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Directed by András Bezdek

The central problem of the thesis is the question of denseness of certain sets of

points in the plane. All of the following results are joint with A. Bezdek. We consider

point sets P, not a subset of a line, having the property that for every three noncollinear

points in P, a specific triangle center (incenter (IC), circumcenter (CC), orthocenter

(OC) resp.) is also in the set P. In Chapter 2, we generalize and solve the CC problem

in higher dimensions. We prove that if a point set P ⊂ En has the property that for

each simplex of P the circumcenter of the simplex also belongs to P, then it is dense

in the whole space. Chapter 3 contains the solution of the OC problem in the plane,

essentially proving that P is either a dense point set of the plane or it is a subset of a

rectangular hyperbola. In the latter case, it is either a dense subset or it is a special

discrete subset of a rectangular hyperbola, for which we give both an algebraic and a

geometric characterization.
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Chapter 1

Introduction and research overview

During the period spent at Auburn University two new publications have been

written jointly with my supervisors András Bezdek (Auburn University) and Ferenc

Fodor (University of Szeged). Both of the investigated questions belong to Discrete

Geometry. The first article [1] was prepared in the Fall Semester of 2004 as a joint work

with A. Bezdek and F. Fodor, and later it won a 3rd Prize at the Hungarian Student

Paper Contest in 2005. It was also awarded as the Best Student Paper Presentation

of the 12th SCMA Conference in 2005. The second paper [2] was written in the Fall

Semester of 2005, jointly with A. Bezdek. This second paper provides the frame of the

thesis.

In the rest of this chapter we shall give a brief outline of the above mentioned two

papers together with a small historical overview.

1.1 Transversal problem for higher dimensional unit balls

A line l is a transversal to a family F of sets if l intersects every element of F . If

there is a line that intersects every member of the family F , then we say that F has the

property T . If every k or fewer members of F have a transversal then F has property

T (k).

In 1958, Grünbaum [9] conjectured that for a family of pairwise disjoint translates

of a convex disk T (5) ⇒ T . The special case of circular disks was settled by Danzer [7].

The conjecture was proved in full generality by Tverberg [16] in 1989.
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Higher dimensional generalizations for families of balls were initiated by Problem

107 [11] of Hadwiger, which states that for any family of thinly distributed balls in En

the property T (n2) implies T . A family of balls is thinly distributed if the distance

between the centers of any two balls is at least twice the sum of their radii. In his

solution, Hadwiger reduced the problem to proving a 3-dimensional lemma (Hilfssatz),

essentially claiming that for two thinly distributed balls in E3 the cone consisting of the

direction vectors of the common transversals of the balls is convex. However, the proof

of this Hilfssatz was not included in the published solution, although at that time it

was available from the editor. A special case, when the two balls are congruent, has

been proved rigorously in [12]. In 1960, Grünbaum [10] improved the n2 in Hadwiger’s

statement to 2n− 1 using the Topological Helly Theorem and Hadwiger’s Hilfssatz.

Recent progress concerning tranversals of balls has been made by Holmsen, Katchal-

ski and Lewis [12], who proved that there exists a positive integer n0 ≤ 46 such that

T (n0) implies T for any family of pairwise disjoint unit balls in E3. This bound was

improved by Cheong, Goaoc and Holmsen [5] to 11. On the other hand, a result of

Holmsen and Matoušek [13] states that there is no such Helly-number if one considers

families of pairwise disjoint translates of an arbitrary convex body in E3.

In the article [1], we generalize the main result of [12]. Our statement also strength-

ens Hadwiger’s theorem [11] for congruent balls. We prove the following theorem.

Theorem 1.1.1. Let n ≥ 2 and F be a family of unit balls in En with the property that

the mutual distances of the centers are at least 2
√

2 +
√

2 . If F has property T (n2),

then F has a transversal.
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Our method of proof avoids Hadwiger’s Hilfssatz. The core part is proving that for

a set of unit balls satisfying the above conditions, the direction vectors of the common

transversals of all the balls from a convex set. We manage to prove this by reducing the

problem for the three-dimensional case. Then the convexity allows us to finish the proof

with the repeated use of Helly’s Theorem and the Spherical Helly Theorem.

Since then, our result has been strengthened by Cheong, Goaoc, Holmsen and Pe-

titjean [6], who proved that for a family of disjoint unit balls in En, T (4n − 1) implies

T .

1.2 Problems on iterative processes

History and terminology. There are several results in the literature which deal with

iterative processes in the plane. A typical problem starts with the description of a

geometric construction, which when applied to an initial point set generates additional

points and thus expands it. The problem usually is to prove that repeated expansions

lead to an everywhere dense point set in the plane.

For example K. Bezdek and J. Pach [4] answering a question of L. Fejes Tóth proved

that if one starts with two points (whose distance is ≤ 2 and different from 1 and
√

3)

then repeated use of the construction “add to the figure all intersection points of those

unit circles whose centers belong to the existing points set” leads to a dense point set.

Recently D. Ismailescu and R. Radoic̆ić [14] (and earlier B. Grünbaum) showed that the

repeated use of the construction “add to the figure all the intersection points of lines

which connect pairs of already existing points” also leads to a dense point set (with the

exception of a few particular starting configurations). Ismailescu also suggested to study
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similar problems where one uses the construction “add the circumcenters (incenters resp.)

of all nondegenerate triangles formed by the existing points”. It was proved in [15] that

in case of the circumcenters the iterative process always leads to a dense point set of the

plane, and in case of the incenters it always leads to a dense point set in the convex hull

of the initial point set.

Higher dimensional circumcenter problem. In Chapter 2 we present a new ap-

proach to the problem of iterative processes. Instead of analyzing the elementary ge-

ometric properties of the particular iterative processes we prove a key theorem on n-

dimensional closed point sets. Essentially we prove that if a point set in En is not dense

in its convex hull, then there exists a ball which contains n + 1 affinely independent

points of the set on the boundary, and all the other points of the set contained in the

ball are close to one of these points. As an application of this theorem we obtain an

affirmative answer for the higher dimensional version of the circumcenter problem. In

fact we show that more is true, namely the construction “add a point anywhere close to

the circumcenter of each existing simplex” also implies denseness in the whole En.

Planar orthocenter problem. Planar iterative processes can be defined with respect

of any triangle center. The case of orthocenters (intersection of the three altitudes of

a triangle) was recognized in [15] as a particularly interesting one due to the following

peculiar behavior of the orthocenters: if a point set belongs to a rectangular hyperbola

(a hyperbola for which the asymptotes are perpendicular), then the orthocenters of the

triangles formed by triplets of this point set are also on this hyperbola. We will say

that a noncollinear point set P is orthocentrically closed if for every three noncollinear

points in P, the orthocenter of the triangle determined by these three points is also
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in P. Observe that the vertices of a triangle together with their orthocenter form an

orthocentrically closed set. These four point sets will be called orthocentric quadruples.

It was conjectured by Iorio, Ismailescu, Radoic̆ić and Silva in [15] that orthocentrically

closed sets with the exception of orthocentric quadruples are either dense sets in the

plane or are dense subsets of a rectangular hyperbola. We prove in Chapter 3 that it is

also possible that the set is a special infinite discrete subset of a rectangular hyperbola.

Furthermore, we give an exact characterization of these infinite discrete subsets.
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Chapter 2

Higher dimensional circumcenter problem

In this section we give an affirmative answer for the higher dimensional circumcenter

problem. First we prove the following useful theorem.

Theorem 2.0.1. Let P be a closed set in En which is not dense in its convex hull

and contains n + 1 affinely independent points. For each 0 < λ < 1 there exists an n-

dimensional ball B which contains n+1 affinely independent points of P on its boundary

and is essentially empty, meaning that the interior of the concentric ball λB does not

contain any points from P.

As an application of Theorem 2.0.1 we obtain the answer for the circumcenter prob-

lem as stated in the following theorem.

Theorem 2.0.2. Let P denote a point set in En containing a subset of n + 1 affinely

independent points, with n ≥ 1. If there exists a number 0 ≤ % < 1 such that for any ball

B determined by n + 1 affinely independent points of P the ball %B contains at least one

point from P, then P is dense in En.

Now we introduce some terminology. A ball determined by n+1 affinely independent

points means the ball of dimension n circumscribed about the simplex determined by

the points. For any ball B with radius r and for any nonnegative number %, the ball %B

denotes the ball concentric to B with radius %r.

6



We will say for sets R,S ⊂ En that R is S-disjoint provided that the interior of R

does not contain any point of S. The convex hull of P will be denoted by convP, and

∂(.) stands for the boundary operator.

Proof of Theorem 2.0.1. The basic idea of the proof is the following. First we find a

P-disjoint ball in convP. Then we inductively find essentially empty balls containing

1, 2, . . . , n + 1 points of P on their boundary. The last ball found by this algorithm will

have the required properties. At finding the next ball, the concept of transforming one

ball into the other will play the key role:

Suppose that S is a subset of En containing the balls A0 and A1 of dimension n.

We will say that A0 can be transformed to A1 within S if for every t ∈ [0, 1] there exists

a ball B(t) in S, such that A0 = B(0), A1 = B(1), and both the radii and the position

of the centers of the balls B(t) are changing continuously in t.

We distinguish two cases according to the P-disjointness of the interior of convP.

Case 1. There is a point of P in the interior of the convex hull of P.

First we find a P-disjoint ball in the convex hull of P with at least one point of

P \ ∂(convP) on the surface.

Consider the closed inner δ-parallel sets of convP denoted by Pδ:

Pδ = {x ∈ convP | d(x, ∂(convP)) ≥ δ}.

Note that Pδ is convex. According to the conditions, the interior of convP contains a

P-disjoint ball and also a point of P. Hence there exists a δ > 0 such that the interior

of Pδ is not P-disjoint while it contains a P-disjoint ball B. This yields that there exists
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a ball A contained entirely in Pδ which contains a point of P. Since Pδ is convex, B

can be transformed into A within Pδ. The closedness of P yields that there exists a first

ball (say B1) along the transformation which contains a point p1 of P on the boundary

while it is still P-disjoint. Since B1 is contained in Pδ, the point p1 must belong to

P \ ∂(convP), what we wanted.

The ball B1 of radius r will serve as the starting ball in our forthcoming algorithm.

Introduce ε = min{(1− λ)r, (1− λ)δ/2}.

In the following process we will choose a sequence of balls B2, . . . , Bn+1 and a

sequence of points p2, . . . , pn+1 of P such that for each 2 ≤ k ≤ n + 1 the following four

conditions hold:

• the radius of Bk is at least as big as the radius of Bk−1

• p1, . . . , pk are affinely independent

• p1, . . . , pk belong to the boundary of Bk

• all points of P which are contained in the interior of Bk belong to the ε-neighborhood

of one of the points p1, . . . , pk.

Note that the first and last conditions guarantee that Bk is essentially empty. Also

notice that the above conditions hold for the ball B1 and the point p1.

We will choose the points and the balls by induction on k. Assume that we already

selected the first k members of the sequences satisfying all four of the above conditions.

Let Ak be the k − 1 dimensional affine subspace (i. e. a k − 1-dimensional hyperplane)

spanned by p1, . . . , pk. Let E be the union of the open ε-neighborhoods of p1, . . . , pk.

We know that the interior of Bk does not contain points P outside of E. Consider the
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closed set S = P \ E, which is the set of the points of P not contained in the open

ε-neighborhood of any of the points p1, . . . , pk.

Note that our choice of ε provides that S cannot be a subset of Ak. Indeed, that

would mean that all the points of P are of a distance at most ε from Ak, hence the convex

hull of P is contained in the ε-neighborhood of Ak. Therefore the distance between p1

(contained in Ak) and convP could be at most ε, which contradicts to the assumption

ε ≤ (1− λ)δ/2 < δ.

Define C as the maximal affine subspace containing the center of Bk and orthogonal

to Ak (hence the linear subspace corresponding to C is the orthogonal complement of the

linear subspace corresponding to A). C is the set of the centers of the spheres passing

through the points p1, . . . , pk. Let r be the radius of Bk, and consider among these balls

which, as an additional property, have radius not less than the radius of Bk, and let Cr

denote the set of their centers. Then Cr ⊂ C, and it is easy to see that Cr is obtained

from C by subtracting an open ball. Cr may be considered as the set of all possible

centers of candidates for Bk+1.

Clearly, the dimension of C is n − k + 1, and therefore the set Cr is path-wise

connected whenever k ≤ n−1 holds. Moreover, the union of all balls centered in Cr and

containing p1, . . . , pk on the boundary cover En \Ak.

Since S is not a subset of Ak, there is a non S-disjoint ball A centered in Cr,

containing p1, . . . , pk on the boundary. On the other hand, Bk is also centered in Cr,

while it is S-disjoint. The path-connectedness of Cr enables us to transform Bk into A

via balls centered in Cr, and the closedness of S yields that - just as in the beginning of

the proof - there is an S-disjoint ball B along the transformation which contains a point
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p of S. Since the point p is affinely independent from the points p1, . . . , pk (remember

that it is not contained in Ak), the choices pk+1 = p and Bk+1 = B satisfy the inductive

conditions.

If k = n then Cr consists of two half-lines, which are distinct or their union is the

whole line (this holds when the center of Bn is contained in the hyperplane An). If there

exists a non S-disjoint ball containing p1, . . . , pk on its boundary centered in the same

half-line as the center of Bk, then the same process works as in the k ≤ n − 1 case.

If this does not hold, then the (n − 1)-dimensional hyperplane An separates S and the

center of Bn, yielding that there is no point of P \ E in the half-space bounded by An

containing the center of Bn. Hence the intersection of this half-space and the convex

hull of P is contained in the ε-neighborhood of the hyperplane An, and therefore the

distance between p1 and the boundary of convP is less then ε, a contradiction.

Case 2. There is no point of P in the interior of the convex hull of P.

Choose a point Q in the interior of the convex hull of P and consider the point set

P ′ = P ∪{Q}. Applying the process described in the solution of Case 1 for P ′ we obtain

an essentially empty ball B satisfying the conditions of the inductive process.

Observe that when selecting the n + 1 special affinely independent points, the first

one is Q, and the other points are in P, labeled as p2, . . . , pn+1.

Now we drop the point Q, and try to find a ball Bn+1 containing n + 1 points of

P on the surface with the desired conditions. Observe that the ε-neighborhood of Q is

P-disjoint, and apply the last step of Case 1 with B in place of Bn. The process can fail

only in one case, if the hyperplane A determined by the points p2, . . . , pn+1 separates
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the center of B and the part of P not contained in the ε-neighborhoods of the points

p2, . . . , pn+1. In the rest of the proof we assume this holds.

First we prove that the radius of the ball circumscribed about p2, . . . , pn+1 is greater

than ε/(1−λ). By the choice of ε, ε/(1−λ) ≤ δ/2, therefore it suffices to show that the

considered radius is at least δ/2. Remember that δ is smaller than the distance between

the additional point Q and the boundary of convP. Hence the ball with center Q and

radius δ is contained in convP. On the other hand, the convex hull is not further from

An than ε on one side of An. Comparing these two facts yields that the distance between

Q and An is at least δ − ε, what is greater than δ/2 since ε < δ/2. This also yields that

An separates Q and the center of B.

Now an elementary geometric observation yields that since Q is on the surface of

B, and An separates Q from the center of B, the distance between Q and An is strictly

less than the radius of the (n−1)-dimensional ball obtained by taking the intersection of

B and An, what is the same as the radius of the ball circumscribed about p2, . . . , pn+1.

Since the distance between Q and An is greater than δ/2, the radius is strictly greater

than δ/2, what we wanted.

Notice that each ball containing p2, . . . , pn+1 on the boundary has radius at least

ε/(1− λ). Thus for any such ball G the distance between G and λG is at least ε. Hence

the first of the four conditions of the choosing process can be omitted, the last of the four

conditions guarantees essentially emptiness. Therefore in order to find the ball Bn+1 we

can search among all balls centered on the line C instead of restricting ourselves to Cr.
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Since the starting ball is contained in convP, and ε is smaller than the radius of

this ball, 2ε is strictly smaller than the width of P. This yields that S can not be a

subset of the hyperplane A.

The union of all balls centered on the line C and containing p2, . . . , pn+1 cover En\A,

therefore there exist such a ball which is not S-disjoint. Now the usual transformation

reasoning can be applied, leading to the ball Bn+1.

Now we are able to prove Theorem 2.0.2.

Proof of Theorem 2.0.2. First we will show that set P is dense in its convex hull, the we

prove that the convex hull is the whole space En.

Suppose on the contrary that P is not dense in the convex hull, and apply The-

orem 2.0.1 to the closed point set P with the constant λ = (1 + δ)/2. We obtain an

essentially empty ball B with points p1, p2, . . . , pn+1 of P on the boundary. Choose the

points q1, q2, . . . , qn of P close enough to the points p1, p2, . . . , pn, respectively, such that

for the ball B′ determined by them, %B′ ⊂ λB holds. It is easy to check that this is valid

if the distance between pi and qi is less than r(1−δ)/(4+2δ) for every i = 1, 2, . . . , n+1,

where r is the radius of B. By the assumption of Theorem 2.0.2 there is a point of P in

the ball %B′, but this contradicts the essential emptiness of B. Therefore P is dense in

its convex hull.

Now suppose that the convex hull is not En. Since convP is closed, there is an open

n-dimensional ball in En \ convP, and therefore there is a closed ball of this type as

well. The existence of a separating hyperplane between any two disjoint closed convex

sets of En yields that convP must be contained in a closed half-space determined by a
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hyperplane. Let H denote this half-space, and let G = En \H. We can also suppose that

the distance between G and convP is 0.

Choose a point Q in G and a ball B centered at Q such that B intersects convP

while the ball λB is contained in G with the constant λ defined above. Since the convex

hull is not degenerated, we can also suppose that the intersection B ∩ convP is not

one point. Choose n + 1 affinely independent points of convP ∩ ∂B and points of P

close enough to them such that for the ball B′ determined by the points chosen from

P, %B′ ⊂ λB holds as above. Then the existence of a point of P in %B′ yields that the

intersection of P and G is not empty, a contradiction.

Remarks. The assumptions of Theorem 2.0.1 do not imply the existence of a ball

which has at least n+1 affinely independent points of the given set on its boundary and

whose interior is P-disjoint. To see this, consider the union of a hyperplane and a point

outside of it.

The next example shows that the condition % < 1 in Theorem 2.0.2 cannot be

weakened. Let P be a dense subset of the open ring R = {x ∈ E2 | 1 < ‖x‖ < 2}. Then

P satisfies the condition with δ = 1, but it is not dense in its convex hull.

The following statement is an immediate corollary of Theorem 2.0.1:

Corollary 2.0.1. Let n ≥ 1, and fix the positive numbers a0, a1, . . . , an. Let P be a set

in En containing a subset of n + 1 affinely independent points. If for any n + 1 affinely

independent points p0, p1, . . . , pn of P there exists another point p ∈ P for which the

ratio-equality p0p : p1p : · · · : pnp = a0 : a1 : · · · : an hold, then P is dense in En.
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Chapter 3

Planar orthocenter problem

Yielding a complete answer for the orthocenter problem in the plane, we shall prove

the following theorem:

Theorem 3.0.3. If P contains at least three noncollinear points and is an orthocentri-

cally closed set of the plane, then exactly one of the following holds true:

i) P consists of the vertices of a triangle together with its orthocenter.

ii) P is a discrete infinite subset of a rectangular hyperbola H, parameterizable by

two parameters.

iii) P is a dense subset of a rectangular hyperbola H.

iv) P is a dense point set in the plane.

The proof will be divided into several parts. In Section 3.1 we review geometrical

facts known about rectangular hyperbolas. Section 3.2 describes specific subproblems

and show how to fit them together to prove Theorem 3.0.3. The subsequent Sections 3.4-

3.6 will contain detailed solutions of these subproblems.

3.1 Review of elementary properties of hyperbolas

The curve with equation

x2

a2
− y2

b2
= 1

is called a hyperbola in standard position. The lines y = (b/a)x and y = −(b/a)x are its

asymptotes. If b = a, then the asymptotes are perpendicular lines and the hyperbola is
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called rectangular. If a rectangular hyperbola is rotated by π/4, the asymptotes become

the x- and y-axis, and it turns out that the new equation of the hyperbola is xy = α,

where α is a constant. A very straight and simple computation using coordinates shows

the following two properties:

Hyperbola Property 3.1.1. If a rectangular hyperbola passes through the vertices of

a given triangle, then it also passes through the orthocenter of that triangle.

Hyperbola Property 3.1.2. If one extends any chord (connecting to points of the same

branch) of a rectangular hyperbola at both ends until the line of extension intersects the

coordinate axis, then these two segments are of equal length.

Equivalently to the last property we have the following:

Hyperbola Property 3.1.3. Assume a point P and a rectangular coordinate system is

given. One can construct point-by-point the unique rectangular hyperbola (in this coor-

dinate system) passing through point P in the following way: Take any line ` containing

P and label by X and Y its intersection points with the x and y-axes, respectively. Then

the reflection of point P around the midpoint of segment XY gives a point P ′ on the

hyperbola.

A theorem called Feuerbach’s Conic Theorem (proved by Brianchon and Poncelet

in [3] in 1821, see e. g. Problem 46 in [8]) says that

Hyperbola Property 3.1.4. (Feuerbach Conic Theorem) The locus of the centers

of those rectangular hyperbolas which pass through three given noncollinear points (and

thus, according to Hyperbola Property 3.1.1, also pass through the orthocenter of this

triangle) is the so called nine point circle (i.e. the circle which contains the midpoints
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of the sides, the points half way from the orthocenter to the vertices, and the feet of the

altitudes).

As an immediate consequence of the Feuerbach Conic Theorem we have:

Hyperbola Property 3.1.5. If four points P, Q, R and S are given such that no three

of them are collinear and point S is different from the orthocenter of the triangle PQR,

then there is a unique rectangular hyperbola passing through them.

Indeed, consider the Feuerbach circles of the triangles PQR and PQS. Since S is not

the orthocenter of the triangle PQR, the two Feuerbach circles are different and thus they

either intersect each other in two points or they are tangent to each other. The midpoint

Y of PQ is a common point of the Feuerbach circles. Let X be the other common

point (in case of tangency let X = Y ). X and Y are the only candidates for the center

of a perpendicular hyperbola containing the given four points. There is an important

difference between X and Y : In case of X the axis of the two rectangular hyperbolas

containing the triplets P,Q, R and P, Q, S coincide and thus the two hyperbolas are

identical. This does not hold for Y , unless X = Y .

3.2 Outline of the proof of Theorem 3.0.3

According to the Introduction a set P is orthocentrically closed if it contains the

orthocenters of every three noncollinear points of P. It was also mentioned that the

vertices of a triangle together with their orthocenter form an orthocentrically closed set.

Case i) in Theorem 3.0.3 is the case of orthocentric quadruples.

Let P be an orthocentrically closed point set and assume P contains four points,

such that no three of them is collinear and the four points do not form an orthocentric
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quadruple. It is known (see Hyperbola Property 3.1.5) that there exist a rectangular

hyperbola H passing through these four points. According to Hyperbola Property 3.1.1

the intersection P ∩ H is also an orthocentrically closed point set. Moreover, it was

proved in [15] that P is unbounded. Any subset of a hyperbola is either a discrete point

set or it has at least one limit point. We will show in Section 3.3 that the existence of

one single limit point of P ∩H implies that P ∩H is a dense subset of the hyperbola H,

i.e. it is of type iii) in Theorem 3.0.3. The case when P is an infinite discrete point set

is listed as case ii) in Theorem 3.0.3. We will address the existence of sets of type ii) in

Sections 3.4 and 3.5 by giving both the geometric and the algebraic characterizations.

We will show in Section 3.6 that the existence of one additional point of P outside

the rectangular hyperbola H (which already contains infinite many points of P) implies

that P is a dense point set of the plane. Thus we have that iv) is the only additional

possibility besides i), ii) and iii) in Theorem 3.0.3.

3.3 If P has a convergent subsequence on the hyperbola H, then P is a dense

set of H.

Again let H be a rectangular hyperbola with equation xy = α. Assume on the

contrary that the existence of a convergent subsequence of P on the hyperbola H does

not imply that P is a dense set of H. Without loss of generality we may assume that

there is a convergent sequence of points Pi ∈ P(i = 1, . . . ), whose x-coordinates form

a positive, increasing, convergent sequence. Let P be the limit point of this sequence

(Figure 3.1). Furthermore, assume that there is a point Q on the same branch of H such
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that the open hyperbola arc (PQ) does not contain points from P (note that P and Q

do not necessarily belong to P).

Starting with P1, for a sufficiently small ε > 0 we are going to choose subsequently

four points P1, Pi, Pj and Pk from the above sequence so that each succeeding point is

significantly closer (say ε times closer) to P than the previous one.

Let O be the orthocenter of the triangle P1PjPk. Notice that O belongs to the

other branch of hyperbola H. Finally consider the orthocenter O∗ of the triangle P1PiO.

Obviously O∗ is a point on the first branch of H again. Moreover, if ε is sufficiently

small, then both Pj and O∗ are arbitrarily close to P , while they are separated by P ,

therefore O∗ belongs to the open hyperbola arc (PQ), a contradiction.

k
j

i

P
P

P

P

1

O

O* QP

Figure 3.1: The case of a convergent sequence
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3.4 Geometric characterization of infinite, discrete and orthocentrically closed

sets of a rectangular hyperbola

In this section, we characterize all infinite and discrete orthocentrically closed sub-

sets of a rectangular hyperbola. It turns out that discreteness implies a symmetrical

structure for the diagonals (segments connecting pairs of points of the point set) which

best can be compared to the diagonal structure of the even-sided regular polygons: for

each diagonal there are both parallel and perpendicular sets of diagonals covering all

vertices of the polygon (except at most two vertices). In order to give the precise char-

acterization we need the following notations.

We will refer to the branches of the given rectangular hyperbola H as positive and

negative branches (denoted by H+ and H−) according to the signs of the x-coordinates

of their points.

Assume that set P is a discrete, infinite, orthocentrically closed subset of a rectan-

gular hyperbola H. Denote by P+ (and P−) the set of those points of P which belong

to the positive branch (negative branch respectively) of H. It was proved in [15] that P

is an unbounded set. In fact, it is easy to prove, that both P+ and P− are unbounded

sets, moreover, they are unbounded sets along both direction of the hyperbola branches.

Let us label the points of the set P+ using all integers in the order which matches the

order of the x-coordinates of the points.

Let i, j and k be three different points of P+. We already know that the intersection

point of the negative branch P− with the line perpendicular to ij through k belongs to

the set P, since it is the orthocenter of the triangle ijk. It is not automatic that similar
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perpendicular projections of the points i and j also give points of P−. Before we state

this property together with some additional ones we introduce the following notations:

We define the P-length of a diagonal ij in P+ (or in P−) by the number of points

of set P+ (of set P− respectively) contained by the open hyperbola arc (ij).

Let Oijk (where i, j, k are different points of P) be the orthocenter of the triangle

ijk.

Denote by πij (where i, j ∈ P+ ) the projection from the branch P+ to the branch

P− along the direction which is perpendicular to the line ij.

Denote by “Shift” the map within the set P− (or P+ ), where each point of P−

(of P+) is mapped to its neighbor along the same direction of the hyperbola branch H−

(H+ resp.).

We will prove the following characterization:

Theorem 3.4.1. An infinite discrete point set P of the rectangular hyperbola H is

orthocentrically closed if and only if it satisfies the following three conditions:

1. For each i, j ∈ P+ the projection πij gives a one-to-one correspondence between

the points of P+ and P−.

2. For each diagonal d in P+ it is true that each point of P+ is the endpoint of a

diagonal parallel to d (this condition includes tangent lines as degenerate diagonals).

3. For each diagonal in P− there is a parallel diagonal in P+.

Proof of Theorem 3.4.1. Since this theorem is an “if and only if” theorem, we need to

show that the listed conditions are both necessary and sufficient conditions. We start

addressing the “necessary” part by proving a chain of elementary facts:
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1. First we prove Condition 1 for diagonals of P-length equal to two: Without loss of

generality consider the diagonal 14 of P+, which has length three. The only nontrivial

part of Condition 1 is to show that the lines perpendicular to the diagonal 14 through its

endpoints intersect H− at points of P. Consider the perpendicular line through endpoint

1, and assume indirectly that the intersection point F is not a point of P−. We indicate

this on Figure 3.2.a by an “empty circle” as a point F . Denote the orthocenter O123 by

E, which is a point of P− different from F . We distinguish two cases:

Case 1: The x-coordinate of E is greater than that of F . Consider the triangle E14

and its orthocenter (Figure 3.2.a). The ray connecting E to the orthocenter must lie

between rays
−→
E2 and

−→
E1. This means that the orthocenter of triangle E14 is contained

by the open hyperbola arc (12), a contradiction.

E

a)

3 4

2

1

F

F
E

1

G

2
3

4

b)

Figure 3.2: The set is closed under the projection πij

Case 2: The x-coordinate of E is smaller than that of F . Denote the orthocenter

of the triangle E14 by G (Figure 3.2.b). G is a point of H+. The x-coordinate of G
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must be less than that of point 1. Consider the triangle EG2 and its orthocenter. The

ray connecting E to this orthocenter must be between rays
−→
E4 and

−→
E2. This means

that the orthocenter of the triangle EG2 is point 3, but then there are two different

perpendiculars to this line through point 2, a contradiction.

2. We prove Condition 1 for diagonals of P-length equal to one: Without loss of generality

consider the diagonal 13 of P+, which has length one. The only nontrivial part of

Condition 1 is to show, that the lines perpendicular to diagonal 13 through the endpoints

intersect H− at points of P−. It is enough to show this for one of the endpoints, say

for endpoint 3. We already know that the images of points 1, 2, 3 and 4 under the

perpendicular projection π14 belong to P− and they are consecutive points in that set.

Denote them by A,B, C and D (Figure 3.3.a). We also know that A is the orthocenter

of the triangle 123, thus π12(3) = A. Since points 3 and 4 are consecutive points in P

we have that π12(4) = B. The orthocenter of the triangle 134 must be between B and

D on H−, thus it is equal to C. This leaves only one option for the orthocenter of the

triangle 13B and that is point 3, which we wanted to prove.

3. We prove Condition 1 for diagonals of P-length zero: Without loss of generality

consider the diagonal 23 of P+, which has length zero. It is enough to show that the

diagonals 23 and 14 are parallel.

Denote, again, by A the image of point 1 under the perpendicular projection π14.

From the paragraph labeled as 1. above we already know that the perpendicular pro-

jection π13 maps point 2 to point A, i.e. A is the orthocenter of the triangle 123, thus

23 is perpendicular to A1. Since A1 is perpendicular to 14, we get that 23 and 14 are

parallel.
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Figure 3.3: Inductive steps

4. We prove Condition 1 and 2 for diagonals of P-length 5, 6, . . . : We are going to

use induction on the length of the diagonals of P+. Assume that we already proved

Condition 1 and 2 for all diagonals of P-length less than N . Consider a diagonal ij of

length N , i.e. j = i + N + 1 (see Figure 3.3.b). All we need to prove is that diagonal ij

is parallel to diagonal (i + 1)(j − 1). On the contrary assume that these two diagonals

intersect each other, say at F , so that i separates F and j. According to Condition 1

there is a point J ∈ P− so that the πij(j) = J . Denote πij(j − 1) ∈ P− by E. Since

j−1 and j are consecutive points of P− both triangles i(j−1)j and (i+1)(j−1)j must

have their orthocenter adjacent to J , therefore at E. Thus both diagonals i(j − 1) and

(i + 1)(j − 1) are perpendicular to the line jJ , a contradiction.

5. We prove Condition 3: Consider a diagonal ij of P+. According to Condition 1 there

are points, say I and J ∈ P− so that the πij(i) = I and πij(j) = J ∈ P−. Project the

point j onto P− perpendicularly to each of the diagonals ij, i(j − 1), i(j − 2), . . . (i, i).
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The first image, as we know, is J , and the last image is I. Notice that the images at the

projections are different and the number of diagonals we consider equals the number of

points on the hyperbola arc IJ . Thus we have that “moving one endpoint of the diagonal

ij to its neighbor implies that the perpendicular projection of that endpoint moves to its

neighbor on the other hyperbola branch”. This means that if we start by two diagonals

belonging to different hyperbola branches, then we can change gradually one of them

(by moving one of its endpoint to a neighboring point) until the perpendicular direction

of the changed diagonal coincides with the perpendicular direction of the unchanged

diagonal.

6. We prove that Conditions 1, 2 and 3 are sufficient in Theorem 3.4.1: We need to verify

that such sets are orthocentrically closed. Take three points from P. If they belong to

the same branch of the hyperbola then Condition 1 implies that the orthocenter of this

triangle belongs to P. Without loss of generality assume that two of the vertices, say i

and j belong to H+ and the third one, say O, belongs to H−. According to Condition 3,

P− has a diagonal, say d, which is parallel to ij. According to Condition 1, the projection

of O onto H+ in the direction perpendicular to the diagonal d, belongs to P+, which we

wanted to show.

3.5 Existence and algebraic characterization of the infinite, discrete and

orthocentrically closed sets of the rectangular hyperbola

Let H be the rectangular hyperbola defined by the equation xy = α. The points of

H can be identified with their x-coordinates, and this gives an isomorphism between H
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and the x-axis except the origin. Throughout the section h(x) will denote the point of

H with the given abscissa x. In other notations we follow Section 3.4.

We will show that there exists a discrete subset ofH which is orthocentrically closed.

So far we have proved a geometric necessary and sufficient condition for such a point

set detailed in Theorem 3.4.1; easy algebraic arguments will yield that there really exist

such a point set. In fact we give an algebraic characterization for these sets, also yielding

that there are infinitely many of them on the same rectangular hyperbola.

Suppose that P is a discrete subset of H with the given property. Let h(x0) be an

arbitrary point of P+. Let the points of P+ be {h(xi)}∞i=−∞, labeled in accordance with

the ordering of the abscissas, so 0 < xj < xk holds for any integers j < k.

Condition 2 of Theorem 3.4.1 yield the following parallelism property:

h(xj) h(xk) ‖ h(xj−d) h(xk+d)

for any integers j, k and d with j < k.

Using the equation of the hyperbola this condition turns into the following algebraic

equality:

xj xk = xj−d xk+d (3.1)

With the help of (3.1) we can express all xi’s in terms of x0 and x1. Introducing

the notations a := x0 and b := x1 will simplify the formulae.

We shall prove by induction on |i| that the following formula holds for every integer i.

xi = bi a1−i (3.2)
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Clearly (3.2) is true for i = 0, 1. First we show it for i = −1. Applying (3.1) for

j = 0, k = 1 and d = 1 yields that x2 = ab/x−1. On the other hand, the choice j = −1,

k = 0 and d = 1 gives x−2 = x−1a/b. Now in the case j = −1, k = 1 and d = 1 we

obtain the equality x−1 = a2/b, and this was our goal.

Suppose now that (3.2) is proved for all i with |i| < n. Applying (3.1) for j = 0,

k = 1 and d = n− 1 we obtain

xn = ab/(b1−n an) = bn a1−n.

Furthermore, the choice j = −1, k = 0 and d = n− 1 yields

x−n = b−1 a3/(bn−1 a2−n) = b−n a1+n,

finishing the proof of (3.2).

So far we have described the points of P+. Now turn to the points with negative

abscissa. We have proved in Condition 1. of Theorem 3.4.1 that those can be obtained

by taking the orthogonal projection of P+ onto H− with respect to an arbitrarily chosen

diagonal of P+.

Let choose the diagonal to be h(a) h(b). For any xi let h(x′i+1) denote the projection

of xi onto H−. The following holds:

x′i+1 = −α2/(xi a b) = −α2 b−i−1 ai−2 = −α2 b−(i+1) a−3+(i+1).

Therefore the negative part of P consists of all the points with x-coordinates of the

form
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x′i = α2(−bi a−3−i), (3.3)

where i is any integer.

According to Theorem 3.4.1 for the sufficiency we have to guarantee that for any

given diagonal of P−, there exists a diagonal in P+ parallel to the given one. Translating

to algebra we get the following statement: for any different integers i and j there exist

integers k 6= l such that

α4bi+ja−6−(i+j) = bk+la2−(k+l),

or, equivalently,

∃s ∈ Z : (b/a)s = (a/
√

α)8. (3.4)

Since all the algebraic transformations done so far are reversible, we have proved

the following theorem:

Theorem 3.5.1. An infinite discrete subset of the rectangular hyperbola H is orthocen-

trically closed if and only if it is described by the forms (3.2) and (3.3) where a < b are

positive real numbers satisfying the condition (3.4).

We note that for the choice a =
√

α condition (3.4) holds for any positive number b

with s = 0. In this case the point set P is symmetric to the line x = y. Also notice that

for any given real number a > 1 and integer s, the equation (3.4) has a solution for b;

in other words, for any fixed point of the hyperbola there are infinitely many different,

discrete, orthocentrically closed subsets containing that point.
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3.6 If P is not on the hyperbola, then it is a dense set of the plane.

We shall now show that if an orthocentrically closed point set is not contained in a

rectangular hyperbola, then it must be dense in the whole plane. We are going to use

the notations of Section 3.4. We will also label the points of P− by the accented integers

(n′) with the order which matches the order of the x-coordinates.

We can assume that the point set P is closed. Indeed, if a planar point set is ortho-

centrically closed, then the same property holds for its closure: taking any nondegenerate

triplet of the closure, and point sequences converging to the vertices, the orthocenters

of the triplets of the sequences will converge to the orthocenter of the given triangle.

This yields that we should prove that a closed and orthocentrically closed set is either a

subset of a rectangular hyperbola or equals to the whole plane itself.

Our argument is divided into two steps: the first step is to show that if the closed set

P contains an infinite orthocentrically closed discrete subset of a rectangular hyperbola,

and also a point outside of the hyperbola, then it contains the whole hyperbola. The

second step is to prove that if the closed set P contains an entire rectangular hyperbola

and one additional point, then it is the whole plane.

Lemma 3.6.1. Suppose the P is an infinite discrete orthocentrically closed point of

the rectangular hyperbola H. Then for any point P outside of H, the set P ∪ {P} is

generating a dense subset of H by the orthocenter transformation.

Proof. As an extension of our former definition, let πij(P ) denote the intersection points

of the hyperbola H and the line perpendicular to ij through P . First we show that

there exists a diagonal ij of P+ such that the two points of πij(P ) do not belong to P.

Indeed, choose the diagonals n(2n) and let n tend to infinity. Then the direction vectors
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of the diagonals are tending to the horizontal direction, and therefore unless the given

point P is on the y-axis, the projections have a limit point on the hyperbola. Since the

set P is discrete, there must be a diagonal of the chosen ones for which the projection

does not belong to P. We can use the same argument for the diagonals (−n)(−2n)

yielding the same result for any point P outside of the x-axis. Therefore the statement

holds for any point except for the origin. Finally, if P is the origin, and πij(P ) belongs

to P then it is easy to see that πi(j+1)(P ) does not belong to P: Theorem 3.4.1 yields

that the projections of P+ are shifted by one when taking πi(j+1) instead of πij , and

therefore two projection lines cannot intersect in the region between the two branches of

the hyperbola.

We can also assume that the diagonal ij has the property that the projection of P

onto the diagonal is a point of H between i and j. Moreover, we can choose a diagonal

k′l′ of P− parallel to ij and satisfying the same condition. Finally, let e denote the line

perpendicular to ij and passing through P (see Figure 3.4.a).

We will define an infinite point set on e by taking the orthocenters of certain triplets,

and we shall show that the intersections of e and the hyperbola H belong to the closure

of our infinite point set, yielding a contradiction.

Let Dp and Dn denote the Thales discs of the segments ij and k′l′, respectively.

We claim that Dp ∩Dn is empty. Indeed, if we take points Q and R as the intersection

points of the diagonal ij with the y-axis and the x-axis, then the segment ij is strictly

contained in the segment QR. We obtain the segment ST in the same manner from k′l′.

Now, the Thales discs Dp and Dn are strictly contained in the Thales discs of QR and
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ST , while an easy geometric observation yields that those are touching each other at the

origin, hence the intersection of Dp and Dn must be empty.

Orient e such that the points of e ∩Dn are “below” the points of e ∩Dp. We note

that if we take a point M of e outside of Dp, then OijM (the orthocenter of the triangle

ijM) is in the intersection of e and Dp. Moreover, if we take two points M1 and M2

from the same component of e \Dp such that M1 < M2, then OijM1 > OijM2 holds as

well. The same observations hold for Dn in place of Dp.

Let P0 = P and define the sequence {Pn}∞n=0 ⊂ e in the following way: if Pn is not

in Dp then let Pn+1 = OPnij , otherwise let Pn+1 = OPnk′l′ . It is easy to see that for

n ≥ 2 the point Pn is on the open segment bounded by the intersection points of e with

ij and k′l′. Without loss of generality suppose that P2 is outside of Dp, therefore P3 is

in Dp, and it is easy to see that P2n is in Dn while P2n+1 is in Dp for any n ≥ 2.

If P2 ≥ P4 holds, then by induction on n we obtain easily that P2n−1 ≤ P2n+1

and P2n ≥ P2n+2 holds true for any n ≥ 2, while if P2 ≤ P4, then P2n−1 ≥ P2n+1 and

P2n ≤ P2n+2 for any n ≥ 2. This means that the subsequences {P2n+1}∞n=1 and {P2n}∞n=1

are monotonic and bounded, therefore their limits exist. Let L1 and L2 denote the limit

points, respectively. Then L1 ∈ Dp and L2 ∈ Dn.

Note that the following property holds for the limit points: L2 is the orthocenter of

the triangle k′l′L1 and L1 is the orthocenter of the triangle ijL2. We claim that L1 and

L2 must be the intersection points of the hyperbola with the line e.

We refer to Hyperbola Property 3.1.5. Since the points i, j, k′ and l′ do not form

an orthocentric system (remember that ij ‖ k′l′), it suffices to show that there is a rect-

angular hyperbola containing all the six points i, j, k′, l′, L1 and L2. Take a rectangular
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hyperbola through i, j, L2 and k′. Then this hyperbola also contains L1, since this is the

orthocenter of the triangle ijL2. Moreover, l′ is also on the hyperbola, being the ortho-

center of the triangle k′L1L2. Therefore such a hyperbola exists, and by uniqueness it is

H. Hence the intersection points of e and H belong to the closure of the orthocentrically

generated point set, contradicting the choice of the diagonal ij.
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Figure 3.4: A point outside the hyperbola is generating a dense set

The final step in the proof of Theorem 3.0.3 is to show that

Lemma 3.6.2. Suppose that H is a rectangular hyperbola. For any point P outside of H,

the set H∪{P} is generating an everywhere dense subset of the plane by the orthocenter

transformation.

Proof. Let us choose a line ` through P intersecting H+ in the point M . Moreover,

assume that the angle between ` and the tangent of H at M is not π/2. Let m denote

the slope of a line perpendicular to `. Consider a tangent with slope m of the positive

branch of H, and let T be the common point of this tangent line and the hyperbola. Let
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N denote the second intersection point of the positive branch of H and the line through

M with slope m (see Figure 3.4.b).

Consider the family of triangles with common vertex P and with two other vertices

on H+ so that their connecting segment has slope m. The orthocenters of these triangles

are on line `. If the vertices different from P converge to point T , then the orthocenters

of these triangles converge to point P ′ of line ` for which ∠P ′TP = π/2. On the other

hand, if we choose the two variable vertices of the triangle as M and N , then the resulted

orthocenter is M . If we change continuously the two vertices of the triangle between

these limits, the orthocenters are changing continuously between M and P ′. Therefore

the whole segment MP ′ belongs to the closure of the set of the orthocentrically generated

points.

The same argument with P ′ in the place of P yields that the segment PM is also

generated. Now let the point Q run along the segment PP ′, what we already know

to be orthocentrically generated. It is easy to see that the points Q′ ∈ ` for which

∠QTQ′ = π/2 cover the whole line `, hence ` is orthocentrically generated.

The same argument works if we replace the positive branch of the hyperbola with

the negative branch. Moreover it is easy to check that except for the line y = x no line

can be perpendicular to both branches of the hyperbola (where the angle between and

the line are understood to the angle between the line and the tangent to the hyperbola

at the intersection point). Therefore all the lines with positive slope passing through

P , except (optionally) for the line y = x, are generated. The union of these lines is

the union of two infinite domains bounded by the horizontal and vertical lines through

P , what we call a wedge with vertex P . Now replace P by any point Q in the wedge
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with vertex P , the same arguments yield that the wedge with vertex Q is also generated.

Since the union of all of these wedges cover the plane, we obtain that the orthocentrically

generated points form a dense subset of the plane.
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[10] B. Grünbaum, Common transversals for families of sets, J. Lond. Math.Soc. 35
(1960), 408–416.

[11] H. Hadwiger, Problem 107, Nieuw Arch. Wiskunde (3) 4 (1956), 57; Solution,
Wiskundige Opgaven 20 (1957), 27–29.

[12] A. Holmsen, M. Katchalski, and T. Lewis, A Helly-type theorem for line transversals
to disjoint unit balls, Discrete Comput. Geom. 29 (2003), no. 4, 595–602.
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