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Abstract 

 

 

This study is undertaken to build an appropriate mechanical model for the analysis of 

mechanical properties of forming fabrics by incorporation of multi-scale modeling concept 

comprising micro-mechanical model, meso-mechanical model and macro-mechanical model. 

The fabric is analyzed at three different scales: yarn, unit cell and fabric sheet. The 

micro-mechanical model is to obtain the overall properties of yarn structure. The 

meso-mechanical model concentrates on the mechanical analysis of the unit cell of the fabric 

with the periodic boundary conditions by inputting yarns’ properties from the 

micro-mechanical model. The macro-mechanical model is to get the overall properties of 

desired fabric structure by extracting the results from meso-mechanical model. In the first 

part, six single-layer woven fabric samples, five two-layer fabric samples are analyzed. In the 

second part, a tubular braiding fabric structure made of helical auxetic yarns is manufactured 

and its properties are investigated by a similar multi-scale model. The models for both parts 

are validated by the comparison of simulation data and experimental data, which had good 

agreement. Detailed stress-strain field throughout the entire unit cell is determined, which can 

be further used in the analysis of fatigue and fracture properties. 
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Chapter 1 Introduction 

Computer aided designs for conventional engineering materials such as metal and 

concrete which are widely used in bridges, airplanes and other structures are well established 

to work out the effects of all the likely forces and aerodynamic properties using computer 

simulations. In contrast, interlaced fibrous structures and products are still produced largely 

on the basis of experience, intuition and trial-and-error due to their unique properties of 

strength, flexibility, inhomogeneous structure and non-linearity. In recent years, the 

development of new materials and new manufacturing techniques allowed a variety of 

interlaced fibrous structures to penetrate into high performance areas, from medical to civil 

engineering, from automotive to military, from space to undersea applications. On the one 

hand, these ever-expanding new application areas require interlaced structures to be 

engineered very carefully and precisely since their failure could be devastating. On the other 

hand, appropriate computer aided design for interlaced fibrous structure and fibrous 

reinforced composites could maximally utilize overall properties of structures to result in 

high quality to cost ratio product tailored for very specialized purposes. Such demands 

considerably stimulate the development of geometric and mechanical modeling of fibrous 

materials.  

Many former researches built analytical models to predict mechanical properties of 

fibrous materials based on assumptions and simplifications. The main drawbacks of 

analytical models are that most of them are quite complicated, time consuming and difficult 

to control the balance between necessary simplifications and accuracy. Application of finite 

element method emerges with rapid development of computer hardware and CAD programs 



2 

and it is gradually accepted as the first priority method to analyze properties of fibrous 

materials due to its advantages of accuracy, time saving and presentation of detailed stress 

distribution. After finite element analysis based on numerical method is well established and 

developed, a multi-level modeling concept by means of finite element method was also 

proposed and applied into all sorts of traditional materials analysis. Multi-scale concept 

divides materials into different scale. At each scale, properties data from previous scale is 

considered as inputs to generate overall properties of a larger unit by finite element method 

and the latter is then transferred into next scale as inputs to finally get the overall properties 

of the analyzed object. This concept could be suitably applied for mechanical analysis of 

interlaced fibrous structure. 

The fundamental theory of this multi-level model is that the fabric is considered to be 

made of many identical repeating units which have exactly the same properties. Each 

repeating unit comprises continuous and elastic yarns interlaced at a certain structure. The 

micro scale stage is to calculate the overall properties of each yarn or obtained directly from 

mechanical tests if the yarn structure is as simple as monofilament.  

The overall properties of one single yarn are approached by the homogenization process 

which connects the micro and meso-modeling. The meso scale stage is to calculate overall 

properties of repeating unit from yarn properties data of micro-stage. Finally the 

macro-mechanical modeling stage based on the generation of simplified structure predicts the 

mechanical performance of extended fabric pieces. The macro-mechanical data are collected 

from the homogenization process which transfers property of unit cell into property of overall 

fabric with desired geometry.   
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The first part of this research is to propose a multi-level model consisting of 

micro-mechanical model, meso-mechanical model and macro-mechanical model to 

efficiently and effectively analyze tensile properties of interlaced fibrous structure by finite 

element method. The multi-level model is constructed in detail so that it could contain most 

possible aspects from properties of yarn assemble to contact frictional coefficient which 

could affect the property of final product. Six single-layer woven fabrics and five different 

two-layer woven fabrics were investigated. Micro-mechanical properties and 3D geometric 

information both serve as input data for meso-mechanical modeling of repeating unit of each 

sample. Micro-mechanical properties including modulus, Poisson’s ratio and friction 

coefficient are obtained from test of each yarn. 3D geometric information of one repeating 

unit containing cross section, spacing and crimp height are directly measured using 

microscope with CellSens Standard 1.8.1 software (Olympus Corporation). A generative 

model is used in this research to accurately generate 3D solid geometry of repeating unit of 

each sample. The meso-mechanical model containing material definition, contact 

specification and periodic boundary conditions is built in Static Structure module of 

Ansysworkbench. Finally, homogenization process of stress-strain data obtained from 

meso-mechanical model extrapolates the macroscopic tensile properties of tested fabrics 

which are compared with experimental data. Tensile properties of samples in both warp and 

weft directions were simulated by this model and then compared with experimental data.  

The second part of the research introduces a novel auxetic tubular fabric structure by 

biaxial braiding and its mechanical analysis by FEM. 

Considerable research about auxetic materials has been undertaken due to their counter 
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intuitive mechanical behavior or negative Poisson’s ratio. In other words, auxetic materials 

are expanding in transverse direction while under longitudinal tension. Auxetic materials 

exhibit various potential applications because the negative Poisson’s ratio could improve 

fundamental mechanical properties such as shear modulus, indentation resistance and 

toughness. The fundamental mechanism of auxetic behavior ranges from the rotation of the 

bonds at the molecular level to a honey comb structure at a macroscopic level. Among all 

auxetic materials, the synthesized auxetics are highly promising because it is possible to 

carefully tailor mechanical properties and control the structure of synthesized auxetics for 

specialized applications or purposes. Auxetic fibers also provide a new route to fabricate 

large textile structures or composites through textile methods such as weaving, knitting and 

braiding. Under such circumstance, a helical auxetic yarn is proposed by Hook et al. through 

winding a high modulus yarn helically onto a low modulus yarn [1]. In this research, we use 

the helical auxetic yarns as basis to fabricate a biaxial tubular structure and study its 

mechanical properties and variable permeability attributed to helical auxetic yarns. 

The whole mechanical model was established on Ansysworkbench 14.0 which is a 

commercial finite element analysis program. The generative model as the 3D modeling 

technique was implemented in the modeling module of Ansys.   

The literature review gives an introduction of characteristics of mechanical behavior of 

fabric structures under certain deformations and applications of analytical models and 

numerical models in mechanical analysis of fabric structures. It is followed by the 

descriptions of the model. Then results and discussion follow. Finally, conclusions and 

suggestions are presented. 
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Chapter 2 Mechanical Model of Fabric Structure 

2.1 Literature Review 

2.1.1 Fibrous Structure and Mechanical Behavior 

Usually, a textile fabric is made of interlaced yarns which consist of elementary 

units—fibers. Textile structures could be classified according to the manufacturing process 

such as knitted, woven, braided and non-woven. The major difficulty of computational 

modeling of textiles is probably the geometrical complexity of the textiles as well as the 

manufacture pattern. For instance, a plain woven fabric structure could have complicated 

deformation even under simple loading. A tensile deformation of a spun yarn could result 

from the combination of bending, tensile, compression and even frictional sliding of the 

constituent arranged fibers. Furthermore, contact phenomenon such as bonding or frictional 

contact should also be taken into account as a necessary parameter in the mechanical model. 

The determination of contact region in the fabric and implementation of contact algorithm 

undoubtedly increase the complexity of the whole model. 

Therefore, many mechanical models or analysis of fabric structures are based on some 

assumptions and simplifications so that the model is accurate and not costly. For example, the 

yarn is usually assumed to be an elastic homogeneous material. The elastic property of 

homogeneous yarn could be either linear or non-linear. A non-linear elastic behavior could 

come from synergy of mechanical behavior of assemble of micro fibers if the yarn is 

multifilament. If the yarn is monofilament made of one certain polymer, the yarn would 

probably exhibit a viscoelastic behavior which is also a non-linear behavior.  
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As it is mentioned previously, a suitable contact model at where yarns contact with each 

other must be established in order to effectively analyze mechanics of fabric structure. 

Actually, the friction effect supports the stability of the whole structure for some certain 

multifilament fabrics. Frictional contact has great influence on stress and strain distribution in 

a fabric subjected to deformation because force would be transferred from one yarn to the 

contacting adjacent yarn.  

2.1.2 Large Deflection and Nonlinearity 

The complexity of the mechanical behavior of fabric structure could also introduce the 

large deflection and non-linearity. The relative large deformation is due to the flexibility of 

yarns and geometries structure of fabric. The yarn is a flexible material which allows large 

deformation before breakage because of low value of packing factor (the ratio of fibers 

volume to the total volume of the yarn). The air space left between fibers gives high mobility 

to fibers resulting high deformability and could be removed by exterior loading. This could 

also happen in the overall fabric since the fabric structure has air space between yarns [2]. 

The non-linearity behavior of fabric could be explained by synthesis of straightening of bent 

yarns and their subsequent elongation [3]. The straightening of yarns usually occurs at the 

initial stage of loading. Longitudinal elongation of yarns appears with the increase of load. 

Therefore, the stress-strain curve of a textile structure subjected to tensile deformation is 

nonlinear. 

2.1.3 Deformation in Textile Structure 

As discussed in section 2.1.1, even a simple loading condition applied onto a piece of 

fabric could lead to a complex deformation of straightening, bending, compression and 
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sliding of yarns in the meso-scale stage and respective deformations of fibers in micro-scale 

stage.  

In addition, huge deformation could occur through fibers in micro-mechanical scale 

when fabric is subjected to small deformation of macro-mechanical scale. Therefore, a simple 

deformation behavior happened in macro-mechanical behavior corresponds to a complex 

deformation in micro-mechanical scale. According to the macro-mechanical scale, 

deformation can be classified into simple deformations which are tensile, shear, bending and 

compression of the fabric sheet and complex deformation which is mainly the drape 

deformation. The drape property is very important characteristic which determines the 

formability of fabric especially when fabrics are used as reinforcement in composites. This 

research mainly focuses on the tensile properties of woven fabric structure. 

2.1.4 Background 

Composite materials exhibit a variety of advantages over conventional materials and 

have been under rapid development in terms of their design, manufacture and mathematical 

modeling. Under such circumstances, polymer materials are fabricated to form a tailored 

structure for a specialized purpose through textile manufacturing methods such as multi-layer 

weaving, multi-axial braiding and knitting due to their good quality to cost ratio [4]. The 

prediction of final product properties before the product is actually fabricated is extremely 

important for design and manufacture process in order to produce high quality to cost ratio 

product [5-6]. However, mathematical modeling of such fabric reinforced composites or 

novel fabric structures is complicated due to the complex structure. Fibrous materials present 

very different properties compared to other engineering materials because of their unique 
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properties such as strength and flexibility, inhomogeneous structure and visco-elasticity. 

Besides, the complicated crossover structure in fabric is also difficult to model [7]. The 

prerequisite of conducting a finite element analysis is to build an accurate geometric model of 

the object. A generative model which could generate all sorts of 3D fibrous structures has 

been proposed [8-9]. 

2.1.5 Classification of Mechanical Models of Fibrous Structures 

Analysis of mechanical properties of textile structures has been done during the last 

decades. Generally speaking, the models can be classified by the scale of the model and the 

modeling method used. According to the modeling method, the model of textile structure 

could be divided into analytical model and numerical model. In most cases, the analytical 

model is to figure out the relationship between the desired properties and parameters as 

variables. The conceptualization, which is the process from physical reality of textile 

structure to mathematical model, is of essence. In conceptualization process, some necessary 

assumptions and simplifications have to be made. The major characteristic of analytical 

model is the balance between the simplifications introduced and the accuracy of the model. 

With respect to the numerical model, the first step, conceptualization, is still the same as the 

analytical model. The entire solution domain could be subdivided into piecewise finite 

elements and the mathematical model is solved in each finite element. The final solution is 

approximated by integration of solutions over all finite elements. With rapid development of 

computer hardware and 3D model programs, now the numerical method is dominating in the 

field of mechanical modeling of fibrous structures and its reinforced composites. Another 

classification is based on the scale of the model, namely micro-mechanical model, 
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meso-mechanical model and macro-mechanical model. The micro-mechanical stage studies 

the property of yarns by taking into account the orientation, structure and properties of 

constituent fibers. This stage is actually the process of transferring from properties of 

constituent fibers to overall property of the yarn assemble. The meso-mechanical model 

focuses on the study of overall property of fabric unit cell by introduction of geometry of unit 

cell and considering yarns as homogeneous material. The overall property of homogeneous 

yarn is calculated from micro-mechanical model. Finally, the macro-mechanical model is to 

predict complicated deformation of overall fabric such as drape by considering fabric as 

continuum material [10]. Even though these three model stages were proposed as distinct 

analysis approaches, there have been efforts for the integration of these three models.    

The textile society proposed a modeling hierarchy based on three modeling scales: the 

micromechanical modeling of yarns, the meso-mechanical modeling of the fabric unit cell 

and the macro-mechanical modeling of the fabric sheet as shown in Figure 1 [11-12]. 

 

 

Figure 1 Integrated model of micro, meso and macro mechanical model 

 

According to the integrated textile modeling concept, the only input data over the entire 

model procedure are the fiber properties, the yarn structure and the fabric structure. In the 
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first modeling stage, the fiber properties and the yarn structure are introduced as input 

parameters for the mechanical analysis of the yarn and the calculation of the yarn properties. 

Then, the yarn properties are transferred to the meso-mechanical stage as inputs. In the 

meso-mechanical model, the yarn is considered to be homogeneous and the yarns’ properties 

correspond to a homogenization process which connects the first and second model stages. 

Furthermore, the geometry of fabric unit cell is introduced in this stage to build accurate 3D 

solid model of the unit cell. The analysis is limited to the fabric unit cell. A second 

homogenization process is required to connect the second and third stages by calculation of 

property of unit cell and its attribution in the fabric sheet. 

Finally, the macro-mechanical modeling stage based on the assumption of continuum 

materials predicts the mechanical performance of extended fabric pieces in complex 

deformations. Each individual modeling procedure presents significant obstacles [12]. 

2.1.6 Analytical Modeling 

The first mechanical analysis of fabric structure was probably proposed by Peirce [13]. 

Most of the analytical models are based on the elastica theory and energy minimization. 

2.1.6.1 Micro-Mechanical Model by Analytical Method 

Some research concentrates on the study of multifilament twisted yarn in terms of 

micro-mechanical model. The objective of such research is to investigate the response of 

twisted yarn subjected to certain deformations. In most cases, yarn is considered to be 

homogeneous continuum of constant cross section and density along the length. And all 

fibers are assumed to have identical properties and perfectly elastic. Stress-strain curve of 

fibers, twist density and the initial specific volume are taken into account as input parameters. 
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The cylindrical- helix model by Hearle et al and the conical-helix model by Onder and Başer 

were established from the point of view of arrangement of fibers and geometry of fibers’ 

assemble [14-15]. Detailed descriptions of mechanical behavior of yarns were studied. 

Tension, bending and torsion behavior of yarns were approached by means of force, 

stress-analysis and energy methods [16-20]. Komori employed a statistical approach by 

introduction of large quantity of data to analyze mechanical properties of yarn assemble [21]. 

The major challenge of multifilament yarn model is the balance between physical reality and 

idealistic condition of yarn assemble.  

2.1.6.2 Meso-Mechanical Model by Analytical Method 

The first attempt of analytical modeling of fabric unit cell is to predict the uniaxial or 

biaxial deformation of plain woven structure. Perice proposed three principal fundamental 

assumptions of geometrical model of plain woven fabric [13]. The flexible thread is assumed 

to be infinitely flexible, incompressible and inextensible with circular cross-sections as 

shown in Figure 2 and Figure 3 [13] [22].  This model has one main drawback which is the 

assumption of circular cross section shape because in most cases cross section shape is not 

perfectly circular due to exterior forces in manufacture processes. Thus, later, the Peirce’s 

geometry model was improved by changing the cross sectional shape for a better 

representation of interlaced structure. The racetrack and elliptical cross sectional shapes were 

employed into Peirce’s model as shown in Figure 4 and Figure 5 [23-24].  
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Figure 2 Geometric model of plain woven fabric by Peirce [13] 

 

 

Figure 3 3D geometric model of plain woven unit cell by Peirce [13] 

 

 

Figure 4 3D representation of woven model proposed by Kemp [23] 
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Figure 5 3D representation of elliptic model proposed by Olofsson [24] 

 

In Peirce’s model, the theory of elastica was proposed to treat the yarns as elastic slender 

rods. The shape of the yarn axis can be determined by the energy minimization of elastic 

slender while subjected to transverse forces. In short, the Peirce’s model and its 

corresponding models were all developed according to the equilibrium, energy or elastica 

method for the mechanical analysis. 

Another flexible thread model including the consideration of crimp and yarn extension 

was proposed by Freeston et al. [25]. This flexible thread model was based on the assumption 

of homogeneous, linear elasticity as well as linear work-hardening. Olofsson improved the 

Peirce’s model by changing the yarn cross section shape into a function of the forces acting 

on them [24]. Mathematical equations were derived in terms of equilibrium conditions, 

stress-strain relationship of tension and compression and energy in bending. Grosberg and 

Kedia employed an energy method on the analysis of initial load extension modulus of 

completely relaxed woven fabric with the assumptions of inextensible and incompressible 

yarn [26]. Dastoor et al also proposed a similar elastica method taking into account linear 

extensibility of the yarns by regarding the yarns as homogeneous, weightless slender rods, 

frictionless material [27]. In this analytical approach, a computational algorithm was 
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implemented for the solution of the equilibrium equations. Another analysis of the large 

deformation of partially and completely set plain woven fabrics was performed by Huang 

[28-29]. Both effects of extension and bending of yarns were considered based on the elastic 

model. His model introduces the bilinear moment –curvature relation to explain the sliding of 

the fibers within the yarn, increasing the reliability of the study. The ‘sawtooth’ geometrical 

model which contains the force equilibrium and the displacement of the warp and weft yarns 

in thickness direction at contact points of crossing threads was proposed to elaborate finite 

deformation and biaxial deformation theory [30]. Dolatabadi and Kovař suggested an 

alternative geometrical model of woven fabric considering the yarn’s packing density as well 

as general fabric data as parameters [31-32]. 

2.1.6.3 Macro-Mechanical Model by Analytical Method 

An improvement of elastic theory based on the concept of planar and spatial elastica was 

developed to study complex deformation of fibers and fiber assembly by Konopasek [33-34]. 

This model includes considerations of nonlinear behavior of material, friction elasticity, 

elastic-plasticity and visco-elasticity. 

To be more specific, the planar elastica theory was proposed to study the large 

deflections of yarn in a plane and the bending behavior of fabric sheet. The spatial elastic was 

proposed to analyze fiber buckling and crimp. Computational tools were utilized in order to 

solve the nonlinear differential equations. Lloyd et al. published an alternative method to the 

theoretical mechanics of static drape of fabrics by solving the differential geometry of 

surfaces [35]. In addition, they developed a convenient implementation of the theoretical 

mechanics of fabrics since the fabric was considered as 2D continuum represented by a 
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surface with very small thickness embedded in the 3D Euclidean space. The dynamic 

deformation of fabrics was studied by means of differential geometry of surfaces [36]. A 

model was established to generate the surfaces made of a series of twisted curves. The 

relationship between the curvature of surface and the mechanical properties of material was 

investigated by checking differential geometry parameters. The concept of homotopy was 

applied in the mathematical model of deformation of the surface from the initial state to the 

final state. 

2.1.7 Numerical Modeling 

The expansion of powerful commercial software codes considerably stimulates the 

application of numerical method into research of textile structures. Two dominant methods in 

mechanical modeling of textile structure and its respective reinforced composite are Finite 

Element Method (FEM) and Boundary Element Method (BEM) [37-38]. 2D and 3D 

representations for the plain woven fabric structure were the first attempts to build 

mechanical model by numerical method. Keefe et al. proposed a 3D geometrical model with 

various compactions and angles based on the geometry of woven fabric [39]. Later, these 

models were validated for numerical methods [40-41]. The application of numerical methods 

such as FEM and BEM guides the direction of the approaches for textile micro and 

meso-mechanical models in the future. 

2.1.7.1 Micro-Mechanical Model by Numerical Method 

Munro et al [42] suggested a new approach using FEM to analyze the properties of 

aligned fiber assembly. The element used in the model is a cuboid cell with 8 nodes and each 

node contains 6 degrees of freedom. The model could correlate the energy contributions to 
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element stiffness with various user defined properties in which nonlinear behavior is 

successfully applied. The yarn models were discretized by dividing them into layers which 

was again split into finite element ranging from 1 to 22. The fibers were initially arranged to 

form the idealized helical-yarn geometry. The result from this model fit well with the 

expectation. The necking phenomenon of the yarn assembles appeared under tension and 

elements of the model were opened significantly under axial compression. 

The fast development of CAD tools makes the construction of 3D solid models of even 

complex textile structure possible. An FEM modeling of yarn of the loose condition and 

dense condition supported by the assumption of helicoidal filaments with a constant helix 

radius are given in Figures 6 and 7 [43]. 

 

 

Figure 6 Beam model of filaments for loose structure [43] 

 

 

Figure 7 Beam FE model of 50-filament twisted yarn [43] 

 

 

 



17 

2.1.7.2 Meso-Mechanical Model by Numerical Method 

Parametric solid modeling software programs have been developed to generate 3D solid 

model of complex woven structures with weave pattern, yarn size or spacing as parameters. 

In the unit cell, the yarn is still assumed to be homogeneous material in order to reduce the 

cost and time consumption during calculation [44]. The meso-mechanical model was greatly 

improved by various types of finite elements and implementation of material property pool 

which includes linear, nonlinear, elastic, plastic, viscoelastic, isotropic, orthotropic, 

anisotropic options etc. In addition, contact algorithms and large strain effects were also 

taken into account in the mechanical model of unit cell since they have great influence on the 

final result. Durville [45] proposed a 3D beam model to simulate mechanical behavior of 

woven fabrics in fibers scale. Tarfaoui and Akesbi [46] presented a more complicated 

structure of twill woven fabric whose unit cell comprises of three warp and three weft yarns. 

B-spline function was used in order to generate more precise 3D solid model of yarn in FEM 

[47]. Vassiliadis et al built a 3D model of complex interlaced woven fabric for the 

mechanical properties analysis as shown in Figure 8 [48].  

 

 
Figure 8 Solid FE model of unit cell of twill (left) and satin (right) woven structure [48] 
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Fibrous structure reinforced composites have been widely used in fields of automotive, 

marine and aerospace industry due to their high ratio of stiffness and strength to weight and 

multiple functions. Zhang and Harding used strain energy method of FEM to predict the 

elastic properties of plain woven composite structures [49]. The drawback of this approach 

pointed out by the authors was that the two undulations in one direction were not realistic for 

woven fabric. Naik improved this approach by considering the strand cross section geometry, 

possible gap between two adjacent yarns and the two direction undulation [50]. Whitcomb 

studied the effect of quadrature order, mesh density and material degradation on the predicted 

failure from in-plain loading [51]. The 3D solid model of composite is made of the volumes 

of woven unit cell and the volumes of matrix. The volume of matrix could be obtained by 

subtracting the volumes of fabric unit cell from the overall volume of composite unit cell. 

Some approaches were undertaken to investigate the homogenized elastic properties of fabric 

composites using the unit cell of composite structure. Circular, elliptic, compressed 

hexagonal and lenticular cross section shapes were assumed for the 3D construction of tows. 

The material properties of tows in the composite were defined as transverse isotropic and the 

matrix as isotropic. An approach proposed by Ng et al. [52] predicted the inplane elastic 

properties of a single layer 2/2 twill woven fabric composite. The mechanical model was 

programmed by the ANSYS Parametric Design Language (APDL). The 8-node solid 

elements with 3 degrees of freedom per node were used in the model. The whole model 

contains approximately 52000 finite elements and 12000 nodes. The contact areas were 

generated by subtracting the volume of fabric unit cell from the overall volume of composite 

unit cell and were then defined to be a shared entity for both the yarn and the matrix volumes. 
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Choi and Tamma [53] successfully predicted the in-plane elastic properties of a composite 

structure reinforced with plain woven fabric. The predicted elastic properties were then used 

for the damage analysis of laminated composite structures. The superposition principle was 

used for the prediction of homogenized properties of woven fabric reinforced composites. 

The overall model contains 520 wedge elements for the yarns and 256 brick elements for the 

matrix. In-plane tensile and shear deformation was obtained with a gradually incrementing 

load. A novel research in terms of generalized description of the internal structure of textile 

reinforcement was conducted by Leuven. Lomov et al. proposed a model for the internal 

geometry of 2D and 3D woven structure based on the minimization of total energy 

throughout unit cell and yarn mechanical properties. And this method could be extended to 

all sorts of fibrous structures such as woven, braided, knitted structures [54-56]. They also 

established a three-level hierarchy: the micro-, meso- and macro-level. The micro-level deals 

with the arrangement of fibers in the representative volume of yarn. The meso-level defines 

the internal structure of the reinforcement and direction and volume fraction within the yarn. 

Finally, the macro-level prescribes the 3D geometry of composite unit cell and distribution of 

the reinforcement properties. 

2.1.7.3 Macro-Mechanical Model by Numerical Method 

Macro-mechanical modeling of fabric or cloth mainly concentrates on the prediction of 

drape behavior and the virtual representation. According to the purpose and application of 

fabric, different techniques have been developed in the last decades. Numerical model such 

as the particle-model, the deformable node-bar model and the FEM were proposed for the 

purpose of better understanding of fabric behavior under deformation. Most 
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macro-mechanical models by numerical method mainly focus on drape properties of fabric, 

whereas meso-mechanical models with appropriate boundary condition are accurate enough 

to solve simple macro-deformation of tension, compression and shearing. Since this research 

only concentrates on the prediction of tensile property of fabric structure, there is no further 

introduction of macro-mechanical model of drape properties of fabric.  

2.1.8 Evaluation 

The review of literature of analytical models for the mechanical analysis of woven 

fabrics indicates that a globally accepted analytical model in terms of accuracy still remains 

as a goal. Even though there are so many different analytical models, most of which are based 

on totally distinct theories or principles, all of them were established on simplifications and 

assumptions in order to decrease the complexity of the model. The major drawback in 

analytical models is the balance between simplifications and the accuracy of the results. The 

two-dimensional approach and the attribution of linear isotropic properties defined for 

materials would result in inaccuracy. In addition, the analytical models have the difficulty of 

integrating of micro-, meso- and macro-level models. Analytical models have been replaced 

by or incorporated into the numerical models. The numerical methods have unique 

advantages to overcome obstacles such as geometrical representation, complex deformations, 

particular material properties, contact phenomena and large deflection effects. Moreover, 

numerical approach tools are able to generate good virtual representation of fabric under 

deformation. Most numerical methods are based on the Finite Element Method which could 

simplify the mechanical analysis by avoiding calculation of the bending rigidity of the yarn 

and its attribution at the modeled yarn. The homogenization process could be achieved 
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between each model level by application of boundary conditions so that the micro-, meso- 

and macro-level models are well connected. However, homogenization process may become 

problematic if the interpretation of data from previous stage is difficult for the next stage. 

There is still much work to collaborate each stage in order to generate realistic model and 

equivalent properties.   

2.2 Experimental 

2.2.1 Material Preparation 

Six single-layer woven fabrics and five two-layer woven fabrics were used for this 

research. Each yarn in the fabric is polyester monofilament with different diameter and 

mechanical properties. The detailed information of unit cell of each woven fabric was 

examined by observation under microscope.  

2.2.2 Geometry of Unit Cell  

The geometry of unit cell of each fabric samples was examined using computer software 

associated with a microscope (cellSens Standard 1.8.1 by Olympus Corporation). The 

CellSens Standard program is capable to measure the length and angle up to magnitude of 

micrometer. The yarns in the fabric structure are classified into warp yarn and weft yarn. The 

warp yarn is along the machine direction, while weft yarn is perpendicular to the warp yarn. 

For the two-layer woven fabrics, the top layer and bottom layer are made of weft yarns, while 

a warp yarn crosses over each weft yarn as shown in Figure 9.  

The unit cells geometry of each fabric sample are presented in Figures 10 and 11. The 

top view, right view (weft yarn direction) and left view (machine direction) of single-layer 

woven fabrics and two-layer fabrics are shown in the figures. The properties of single-layer 
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woven fabrics are given in Table 1. The patterns for two-layer fabrics are little bit 

complicated. The two-layer fabric samples 1, 4 and 5 have extra yarns in the top weft layer.  

 

Table 1 Geometric properties of six single-layer fabric samples (w: warp, f: filling) 

Fabric 1w 1f 2w 2f 3w 3 f 4w 4f 5w 5f 6 w 6 f 

Major 

radius 

(mm) 

0.575 0.525 0.555 0.555 0.445 0.355 0.435 0.255 0.25 0.21 0.22 0.175 

Minor 

radius 

(mm) 

0.51 0.485 0.45 0.45 0.415 0.305 0.405 0.195 0.195 0.195 0.195 0.15 

Spacing 

(mm) 

3.57 3.57 1.89 1.89 1.29 1.06 1.13 1.09 1.28 1.58 0.90 0.50 

Crimp 

height 

(mm) 

1.65 1.94 0.9 1 0.9 0.65 

Structure 1/1 2/1 4/1 3/1 3/1 3/1 

 

 

 

Figure 9 Cross section of a typical two-layer woven fabric structure with unit cell of 8 

columns of weft yarns 
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Single-layer fabric sample 1 

 

Single-layer fabric sample 2 

 

Single-layer fabric sample 3 

 

Single-layer fabric sample 4 

 

Single-layer fabric sample 5 
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Single-layer fabric sample 6 

Figure 10 Geometry of single-layer fabrics in top view (left), right view (middle) and left 

view (right) 

 

 

Two-layer fabric sample 1 

 

Two-layer fabric sample 2 

 

Two-layer fabric sample 3 

 

Two-layer fabric sample 4 
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Two-layer fabric sample 5 

Figure 11 Geometry of two-layer fabrics in top view (left), right view (middle) and left (right) 

view 

 

 

2.2.3 Measurement of Geometry 

The 3D model construction depends on the measurement of geometry of each unit cell. 

What geometrical parameters need to be measured matters. According to the Peirce’s model, 

the intact geometry of the unit cell of fabric can be determined as long as the spacing between 

yarns (p in Figure 12), diameter and crimp height (h in Figure 12) are given. Then, the crimp 

angle, θ in Figure 12, can be calculated so that the contact area at cross over point is 

determined. 

 

 

Figure 12 Peirce’s model of simple woven fabric structure 

 

CellSens Standard 1.8.1 can measure fine distances between two points. The spacing is 

measured through the distance between centroids of two adjacent yarns. It was found that the 
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cross sectional shape of yarns is not perfectly circular. To build a more accurate model, 

elliptic shape is used to describe cross section of each yarn. The major radius and minor 

radius of each yarn are measured. Finally, the crimp is measured through the distance 

between the highest point and lowest point over an undulated yarn. Table 1 summarizes the 

geometrical information of 6 samples of single-layer fabrics  

However, this principle is only suitable for simple woven structures which, in this case, 

are single-layer fabrics. It does not work for the more complicated woven structures such as 2 

layer fabrics. A generative model which contains an interpolated spline function and elliptical 

surface is applied into generation of 3D solid geometry of unit cell for 2 layer fabrics. This 

technique will be explained later in the modeling section. An undulated yarn could be 

described by the path of the centerline of its cross section. Besides major and minor radius 

and spacing, the coordinates of the nodes along the centerline are also measured. In order to 

draw an intact curve for the centerline of the warp yarn for a two-layer structure as shown in 

Figure 9, at least 8 nodes which are exactly above the centroids of bottom weft yarns have to 

be determined. Figure 13 shows the 8 centerline nodes (black dots) for the unit cell of 

two-layer fabric 2. This method for generating 3D solid model of fabrics could be extended to 

all sorts of fabric structures 

 

 

Figure 13 Illustration for measurement of centerline of warp yarn for two-layer fabric 2 
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Table 2 presents the spacing information for five two-layer fabric samples. Since spacing 

between top weft, bottom weft and warps could be different, each of them has to be measured 

separately. Table 3 shows the major and minor radius for two-layer fabrics. 

 

Table 2 Spacing for five two-layer fabric samples 

 spacing 

between top 

and bottom 

layer (mm) 

spacing 

between warp 

yarns (mm) 

spacing 

between top 

weft yarns 

(mm) 

spacing 

between 

bottom weft 

yarns (mm) 

Sample 1 0.234 0.187 0.280 0.560 

Sample 2 0.786 0.475 0.930 0.930 

Sample 3 0.881 0.384 0.877 1.755 

Sample 4 0.390 0.241 0.434 0.868 

Sample 5 0.303 0.222 0.377 0.755 

 

Table 3 Major and minor radius for two-layer fabrics 

  Major radius(mm)  Minor radius(mm) 

Sample 1 Warp yarn 0.072 0.058 

Weft bottom 0.091 0.080 

Weft top 0.066 0.053 

Sample 2 Warp yarn 0.208 0.175 

Weft bottom 0.221 0.173 

Weft top 0.221 0.173 

Sample 3 Warp yarn 0.258 0.202 

Weft bottom 0.284 0.272 

Weft top 0.227 0.165 

Sample 4 Warp yarn 0.115 0.090 

Weft bottom 0.175 0.091 

Weft top 0.175 0.091 

Top extra 0.056 0.044 

Sample 5 Warp yarn 0.098 0.069 

Weft bottom 0.120 0.095 

Weft top 0.120 0.095 

Weft extra 0.078 0.063 
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2.2.4 Mechanical Property Tests 

Since this model assumes that the yarn is homogeneous and isotropic, the linear isotropic 

material model is used to define elastic properties of yarns. A linear relationship is applied to 

fit the stress-strain curve of each yarn to describe mechanical properties. Thus, both 

stress-strain curve and Poisson’s ratio are measured by universal mechanical testing machine 

(INSTRON) according to the ASTM D3822 – 07. A camera device associated with the 

mechanical test machine can capture the image of yarns under tension test (Figure 14). The 

width of each yarn can be measured under different tensile deformation from which the 

Poisson’s ratio can be calculated.  

 

Figure 14 Universal mechanical testing machine with a camera device (INSTRON 

Technology) 

The stress-strain curves of yarns in 6 single-layer fabric samples are given in Figure 15, 

which shows that some of them exhibit non-linear behavior. In an ideal realization of the 

model, the non-linear behavior should be taken into account. However, in this research, a 

simplified linear model is used.  
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Figure 15 Stress strain curves for yarns in six single-layer fabric samples 

 

The mechanical properties of each yarn are summarized in Tables 4 and 5. For 

single-layer fabric structure, both warp yarn and weft yarn have different modulus and 

Poisson’s ratio. Usually, the modulus of warp yarn is higher than that of weft yarn. With 

respect to two-layer fabric structure, the unit cell of two-layer structure contains top weft, 

bottom weft, warp yarn and even extra yarn. Each of them may have different mechanical 

properties.  

Table 4 Mechanical properties of yarns for single-layer fabrics 

Samples Direction Modulus (MPa) Poisson’s ratio 

single-layer 

sample 1 

Warp yarn 3990 0.39 

Weft yarn 1260 0.32 

single-layer 

sample 2 

Warp yarn 1080 0.35 

Weft yarn 870 0.36 

single-layer 

sample 3 

Warp yarn 1110 0.42 

Weft yarn 870 0.35 

single-layer 

sample 4 

Warp yarn 1440 0.4 

Weft yarn 890 0.37 

single-layer 

sample 5 

Warp yarn 610 0.41 

Weft yarn 74.1 0.34 

single-layer 

sample 6 

Warp yarn 1541 0.39 

Weft yarn 88.4 0.44 
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Table 5 Mechanical properties of yarns for two-layer fabrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.5 Friction Coefficient Tests 

Previous research indicated that friction coefficient between fibers does not have much 

effect on mechanical properties while fabric is under axial or biaxial loading because relative 

sliding can be neglected when fabric is subjected to axial or biaxial loading. However, the 

friction coefficient turns out to be a very important aspect in terms of manufacturing process 

and behavior under shear loading or cyclic loading [56]. In addition, friction between yarns at 

crossover points directly supports the geometric integrity. For the completeness of the 

mechanical model, the friction coefficient has been taken into account in the FEA by 

  Modulus(MPa)  Poisson’s 

ratio 

Sample 1 Warp yarn 3320 0.34 

Weft bottom 788 0.32 

Weft top 1240 0.34 

Sample 2 Warp yarn 3510 0.33 

Weft bottom 931 0.33 

Weft top 382 0.35 

Sample 3 Warp yarn 2080 0.37 

Weft bottom 3452 0.36 

Weft top 2219 0.37 

Sample 4 Warp yarn 2637 0.43 

Weft bottom 453 0.41 

Weft top 194.6 0.43 

Top extra 1699 0.41 

Sample 5 Warp yarn 3599 0.39 

Weft bottom 703.2 0.39 

Weft top 333.5 0.38 

Weft extra 2469 0.40 
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incorporating a friction model at the contact zone. The friction coefficient was experimentally 

obtained using a device whose schematic is shown in Figure 16. Five samples were tested for 

each pair of yarns contacting to each other and the final value of friction coefficient was 

obtained by taking the average. The friction coefficient is calculated using: 

                          
 

   
                                (1) 

where   is the number of turns per unit length,    is the initial tension on the lower free 

ends,   is the measured friction force, and   is the twist angle which can be calculated from 

the following equation: 

                              
  

      
                             (2) 

where L, L1 and L2 are distances indicated in Figure 16. Friction coefficients of each fabric 

measured from experiments are shown in Tables 6 and 7. The single-layer fabrics only have 

one type of contacting condition which is the contact between the warp and weft yarn at 

crossover point, whereas the two-layer fabrics have more than one contacting condition since 

there are two or three different types of weft yarns including the extra yarn in the two-layer 

structure.  

 

Figure 16 Schematic of the friction coefficient testing device 
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Table 6 Friction coefficients of single-layer fabrics 

Fabric 1 2 3 4 5 6 

Yarn to yarn average dynamic 

friction coefficient 

0.102 0.112 0.104 0.109 0.112 0.109 

Coefficient of variation 2.2% 3.2% 2.9% 2.5% 2.4% 2.4% 

 

Table 7 Friction coefficients of two-layer fabrics 

Sample  Yarn to yarn 

average dynamic 

friction coefficient 

Coefficient of 

variation 

Sample 1 Warp yarn to 

top weft 

0.117 3.0% 

Warp yarn to 

bottom weft 

0.116 2.9% 

Sample 2 Warp yarn to 

top weft 

0.103 2.1% 

Warp yarn to 

bottom weft  

0.103 2.2% 

Sample 3 Warp yarn to 

top weft 

0.114 1.9% 

Warp yarn to 

bottom weft 

0.116 1.7% 

Sample 4 Warp yarn to 

top weft 

0.115 1.9% 

Warp yarn to 

bottom weft 

0.114 2.0% 

Warp yarn to 

extra weft 

0.111 2.1% 

Sample 5 Warp yarn to 

top weft 

0.112 2.3% 

Warp yarn to 

bottom weft 

0.112 2.9% 

Warp yarn to 

extra weft 

0.109 2.9% 
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2.3 Modeling Approach 

2.3.1 Micro-Mechanical Modeling  

The objective of micro-mechanical model is to describe the stress-strain relationship of 

the yarn and to ultimately obtain what displacements would result from given forces in 

different directions. The properties of yarn calculated from this stage will be further used in 

the meso-mechanical modeling.   

To begin with, the strain represents the deformation of a body in a certain direction. 

Engineering strain, is defined by the following equation. 

                             
     

  
                                 (3) 

where    is the body length before deformation,    is the body length after deformation in 

the same direction. This is the simple definition of engineering strain in the uniform 

deformation scenario. If the deformation of the body is no longer uniform, the engineering 

strain can be defined by a more generic form: 

                               
  

  
                            (4) 

where u is the displacement vector. So this expression can be extended to three orthogonal 

directions: 

   
   

  
  

                                
   

  
                           (5) 

   
   

  
  

According to the mechanics of materials, the shear strains are defined in the following 

equations. 
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The deformation at any point in a body can be defined by tensile and shear 

strain                     . The strain occurred in the body would cause the internal force 

within the body to resist the deformation. This internal force can be expressed by stress. The 

stress is the internal distribution of force per unit area. The stress is usually calculated as the 

function of the strain.  

                                                                      (7) 

This function describing the relationship between stress and strain is usually called the 

material model or constitutive equation, which is what the micro-mechanical model seeks for. 

If the stress-strain relationship of the material is the same regardless of directions, then it is 

called isotropic material. The stress-strain relationships in different directions might not be 

identical for the same body. If so, the material is then named anisotropic material. Typically, 

the yarn material is an anisotropic material; however, it is not completely anisotropic. The 

stress response in the cross section plane is isotropic. So the yarn material is considered to be 

transverse isotropic material. If the material is assumed to be linear elastic, the stress can be 

defined as a function of strain with 5 constants. The constants are longitudinal modulus EL, 

transverse modulus ET, transverse Poisson’s ratio νTT, transverse-longitudinal Poisson’s ratio 

νTL and transverse-longitudinal shear modulus GTL. From these 5 constants, the 

longitudinal-transverse Poisson’s ratio νLT and transverse shear modulus GTT can be 

calculated by the following equations: 
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                            (8) 

                                                                     
  

        
                         (9) 

In this case, the stiffness matrix equation of transverse isotropic property can be established 

assuming that z axis is the yarn path direction and x and y axes are two orthogonal directions 

perpendicular to the z axis. The overall stiffness matrix can be expressed by the following 

equation: 

(10) 

 

However, all the yarns in this research are monofilaments which mean that each yarn is 

formed evenly by extruding and polyester is uniformly distributed throughout the entire yarn. 

Therefore it is quite reasonable to assume that the yarn is an isotropic homogeneous material. 

In order to have a simplified model for the description of mechanical properties of yarn, the 

isotropic model is defined for the homogeneous yarn.  The isotropic mechanical property 

has only two independent variables (E for modulus and ν for Poisson’s ratio). The expression 

of relationship between the stress and strain is simplified from equation (10) to equation (11). 

The modulus and Poisson’s ratio are experimentally measured using universal mechanical 

testing with a camera device. The data of modulus and Poisson’s ratio of each yarn are given 

in Section 3 experimental part.  
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              (11) 

Usually, a homogenization process is required as the last step in this stage to obtain the 

overall property of a yarn if the yarn is multifilament assembled by many fibers. However, 

the overall property of yarn is self-explained by the modulus and Poisson’s ratio because the 

yarn is homogeneous monofilament with isotropic properties.  

2.3.2 Meso-Mechanical Modeling 

The meso-mechanical modeling stage is to analyze mechanical properties of the unit cell. 

According to the multi-scale model concept, the behavior of a micro heterogeneous medium 

can be described by that of an equivalent homogeneous medium with appropriate boundary 

conditions according to the macroscopic geometry and boundary. In particular, the fabric is a 

heterogeneous material. However, one can consider fabric structure to be homogeneous 

material made of identical repeating unit cells which have exactly same properties. In this 

case, the behavior of fabric structure can be described by repeating unit cell structure with 

appropriate boundary conditions. The overall fabric’s simple deformation behavior such as 

unidirectional tension and shearing can be retrieved as long as the coresponding mechanical 

properties of unit cell are calculated. In this research, the tensile properties in longitudinal and 

transverse direction of unit cells are obtained through FEM in which the geometry of unit cell, 

modulus and Poisson’s ratio are introduced as input data. An appropriate boundary condition 

is applied onto the unit cell to simulate the real physical conditions over the unit cell and 
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more importantly to homogenize the mechanical properties throughout the unit cell. 

2.3.2.1 3D Solid Modeling of Unit Cell Geometry 

3D solid model of a single yarn can be described by its 2D shape of cross section and 

yarn path, which is similarly defined by an array of nodes of centroids. This kind of modeling 

is called generative model, which is formed by transformation of a lower dimensional shape 

to a higher dimensional shape [57].  

Consider a cross sectiona shape:  

z=f1(x, y), x∈R1, y∈R2                                    (12) 

And a curve in 3D space: 

z=f2 (ν), ν∈R3                                 (13)                                                           

Now the cross sectional shape (12) is translated along the tangent direction of the 3D 

curve (13) so that the new coordinate z is expressed as function of ν for every point (x, y) ∈ 

[R1, R2] given a ν. Then, a 3D solid structure V(x, y, ν) may be generated. In particular, the 

cross sectional shape of a yarn is the generator. This generator can be translated along the 

centerline curve of the yarn path in order to generate a 3D solid model.  

 Yarn Path Representation  

Adanur and Liao proposed a geometric modeling technique by generative model which 

can actually generate all sorts of fabric structures such as woven, knitted and braided [8]. 

However, the yarn path function they used for the description of undulation of yarn is limited 

to cosine and sine. Cosine and sine functions are probably appropriate to describe undulation 

of the yarn in simple woven fabric; however, they are no longer precise for the undulation of 
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warp yarn in the two-layer woven fabric. Therefore, a more accurate yarn path function has to 

be used to represent the centerline path of the yarn. 

The path of a yarn can be considered as one dimensional line representing the yarn’s 

centerline in three dimensional space. Thus, the yarn path can be defined in 3D space as a 

function of distance along the yarn. The most generic and accurate way to describe such a 

yarn path is to specify a number of discrete positions along the yarn length, known as master 

nodes, and have the rest part interpolated [57] between these points rather than to define a 

certain cosine or sine function which is not precise enough to represent yarn path in this case. 

Generally speaking, the more master nodes are defined, the more accurate model of the yarn 

path. In order to get an accurate yarn path model, it is sufficient to specify one or two master 

nodes per crossover as long as the interpolation function is suitable. The continuity C must be 

required in the interpolation function so that there is no gap in the yarn path and the tangent 

of yarn path varies smoothly. A common solution to make sure the continuity and smoothness 

of the yarn path is to use spline functions. A spline is a function defined piecewise by 

polynomials. In its most general form a polynomial spline S : [a, b] consists of polynomial 

pieces Si : [ti, ti+1], where 

a = t0 < t1 < · · · < tk−2 < tk−1 = b                       (14)                               

That is: 

                          

 
 
 

 
 

                    
                    

 
 
 

                          

                       (15)                           
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Since it is impractical to measure so many master nodes along the yarn path, another 

requirement of this interpolation function is that it can generate the curve of yarn path with 

the master nodes as little as possible. In this case no extra points need to be defined in order 

to specify the yarn path. A natural cubic spline function is used for the model of yarn path 

[57]. A detailed definition of natural cubic spline function is introduced below: 

The continuity conditions C
0
, C

1
 and C

2
 are applied by the equation: 

                                                                  (16)                   

                                                                        (17) 

                                                                    (18) 

The boundary conditions at t = a and t = b are given in equation: 

                                                                       (19) 

The derivatives of the spline at the knots can be calculated by solving the matrix equations: 
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Once the derivatives are known, the coefficients of the spline pieces can easily be determined. 

For each cubic spline piece, there are 4 equations with 4 unknown coefficients ai, bi, ci and di: 

                                         
      

                          (21) 

                                               
        

                   (22) 

                                            
                             (23) 

                                                  
                      (24) 

The natural spline interpolation function also has a very important characteristic of 
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minimization of the total curvature. Equation 25 is the expression for approximation of the 

total curvature through the entire domain. The natural spline interpolation method can 

minimize the value of the total curvature. Since the total energy of elastic strip is proportional 

to the curvature, it turns out that the natural spline interpolation is actually the approximation 

of geometry of elastic strip with minimal energy constraint in k knots [57].  

                  
 

 
                              (25) 

 Yarn Cross Section 

As discussed previously, the 3D solid model of a yarn is generated through the translation 

of cross section of yarn along its centerline yarn path. Thus, the shape of cross section is 

critical to determine the 3D solid model of a yarn. The cross section of yarn is defined as the 

2D surface cut by plane perpendicular to the yarn path tangent. When it comes to 

multifilament which is assembled by fibers, the cross section shape would no longer be 

constant shape and rather difficult to determine. Therefore, the cross section of the 

multifilament yarn can be assumed to be the smallest region which encompasses all of the 

fibers within the yarn. The outline of cross sections can be defined using parametric 

equations in 2 dimensions. Various shapes have been explored including the ellipse proposed 

by Peirce [13], power ellipse [58] and a modified lenticular shape [59]. All of these cross 

sections are summarized as follows. 

 Ellipse 

The elliptical cross-section is one of the simplest approximations. With given width A and 

height B the equation is defined as follows: 

                         
   

  
 

   

  
                                (26) 
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 Lenticular 

The lenticular cross-section is defined by the intersection part of two circles of radius r1 

and r2 each of which offsets vertically by distances o1 and o2 respectively. The parameters r1, 

r2, o1 and o2 can be calculated from w, h and distortion d in the following equations (Figure 

17):  
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Figure 17 Schematic of lenticular cross sections 

 

The outline of cross-section can be defined as: 
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where: 
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 Power ellipse 

The power ellipse is a cross-sectional shape between ellipse and lenticular. The power 

ellipse is a slight modification to the elliptical cross-section where the y coordinate is 

assigned a power n to make the section resemble a rectangle with rounded edges when n < 1 

or a shape similar to a lenticular cross-section when n > 1 [57]. It is defined as follows: 
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 Specification of Centroids. 

The computer software associated with the microscope device (CellSells Standard 1.8.1 

Olympus Corporation) is used in this research to measure the geometry including major and 

minor radius of each yarn, spacing between top and bottom layer, spacing between warp 

yarns and spacing between weft yarns as well as configuration. In this case, the spacing is 

defined as the distance between centroids of cross-sections. Another critical factor for 

accuracy of 3D solid model is the crimp height at crossover points. Theoretical speaking, 

crimp of weft yarns for two-layer fabric structure is not developed until heat-setting 

procedure. Therefore, 3D model is of little practical value without taking into account the 

crimp of weft yarns. This is another reason to use the generative modeling technique and 

interpolation method. Two assumptions are made in order to simplify the model without 

losing much accuracy. First, the cross-section of each yarn is elliptical. Second, there is no 
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penetration at contact region and yarns contact perfectly at tangent plane to the line crossing 

two centroids at crossover point. 

The number of centerline nodes is determined from the number of weft yarns and warp 

yarns in one repeating unit. For instance, Figure 9 exhibits the configuration of two-layer 

fabric sample 2. This two-layer fabric structure has 16 weft yarns in one unit cell. Horizontal 

number from 1~8 indicates the horizontal position of each weft yarn and vertical number 1, 2 

represent for vertical position of each weft yarn. There are at least 10 nodes to be defined for 

warp yarn in order to smoothly draw the curve of centerline of warp yarn. Likewise, 

minimum 10 nodes need to be defined along the weft yarn to smoothly draw the weft yarn. 

The related variables are defined as follows: 

The number of columns of weft yarn in one repeating unit: M 

The number of warp yarns in one repeating unit: N 

One single warp yarn could be described by a vector:  

                                                                         (38)                         

                                   represents the coordinate of centerline node. Due to 

the periodic relationship between adjacent warp yarns, the relationship between adjacent 

warp yarns could be described by the following equation: 

                                             (39) 

where   stands for the periodic vector.  

This could be applied to weft yarns: 

                                                     (2M means 2 weft layers) 

                                                                           (40) 
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This method could be applied to 3D modeling software such as Solidworks. All 

configurations of single-layer woven fabrics and two-layer woven fabrics are given in Figure 

18. 

 

Single-layer fabric sample 1 

 

Single-layer fabric sample 2 

 

Single-layer fabric sample 3 

 

Single-layer fabric sample 4 
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Single-layer fabric sample 5 

 

Single-layer fabric sample 6 

 

Two-layer fabric sample 1 

 

Two-layer fabric sample 2 

 

Two-layer fabric sample 3 
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Two-layer fabric sample 4 

 

Two-layer fabric sample 5 

Figure 18 3D solid model of unit cell of all fabric samples 

 

2.3.2.2 Material Property Definition 

The data of modulus and Poisson’s ratio are used as inputs retrieved from the 

micro-mechanical model.  

2.3.2.3 Meshing 

In order to perform the finite element analyses, the geometry of the fabric must be 

meshed. The only specific requirement about the mesh is that the cross section mesh at one 

end must be identical to that at the other end in a unit cell. This is due to the periodicity of the 

unit cell. The overall fabric is periodically made of repeating units. Hence, the nodes at both 

cross-sections at the end must be periodically related. The meshes at both cross-section ends 

have to be identical to ensure that the elements generated from meshing are the same. Figure 

19 shows a typical mesh of cross-sections at both ends. This requirement can be achieved by 

the mapped face mesh with triangle and rectangle elements in Ansysworkbench. The rest of 

the meshing steps could follow the standard procedure of meshing in Ansysworkbench. 

Figures 20, 21 and 22 present the coarse, medium and fine mesh of single-layer fabric sample 

1 respectively. Table 8 presents the mesh data of coarse, medium and fine mesh.  
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Figure 19 Schematic of the meshing of cross section by triangles and rectangles 

 

 

Figure 20 Coarse mesh of unit cell of single-layer fabric sample 1 
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Figure 21 Medium mesh of unit cell of single-layer fabric sample 1 

 

 

Figure 22 Fine mesh of unit cell of single-layer fabric sample 1 

 

Table 8 Mesh statistics 

 Number of Nodes Number of elements 

Coarse mesh 8576 4152 

Medium mesh 13476 6876 

Fine mesh 29943 16175 
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2.3.2.4 Contact Definition 

 Contact Pair 

In this case, a surface to surface contact model is used for contact behavior at crossover 

points. The contact pairs are defined according to the contact algorithm in ANSYS to handle 

the interpenetration. 3D eight-node surface-to-surface contact elements 

CONTA174/TARGE170 are used. CONTA174 is an 8-node element that is intended for 

general rigid-flexible and flexible-flexible contact analysis [60].  

In studying the contact between two bodies, the surface of one body is conventionally 

taken as a contact surface and the surface of the other body as a target surface. For 

rigid-flexible contact, the contact surface is associated with the deformable body; and the 

target surface must be the rigid surface. For flexible-flexible contact, both contact and target 

surfaces are associated with deformable bodies. The contact and target surfaces constitute a 

"Contact Pair" (Figure 23). The yarn is considered to be flexible body, so flexible-flexible 

contact is applied. 

 

Figure 23 A contact pair 
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 Frictional Model 

In this research, the yarn is considered to be contacted with another yarn at the crossover 

point and the friction effect between them sustains the stability of interlaced structure. 

Therefore, a Coulomb friction model is used according to Ansys contact options [60]. In the 

basic Coulomb friction model, two contacting surfaces can carry shear stresses. When the 

equivalent shear stress is less than a limit frictional stress (τlim), no motion occurs between the 

two surfaces. This state is known as sticking. The Coulomb friction model is defined as: 

                                                            (41) 

                                                             (42) 

where: 

    = limit frictional stress 

  = equivalent stress for 3D contact 

μ = coefficient of friction for isotropic material 

P = contact normal pressure  

b = contact cohesion  

Once the equivalent frictional stress exceeds τlim, the contact and target surfaces will 

slide relative to each other. This state is known as sliding. The sticking/sliding calculations 

determine when a point transitions from sticking to sliding or vice versa. The contact 

cohesion provides sliding resistance even with zero normal pressure. The contact cohesion is 

assumed to be zero for the yarn to yarn contact. The friction coefficients in each fabric 

samples are experimentally measured. 
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2.3.2.5 Periodic Boundary Conditions 

Because the overall fabric is considered to be made of repeatable repeating units or 

representative volumes, a periodic boundary condition is imposed on the model to ensure 

symmetry and repeatability of the repeating unit. By applying such boundary conditions, the 

model is equivalent to an infinitely large fabric undergoing uniform deformation. If a large 

fabric needs to be modelled with non-uniform deformation as is usually the case, the unit cell 

model is still useful. A macroscopic model is required which takes effective properties from 

the unit cell model in a multi-scale modelling approach. Since this research only concentrates 

on the unidirectional tensile behaviour of fabrics, there is no need to use a well established 

macroscopic model to calculate the macroscopic behaviour. That is to say, in this particular 

case, periodic boundary condition serves as the equivalent function of homogenization which 

calculates the macroscopic response of fabrics.  

 

 

Figure 24 Periodicity of boundary of a yarn [57] 

Figure 24 illustrates a section of a periodic yarn, where the yarn is repeatable along the 

repeat vector P. Nodes Ai and Bi lie on opposite sides of the yarn section. Their positions are 

initially related by the following equation: 

                                                                        (43) 
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Where Bi is the coordinates of points on one surface, Ai is the coordinates of points on 

another surface and      is the periodicity vector. 

This is a requirement for applying periodic boundary conditions and it is a consideration 

to be taken into account when the mesh is generated for the yarn. 

2.3.2.6 Derivation of Periodic Boundary Conditions 

The global constitutive law describes the relation between macroscopic stresses ( ) and 

strains (E) which are defined as volumetric averages of the relevant microscopic stresses (σ) 

and strains (ε) respectively:  

                         
 

 
                                  (44) 

                         
 

 
                                  (45)       

The microscopic stress and strain fields must fulfill the periodicity of the heterogeneous 

material [61-62]. This principle can be expressed by the following equation: 

                                                           (46) 

where: 

   = a rigid displacement of the unit cell 

  = anti-symmetric tensor related to the small rigid rotation of the unit cell 

  = position vector in the RV 

   = periodic part of microscopic displacement field 

For the problem of elastic behavior of unit cell, Equation 46 could be further simplified 

to: 

                                                                      (47) 
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                                                                      (48) 

Then we get: 

                                                                      (49) 

The equation could be further rearranged into [62]: 

                                                                             (50)                                       

                                      
ε   
 ε  

   

                         (51) 

where             and         are displacement vector of corresponding nodes on the surfaces 

of one side and the other, respectively.     is average strain tensor applied on the repeating 

unit,     is the periodicity vector. The periodic boundary conditions can be set up by 

constraint equations in Ansys [60]. Detailed information is given in the following. Equation 

(50) is a more general form of Equation (49) in mechanical model. 

2.3.2.7 Implementation of Boundary Conditions 

There two types of boundary conditions defined for the unit cell. The first one is actually 

the displacement constraints on the edge in order to make the convergence of solution easier. 

In particular, nodes on the edge have no displacement along the y axis while fabric is 

subjected to tension along the x axis. This can be achieved by specifying the displacements 

along the y axis to be zero (Figure 25).  

 

Figure 25 Displacement constraints on the edge 
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The second one is periodic boundary condition which could be implemented as follows: 

U1-U2=E(X1-X2)                         (52)                                 

U3-U4=E(X3-X4)                         (53) 

where U1, U2, U3, and U4 are displacement vectors of points on the edges of 1, 2, 3, and 4 

respectively (Figure 26). E stands for macroscopic strain tensor of the fabric  

 

Figure 26 Periodic boundary conditions on the single-layer fabric sample 5 

2.3.3 Macro-Mechanical Modeling 

As discussed previously, there is no need to apply a specific macro-mechanical model for 

the calculation of macro-mechanical behavior. The macro-mechanical behavior can be 

obtained from the meso-mechanical model as long as the boundary conditions are 

appropriately established. On the macro-scale level, the fabric is considered as homogeneous 

material which can be described by the constitutive equation between macro strains E and 

macro-stresses  :  

                                                                     (54) 

The aim of macro-mechanical model is to find macro-stiffness matrix C. The solution to 

this question is actually the homogenization process. The homogenization process is 
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approached by considering the unit cell of a textile as a repetitive part of an infinite array of 

identical cells [1, 35, 38 124]. Then the meso-mechanical modeling of unit cell can calculate 

the stiffness matrix Cc of infinite array of identical cells through the appropriate periodic 

boundary conditions with given macro strain E. The macro stress can be calculated by 

volumetric average of microscopic stresses throughout the unit cell.  

2.4 Results and Analysis 

Figures 27-37 exhibit the contour of stress distribution throughout the unit cell under 

undeformed state and 10% deformed state in unidirectional tension for single-layer and 

two-layer fabrics. It is clearly indicated that stress concentration occurred at crossover points. 

The middle part between the edge and crossover point has less stress concentration than the 

crossover point. The positions at the crossover points in the fabric structure have the highest 

possibility to break or deform. Moreover, the translation of stress from weft yarns to warp 

yarns of single-layer fabrics and warp yarns to weft yarns of two-layer fabrics at the contact 

region can be observed. The detailed stress distribution indicates that stress from tensile force 

is translated to the yarns in perpendicular direction through the crossover points. This 

information could be further used for fracture analysis and ballistic resistance. 

Figure 38-48 show the comparison between simulation data and experimental data. 

Generally speaking, the simulation data agreed well with the experimental data at initial stage, 

i.e. below 40%~50% of total deformation. However, the variation between simulation and 

experimental data is continuously increasing with growing deformation. This is probably due 

to the fact that the solid yarn is going to have plastic deformation at certain point which no 

longer indicates linear tensile behavior. Another reason is probably the simplification by 



56 

using isotropic properties instead of anisotropic properties. However, since this work mainly 

focuses on the mechanical properties under unidirectional tensile tests, the assumption of 

isotropic properties does not affect the simulation results much. Isotropic property 

assumption is a reasonable choice to simplify the model without losing the accuracy in the 

simulation. There are variations between contact simulations and actual contact conditions, 

which could also result in the inaccuracy of the model. 

The warp direction usually has higher force to extension ratio because the warp yarn has 

higher modulus than filling yarn. Even though the number of weft yarns is more than the 

number of warp yarns, the slope of force to extension in warp direction is still higher than the 

slope in weft direction. The initial modulus dominates unidirectional tensile property.   
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Figure 27 The contour of stress distribution throughout the unit cell of single-layer fabric 

sample 1 in undeformed state (top) and 10% deformed state (bottom) in the warp direction 
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Figure 28 The contour of stress distribution throughout the unit cell of single-layer fabric 

2 in undeformed state (top) and 10% deformed state (bottom) in the warp direction 
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Figure 29 The contour of stress distribution throughout the unit cell of single-layer fabric 

3 in undeformed state (top) and 10% deformed state (bottom) in the warp direction 
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Figure 30 The contour of stress distribution throughout the unit cell of single-layer fabric 

4 in undeformed state (top) and 10% deformed state (bottom) in the weft direction 
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Figure 31 The contour of stress distribution throughout the unit cell of single-layer fabric 

5 in undeformed state (top) and 10% deformed state (bottom) in the warp direction 
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Figure 32 The contour of stress distribution throughout the unit cell of single-layer fabric 

6 in undeformed state (top) and 10% deformed state (bottom) in the weft direction 
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Figure 33 The contour of stress distribution throughout the unit cell of two-layer fabric 1 

in undeformed state (top) and 10% deformed state (bottom) warp direction 
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Figure 34 The contour of stress distribution throughout the unit cell of two-layer fabric 2 

in undeformed state (top) and 10% deformed state (bottom) warp direction 
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Figure 35 The contour of stress distribution throughout the unit cell of two-layer fabric 3 

in undeformed state (top) and 10% deformed state (bottom) warp direction 
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Figure 36 The contour of stress distribution throughout the unit cell of two-layer fabric 4 

in undeformed state (top) and 10% deformed state (bottom) warp direction 
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Figure 37 The contour of stress distribution throughout the unit cell of two-layer fabric 5 

in undeformed state (top) and 10% deformed state (bottom) warp direction 
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Figure 38 Comparison between experimental data and simulation data of single-layer 

fabric sample 1 (1: simulation data in warp direction, 2: experimental data for warp direction, 

3: simulation data in weft direction, 4: experimental data in weft direction) 

 

 

Figure 39 Comparison between experimental data and simulation data of single-layer 

fabric sample 2 (1: simulation data in warp direction, 2: experimental data for warp direction, 

3: simulation data in weft direction, 4: experimental data in weft direction) 
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Figure 40 Comparison between experimental data and simulation data of single-layer 

fabric sample 3 (1: simulation data in warp direction, 2: experimental data for warp direction, 

3: simulation data in weft direction, 4: experimental data in weft direction) 

 
Figure 41 Comparison between experimental data and simulation data of single-layer 

fabric sample 4 (1: simulation data in warp direction, 2: experimental data for warp direction, 

3: simulation data in weft direction, 4: experimental data in weft direction) 
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Figure 42 Comparison between experimental data and simulation data of single-layer 

fabric sample 5 (1: simulation data in warp direction, 2: experimental data for warp direction, 

3: simulation data in weft direction, 4: experimental data in weft direction) 

 

Figure 43 Comparison between experimental data and simulation data of single-layer 

fabric sample 6 (1: simulation data in warp direction, 2: experimental data for warp direction, 

3: simulation data in weft direction, 4: experimental data in weft direction) 
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Figure 44 Comparison between experimental data and simulation data of two-layer fabric 

sample 1 (1: simulation data in warp direction, 2: experimental data for warp direction, 3: 

simulation data in weft direction, 4: experimental data in weft direction) 

 

Figure 45 Comparison between experimental data and simulation data of two-layer fabric 

sample 2 (1: simulation data in warp direction, 2: experimental data for warp direction, 3: 

simulation data in weft direction, 4: experimental data in weft direction) 
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Figure 46 Comparison between experimental data and simulation data of two-layer fabric 

sample 3 (1: simulation data in warp direction, 2: experimental data for warp direction, 3: 

simulation data in weft direction, 4: experimental data in weft direction) 

 

Figure 47 Comparison between experimental data and simulation data of two-layer fabric 

sample 4 (1: simulation data in warp direction, 2: experimental data for warp direction, 3: 

simulation data in weft direction, 4: experimental data in weft direction) 
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Figure 48 Comparison between experimental data and simulation data of two-layer fabric 

sample 5 (1: simulation data in warp direction, 2: experimental data for warp direction, 3: 

simulation data in weft direction, 4: experimental data in weft direction) 

 

2.5 Conclusions 

A mechanical model is built to simulate tensile behavior of monofilament woven fabrics. 

The model is based on the multi-level mechanical theory in which the properties of the yarn 

and geometry of the repeating unit are taken into account. 

A generative model is used to efficiently generate the 3D solid model of woven fabrics. 

This technique can be further used to all sorts of complex fabric structures. 

The simulation data is in reasonably good agreement with the experimental data for all. 

The variation between experimental data and simulation data probably result from the 

difference between isotropic material property and an-isotropic material property. 

This model is based on FEA and shows the stress-strain field at local points. Stress 

concentration occurs at crossover points and stress translation takes place at crossover points, 

which can be further integrated into fatigue and damage analysis of fabrics and fabric 

reinforced composites. 
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Chapter 3 Mechanical Analysis of Auxetic Behavior of a Novel Braiding Tubular 

Structure by FEM 

3.1 Literature Review 

Auxetic materials [63, 64] which are materials with negative Poisson’s ratio, have 

received considerable attention over the last three decades because of their counter intuitive 

mechanical behavior: the auxetic material elongates in the force direction and expands 

perpendicularly to the force direction simultaneously. This interesting behavior has been 

studied and found that auxetic property could improve many fundamental bulk properties 

such as the indentation resistance, the shear modulus, fracture toughness and synclastic 

curvature [65]. The analysis of auxetic behaviour and exploration of auxetic materials 

demonstrated that auxetic materials exist in a wide range of fields from natural single crystals 

[66] and cubic metals [67] to biological materials such as skin [68] and bones [69] and 

synthetic materials such as foams [70], honeycomb structures [71] and composites [72]. 

Among all other auxetic materials discovered, synthetic auxetic materials are demonstrated to 

be very promising since they can be tailored for specific purpose by controlling the structure 

and properties. 

Numerous efforts has been done to scope the fundamental mechanism behind auxetic 

behavior. The research of crystal arsenic [73] and zeolites [74] drew a conclusion that auxetic 

behavior attributes to molecular bond rotation. Meanwhile, auxetic fibers demonstrated that 

they can be woven into technical textiles endowing the auxetic property to the overall 

structure. Shanahan and Piccirelli [75] fabricated woven fabric which exhibited auxetic 

behavior as a result of geometric effect by woven structure. Ugbolue et al. [76] invented a 
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knitted textile structure by carefully knitting the structure resulting in a Poisson’s ratio of -0.6 

over the fabric width. Hall et al. [77] successfully produced carbon nanotube sheets with an 

in-plane Poisson’s ratio as low as a -0.2 by combination of single and multi-walled carbon 

nanotubes. Auxetic yarn structure was fabricated by Hook et al. [1] by wrapping a 

monofilament yarn with higher modulus and smaller diameter onto another yarn with lower 

modulus and larger diameter. This helical structure of combination of two separate yarns 

indicated a net increase in the width of the structure when subjected to a tensile load. Miller 

et al. [78] used helical auxetic yarns in weaving to manufacture a woven fabric made of 

helical auxetic yarns and tested the respective mechanical properties.  

In this research, a tubular fabric structure with auxetic behavior was made by braiding. 

Moreover, a finite element model of this tubular fabric structure was built for the analysis of 

auxetic behavior. 

3.2 Material Preparation 

Two polyester yarns were prepared for the manufacture of helical auxetic yarn. One 

polyester yarn has much higher modulus and smaller diameter than the other. The auxetic 

yarn was manufactured on the braiding machine and then helical auxetic yarns were used as 

yarn component to fabricate the tubular braided structure by braiding. 

The modulus of warp yarn and core yarn are tested according to the ASTM D3822 – 07 

Monofilament. The data are given in Table 9.  
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Table 9 Mechanical properties of wrap and core yarns as component of the helical auxetic 

yarn 

 

 Core Wrap 

Young’s modulus (MPa) 13 1360 

Ultimate strength (MPa) 31 650 

Strain at break (%) 88 6.2 

 

3.3 Approach  

The auxetic yarn is manufactured on braiding machine. The core yarn is inserted in the 

system taking place of the position of mandrel in the middle of the braiding machine. The 

core yarn is stationary. The wrap is wrapped onto the core yarn with spindle. An illustration 

of the manufacture process is given in Figure 49. Figure 50 presents one spindle rotating in 

the trajectory. Figure 51 shows the braiding machine used. 

 

Figure 49 Schematic of manufacture of helical auxetic yarn 

 

Figure 50 The cross sectional view of rotating surface 
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Figure 51 The braiding machine used 

The geometry of helical auxetic yarn is analyzed by microscope. According to the 

manufacture process of helical auxetic yarn, the diameter of core and wrap yarns (Dc and 

Dw), the starting angle (α) and pitch (L) are three important parameters determining the 

geometry (Figure 52 and 53). The data are given in Table 10. 

 

 

Figure 52 Geometry of a helical auxetic yarn 

 

Figure 53 Geometrical parameters 

Each geometric parameter is correlated by the following equations: 

                         
        

    
                               (55)                                                              
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                             (56) 

                           
   

 

     
                           (57) 

                                                          (58) 

Ac and Aw are the cross sectional area of core yarn and wrap yarn in helical auxetic structure. 

Table 10 Geometric parameters for the auxetic yarn 

Core diameter (Dc) 1.32 mm 

Warp diameter (Dw) 0.27 mm 

Starting angle (θ) 17.4° 

Pitch (L) 13.2mm 

Then, the biaxial tubular structure was fabricated on the braiding where 8 spindles of 

helical auxetic yarns were used. A mandrel was used in the core, around which 8 spindles of 

auxetic yarns are rotating. Figure 54 illustrates the geometric structure of the biaxial tubular 

structure. Figure 55 presents the picture of biaxial tubular structure. 
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Figure 54 Schematic of the biaxial tubular structure 

The geometry information of the biaxial tubular structure is given in Table 11. 

 

Table 11 Geometry of the biaxial tubular structure 

Starting angle 47° 

Pitch (mm) 31.45 

Mandrel diameter (mm) 10.75 

 

Figure 55 The biaxial tubular structure 
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3.4 Analysis of the Properties by FEM 

The original purpose of the biaxial tubular fabric was to fabricate a novel 3D structure 

with variable permeability on the surface. This characteristic is achieved through the auxetic 

behavior of auxetic yarns in the biaxial tubular structure. Theoretically speaking, the increase 

of width of auxetic yarns in the structure would change the open area on the surface leading 

to variable permeability. The permeability can be quantified by measurement of open area on 

the surface under different longitudinal strain. The area of open surface can be measured by 

the universal mechanical test machine associated with a camera device while the biaxial 

structure is subjected to tensile loading. Then the curve of the open surface area versus 

longitudinal strain can be drawn according to the experimental data. The FEM model of the 

biaxial tubular structure is built to calculate the open surface area under different longitudinal 

strain. The results were validated by comparing the experimental data and simulation data. 

The objective of FEM model of biaxial tubular structure is to obtain the open surface 

area as a function of longitudinal strain. The change of the open surface area is due to three 

parameters: the Poisson’s ratio of helical auxetic yarn, the edge length of unit cell and the 

angle between the two cross yarns. 

3.4.1 Micro-Mechanical Model 

The micro-mechanical model of biaxial tubular structure is to simulate the mechanical 

properties of the helical auxetic yarn. An FEM model of the auxetic yarn is established. The 

3D solid geometry model is made according to the geometric data experimentally measured. 

The same generative modeling technique in Chapter 2 is employed here for the 3D 

construction of the helical auxetic yarn. Figure 56 shows the 3D solid geometry of the helical 
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auxetic yarn.  

 

Figure 56 3D solid model of the helical auxetic yarn 

The material is defined as isotropic material. The boundary conditions to simulate the 

tensile test are derived from the compatibility of equations on the two ends. The boundary 

conditions are given in the following equations. 

                          Uac=Uaw=U                       (59) 

                           Ubc=Ubw=-U                       (60) 

where U is the prescribed displacement which can be defined in an incremental form. 

The FEM model is established such that the stress σ is determined with strain U 

prescribed. Then the stress-strain curve of auxetic yarn can be obtained and validated by 

comparison with experimental data. 

The implementation of boundary conditions is illustrated in Figure 57. Figure 58 shows 

the contour of stress distribution of helical auxetic yarn before and after the deformation. The 

simulation and experimental data are exhibited in Figure 59. The simulation data is fit quite 

well with the experimental data below the strain point at around 0.05. The inaccuracy of 

simulation data increased probably due to the plastic deformation and the rough contact 

algorithm. 
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Figure 57 Application of boundary conditions 

 

Figure 58 The contour of stress distribution before (up) and after (down) deformation 

 

 

Figure 59 Comparison between simulation data and experimental data for tensile 

property 
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It is indicated in Figure 59 that the mechanical property of auxetic yarn is highly 

non-linear. Therefore, a bilinear isotropic property is defined for the material property of 

auxetic yarn. The stress-strain curve is divided into two parts by the onset point where the 

slope of the curve is changed abruptly. The turning of the curves can also be considered as the 

yield point. The first part is fitted with a linear function which represents the linear isotropic 

property; the second part is also fitted with another linear function which represents the 

plastic behaviour (Figure 60). These two linear functions are used to define the material 

property of the helical auxetic yarn in the meso-mechanical model.  

 

Figure 60 Curve fitting with bilinear function 

After the stress-strain property of the helical auxetic yarn is obtained from the simulation, 

a 3D solid cylinder model with modified diameter is generated to represent the helical auxetic 

yarn (Figure 61). The modified diameter is given in the following equation: 

                                                                  (61)                                   
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Figure 61 Representation of helical auxetic yarn 

Then, the only mechanical property left for the helical auxetic yarn is the Poisson’s ratio. 

A Poisson’s ratio has to be no more than 0.5 for the linear isotropic part. According to the 

geometry of the modified yarn, the overall lateral strain is the sum of wrap yarn’s lateral 

strain and core yarn’s lateral strain. The Poisson’s ratio for the linear isotropic property of the 

helical auxetic yarn can be calculated by considering the laminate theory of parallel structures 

in the following equation:  

                      
 

 
 

 

  
 

 

  
 

 

  
                    (62) 

where    and    stand for the Poisson’s ratio of wrap yarn and core yarn. 

Furthermore, the probe can be defined in the FEM to measure the lowest position and 

highest position in transverse direction of the helical auxetic yarn, which gives the strain in 

transverse (  ) direction. Then the Poisson’s ratio can be calculated by Equation (63). The 

curves of the Poisson’s ratio versus longitudinal strain of the warp yarn, the core yarn, the 

experimental data of HAY and the simulation data of HAY are given in Figure 62.  

                                 
  

  
                         (63) 
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Figure 62 Poisson’s ratio versus longitudinal strain 

 

3.4.2 Meso-Mechanical Model 

 Geometry of unit cell of the biaxial tubular structure  

The biaxial tubular structure can be considered as a 2D interlaced fabric sheet by 

unwinding the structure. The periodic representative volume is a 2×2 plain woven structure 

with a certain angle between the warp and weft yarn at crossing point. The 3D solid 

geometric is generated by the same generative modelling technique used for woven fabrics. 

The geometry information of the unit cell of biaxial tubular structure is measured by 

microscope. It must be clarified that the crossing angle between the two interlaced yarns is 

2Ɵ, which is continuously changing while the shear force is increasing. Figure 63 shows the 

3D solid model of the unit cell. 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

6 

0 0.1 0.2 0.3 0.4 

P
o

is
so

n
's

 r
at

io
 

Longitudinal strain 

Experimental data of HAY 

Warp 

core 

Simulation data of HAY 



86 

 

Figure 63 3D solid model of the unit cell 

 Simulation 

The tensile test of the biaxial tubular structure along the longitudinal direction is 

considered to be equivalent to pure shear test. The relationship between the longitudinal force 

and shear force is illustrated in Figure 64 and given in the following equations. 

                                                                    (64) 

                                                                    (65) 

 

Figure 64 Illustration of tension and shear 

 

The periodic boundary conditions are still valid for the unit cell of biaxial tubular 

structure due to the periodicity of the unit cell while the overall structure is subjected to 

deformation. In particular, periodic boundary conditions can be substituted by the boundary 

conditions of prescribed forces on the edges of unit cell. The nodes on both edges of one yarn 

have exactly the opposite forces to have periodicity. The displacement in x axis must be zero 
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to avoid rigid body displacement. Figure 65 shows the application of boundary conditions. 

The boundary conditions in terms of displacements are given in the following equation: 

                                                                              (66) 

where     is the macro strain tensor which can be defined as an incremental form. This 

could be further transformed into the boundary condition in the form of forces: 

                                                          (67) 

where                        are four pairs of opposite forces which can be defined in 

Ansysworkbench. 

In addition, the condition           is applied at the cross over point (Figure 65) to 

avoid the rigid displacement. A bonded tie contact is defined at each cross over point. 

 

 

Figure 65 Application of boundary conditions 

3.5 Results and Discussion 

The shear deformation can be calculated by angle between the crossing yarns. 

                                                                     (68) 

where   is the change of angle,    is the angle after deformation and    is the angle 

before deformation  

It is assumed that the shape of the unit cell is always a parallelogram regardless of 

different crossing angles. According to the geometry of the unit cell (Figure 66), the open 
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area (A) is: 

                                                           (69) 
 

 

Figure 66 Geometry of the unit cell 

Suppose the edge length at a given tensile force F is   ; then the final edge length l is 

given by the following equation: 

                                       
          

     
                 (70) 

where    is the lateral strain of the helical auxetic yarn, 

           is the displacement of the width of the helical auxetic yarn, 

          

     
 is the displacement projected on hte axis direction of the helical auxetic yarn, 

resulted from the increase of width of the helical auxetic yarn under tension. 

The value     and   can be calculated from the FEM model of the unit cell as a function of 

incremental tensile force F. The lateral strain    is a function of the longitudinal strain    

which equals to: 

                                    
     

  
                         (71) 

The initial length was l0 = 9.83 mm 
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Figure 67 The contour of stress distribution before deformation (left) and after deformation 

(right) 

 

Figure 68 Experimental data and simulation results of each parameter  

Figure 67 presents the contour of stress distribution before deformation and after 

deformation. Figure 68 shows the final results of the model. It is clearly observed that the 

open area is decreased while the structure is subjected to incremental tension. The 

experimental data of open area versus axial force indicates that the open area is going to 

decrease at the beginning stage and then gradually increase after the lowest point at around 

250 N. This phenomenon can be explained by the combination effect of auxetic behaviour of 

the helical auxetic yarn and the decrease of the crossing angle under axial tension. The 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

0 100 200 300 400 500 

Force (N) 

Crossing angle 
(Degree) 

Unmodified edge 
length (mm) 

Modified edge length 
(mm) 

Experimental data of 
open area  

Model data of open 
area 

(mm2) 

(mm2) 



90 

increase in width of the auxetic yarn contributes to the decrease of the open area and the 

decrease of the crossing angle has the opposite effect. The FEM model based on auxetic 

behaviour and crossing angle is validated through the comparison between simulation data 

and experimental data. The major inaccuracy of the model is probably due to the relative 

sliding between helical auxetic yarns and measurement errors. The yarn’s relative sliding, 

which occurs in reality, is not taken into account in the model. The relative sliding, if it is big 

enough, could severely damage the periodicity and stability of the unit cell. If the unit cells 

do not periodically constitute the overall structure, the model is no longer valid.  

3.6 Conclusions 

A novel biaxial tubular fabric made of helical auxetic yarn is fabricated by braiding 

method. The tubular braiding fabric has variable permeability property while it is subjected to 

incremental axial forces. An FEM based mechanical model including the micro-mechanical 

and meso-mechanical model is established to investigate the mechanical properties. The 

model is validated by comparison between simulation data and experimental data. The 

auxetic behaviour of the yarn and decreasing crossing angle under axial force are the two 

major parameters to influence the permeability.    
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