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Suppose (S, T ) is a topological space and A is any subset of S. Then the functions f

and g from the power set of S, P (S), into P (S) are defined as: f(A) is the closure of A

and g(A) is the complement of A. In this thesis, our goal is proving that there are at most

fourteen type of image from any subset of S by using finite compositions of the closure

function f and the complement function g, including the null composition.

v



Acknowledgments

The author thanks Professor Jo W. Heath for the ideas and useful discussions con-

tributed to this research.

vi



Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty.

vii



Table of Contents

1 INTRODUCTION 1

2 BASIC DEFINITIONS AND THEOREMS 3

3 SUPPORTING LEMMAS AND THEOREMS 6

4 THE CO-FINITE CASE 14

5 MAIN RESULTS 18

Bibliography 22

viii



Chapter 1

INTRODUCTION

Suppose (S, T ) is a topological space and A is any subset of S, then the functions f

and g from the power set of S, P (S) into P (S), are defined as: f(A) is the closure of A

and g(A) is the complement of A. There is referenced in Munkres ”Topology” [1] a problem

created by K. Kuratowski. He asked how many images these two functions can generate

starting with a subset A of the real line. By using finite compositions of the closure function

f and the complement function g, we can generate a fourteen different images of A. This

includes the image of the null composition, A itself. We also prove that no more than 14

images can ever be generated

For preparation of the proofs in chapters 4 and 5, in chapter 2, we want to introduce

to you the list of theorems that come from my class notes. For some of them, I did the

proofs and I presented them on the board in class. But these theorems are still not enough.

In chapter 3, we need to prove some more theorems that are necessary for my proofs in

chapters 4 and 5. Especially, theorems 3.5, 3.6a, and 3.6b; they help us to understand that

for any finite composition with any exponent n on f or g (for any positive integer n), we

can reduce these exponents to 1 or 0.

Example: f4454(g3[f33(g4(A))]) = f(g[f(g0(A))]) = f(g[f(A)]).

In chapter 4, we do research on a co-finite topological space: If (S, T ) is a topological

space with the co-finite topology and A is a subset of S, then the collection of all images
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of A using finite compositions of the closure function f and the complement function g,

including the null composition, has at most four elements.

Finally, in chapter 5, by using the information in the previous chapter, we want to

show you that for any topological space (S, T ) with A is any subset of S, and by using

finite compositions of the closure function f and the complement function g, we are always

able to generate a maximum of fourteen different images of A, including the image of the

null composition. Then, to demonstrate that this theorem cannot be improved, we build

an example on the real line that has fourteen different images.
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Chapter 2

BASIC DEFINITIONS AND THEOREMS

In this chapter, without proofs, we include the definitions, theorems and notations that

come from the class notes, and they are necessary for the proofs in the next chapters.

Definition 2.1: Suppose (S, T ) is a topological space and A is a subset of S. If the set

of limit points of A is denoted A′, then A is defined to be A ∪A′.

Definition 2.2: Suppose (S, T ) is a topological space, and suppose M is subset of S.

The interior of M , denoted Int(M), is defined to be the set of all points x in M such that

there is an open set O(x) satisfying x ∈ O(x) ⊆ M . The boundary of M , denoted Bd(M),

is defined to the set of all points x such that every open set containing x contains a point

in M and a point not in M .

Definition 2.3: A subset M of a topological space (S, T ) is said to be closed if the set

S \M is open.

Theorem 2.4-2.12. Suppose (S, T ) is a topological space and M is a subset of S. From

the class notes we have the following reference theorems:

Theorem 2.4: M = M
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Theorem 2.5: M ⊆ Int(M) ∪Bd(M)

Theorem 2.6: Int(M) is open.

Theorem 2.7: M is open iff M = Int(M)

Theorem 2.8: M is closed iff Bd(M) ⊂ M

Theorem 2.9: S \M = S \ Int(M)

Theorem 2.10: Bd(M) = M ∩ S \M

Theorem 2.11: M = M ∪Bd(M)

Theorem 2.12: M is closed iff M = M

Theorem 2.13: If (S, T ) is a topological space, M is a closed set in S, and p is a limit

point of M , then p is an element of M .

Notation 2.14: N will denote the set of all positive integers.

Notation 2.15: Q will denote the set of all rational numbers.
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Notation 2.16: I will denote the set of all irrational numbers.

Notation 2.17: R will denote the set of all real numbers.

Definition 2.18: Suppose S is any set and T consists of the empty set and any subset

of S whose complement is finite. Then (S, T ) is a co-finite topological space.

Theorem 2.19: Suppose (S, T ) is a topological space with the co-finite topology. If A

is a finite subset of S, then the closure of A is A, and if A is an infinite subset, then the

closure of A is S.

Definition 2.20: Suppose (S, T ) is the topological space. Then the functions f and g

from the power set of S, P (S), into P (S) are defined as follows: if A is any subset of S,

then f(A) is the closure of A and g(A) is the complement of A.
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Chapter 3

SUPPORTING LEMMAS AND THEOREMS

Beside the definitions and theorems that were introduced in chapter 2, in this chapter,

we will prove some more theorems to support the proofs of our results .

Lemma 3.1: If (S, T ) is a topological space and B is a subset of S, then B is closed.

Proof: Since from theorem 2.4, B = B, and by theorem 2.12 with B substituted for M

and B for M , we will get B is closed.

Theorem 3.2-3.4: Suppose (S, T ) is a topological space and A is a subset of S. Then

we will prove the following theorems.

Theorem 3.2: Int(A) = Int(Int(A))

Proof: First we will show that Int(A) ⊆ Int(Int(A)).

By theorem 2.6, with A substituted for M , then Int(A) is open. And by theorem 2.7 with

Int(A) substituted for M , we have Int(A) = Int(Int(A)).

This implies Int(A) = Int(Int(A)).

By theorem 2.5 with Int(A) substituted for M , we have Int(A)⊆ [Int(Int(A)) ∪Bd(Int(A))].

Therefore, Int(Int(A)) ⊆ Int[Int(Int(A)) ∪Bd(Int(A))].

Since Int(Int(A)) = Int(A), we can remove one ”Int” in Int(Int(A)).

So we get Int(A) ⊆ Int[Int(A) ∪Bd(Int(A))].
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And by theorem 2.11 with Int(A) substituted for M , we have Int(A) = Int(A)∪Bd[Int(A)].

This means that Int[Int(A) ∪Bd(Int(A))] = Int(Int(A)).

Hence, Int(A) ⊆ Int(Int(A)) (Inclusion I).

Second we will show that Int(Int(A)) ⊆ Int(A).

Let x ∈ Int(Int(A)); then we will have 2 cases that can happen: x ∈ Int(Int(A)) or

x /∈ Int(Int(A)).

Case 1: If x ∈ Int(Int(A)), then x ∈ Int(A).

Case 2: If x /∈ Int(Int(A)), then x must be a limit point of Int(Int(A)). This means

that x ∈ [S \ Int(Int(A))] and is a limit point of Int(Int(A)).

By theorem 2.9 with Int(A) substituted for M , we have x ∈ S \ (Int(A)).

Again, we have 2 cases that can happen: x ∈ S \ Int(A) or x /∈ (S \ Int(A)).

Case 2a: If x ∈ S \ Int(A), since x is a limit point of Int(Int(A)), then every open

set containing x contains at least one point in Int(Int(A)) which is different from x. But

[S \ Int(A)] ∩ [Int(Int(A))] = φ.

This gives us a contradiction since, by lemma 3.1 with Int(A) substituted for B, we have

Int(A) is closed, so S \ Int(A) is open.

Case 2b: Therefore, x must be in [S \ S \ Int(A)].

This implies x ∈ Int(A).

Therefore, Int(Int(A)) ⊆ Int(A) (Inclusion II)

From inclusions I and II, we proved that Int(A) = Int(Int(A)).
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Theorem 3.3: S \ Int(A) = S \ Int(Int(A))

Proof: To start to show that S \ Int(A) = S \ Int(Int(A)), we will show that Int(A) =

Int(Int(A)).

First we will show that Int(A) ⊆ Int(Int(A)).

By theorem 2.6, with A substituted for M , then Int(A) is open, and by theorem 2.7 with

Int(A) substituted for M , we have Int(A) = Int(Int(A)).

By theorem 2.5 with Int(A) substituted for M , we have Int(A)⊆ Int(Int(A)) ∪Bd(Int(A)).

Therefore, Int(Int(A)) ⊆ Int[Int(Int(A)) ∪Bd(Int(A))].

Since Int(Int(A)) = Int(A), we can remove one ”Int” in Int(Int(A)).

This means that Int(A) ⊆ Int[Int(A) ∪Bd(Int(A))].

But by theorem 2.11 with Int(A) substituted for M , we have Int(A) = Int(A)∪Bd(Int(A)).

This implies Int[Int(A) ∪Bd(Int(A))] = Int(Int(A)).

Hence, Int(A) ⊆ Int(Int(A)) (Inclusion I)

Second we will show that Int(Int(A)) ⊆ Int(A).

Let x be any limit point of Int(A). This means that x is a limit point of A.

By lemma 3.1 with A substituted for B, we have A is closed.

And by theorem 2.13 with A substituted for M , and x substituted for p, we will get x ∈ A.

Hence (Int(A))′ ⊆ A, and obviously, Int(A) ⊆ A, too.

Notice that [Int(A)]′ ∪ Int(A) = Int(A).

Therefore Int(A) ⊆ A.
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This implies Int(Int(A)) ⊆ Int(A) (Inclusion II)

From inclusions I and II, we have Int(A) = Int(Int(A)).

This means that S \ Int(A) = S \ Int(Int(A)).

Theorem 3.4: S \ Int(A) = S \ Int(A)

Proof: By theorem 2.9 with Int(A) substituted for M , we have S \ Int(A) = S\Int(Int(A)).

By theorem 3.3, we have S \ Int(Int(A)) = S \ Int(A).

Therefore, S \ Int(A) = S \ Int(A).

Theorem 3.5: Suppose (S, T ) is a topological space and A is a subset of S. Then for

any positive integer n, the collection of all images of A using only finite compositions of the

closure function f is fn(A) = f(A).

Proof: We will use induction to show that for any n ∈ N , fn(A) = f(A).

Clearly, if n = 1, then fn(A) = f1(A) = f(A).

If n = 2, then fn(A) = f2(A) = f(f(A)).

But f(f(A)) is defined to be (A) = A.

By theorem 2.4 with A substituted for M , we have A = A.

Therefore, f(f(A)) = A = f(A).
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Assume fk(A) = f(A) (for some k ∈ N). Then we need to prove that fk+1(A) = f(A).

Since fk+1(A) = f(fk(A)), by substituting f(A) for fk(A), we will have fk+1(A) =

f(f(A)).

This means that fk+1(A) = f(A), as shown in the case n = 2.

Hence, fn(A) = f(A) (for any n ∈ N).

Theorem 3.6a: Suppose (S, T ) is a topological space and A is a subset of S. Then for

any non-negative integer n, the collection of all images of A using only odd finite composi-

tions of the complement function g is g2n+1(A) = g(A).

Proof: By using induction:

If n = 0, then g2n+1(A) = g1(A) = g(A).

If n = 1, then g2n+1(A) = g3(A) = g(g[g(A)]) = g(g[S \A]) = g(S \ [S \A]) = g(A).

Assume g2k+1(A) = g(A) (for some k ∈ N). Then we need to prove that g2(k+1)+1(A) =

g(A).

Note that g2(k+1)+1(A) = g2k+3(A)) = g2k+1(g[g(A)]).

But g(g(A)) = g(S \A) = S \ (S \A) = A.
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Therefore g2(k+1)+1(A) = g2k+1(g[g(A)]) = g2(k+1)(A) = g(A).

This means that g2(k+1)+1(A) = g(A).

Hence, g2n+1(A) = g(A) [for any n ∈ (N ∪ {0})].

Theorem 3.6b: Suppose (S, T ) is a topological space and A is a subset of S. Then for

any n is a positive integer, the collection of all images of A using only even finite composi-

tions of the complement function g is g2n(A) = A.

Proof: By using induction:

If n = 1, then g2n(A) = g2(A) = g(g(A)) = g(S \A) = S \ (S \A) = A.

Assume g2k(A) = A (for some k ∈ N). Then we need to prove that g2(k+1)(A) = A.

Since g2(k+1)(A) = g2k+2(A) = g2k(g[g(A)]). By substituting A for g[g(A)], we will have

g2k(g[g(A)]) = g2k(A) = A.

This means that g2(k+1)(A) = A.

Hence, g2n(A) = A (for any n ∈ N).

Corollary 3.7: The images of A generated by all finite composition of f and g are also

generated by the compositions that alternate f and g; i.e. compositions of the form (fg)n,
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g(fg)n, (gf)n, or f(gf)n, for non-negative integers n.

Proof: We want to prove that any image of A is always generated by the finite compo-

sitions that alternate f and g.

By theorem 3.5, we have all finite compositions of f and g are also generated by the

finite compositions that alternate f and the finite compositions of the complement function

g.

We have 2 cases that can happen: when the finite compositions of the complement

function g is odd or when the finite compositions of the complement function g is even

Case 1: Where any of the finite compositions of the complement function g is odd,

then by theorem 3.6a, we have the images of A are generated by the compositions that

alternate f and g.

Case 2: Where any of the finite compositions of the complement function g is even.

Again, we have 2 cases:

• Case 2a: It is clear that if the function starts with g, then by theorem 3.6b, this

means that the function starts with f .

• Case 2b: If some finite compositions of the complement function g are even, which

are in between two closure functions f . Then by theorem 3.6b, we have the images of A are

generated by some compositions that alternate ff and g, by theorem 3.5, this implies that

the images of A are generated by the compositions that alternate f and g.
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Therefore, the images of A generated by all finite composition of f and g are also

generated by the compositions that alternate f and g.
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Chapter 4

THE CO-FINITE CASE

In this chapter, we will see that for any co-finite topological space (S, T ) with A a sub-

set of S, the collection of all images of A using finite compositions of the closure function

f and the complement function g, including the null composition, always has at most four

elements, A, S \A, S, and φ.

Example 4.1: Suppose (N, T ) is the positive integers with the co-finite topology, and A

is the finite set {1, 2, 3}. By using the finite compositions of the closure function f and the

complement function g, we will get :

f(A) = A = A = {1, 2, 3} (by theorem 2.19).

g(A) = N \A = N \ {1, 2, 3}.

This implies that f(g(A)) = N (by theorem 2.19).

Hence, g(f(g(A))) = N \N = φ.

From corollary 3.7, observe that for any composition of the closure f and the comple-

ment function g, an image of A is always either A or N \A or N or φ.

Theorem 4.2: If (S, T ) is a topological space with the co-finite topology and A is a

subset of S, then the collection of all images of A using finite compositions of the closure

function f and the complement function g, including the null composition, has at most four
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elements, A, S \A, S, and φ.

Proof: By proving this theorem, we will get a maximum of four images from any subset A

of S, those images are: A, S \A, S, and φ.

We have 2 cases that can happen: A is a finite subset of S or A is an infinite subset of S.

Case 1: If A is a finite subset of S, then again, we have 2 cases: S \A is a finite subset

of S or S \A is an infinite subset of S.

Case 1a: If S \A is a finite subset of S then:

We have f(A) = A = A (by theorem 2.19).

This implies that g(f(A)) = S \A.

Now, starting with g, g(A) = S \A.

Therefore f(g(A)) = S \A (by theorem 2.19).

Since A and S \ A are finite subsets of S, there are only two types of finite composi-

tions and all of them alternate f and g. From corollary 3.7, this means that the images of

A generated by all finite compositions of f and g will be either A or S\A (by theorem 2.19).

Case 1b: If S \A is an infinite subset of S then:

We have f(A) = A = A (by theorem 2.19).

This implies that g(f(A)) = S \A and f(g(f(A))) = S.

Now, starting with g, we have g(A) = S \A.
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Hence, f(g(A)) = S \A = S (by theorem 2.19).

This implies that g(f(g(A))) = φ.

By corollary 3.7, there are only four types of finite compositions and all of them al-

ternate f and g. This means that the images we can generate will be either A, S \A, S or φ.

Case 2: If A is an infinite subset of S. Then again, we have 2 cases: S \ A is a finite

subset of S or S \A is an infinite subset of S.

Case 2a: If S \A is a finite subset of S then:

We have f(A) = A = S (by theorem 2.19).

Therefore g(f(A)) = φ.

Now, starting with g, we get g(A) = S \A.

This implies that g(g(A)) = A.

By theorem 3.6b, it is clear to see that the finite complements of A are g(A) = S \ A

or null composition, A itself.

Hence, f(g(A)) = S \A (by theorem 2.19), and g(f(g(A))) = A.

From corollary 3.7, observe that there are only four types of finite compositions and

all of them alternate f and g. This means that the images we can generate will be either

A, S \A, S or φ.

Case 2b: If S \A is an infinite subset of S then:
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We have f(A) = A = S (by theorem 2.19).

Therefore g(f(A)) = φ.

Now, starting with g, we get g(A) = S \A.

This implies that g(g(A)) = A.

By theorem 3.6b, it is clear to see that the finite complements of A are g(A) = S \ A

or null composition, A itself.

Also, f(g(A)) = S \A = S (by theorem 2.19).

From corollary 3.7, we also observe that there are only four types of finite compositions

and all of them alternate f and g, this means that the images those we can generate will

be either A, S \A, S or φ.
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Chapter 5

MAIN RESULTS

Now, in this chapter, we want to show you that for any topological space (S, T ), there

are at most fourteen type of image from any subset of S by using finite compositions of the

closure function f and the complement function g, including the null composition.

We begin with an example of a subset of R that has fourteen different images.

Example 5.1: Let A = (0, 1)∪ (1, 2)∪{3, 4}∪ [5, 6)∪{7}∪ (8, 9)∪ (Q∩ [9, 10]), which is

in the reals with the usual topology. We will find seven different images using compositions

that start with g (steps 2 to 8) and another six different images using compositions that

start with f (steps 9 to 14). Then, counting A itself, we will have fourteen different images.

Facts: We will assume without proof that if a and b are two (unequal) real numbers then

the rational numbers, Q, and the irrational numbers, I, are both dense in the interval [a, b].

Therefore, by using these facts, we can get:

1. A = (0, 1) ∪ (1, 2) ∪ {3, 4} ∪ [5, 6) ∪ {7} ∪ (8, 9) ∪ (Q ∩ [9, 10])

2. g(A) = (−∞, 0] ∪ {1} ∪ [2, 3) ∪ (3, 4) ∪ (4, 5) ∪ [6, 7) ∪ (7, 8] ∪ (I ∩ [9, 10]) ∪ (10,∞)

3. f(g(A)) = (−∞, 0] ∪ {1} ∪ [2, 5] ∪ [6, 8] ∪ [9,∞)

4. g(f(g(A))) = (0, 1) ∪ (1, 2) ∪ (5, 6) ∪ (8, 9)

5. (fg)2(A) = [0, 2] ∪ [5, 6] ∪ [8, 9]

6. g(fg)2(A) = (−∞, 0) ∪ (2, 5) ∪ (6, 8) ∪ (9,∞)

7. (fg)3(A) = (−∞, 0] ∪ [2, 5] ∪ [6, 8] ∪ [9,∞)
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8. g(fg)3(A) = (0, 2) ∪ (5, 6) ∪ (8, 9)

Now we compute the images using compositions that start with f .

9. f(A) = [0, 2] ∪ {3, 4} ∪ [5, 6] ∪ {7} ∪ [8, 10]

10. g(f(A)) = (−∞, 0) ∪ (2, 3) ∪ (3, 4) ∪ (4, 5) ∪ (6, 7) ∪ (7, 8) ∪ (10,∞)

11. f(g(f(A))) = (−∞, 0] ∪ [2, 5] ∪ [6, 8] ∪ [10,∞)

12. (gf)2(A) = (0, 2) ∪ (5, 6) ∪ (8, 10)

13. f(gf)2(A) = [0, 2] ∪ [5, 6] ∪ [8, 10]

14. (gf)3(A) = (−∞, 0) ∪ (2, 5) ∪ (6, 8) ∪ (10,∞)

Theorem 5.2: Suppose (S, T ) is a topological space, and A is any subset of S. Then

the collection of all images of A using finite compositions of the closure function f and the

complement function g, including the null composition, has at most fourteen elements.

Proof: From corollary 3.7, we know in the co-finite case, there are only four types of

finite compositions and all of them alternate f and g. We will start with g and compute

the seven images up to g(fg)3(A) (steps 2 to 8). These images may or may not be distinct,

depending on A. But when we go one more factor and compute (fg)4(A) we generate an

image we already have so the process repeats from that point on. Then we do the same

for the first six compositions that start with f (steps 9 to 14) and find that the seventh

composition f(gf)3(A) repeats. Thus, together with A itself, there are at most fourteen

different images of A.
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Those fourteen possibly different images of A are:

First, we find the compositions that start with g.

1. A

2. g(A) = S \A

3. f(g(A)) = S \A

4. g(f(g(A))) = S \ (S \A) = S \ [S \ Int(A)] (by theorem 2.9 with A substituted for M)

This implies g(f(g(A))) = Int(A).

5. (fg)2(A) = Int(A)

6. g(fg)2(A) = S \ Int(A)

7. (fg)3(A) = S \ Int(A) = S \ Int(Int(A)) (by theorem 2.9 with Int(A) substituted for

M)

8. g(fg)3(A) = S \ (S \ Int(Int(A))) = Int(Int(A))

The seven images above (from 2 to 8) are the most that can be generated by composition

functions starting with g since (fg)4(A) = Int(Int(A)) = Int(A) (by theorem 3.2).

This means that the solution of (fg)4(A) repeats the image in step 5.

Second, we find the compositions that start with f .

9. f(A) = A

10. g(f(A)) = S \A

11. f(g(f(A))) = S \A = S \ Int(A) (by theorem 2.9 with A substituted for M)

12. (gf)2(A) = S \ (S \ Int(A)) = Int(A)

13. f(gf)2(A) = Int(A)
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14. (gf)3(A) = S \ Int(A)

These six images (from 9 to 14) are the most that can be generated by composition func-

tions starting with f since f(gf)3(A) = S \ Int(A) = S \ Int(A) (by theorem 3.4).

This mean that the solution of f(gf)3(A) repeats the image in step 11.
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