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Automatic, passive self-balancing systems are important tools for reducing the 

effects of synchronous vibration in a variety of rotating machinery. Such systems are 

ideally capable of precise balancing, subject to certain dynamic restrictions. There are a 

number of designs that are used, but the most common type is the ball balancer system 

that employs balls that move inside a cylindrical race or channel. However, such systems 

may be subject to a variety of effects that arise due to rolling resistance. An alternative 

approach uses pendulums rather than balls to provide the balancing.  In the present work, 

a passive pendulum balancer system is investigated from several aspects. A mathematical 

model has been developed to discover the stability characteristic of the pendulum 

balancer. Because of the obvious potential for practical application pendulum balancers 

this system was investigated from engineering point of view. These investigations tried to 

cover all the possible differences that could arise when the mathematical model would be 

materialized as a real passive balancing device. The application of non identical 
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pendulums was studied in detail and its advantages and disadvantages are discussed. The 

influences of rolling resistance and shaft misalignment on the functional capability of 

pendulum self-balancing systems are specifically examined. 

The study of a passive pendulum balancer with non-isotropic suspension is also 

presented. The existence of two natural frequencies results in two distinct areas of 

stability. These stable areas are determined by Floquet analysis and verified by numerical 

simulations and experimental measurements. 



 vii

 
 
 
 
 

ACKNOWLEDGMENTS 

 

The author would like to express his appreciation and thanks to his advisor 

Professor George T. Flowers, Department of Mechanical Engineering for his guidance 

and support toward the completion of this dissertation. The author also wishes to 

acknowledge the following committee members: Dr. Subhash C. Sinha, Professor, Dr. 

Dan Marghitu, Associate Professor, Department of Mechanical Engineering; and Dr. 

John Cochran, Jr., Department Head and Professor of Department of Aerospace 

Engineering.  

The author is thankful for the invaluable initial guidance to his former professor Dr. 

Gábor Stépán, DSc, Department of Applied Mechanics Budapest University of 

Technology and Economics. As well, the author would like to thank his friend, Dr. 

Tamás Insperger, Associate Professor, Department of Applied Mechanics Budapest 

University of Technology and Economics, for his great advice and ideas. 

Finally, the author would like to thank János Torma and Béla Pallos, his former 

teachers for supporting and believing in him. 



 viii

 
 
 
 
 
Journal used: Journal of Sound and Vibration 

 

 

Computer software used: Microsoft Office Word 2003 



 ix

 
 
 
 
 

TABLE OF CONTENTS 

LIST OF TABLES............................................................................................................ xii 

LIST OF FIGURES ......................................................................................................... xiii 

1 INTRODUCTION ...................................................................................................... 1 

1.1 Background......................................................................................................... 1 

1.2 Motivation for research....................................................................................... 4 

1.3 Organization of Dissertation ............................................................................... 5 

2 BASIC TWO DEGREES OF FREEDOM (DOF) MATHEMATICAL MODEL ..... 6 

3 PASSIVE PENDULUM BALANCER WITH ISOTROPIC SUSPENSION .......... 12 

3.1 Balancing boundaries (relative balancing areas) of a two-pendulum balancer 
with non-identical pendulums....................................................................................... 14 

Visualization of balancing capability: “CG circles”............................................. 17 

Singular Points and Stability Characteristics........................................................ 20 

Stability Analysis .................................................................................................. 29 

3.2 EXPERIMENTAL INVESTIGATION............................................................ 41 

3.2.1 Pendulum Balancer Experimental Facility ............................................... 41 

3.2.2 Experimental validation for non-identical pendulums.............................. 45 

Subcritical operation ............................................................................................. 45 



 x

Supercritical operation .......................................................................................... 47 

3.2.3 Numerical and Experimental validation ................................................... 50 

Special case: Identical pendulums ........................................................................ 52 

Numerical and Experimental validation ............................................................... 54 

3.3 Influence of Pendulum Shaft Misalignment ..................................................... 58 

3.3.1 Experimental investigation of pendulum shaft misalignment .................. 62 

Pendulum Balancer Experimental Facility ........................................................... 62 

Implementation of shaft misalignment ................................................................. 62 

Description of experimental procedure................................................................. 63 

3.3.2 Experimental comparison of the sensitivity and consistency of ball and 
pendulum balancers .................................................................................................. 67 

Ball Balancer Experimental Facility..................................................................... 67 

Ball Balancer Experimental Results ..................................................................... 68 

Pendulum Balancer Experimental Results............................................................ 74 

4 PASSIVE PENDULUM BALANCER WITH NON-ISOTROPIC SUSPENSION 78 

4.1 Analytical investigation .................................................................................... 78 

4.1.1 Stability of homogeneous linear system with time periodic coefficients . 84 

4.1.2 Floquet analysis: piecewise approximation .............................................. 86 

4.1.3 Floquet analysis with numerical integration: single pass scheme ............ 88 

4.1.4 The result of Floquet analysis ................................................................... 90 

Floquet characteristic multipliers for the Type I singular point ........................... 93 



 xi

4.1.5 Stability changes for different damping coefficients ................................ 96 

4.2 Experimental facility with non-isotropic suspension........................................ 99 

4.2.1 Description of experimental facility ......................................................... 99 

4.2.2 Description of experimental procedure................................................... 105 

4.3 Numerical and experimental investigation ..................................................... 106 

4.4 Summary of validation.................................................................................... 112 

5 CONCLUSIONS AND FUTURE WORK ............................................................. 113 

BIBLIOGRAPHY........................................................................................................... 115 

APPENDIX A PARAMETERS OF EXPERIMENTAL FASCILITY .......................... 119 

APPENDIX B MATLAB SOURCE CODES ................................................................ 121 

5.1 MatLab source code: Model40.m ................................................................... 122 

5.2 MatLab source code: ODE01.m ..................................................................... 131 

5.3 MatLab source code: wRunUp.m ................................................................... 132 

 



 xii

 
 
 
 
 

LIST OF TABLES 
 

Table 3.1  Stability table of Type I singular point ............................................................ 32 

Table 3.2  Stability table of Type II singular point........................................................... 34 

Table 3.3  Stability table of Type III singular point ......................................................... 35 

Table 3.4  Stable configuration for two operational and three constructional cases ........ 36 



 xiii

 
 
 
 
 

LIST OF FIGURES 
 

Figure 2.1  Two DOF model with radial mass imbalance: MP ........................................... 6 

Figure 2.2  Magnitude and phase shift of the frequency response...................................... 9 

Figure 2.3  Configurations of the frequency response and the three forces of the 
pendulum as a function of phase shift............................................................................... 11 

Figure 3.1  4 DOF model of rotor with two-non-identical pendulum balancer in a rotating 
coordinate system.............................................................................................................. 13 

Figure 3.2  Balancing boundaries and relative balancing areas of two-pendulum set...... 16 

Figure 3.3  Balancing boundaries of two-pendulum set for a series of mass imbalance SP
........................................................................................................................................... 17 

Figure 3.4  CG circles relative to a certain radial mass imbalance SP .............................. 18 

Figure 3.5  Illustrations of the three types of singular point............................................. 26 

Figure 3.6  Singular point loss as a function of relative damping and operational speed for 
properly oversized pendulums ........................................................................................ 38 

Figure 3.7  Singular point loss as a function of relative damping and operational speed for 
improperly oversized pendulums.................................................................................... 39 

Figure 3.8  The side view of pendulum balancer experimental facility............................ 43 

Figure 3.9  Top view of pendulum balancer experimental facility................................... 44 

Figure 3.10  Side view of pendulum assembly ................................................................. 44 

Figure 3.11  Analytical and experimental results for the amplitude of vibration 
(subcritical operation) ....................................................................................................... 46 



 xiv

Figure 3.12  Analytical and experimental results for the position of pendulums 
(subcritical operation) ....................................................................................................... 47 

Figure 3.13  Analytical and experimental results for the amplitude of vibration 
(supercritical operation) .................................................................................................... 49 

Figure 3.14  Analytical and experimental results for the position of pendulums 
(supercritical operation) .................................................................................................... 49 

Figure 3.15  Results of numerical simulation and experimental measurement of two-non-
identical pendulum............................................................................................................ 51 

Figure 3.16  Analytical and experimental results for the amplitude of vibration 
(supercritical operation) .................................................................................................... 53 

Figure 3.17  Analytical and experimental results for the position of pendulums 
(supercritical operation) .................................................................................................... 54 

Figure 3.18  Results of numerical simulation and experimental measurement of two-
identical pendulum............................................................................................................ 55 

Figure 3.19  Possible design solutions for pendulum balancing systems ......................... 57 

Figure 3.20  Mathematical model of rotor system with non-centered pendulums ........... 58 

Figure 3.21  Simulation results showing the non-dimensionalized rotor vibration level for 
the system with pendulum shaft misalignment................................................................. 60 

Figure 3.22  Simulation results showing the absolute and relative positions of the 
pendulums for the system with pendulum shaft misalignment......................................... 61 

Figure 3.23  Experimental results showing the non-dimensionalized rotor vibration level 
for the system with pendulum shaft misalignment ........................................................... 64 

Figure 3.24  Experimental results showing the absolute and relative positions of the 
pendulums for the system with pendulum shaft misalignment......................................... 65 

Figure 3.25  Side view of ball balancer experimental facility .......................................... 69 

Figure 3.26  Top view of ball balancer experimental facility........................................... 70 



 xv

Figure 3.27  The final positions of balancing balls and vibration level for different 
startups .............................................................................................................................. 71 

Figure 3.28  Deformation of contact surfaces and force distribution of the balancing ball 
and channel ....................................................................................................................... 73 

Figure 3.29  The final positions of balancing pendulums and the level of vibration for 
different startups ............................................................................................................... 75 

Figure 3.30  The final positions of balancing pendulums and the level of vibration on the 
zoomed plot for different startups..................................................................................... 76 

Figure 3.31  Force distribution of pendulum and ball balancer........................................ 77 

Figure 4.1  Coarse Floquet stability map of Type I singular point ................................... 91 

Figure 4.2  Fine Floquet stability map of Type I singular point with the points used for 
numerical and experimental validation............................................................................. 92 

Figure 4.3  The unit cylinder and the biggest Floquet characteristic multiplier as a 
function of relative running speed. ................................................................................... 94 

Figure 4.4  Three different views of unit cylinder and the Floquet characteristic 
multipliers of Type I singular point .................................................................................. 95 

Figure 4.5  Floquet stability map of Type I singular point for different relative damping 
coefficients of rotor suspension ........................................................................................ 97 

Figure 4.6  Floquet stability map of Type I singular point for different damping 
coefficients of pendulums ................................................................................................. 98 

Figure 4.7  Side view of pendulum balancer experimental facility with non-isotropic 
suspension....................................................................................................................... 102 

Figure 4.8  Top view of rotor assembly.......................................................................... 103 

Figure 4.9  Side view of rotor assembly ......................................................................... 104 

Figure 4.10  Numerical and experimental validation of point A .................................... 107 

Figure 4.11  Numerical and experimental validation of point B .................................... 108 



 xvi

Figure 4.12  Numerical and experimental validation of point C .................................... 109 

Figure 4.13  Numerical and experimental validation of point D .................................... 110 

Figure 4.14  Numerical and experimental validation of point E..................................... 111 

 



 xvii

 
 
 
 
 

NOMENCLATURE 

t = Time [s] 

T = Time period [s] 

φ =  Phase angle [deg] 

Ψ = Angular displacement of disk [deg] 

ω(t) = Angular velocity of the disk [rad/s] 

ωn = Natural angular velocity [rad/s] 

fni = ith Natural frequency [Hz] 

Θ1,2 =  Linear degrees of freedom [m] 

Θ3,4 =  Angular degrees of freedom [deg] 

Y1,2E = Linear coordinates of singular points, (linearized system) [m] 

Y3,4E = Angular coordinates of singular points (linearized system) [deg] 

MD = Mass of disk [kg] 

MP = Mass imbalance [kg] 

MBA = Mass of pendulum A [kg] 

MBB = Mass of pendulum B [kg] 

MS = Mass of the entire rotor system [kg] 

ID = Mass moment of inertia of disk [kgm2] 

P3 = Radial perturbation variable [m] 

RD = Radius of disk [m] 



 xviii

RBA = Length of pendulum A [m] 

RBB = Length of pendulum B [m] 

e = Linear distance of CG of imbalanced rotor [m] 

k1,2  = Linear spring stiffness [N/m] 

c1,2 = Linear damping coefficients [Ns/m] 

c3,4 = Angular damping coefficients [Nms/rad] 

ζ = Relative damping coefficient [-] 

ρC = Non-dimensionalized shaft misalignment [-]  

RC = Shift of suspension of pendulums [m] 

e = Linear distance of CG of imbalanced rotor [m] 

α = Non-dimensionalized amplitude of vibration [-] 

APR = Amplitude of vibration with released pendulums [m] 

APL = Amplitude of vibration with locked pendulums [m] 

N = Amplification factor [-] 

A = Amplitude of vibration [m] 

AStat = Static amplitude of vibration [m] 

[I] = Identity matrix  

[M] = Inertia matrix 

[D] = Damping matrix 

[G] = Gyroscopic matrix 

[K] = Elastic matrix 

[N] = Non-conservative force matrix 

[A] = Coefficient matrix 



 xix

[Φ] = Fundamental matrix 

[C] = Floquet Principal Matrix 

λ = Characteristic multiplier 

Ω = Relative running speed [-] 

K = Relative spring stiffness [-] 

SA,B = First order moment of inertia of pendulums [kgm] 

SP = First order moment of inertia of mass imbalance [kgm] 

T = Sum of all kinetic energies [J] 

V = Sum of all potential energies [J] 

D = Sum of dissipation energies [J] 

Q1,2 = Generalized forces [N] 

Q3,4 = Generalized torques [Nm] 

FCF = Centrifugal force [N] 

FC = Constraining force [N] 

FF = Friction force [N] 

FR = Force of rolling resistance [N] 

FB = Balancing force [N] 
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1 INTRODUCTION 

1.1 Background 

Rotating machinery is commonly used in civil, military and industrial applications 

including vehicle wheels, machining tools, industrial rotating machinery aircraft gas 

turbine engines and helicopter blades. One of the primary sources of vibration is mass 

imbalance, which occurs when the principal axis of inertia of the rotor is not coincident 

with its rotational axis.  

There are two common balancing methods which are used to align the principal 

inertia axis and rotational axis. One method is off-line balancing in which the rotating 

machine is stopped for the adjustment of mass distribution. The second method is on-line 

balancing in which the mass distribution rearrangement happens continuously during 

rotation. Such automatic balancing can be either active or passive.  Active balancing 

systems use sensors to measure the unbalance level and actuators to shift the mass 

distribution. Passive balancing systems perform a similar task but without sensors, 

control laws and external power supplies. 

The simplicity, reliability and relatively low cost of passive balancing systems 

make them a very attractive solution and thus, have been the subject of significant past 

research. 

The first documented appearance of an auto balancing device was by A. Fesca who 

patented improved centrifugal machine equipped with three ring balancer in 1872 [1] The 

second documented automatic balancer is also a ring balancer patented by G. W. Ledyard 

in 1896. Ledyard used a series of rings around the outer diameter of his centrifugal 

machine [2]. In the same year a new type of rotor balancing system was registered by 
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United States Patent Office. M. Leblanc patented his automatic balancer for rotating 

bodies. In his design, the balancer consists of a simple cylindrical chamber field with a 

heavy liquid [3]. Thearle [4] in 1932 published a detailed experimental study.  Probably 

this design was the first to use self-aligning balls to achieve passive balancing. The first 

documentation of pendulum type balancer is also a patented invention by K. Clark 1946 

[5]. Clark used four non-centrally attached pendulums to reduce the level of centrifugal 

machines. Thearle [6] investigated in detail the Leblanc balancer and summarized the 

requirements of ideal balancers. In the same journal, Thearle [7] compared several 

different types of automatic dynamic balancers, such as a ring, pendulum and ball 

balancers. This is the first appearance of an automatic pendulum-balancer in the literature. 

In his paper Thearle concluded that by placing the pivot of pendulums at the center of 

rotation the pendulum balancer become equivalent to the ring balancer, his analysis was 

heuristic and did not include a rigorous and detailed analytical study.  In addition, he 

concluded that ball balancers were a superior system.  

Since the 1950’s, the majority of researchers have concentrated their efforts on 

investigations of ball-balancing systems. Sharp [8] provided a stability analysis of the 

balanced condition for a two-ball balancer on a planar rotor, and the presented the results 

of a parametric study of that system. Conclusions were drawn regarding the satisfactory 

operation of such a balancer. Bövic and Högfors [10] in 1986 by using the method of 

multiple scales showed that an automatic ball-balancer reduces vibration for planar and 

non-planar 6 DOF rotor systems. Their research is a detailed analytical study but it was 

not verified by any experimental measurements.  
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Wettergren [11] investigated a ball-balancing system with one and two balls in a 

cylindrical groove. He also examined the effect of oil viscosity and found a relationship 

between the viscosity and the stability properties of the balancing system. However, his 

research was analytical in nature and not verified experimentally. Huang and his 

colleagues [12] in 2002 presented a combined analytical and experimental study of the 

loss of balancing capability for a ball-type balancing system due to runway eccentricity 

and rolling resistance. Other investigators [13] have considered the effects of dry friction 

on ball balancer systems. This is a specific concern if such units are operated in an un-

lubricated condition, which is desirable for some applications (such as optical drives) 

where lubricants can cause contamination and damage. It was demonstrated that, “even 

for very low friction coefficients” the balancing behavior can deteriorate considerably. K. 

Green and his colleagues demonstrated a nonlinear bifurcation analysis of an automatic 

ball balancer [14]. Applying only analytical methods they discovered large regions in the 

parameter space where the ball balancer shows instability. They also investigated the 

effect of perturbations and transient dynamics. 

The only substantial study in the current literature on pendulum-based passive 

balancing systems was conducted by Kubo and his colleagues, who presented their 

research on an automatic balancer using pendulums [9]. This paper was concerned with 

theoretical and experimental investigations on the dynamic behavior and stability of an 

automatic balancer using centrifugal pendulums. Although they noted the most important 

requirement that has to be satisfied for proper balancing such as the pivot of the 

pendulums have to be placed to the center of rotor, the experimental facility was 

equipped with non-centrally attached pendulums. Additionally this paper has a 
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fundamental flaw. In their study they model the suspension of disk as single DOF. This is 

not an adequate model for a rotating disk especially when a centrifugal force has a 

balancing effect. 

 

1.2 Motivation for research 

Providing reliable, on line balancing for wide range of applications is a great 

challenge. The complexity of active on line balancing reduces its reliability. This 

complexity does not suit zero tolerance applications and it requires tremendous research 

hours to develop a somewhat reliable and robust active balancing system, which is 

expensive production cost and this way rejects any application on mass production level. 

Application of automatic balancers on a mass production level causes a focus of 

efforts on implementation of the simplest passive balancing system: the ball balancer. 

The extreme simplicity of ball balancer systems has generated a huge amount of research 

effort but the widespread utilization of ball balancer systems has not taken place. The 

effect of rolling resistance greatly reduces number of potential applications of automatic 

ball balancers.  
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The desire to design and build a simple, reliable passive balancing device has not 

been fulfilled. This research purposefully targeted this technological deficiency. The 

discovery of such a system would initiate numerous potential applications: 

- Providing artificial gravity in space 

- Centrifuges for Gravitational biology research 

- Helicopter blade balancing 

- Centrifugal casting 

- Handheld power tools 

 

1.3 Organization of Dissertation 

This research effort is a study of a passive pendulum balancer. The research work 

was performed in the Vibration Analysis Laboratory of the Department of Mechanical 

Engineering at Auburn University. Specifically, the work includes: 

• Development of mathematical model 

• Development of numerical procedures 

• Development and testing of experimental facilities  
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2 BASIC TWO DEGREES OF FREEDOM (DOF) MATHEMATICAL MODEL 

In order to provide an appropriate background for the current work, this discussion 

begins by considering the behavior of a 2 DOF thin disk model rotating in a horizontal 

plane with a radial mass imbalance represented by a point mass MP that is shifted from 

the center of disk by P3 in the 'I  direction, as shown in Figure 2.1. 

  

Θ1

Θ2

Ψ(t)

P3 MP

k1

k2

c1

c2

ω(t)

I'

I

J

0

0

0I

0J

J'

 

Figure 2.1  Two DOF model with radial mass imbalance: MP 
 

The disk model has two degrees of freedom, Θ1 and Θ2, which are mutually 

orthogonal linear displacements in the same horizontal plane. The model is symmetric, 

having the same spring stiffness k1,2 and damping coefficient c1,2 in both directions, 

which yields coincident natural angular velocity ωn.  
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The differential equations of motion are: 

2
1 1 1 3 cos( )PM c k P M tω ωΘ +Θ +Θ =  (2-1)

2
2 2 2 3 sin( )PM c k P M tω ωΘ +Θ +Θ =  (2-2)

D PM M M= +  (2-3)

1 2c c c= =  (2-4)

1 2k k k= =  (2-5)

 

 

The solution of radially unbalanced system is:  

( )
2

1 2 2
2

cos( )et t
k c
M M

ω ω φ
ωω

Θ = −
⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
(2-6)

( )
2

2 2 2
2

sin( )et t
k c
M M

ω ω φ
ωω

Θ = −
⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
(2-7)

3: P

D P

P MWhere e
M M

=
+

 (2-8)

 

The phase angle of frequency response is: 

1

2
( ) tan c

kM
M

ωφ ω
ω

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=

⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (2-9)
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The magnitude of frequency response is: 

2

2 2 2 2 4 2
( )

2
MN

c k k M M
ωω

ω ω ω
=

+ − +
 (2-10)

| |( )
Stat

AN
A

ω =  (2-11)

2 2
1 2| |A = Θ +Θ  (2-12)

3
P

Stat
MA P
M

=  (2-13)

 

The rotating position vector, directed from the center of rotation to the center of 

disk, has a lag angle (phase angle φ) relative to the forcing vector. The forms of the phase 

angle and magnitude relations are shown in Equations (2-9) and (2-10), respectively, with 

plots for several different relative damping coefficients shown in Figure 2.2. As is well 

known, the response amplitude and phase are sensitive to damping level. 
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Figure 2.2  Magnitude and phase shift of the frequency response 

 

A series of thought experiments using this 2 DOF model provides substantial 

insight into self-balancing using pendulum balancers. Figure 2.3 is a series of snapshots 

of the basic system for three operating speeds. The center of the centrifugal force field is 

the origin of the first two DOF, Θ1 and Θ2. An imaginary (almost massless) pendulum is 

also shown as a part of this discussion to illustrate the force distribution along the path 

where a real pendulum would move.  
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For each case, the combined effects of centrifugal force and the constraining force 

acting on the system will cause the position of the imaginary pendulum to change until 

these two forces become parallel. 

For subcritical operating speeds, the steady-state phase delay of the displacement 

related to the exciting force is less than 90º. In this case, the stable pendulum position 

will be between 0° and 90° as measured from the horizontal axis (as shown in Figure 

2.3.a) which exacerbates the mass imbalance of the system.  

For the resonance case, the phase delay is 90°, and the equilibrium position of the 

pendulum is 90° behind the position of the imbalance mass, as shown in Figure 2.3.b. 

Again, the effect of the pendulum is to shift the CG further from the origin though not 

quite as far as in the subcritical case. 

Figure 2.3.c shows the system operating at a supercritical running speed. The phase 

delay is between 90° and 180°. The resultant effect of the centrifugal and the constraining 

force acting on the pendulum will drive it toward a position on the opposite side of the 

disk from the mass imbalance, partially compensating the unbalancing effect.  
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Mp

Mp

Mp

Pendulum

φ φ φ
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Figure 2.3  Configurations of the frequency response and the three forces of the 

pendulum as a function of phase shift 
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3 PASSIVE PENDULUM BALANCER WITH ISOTROPIC SUSPENSION 

In this chapter, the passive pendulum balancer is investigated with isotropic 

suspension equipped with a pendulum balancing system consisting of two non-identical 

pendulums. From a practical point-of-view, basic differences in the pendulums (mass or 

length) may be incidental due to manufacturing variations or accidental damage. On the 

other hand, differences may be an intentionally designed into the system if they are 

determined to be advantageous to the operation and/or performance of the balancing 

system. 

In the following paragraphs, a model of rotor with a two balancing system with 

non-identical pendulums is developed and analyzed. The basic elements of the 

mechanical model are shown in Figure 3.1. The first two degrees of freedom (Θ1, Θ2) are 

linear displacements that describe the position of the rotor center. The third and the fourth 

are angular displacements that describe the positions of pendulum A and pendulum B, 

respectively. 
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I'
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J'
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Mp
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J'
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Figure 3.1  4 DOF model of rotor with two-non-identical pendulum balancer in a rotating 

coordinate system 
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3.1 Balancing boundaries (relative balancing areas) of a two-pendulum balancer 

with non-identical pendulums 

First, consider the balancing capability of a pendulum balancing system with non-

identical pendulums. Because the pendulums are not identical, the ability of the system to 

counter a given imbalance level depends very strongly on the relationship between the 

parameters of the individual pendulums and the initial imbalance level. A useful 

parametric description for pendulums is the first mass moment of inertia with unit: [kg-

m]. It should be noted that two non-identical pendulums may have the same first moment 

of inertia. For each of the two pendulums, A and B, and for the mass imbalance, the 

following relations define the first mass moments of inertia. 

 

A BA BAS M R=  (3-1)

B BB BBS M R=  (3-2)

3P PS M P=  (3-3)

 

The balancing boundaries of the pendulum system for a variety of SA and SB 

combinations and for a specified mass imbalance, SP, are shown in Figure 3.2. The 

shaded area ABCD with the dark line border shows the parametric values which can 

compensate for the given level of imbalance. If the parametric values are in this shaded 

area (as described by Equation (3-4)) then the pendulums are able to counterbalance the 

mass imbalance. For values outside this area, the pendulums are unable to completely 

compensate for the mass imbalance because they are either undersized or improperly 

oversized. 
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| |A B P A B PS S S and S S S+ ≥ − ≤  (3-4)

 

For parametric combinations either above line AD or below line BC in Figure 3.2, 

the pendulums are improperly oversized relative to the mass imbalance, SP. The 

magnitude of the difference between the first mass moments of the pendulums is greater 

than the mass imbalance, as described by Equation (3-5). If this is the case, there are no 

pendulum locations where the net unbalancing forces resulting from the two pendulums 

and the rotor mass imbalance can completely cancel and the rotor will remain unbalanced. 

The final level of net imbalance may be higher or lower than the initial level without a 

balancing system depending upon the relative differences between the two pendulums.  

 

| |A B PS S S− >  (3-5)

 

If the parametric combination is located in the OAB triangle (Equation (3-6)) then 

the pendulums can only partially counterbalance the mass imbalance. In this case, the 

pendulum set is undersized relative to the mass imbalance. 

 

A B PS S S+ <  (3-6)

 

A series of similar relative balancing areas for a variety of mass imbalances are 

illustrated in Figure 3.3. If the two pendulums have the same first mass moment (SA = SB), 

then the parametric configuration will be located on a line that starts from the origin with 



 16

a 45º slope, as shown in figure 6 with a dashed line. For this case, the pendulums are 

either undersized or properly oversized relative to any mass imbalance SP.  
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Figure 3.2  Balancing boundaries and relative balancing areas of two-pendulum set 
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Figure 3.3  Balancing boundaries of two-pendulum set for a series of mass imbalance SP 

 

Visualization of balancing capability: “CG circles” 

The balancing capability of a pendulum balancing system can also be characterized 

by the resulting steady-state location of the center of gravity of the entire rotor system 

(rotor, pendulums and mass imbalance). Figure 3.4 shows a relative balancing boundary 

plot which uses a series of circular symbols with a darkened area, which are referred to 

herein as CG circles where the pendulums are able to relocate the CG of the entire system. 

If these dark CG circles include the center of the rotor, then balancing can be archived for 

proper operational conditions. 

Again, for the case of same first mass moment, the CG circles are located on the 45º 

dashed line. Leaving this line the CG circles have an internal “blind spot”. Having this 
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blind spot not necessarily means the pendulums cannot do the balancing. If the chosen 

pendulum combination stays inside the ABCD area the pendulums would balance 

regardless of the existence of blind spot. Under the BC or above the AD line the blind 

spot is over the center of the rotor this means balancing cannot be archived because the 

pendulums bother each other they are insufficiently oversized. In order to achieve 

balancing the point of chosen pendulums combination has to stay in the ABCD area. This 

condition is specified by Equations (3-4). 

SA

SB

A

B

C

DD

A

C

B

 

Figure 3.4  CG circles relative to a certain radial mass imbalance SP  

O 
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In general, all of the relative-balancing-area plots shown above (Figure 3.2 - Figure 3.4) 

contain three distinct areas: 

Rectangular region ABCD 

If the parametric combination is located in this area, the pendulum system is 

capable of counterbalancing the entire mass imbalance. The system is properly 

oversized relative to the mass imbalance. 

Triangular region OAB  

If the parametric combination is located in this area, the pendulum system is not 

capable of counterbalancing the entire mass imbalance. They are undersized 

relative to the mass imbalance. 

Regions above the AD line and below the BC line 

If the parametric configuration of the pendulum system is located in either of 

these regions, the pendulums are not capable of counterbalancing the entire mass 

imbalance. They are improperly oversized relative to the mass imbalance and may 

partially reduce the level of vibration if:  

 

| |A B PS S S− <  (3-7)

 

Otherwise, such an improperly oversized system will exacerbate the synchronous 

vibration resulting in a higher amplitude of vibration than if the balancer was not present. 
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Singular Points and Stability Characteristics 

The above discussion has examined the fundamental capability of a balancing 

system with two non-identical pendulums. The actual dynamic behavior of such a system 

depends on its equilibrium points and their associated stability characteristics.  So, the 

next step in this investigation considers the occurrence of singular points and the stability 

of motion in the vicinity of such points. The governing equations of motion for a 

symmetric rotor suspension (c = c1 = c2 and k = k1 = k2) in a disk-fixed coordinate system 

can be represented as: 

 

  1, 2,3, 4i
i i i i

d T T V D Q i
dt
⎛ ⎞∂ ∂ ∂ ∂

− + + = =⎜ ⎟∂Θ ∂Θ ∂Θ ∂Θ⎝ ⎠
 (3-8)

 

Where: T  = Sum of all kinetic energies 

 V  = Sum of all potential energies 

 D  = Rayleigh dissipation function 

 iΘ  = Generalized coordinates 

 iQ  = Generalized forces 
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(3-9)

( )2 2
1 2

1
2

V k= Θ +Θ  (3-10)

( ) ( ) ( ) ( )2 2 2 2 2 2 2
1 2 1 2 2 1 1 2 3 3 4 4

1 1 1
2 2 2

D c c c c cω ω= Θ +Θ − Θ Θ −Θ Θ + Θ +Θ + Θ + Θ (3-11)

0iQ =  (3-12)
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The resulting equations of motion are: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )
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4 4 4 4 4 4 4

2 2
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 (3-13)
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The singular points are found by setting the time derivative terms in Equations (3-13) -

(3-16) to zero. This results in the following set of algebraic equations. 

 

( ) ( )( )2
1 3 4 2 1cos cos 0E S A E B E E EY M S Y S Y cY kYω ω− + + − + =  (3-17)

( ) ( )( )2
2 3 4 1 2sin sin 0E S A E B E E EY M S Y S Y cY kYω ω− + + + + =  (3-18)

( ) ( )( ) 2
1 3 2 3sin cos 0A E E E ES Y Y Y Y ω− =  (3-19)

( ) ( )( ) 2
1 4 2 4sin cos 0B E E E ES Y Y Y Y ω− =  (3-20)

 

These equations are nonlinear and are not, in general, easy to solve in a closed form. 

However, the possible solutions are of three distinct types. The different types of singular 

points and the associated stability characteristics are detailed below. 
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Type I: 

The Type I singular points represent a configuration where the rotor base motions 

(Y1E and Y2E) are zero, as illustrated in Figure 3.5.a. The pendulums settle into the 

positions where they counter the mass imbalance, MP. The resulting closed form 

solutions for Y3E and Y4E, in terms of a four quadrant inverse tangent function, are shown 

in Equations (3-21) and (3-22). Of course, this configuration only occurs when the 

pendulums are physically capable of balancing the system, which means the parametric 

configuration is in the ABCD region. When the parametric configuration is outside of 

that region, the terms under the square roots in Equations (3-21) and (3-22) takes on a 

negative value and there is no real solution. 

From the perspective of balancing effectiveness, this singular point is the most 

important of the three types. If this singular point is stable, the center of rotor is not 

vibrating because the relative locations of the pendulums and mass imbalance result in a 

balanced system.  

 

 
2 2 2

3 4arctan ,
2 2

A B P
E

P A P A

S S SABY
S S S S

⎛ ⎞− +−
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

(3-21)

2 2 2

4 4arctan , A B P
E

P B P B

S S SABY
S S S S

⎛ ⎞− −−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

(3-22)

( )( )

( )( )

: A B P A B P

A B P A B P

Where A S S S S S S

B S S S S S S

= + − + +

= − − − +
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Type II: 

The Type II singular points (as shown in (3-24) and illustrated in Figure 3.5.b) 

represent a configuration where Y4E = Y3E + 180º. If this type of singular point is stable, 

the rotor exhibits a steady state synchronous whirl, because Y1E and Y2E are not zero in 

the rotor fixed coordinate system. Please note that, although closed form symbolic 

solutions were developed for both the Type II and the Type III singular points, they are 

not shown here because of the large size of those expressions.  
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Type III: 

The Type III singular points (as shown in Equation (3-25) and illustrated in Figure 

3.5.c). In the algebraic equation system Y4E = Y3E. The Type III singular point also 

includes a steady state synchronous whirling of the rotor, but for this case the pendulums 

are overlapping one other.  

 

 

[ ]1 2 3 4: 0 0E E E EType I Y Y Y Y= =  
 

(3-23) 
 

0
1E 2E 3E 4E 3E: 0 0 180Type II Y Y Y Y Y⎡ ⎤≠ ≠ = +⎣ ⎦  

 
(3-24) 

 

[ ]1E 2E 3E 4E 3E: 0 0Type III Y Y Y Y Y≠ ≠ ≡  
 

(3-25) 
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Figure 3.5  Illustrations of the three types of singular point 



 27

In order to assess the stability characteristics of each type of singular point, the 

differential equations of motions were linearized in the neighborhood of the singular 

points.  

The resulting equations in vector-matrix form are: 

[ ] [ ] [ ]M 0Y D G Y K N Y+ + + + =  (3-26)

 

The inertia matrix is: 

[ ]

( ) ( )
( ) ( )

( ) ( )
( ) ( )

3 4

3 4

3 3

3 4

0 sin sin
0 cos cos

sin cos 0
sin cos 0

S A E B E

S A E B E

A E A E A BA

B E B E B BB

M S Y S Y
M S Y S Y

M
S Y S Y S R
S Y S Y S R

− −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

 (3-27)

: S D BA BB PWhere M M M M M= + + +  

 

The damping and the gyroscopic matrix is: 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

3 4

3 4

3 3 3

4 4 4

2 2 cos 2 cos
2 2 sin 2 sin

2 cos 2 sin 0
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 (3-28)
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The elastic and the non-conservative force matrix is:  

[ ]

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2
3 4

2 2 2
3 4

2 2
3 4 33

2 2
4 4 44

sin sin
cos cos
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S A E B E

A E A E A

B E B E B

M k c S Y S Y
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S Y S Y S KN
S Y S Y S KN

ω ω ω ω
ω ω ω ω

ω ω
ω ω

⎡ ⎤− + −
⎢ ⎥− + − −⎢ ⎥+ = ⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

(3-29)

( ) ( )
( ) ( )

33 2 3 1 3

44 2 4 1 4

: sin cos

sin cos
E E E E

E E E E

Where KN Y Y Y Y

KN Y Y Y Y

= +

= +
 

 

The Cauchy transformation of equation (3-26) results in a system of first order linear 

differential equation system represented by 8x8 coefficient matrix [A]. Where: 

 

X=
Y

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3-30)

 

X=[A]X  (3-31)

 

[ ] [ ]

[ ] [ ] [ ] [ ]1 1

0
[ ]

I
A

M K N M D G− −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
− + − +⎢ ⎥⎣ ⎦

 (3-32)
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Stability Analysis 

For the purposes of this stability investigation, all three types of singular points 

were examined separately for subcritical and supercritical operation. Because of the 

symmetric rotor suspension (k = k1 = k2), the undamped first and the second natural 

frequencies are the same, as indicated by the following expression: 

 

n
D BA BB P

k
M M M M

ω =
+ + +

 (3-33)

 

The sub and supercritical stability investigation also had to be further divided for 

the three relative balancing areas. This means for one certain singular point there is 2x3 

cases to investigate. 

Each case was also further examined separately for each of the three relative 

balancing areas. So, six cases are considered for each type of singular point. The specific 

cases that were investigated - subcritical or supercritical operation and each of the three 

relative balancing areas are shown in a series of Tables (1-3) in the following pages. The 

specific parametric combinations were chosen to encompass all three relative balancing 

areas, with the specific location of each test case marked by a dot.  The real part of the 

calculated eigenvalues as a function of pendulum damping, c34, is also shown on the right 

side of each table. 
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Stability investigation of Type I singular point 

From a balancing perspective, this is the most important singular point. If it is stable 

for a given operating condition, the synchronous vibration caused by mass imbalance will 

be eliminated. The stability characteristics of this singular point are only investigated 

inside the ABCD relative balancing area. The Type I singular point does not exist outside 

of that region. The analysis results are shown in Table 3.1. They demonstrate that the 

Type I singular point is stable for supercritical operation and unstable for subcritical 

operation. 

In addition, it is important to note that the stable position of the pendulums could be 

mirrored about axis X. This operation has no effect on the location of the common CG of 

the pendulums. Basically, Type I singular point consists of two sets that produce identical 

balancing results. 

 

Stability investigation of Type II singular point 

For the Type II singular points, the steady-state locations of the pendulums are directly 

opposite to one another. Solving the associated equations resulted in two sets of explicit 

symbolic solutions.  

Table 3.2 summarizes the stability analysis results for each of the six cases that 

were considered (as described above). This singular point is only stable for supercritical 

operation and when the parametric configuration is improperly oversized relative to the 

mass imbalance.  For the other five cases, this singular point is unstable. 
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Stability investigation of Type III singular point 

For the Type III singular points, the steady-state locations of the pendulums are 

directly on top of each other. Table 3.3 summarizes the stability analysis results for each 

of the six cases that were considered, in a fashion similar to that done for the other two 

types of singular points. This singular point is stable for subcritical operation regardless 

of the parametric configuration with regard to the relative balancing areas. In addition, it 

is also stable for supercritical operation when the parametric configuration is undersized 

relative to the mass imbalance. For the other two cases, this singular point is unstable. 
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Table 3.1  Stability table of Type I singular point 
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Further investigation has demonstrated, that for certain cases, the stable singular point is 

a function of the damping coefficient of the rotor suspension. Table 3.4 summarizes the 

stable singular points for all of the six cases and their dependence on rotor suspension 

damping. 
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Table 3.2  Stability table of Type II singular point
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Table 3.3  Stability table of Type III singular point
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Table 3.4  Stable configuration for two operational and three constructional cases 
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A close examination of the characteristics of the various singular points shows that 

for a certain level of rotor suspension damping there is a rotor speed domain where 

certain singular points become complex.  Such a result has no physical meaning and the 

singular points do not exist for those cases. 

Figure 3.6 shows a highlighted area in which the singular point is lost for properly 

oversized pendulums. For supercritical operation, the stable singular point is Type I and it 

is independent of damping. This configuration is represented by the horizontal upper 

boundary line of this area. For subcritical operation, the stable singular point is Type III 

and it is a function of damping. The Type III singular point does not exist when the 

system is operating slightly below the critical speed and the damping is relatively high. 
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Figure 3.6  Singular point loss as a function of relative damping and operational speed for 

properly oversized pendulums 

 
Figure 3.7 shows the dark area where the singular point is lost for improperly oversized 

pendulums. For supercritical operation, the stable singular point is Type II and for 

subcritical operation the stable singular point is type III. Both are a function of damping. 

The damping dependence results in a singular point loss near the critical speed for cases 

with a relatively high rotor damping. 
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Figure 3.7  Singular point loss as a function of relative damping and operational speed for 

improperly oversized pendulums 
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Table 4 shows that the stable singular points for relatively undersized pendulum 

combinations have no damping dependence. This means there is no singular point loss for 

any operational speed or rotor damping. 

In summary, for each of the six cases, there is only one stable singular point. For 

subcritical operation, only the Type II singular point is stable regardless of location 

within the relative balancing areas. When the pendulums are oversized, either properly or 

improperly, relative to the mass imbalance the singular point is a function of damping 

when the system is operating subcritically. When the pendulums are undersized and the 

rotor system is operating subcritically, there is no damping dependence. 

For supercritical operation, if the pendulums are undersized relative to the mass 

imbalance the stable singular point is damping independent. When the pendulums are 

oversized, the stable singular point is Type III and is independent of damping. Improperly 

oversized pendulums for supercritical operation have a stable Type II singular point 

which is damping dependent. 
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3.2 EXPERIMENTAL INVESTIGATION  

3.2.1 Pendulum Balancer Experimental Facility 

In order to gain detailed insight into the dynamic characteristics and performance of 

a pendulum balancing system, an experimental facility was designed, fabricated and used 

for a series of tests. The design of this test rig is such that the weights of the pendulums 

can be changed while maintaining the same lengths. 

Figure 3.8 shows a side view of the entire experimental system. The disk rotation is 

in the horizontal plane. It is supported by a base plate (5) which is mounted on the shaft 

of a DC motor (11). The DC motor is supported by a column attached to the ground with 

a flexible joint. This vertical column is supported from in the horizontal (x and y) 

directions by springs attached at their opposite ends to fixed supports.  This arrangement 

allows the disk to move in nearly horizontal plane with minimal friction. 

Figure 3.9 shows a top-view and Figure 3.10 a side view of the pendulum assembly. 

In these figures, the shaft of the pendulums (1) and the pendulums themselves (2) and (3) 

can be seen. Each pendulum is attached to an aluminum disk and supported at the center 

by two small ball bearings. The pendulums can be locked at the 0 and 180º positions by 

plastic pins (6) to the frame of the pendulum assembly (4) when the system is stopped. 

The motion of the pendulums is regulated by a damping system, which consists of two 

magnet magazine rims (9) which can accommodate up to 12 small rear earth magnets 

(10). One of the damping magazines is placed beneath the bottom pendulum and the 

other is placed above the top pendulum. Between the pendulums there is a steel magnetic 

field guide (12). The pendulums, the damping rims and the magnetic field guide comprise 

a sandwich structure. This arrangement generates eddy currents inside the aluminum disk 
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of each pendulum, producing a velocity proportional damping force that can be 

controlled by the number and the polarity of the magnets (10). The pendulum assembly 

(4) is fixed to the base plate (5) by two bolts from underneath. The gross imbalance of the 

system center of mass is set by adjusting the brass weights (7, 8), MP, and its radial 

position, P3. Weights (7) are basically identical brass nuts on threaded radial rods. When 

these weights (7) are twisted to the base (showed on Figure 3.9) and the auxiliary mass 

imbalance (8) is removed from the system the rotor is balanced because the main brass 

weights (7) are counterbalancing each other. By changing the location of one of these 

brass weights the desired mass imbalance can be added to the rotor system. 
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Figure 3.8  The side view of pendulum balancer experimental facility 
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Figure 3.9  Top view of pendulum balancer experimental facility 

 

 

 

Figure 3.10  Side view of pendulum assembly 
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Using this pendulum balancing facility, a series of experiments were conducted to 

validate the analytical results obtained in the previous section.  The details and results of 

these experiments are presented in the following sections. 

 

3.2.2 Experimental validation for non-identical pendulums 

For the first series of experimental measurements, the facility was equipped with 

two non-identical pendulums. The parameters of the pendulums were not changed. But, 

the magnitude of the rotor imbalance was adjusted by changing the radial position of the 

brass weight. In this way, the three relative balancing areas were investigated for both 

subcritical and supercritical operation. 

 

Subcritical operation  

As shown in Table 4, for subcritical operation only the Type III singular point is 

stable regardless of balancing area. For this configuration, the center of rotor will have a 

steady-state whirling motion even for zero mass imbalance. The analysis results are 

shown with a continuous line on Figure 3.11, along with the results form the 

experimental measurements. The horizontal axis is the first moment of the mass 

imbalance, SP, and the vertical axis is the vibration amplitude.  

In similar fashion, Figure 3.12 also shows the analytical and experimental results 

but the vertical axis represents the steady-state position of the pendulums. The “circle” 

symbols represent pendulum “A” which has the higher first mass moment, SA, compared 

to pendulum “B” which is represented by the “x” symbols. The experiments show that 

the pendulums stayed together regardless of the location of the system within the relative 
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balancing areas, which tended to verify quite well the previously described analysis 

results for subcritical operation. 
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Figure 3.11  Analytical and experimental results for the amplitude of vibration 

(subcritical operation) 
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Figure 3.12  Analytical and experimental results for the position of pendulums 

(subcritical operation) 

Supercritical operation 

In contrast to the situation just described for subcritical operation, it is important to 

distinguish the three relative balancing areas for supercritical operation. As summarized 

in Table 3.4, for supercritical operation each relative balancing area has a different type 

of stable singular point. Figure 3.13 and Figure 3.14 show the three relative balancing 

areas and the transition regions using five small relative balancing area plots. For both the 

analytical results and for the experimental results described, the pendulum parametric 

combination is held constant and the mass imbalance was varied. This is why the point of 

pendulum combination shown is at the same location on all of the relative balancing plots, 

while the ABCD open area changes.  

The first configuration that will be considered is for low mass imbalance, which 

results in the pendulums being improperly oversized relative to the mass imbalance. This 
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situation is represented by the leftmost section of Figure 3.13 and Figure 3.14. The 

pendulums do not have the same first mass moment, and cannot properly counterbalance 

each other. This results in a stable Type II singular point, with the rotor engaging in a 

steady-state whirling motion. As the mass imbalance is increased, the rotor vibration 

amplitude decreases until the configuration transitions to a properly oversized condition 

in which the steady-state rotor vibration ceases. 

The middle section of Figure 3.13 and Figure 3.14 shows the results for pendulum 

combinations that are properly oversized. The relative balancing area plot shows the 

point of pendulum combination on the SASB plane is inside the ABCD rectangular area. 

For this configuration, the Type I singular point is stable.  

As the mass imbalance is increased further, the pendulums do not have sufficient 

balancing capability to properly compensate and the pendulum combination is undersized 

relative to the mass imbalance. The pendulums come together opposite to the mass 

imbalance, resulting in a stable Type III singular point. The pendulum system is able to 

counterbalance only part of the mass imbalance. In this case, if the mass imbalance is 

increased further, the rotor vibration amplitude increases also. 
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Figure 3.13  Analytical and experimental results for the amplitude of vibration 

(supercritical operation) 

 

Figure 3.14  Analytical and experimental results for the position of pendulums 

(supercritical operation) 
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3.2.3 Numerical and Experimental validation 

In this chapter the result of numerical simulation and experimental measurements 

are discussed and compared. After several repeated measurement the system parameters 

were identified. These parameters were used as input parameters of simulations. 

Both in the numerical simulation and the experimental measurement the after the 

startup a proper amount of time was spent to let the transients die out. During this time 

the pendulums were locked at their base position 0° and 180°. From a balancing point of 

view, this initial position of pendulum would be neutral if the pendulums had the same 

first order moment of inertial. This part of research investigated non identical pendulums 

with different first order moment of inertia. In the numerical simulation and in the 

experiment initially the pendulum, with higher first moment of inertia was locked at 0º 

location. This initial configuration added extra imbalance to the system and resulted 

higher amplitude of vibration. The results of numerical simulation and the experimental 

measurement the logged coordinates Θ1..4 showed in time from prior pendulum release 3 

seconds.  

The comparison of numerical simulation and experiment had resulted in quite similar 

system response for pendulum release proving the success of the model development and 

system parameter identification. 
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Figure 3.15  Results of numerical simulation and experimental measurement of two-non-

identical pendulum 
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Special case: Identical pendulums 

Now, consider the special case in which the pendulums are identical. For such a 

configuration, the pendulums can counterbalance each other even if there is no mass 

imbalance in the rotor system. So, the improperly oversized condition cannot exist and 

there are only two relative balancing areas – (1) properly oversized, and (2) undersized 

relative to the mass imbalance. Figure 3.16 and Figure 3.17 show these two domains 

separated by a vertical dash line. On the leftmost side, the pendulums are properly 

oversized. For this configuration, the Type I singular point is stable and the center of the 

rotor is not vibrating. On the rightmost side, the rotor mass imbalance is beyond the 

balancing capability of the two pendulums and the system is undersized. The Type III 

singular point is stable and the center of the rotor moves on a steady-state circular path. 

The pendulums overlap each other in an angular location opposite to that of the mass 

imbalance and partially counterbalance the system. For the case of identical pendulums, 

the “wishbone” shaped section of the curve in Figure 3.17 is symmetric, as compared to 

the non-symmetric appearance of the similar region for the non-identical pendulum 

system, as shown in Figure 3.14. 

An interesting phenomenon can be observed in the responses illustrated by Figure 

3.16 and Figure 3.17. The first pendulum, indicated by an “x”, generally settles in the 

location described by the upper curve and the pendulum, indicated by an “o”, generally 

settles in the location represented by the lower curve of Figure 3.17 as the mass 

imbalance is increased. However, the two pendulums occasionally switch positions, with 

the “x” pendulum associated with the lower curve and the “o” pendulum associated with 

the upper curve. Inspection of Figure 3.16 shows this switching behavior results in an 
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abrupt change in the magnitude of the rotor vibration. This is in spite of the fact that the 

pendulums are theoretically identical and should be interchangeable. However, in 

practice the pendulums are not identical and have some small differences due to the 

fabrication process. These differences produce the observed sensitivity to the switching 

behavior described above, which is itself a result of initial conditions for the experimental 

system, which are random for every startup of the pendulums. From a balancing point of 

view, these switched positions are not equivalent because the residual mass imbalance is 

different for the two cases. However, as the mass imbalance of the system is increased to 

a sufficiently high value (around SP = 0.005[kg-m] for the experimental system) this 

sensitivity to initial conditions disappears and the settled positions of the pendulums are 

consistent and appear independent of the initial conditions. 

 

Figure 3.16  Analytical and experimental results for the amplitude of vibration 

(supercritical operation)
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Figure 3.17  Analytical and experimental results for the position of pendulums 

(supercritical operation) 

 

Numerical and Experimental validation 

In this chapter, the result of numerical simulation and experimental measurements 

are discussed and compared in similar fashion as it was showed for non-identical 
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summarized in Figure 3.18. 
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Figure 3.18  Results of numerical simulation and experimental measurement of two-

identical pendulum 
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It is important to notice the learned property of identical pendulums is also valid for 

pendulum combinations where the pendulums are not physically identical but they have a 

same first order moment of inertia. The value of this discovery is important from 

engineering point of view. 

Two pendulums can be manufactured to be quite identical, but the CG of these two 

pendulums never will move on the same plane as it is shown by Figure 3.19.a. These 

pendulums will produce a dynamic imbalance on the rotor as they are rotating around the 

shaft. Figure 3.19.b. shows another (better) possible design solution based upon the above 

results. In this case, each of the pendulums has a different length but they have the same 

first order moment of inertia around the axis of the shaft. In this design, the CG of each 

individual pendulum moves in the same plane and will not dynamically imbalance the 

system. This also provides a better force distribution on the bearing system. The 

experimental setup had similar design to the engineering design showed by Figure 3.19.a. 
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a.

b.  

Figure 3.19  Possible design solutions for pendulum balancing systems 
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3.3 Influence of Pendulum Shaft Misalignment 

It was demonstrated analytically above that a pendulum self-balancing system is 

ideally capable of exact radial balancing. However, imperfections in the fabrication and 

assembly of such a system will compromise some of the modeling assumptions that 

provided this result. One major imperfection is shaft misalignment, which can easily 

occur due to improper design, fabrication and assembly. In the following sections, the 

effect of misalignment between the center of rotation of the pendulums and rotor shaft is 

examined in detail. 

Figure 3.20 illustrates the basic configuration for a system with non-centered 

pendulums. The position of the center of the shaft is described in a disk-fixed rotating 

coordinate system. The shaft of the pendulums is shifted from the center of the rotor by 

an amount, RC, in the Θ1 direction.  
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Figure 3.20  Mathematical model of rotor system with non-centered pendulums 
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Using this model, a series of simulation studies were performed for a variety of RC. 

In order to better generalize the results, the non-dimensional parameter, ρC and α are used.  
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RC is the offset of the pendulum center of rotation and e is the imbalance eccentricity 

of imbalanced rotor system.  

 

 

Where APR is the amplitude of the steady state vibration with the pendulums free to 

rotate and APL is the amplitude of vibration with the pendulums locked at the 0º and 180º 

positions, respectively. 

Figure 3.21 and Figure 3.22 summarize the results of these simulations. The angular 

velocity of the rotor system is higher than the first critical speed of the system, which is a 

basic requirement for this type of passive balancing system to work properly. In the 

numerical simulations, the operational speed was set at almost 20 times higher than the 

first critical speed and the damping ratio for the rotor suspension was small, which 

resulted in the frequency transfer function having a magnitude close to one. 
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Figure 3.21  Simulation results showing the non-dimensionalized rotor vibration level for 

the system with pendulum shaft misalignment 

 

The upper part of Figure 3.22 shows the angular positions of the pendulums (Θ3 and 

Θ4) as a function of ρC. The lower part of this figure shows the closest relative angular 

distance between the two pendulums. Examination of this figure shows that when ρC is 

zero, the pendulums are close to the 180º position and almost overlapping one other, 

which indicates that  the radial imbalance of the system is only slightly less than the 

balancing limit of the pendulums. At ρC = 1.0, the two pendulums are the farthest apart at 

180o. For higher values of ρC, they move closer together and for ρC = 2.0, the pendulums 

converge to overlapping angular positions and stay in that configuration for further 

increases of ρC. At this ρC value, there is a break-point in the vibration level of the center 
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of the rotor (as shown in Figure 3.21).  The rate of increase for the vibration amplitude 

changes abruptly and almost settles into a plateau. 
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Figure 3.22  Simulation results showing the absolute and relative positions of the 

pendulums for the system with pendulum shaft misalignment  
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3.3.1 Experimental investigation of pendulum shaft misalignment 

Pendulum Balancer Experimental Facility 

To gain detailed insight into the dynamic characteristics and performance of a 

pendulum balancing system with misalignment shaft the same experimental facility was 

used that was described in chapter 3.2.1. The design of this test rig is such that the 

pendulum rotation center could be offset in the Θ1 direction from the center of the rotor 

by an amount RC. 

 

Implementation of shaft misalignment 

The pendulum assembly (4) is fixed to the base plate (5) by two bolts from 

underneath. When these bolts are loosened, the pendulum assembly can be shifted in the 

Θ1 direction by an amount, RC, while still maintaining the shaft of the pendulums parallel 

to the shaft to the DC motor (11). However, shifting the pendulum assembly and the 

structural parts surrounding the pendulums, itself also produces an additional mass 

imbalance, which is undesirable for the purposes of the present study. This imbalance can 

be offset by adjusting the brass weights (7) in the radial direction. The gross imbalance of 

the system center of mass is set by adjusting the brass weight (8), MP, and its radial 

position, P3. 
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Description of experimental procedure 

Using the pendulum balancing facility described previously, a series of experiments 

was conducted to validate the simulation results obtained in the previous section and to 

gain further insight into the influence of specific imperfections and non-idealities on the 

dynamic performance of such passive balancing system. The steps in the testing process 

are described below: 

 

1. Pendulums are locked at 0o and 180º respectively with plastic pins 

2. The pendulum assembly is shifted by an amount RC relative to the base plate 

3. The rotor was spun-up to the test operating speed and balanced. 

4. A specific gross mass imbalance was set and the pendulums were released 

5. The rotor was spun-up to the test operating speed and three sets of data were 

measured and recorded: 

- The magnitude of vibration [mm], measured by a laser displacement system 

- The final angular position of each pendulum Θ3 and Θ4 [deg] 

 

Figure 3.23 and Figure 3.24 summarize the results for a typical set of experiments, 

which are quite similar to the predicted behavior from the simulation results (Figure 3.21 

and Figure 3.22). Inspection of these figures shows that increasing the shift of the 

pendulums, ρC, produces a proportional increase in rotor vibration level until the 

pendulums are overlapping one other. At ρC = 2.0, there is again a  break-point, after 

which further shifting of the pendulum axis has only a slight effect on the rotor vibration, 

in a fashion similar to that observed in the numerical simulations. 
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Figure 3.23  Experimental results showing the non-dimensionalized rotor vibration level 

for the system with pendulum shaft misalignment 
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Figure 3.24  Experimental results showing the absolute and relative positions of the 

pendulums for the system with pendulum shaft misalignment  

 

Top part of Figure 3.24 shows the absolute position of the pendulums and the 

bottom part of this figure shows the relative position to each other. Again, obvious 

similarity can be found between these experimental results and the numerical simulation 

results shown in Figure 3.24. In particular, the lower graphs (showing the relative 

position of pendulums) are almost identical. The upper graphs are also similar. However, 

for values of ρC near 1.0, the experimental and simulation results differed for the absolute 

position of the pendulums. This area is marked by dashed lines on the upper part of 

Figure 3.24. Since the relative angular velocity (ω/ωn) is nearly 20 and the damping ratio 



 66

is quite low, the transfer function is close to 1. Thus, the center of rotation is very close to 

the CG of the imbalanced rotor system, which is also the location of the pendulum when 

ρC is near 1.0. This means the center of pendulums is near the source of the centrifugal 

force field. So at this location, the relative position of the pendulums will be 180º but the 

absolute position of the pendulum configuration is indeterminate from the perspective of 

balancing the system. When the suspension point of the pendulums is moved slightly 

from the CG of the unbalanced rotor, the relative distance of the pendulums slightly 

decreases and this neutral state will change. Thus, small effects that are not included in 

the simulation model but that are present in the experimental facility, such as rolling 

resistance and friction, will tend to produce a different absolute position of the pendulums 

from that predicted by the simulations. This explains the differences between the 

numerical simulations and the experimental measurements in the region where ρC is near 

1.0. 
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3.3.2 Experimental comparison of the sensitivity and consistency of ball and 

pendulum balancers 

This investigation begins by considering the effects of rolling resistance. Previous 

investigators have noted that rolling-resistance and dry friction are significant problems 

that tend to degrade the consistent performance of ball balancer systems [12], [13]. 

However, previous work has not considered the influence of such effects on pendulum 

balancers. A basic question is: Are pendulum balancers less susceptible to such effects 

(rolling resistance and dry friction) than ball balancer systems? Accordingly, in the 

following sections, a comparison is made between the performance of these two types of 

systems with the goal of providing some insight into this question. Two comparable test 

rigs are developed, one with a ball-balancer system and the other with a pendulum 

balancer system, and experimental results from each are compared. The observed results 

are discussed and some insights into the expected relative performance of such systems 

are presented. 

 

Ball Balancer Experimental Facility 

Photographs of the ball balancer test facility are shown in Figure 3.25 (side view) 

and Figure 3.26 (top view). The same central suspension was used as for the pendulum 

balancer described earlier. This suspension allows the center of the disk to move in a 

nearly horizontal plane without significant friction. 

Distinct from the pendulum balancer system, the moving elements are two steel 

balls (2, 3) guided by a cylindrical channel (4) (also a secondary channel (5) can be seen 

for later investigations) machined in an aluminum disk (1). The channels are covered by a 
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plexi-glass cover (7) for safety reasons and to support the dial plate. The rotating disk and 

the plexi-glass cover together are well balanced. The imbalance is generated by 

component (6) which is a brass block whose position in the radial direction can be 

adjusted. 

 

Ball Balancer Experimental Results 

Using this facility, a series of experiments was performed to evaluate the 

performance and consistency of this system. The experimental test procedure consisted of 

the following steps. 

First, the balance state of the rotor was set using the following procedure. The steel 

balls were locked at ±30º (as shown in Figure 3.26) and the system was balanced by 

adjusting the radial position of the brass block (6). Accordingly, the magnitude of the 

imbalance and the desired settling position of the balancing balls (when released) are 

precisely known. 

Next, the balancing balls were released and repeated startups were performed 

without changing any of the other physical properties of the system. For each startup, the 

system was started from rest and was driven until the rotor disk had reached 1500 rpm. 

The amplitude of the steady-state vibration and the position of the balancing balls were 

then recorded. 
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Figure 3.25  Side view of ball balancer experimental facility 
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Figure 3.26  Top view of ball balancer experimental facility 

 

Figure 3.27 serves to graphically summarize the results of these experiments. The 

horizontal axis shows the positions of the balancing balls. Each pair is shown by a 

different symbol and is connected by a dashed horizontal line. The vertical axis shows the 

measured amplitude of the center of disk in the Θ1 direction. The smallest measured 

vibration level was recorded when the balancing balls were locked at ±30º. The highest 

vibration level was recorded when the rotating disk was not equipped with the balancing 

balls. This level of vibration (0.80475 [mm]) would be the amplitude of the steady state 

motion of the rotating system without any passive balancing mechanism. For all of the 

other test cases, the balancing balls tended to reduce the overall vibration but they settled 
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to different locations each time with a relatively large scattering. The above experiment 

was repeated with a variety of different sizes and numbers of balls, with similar results. 
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Figure 3.27  The final positions of balancing balls and vibration level for different 

startups 

 

These results clearly indicated that there are some physical effects that prevent the 

balancing balls from settling into the proper positions and achieving more consistent 

results. This effect can be traced to the deformation of the contact point of the ball and 

channel surface due to the high normal forces generated by the centripetal acceleration 

and the resulting dry friction. For the specific experimental setup used for the present 

tests, the mass of each 15[mm] diameter chrome steel ball was 13.8[gram] moving in 

114[mm] radius and the material of the channel was alloy 6061 aluminum. This material 
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and geometrical combination resulted in an approximately 16 [µm] deformations at the 

ball contact points when the disk was rotating at 1500 rpm. 

Figure 3.28 illustrates a graphical explanation of rolling resistance. The deformation 

of both channel and ball forms a pocket at contact point A and the idealized point-to-

point contact becomes a surface as a result of high centrifugal force FCF. This elastically 

formed pocket changes the direction of constraining force, FCS, that was directed toward 

the center of rotation in the idealized model. So, the constraining force has a component 

that tends to oppose the balancing force, FB. In the ball balancing system that was 

investigated, the centrifugal force, FC, is much greater than the gravitational force, mg. 

Because of this high force ratio, the ball contact motion will primarily be rolling at point 

A and slipping at point B. Relative motion at the contacting surfaces at point B will result 

in a friction force, FF, which also tends to oppose the balancing force, FB. The action of 

these combined forces tends to stop the motion of the balancing balls before they reach 

the complete balancing position, resulting in a nonzero balance state for this system. This 

remaining mass imbalance produces synchronous vibration, which is thus the indirect 

result of rolling resistance. 
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Figure 3.28  Deformation of contact surfaces and force distribution of the balancing ball 

and channel 
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Pendulum Balancer Experimental Results 

A similar series of experiments were performed for the pendulum balancing system. 

The rotor was repeatedly started without changing any parameters of the system. The 

rotor vibration level and the position of the pendulums were captured when the system 

reached the final speed and exhibited steady-state behavior. The results of these 

experiments are summarized in Figure 3.29 and Figure 3.30, in a fashion similar to that 

which was used for the foregoing ball balancer experiments. 

 

In Figure 3.29, the amplitude of the steady-state periodic motion is also shown to 

illustrate the relationship of the different counterbalancing levels. When the pendulums 

are locked at the 0o and 180º positions respectively, the overall vibration level of the 

system is 1.75[mm]. Figure 3.30 shows a closer (zoomed) view of the settled pendulum 

positions for better insight. A comparison of the results for the ball balancer system and 

the pendulum balancer system shows that the pendulum balancing system has a much 

greater consistency. 
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Figure 3.29  The final positions of balancing pendulums and the level of vibration for 

different startups 
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Figure 3.30  The final positions of balancing pendulums and the level of vibration on the 

zoomed plot for different startups 

 

Figure 3.31 illustrates the force distribution of a pendulum balancer system and of a 

ball balancer system. FRR is the rolling resistance generated by the deformation of the 

contact surface, friction and other less significant forces. FCF is the centrifugal force. FC is 

the constraint force which guides the moving masses, pendulums or balls, in a circular 

path. FB is the balancing force. Inspection of these diagrams show that the pendulum 

balancing system has a better overall force distribution in the sense that (in general) a 

larger percentage of the forces are directed toward achieving relocation of the balancing 

mass. This serves to dramatically improve the overall sensitivity of the pendulum 

balancer system with respect to a similar ball balancer system. Thus, pendulum balancer 
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systems tend to be inherently less susceptible to inconsistencies and errors as a result of 

rolling resistance. 
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Figure 3.31  Force distribution of pendulum and ball balancer 
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4 PASSIVE PENDULUM BALANCER WITH NON-ISOTROPIC SUSPENSION 

4.1 Analytical investigation 

The previous studies have targeted isotopic suspension of rotor system where the 

spring stiffness and the damping were identical. Identical suspension results two identical 

natural frequencies. It was demonstrated that the Type I singular point of an isotropic 

pendulum system showed stability when the system was operating supercritically. 

This part of the research has investigated a rotor system equipped with a pendulum 

balancer and supported from Θ1 and Θ2 directions by non-identical springs and dampers. 

The application of two different supports results in two distinct natural frequencies. The 

analytical investigation starts with the development of the equations of motion. 

 

  1, 2,3, 4i
i i i i

d T T V D Q i
dt
⎛ ⎞∂ ∂ ∂ ∂

− + + = =⎜ ⎟∂Θ ∂Θ ∂Θ ∂Θ⎝ ⎠
 (4-1)

 

Where: T  = Sum of all kinetic energies 

 V  = Sum of all potential energies 

 D  = Rayleigh dissipation function 

 iΘ  = Generalized coordinates 

 iQ  = Generalized forces 
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The most general form of the equations of motion are: 
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In order to verify that the Type I singular point exists for the non-isotropic system 

the, time derivative terms are set to zero in Equations (4-6)-(4-9). This results in the 

following set of algebraic equations. 
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( ) ( )( ) 2
1 3 2 3sin cos 0A E E E ES Y Y Y Y ω− =  (4-12)

( ) ( )( ) 2
1 4 2 4sin cos 0B E E E ES Y Y Y Y ω− =  (4-13)

 

It is easy to prove that the Type I singular point, found earlier for the isotropic 

system, is also a singular point for the non-isotropic system, especially when the 

pendulums have the same first moment of inertia SA = SB. Further investigation showed 

Type II and Type III singular points also satisfy Equations (4-10) - (4-13) for an arbitrary 

chosen non-identical pendulum combination.  
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In order to assess the stability characteristics of the Type I singular point, the 

differential equations of motions were linearized around this point. The resulting 

equations, in a matrix vector form, are: 

[ ] ( ) ( )M 0Y D t G Y K t N Y+ + + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (4-14)

 

The inertia matrix is: 
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The time periodic damping and the gyroscopic matrix is: 
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The time periodic elastic and the non-conservative force matrix is:  
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The Cauchy transformation of Equation (4-14) results in a system of first order 

differential equations with an 8x8 coefficient matrix ( )A t⎡ ⎤⎣ ⎦ . 

( )= tX A X⎡ ⎤⎣ ⎦  (4-18)

 

Where: 

=
Y

X
Y

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4-19)

 

The coefficient matrix of the linearized differential equations with time periodic 

coefficients is: 

( )
[ ] [ ]

[ ] ( ) [ ] ( )1 1

0
[ ]

I
A t

M K t N M D t G− −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
− + − +⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (4-20)

 

4.1.1 Stability of homogeneous linear system with time periodic coefficients 

This section describes the mathematical background that was applied for the 

stability analysis. The general time periodic linear system is defined by equation (4-18) 

where the coefficient matrix [ ]( )A t  is periodic with period 0>T , that is 

[ ] [ ]( ) ( )A t T A t+ = . Of interest is the stability of the equilibrium point 0X ≡ . To solve 

the problem, we apply the Floquet theorem [28[29]. 
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The fundamental matrix of system of the linearized (4-18) is [ ]( )tΦ , if the 

[ ] [ ][ ]( )
( ) ( )

d t
A t t

dt
Φ

= Φ  (4-21)

 

matrix differential equation is satisfied. The following statements can be proved: 

- All solutions of equation (4-18) can be written in the form ( )t cΦ⎡ ⎤⎣ ⎦ , where c  is a 

constant vector. 

- There exists a fundamental matrix ( )0 tΦ⎡ ⎤⎣ ⎦, that all solutions of (4-18) come up in the 

form ( )0 0t XΦ⎡ ⎤⎣ ⎦ , where ( )0 0X X=  is the initial condition, that is ( ) [ ]0 t IΦ =⎡ ⎤⎣ ⎦ , where 

[ ]I  is the identity matrix. 

- All fundamental matrix can be written in the form ( )t C⎡ ⎤Φ⎡ ⎤⎣ ⎦⎣ ⎦, where C⎡ ⎤⎣ ⎦ is a constant 

matrix. 

- For any fundamental matrix ( )tΦ⎡ ⎤⎣ ⎦, ( )t TΦ +⎡ ⎤⎣ ⎦ is also a fundamental matrix. 

- There exists constant matrix C⎡ ⎤⎣ ⎦ for which ( ) ( )t T t C⎡ ⎤Φ + = Φ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦, where C⎡ ⎤⎣ ⎦ is called 

the principal matrix of (4-18), ( ) ( )1
C t t T

−⎡ ⎤ = Φ Φ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ . 

- The principal matrix belonging to the fundamental matrix ( )0 tΦ⎡ ⎤⎣ ⎦  assumes the 

form[ ] ( ) ( ) ( ) ( ) ( )1 1
0 0 0 0 00 0 0C t t T T

− −
= Φ Φ + = Φ Φ + = Φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

- All principal matrices are similar to each other, consequently the eigenvalues of the 

principal matrix - called the characteristic multipliers (notation: nλλλ …,, 21 ) - are 

invariant, and determined by the system. 
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- System (4-18) is asymptotically stable if and only if 1<iλ , ni …,2,1= . 

- System (4-18) is stable in the Liapunov sense if and only if 1≤iλ , ni …,2,1= , and 

if 1=iλ , than iλ  is simple in the minimal polynomial of the system. 

In general the principal matrix can not be determined in an analytic way, but there are 

several methods to approximate it [16].  

 

 

4.1.2 Floquet analysis: piecewise approximation 

If the coefficient matrix [ ]( )A t  is piecewise constant, then - by the coupling of 

solutions - the complete solution at time Tt =  is obtained in the form: 

 

[ ]( ) [ ]( ) [ ]( )1 1 1 1 0( ) exp exp expn n n nX T t A t A t A X− −= …  (4-22)

 

( )

[ ]
[ ]

[ ]

1 1

2 1 1 2

1 2 1 1 2

if 0
if

ifn n n

A t t
A t t t t

A t

A t t t t t t t T−

⎧ ≤ ≤
⎪ < ≤ +⎪=⎡ ⎤ ⎨⎣ ⎦
⎪
⎪ + + + < ≤ + + + =⎩

 

 

(4-23)

 

where [ ] [ ] [ ]1 2, , , nA A A…  are constant matrices forming the piece-wise constant 

( )A t⎡ ⎤⎣ ⎦ . 
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So the principal matrix takes the form: 

 [ ] [ ]( ) [ ]( ) [ ]( )1 1 1 1exp exp expn n n nC t A t A t A− −= …  (4-24)

 

If the coefficient matrix ( )A t⎡ ⎤⎣ ⎦  is not piecewise constant, then we can replace its 

elements by piecewise constant values in the following way: 

 

( )

[ ]

[ ]

[ ]

1 if 0
2

(2 1) if ( 1)
2

(2 1) if ( 1)
2

k

n

T TA A t
n n

T T TA t A A k k t k
n n n

T TA A n n t T
n n

⎧ ⎡ ⎤⎛ ⎞
= ≤ <⎪ ⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎣ ⎦
⎪
⎪
⎪ ⎡ ⎤⎛ ⎞⎪⎡ ⎤ = = − − ≤ <⎨ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦⎪
⎪
⎪
⎪ ⎡ ⎤⎛ ⎞

= − − ≤ <⎪ ⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎣ ⎦⎩

 

 

(4-25)

 

Matrix ( )A t⎡ ⎤⎣ ⎦  is also periodic with period T. Applying (4-24) to 

[ ] [ ] [ ]1 , , , ,k nA A A… …  matrices and nTttt n ==== …21  time intervals, we obtain an 

approximation of the principal matrix. By examining the eigenvalues, one can 

approximately determine the stability of system (4-18). The bigger n is, the more closer 

the approximation is to the actual solution. 

The Source code 4-1 represents the MatLab user written function for the analytical 

investigation of the piecewise approximation to determine stability. This function returns 

1 if the investigated system is stable. 



 88

 

Source code 4-1  MatLab code of piecewise approximation method 

 

4.1.3 Floquet analysis with numerical integration: single pass scheme 

From a balancing point of view the Type I singular point is the most important. The 

four DOF ordinary differential equation system was linearized around a calculated Type I 

singular point and, after the Cauchy transformation, the 8 DOF linear differential 

equation system, represented by ( )A t⎡ ⎤⎣ ⎦ , was written to a MatLab file for later processing. 

During the analytical investigation, this system of differential equations was numerically 

integrated from zero to the end of the principal period T eight times with different unit 

initial conditions 0iX . 

0iX  is a 1x8 column vector with only one nonzero element in the ith row. Source 

code 4-2 shows the MatLab function ode45 was applied to integrate the differential 

equation system to obtain the approximate numerical result AX  at T time. The resulted 

function OP = StableOperationPWA(N); 
global k1 k2 c1 c2 c3 c4 f 
  T = 1/f; 
  tStep = T/N; 
   
  C = expm(tStep * GetAt_at_t(tStep)); 
  for n = 2:N 
      tn = n*tStep; 
      C1 = expm(tStep * GetAt_at_t(tn)); 
      C  = C1*C; 
  end 
   
  z = eig(C); 
  MR = max(abs(z)); 
  if (MR - 1) < 1e-5 
     OP = 1; 
  else  
     OP = 0; 
  end  
return 
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eight column vector was used to generate the constant nonsingular Floquet Principal 

Matrix [ ]C . According to the Floquet theory, the solution of ( )X t  is bounded for all 

time if the eigenvalues of the Floquet Principal Matrix [ ]C  have a magnitude less then 1. 

 

 

Source code 4-2  MatLab code of  single pass scheme 

function OP = StableOperationSPS; 
global k1 k2 c1 c2 c3 c4 f  
options = odeset('AbsTol',1e-8,'RelTol',1e-8); 
w = 2*pi*f; 
[f k2 c1 c2] 
for j = 1:8 
     xo = zeros(1,8);   
     xo(j) = 1; 
     [t,xa] = ode45('LinDES0T',[0,2*pi/w],xo,options); 
     [m,n] = size(xa); 
     C(j,1:8) = y(m,1:8); 
 end 
 z = eig(C); 
 MR = max(abs(z)); 
 if (MR - 1) < 1e-8 
          OP = 1; 
      else  
          OP = 0; 
     end  
return 
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4.1.4 The result of Floquet analysis 

During the generation of the Floquet stability map, two parameters of the rotor 

system were varied. The first one is a constructional parameter, the spring stiffness in the 

Θ2 direction k2. The second is an operational parameter, the speed of the rotor ω. For 

every combination of these two parameters the time periodic coefficient matrix was 

calculated, the Floquet analysis completed, and the associated stability property was 

determined. Figure 4.1 shows the non-dimensionalized coarse Floquet stability map. The 

horizontal axis is the relative angular velocity Ω = ω/ωn1 and the vertical axis is the 

relative spring stiffness defined by: Κ = k2/k1. On this stability map the symbol x 

indicates instability and the symbol dot indicates stability. There are two stable areas 

separated by an unstable zone. According to the Floquet analysis in the unstable area, the 

Type I singular point is not stable because at least one of the coordinates of system (Θi) is 

not bounded. 

The major purpose for generating the coarse Floquet stability map is to identify the 

main stability characteristics in the parameter range of interest determined by the possible 

operational speed and spring stiffness of suspension.  
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Figure 4.1  Coarse Floquet stability map of Type I singular point 

 

A more sophisticated MatLab code was developed to specifically to target the 

border of the stable areas. Figure 4.2 shows the fine border of the stable areas with the 

two resonance lines. The vertical dotted line shows that the first natural frequency is kept 

constant when the second natural frequency, showed by a dashed line, was varied.  By 

increasing the stiffness of the second spring, the two natural frequencies separate from 

each other and the stable section between them becomes wider. When the rotor is 

operating above the second natural frequency, the analysis resulted stability for the Type 

I singular point. 
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Figure 4.2 shows specific points as indicated by x and dots. These points are the 

targets of numerical and experimental validation and they are selected near the borders 

where the stability properties switch. All of these points were investigated by 

experiments, A part of this investigation the results of the experimental measurements at 

five points, identified: A, B, C, D and E, are shown in Figure 4.10 - Figure 4.14  

combined with the result of numerical simulations for more direct comparison. 

Figure 4.2  Fine Floquet stability map of Type I singular point with the points used 

for numerical and experimental validation 
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Both the piecewise approximation and the single pass scheme analytical methods 

showed similar results, although the piecewise approximation required much less CPU 

time. 

Floquet characteristic multipliers for the Type I singular point 

The Floquet characteristic multipliers were used to determine the stability 

characteristics of specific points on the stability maps, Figure 4.1 and Figure 4.2. If all the 

characteristic multipliers of the Floquet Principal Matrix [ ]C  are inside the unit circle of 

the complex plane, the system is considered to be stable. Going along the ABCDE line in 

Figure 4.2 the stability of the Type I singular point changes. These stability changes can 

be followed directly on Figure 4.3 as a function of relative running speed, Ω. This figure 

shows one pair of Floquet characteristic multipliers. These are complex conjugates and 

they have the biggest magnitude. To generate this special plot, all the constructional 

parameters were kept constant with only the running speed was varied. These parameters 

were the same that were used along the ABCDE horizontal line in Figure 4.2. 

As the running speed was increased from zero, the characteristic multipliers 

indicated instability for point A, through the first resonance (where Ω = 1), and stepped 

inside the unit cylinder. Inside the unit cylinder they indicated the stability of the Type I 

singular point at locations B and C and then stepped outside the unit cylinder. Before the 

characteristic multiplier (longest in magnitude) reached the second resonance (around Ω 

= 3.86) they indicated the unstable property of point D by staying outside the unit 

cylinder. As the running speed was further increased, the characteristic multipliers 

stepped inside the unit cylinder again and indicated the Type I singular point is stable at 

point E. The same course can be followed on three different views of Figure 4.4. 
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Figure 4.3  The unit cylinder and the biggest Floquet characteristic multiplier as a 

function of relative running speed. 
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Figure 4.4  Three different views of unit cylinder and the Floquet characteristic 

multipliers of Type I singular point 
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4.1.5 Stability changes for different damping coefficients 

In order to explore the stability characteristic of the experimental facility, the 

system parameters were identified by several repeated measurements. These parameters 

were used to generate the Floquet stability map of the Type I singular point. This stability 

map was plotted in the plane of the relative running speed Ω and relative spring stiffness 

K. For this stability map, the damping coefficients of rotor suspension and the pendulums 

were kept constant. In order to gain better insight into the effect of damping coefficients 

on the Floquet stability map of the Type I singular point several maps were generated 

with a different damping coefficients. Figure 4.5 shows a collection of stability maps for 

different relative damping coefficients for the rotor suspension ζ12. On this plot, five 

Floquet stability maps can be seen combined with a first and the second resonance curves. 

During the generation of these plots, the damping coefficients of the pendulums were 

constant (c34 = 0.001 [Nms/rad]). Investigation of the size of stable areas, bordered by the 

different damping curves, shows that there is a certain relative damping coefficient for 

the rotor suspension where the Type I singular point shows the highest general stability 

for parameter variation. 

 

In the second phase of the investigation of stability changes for damping, the 

damping coefficients of the pendulums were varied and the damping of rotor suspension 

was hold at a constant value. Figure 4.6 shows a series of Floquet stability maps for 

different damping coefficients of the pendulums, in a similar fashion to that in which it 

was shown earlier. Examination of the generated stability maps shows that increasing the 

damping coefficient of pendulums tends to increase the size of the stable area. 
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Figure 4.5  Floquet stability map of Type I singular point for different relative damping 

coefficients of rotor suspension 
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Figure 4.6  Floquet stability map of Type I singular point for different damping 

coefficients of pendulums 
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4.2 Experimental facility with non-isotropic suspension 

In order to validate the results of the Floquet analysis, the experimental facility was 

modified and a series of experimental measurements was taken. The following section 

describes the facility. 

 

4.2.1 Description of experimental facility  

Figure 4.7 shows the side view of the experimental apparatus. The rotor assembly 

(4) is spinning in the horizontal plane attached to the base plate (5). The base plate is 

mounted on the shaft of the DC motor (11) which is supported by a column (21) attached 

to the ground with a flexible joint (22). This arrangement allows the rotor assembly to 

move in near horizontal plane.  

The vertical column is supported from the Θ1 direction by a simple spring (28). 

From the Θ2 direction, the column is supported by an adjustable spring system. The two 

main parts of this system are two rod springs (25) connected in parallel by a threaded rod 

(27). The rod springs are attached to the side columns by a moveable clamping device 

(24). By changing the position of these clamping devices the working length of the rod 

spring can be set. By moving the clamping devices closer to the top of the side columns 

(23), the working length of the rod spring will be made shorter and the resultant spring 

stiffness will be higher. In this way, the desired spring stiffness can be set in the Θ2 

direction. 

This experimental facility is equipped with three adjustable damping systems. The 

movement of the rotor can be regulated by an adjustable damper. A disk shape collar (18) 

is attached to the vertical column (21). Between the aluminum collar and the horizontal 
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frame plate (20), there is an adjustable air gap. This aluminum collar accommodates a 

maximum of 36 rare earth magnets (19). The DC motor (11) and aluminum collar (18) 

with the magnets move together. So the magnets generate eddy currents inside the 

horizontal frame plate, producing a velocity proportional damping force. This damping 

force can be adjusted by varying the number of magnets and the size of the air gap 

between the aluminum collar (18) and the horizontal frame plate (20). The damping 

coefficient of each pendulum can be adjusted in a similar fashion to that which was 

described earlier for the test facility with symmetric a suspension. 

In order to validate the stability properties of the rotor system, the position of the 

pendulums must be monitored during rotation. In order to accomplish this, the rotor 

system is equipped with a wireless data acquisition system. Optical encoder disks (14) are 

attached to each pendulums and their motion is monitored by optical sensors (15). The 

wireless electronics and their power source are placed in a plastic box (16) mounted on 

the top of the pendulum assembly. 

The pendulums are locked in position until the rotor reach the desired operational 

speed and the start-up transients die out. The two lock-release mechanisms (13) are 

mounted on the bottom plate of the pendulum assembly. The pendulums can be locked 

when the rotor is stopped and released during rotation. 

The pendulum assembly, which was used to study the APB with a symmetric 

suspension, was designed to be symmetric and balanced after proper manufacturing. In 

this way, the mass imbalance was controlled only by the brass weights (7). The optical 

readout system and the release mechanism that was added to the system made it difficult 

to keep the CG of the rotor system at the center of rotation when the brass weights are 
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located at their base location. Accordingly, two “base balancer” units (17) were clamped 

to the bottom plate of pendulum assembly. They were used to balance the rotor assembly 

when the brass weights are at their base point. After proper balancing, the level of mass 

imbalance was adjusted by only one of the brass weighs. 
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Figure 4.7  Side view of pendulum balancer experimental facility with non-isotropic 

suspension
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Figure 4.8  Top view of rotor assembly 
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Figure 4.9  Side view of rotor assembly 
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4.2.2 Description of experimental procedure 

In order to validate the results of Floquet analysis and the numerical simulation, a 

non symmetric suspension had to be provided. The second spring stiffness k2 in the Θ2 

direction was adjusted by changing the height of a clamping device without modifying 

the spring stiffness of the suspension in Θ1 direction. The mass imbalance was constant 

for every experimental measurement. After the spring stiffness’s are set, the pendulums 

were locked at their base position 0º and 180º by the lock-release mechanism. After start 

up and the desired rotational speed has been reached, a sufficient amount of time was 

allowed so that the transients die out. When a steady state vibration level was achieved, 

the pendulums were released and the following four coordinates were measured and 

recorded: 

- Linear displacements in the Θ1 and Θ2 directions provided by laser displacement 

systems. 

- Angular displacements in the Θ3, Θ4 directions provided by an on-board wireless 

data acquisition system. 
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4.3 Numerical and experimental investigation 

In order to validate the result of the Floquet analysis, a series of numerical 

simulations and experimental measurements were performed. They are discussed together 

in this chapter in order to better facilitate their comparison.  Figure 4.10 - Figure 4.14 

show the results of the numerical simulation and the experimental measurements for the 

five specific points: A, B, C, D and E shown in Figure 4.2  and Figure 4.3. 
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Figure 4.10  Numerical and experimental validation of point A 
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Figure 4.11  Numerical and experimental validation of point B 
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Figure 4.12  Numerical and experimental validation of point C 
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Figure 4.13  Numerical and experimental validation of point D 
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Figure 4.14  Numerical and experimental validation of point E 
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4.4 Summary of validation 

Detailed simulation and experimental validations have proven the existence and 

location of stable and unstable areas in the Floquet stability map of the Type I singular 

point. The results of numerical simulations and experimental measurements are nearly 

identical. This validates the mathematical model that was used for the numerical 

simulations and the properly identified system parameters. Additionally, the numerical 

simulations and the experiments have provided information about the stability properties 

of the Type III singular point. At points A and D the pendulums stayed together, which 

means that when the Type I singular point loses the stability the Type III singular point 

becomes stable. 
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5 CONCLUSIONS AND FUTURE WORK 

The dynamic behavior of a pendulum-based passive balancing system has been 

investigated. A detailed analytical and simulation study has been performed along with 

extensive experimental testing and validation. Its basic operating principles and stability 

characteristics have been described. The investigation can be divided in two main parts. 

In the first part of the research, non-identical the passive pendulum balancer was studied 

with isotropic suspension and generally sized pendulum systems. Three relative 

balancing regions - relatively undersized, properly oversized and improperly oversized - 

have been identified and described in terms of the relative parametric configurations of 

the pendulums and the rotor imbalance. Three types of singular points were also 

identified and their associated stability characteristics were investigated in detail, both 

analytically and experimentally. It was found that near resonance, for relatively high 

damping of rotor suspension, the Type II and Type III singular points lose stability.  

In addition, the influence of shaft misalignment and rolling resistance have been 

examined in some detail. It was shown that shaft misalignment can have a major effect on 

the balancing capability of this type of system. Therefore, proper alignment is critical for 

successful operation. Furthermore, it was demonstrated by repeated experiments that a 

pendulum balancing system tends to exhibit a much higher consistency of performance 

than a ball balancer for similar operating conditions. This result was explained by 

analysis and comparison of rolling resistance and the force distributions for each passive 

self-balancing system. 
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As a second part of the investigation, the effect of a non-isotropic suspension on the 

dynamic behavior of a passive pendulum balancer was investigated. Two different types 

of Floquet analysis’s resulted in coincide stability map of Type I singular point with two 

separate stable areas. These areas, especially their borders, have been validated by a 

series of numerical simulations and experimental measurements. Additionally, it was 

found in the unstable areas where the Type I singular point looses stability, the Type III 

singular point becomes stable. The pendulums stay together and the center of the rotor 

has a steady state orbital motion in the space fixed coordinate system. 

 

In order to support and accelerate the application of passive pendulum based rotor 

balancing systems and to utilize the beneficial features, additional research should be 

conducted. Specifically: 

• Effect of gravity. The application of passive pendulum balancers to horizontally 

placed rotor systems should be investigated. 

• Investigation of the optimal damping level for the pendulums should be 

conducted. 

• Exploration of those areas where the singular points are lost because of near 

resonance operation and high damping. 

• System response for time varying parameters. Identifying the optimum of system 

parameters and pendulum reaction time for a certain perturbation, induced by 

sudden change of mass imbalance. 

• Exploration of the stability properties of Type III singular point for non-isotropic 

rotor suspension. 
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APPENDIX A PARAMETERS OF EXPERIMENTAL FASCILITY 
 

Rotor Assembly 

Length of pendulums RBA and RBB: 0.054 [mm] 

Mass of pendulums MBA and MBB: 0.075 [kg] (Identical) 

Mass of pendulum MBB: 0.019, 0.037, 0.055 [kg] (Non-Identical) 

Mass of imbalance MP: 0.120 [kg] 

Mass of entire rotor assembly MD: 7 [kg] 

Damping coefficient of pendulums c34: 0.01-50 [Nsm/rad]  

Shift of pendulums suspension RC: 0-3[mm] 

 

Rotor Suspension 

 Natural frequency fn1: 3 [Hz] 

 Natural frequency fn2: 3-11.6 [Hz] 

 Relative damping coefficient ζ12: 0.001-0.2 [-] 

 

Operational Parameters 

 Final running speed: 150-1200 [RPM] 

 



 120

60
0

10
00

Ø190

Ø75

Ø200

55

180

Air gap (adjustable)

80
0

f n1

f n2

24 [V] DC Motor
UNIVERSAL 

#YZ IS170

Dimensions in [mm]

Schematic of experimental facility

 



 121

APPENDIX B MATLAB SOURCE CODES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model40.m 
(Disk fixed CS.) 

ODE01.m 

wRunUp.m 

Symbolic procedure 

Text file 
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5.1 MatLab source code: Model40.m 

 
more off 
clear all 
close all 
clc 
echo on 
 
syms Md         % Mass of Disk 
syms MBa        % Balancing mass A 
syms MBb        % Balancing Mass B 
syms Mp         % Perturbation Mass 
 
syms Rd         % Radius of Disc 
syms RBa        % Radius of length of Balancing Pendulum A 
syms RBb        % Radius of length of Balancing Pendulum A 
 
syms g          % Gravitational Acc. 
 
syms P3         % Maximum Radial perturbation variable 
syms P3t        % Radial perturbation variable as a function of time 
 
syms k1         % spring stiffness of Q1 
syms k2         % spring stiffness of Q2 
syms k3         % spring stiffness of Q3 
syms k4         % spring stiffness of Q4 
syms c1         % Viscous Damping of Q1 
syms c2         % Viscous Damping of Q2 
syms c3         % Viscous Damping of Q3 
syms c4         % Viscous Damping of Q4 
 
Y  = sym ('Y(t)'); 
Q1 = sym('Q1(t)'); 
Q2 = sym('Q2(t)'); 
Q3 = sym('Q3(t)'); 
Q4 = sym('Q4(t)'); 
 
dtY  = diff (Y,'t'); 
dtQ1 = diff (Q1,'t'); 
dtQ2 = diff (Q2,'t'); 
dtQ3 = diff (Q3,'t'); 
dtQ4 = diff (Q4,'t'); 
 
syms t 
syms w 
syms ddtQ1 
syms ddtQ2 
syms ddtQ3 
syms ddtQ4 
 
I  = [1; 0; 0] 
I0  = I; 
Ip   = I; 
Ipp   = I; 
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Ippp   = I; 
Ipppp   = I; 
 
J = [0; 1; 0] 
J0  = J; 
Jp   = J; 
Jpp   = J; 
Jppp   = J; 
Jpppp   = J; 
 
K = [0; 0; 1] 
K0  = K; 
Kp   = K; 
Kpp   = K; 
Kppp   = K; 
Kpppp   = K; 
 
T0_I  = [ cos(Y)   sin(Y)    0; 
         -sin(Y)   cos(Y)    0; 
           0         0       1]; 
      
TI_0  = [cos(Y)   -sin(Y)    0; 
         sin(Y)    cos(Y)    0; 
           0           0      1]; 
 
TI_II  = [ cos(Q3)   sin(Q3)     0; 
          -sin(Q3)   cos(Q3)     0; 
               0         0       1]; 
      
TII_I  = [cos(Q3)   -sin(Q3)    0; 
          sin(Q3)    cos(Q3)    0; 
             0         0        1]; 
        
TI_III  = [ cos(Q4)   sin(Q4)    0; 
           -sin(Q4)   cos(Q4)    0; 
               0         0       1]; 
      
TIII_I  = [cos(Q4)   -sin(Q4)    0; 
           sin(Q4)    cos(Q4)    0; 
              0         0        1]; 
   
% Inertia Matrix of disk 
ID1 = [1/4*Md*Rd^2           0           0 
          0            1/4*Md*Rd^2       0 
          0                  0       1/2*Md*Rd^2] 
 
% #### in ROTATING CS. ####      
% DISK: 
wD1  = dtY*Kp 
RD1  = Q1*Ip + Q2*Jp 
RD0  = TI_0*RD1 
 
VD1  = dtQ1*Ip + dtQ2*Jp + cross(wD1,RD1) 
VD0  = TI_0*VD1 
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% Perturbation Mass Mp 
RMp1 = (Q1+P3t)*Ip + Q2*Jp 
RMp0 = TI_0*RMp1 
 
VMp1 = dtQ1*Ip + dtQ2*Jp + cross(wD1,RMp1) 
VMp0 = TI_0*VMp1 
 
 
% Balancing masses 
Ip0    = TI_0*Ip 
Jp0    = TI_0*Jp 
Ipp0   = TI_0 * TII_I * Ipp 
Ippp0  = TI_0 * TIII_I * Ippp 
RMBa0  = Q1*Ip0 + Q2*Jp0 + RBa*Ipp0; 
RMBb0  = Q1*Ip0 + Q2*Jp0 + RBb*Ippp0; 
 
VMBa0 = DPosVecDT(RMBa0) 
VMBb0 = DPosVecDT(RMBb0) 
 
% Kinetic energies 
TDr  = 1/2*wD1.'*(ID1*wD1) 
TDt  = 1/2*Md*(VD0.'*VD0) 
TMBa = 1/2*MBa*(VMBa0.'*VMBa0) 
TMBb = 1/2*MBb*(VMBb0.'*VMBb0) 
TMp  = 1/2*Mp*(VMp0.'*VMp0) 
 
T = TDr+TDt + TMBa+TMBb + TMp 
 
V = 1/2*k1*RD0(1,1)^2 + 1/2*k2*RD0(2,1)^2                                   
%Potential Energy 
                                                 
D = 1/2*c1*VD0(1,1)^2 + 1/2*c2*VD0(2,1)^2 + 1/2*c3*dtQ3^2 + 
1/2*c4*dtQ4^2   %Dissipation Energy 
                        
T = convextoshort (T)                                                 
V = convextoshort (V) 
D = convextoshort (D) 
T = simple(T) 
V = simple(V) 
D = simple(D) 
 
%################################################################ 
%##           Lagrangian Process for 4DOF system               ## 
%################################################################ 
 
 
Calculating the Matrix Form 
dDT_dtDQ1 = dDF_dtDX(T,'dtQ1'); 
DT_DQ1    = DF_DX(T,'Q1') 
DV_DQ1    = DF_DX(V,'Q1') 
DD_DdQ1   = DF_DX(D,'dtQ1') 
E1 = dDT_dtDQ1 - DT_DQ1 + DV_DQ1 + DD_DdQ1 
if E1 ~= 0 
    E1 = simple(E1) 
end 
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EoM1 = subs (E1,'ddtQ1','0',0) 
M11 = E1-EoM1 
M11 = subs (M11,'ddtQ1','1',0); 
if M11 ~= 0 
    M11 = simple (M11); 
end 
 
EoM1 = subs (E1,'ddtQ2','0',0) 
M12 = E1-EoM1 
M12 = subs (M12,'ddtQ2','1',0); 
if M12 ~= 0 
    M12 = simple (M12); 
end 
 
EoM1 = subs (E1,'ddtQ3','0',0) 
M13 = E1-EoM1 
M13 = subs (M13,'ddtQ3','1',0); 
if M13 ~= 0 
    M13 = simple (M13); 
end 
 
EoM1 = subs (E1,'ddtQ4','0',0) 
M14 = E1-EoM1 
M14 = subs (M13,'ddtQ4','1',0); 
if M14 ~= 0 
    M14 = simple (M14); 
end 
 
F1 = subs (E1,'ddtQ1','0',0); 
F1 = subs (F1,'ddtQ2','0',0); 
F1 = subs (F1,'ddtQ3','0',0); 
F1 = subs (F1,'ddtQ4','0',0); 
F1 = simple (F1) 
 
%--------------------------------------- 
dDT_dtDQ2 = dDF_dtDX(T,'dtQ2') 
DT_DQ2    = DF_DX(T,'Q2'); 
DV_DQ2    = DF_DX(V,'Q2') 
DD_DdQ2   = DF_DX(D,'dtQ2') 
E2 = dDT_dtDQ2 - DT_DQ2 + DV_DQ2 + DD_DdQ2 
if E2 ~= 0 
    E2 = simple(E2) 
end 
 
EoM2 = subs (E2,'ddtQ1','0',0) 
M21 = E2-EoM2 
M21 = subs (M21,'ddtQ1','1',0); 
if M21 ~= 0 
    M21 = simple (M21); 
end 
 
EoM2 = subs (E2,'ddtQ2','0',0) 
M22 = E2-EoM2 
M22 = subs (M22,'ddtQ2','1',0); 
if M22 ~= 0 
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    M22 = simple (M22); 
end 
 
EoM2 = subs (E2,'ddtQ3','0',0) 
M23 = E2-EoM2 
M23 = subs (M23,'ddtQ3','1',0); 
if M23 ~= 0 
    M23 = simple (M23); 
end 
 
EoM2 = subs (E2,'ddtQ4','0',0) 
M24 = E2-EoM2 
M24 = subs (M24,'ddtQ4','1',0); 
if M24 ~= 0 
    M24 = simple (M24); 
end 
F2 = subs (E2,'ddtQ1','0',0); 
F2 = subs (F2,'ddtQ2','0',0); 
F2 = subs (F2,'ddtQ3','0',0); 
F2 = subs (F2,'ddtQ4','0',0); 
F2 = simple (F2) 
 
%--------------------------------------- 
dDT_dtDQ3 = dDF_dtDX(T,'dtQ3') 
DT_DQ3    = DF_DX(T,'Q3'); 
DV_DQ3    = DF_DX(V,'Q3') 
DD_DdQ3   = DF_DX(D,'dtQ3') 
E3 = dDT_dtDQ3 - DT_DQ3 + DV_DQ3 + DD_DdQ3 
if E3 ~= 0 
    E3 = simple(E3) 
end 
 
EoM3 = subs (E3,'ddtQ1','0',0) 
M31 = E3-EoM3 
M31 = subs (M31,'ddtQ1','1',0); 
if M31 ~= 0 
    M31 = simple (M31); 
end 
 
EoM3 = subs (E3,'ddtQ2','0',0) 
M32 = E3-EoM3 
M32 = subs (M32,'ddtQ2','1',0); 
if M32 ~= 0 
    M32 = simple (M32); 
end 
 
EoM3 = subs (E3,'ddtQ3','0',0) 
M33 = E3-EoM3 
M33 = subs (M33,'ddtQ3','1',0); 
if M33 ~= 0 
    M33 = simple (M33); 
end 
 
EoM3 = subs (E3,'ddtQ4','0',0) 
M34 = E3-EoM3 
M34 = subs (M34,'ddtQ4','1',0); 
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if M34 ~= 0 
    M34 = simple (M34); 
end 
F3 = subs (E3,'ddtQ1','0',0); 
F3 = subs (F3,'ddtQ2','0',0); 
F3 = subs (F3,'ddtQ3','0',0); 
F3 = subs (F3,'ddtQ4','0',0); 
F3 = simple (F3) 
 
%--------------------------------------- 
dDT_dtDQ4 = dDF_dtDX(T,'dtQ4') 
DT_DQ4    = DF_DX(T,'Q4'); 
DV_DQ4    = DF_DX(V,'Q4') 
DD_DdQ4   = DF_DX(D,'dtQ4') 
E4 = dDT_dtDQ4 - DT_DQ4 + DV_DQ4 + DD_DdQ4 
if E4 ~= 0 
    E4 = simple(E4) 
end 
 
EoM4 = subs (E4,'ddtQ1','0',0) 
M41 = E4-EoM4 
M41 = subs (M41,'ddtQ1','1',0); 
if M41 ~= 0 
    M41 = simple (M41); 
end 
 
EoM4 = subs (E4,'ddtQ2','0',0) 
M42 = E4-EoM4 
M42 = subs (M42,'ddtQ2','1',0); 
if M42 ~= 0 
    M42 = simple (M42); 
end 
 
EoM4 = subs (E4,'ddtQ3','0',0) 
M43 = E4-EoM4 
M43 = subs (M43,'ddtQ3','1',0); 
if M43 ~= 0 
    M43 = simple (M43); 
end 
 
EoM4 = subs (E4,'ddtQ4','0',0) 
M44 = E4-EoM4 
M44 = subs (M44,'ddtQ4','1',0); 
if M44 ~= 0 
    M44 = simple (M44); 
end 
F4 = subs (E4,'ddtQ1','0',0); 
F4 = subs (F4,'ddtQ2','0',0); 
F4 = subs (F4,'ddtQ3','0',0); 
F4 = subs (F4,'ddtQ4','0',0); 
F4 = simple (F4) 
 
 
Orig_E1 = E1 
Orig_E2 = E2 
Orig_E3 = E3 
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Orig_E4 = E4 
save Es 
 
 
M = [M11 M12 M13 M14; 
     M21 M22 M23 M24; 
     M31 M32 M33 M34; 
     M41 M42 M43 M44] 
 
ddtX  = [ddtQ1; 
         ddtQ2; 
         ddtQ3; 
         ddtQ4]; 
      
A1 = inv(M) 
F = [F1; 
     F2; 
     F3; 
     F4] 
 
ddtQ = -inv(M)*F 
 
Orig_F2 = ddtQ(1) 
Orig_F4 = ddtQ(2) 
Orig_F6 = ddtQ(3) 
Orig_F8 = ddtQ(4) 
 
OdeM = fopen ('SF.m','w') 
strA = strcat ('Orig_F2 = ',char(Orig_F2),';\n') 
fprintf (OdeM,strA) 
strA = strcat ('Orig_F4 = ',char(Orig_F4),';\n') 
fprintf (OdeM,strA) 
strA = strcat ('Orig_F6 = ',char(Orig_F6),';\n') 
fprintf (OdeM,strA) 
strA = strcat ('Orig_F8 = ',char(Orig_F8),';\n') 
fprintf (OdeM,strA) 
fclose (OdeM) 
 
 
%############################################### Writing the ODE file 
E1 = Orig_E1 
E2 = Orig_E2 
E3 = Orig_E3 
E4 = Orig_E4 
 
E1 = subs  (E1,'dtY',  'w',0); 
E1 = subs  (E1,'ddtY', 'dtw',0); 
E1 = solve (E1,'ddtQ1') 
E1 = subs  (E1,'Q1',    'q(1)',0); 
E1 = subs  (E1,'dtQ1',  'q(2)',0); 
E1 = subs  (E1,'ddtQ1', 'dq(2)',0); 
E1 = subs  (E1,'Q2',    'q(3)',0); 
E1 = subs  (E1,'dtQ2',  'q(4)',0); 
E1 = subs  (E1,'ddtQ2', 'dq(4)',0); 
E1 = subs  (E1,'Q3',    'q(5)',0); 
E1 = subs  (E1,'dtQ3',  'q(6)',0); 
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E1 = subs  (E1,'ddtQ3', 'dq(6)',0); 
E1 = subs  (E1,'Q4',    'q(7)',0); 
E1 = subs  (E1,'dtQ4',  'q(8)',0); 
E1 = subs  (E1,'ddtQ4', 'dq(8)',0); 
 
E2 = subs  (E2,'dtY',  'w',0); 
E2 = subs  (E2,'ddtY', 'dtw',0); 
E2 = solve (E2,'ddtQ2') 
E2 = subs  (E2,'Q1',    'q(1)',0); 
E2 = subs  (E2,'dtQ1',  'q(2)',0); 
E2 = subs  (E2,'ddtQ1', 'dq(2)',0); 
E2 = subs  (E2,'Q2',    'q(3)',0); 
E2 = subs  (E2,'dtQ2',  'q(4)',0); 
E2 = subs  (E2,'ddtQ2', 'dq(4)',0); 
E2 = subs  (E2,'Q3',    'q(5)',0); 
E2 = subs  (E2,'dtQ3',  'q(6)',0); 
E2 = subs  (E2,'ddtQ3', 'dq(6)',0); 
E2 = subs  (E2,'Q4',    'q(7)',0); 
E2 = subs  (E2,'dtQ4',  'q(8)',0); 
E2 = subs  (E2,'ddtQ4', 'dq(8)',0); 
 
E3 = subs  (E3,'dtY',  'w',0); 
E3 = subs  (E3,'ddtY', 'dtw',0); 
E3 = solve (E3,'ddtQ3') 
E3 = subs  (E3,'Q1',    'q(1)',0); 
E3 = subs  (E3,'dtQ1',  'q(2)',0); 
E3 = subs  (E3,'ddtQ1', 'dq(2)',0); 
E3 = subs  (E3,'Q2',    'q(3)',0); 
E3 = subs  (E3,'dtQ2',  'q(4)',0); 
E3 = subs  (E3,'ddtQ2', 'dq(4)',0); 
E3 = subs  (E3,'Q3',    'q(5)',0); 
E3 = subs  (E3,'dtQ3',  'q(6)',0); 
E3 = subs  (E3,'ddtQ3', 'dq(6)',0); 
E3 = subs  (E3,'Q4',    'q(7)',0); 
E3 = subs  (E3,'dtQ4',  'q(8)',0); 
E3 = subs  (E3,'ddtQ4', 'dq(8)',0); 
 
E4 = subs  (E4,'dtY',  'w',0); 
E4 = subs  (E4,'ddtY', 'dtw',0); 
E4 = solve (E4,'ddtQ4') 
E4 = subs  (E4,'Q1',    'q(1)',0); 
E4 = subs  (E4,'dtQ1',  'q(2)',0); 
E4 = subs  (E4,'ddtQ1', 'dq(2)',0); 
E4 = subs  (E4,'Q2',    'q(3)',0); 
E4 = subs  (E4,'dtQ2',  'q(4)',0); 
E4 = subs  (E4,'ddtQ2', 'dq(4)',0); 
E4 = subs  (E4,'Q3',    'q(5)',0); 
E4 = subs  (E4,'dtQ3',  'q(6)',0); 
E4 = subs  (E4,'ddtQ3', 'dq(6)',0); 
E4 = subs  (E4,'Q4',    'q(7)',0); 
E4 = subs  (E4,'dtQ4',  'q(8)',0); 
E4 = subs  (E4,'ddtQ4', 'dq(8)',0); 
 
OdeM = fopen ('DES01.m','w') 
fprintf (OdeM,'function dq=dem23(t,q)\n'); 
fprintf (OdeM,'dq=zeros(8,1);\n'); 
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fprintf (OdeM,'global g Md MBa MBb Mp RBa RBb P3 P3t tc k1 k2 k3 k4 c1 
c2 c3 c4 wf hr RUF Dn phr ts tRelease\n'); 
 
fprintf (OdeM,'%#############\n'); 
fprintf (OdeM,'w =  wf;\n'); 
fprintf (OdeM,'Y =  w*t;\n'); 
fprintf (OdeM,'dtw = 0;\n'); 
fprintf (OdeM,'%############\n'); 
     
fprintf (OdeM,'P3t = P3;\n'); 
fprintf (OdeM,'if round(Dn/500)*500 == Dn\n'); 
fprintf (OdeM,'[t Y w dtw] \n'); 
fprintf (OdeM,'end\n'); 
 
fprintf (OdeM,'if t <= tRelease\n'); 
fprintf (OdeM,'   q(5)  = 0;\n'); 
fprintf (OdeM,'   q(7)  = pi;\n'); 
fprintf (OdeM,'end\n'); 
 
 
fprintf (OdeM,'dq(1) = q(2);\n') 
strA = strcat ('dq(2) = ',char(E1),';\n') 
fprintf (OdeM,strA) 
 
fprintf (OdeM,'dq(3) = q(4);\n') 
strA = strcat ('dq(4) = ',char(E2),';\n') 
fprintf (OdeM,strA) 
 
fprintf (OdeM,'dq(5) = q(6);\n') 
strA = strcat ('dq(6) = ',char(E3),';\n') 
fprintf (OdeM,strA) 
 
fprintf (OdeM,'dq(7) = q(8);\n') 
strA = strcat ('dq(8) = ',char(E4),';\n') 
fprintf (OdeM,strA) 
 
fprintf (OdeM,'if t <= tRelease;\n') 
    fprintf (OdeM,'q(5)  = 0;\n') 
    fprintf (OdeM,'dq(5) = 0;\n') 
    fprintf (OdeM,'q(6)  = 0;\n') 
    fprintf (OdeM,'q(7)  = pi;\n') 
    fprintf (OdeM,'dq(7) = 0;\n') 
    fprintf (OdeM,'q(8)  = 0;\n') 
fprintf (OdeM,'end\n') 
 
fprintf (OdeM,'RUF(Dn,1) = t;\n') 
fprintf (OdeM,'RUF(Dn,2) = Y;\n') 
fprintf (OdeM,'RUF(Dn,3) = w;\n') 
fprintf (OdeM,'RUF(Dn,4) = dtw;\n') 
fprintf (OdeM,'RUF(Dn,5) = P3t;\n') 
fprintf (OdeM,'Dn = Dn + 1;\n') 
fprintf (OdeM,'return;\n') 
fclose (OdeM) 
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5.2 MatLab source code: ODE01.m 

function dq = dem23(t,q) 
dq=zeros(8,1); 
global g Md MBa MBb Mp RBa RBb P3 P3t tc k1 k2 k3 k4 c1 c2 c3 c4 wf hr 
RUF Dn phr ts tRelease 
w =  wf; 
Y =  w*t; 
dtw = 0; 
P3t = P3; 
if round(Dn/500)*500 == Dn 
[t Y w dtw]  
end 
if t <= tRelease 
   q(5)  = 0; 
   q(7)  = pi; 
end 
dq(1) = q(2); 
dq(2) 
=(MBa*w^2*(q(1))+MBb*w^2*(q(1))+Mp*w^2*(q(1))+Md*w^2*(q(1))+Mp*w^2*P3t+
MBb*dtw*(q(3))+Md*dtw*(q(3))+Mp*dtw*(q(3))+MBa*dtw*(q(3))-
c2*sin(Y)*cos(Y)*w*(q(1))+c1*cos(Y)*sin(Y)*w*(q(1))+MBb*RBb*dtw*sin((q(
7)))+MBa*RBa*dtw*sin((q(5)))+2*Mp*w*(q(4))+2*MBa*w*(q(4))+2*MBb*w*(q(4)
)+2*Md*w*(q(4))-(q(2))*c2*sin(Y)^2-
k2*sin(Y)*cos(Y)*(q(3))+k1*cos(Y)*sin(Y)*(q(3))+c1*cos(Y)*sin(Y)*(q(4))
-
c2*sin(Y)*cos(Y)*(q(4))+MBb*RBb*cos((q(7)))*(q(8))^2+MBa*RBa*cos((q(5))
)*(q(6))^2-(q(2))*c1*cos(Y)^2-k1*cos(Y)^2*(q(1))-
k2*sin(Y)^2*(q(1))+MBb*RBb*sin((q(7)))*(dq(8))+MBa*RBa*sin((q(5)))*(dq(
6))+2*MBb*RBb*w*cos((q(7)))*(q(8))+2*MBa*RBa*w*cos((q(5)))*(q(6))+MBa*w
^2*RBa*cos((q(5)))+MBb*w^2*RBb*cos((q(7)))+c1*cos(Y)^2*w*(q(3))+c2*sin(
Y)^2*w*(q(3)))/(MBb+Md+Mp+MBa); 
dq(3) = q(4); 
dq(4) =(k1*sin(Y)*cos(Y)*(q(1))-MBa*RBa*cos((q(5)))*(dq(6))-
MBb*RBb*cos((q(7)))*(dq(8))+MBa*w^2*RBa*sin((q(5)))+MBb*w^2*RBb*sin((q(
7)))-c2*cos(Y)^2*w*(q(1))-c1*sin(Y)^2*w*(q(1))-
k2*cos(Y)*sin(Y)*(q(1))+(q(2))*c1*sin(Y)*cos(Y)-
(q(2))*c2*cos(Y)*sin(Y)+MBa*RBa*sin((q(5)))*(q(6))^2+MBb*RBb*sin((q(7))
)*(q(8))^2+2*MBb*RBb*w*sin((q(7)))*(q(8))-c1*sin(Y)^2*(q(4))-
k2*cos(Y)^2*(q(3))-c2*cos(Y)^2*(q(4))-
c1*sin(Y)*cos(Y)*w*(q(3))+c2*cos(Y)*sin(Y)*w*(q(3))+2*MBa*RBa*w*sin((q(
5)))*(q(6))-2*Mp*w*(q(2))-MBb*dtw*(q(1))-Mp*dtw*P3t-Md*dtw*(q(1))-
Mp*dtw*(q(1))-MBa*dtw*(q(1))-MBb*RBb*dtw*cos((q(7)))-
MBa*RBa*dtw*cos((q(5)))-
k1*sin(Y)^2*(q(3))+Md*w^2*(q(3))+Mp*w^2*(q(3))+MBb*w^2*(q(3))+MBa*w^2*(
q(3))-2*MBa*w*(q(2))-2*Md*w*(q(2))-2*MBb*w*(q(2)))/(MBb+Md+Mp+MBa); 
dq(5) = q(6); 
dq(6) =-
(2*MBa*w*(q(2))*RBa*cos((q(5)))+MBa*RBa*dtw*(q(3))*sin((q(5)))+2*MBa*w*
(q(4))*RBa*sin((q(5)))+MBa*RBa*dtw*(q(1))*cos((q(5)))-
MBa*w^2*(q(3))*RBa*cos((q(5)))+MBa*RBa*(dq(4))*cos((q(5)))+MBa*RBa^2*dt
w-
MBa*RBa*sin((q(5)))*(dq(2))+MBa*w^2*(q(1))*RBa*sin((q(5)))+c3*(q(6)))/M
Ba/RBa^2; 
dq(7) = q(8); 
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dq(8) =(-MBb*dtw*(q(1))*RBb*cos((q(7)))-MBb*(dq(4))*RBb*cos((q(7)))-
MBb*dtw*(q(3))*RBb*sin((q(7)))-2*MBb*w*(q(4))*RBb*sin((q(7)))-
MBb*w^2*(q(1))*RBb*sin((q(7)))-2*MBb*w*(q(2))*RBb*cos((q(7)))-
MBb*RBb^2*dtw+MBb*RBb*sin((q(7)))*(dq(2))+MBb*w^2*(q(3))*RBb*cos((q(7))
)-c4*(q(8)))/MBb/RBb^2; 
if t <= tRelease; 
    q(5)  = 0; 
    dq(5) = 0; 
    q(6)  = 0; 
    q(7)  = pi; 
    dq(7) = 0; 
    q(8)  = 0; 
end 
RUF(Dn,1) = t; 
RUF(Dn,2) = Y; 
RUF(Dn,3) = w; 
RUF(Dn,4) = dtw; 
RUF(Dn,5) = P3t; 
Dn = Dn + 1; 
return; 
 
 
5.3 MatLab source code: wRunUp.m 

close all 
clear all 
clc 
echo on 
 
format short 
global P g Md MBa MBb Mp MPa MPb Rd RBa RBb P3 k1 k2 k3 k4 c1 c2 c3 c4 
wf wb RUF Dn phr ts hr tRelease 
 
ICQ   = [1e-16    1e-16     1e-16    pi+0.001] 
ICdtQ = [1e-12    1e-12     1e-12    1e-12] 
 
Md  =  7                            %[kg] 
MBa = 0.075;                        %[kg] 
MBb = 0.075;                        %[kg] 
Mp  = 2*120.9/1000;                 %[kg], Part of Md 
 
Rd   = 0.1;                         %[m] 
RBa  = 0.054;                       %[m] 
RBb  = 0.054;                       %[m] 
n    = 40                           % # of turns 
P3   = n*25.4/48 /1000;             % Perturbation [m] 
 
k1 = 500; 
k2 = 500; 
k3 = 0; 
k4 = 0; 
 
c1 = 10; 
c2 = 10; 
c3 = 0.0005; 
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c4 = 0.0005; 
 
wf = 20*pi*2;                       % [Hz] Running speed 
 
t0 = 0.01 
tRelease = 12 
t1 = tRelease + 10; 
 
AbsTol = 1e-6; 
RelTol = 1e-6; 
Dn = 1; 
option  = odeset('AbsTol',AbsTol, 'RelTol', RelTol) 
[t, xa] = ode45 ('DES01', [t0 t1], [ICQ(1),ICdtQ(1),   ICQ(2),ICdtQ(2),   
ICQ(3),ICdtQ(3),   ICQ(4),ICdtQ(4)],option); 
 
 
TimeShift = -tRelease+3; 
 
t0 = t; 
xa0 = xa; 
i = 1; 
echo off; 
while t(i) < abs(TimeShift) 
    i = i + 1; 
end 
N = size(t0); 
N = N(1,1); 
L = N-i; 
t = t0(i:i+L)+TimeShift; 
xa = xa0(i:i+L,1:8); 
 
 
subplot (3,1,1); 
plot (t,xa(:,1)*1000,'r') 
SetPlotText ('Time[s]','\Theta_1 [mm]','Numerical Simulation',14); 
axis ([0 10 -1 1]); 
 
subplot (3,1,2); 
plot (t,xa(:,3)*1000,'r') 
SetPlotText ('Time[s]','\Theta_2 [mm]','',14); 
axis ([0 10 -1 1]); 
 
subplot (3,1,3); 
plot (t,-xa(:,5)*180/pi,'r','LineWidth',2) 
hold on 
plot (t,360-xa(:,7)*180/pi,'r:','LineWidth',2) 
SetPlotText ('Time[s]','\Theta_3, \Theta_4 [deg]','',14); 
legend ('Pendulum A','Pendulum B'); 
box on 
axis ([0 10 0 270]); 
clc 


