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Concerning the fundamental group of spaces written as a union of two topological

spaces, the following result by Seifert and van Kampen is well known and frequently

used.

Theorem 0.1 Let X = U ∪V , where U and V are open in X; assume U , V , and U ∩V

are path connected; let x0 ∈ U ∩ V . Let H be a group, and let φ1 : π1(U, x0) → H,

and φ2 : π1(V, x0) → H be homomorphisms. Let i1 : π1(U ∩ V, x0) → π1(U, x0), i2 :

π1(U ∩ V, x0) → π1(V, x0), j1 : π1(U, x0) → π1(X, x0), j2 : π1(V, x0) → π1(X, x0) be

the homomorphisms induced by inclusion. If φ1 ◦ i1 = φ2 ◦ i2, then there is a unique

homomorphism Φ : π1(X, x0) → H such that Φ ◦ j1 = φ1 and Φ ◦ j2 = φ2.

Over the years there have been various theorems published on the topic of fundamental

groups of the unions of spaces. A portion of those theorems deal with spaces whose

intersection is a one point set. In 1954 Griffiths’ result was published stating the following

theorem [6].
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Theorem 0.2 If one of the spaces X1 or X2 is 1-LC at x, and both X1 and X2 are

closed in X and satisfy the first axiom of countability, then

(i1 ∧ i2) : π1(X1, x) ∗ π1(X2, x) ' π1(X,x)

where X = X1 ∪X2 and X1 ∩X2 = {x}.

The goal of this paper is to show that the 1-LC property in Griffiths’ result cannot

be generalized to semi 1-LC. Spanier indicated this problem in one of his homework

exercises [2]. This result is not, however, contained in Griffiths’ paper or Spanier’s book.

To provide the necessary proof two spaces are constructed with the following properties:

1. X is semi 1-LC (but not 1-LC)

2. π1(X,x0) is trivial

3. the fundamental group of the one point union of X with itself is not trivial.
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Chapter 1

Introduction

One of the fundamental problems in the field of topology is determining whether

two topological spaces are homeomorphic. In general, there is no method for solving this

problem. Showing that two spaces are homeomorphic is equivalent to constructing a

continuous bijection between them with a continuous inverse, called a homeomorphism.

To show that two spaces are not homeomorphic requires proof that such a mapping

does not exist. The topological properties, also known as topological invariants, of

spaces provide us with some methods of showing the lack of a homeomorphism. A

topological invariant of a space X is a property that depends only on the topology of

the space, i.e. it is shared by any topological space homeomorphic to X. If we can show

that two topological spaces differ in some topological property (such as compactness,

second countability, etc) we know that they cannot be homeomorphic. Throughout this

paper we will consider spaces which are Hausdorff. In the following chapters we will

discuss a concept that helps us show which topological spaces are not homeomorphic.

We will introduce the idea of a fundamental group, and observe that two spaces that

are homeomorphic have isomorphic fundamental groups (i.e. fundamental group is a

topological invariant). This will help us distinguish between spaces by showing their

fundamental groups are not isomorphic. We will discuss theorems that help us calculate

the fundamental group of spaces that can be written as unions of topological spaces. Let

us state some definitions and theorems that will be useful throughout this paper.
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1.1 Fundamental Group

Let us quote Munkres’ definitions of several terms that will be used in this paper

[1].

Definition 1.1 A topology on a set X is a collection τ of subsets of X having the

following properties:

1. ∅ and X are in τ .

2. The union of the elements of any subcollection of τ is in τ .

3. The intersection of the elements of any finite subcollection of τ is in τ .

A topological space is a set X together with a collection τ . If X is a topological space

with topology τ , we say that a subset U of X is an open set of X if U belongs to the

collection τ . A set K is closed if X\K is open.

Throughout this paper, unless otherwise specified, X is a topological space, x0 ∈ X is a

point in X and I = [0, 1].

Definition 1.2 A function f : X → Y is continuous if for every open set U ⊂ Y the

set f−1(U) is open in X.

Definition 1.3 Let X and Y be topological spaces; let f : X → Y be a bijection. If both

the function f and the inverse function f−1 : Y → X are continuous, then f is called a

homeomorphism.

Definition 1.4 A space X is said to be compact if every open covering of X contains

a finite subcollection that also covers X.

2



Definition 1.5 Let X be a topological space, and x0, x1, x2 ∈ X, then f is called a path

in X from x1 to x2 if f : I → X is a continuous function such that f(0) = x1 and

f(1) = x2; f is called a loop in X based at x0 if f : I → X is a continuous function such

that f(0) = x0 and f(1) = x0.

Definition 1.6 A space X is said to be path connected if every pair of points of X

can be joined by a path in X.

Definition 1.7 If f is a path in X from x0 to x1, and if g is a path in X from x1 to x2,

we define the product f ∗ g of f and g to be the path h given by the equations

h(s) =





f(2s) for s ∈ [0, 1
2 ],

g(2s− 1) for s ∈ [12 , 1].

Definition 1.8 Two paths f and f ′ in X, are path homotopic if they have the same

initial point x1 and the same final point x2, and if there is a continuous map H : I×I →

X such that

H(s, 0) = f(s) H(s, 1) = f ′(s),

H(0, t) = x1 H(1, t) = x2,

for each s ∈ I and each t ∈ I. We call H a path homotopy between f and f ′. If f is

path homotopic to f ′, we write f ' f ′.
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Definition 1.9 An equivalence relation on a set A is a relation ∼ on A having the

following properties:

1. (Reflexivity) x ∼ x for every x in A.

2. (Symmetry) If x ∼ y, then y ∼ x.

3. (Transitivity) If x ∼ y and y ∼ z, then x ∼ z.

Throughout our discussion of homotopy groups we will frequently use the following

lemma called the Pasting Lemma[[1], p.108].

Lemma 1.10 Let X = A ∪ B, where A and B are closed in X. Let f : A → Y and

g : B → Y be continuous. If f(x) = g(x) for every x ∈ A ∩ B, then f and g combine

to give a continuous function h : X → Y , defined by setting h(x) = f(x) if x ∈ A, and

h(x) = g(x) if x ∈ B.

Proof of Lemma: Let K be a closed subset of Y . We will show that the inverse image of

K under h is closed. Notice that h−1(K) = f−1(K) ∪ g−1(K). Since both f and g are

continuous, f−1(K) is closed in A and g−1(K) is closed in B. Therefore they are both

closed in X. A union of two sets closed in X is closed in X, hence h−1(K) is closed in

X and h is continuous.¤

Lemma 1.11 The relation ' (path homotopy) is an equivalence relation.

If f is a path, we will denote its path-homotopy equivalence class by [f ] [[1], p.324].

Proof of Lemma: First, let us show that ' is reflexive. Given f , the map F (x, t) = f(x)

is a homotopy between f and itself. Hence f ' f . Next, let us show that ' is symmetric.

Let f and g be paths such that f ' g and F (x, t) be the homotopy between them. Then
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H(x, t) = F (x, 1− t) is a homotopy between g and f , since H(x, 0) = F (x, 1) = g(x) and

H(x, 1) = F (x, 0) = f(x). Hence g ' f . Lastly, let us show that ' is transitive. Let f ,

g, and h be paths and F (x, t) be a homotopy between f and g (f ' g), and H(x, t) a

homotopy between g and h (g ' h). Then consider G(x, t) defined by

G(x, t) =





F (x, 2t) for t ∈ [0, 1
2 ],

H(x, 2t− 1) for t ∈ [12 , 1].

By the Pasting Lemma, G(x, t) is well defined and continuous since F (x, 2(1
2)) = F (x, 1) =

g(x) and H(x, 2(1
2) − 1) = H(x, 0) = g(x). It is a homotopy between f and h, since

G(x, 0) = F (x, 0) = f(x) and G(x, 1) = H(x, 1) = h(x). Hence f ' h.¤

Let us define the product operation on equivalence classes of loops based at x0. Let

[f ] ∗ [g] = [f ∗ g]. We need to show this operation is well defined, i.e. if f ' g, h ' j,

then f ∗ h ' g ∗ j. Let F : I × I → X be a homotopy of f to g, and G : I × I → X be a

homotopy of h to j. Consider the map H : I × I → X defined by:

H(s, t) =





F (2s, t) for s ∈ [0, 1
2 ],

G(2s− 1, t) for s ∈ [12 , 1].

By the Pasting Lemma, H(s, t) is well defined and continuous since

H(
1
2
, t) = F (1, t) = f(1) = h(0) = G(0, t).
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It is a homotopy between f ∗ h and g ∗ j, since

H(s, 0) =





F (2s, 0) = f(2s) for s ∈ [0, 1
2 ],

G(2s− 1, 0) = h(2s− 1) for s ∈ [12 , 1],

and

H(s, 1) =





F (2s, 1) = g(2s) for s ∈ [0, 1
2 ],

G(2s− 1, 1) = j(2s− 1) for s ∈ [12 , 1].

Definition 1.12 The set of path homotopy classes of loops based at x0, with the oper-

ation ∗, is called the fundamental group of X relative to the base point x0. It is

denoted by π1(X, x0).

Definition 1.13 Let G be a nonempty set together with a binary operation ◦. G is a

group under this operation if the following properties are satisfied:

1. Associativity. The operation is associative; that is, (a ◦ b) ◦ c = a ◦ (b ◦ c) for all

a, b, c ∈ G.

2. Identity. There is an element e (called the identity) in G, such that a◦e = e◦a = a

for all a ∈ G.

3. Inverses. For each element a in G, there is an element b in G (called an inverse

of a) such that a ◦ b = b ◦ a = e.

Definition 1.14 Let G and G′ be groups with group operation ◦ in each. A homomor-

phism f : G → G′ is a map such that f(x ◦ y) = f(x) ◦ f(y) for all x, y.
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When the context is clear the group operation symbol is omitted, i.e. we write x1x2x3

instead of x1 ◦ x2 ◦ x3.

Definition 1.15 Let G be a group, let {Gi}i∈J be a family of subgroups of G such

that every element x ∈ G can be written as a finite product of elements of groups Gi.

This means that there is a sequence (x1, . . . , xn) of elements of the groups Gi such that

x = x1 . . . xn. Such a sequence is called a word (of length n) in the groups Gi; it is said

to represent the element x of G. If xi and xi+1 both belong to the same group Gj, we

can group them together, obtaining the word (x1, . . . , xi−1, xixi+1, xi+2, . . . , xn) of length

n− 1, which also represents x. If any xi equals 1, we can delete xi from the sequence. A

word obtained by applying these reductions until no group Gj contains two consecutive

elements of the sequence and no xi = 1 is called a reduced word.

Definition 1.16 Let G be a group, let {Gi}i∈J be a family of subgroups of G such that

every element x ∈ G can be written as a finite product of elements of groups Gi. We say

that G is the free product of the group Gi if for each x ∈ G, there is only one reduced

word in the groups Gi that represents x.

Definition 1.17 The kernel of a homomorphism f : G → G′ is the set f−1(e′), where

e′ is the identity of G′.

Definition 1.18 Let G be a group with group operation ◦. H is a normal subgroup

of G if x ◦ h ◦ x−1 ∈ H for each x ∈ G and each h ∈ H.

Theorem 1.19 The fundamental group of X at the point x0, π1(X,x0), is a group.

Proof: First, let us show that ∗ is associative. Let f , g, and h be loops based at x0. We

want to show that (f ∗ g) ∗ h ' f ∗ (g ∗ h). Since all three loops are based at the same

7



point, the product operation is defined, and it suffices to find a homotopy between the

above loops. Consider a function H : I × I → X defined as follows:

H(s, t) =





f( 4s
1+t) 0 ≤ s ≤ t+1

4 ,

g(4s− 1− t) t+1
4 ≤ s ≤ t+2

4 ,

h(1− 4(1−s)
2−t ) t+2

4 ≤ s ≤ 1.

This homotopy is well defined and continuous by the Pasting Lemma, since:

f(
4( t+1

4 )
1 + t

) = f(1) = x0,

g(4(
t + 1

4
)− 1− t) = g(0) = x0,

g(4(
t + 2

4
)− 1− t) = g(1) = x0,

h(1− 4(1− t+2
4 )

2− t
) = h(0) = x0.

It is a path homotopy between (f ∗ g) ∗ h and f ∗ (g ∗ h) since:

H(0, t) = f(0) = x0,

H(1, t) = h(1) = x0,

H(s, 0) = (f ∗ g) ∗ h,

H(s, 1) = f ∗ (g ∗ h).

This concludes the proof of associativity. Second, let us show the existence of an identity.

Let e : I → X be the constant map such that e(a) = x0 for all a ∈ I. Let f be a loop

8



based at x0. We want to show that e ∗ f ' f and f ∗ e ' f . Let us define the homotopy

between f and e ∗ f , H : I × I → X, by

H(s, t) =





x0 0 ≤ s ≤ 1
2 t,

f(2s−t
2−t ) 1

2 t ≤ s ≤ 1.

This homotopy is well defined and continuous by the Pasting Lemma, since:

f(
2(1

2 t)− t

2− t
) = f(0) = x0.

It is a path homotopy between f and e ∗ f since:

H(0, t) = x0,

H(1, t) = f(1) = x0,

H(s, 0) = f(s),

H(s, 1) =





x0 for 0 ≤ s ≤ 1
2 ,

f(2s− 1) for 1
2 ≤ s ≤ 1

= (e ∗ f)(s).

Now, let us define the homotopy between f and f ∗ e, H : I × I → X, by

H(s, t) =





f( 2s
2−t) 0 ≤ s ≤ 1− 1

2 t,

x0 1− 1
2 t ≤ s ≤ 1.
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This homotopy is well defined and continuous by the Pasting Lemma, since:

f(
2(1− 1

2 t)
2− t

) = f(1) = x0.

It is a path homotopy between f and f ∗ e since:

H(0, t) = f(0) = x0,

H(1, t) = x0,

H(s, 0) = f(s),

H(s, 1) =





f(2s) for 0 ≤ s ≤ 1
2 ,

x0 for 1
2 ≤ s ≤ 1

= (f ∗ e)(s).

This concludes the proof of the existence of the identity. Finally, let us show the existence

of inverses. Let f be a loop based at x0 and f be the reverse of f defined by f(t) = f(1−t).

We want to show that f ∗ f ' e, and f ∗ f ' e. Let us define the homotopy between x0

and f ∗ f , H : I × I → X, by

H(s, t) =





f(2s) 0 ≤ s ≤ 1
2 t,

f(t) 1
2 t ≤ s ≤ 1− 1

2 t,

f(2− 2s) 1− 1
2 t ≤ s ≤ 1.

This homotopy is well defined and continuous by the Pasting Lemma, since:

f(2(
1
2
t)) = f(t),

10



f(2− 2(1− 1
2
t)) = f(t).

It is a path homotopy between x0 and f ∗ f since:

H(0, t) = f(0) = x0,

H(1, t) = f(0) = x0,

H(s, 0) = f(0) = x0,

H(s, 1) =





f(2s) for 0 ≤ s ≤ 1
2 ,

f(2s) for 1
2 ≤ s ≤ 1.

Now, let us define the homotopy between x0 and f ∗ f , H : I × I → X, by

H(s, t) =





f(1− 2s) 0 ≤ s ≤ 1
2 t,

f(1− t) 1
2 t ≤ s ≤ 1− 1

2 t,

f(2s− 1) 1− 1
2 t ≤ s ≤ 1.

This homotopy is well defined and continuous by the Pasting Lemma, since:

f(1− 2(
1
2
t)) = f(1− t),

f(2(1− 1
2
t)− 1) = f(1− t).
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It is a path homotopy between x0 and f ∗ f since:

H(0, t) = f(1) = x0,

H(1, t) = f(1) = x0,

H(s, 0) = f(1) = x0,

H(s, 1) =





f(2s) for 0 ≤ s ≤ 1
2 ,

f(2s) for 1
2 ≤ s ≤ 1.

This concludes the proof of existence of inverses. Hence, π1(X,x0) is a group[[5], p.59].

¤
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Chapter 2

Fundamental Groups of unions of spaces

2.1 Seifert-Van Kampen Theorem

One way to calculate the fundamental group of a space is to express the space as

a union of two other spaces whose fundamental groups are already known, or easily

computed. There must, of course, be some guidelines for such a process. The Seifert-

van Kampen Theorem provides us with a way of determining such fundamental groups.

There are many forms of this theorem, below are two versions found in Munkres [[1],

p.426,431].

Theorem 2.1 Let X = U ∪V , where U and V are open in X; assume U , V , and U ∩V

are path connected; let x0 ∈ U ∩ V . Let H be a group, and let φ1 : π1(U, x0) → H,

and φ2 : π1(V, x0) → H be homomorphisms. Let i1 : π1(U ∩ V, x0) → π1(U, x0), i2 :

π1(U ∩ V, x0) → π1(V, x0), j1 : π1(U, x0) → π1(X, x0), j2 : π1(V, x0) → π1(X, x0) be

the homomorphisms induced by inclusion. If φ1 ◦ i1 = φ2 ◦ i2, then there is a unique

homomorphism Φ : π1(X, x0) → H such that Φ ◦ j1 = φ1 and Φ ◦ j2 = φ2.

Theorem 2.2 Let X = U ∪V , where U and V are open in X; assume U , V , and U ∩V

are path connected; let x0 ∈ U ∩ V . Let H be a group, and let φ1 : π1(U, x0) → H,

and φ2 : π1(V, x0) → H be homomorphisms. Let i1 : π1(U ∩ V, x0) → π1(U, x0), i2 :

π1(U ∩ V, x0) → π1(V, x0), j1 : π1(U, x0) → π1(X, x0), j2 : π1(V, x0) → π1(X, x0) be

the homomorphisms induced by inclusion. Let j : π1(U, x0) ∗ π1(V, x0) → π1(X, x0) be

the homomorphism of the free product that extends homomorphisms j1 and j2 induced

13



by inclusion. If φ1 ◦ i1 = φ2 ◦ i2, then j is surjective, and its kernel is the least normal

subgroup N of the free product that contains all elements represented by words of the form

([i1(g)]−1, i2(g)),

for g ∈ π1(U ∩ V, x0).

Assuming the hypothesis of the Seifert-van Kampen theorem we can state the following:

Corollary 2.3 If U ∩ V is simply connected, then there is an isomorphism

k : π1(U, x0) ∗ π1(V, x0) → π1(X, x0).

The following version of the theorem is found in Engelking’s book[[8], p.166].

Theorem 2.4 If a polyhedron X is the union of connected polyhedra X1 and X2 whose

intersection is simply connected, then the fundamental group π1(X, x0), where x0 ∈ X1∩

X2, is isomorphic to the free product of the groups π1(X1, x0) and π1(X2, x0).

The following result by Van Kampen can be found in a paper by Paul Olum [[10], p.667].

Theorem 2.5 Let X = X1∪X2 be a separable, regular topological space. Let X1∩X2 be

closed in X, X1− (X1∩X2), X2− (X1∩X2) open in X, X1 and X2 locally connected at

X1∩X2, X1∩X2 locally connected and X1, X2, X1∩X2 path connected. If x0 ∈ X1∩X2

then the fundamental group π1(X, x0) is isomorphic to the free product of the groups

π1(X1, x0) and π1(X2, x0).

In this paper we are concerned with one point unions of spaces. A one point set is obvi-

ously simply connected and closed. Therefore a one point union of two spaces satisfying
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the conditions of the Seifert-van Kampen Theorem will have a fundamental group equal

to the free product of the fundamental groups of the spaces composing it.

2.2 Griffiths’ Paper

In 1954 a paper by H.B. Griffiths was published in Quarterly Journal of Mathemat-

ics. The paper contained the following result[[6], Theorem 1].

Theorem 2.6 If one of X1, X2 is 1-LC at x, and both X1 and X2 are closed in X,

Hausdorff, and satisfy the first axiom of countability, and X1 ∩X2 = {x}, then

(i1 ∧ i2) : π1(X1, x) ∗ π1(X2, x) ' π1(X,x)

where X = X1 ∪X2.

Let us first clarify the notation used. If X1, X2, and X are groups with injection

homomorphisms ji : π1(Xi, x) → π1(X, x) for i = 1, 2, then (j1 ∧ j2) is a homomorphism

of the free product π1(X1, x) ∗ π1(X2, x) → π1(X,x) defined by

(j1 ∧ j2)(a1b1 . . . ambm) = (j1a1)(j2b1) . . . (j1am)(j2bm),

where ai ∈ π1(X1, x), bi ∈ π1(X2, x).

Definition 2.7 A space X is said to have a countable basis at the point x if there

is a countable collection {Un}n≤∞ of neighborhoods of x such that any neighborhood U

of x contains at least one of the sets Un. A space X that has a countable basis at each

of its points is said to satisfy the first countability axiom.

15



Definition 2.8 A homomorphism is trivial if it maps everything to the identity ele-

ment.

Definition 2.9 A space is 1-LC at x (locally simply connected at x) if for every open

set U 3 x there exists an open set V ⊆ U , V 3 x such that the homomorphism i∗ :

π1(V, x) → π1(U, x) is trivial.

Definition 2.10 A space is semi 1-LC at x (semilocally simply connected at x) if

there exists an open set U 3 x such that the homomorphism i∗ : π1(U, x) → π1(X, x) is

trivial.

The goal of this paper is to show that the 1-LC property in Griffiths’ theorem cannot be

replaced with the semi 1-LC property. Griffiths stated that Theorem 2.6 is an immediate

consequence of the following two theorems [[6], p.176]:

Theorem 2.11 If X1 and X2 are Hausdorff and X1 is 1-LC at x, then the homomor-

phism (i1∧ i2) : π1(X1, x)∗π1(X2, x) → π1(X,x) is onto, where X is the one point union

of X1 and X2.

Theorem 2.12 If both X1 and X2 are closed in X, Hausdorff, and satisfy the first axiom

of countability, and X1 ∩X2 = {x}, then the homomorphism (i1 ∧ i2) has a zero kernel.

Only the proof of Theorem 2.11 requires the 1-LC property, therefore the proof of The-

orem 2.12 will be omitted.

Proof of Theorem 2.11: Let f : I → X be a loop based at x. Since [0,1] is compact, X

is Hausdorff, and f is continuous, then F = f([0, 1]) is closed in X; since X1 and X2 are

closed in X, we have F1 = F ∩X1 and F2 = F ∩X2 closed in X1 and X2 respectively.
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Therefore F ′
i = f−1(Fi) is closed in [0,1] for i = 1, 2.

Claim 1: Every open set in R can be written as the countable union of disjoint open

intervals[[3], p.136].

Proof of Claim 1 : Let U ⊆ R be open. For each x ∈ U , let Ix be the union of open

intervals J containing x. Ix =
⋃

Jp⊆U,x∈Jp
Jp exists for every x since U is open, hence

every point x ∈ U is an interior point. Ix is an open interval, since it is the union of

open intervals. Notice that if x1 6= x2, x1, x2 ∈ U then either Ix1 = Ix2 or Ix1 ∩ Ix2 = 0.

Let a ∈ Ix1 ∩ Ix2 , then Ix1 ∪ Ix2 is an open interval containing both x1 and x2. Hence

Ix1 ∪ Ix2 ⊆ Ix1 , and Ix1 ∪ Ix2 ⊆ Ix2 . Therefore Ix1 = Ix2 . Finally, let us fix a rational

number in each Ix. Since the rational numbers are countable, there are only countable

many disjoint open intervals. Obviously, each x ∈ U is in some I, namely Ix. End of

Claim 1.

Hence the open set [0, 1]\F ′
2 is the union of a countable set of disjoint intervals Ii, each

Ii being open in [0,1]. Because the space X1 is first countable and 1-LC at x, we can

construct the following sequence. Let U1 be a neighborhood of x in X1. Let {Vi} be

the countable collection of open sets in X1 containing x such that any open set in X1

containing x contains at least one member of {Vi}. Since X1 is 1-LC there is an open set

V ⊆ U1 such that π1(V, x) → π1(U1, x) is trivial. Let U2 = Vi such that Vi ⊆ V . Then

obviously π1(U2, x) → π1(U1, x) is trivial. Continuing in the above manner we obtain a

sequence

X1 ⊇ U1 ⊇ . . . ⊇ Um ⊇ . . .
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of neighborhoods of x ∈ X1, such that

∞⋂

m=1

Um = x

and, for each m > 1, the injection

jm : π1(Um, x) → π1(Um−1, x)

is trivial. For each m, let Sm be the collection of all those Ii ∈ S for which f(Ii) ⊆ Um.

Since f is uniformly continuous on [0,1] and
⋂

Um = x, we have that

Sm − Sm+1 = {Im1, Im2, . . . , Imp(m)}

is a finite set. Also each İmn ⊆ F ′
2 ∩ F ′

1 (İ represents the frontier of I; i.e. İ = I ∩R\I),

so that f(İmn) = x; thus fmn = (f |Imn) defines an element of π1(Um, x). This means

that Fmn = fmn ◦ αmn is an element of π1(Um, x), where αmn : [0, 1] → Imn is a linear

map. Therefore, if m > 1, then Fmn is path homotopic to the trivial loop in Um−1 (with

x kept fixed during the homotopy), say by homotopy

ψmn : Imn × I → Um−1.

Every a ∈ [0, 1] is either in F ′
2 or in some (unique) Imn, and so we can define without

ambiguity a homotopy

ψ : I × I → X
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by

ψ(a, t) =





f(a) if a ∈ F ′
2 ∪ I11 ∪ . . . ∪ I1p(1),

ψmn(a, t) if a ∈ Imn(m > 1).

We must prove ψ continuous at all points z ∈ I × I. Consider z ∈ (0, 1)× I. If z ∈ Imn,

m > 1 then ψ = ψmn is continuous at z by continuity of ψmn. If z = (a, t) such that

a ∈ F ′
2∪I11∪ . . .∪I1p(1) then ψ = f is unique and hence continuous at z by continuity of

f at a. We are dealing with two continuous functions, defined on disjoint sets of points.

ψmn(a, t) is continuous for every (a, t) ∈ Imn× [0, 1] where m 6= 1. Since all Imn are open

intervals, we do not need to consider continuity of ψmn at the endpoints of each Imn. f

is continuous for every a ∈ [0, 1], however f(0) = f(1). Therefore, the continuity follows

for all z except when z ∈ {0, 1}×I, and here by definition of continuity it suffices to show

that, given Uq, there exists a neighborhood V = V (z) ⊆ I × I such that ψ(V ) ⊆ Uq. If

the point 0 is in some Imn, then the continuity of ψ for all z = (0, t) follows from that of

ψmn. Suppose then that 0 is not in the closure of any interval Imn. Now f is continuous

at 0, so there is a neighborhood W = W (0) ∈ [0, 1] for which f(W ) ⊆ Uq. The uniform

continuity of f on [0,1] also implies that

lim
m→∞{lub1≤n≤p(m)(lengthImn)} = 0.

Claim 2: We can assume W to be such that every Imn, which meets W is contained in

W.
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Proof of Claim 2 : Let bmn ∈ Imn ∩W . Since Imn\W 6= ∅, let amn ∈ Imn\W . Clearly,

d(bmn, amn) > 0. Since

lim
m→∞{lub1≤n≤p(m)(lengthImn)} = 0,

we have limm→∞ d(bmn, amn) = 0. Therefore for every ε > 0, there exists an nε ∈ N

such that d(bmn, amn) < ε for every m ≥ nε. If Imn ∩ W 6= ∅ and Imn\W 6= ∅, let

W = W\(Imn ∩W ). By the above, there are only finitely many Imn’s that intersect but

are not contained in W , hence this would be repeated at most finitely many times giving

us the desired set W . End of Claim 2.

We can also assume that the Imn’s mentioned above are so small that ψmn(Imn×I) ⊆ Uq.

Hence, if a ∈ W , then either a ∈ F ′
2 or a is in some Imn. If a ∈ F ′

2, then ψ(a, t) = f(a)

for all t, and f(a) ∈ f(W ) ⊆ Uq; and if a ∈ Imn, then a ∈ W , hence ψ(a, t) ∈ ψmn(Imn×

I) ⊆ Uq. Therefore ψ(W × I) ⊆ Uq, i.e. ψ is continuous at all points (0, t) ∈ I × I.

Similar argument shows that ψ is continuous at all points (1, t). Hence ψ is continuous

everywhere in I × I, as desired.

Clearly ψ(a, 0) = f(a); define f ′ by f ′(a) = ψ(a, 1), so that f ′ ' f in X (with x

kept fixed during the homotopy). We now express [0,1] as

[0, 1] = J1 ∪ I11 ∪ J2 ∪ I12 ∪ . . . ∪ Jp ∪ I1p ∪ Jp+1,
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where p = p(1), the J ’s are closed intervals disjoint from the I’s and each other, and the

numbering is such that, if

s ∈ Ji, q ∈ I1j , r ∈ Ji+1,

then s < q < r for each appropriate i. By definition I1j∩I1k = ∅ for all j 6= k. Since each

I1j is open, 0 /∈ I1j for all j. Let I11 = (a1, a2) and define J1 = [0, a1]. Let I12 = (a3, a4)

and define J2 = [a2, a3]. Continue in such a way by defining Jk = [a2(k−1), a2(k−1)+1]

where I1k = (a2(k−1)+1, a2k) for k ≤ p. Define Jp+1 as Jp+1 = [a2p, 1]. Clearly the

collection of I1j and Jj as defined above satisfies the conditions listed. Write

fj = f ′|Ī1j , gj = f ′|Jj .

Then fj(Ī1j) ⊆ X1 and gj(Jj) ⊆ X2, so that f ′ is the product mapping

f ′ = g1f1g2f2 . . . gpfpgp+1.

Therefore, if homotopy classes in π1(X, x), π1(Xi, x) are denoted by R(.), Ri(.), respec-

tively, we have
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Rf = Rf ′ = R(g1f1g2f2 . . . gpfpgp+1)

= (Rg1)(Rf1) . . . (Rgp)(Rfp)(Rgp+1)

= (i2R2g1)(i1R1f1) . . . (i2R2gp)(i1R1fp)(i2R2gp+1)

= (i1 ∧ i2){(R2g1)(R1f1) . . . (R2gp)(R1fp)(R2gp+1)}

= (i1 ∧ i2)δ,

where δ ∈ π1(X1, x) ∗ π1(X2, x). Therefore (i1 ∧ i2) is onto, as desired.¤

22



Chapter 3

Expansion of the theorem

3.1 Introduction

It is a common practice in the field of mathematics to generalize already existing

theorems. In the previous chapter we introduced Griffiths’ result for the fundamental

group of one point union of spaces with the 1-LC property. One might ask if this result

can be generalized for semi 1-LC spaces. The claim of this paper is that the theorem

presented by Griffiths cannot be generalized to semi 1-LC spaces. We will consider two

spaces that will contradict the statement: “If one of X1, X2 is semi 1-LC at x, and both

X1 and X2 are closed in X and satisfy the first axiom of countability, then

(i1 ∧ i2) : π1(X1, x) ∗ π1(X2, x) ' π1(X, x),

where X = X1 ∪ X2 and X1 ∩ X2 = {x}.” In the next section we will construct two

spaces with the following properties:

1. X is semi 1-LC (but not 1-LC)

2. π1(X,x0) is trivial

3. the fundamental group of the one point union of X with itself is not trivial.

Obviously if the above spaces exist they would provide the necessary contradiction.

Clearly if π1(X1, x0) ≈ 0, and π1(X2, x0) ≈ 0 then π1(X1, x0) ∗ π1(X2, x0) ≈ 0 6=

π1(X, x0).
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Figure 3.1: Space X

3.2 First counterexample

3.2.1 Description of the space X

In this section we will be dealing with a space that we will refer to as X. Let us first

define the space carefully. X is the cone over the space B defined as the union of circles

with radius approaching 0. The largest circle, call it S1, has radius r1 = 1
4 , and each

consecutive circle Sn has radius rn = 1
2n+1 . The center of each Sn is cn = ( 3

2n+1 , 0, 0) and

the point of intersection of two consecutive circles is zn = Sn ∩ Sn−1 = ( 1
2n , 0, 0). Let us

label the “tip” of the cone, p = (1, 0, 1). Let x0 = (0, 0, 0) and S = x0t + p(1 − t) the

straight line segment between x0 and p.
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Another way to describe X is as X =
⋃

n∈N Con(Sn) ∪ S where

Con(Sn) = {(x, y, z)|(x, y, z) = ant + p(1− t) for an ∈ An, t ∈ [0, 1]}

and

An = {(x, y, 0)|y = ±
√

(
1

2n+1
)2 − (x− 3

2n+1
)2,

1
2n

≤ x ≤ 1
2n−1

}.

In this notation B =
⋃

n∈N An ∪ {x0}. Let

Con(S+
n ) = {(x, y, z)|(x, y, z) = a+

n t + p(1− t) for a+
n ∈ A+

n , t ∈ [0, 1]}

where

A+
n = {(x, y, 0)|y =

√
(

1
2n+1

)2 − (x− 3
2n+1

)2,
1
2n

≤ x ≤ 1
2n−1

}.

Let

Con(S−n ) = {(x, y, z)|(x, y, z) = a−n t + p(1− t) for a−n ∈ A−n , t ∈ [0, 1]}

where

A−n = {(x, y, 0)|y = −
√

(
1

2n+1
)2 − (x− 3

2n+1
))2,

1
2n

≤ x ≤ 1
2n−1

}.

For each sequence (ε1, ε2, ε3, . . .) with εi = ±1 the set Xε1,ε2,ε3,... =
⋃∞

i=1 Con(Sεi
n ) ∪ S is

homeomorphic to the solid triangle T with vertices (0, 0, 0), (1, 0, 0), (1, 0, 1).

Let us state the Tube Lemma[[1], p. 168] used in the proof of the next Claim.

Lemma 3.1 Consider the product space X × Y , where Y is compact. If N is an open

set of X × Y containing the slice x0 × Y of X × Y , then N contains some tube W × Y

about x0 × Y , where W is a neighborhood of x0 in X.
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Claim 1: The projection h : Xε1,ε2,ε3,... → T , h(x, y, z) = (x, 0, z) is a homeomorphism.

Proof of Claim 1: Notice that Xε1,ε2,ε3,... ⊆ T×[−1
2 , 1

2 ], so h is a restriction of a projection

of π : T × [−1
2 , 1

2 ] → T . It is a well known fact that a projection of a product space

onto one of its components is continuous, and a restriction of a continuous function

is continuous. Hence h is continuous. Let us show h is injective. Assume (x1, 0, z1) =

(x2, 0, z2), then y1 = y2, since y = ±
√

( 1
2n+1 )2 − (x− 3

2n+1 )2 and the points are limited to

Con(S+
n ) or Con(S−n ). Hence (x1, y1, z1) = (x2, y2, z2) and h is one-to-one. Let us show

h is onto. For any (x, 0, z) ∈ T , take (x, y, z) ∈ Xε1,ε2,ε3,... such that (x, y, z) ∈ Con(S+
n )

or (x, y, z) ∈ Con(S−n ) for some n. Such point exists since (0, 0, 0)t + (1, 0, 1)(1 − t)

is a side of the triangle T, (1, 0, 0)t + (1, 0, 1)(1 − t) is a side of the triangle T, and

0 ≤ x ≤ 1, z = 0 is a side of the triangle T. The rest of the points form a path connected

convex space between these edges. Hence there is a y such that (x, y, z) ∈ Con(S+
n ) or

(x, y, z) ∈ Con(S−n ) for some n. So h is onto.

Claim 2: A closed subset of a compact space is compact.

Proof of Claim 2: Let A be a closed subset of a compact space X. Let U = {U1, U2, . . .}

be an open covering of A. Then U∪(X\A) is an open covering of X. Since X is compact,

there is a finite subcollection of the above sets, say V that covers X. Either (X\A) is

in that finite collection, in which case we remove (X\A) from V , or (X\A) is not in

the subcollection, in which case we already have a finite subcollection of U covering A.

Hence A is compact. End of Claim 2.

Claim 3: A product of two compact spaces is compact.

Proof of Claim 3: Let U = {U1, U2, . . .} be an open covering of X × Y , where both

X and Y are compact. Let p ∈ X, then p × Y is homeomorphic to Y , hence it is
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compact. We can cover p × Y with finitely many elements of U , say U1, U2, . . . , Un.

Let V = U1 ∪ U2 ∪ . . . ∪ Un. Then V is an open set containing p × Y . By the Tube

Lemma, V contains an open set H × Y ⊇ p × Y , where H is an open set in X. Hence

H × Y can be covered by finitely many elements U1, U2, . . . , Un. Take x ∈ X, then we

can choose an open set Hx in X such that Hx × Y can be covered with finitely many

elements of U . Since we can choose Hx for every x ∈ X, the collection {Hx}x∈X covers

X. Since X is compact, we can cover X with finitely many members of {Hx}x∈X , say

Hx1 ,Hx2 , . . . ,Hxn . Then Hx1 × Y, Hx2 × Y, . . . , Hxn × Y covers X × Y . Since there

are finitely many of these sets, and each one of them can be covered with finitely many

elements of U , X × Y can be covered with finitely many members of U . Hence X × Y is

compact. End of Claim 3.

Therefore, we have that T × [−1
2 , 1

2 ] is compact. Take any infinite sequence of points in

Xε1,ε2,ε3,.... Either there is an n such that all but finitely many points of the sequence

lie in Con(Sn) or only a finite number of points lie in each Con(Sn) implying that the

points (just as Con(Sn)) limit to the segment S. In the first case the sequence limits

to a point in the specified Con(Sn) and since each Con(Sn) is closed, the limit point is

in Xε1,ε2,ε3,.... In the second case, the limit point of the sequence is in S ⊆ Xε1,ε2,ε3,....

Therefore Xε1,ε2,ε3,... is a closed subset of T × [−1
2 , 1

2 ], hence it is compact. Since h is a

continuous, one-to-one, and onto function on a compact set it is a homeomorphism. End

of Claim 1.
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3.2.2 Local connectedness and Semi Local Connectedness of X

Definition 3.2 A space X is said to be contractible if the identity map iX : X → X

is homotopic to a constant map.

Let us show that X as described above is semi 1-LC at x0 but not 1-LC at x0. By

Theorem 3.3, π1(X, x0) = 0. Therefore the homomorphism i∗ : π1(U, x0) → π1(X, x0) is

trivial for any x0 ∈ X. Hence, X is semi 1-LC. Now let us show X is not 1-LC. Take any

open set U 3 x0. By definition of X, U ⊇ Dn for some n, where Dn = B\{Si}i≤n∪{zn}.

Any set V ⊆ U , V 3 x0 will again have the property that V ⊇ Dm for some m ≥ n.

Notice that if p /∈ U , U ⊇ Dn but U does not contain Dn−1 then π1(U, x0) ≈ π1(Dn, x0).

Since π1(Dm, x0) → π1(Dn, x0) is not trivial for any m, n ∈ N , m ≥ n, we have that

π1(V, x0) → π1(U, x0) is not trivial for any V ⊆ U . Hence X is not 1-LC.

3.2.3 The fundamental group of X

Theorem 3.3 If X is the space defined in this section, and x0 = (0, 0, 0) ∈ X, then

π1(X, x0) is trivial.

Two proofs will be provided for the above theorem. The first proof will use the fact that

X is a cone, and the second one will involve construction of a homotopy.

First Proof of Theorem 3.3:

Let us introduce the concept of quotient spaces[[9], p.161].

Definition 3.4 Let X be a space and S an equivalence relation on X. Then S partitions

X into a family X/S of equivalence classes. The quotient topology for X/S is defined

by the following condition: A set U of equivalence classes in X/S is open if and only if
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the union of the members of U is open in X. The quotient space of X modulo S is

the set X/S with the quotient topology.

Let B be the infinite chain of circles with radius approaching zero union the point {x0}

as defined previously. Define the relation on B×I by (x, t) ∼ (x′, t′) if t = t′ = 1. Denote

the equivalence class of (x, t) by [x, t]. Let X = B × I/ ∼ be the cone over B.

Step 1: Let us show that X is contractible to p = [x, 1]. Define a map F : X×I → X by

F ([x, t], s) = [x, (1 − s)t + s]. Obviously F ([x, t], 0) = [x, t] and F ([x, t], 1) = [x, 1] = p.

We have a deformation retraction of X to p, hence X is contractible to p.

Step 2: Show that the fundamental group at x of any space contractible to x is trivial

(in this case π1(X, p) ≈ 0). Take any path α : I → X, use the map defined above as the

homotopy of α to p. Hence, any path in X is homotopic to the constant map at p (i.e.

π1(X, p) ≈ 0).

Step 3: Show that if X is path connected and x, x′ ∈ X then π1(X, x) ≈ π1(X,x′). Let

γ : I → X, be such that γ(0) = x and γ(1) = x′. We will write [f ] ∗ [g] as [f ][g] when it

is clear we are dealing with products of paths. Define a map Ψ : π1(X, x) → π1(X,x′)

by Ψ([f ]) = [γ−1][f ][γ] where f ∈ π1(X, x). This map is a homomorphism since:

Ψ([f ]) ∗Ψ([g]) = [γ−1][f ][γ][γ−1][g][γ] =

= [γ−1][f ][g][γ] = Ψ([f ][g]).

Since γ is fixed [γ−1][f ][γ] = [γ−1][g][γ] implies [f ] = [g], hence Ψ is one-to-one. To

show Ψ is onto, let [g] ∈ π1(X, x′). Then [γ][g][γ−1] ∈ π1(X,x) and Ψ([γ][g][γ−1]) =

[γ−1][γ][g][γ−1][γ] = [g]. Hence Ψ is onto. Therefore Ψ is an isomorphism and π1(X,x) ≈
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π1(X, x′).

We conclude that since π1(X, p) ≈ 0, and π1(X, p) ≈ π1(X,x0), then π1(X, x0) ≈ 0.

Second Proof of Theorem 3.3:

Let f : I → X be such that f(0) = f(1) = x0. Let α : I → X be the straight line segment

between x0 and p, α(t) = (1− t)x0 + tp, and α the reverse of α defined as α(t) = α(1− t).

Let g(s, t) = (1 − t)f(s) + tp. Notice that g(0, t) = α(t) and g(1, t) = α(t). Define the

homotopy of f to α ∗ α, H : I × I → X, by:

H(s, t) =





α(2s) 0 ≤ s ≤ 1
2 t,




g( 2s−t
2−2t , t) if t 6= 1

g(s, 1) = p if t = 1

1
2 t ≤ s ≤ 1− 1

2 t,

α(2− 2s) 1− 1
2 t ≤ s ≤ 1.

Let us check that this homotopy is well defined and continuous.

First, limt→1 g(s, t) = p, hence that part is continuous. Now let us check if the

Pasting Lemma can be applied:

α(2(
1
2
t)) = α(t).

For t 6= 1 we have:

g(
2(1

2 t)− t

2− 2t
, t) = g(0, t) = α(t),

g(
2(1− 1

2 t)− t

2− 2t
, t) = g(1, t) = α(t).
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For t = 1, we have

g(s, 1) = p = α(1),

and lastly

α(2− 2(1− 1
2
t)) = α(t).

Hence H is well defined and continuous by the Pasting Lemma. Also,

H(s, 0) = g(s, 0) = f(s) H(0, t) = α(0) = x0,

H(s, 1) = α ∗ α H(1, t) = α(0) = x0.

Define a homotopy of α ∗ α to x0, H̃ : I × I → X, by

H̃(s, t) =





α(2s) 0 ≤ s ≤ 1
2 − 1

2 t,

α(1− t) 1
2 − 1

2 t ≤ s ≤ 1
2 t + 1

2 ,

α(2− 2s) 1
2 t + 1

2 ≤ s ≤ 1.

Let us check that this homotopy is well defined and continuous.

α(2(
1
2
− 1

2
t)) = α(1− t),

α(2− 2(
1
2
t +

1
2
)) = α(1− t).
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Hence H̃ is well defined and continuous by the pasting lemma. Also,

H̃(s, 0) = α ∗ α H̃(0, t) = α(0) = x0,

H̃(s, 1) = α(0) = x0 H̃(1, t) = α(0) = x0.

Define a homotopy of f to x0, H : I × I → X, by

H =





H(s, 2t) for t ∈ [0, 1
2 ],

H̃(s, 2t− 1) for t ∈ [12 , 1].

Let us check that this homotopy is well defined and continuous:

H(s, 2 · 1
2
) = H(s, 1) = α(2s) ∗ α(2− 2s)

and

H̃(s, 2 · 1
2
− 1) = H̃(s, 0) = α(2s) ∗ α(2− 2s).

Hence H is well defined and continuous by the Pasting Lemma.
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Let us check that the following are satisfied:

H(s, 0) = f(s) H(0, t) = x0,

H(s, 1) = x0 H(1, t) = x0.

H(s, 0) = H(s, 0) = g(s, 0) = f(s),

H(s, 1) = H̃(s, 1) = α(1− 1) = α(0) = x0,

H(0, t) = H(1, t) = α(0) = x0.

Hence we have a homotopy between any path in X originating at x0 and a constant path

at x0. This concludes the second proof.¤

3.2.4 The fundamental group of a one point union of two copies of X

In this section we will consider the one point union of two copies of the space X as

described above. We will call the first copy of this cone space X1 and the second copy

X2. The space X will be defined as X = X1 ∪ X2 where X1 ∩ X2 = {x0}, x0 is the

limiting point as defined in previous section, x0 = (0, 0, 0). The points p1 and p2 are

the “tips” of the spaces X1 and X2 respectively (i.e. p1 = (1, 0, 1) and p2 = (−1, 0, 1)).

When we described the space in the previous section we had the concept of zn and cn.

From now on −zn = (− 1
2n , 0, 0) is the equivalent of zn in X2. In other words zn ∈ X1

and −zn ∈ X2. Also, X1 is the cone over B1 and X2 is the cone over B2.
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Figure 3.2: Union of two copies of X
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Let us define the metric dX on X as follows:

dX(a, b) =





d(a, x0) + d(b, x0) for a ∈ X1, b ∈ X2 or a ∈ X2, b ∈ X1

d(a, b) for a, b ∈ X1 or a, b ∈ X2,

where d is the default metric on R2 and a, b ∈ X. Let us show that dX is truly a metric

on X. First let us recall the definition of a metric [[1], p.119].

Definition 3.5 A metric on a set X is a function

d : X ×X → R

having the following properties:

1. d(x, y) ≥ 0 for all x, y ∈ X; d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

Let us verify the above for dX .

First, dX(x, y) ≥ 0 since d is a metric and hence d(x, x0) + d(y, x0) ≥ 0 and d(x, y) ≥ 0

for all x, y ∈ X. Also, if x = y then x, y ∈ X1 or x, y ∈ X2, hence dX(x, y) = d(x, y) = 0.

If x, y ∈ X1 or x, y ∈ X2 we have dX(x, y) = d(x, y) = d(y, x) = dX(y, x). If x ∈ X1 and

y ∈ X2, then dX(x, y) = d(x, x0) + d(y, x0) = d(y, x0) + d(x, x0) = dX(y, x). Symmetric

argument works when x ∈ X2 and y ∈ X1.

If x, y, z ∈ X1 or x, y, z ∈ X2 we have dX(x, y) + dX(y, z) = d(x, y) + d(y, z) ≥ d(x, z) =

dX(x, z). If x, y ∈ X1 and z ∈ X2, then dX(x, y)+dX(y, z) = d(x, y)+d(y, x0)+d(z, x0) ≥
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d(x, x0) + d(z, x0) = dX(x, z). Similar argument follows for x ∈ X1 and y, z ∈ X2.

This concludes the proof of dX being a metric on X.

An open set in the topology on X induced by this metric is of the form Bε(a) =

{(x, y) ∈ X2|x2 + y2 < (ε − d(a, x0))2} ∪ {(x, y) ∈ X1|d(a, (x, y)) < ε} for a ∈ X1 and

Bε(a) = {(x, y) ∈ X1|x2+y2 < (ε−d(a, x0))2}∪{(x, y) ∈ X2|d(a, (x, y)) < ε} for a ∈ X2.

The following Lemma will be used in the proof of the next Theorem.

Lemma 3.6 π1(B1, x0) ' π1(X1\{p1}, x0), and π1(B2, x0) ' π1(X2\{p2}, x0).

Proof of Lemma 3.6: First let us introduce a definition used in the proof of this Lemma

[[7]p.209].

Definition 3.7 Let A be a subspace of X. Then A is a strong deformation retract

of X if there is a continuous map F : X × I → X such that

F (x, 0) = x for all x ∈ X,

F (x, 1) ∈ A for all x ∈ X,

F (a, t) = a for all a ∈ A and t ∈ I.

Step 1: We will show that if A is a strong deformation retract of X and x0 ∈ A ⊆ X, then

the inclusion map j : (A, x0) → (X,x0) induces an isomorphism of fundamental groups,

j∗ : π1(A, x0) → π1(X,x0). Let r be the strong deformation retraction of X, r : X → A,

r(x) = F (x, 1), where F : X × I → X is such that F (X, 1) = A, F (a, t) = a for all

a ∈ A and t ∈ [0, 1], F (x, 0) = x for all x ∈ X. Then rj = idA, hence r∗j∗ = idπ1(A,x0),

and j∗ is injective. Let [g] ∈ π1(X, x0), j∗ is surjective if there exists [f ] ∈ π1(A, x0)
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such that j∗([f ]) = [g]. Since F ◦ g is a homotopy from a loop g in X to a loop in A,

[g] → [f ] ∈ π1(A, x0), j∗ is surjective. Therefore j∗ is an isomorphism.

Step 2: Next we will show that B1 is a strong deformation retraction of X1\{p1}.

Consider the map F : X1\{p1} × I → X1\{p1} defined by F ([x, s], t) = [x, s(1− t)]. By

definition of a cone, points in B1 are of the form [x, 0] and points in X1\{p1} are of the

form [x, t] for t ∈ [0, 1). Clearly F ([x, 0], t) = [x, 0] (i.e. F (a, t) = a), F ([x, s], 1) = [x, 0]

(i.e. F (X, 1) = A), and F ([x, s], 0) = [x, s] (i.e. F (x, 0) = x).Therefore B1 is a strong

deformation retract of X1\{p1}. We conclude that π1(B1, x0) ' π1(X1\{p1}, x0). Similar

argument shows that π1(B2, x0) ' π1(X2\{p2}, x0). ¤

Theorem 3.8 With X the space described above, π1(X, x0) 6= 0.

To prove the above theorem it is enough to show that there is a loop f in X based at x0

and there is no homotopy between f and x0 in X. Consider a loop f : I → X defined by:

f(0) = x0 = (0, 0, 0),

f(s) =





(4n 1
2n [(n + 1)s− 1], y, 0) y ≥ 0 for 1

n+1 ≤ s ≤ 4n+1
4n(n+1) ,

(−4n[(n+1)s−1]+3
2n+1 , y, 0) y ≤ 0 for 4n+1

4n(n+1) ≤ s ≤ 2n+1
2n(n+1) ,

(4n[(n+1)s−1]−1
2n+1 , y, 0) y ≥ 0 for 2n+1

2n(n+1) ≤ s ≤ 4n+3
4n(n+1) ,

(−4(n2s−n+ns−1)
2n , y, 0) y ≤ 0 for 4n+3

4n(n+1) ≤ s ≤ 1
n ,
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for n odd, where n is the largest integer smaller than 1
s , and y = ±

√
( 1
2n+1 )2 − (x− 3

2n+1 )2.

f(s) =





(−4n
∑∞

i=n+1
1
2i ((n + 1)s− 1), y, 0) y ≥ 0 for 1

n+1 ≤ s ≤ 4n+1
4n(n+1) ,

(4n(n+1)
2n+1 s− 1

2n − 4n+1
2n+1 , y, 0) y ≤ 0 for 4n+1

4n(n+1) ≤ s ≤ 2n+1
2n(n+1) ,

(−4n(n+1)
2n+1 s−∑∞

i=n+2
1
2i + 2(2n+1)

2n+1 , y, 0) y ≥ 0 for 2n+1
2n(n+1) ≤ s ≤ 4n+3

4n(n+1) ,

(4
∑∞

i=n+1
1
2i (n + 1)(ns− 1), y, 0) y ≤ 0 for 4n+3

4n(n+1) ≤ s ≤ 1
n ,

for n even, where n and y are defined as above. We need to show f(0) = f(1) =

x0 = (0, 0, 0) and f is continuous. By definition f(0) = x0. If s = 1, n = 1 so

f(1) = (−∑∞
i=2

1
2i 4(1)(2)(1) +

∑∞
i=2

1
2i 4(2), y, 0) = (0, y, 0) = (0, 0, 0) = x0. To show

continuity we use the pasting lemma. We need to show the definition of f agrees on all

the intersections. If s = 0, lims→0+
1
s = ∞.

Consider f(0) = (
∑∞

i=∞
1
2i 4n(n + 1)0−∑∞

i=∞
1
2i 4n, y, 0) = (0, y, 0) = (0, 0, 0) = x0.
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Now consider:

f(
4n + 1

4n(n + 1)
) = (

∞∑

i=n+1

4n + 1
2i

−
∞∑

i=n+1

4n

2i
, y, 0) = (

1
2n

, y, 0) = zn,

f(
4n + 1

4n(n + 1)
) = (−4n + 1

2n+1
+

1
2n

+
4n + 1
2n+1

, y, 0) = zn,

f(
2n + 1

2n(n + 1)
) = (−4n + 2

2n+1
+

1
2n

+
4n + 1
2n+1

, y, 0) =

= (− 1
2n+1

+
1
2n

, y, 0) = (
∞∑

i=n+2

1
2i

, y, 0) = zn+1,

f(
2n + 1

2n(n + 1)
) = (

4n + 2
2n+1

+
∞∑

i=n+2

1
2i
− 4n + 2

2n+1
, y, 0) = (

∞∑

i=n+2

1
2i

, y, 0) = zn+1,

f(
4n + 3

4n(n + 1)
) = (

4n + 3
2n+1

+
∞∑

i=n+2

1
2i
− 4n + 2

2n+1
, y, 0) =

= (
1

2n+1
+

∞∑

i=n+2

1
2i

, y, 0) = (
1
2n

, y, 0) = zn,

f(
4n + 3

4n(n + 1)
) = (−

∞∑

i=n+1

4n + 3
2i

+
∞∑

i=n+1

4n + 4
2i

, y, 0) = (
1
2n

, y, 0) = zn.

So the function is continuous for n odd. Since f( 1
n) = (0, 0, 0) for all n ∈ Z the function

stays continuous during the change from odd to even and vice versa. Lastly, let us show
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f is continuous for n even:

f(
4n + 1

4n(n + 1)
) = (−

∞∑

i=n+1

4n + 1
2i

+
∞∑

i=n+1

4n

2i
, y, 0) = (− 1

2n
, y, 0) = −zn,

f(
4n + 1

4n(n + 1)
) = (

4n + 1
2n+1

− 1
2n
− 4n + 1

2n+1
, y, 0) = −zn,

f(
2n + 1

2n(n + 1)
) = (

4n + 2
2n+1

− 1
2n
− 4n + 1

2n+1
, y, 0) =

= (
1

2n+1
− 1

2n
, y, 0) = (−

∞∑

i=n+2

1
2i

, y, 0) = −zn+1,

f(
2n + 1

2n(n + 1)
) = (−4n + 2

2n+1
−

∞∑

i=n+2

1
2i

+
4n + 2
2n+1

, y, 0) = (−
∞∑

i=n+2

1
2i

, y, 0) = −zn+1,

f(
4n + 3

4n(n + 1)
) = (−4n + 3

2n+1
−

∞∑

i=n+2

1
2i

+
4n + 2
2n+1

, y, 0) =

= (− 1
2n+1

−
∞∑

i=n+2

1
2i

, y, 0) = (− 1
2n

, y, 0) = −zn,

f(
4n + 3

4n(n + 1)
) = (

∞∑

i=n+1

4n + 3
2i

−
∞∑

i=n+1

4n + 4
2i

, y, 0) = (− 1
2n

, y, 0) = −zn.

This concludes the proof of continuity of f .

Theorem 3.8 is a direct consequence of the following theorem.

Theorem 3.9 The loop f , as described above, is not homotopic to a constant map at

x0 in X.

Proof of Theorem 3.9: First, let us try to visualize the loop f . It alternates between

“circles” in X1 and “circles” in X2. It starts at x0, runs along the top of the circles to

zn, loops once around the circle Sn+1 in X1 and returns to x0 via the bottom of the

circles. It then follows a similar pattern in X2; it runs on top of the circles to −zn, loops
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around the circle −Sn+1 in X2 once, then returns to x0 via the bottom of the circles.

This repeats for every other circle (i.e. f loops around Sn in X1 only for odd n, and

in X2 only for even n). Consider any homotopy H : I × I → X of f to x0. We will

show that H is not continuous. Since X = X1 ∪X2 and X1 ∩X2 = {x0} we have that

A = H−1(x0) separates H−1(X) into components {Ci} and {Dj} where Ci ⊆ H−1(X1)

and Dj ⊆ H−1(X2) for every i and every j.

Claim 1: There are infinitely many components Ci such that Ci ⊇ [ 1
n+1 , 1

n ]×{0} for some

n ∈ N, n odd or there are infinitely many components Dj such that Dj ⊇ [ 1
n+1 , 1

n ]×{0}

for some n ∈ N, n even.

Proof of Claim 1: Let us assume that there are finitely many components {Ci}. Then

we know that at least one component Ci must contain infinitely many intervals In =

[ 1
n+1 , 1

n ] × {0} for n odd. Let N ∈ N and assume that Ck ∩ Cl = ∅, where Ck contains

infinitely many intervals In, n ≥ N odd and Cl contains infinitely many intervals In,

n ≥ N odd. Clearly there exist s, r, p ∈ N such that r < p < s, Ir, Is ⊆ Ck, and

Ip ⊆ Cl. Since Ir and Is are contained in Ck then Ck contains an arc, say L, joining

the points pr ∈ int(Ir) and ps ∈ int(Is). This means that there is a function g :

[0, 1] → Ck such that g(0) = pr and g(1) = ps. Consider the simple closed curve

J = L∪ ({0, 1}× [−1
2 , 1])∪ (([0, ps]∪ [pr, 1])×{−1

2})∪ ([0, 1]×{1})∪ ({ps, pr}× [−1
2 , 0].

As a simple closed curve J separates the plane into two components, say Z1 and Z2.

Without loss of generality let Ip ⊆ Z1, then Z2 contains the intervals In for n > s, n

odd. Consider the sets Z1 ∩ Cl and Z2 ∩ Cl. Since Z1 ∪ Z2 = R\J and J ∩ Cl = ∅

we have Cl ⊆ Z1 ∪ Z2. Therefore (Z1 ∩ Cl) ∪ (Z2 ∩ Cl) = Cl. By connectedness of Cl

either Z1 ∩ Cl = ∅ or Z2 ∩ Cl = ∅. Since Ip ⊆ Z1 and Ip ⊆ Cl, Z1 ∩ Cl 6= ∅. Hence
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Z2 ∩ Cl = ∅. However,
⋃

n>s In ⊆ Z2 for n odd, so Cl does not contain In for any n > s

odd. Therefore if there are finitely many components Ci, there is an i and N ∈ N such

that Ci contains all intervals In for n ≥ N , n odd. We know that for n even, In ⊆ Dj

for some j. Let
⋃

n≥N In ⊆ Ci where n are odd. Let pn ∈ int(In) and let gn be an arc

from pn to pn+2 in Ci. By assumption Ci contains all gn for n odd. For a fixed n ∈ N,

n ≥ N , let Jn =
⋃

n≥k≥N gk ∪ ({0, 1} × [−1
2 , 1]) ∪ ([0, 1] × {1}) ∪ (([pN , 1] ∪ [0, pn+2]) ×

{−1
2}) ∪ ({pN , pn+2} × [−1

2 , 0]). Jn separates the plane since it is a simple closed curve.

Say Jn separates the plane into components J1n and J2n. Consider a component Dl.

Let s, r ∈ N such that r > n > s > N , r, s even and Is ⊆ Dl. Assume that Is ⊆ J1n.

Just as above J1n ∪ J2n = R\Jn and Jn ∩ Dl = ∅ implies Dl ⊆ J1n ∪ J2n. Therefore

(J1n∩Dl)∪ (J2n∩Dl) = Dl. By connectedness of Dl either J1n∩Dl = ∅ or J2n∩Dl = ∅.

We have that Is ⊆ J1n and Is ⊆ Dl, hence J2n∩Dl = ∅. Since
⋃

k>n Ik ⊆ J2n for n even,

Dl does not contain Ik for any k > n even. Therefore each component Dj can contain at

most finitely many In’s for n even. The existence of infinitely many intervals In implies

that there are infinitely many components Dj . A similar argument follows if we assume

there are finitely many Dj ’s. End of Claim 1.

Claim 2: In every component Ci such that Ci ⊇ [ 1
n+1 , 1

n ]× {0} for some n ∈ N, n odd,

there is a point (x, tx) ∈ Ci such that H(x, tx) = p1 and in every component Dj such

that Dj ⊇ [ 1
n+1 , 1

n ]× {0} for some n ∈ N, n even, there is a point (y, ty) ∈ Dj such that

H(y, ty) = p2.

Proof of Claim 2: Let us consider the collection {Ci} where Ci ⊇ [ 1
n+1 , 1

n ] × {0} for

some n ∈ N, n odd. Assume there is an element of this collection, say Ck, such that

H(x, tx) 6= p1 for all (x, tx) ∈ Ck. Then consider the homotopy F : I × I → X1\{p1},
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defined by

F (x, t) =





H(x, t) if (x, t) ∈ Ck

x0 if (x, t) /∈ Ck.

Since ([0, 1] × [0, 1]\Ck) ∩ Ck ⊂ A this function is continuous by the Pasting Lemma.

We know that Ck ⊇
⋃

p≤n≤t[
1

n+1 , 1
n ] × {0} for some p, t ∈ N. Let g be f restricted to

⋃
p≤n≤t[

1
n+1 , 1

n ]. Let αn : [0, 1] → [ 1
n+1 , 1

n ] be a linear map and an : [0, 1] → X defined

as an = f ◦ αn. We have shown in Chapter 1 that f ∗ (g ∗ h) ' (f ∗ g) ∗ h. This result

can be generalized to any finite product of paths. Let us define f1∗f2∗ . . . ∗fn as follows:

On [0, 1
n ] it equals the positive linear map of [0, 1

n ] to [0, 1] followed by f1; on [ 1
n , 1

n−1 ] it

equals the positive linear map of [ 1
n , 1

n−1 ] to [0, 1] followed by f2; continue the pattern

and on [12 , 1] it equals the positive linear map of [12 , 1] to [0, 1] followed by fn. By Step 2

of the proof of Theorem 51.2 by Munkres in [1], the path e∗at∗e∗ . . . ∗ap∗e is homotopic

to the product of the same paths with any parenthesis placements. Therefore we will

write h = e∗at ∗e∗ . . .∗ap ∗e without the parenthesis. Let us show that F is a homotopy

of h to a constant map at x0 in X1\{p1}. If (x, 0) ∈ Ck then x ∈ ⋃
p≤n≤t[

1
n+1 , 1

n ] and

F (x, 0) = H(x, 0) = f(x). If (x, 0) /∈ Ck then F (x, 0) = x0. Since f( 1
n+1) = f( 1

n) = x0,

we have that F (x, 0) = h. If (x, 1) ∈ Ck then F (x, 1) = H(x, 1) = x0. Therefore

F (x, 1) = x0. Lastly, F (0, t) = x0 and F (1, t) = x0. Since H(x, t) 6= p1 for all (x, t) ∈ Ck,

and F (x, t) = x0 6= p1 for all other points, F ([0, 1] × [0, 1]) ⊆ X1\{p1}. Hence we have

a homotopy of h to a constant map at x0 in X1\{p1}; h is homotopic to g. However

g is not homotopic to a constant map at x0 in B1. By Lemma 3.6, this implies that g

is not homotopic to the constant map at x0 in X1\{p1}. This causes a contradiction.
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Therefore the homotopy F as described above cannot exist and hence every component

Ci contains a point (x, tx) such that H(x, tx) = p1. A similar argument shows the result

for components Dj . End of Claim 2.

Claim 3: For every i > 0, let Bεi be an open ball of radius εi centered at (xi, ti), where

(xi, ti) is a point in Ci such that H(xi, ti) = p1, and Bεi ⊆ Ci, Bε\Ci 6= ∅ for every

ε > εi. If the collection {Ci} is infinite then limi→∞ εi = 0. Similarly, if Bεj ⊆ Dj and

the collection {Dj} is infinite then limj→∞ εj = 0.

Proof of Claim 3: If limt→∞ εi 6= 0 then there is an M ∈ R such that εi ≥ M for

infinitely many i’s. Consider the collection of open balls of radius εi, {Bεi}, such that

Bεi ⊆ Ci. The area of each Bεi , say Ai, is greater than or equal to T = π(M)2. Since

there are infinitely many Ci’s and Ci ∩ Cj = ∅ for all i 6= j, there are infinitely many

Bεi ’s such that Bεi ∩Bεj = ∅ for all i 6= j. Therefore the area S of the square [0, 1]× [0, 1]

is S ≥ ∑∞
i=1 Ai ≥ T × ∞ = ∞. However, the area of the unit square is 1. This

contradiction shows that the radius of the open balls contained in the sets Ci approaches

0 as i approaches infinity. The same argument works for the collection {Dj}. End of

Claim 3.

Since H is a continuous function on a compact set [0, 1]× [0, 1] it is uniformly continuous.

Therefore we have that for every ε > 0 there exists a δ > 0 such that if (x, t), (y, t′) ∈

[0, 1] × [0, 1] are such that d((x, t), (y, t′)) < δ, then d(H(x, t),H(y, t′)) < ε. Let ε = 1
2 ,

then there exists a δ > 0 satisfying the above condition. If there are infinitely many

Ci ⊇ In for some n ∈ N, n odd, then the collection {Ci} is infinite. If there are infinitely

many Dj ⊇ In for some n ∈ N, n even, then the collection {Dj} is infinite. By Claim 1,

either {Ci} is infinite or {Dj} is infinite. Without loss of generality, let {Ci} be an infinite
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collection. Let εi < δ, (xi, ti) ∈ Bεi ⊆ Ci such that H(xi, ti) = p1 and (a, ta) ∈ A ∩ Bεi .

Then d((xi, ti), (a, ta)) ≤ εi < δ, and d(H(xi, ti),H(a, ta)) = d(p1, x0) < 1
2 . This causes a

contradiction, because p1 and x0 were defined in such a way that d(p1, x0) > 1. Therefore

H is not continuous. Hence there does not exist a homotopy H : I × I → X of f to x0.

This concludes the proof of Theorem 3.9. ¤

3.3 Second counterexample

3.3.1 Description of the space Y

In this section we will be dealing with a space that we will refer to as Y. This

space was suggested in an Exercise in a book by Spanier [[2], p.59]. Let us first define

the space carefully. Let W be defined as the union of circles Cn, where Cn has center

cn = ( 1
n(n+1) , 0, 0) and radius rn = 1

n(n+1) for all positive integers n. Y is the set of

points on the closed line segments joining the point q = (1, 0, 1) to W. Let y0 = (0, 0, 0).

Another way to describe Y is as X =
⋃

n∈N Con(Cn) ∪ C where

Con(Cn) = {(x, y, z)|(x, y, z) = vnt + q(1− t) for vn ∈ Vn, t ∈ [0, 1]},

where Vn = {(x, y, 0)|y = ±
√
−x2 + 2

n(n+1)x}. In this notation W =
⋃

n∈N Vn ∪ {y0}.

Let

Con(C+
n ) = {(x, y, z)|(x, y, z) = v+

n t + q(1− t) for v+
n ∈ V +

n , t ∈ [0, 1]},

where V +
n = {(x, y, 0)|y =

√
−x2 + 2

n(n+1)x}. Let

Con(C−
n ) = {(x, y, z)|(x, y, z) = v−n t + q(1− t) for v−n ∈ V −

n , t ∈ [0, 1]},
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Figure 3.3: Space Y
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Figure 3.4: Union of two copies of Y

where V −
n = {(x, y, 0)|y = −

√
−x2 + 2

n(n+1)x}.

Theorem 3.10 If Y is the space defined in this section, and y0 = (0, 0, 0) ∈ Y , then

π1(Y, y0) is trivial.

The proof of Theorem 3.10 is exactly the same as the proof of Theorem 3.3.

By the argument in section 3.2.2, Y is semi 1-LC but not 1-LC.

3.3.2 The fundamental group of a one point union of two copies of Y

In this section we will consider the one point union of two copies of the space Y

described above. We will call the first copy of this cone space Y1 and the second copy

Y2. The space Y will be defined as Y = Y1 ∪ Y2 where Y1 ∩ Y2 = {y0}, y0 = (0, 0, 0)
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is the limiting point as defined previously. The space Y1 is the cone over W1 and the

space Y2 is the cone over W2. The points q1 and q2 are the “tips” of the spaces Y1 and

Y2 respectively (i.e. q1 = (1, 0, 1) and q2 = (−1, 0, 1)). Let −cn = (− 1
n(n+1) , 0, 0) be the

center of −Cn, where −Cn is the nth circle in Y2.

Lemma 3.11 The fundamental group of W1 is isomorphic to the fundamental group of

Y1\{q1} and the fundamental group of W2 is isomorphic to the fundamental group of

Y2\{q2}.

The proof of this Lemma is the same as for the space X.

Theorem 3.12 Let Y be the space described above, then π1(Y, y0) 6= 0.

Similarly to showing that π1(X, x0) 6= 0 in the previous subsection, it is enough to show

that there is a loop f in Y based at y0 and there is no homotopy between f and y0 in

Y . Consider a loop f : I → Y defined by:

f(0) = y0 = (0, 0, 0)

f(s) =





(8s− 8
n+1 , y, 0) y ≥ 0 for 1

n+1 ≤ s ≤ 4n+1
4n(n+1) ,

(−8s + 4(2n+1)
n(n+1) , y, 0) y ≤ 0 for 4n+1

4n(n+1) ≤ s ≤ 2n+1
2n(n+1) ,

(8s− 4(2n+1)
n(n+1) , y, 0) y ≥ 0 for 2n+1

2n(n+1) ≤ s ≤ 4n+3
4n(n+1) ,

(−8s + 8
n , y, 0) y ≤ 0 for 4n+3

4n(n+1) ≤ s ≤ 1
n ,
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for n odd, where n = p1
sq, and y = ±

√
−x2 + 2

n(n+1)x.

f(s) =





(−8s + 8
n+1 , y, 0) y ≥ 0 for 1

n+1 ≤ s ≤ 4n+1
4n(n+1) ,

(8s− 4(2n+1)
n(n+1) , y, 0) y ≤ 0 for 4n+1

4n(n+1) ≤ s ≤ 2n+1
2n(n+1) ,

(−8s + 4(2n+1)
n(n+1) , y, 0) y ≥ 0 for 2n+1

2n(n+1) ≤ s ≤ 4n+3
4n(n+1) ,

(8s− 8
n , y, 0) y ≤ 0 for 4n+3

4n(n+1) ≤ s ≤ 1
n ,

for n even, where n and y are defined as above. We need to show f(0) = f(1) = y0 =

(0, 0, 0) and f is continuous. By definition f(0) = y0. If s = 1, n = 1 so f(1) =

(8(1) − 8
1 , y, 0) = (0, y, 0) = (0, 0, 0) = y0. To show continuity we use the pasting

lemma. We need to show the definition of f agrees on all the intersections. If s = 0,

lims→0+
1
s = ∞.

Consider f(0) = (8(0)− limn→∞ 8
n , y, 0) = (0, y, 0) = (0, 0, 0) = y0.
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Now consider:

f(
4n + 1

4n(n + 1)
) = (8(

4n + 1
4n(n + 1)

)− 8
n + 1

, y, 0) = (
2

n(n + 1)
, y, 0),

f(
4n + 1

4n(n + 1)
) = (−8(

4n + 1
4n(n + 1)

) +
4(2n + 1)
n(n + 1)

, y, 0) = (
2

n(n + 1)
, y, 0),

f(
2n + 1

2n(n + 1)
) = (−8(

2n + 1
2n(n + 1)

) +
4(2n + 1)
n(n + 1)

, y, 0) = (0, y, 0) = y0,

f(
2n + 1

2n(n + 1)
) = (8(

2n + 1
2n(n + 1)

)− 4(2n + 1)
n(n + 1)

, y, 0) = (0, y, 0) = y0,

f(
4n + 3

4n(n + 1)
) = (8(

4n + 3
4n(n + 1)

)− 4(2n + 1)
n(n + 1)

, y, 0) = (
2

n(n + 1)
, y, 0),

f(
4n + 3

4n(n + 1)
) = (−8(

4n + 3
4n(n + 1)

) +
8
n

, y, 0) = (
2

n(n + 1)
, y, 0).

So the function is continuous for n odd. Since f( 1
n) = (0, 0, 0) for all n ∈ Z the function

stays continuous during the change from odd to even and vice versa. Lastly, let us show

f is continuous for n even:

f(
4n + 1

4n(n + 1)
) = (−8(

4n + 1
4n(n + 1)

) +
8

n + 1
, y, 0) = (− 2

n(n + 1)
, y, 0),

f(
4n + 1

4n(n + 1)
) = (8(

4n + 1
4n(n + 1)

)− 4(2n + 1)
n(n + 1)

, y, 0) = (− 2
n(n + 1)

, y, 0),

f(
2n + 1

2n(n + 1)
) = (8(

2n + 1
2n(n + 1)

)− 4(2n + 1)
n(n + 1)

, y, 0) = (0, y, 0) = y0,

f(
2n + 1

2n(n + 1)
) = (−8(

2n + 1
2n(n + 1)

) +
4(2n + 1)
n(n + 1)

, y, 0) = (0, y, 0) = y0,

f(
4n + 3

4n(n + 1)
) = (−8(

4n + 3
4n(n + 1)

) +
4(2n + 1)
n(n + 1)

, y, 0) = (− 2
n(n + 1)

, y, 0),

f(
4n + 3

4n(n + 1)
) = (8(

4n + 3
4n(n + 1)

)− 8
n

, y, 0) = (− 2
n(n + 1)

, y, 0).
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This concludes the proof of continuity of f .

I claim that the loop f as described above is not homotopic to y0 in Y. First, let us

try to visualize the loop f . It alternates between “circles” in Y1 and “circles” in Y2. It

starts at y0, loops around a circle in Y1 twice in clockwise direction and returns to y0.

It then follows a similar pattern in Y2, it loops around a circle in X2 twice in counter-

clockwise direction, then returns to y0. This repeats for every other circle (i.e. f loops

around Cn in Y1 only for odd n, and in Y2 only for even n). Consider any homotopy

H : I × I → Y of f to y0. We will show that H is not continuous. Since Y = Y1 ∪ Y2

and Y1 ∩ Y2 = {y0} we have that A = H−1(y0) separates H−1(Y ) into components {Qi}

and {Dj} where Qi ⊆ H−1(Y1) and Dj ⊆ H−1(Y2) for every i and every j.

It was shown for the first counterexample that there are either infinitely many com-

ponents Qi such that Qi ⊇ [ 1
n+1 , 1

n ] × {0} for some n ∈ N, n odd or infinitely many

components Dj such that Dj ⊇ [ 1
n+1 , 1

n ]× {0} for some n ∈ N, n even. The same argu-

ment is true in the space Y .

It was also shown that in every component Qi such that Qi ⊇ [ 1
n+1 , 1

n ] × {0} for some

n ∈ N, n odd, there is a point (x, tx) ∈ Qi such that H(x, tx) = q1 and in every com-

ponent Dj such that Dj ⊇ [ 1
n+1 , 1

n ] × {0} for some n ∈ N, n even, there is a point

(y, ty) ∈ Dj such that H(y, ty) = q2. The argument is the same as for the space X. The

following shows that π1(W1, y0) 6= 0. We know that π1(Cn, y0) 6= 0 for every n ∈ N .

Fix n = nx. Let us show that Cn is a strong deformation retract of W1, then by Step

1 of the previous claim π1(W1, y0) 6= 0. First, let us define maps rm(x, t) and r′m(x, t)

as follows. Let x ∈ Cm for some m ≤ n, let x′ ∈ Cn be the point on the straight line

segment x(1−s)+cns for s ∈ [0, 1]. Define rm : Cm×I → Cn by rm(x, t) = x′t+x(1−t).

51



Let x ∈ Cm for some m ≥ n, let x′ ∈ Cn be the point on the straight line constructed

by extending the segment xs + cm(1 − s) for s ∈ [0, 1]. Define r′m : Cm × I → Cn by

r′m(x, t) = x′t + x(1 − t). Clearly rn(x, t) = r′n(x, t) = x for all t ∈ [0, 1]. Both rm and

r′m are continuous maps for each m ∈ N , since they are a sum of continuous functions.

Also,

rm(x, 0) = x ∈ Cm,

r′m(x, 0) = x ∈ Cm,

rm(x, 1) = x′ ∈ Cn,

r′m(x, 1) = x′ ∈ Cn.

Consider the map F : W1 × I → W1 defined by:

F (x, t) =





x if x ∈ Cn,

rm(x, t) if x ∈ Cm for m ≤ n,

r′m(x, t) if x ∈ Cm for m ≥ n.

Since rn(x, t) = r′n(x, t) = x for all t ∈ [0, 1] and F (x, t) = x, F (x, t) = rm(x, t),

F (x, t) = r′m(x, t) are continuous, by the Pasting Lemma this is a continuous map. Let
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us verify it is a strong deformation retraction.

F (a, t) = a for a ∈ Cn,

F (W1, 1) = Cn,

F (x, 0) = x for x ∈ W1.

Since Cn is a strong deformation retract of W1, we have that π1(W1, y0) ≈ π1(Cn, y0) 6= 0.

Just as in the case of the space X, the above results imply that f is not homotopic to

the constant map at x0 in X. This concludes the proof of Theorem 3.12.
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