$.

The proof of this Lemma is the same as for the space X.

Theorem 3.12 Let Y be the space described above, then $\pi_{1}\left(Y, y_{0}\right) \neq 0$.

Similarly to showing that $\pi_{1}\left(X, x_{0}\right) \neq 0$ in the previous subsection, it is enough to show that there is a loop f in Y based at y_{0} and there is no homotopy between f and y_{0} in Y. Consider a loop $f: I \rightarrow Y$ defined by:

$$
\begin{aligned}
& f(0)=y_{0}=(0,0,0) \\
& f(s)= \begin{cases}\left(8 s-\frac{8}{n+1}, y, 0\right) y \geq 0 \\
\left(-8 s+\frac{4(2 n+1)}{n(n+1)}, y, 0\right) y \leq 0 & \text { for } \frac{1}{n+1} \leq s \leq \frac{4 n+1}{4 n(n+1)}, \\
\left(8 s-\frac{4(2 n+1)}{n(n+1)}, y, 0\right) y \geq 0 \\
\left(-8 s+\frac{8}{n}, y, 0\right) y \leq 0 & \text { for } \frac{2 n+1}{4 n(n+1)} \leq s \leq \frac{2 n+1}{2 n(n+1)} \leq s \leq \frac{4 n+3}{4 n(n+1)},\end{cases} \\
& \text { for } \frac{4 n+3}{4 n(n+1)} \leq s \leq \frac{1}{n},
\end{aligned}, ~ \$
$$

for n odd, where $n=\left\ulcorner\frac{1}{s}\right\urcorner$, and $y= \pm \sqrt{-x^{2}+\frac{2}{n(n+1)} x}$.

$$
f(s)= \begin{cases}\left(-8 s+\frac{8}{n+1}, y, 0\right) y \geq 0 & \text { for } \frac{1}{n+1} \leq s \leq \frac{4 n+1}{4 n(n+1)} \\ \left(8 s-\frac{4(2 n+1)}{n(n+1)}, y, 0\right) y \leq 0 & \text { for } \frac{4 n+1}{4 n(n+1)} \leq s \leq \frac{2 n+1}{2 n(n+1)} \\ \left(-8 s+\frac{4(2 n+1)}{n(n+1)}, y, 0\right) y \geq 0 & \text { for } \frac{2 n+1}{2 n(n+1)} \leq s \leq \frac{4 n+3}{4 n(n+1)} \\ \left(8 s-\frac{8}{n}, y, 0\right) y \leq 0 & \text { for } \frac{4 n+3}{4 n(n+1)} \leq s \leq \frac{1}{n}\end{cases}
$$

for n even, where n and y are defined as above. We need to show $f(0)=f(1)=y_{0}=$ $(0,0,0)$ and f is continuous. By definition $f(0)=y_{0}$. If $s=1, n=1$ so $f(1)=$ $\left(8(1)-\frac{8}{1}, y, 0\right)=(0, y, 0)=(0,0,0)=y_{0}$. To show continuity we use the pasting lemma. We need to show the definition of f agrees on all the intersections. If $s=0$, $\lim _{s \rightarrow 0^{+}} \frac{1}{s}=\infty$.

Consider $f(0)=\left(8(0)-\lim _{n \rightarrow \infty} \frac{8}{n}, y, 0\right)=(0, y, 0)=(0,0,0)=y_{0}$.

Now consider:

$$
\begin{aligned}
& f\left(\frac{4 n+1}{4 n(n+1)}\right)=\left(8\left(\frac{4 n+1}{4 n(n+1)}\right)-\frac{8}{n+1}, y, 0\right)=\left(\frac{2}{n(n+1)}, y, 0\right), \\
& f\left(\frac{4 n+1}{4 n(n+1)}\right)=\left(-8\left(\frac{4 n+1}{4 n(n+1)}\right)+\frac{4(2 n+1)}{n(n+1)}, y, 0\right)=\left(\frac{2}{n(n+1)}, y, 0\right), \\
& f\left(\frac{2 n+1}{2 n(n+1)}\right)=\left(-8\left(\frac{2 n+1}{2 n(n+1)}\right)+\frac{4(2 n+1)}{n(n+1)}, y, 0\right)=(0, y, 0)=y_{0}, \\
& f\left(\frac{2 n+1}{2 n(n+1)}\right)=\left(8\left(\frac{2 n+1}{2 n(n+1)}\right)-\frac{4(2 n+1)}{n(n+1)}, y, 0\right)=(0, y, 0)=y_{0}, \\
& f\left(\frac{4 n+3}{4 n(n+1)}\right)=\left(8\left(\frac{4 n+3}{4 n(n+1)}\right)-\frac{4(2 n+1)}{n(n+1)}, y, 0\right)=\left(\frac{2}{n(n+1)}, y, 0\right), \\
& f\left(\frac{4 n+3}{4 n(n+1)}\right)=\left(-8\left(\frac{4 n+3}{4 n(n+1)}\right)+\frac{8}{n}, y, 0\right)=\left(\frac{2}{n(n+1)}, y, 0\right) .
\end{aligned}
$$

So the function is continuous for n odd. Since $f\left(\frac{1}{n}\right)=(0,0,0)$ for all $n \in \mathbb{Z}$ the function stays continuous during the change from odd to even and vice versa. Lastly, let us show f is continuous for n even:

$$
\begin{aligned}
& f\left(\frac{4 n+1}{4 n(n+1)}\right)=\left(-8\left(\frac{4 n+1}{4 n(n+1)}\right)+\frac{8}{n+1}, y, 0\right)=\left(-\frac{2}{n(n+1)}, y, 0\right), \\
& f\left(\frac{4 n+1}{4 n(n+1)}\right)=\left(8\left(\frac{4 n+1}{4 n(n+1)}\right)-\frac{4(2 n+1)}{n(n+1)}, y, 0\right)=\left(-\frac{2}{n(n+1)}, y, 0\right), \\
& f\left(\frac{2 n+1}{2 n(n+1)}\right)=\left(8\left(\frac{2 n+1}{2 n(n+1)}\right)-\frac{4(2 n+1)}{n(n+1)}, y, 0\right)=(0, y, 0)=y_{0}, \\
& f\left(\frac{2 n+1}{2 n(n+1)}\right)=\left(-8\left(\frac{2 n+1}{2 n(n+1)}\right)+\frac{4(2 n+1)}{n(n+1)}, y, 0\right)=(0, y, 0)=y_{0}, \\
& f\left(\frac{4 n+3}{4 n(n+1)}\right)=\left(-8\left(\frac{4 n+3}{4 n(n+1)}\right)+\frac{4(2 n+1)}{n(n+1)}, y, 0\right)=\left(-\frac{2}{n(n+1)}, y, 0\right), \\
& f\left(\frac{4 n+3}{4 n(n+1)}\right)=\left(8\left(\frac{4 n+3}{4 n(n+1)}\right)-\frac{8}{n}, y, 0\right)=\left(-\frac{2}{n(n+1)}, y, 0\right) .
\end{aligned}
$$

This concludes the proof of continuity of f.
I claim that the loop f as described above is not homotopic to y_{0} in Y. First, let us try to visualize the loop f. It alternates between "circles" in Y_{1} and "circles" in Y_{2}. It starts at y_{0}, loops around a circle in Y_{1} twice in clockwise direction and returns to y_{0}. It then follows a similar pattern in Y_{2}, it loops around a circle in X_{2} twice in counterclockwise direction, then returns to y_{0}. This repeats for every other circle (i.e. f loops around C_{n} in Y_{1} only for odd n, and in Y_{2} only for even n). Consider any homotopy $H: I \times I \rightarrow Y$ of f to y_{0}. We will show that H is not continuous. Since $Y=Y_{1} \cup Y_{2}$ and $Y_{1} \cap Y_{2}=\left\{y_{0}\right\}$ we have that $A=H^{-1}\left(y_{0}\right)$ separates $H^{-1}(Y)$ into components $\left\{Q_{i}\right\}$ and $\left\{D_{j}\right\}$ where $Q_{i} \subseteq H^{-1}\left(Y_{1}\right)$ and $D_{j} \subseteq H^{-1}\left(Y_{2}\right)$ for every i and every j.

It was shown for the first counterexample that there are either infinitely many components Q_{i} such that $Q_{i} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}, n$ odd or infinitely many components D_{j} such that $D_{j} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}, n$ even. The same argument is true in the space Y.

It was also shown that in every component Q_{i} such that $Q_{i} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}, n$ odd, there is a point $\left(x, t_{x}\right) \in Q_{i}$ such that $H\left(x, t_{x}\right)=q_{1}$ and in every component D_{j} such that $D_{j} \supseteq\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\{0\}$ for some $n \in \mathbb{N}, n$ even, there is a point $\left(y, t_{y}\right) \in D_{j}$ such that $H\left(y, t_{y}\right)=q_{2}$. The argument is the same as for the space X. The following shows that $\pi_{1}\left(W_{1}, y_{0}\right) \neq 0$. We know that $\pi_{1}\left(C_{n}, y_{0}\right) \neq 0$ for every $n \in N$. Fix $n=n_{x}$. Let us show that C_{n} is a strong deformation retract of W_{1}, then by Step 1 of the previous claim $\pi_{1}\left(W_{1}, y_{0}\right) \neq 0$. First, let us define maps $r_{m}(x, t)$ and $r_{m}^{\prime}(x, t)$ as follows. Let $x \in C_{m}$ for some $m \leq n$, let $x^{\prime} \in C_{n}$ be the point on the straight line segment $x(1-s)+c_{n} s$ for $s \in[0,1]$. Define $r_{m}: C_{m} \times I \rightarrow C_{n}$ by $r_{m}(x, t)=x^{\prime} t+x(1-t)$.

Let $x \in C_{m}$ for some $m \geq n$, let $x^{\prime} \in C_{n}$ be the point on the straight line constructed by extending the segment $x s+c_{m}(1-s)$ for $s \in[0,1]$. Define $r_{m}^{\prime}: C_{m} \times I \rightarrow C_{n}$ by $r_{m}^{\prime}(x, t)=x^{\prime} t+x(1-t)$. Clearly $r_{n}(x, t)=r_{n}^{\prime}(x, t)=x$ for all $t \in[0,1]$. Both r_{m} and r_{m}^{\prime} are continuous maps for each $m \in N$, since they are a sum of continuous functions. Also,

$$
\begin{aligned}
& r_{m}(x, 0)=x \in C_{m}, \\
& r_{m}^{\prime}(x, 0)=x \in C_{m}, \\
& r_{m}(x, 1)=x^{\prime} \in C_{n}, \\
& r_{m}^{\prime}(x, 1)=x^{\prime} \in C_{n} .
\end{aligned}
$$

Consider the map $F: W_{1} \times I \rightarrow W_{1}$ defined by:

$$
F(x, t)= \begin{cases}x & \text { if } x \in C_{n} \\ r_{m}(x, t) & \text { if } x \in C_{m} \text { for } m \leq n \\ r_{m}^{\prime}(x, t) & \text { if } x \in C_{m} \text { for } m \geq n\end{cases}
$$

Since $r_{n}(x, t)=r_{n}^{\prime}(x, t)=x$ for all $t \in[0,1]$ and $F(x, t)=x, F(x, t)=r_{m}(x, t)$, $F(x, t)=r_{m}^{\prime}(x, t)$ are continuous, by the Pasting Lemma this is a continuous map. Let
us verify it is a strong deformation retraction.

$$
\begin{aligned}
& F(a, t)=a \text { for } a \in C_{n}, \\
& F\left(W_{1}, 1\right)=C_{n}, \\
& F(x, 0)=x \text { for } x \in W_{1} .
\end{aligned}
$$

Since C_{n} is a strong deformation retract of W_{1}, we have that $\pi_{1}\left(W_{1}, y_{0}\right) \approx \pi_{1}\left(C_{n}, y_{0}\right) \neq 0$. Just as in the case of the space X, the above results imply that f is not homotopic to the constant map at x_{0} in X. This concludes the proof of Theorem 3.12.

Bibliography

[1] James R. Munkres, "Topology," second edition, Prentice Hall India.
[2] Edwin H. Spanier, "Algebraic Topology," Springer-Verlag, 1966.
[3] David A. Sprecher, "Elements of Real Analysis," Dover Publications, Inc., 1970.
[4] Joseph A. Gallian, "Contemporary Abstract Algebra," fourth edition, Houghton Mifflin Company, 1998.
[5] William S. Massey, "Algebraic Topology: An Introduction," Harcourt, Brace \& World, Inc., 1967.
[6] H. B. Griffiths, "The Fundamental Group of Two Spaces with a Common Point," Quarterly Journal of Mathematics of Oxford (2), 5 (1954), 175-90.
[7] Joseph J. Rotman, "An Introduction to Algebraic Topology," Springer-Verlag, 1988.
[8] Ryszard Engelking and Karol Sieklucki, "Topology. A Geometric Approach," Heldermann Verlag, 1992.
[9] Fred H. Croom, "Basic Concepts of Algebraic Topology," Springer-Verlag, 1978.
[10] Paul Olum, "Non-abelian cohomology and van Kampen's theorem," The Annals of Mathematics (2), 68 (1958), 658-668.

