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Abstract 
 

 
 Small regulatory RNAs, which usually are 20 to 24 nt in length, play crucial roles in plant 

growth, development, and stress response. Based on their origin, biogenesis and function, plant 

small RNAs can be classified into two major classes, hairpin RNAs (hpRNAs) and short 

interfering siRNAs (siRNAs). hpRNAs and siRNAs can be subdivided into two and three 

subfamilies, respectively. hpRNAs, including microRNAs (miRNAs) and other hairpin RNAs 

(ohpRNAs), are produced from hairpin-shaped precursors. siRNAs are produced from double-

stranded precursors and requires RNA dependent Polymerase. siRNAs can be categorized into 

three subfamilies, repeat-associated siRNAs (ra-siRNAs), pha-siRNAs, and cis natural antisense 

RNAs (cis-nat siRNAs). In general, miRNAs regulate gene expression at transcription level, 

while siRNAs can do either postranscriptionally or transcriptionally. In addition, ra-siRNAs are 

considered to regulate gene expression by DNA methylation.  

Gossypium plants, such as G. hirsutum and G. barbadense, are economically important plants, 

and provide natural fiber for textile industry. In addition, they also are important sources for 

proteins and seed oils. Heat stress caused by elevated high temperature is an important factor that 

affects diverse physiological processes of plants, resulting serious loss in yield. The mechanism 

of heat response has been extensively studied in anatomical, biochemical, and gene levels. But 

till one decade year ago, gene expression regulated by small RNAs is shown to be important for 

animal and plant stress response.  
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Growing studies have shown that small RNAs, primarily miRNAs and siRNAs, are involved in 

heat stress response in plants. In Arabidopsis, Oryza, or Medicago, the small RNA loci have 

been thoroughly annotated, which identified a large number of small RNAs that regulates stress 

response. However, little is known about Gossypium small RNAs and their regulatory roles in 

heat stress response. 

To annotate Gossypium small RNAs and study their roles, we constructed and sequenced forty 

four small RNAs libraries from eight different tissues from two different Gossypium species, G. 

raimondii and G. hirsutum. The samples were collected from heat-stressed or non-heat-stressed 

seedlings grown in growth chamber, or plants grown in fields under high temperature summer. 

Two deep sequencing methods, ABI Solid and Illumina, were employed to sequence the small 

RNA libraries. This generated approximately 790 million sequencing reads, which enabled us to 

annotate a large number of miRNAs, ohpRNAs, ra-siRNAs, pha-siRNAs and cis-nat siRNAs. 

Expression analysis revealed that a large number of small RNAs were significantly regulated 

between heat-stressed and non-heat-stressed tissues, or between heat-susceptible and heat-

tolerant genotypes. Some small RNAs were differentially expressed among different tissues. 

This suggested that small RNAs might be involved in the stress response of Gossypium plants to 

heat stress and might play crucial roles in Gossypium heat stress tolerance. 

This work in this study developed a systematical method in analyzing the small RNA 

transcriptomes and in annotating the small RNA loci in the genome. This would facilitate the 

study in the small RNAs and their regulatory mechanism in plant heat tolerance.  
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I. LITERATURE REVIEW 

 

1.  Plant Responses to Heat Stress 

Heat stress, a major abiotic stress, is often defined as high temperature above the 

optimum that causes plant damage and alters growth and development (Wahid et al. 2007).  High 

temperature typically affects vegetative growth and reproductive development often causing 

reproductive failure and severe yield losses (Barnabas et al. 2008; Snider et al. 2009) by creating 

a wide range of adverse impacts on physiology, metabolism, and development (Cheikh and Jones 

1994; Aloni et al. 2001; Salvucci and Crafts-Brandner 2004; Zhao et al. 2005; Qin et al. 2008; 

Ginzberg et al. 2009; Goswami et al. 2010). These inhibitory effects are mediated by disturbing 

cellular homeostasis  (Wang et al. 2004; Kotak et al. 2007a; Martiniere et al. 2011), by direct 

effects on the electron transport chain (Oukarroum et al. 2012), or through effects on Ribulose-

1,5-bisphosphate carboxylase oxygenase (Rubisco) activity (Law and Crafts-Brandner 1999; 

Crafts-Brandner and Law 2000), and by repressing respiration (Lin and Markhart 1990).  

1.1. Heat Stress as a Signal 

Heat stress response in plants involves a complex series of events, but the focus of heat 

stress work has traditionally centered on the heat-shock response and the regulation of heat shock 

and other proteins during and after the perception of heat stress. Heat stress responses could be 

divided into different phases consisting of perception of heat, signal transduction, and alterations 

of gene expression (Verslues and Zhu 2005). 
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Two basic mechanisms for the sensing of heat by cells have been proposed.  These 

include sensing of heat signal by membranes, particularly the plasma membrane, based on 

changes in membrane fluidity, and in photosynthetically active tissues sensing of heat by the 

photosystems of the chloroplast typically described as induced photoinhibition.   

The plasma membrane is considered among the initial responses involved in sensing 

stress (Hofmann 2009).  The fluctuation of temperature disrupts the integrity of biological 

membranes, and leads to the changes in the components of fatty acid (Saidi et al. 2009; 

Martiniere et al. 2011).  These changes in the lipid composition of the membrane play a role in 

heat perception and initiation of stress signal transduction (Vigh et al. 1993; Falcone et al. 2004; 

Los and Murata 2004; Saidi et al. 2010). Membrane fluidity changes regulate calcium-dependent 

heat-signaling pathways (Saidi et al. 2010).  These changes in membrane fluid and components 

are required for the generation and transmission of stress signals to activate HSP (heat shock 

protein) gene via HSF1 (heat stress transcription factor) (Vigh et al. 2007).  Heat stress signal is 

perceived by the sensors embedded in the membrane and triggers the influx of Ca2+ from 

extracellular to cytoplasm. The elevated Ca2+ activates the receptors of Ca2+ binding proteins and 

transduces the signal to down-stream effectors, including MAP kinase, heat stress and factors, 

etc. Consequently, the heat-stress responsive genes are activated. In this model, G proteins are 

proposed to play an important role in activation of the signalling pathway and transduction of the 

signal through GTP-coupled phosphorylation. In addition, ROS is considered a crucial secondary 

messenger that transfers the heat stress signal to downstream effectors, such as Calmodulins. But 

it is not clear how the Ca2+ is released under stress condition, because plants lack the receptors of 

InP3 that is found in animals.   
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During photosynthesis, electrons stripped from water encounter PSII, the most heat-labile 

component of the photosynthetic apparatus (Law and Crafts-Brandner 1999; Sharkey 2005).  The 

PSII core complex is destabilized by high temperature, causing sensitivity of PSII to heat (De 

Las Rivas and Barber 1997).  Manganese ions (Mn2+) are critical to the oxygen evolving 

apparatus that adjoins PSII, and Mn2+ is released from the PSII core complex by high 

temperature, causing a loss of oxygen-evolving activity and leading to ROS production (Nash et 

al. 1985; Yamane et al. 1998). ROS, induced by high temperature oxidizes PS II core reaction 

center D1 protein (De Ronde et al. 2004; Wang et al. 2010a). Further photosynthetic inhibition is 

mediated by the effect of ROS on thiol-containing enzymes in the Calvin cycle leading to 

photoinhibition of carbon fixation (Kaiser 1979; Nishiyama et al. 2001; Takahashi et al. 2002).  

In addition, Rubisco appears to be a limiting factor that inhibits photosynthesis upon heat stress 

(Salvucci and Crafts-Brandner 2004).  

1.2.  Transduction of the heat signal and gene expression 

Perception of increase in temperature is a cellular signal which can then be transduced 

through a series of second messengers (Mahajan and Tuteja 2005; Verslues and Zhu 2005). Ca2+ 

and ROS constitute the most important intracellular signaling molecules that participate in the 

regulation and integration of diverse cellular functions (Mazars et al. 2010). In additional, there 

are significant interactions among different pathways creating a complex regulatory network that 

may be far more important than individual effects. 

1.2.1. Calcium signaling 

Ca2+ is a critical component in heat stress signaling pathways (Kleinhenz and Palta 2002; Galon 

et al. 2010; Reddy et al. 2011; Wu and Jinn 2012).  Ca2+ sensors are also called calcium-binding 
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proteins that sense the change in cytosolic Ca2+ concentration (Ranty et al. 2006; Boonburapong 

and Buaboocha 2007), and transduces the signal to downstream factors, including 

phosphorylation cascades activating the transcription of stress-responsive genes (Szymanski et 

al. 1996; Choi et al. 2005; Mahajan and Tuteja 2005; Kushwaha et al. 2008; Sinha et al. 2011; 

Kim 2013). The majority of these Ca2+ binding proteins possess one or more highly conserved 

helix-loop-helix motifs known as EF-hands that specifically bind Calcium ions (Day et al. 2002). 

The EF-hand Ca2+ binding proteins can be broadly grouped into three major families: calmodulin 

(CaM) and calmodulin-like proteins (CMLs) (Luan et al. 2002), calcium-dependent protein 

kinases (CDPKs, Harper et al. 2004; Harper and Harmon 2005; Reddy et al. 2011; Kim 2013), 

and calcineurin B-like proteins (CBLs) with the associated CBL-interacting protein kinases 

(CIPKs, Luan 2009 (Kim 2013). These sensor complexes detect calcium resulting in transduction 

of the signal to downstream effectors (Liu et al. 2003; Kim et al. 2009).  

Ca2+-regulated gene expression has been implicated in plant stress responses, as the key 

secondary messenger of stress signaling (Kim et al. 2009; Tan et al. 2011; Wu and Jinn 2012; 

Cheval et al. 2013). Ca2+/Calmodulin also mediates the phosphorylation of NADPH oxidase 

(NOX), which is critical for the generation of ROS (Pandey et al. 2011). 

1.2.2. ROS Signaling 

Reactive oxygen species (ROS) play a dual role in stress physiology, i.e. they can be both 

responsible for stress damage, and they can serve as local or systemic signals producing 

secondary stress responses.  Several molecular ROS species including superoxide (O2
-), 

hydrogen peroxide (H2O2), and hydroxyl radical (OH•), impair organelle function (Foyer and 

Noctor 2005; Triantaphylides et al. 2008) and induce programmed cell death (Rhoads et al. 2006; 
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Zhang et al. 2009).  ROS are continually and unavoidably produced by the electron transport 

chain during aerobic respiration in the mitochondria (Apel and Hirt 2004) and as a result of the 

electron transport process in chloroplasts during photosynthesis (Turrens 2003; Apel and Hirt 

2004; Asada 2006).  Despite their destructive activity, ROS may function as second messenger 

involved in cell rescue and defense signaling pathways (Desikan et al. 2001; Yan et al. 2007; 

Sharma et al. 2012).  

Plants code multiple antioxidant proteins, such as SODs, FeSOD, MnSOD, and 

Cu/ZnSOD, which are capable of scavenging of ROS and alleviating oxidative damage (Miller et 

al. 2007; Gill and Tuteja 2010).  SODs are considered to be the first line of defense system 

against ROS and catalyze the dismutation of superoxide (O2
-) into H2O2 (Alscher et al. 2002). In 

the later reduction reactions, H2O2 and other products are reduced by a series of enzymes, 

including APX (ascorbate peroxidase), Catalase (CAT), MDAR (malondialdehyde reductase), 

GPX (Glutathione peroxidase), et al. (Apel and Hirt 2004). 

Besides SODs, several other proteins, including APX (ascorbate peroxidase) and 

peroxiredoxin, play crucial roles in plant response to oxidative stress (Yoshimura et al. 2000; 

Suzuki and Miter 2006; Kim et al. 2010). The transgenic Arabidopsis plants overexpressing heat 

shock transcription factor 3 (HSF3) demonstrate basal thermotolerance, and an isoform of 

ascorbate peroxidase (APX), APXS, is consistently expressed in transgenic plants and strongly 

induced in non-transgenic plants upon heat stress, which suggests APX might play a  regulatory 

role in heat stress response  (Panchuk et al. 2002).  

TFs may be critical components in the ROS signaling pathway (Desikan et al. 2001; 

Huang et al. 2010; Bassel et al. 2011; Pitzschke and Hirt 2006).  Transgenic Arabidopsis plants 
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overexpressing CBF2 (C-repeat/ dehydration-responsive-element binding factor genes), a 

member of CBF transcription factors, have enhanced tolerance to hydrogen peroxide stress, and 

produce less ROS (Sharabi-Schwager et al. 2011). However, overexpressing CBF2 has no 

impact on the expression of antioxidant enzyme genes and oxidative stress responsive genes, 

including SOS, CAT, APX, and DPX et al. (Sharabi-Schwager et al. 2011). 

 

1.2.3. Inositol-tris-phosphate Signaling Pathway 

Inositol-1,4,5-phosphate (IP3) is an important secondary messenger that is involved in a wide 

range of cellular process (DeWald et al. 2001; Walker et al. 2002; Tuteja and Sopory 2008a; 

Reddy et al. 2011). IP3 is produced through the hydrolysis of phosphatidylinositol 4,5-

bisphophate by phospholipase C (PLC) (Walker et al. 2002). In animals, IP3 regulates the release 

of Ca2+ from the Ca2+ stores acting on receptors located on the membrane (Richardson and 

Taylor 1993, Mikoshiba 2007). However, due to the absence of IP3 receptors in plants, the 

mechanism of IP3 is not understood (Krinke et al. 2007, Kudla et al. 2010). Alternatively, IP3 

might be converted into IP6 (Inositol hexakisphosphate or InsP6) that induces Ca2+ influx from 

vacuole (Lemtiri-Chlieh et al. 2003).  

IP3 also participates directly in a variety of physiological processes (Di Paolo and De 

Camilli 2006). Consequently, IP3 rapidly accumulates in the cells in plants and animals likely by 

activation PLC under heat stress (Kiang and McClain 1993; Liu et al. 2006). The accumulation 

of IP3 induces the expression of heat shock protein (HSP) gene, and inhibition of PCL down-

regulates the expression of HSP genes (Liu et al. 2006).  
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1.2.4. Hormone-regulated gene expression under stress 

Heat stress has been shown to change hormone homeostasis, including content, 

biosynthesis, and compartmentalization (Maestri et al. 2002, Qu et al. 2013).  Some hormones, 

including Abscisic acid (ABA), ethylene, and Salicylic acid (SA), have been implicated in 

signaling pathways in response to environmental stimuli including heat stress (Gong et al. 1998; 

Borsani et al. 2001; Larkindale and Knight 2002; Cao et al. 2006), thereby mediating heat-stress-

dependent changes in gene expression  (Verslues and Zhu 2005; Nakashima et al. 2009). Also 

the application of plant hormones can alleviate the stress injury and induces stress responsive 

gene expression (Dive et al. 2010; Ghanashyam and Jain, 2009).  

ABA regulates plant growth and development as well as adaption to stresses including 

heat stress (Larkindale and Knight 2002; Tuteja 2007; Cutler et al. 2010; Romero et al. 2012).). 

The roles of ABA in regulating the heat stress response have been studied through the screening 

of ABA-deficient and ABA-insensitive mutants (Larkindale et al. 2005; North et al. 2007).  The 

accumulation of ABA and perception of ABA induces intermediate signaling events that control 

downstream stress responses, including sugar-sensing pathways and ROS signaling pathways 

(Verslues and Zhu 2005).   

H2O2 has been demonstrated to be a crucial signaling molecule in stress signal 

transduction and is required for the expression of heat shock genes (Volkov et al. 2006; Qu et al. 

2013). ABA is able to induce the production of H2O2 and enhance the activities of antioxidant 

enzymes localized to both chloroplast and cytoplasm, while an inhibitor of NADPH oxidase 

almost completely represses the increase in the activities of those antioxidant enzymes (Hu et al. 

2005). In addition, ABA-induced H2O2 is accumulated in only apoplast, and the greatest 
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accumulation occurs in the walls of mesophyll cell facing large intercellular spaces (Hu et al. 

2005).  

Of nine heat shock genes strongly induced by heat stress, two genes, OsHSP71.1 is 

induced by ABA and OsHSP24.1 is repressed (Zou et al. 2009). It appears that ABA is involved 

in plant heat stress response probably via H2O2 signaling pathway in which some specific heat 

shock protein genes are induced or repressed for adaption to heat stress 

There are ABA receptors both localized in membranes and free in the cytosol that can 

function in ABA singling pathways (Guo et al. 2011), and externally-applied ABA can induce 

plant heat stress tolerance (Gong et al. 1998).  In addition, CaCl2 pre-treatment is able to enhance 

ABA-induced heat tolerance.  This observation is consistent with a role for Ca2+-signaling in 

ABA-induced heat stress tolerance (Gong et al. 1998).   

Ethylene as a phytohormone affects myriad development processes (Cao et al. 2008; Diaz 

and Alvarez-Buylla 2009; Zhang et al. 2013) and adaptive responses to various stresses (Guo and 

Ecker 2004; Cao et al. 2007; Firon et al. 2012). Heat stress induces the production of ethylene 

that regulates the heat stress induced kernel abortion and suppression of grain maturation (Hays 

et al. 2007). 

Ethylene signaling participates in various stress responses via regulating the expression 

of ethylene receptors (ETR) localized to the ER (Chen et al. 2002; Grefen et al. 2008; Zhong et 

al. 2008; Mayerhofer et al. 2012) and that regulate downstream signal transduction possibly  

involved in the ROS signaling pathway (Youm et al. 2008; Tian et al. 2011; Xu et al. 2011). 

Calmodulin plays an important role in plant by directly binding to the ethylene receptors, 

implicating a crucial role of Ca2+ in ethylene signaling pathway (Yang and Poovaiah 2000; Nie 
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et al. 2012).  Overexpression of ERF/AP2 (ethylene response factor/APETALA2) transcription 

factor enhances tolerance to oxidative stress caused by heavy metal and heat through modulation 

of antioxidant, such as SOD, APOX (ascorbate peroxidase), and GR (glutathione reductase) 

(Tang et al. 2005), and heat shock protein 70 (HSP70) (Xu et al. 2011).  

Salicylic acid (SA) is a plant phenolic hormone that functions as a plant growth regulator 

and regulates an array of physiological processes, including a variety of stress responses (Kang 

et al. 2012; Lan et al. 2013; Shakirova et al. 2013).  Growing evidence demonstrates that SA 

regulates plant stress responses, including oxidative stress caused by heat (Wang et al. 2010a; 

Noriega et al. 2012; Mejia-Teniente et al. 2013). Although the mechanism of SA in a heat stress 

signaling pathway is not clear, a number of studies have revealed that SA is involved in the plant 

heat stress response (Larkindale and Knight 2002; Wang et al. 2010a).  

These studies show that SA can induce plant tolerance to oxidative stress by improving 

the activities of antioxidant enzymes, such as peroxidase (POD), CAT, SOD, GR, and APX (Al-

Whaibi et al. 2012; Mejia-Teniente et al. 2013). SA can activate the lipid signaling enzymes via 

increase the activity of phospholipase D and NADPH oxidase that induces the products of ROS 

(Kalachova et al. 2013). These suggest that a key role of SA is to induce ROS signaling that can 

activate the down stress gene expression. 

SA activates the expression of PR protein genes (Potlakayala et al. 2007; Zhang et al. 

2010), and a critical component of the SA signaling is the non-expression of pathogenesis related 

protein, NPR1, that is translocated into nucleus and interacts with TGA transcriptional factors 

(bZIP type), which are required for the expression of PR1 gene in response to SA levels (Rochon 

et al. 2006; Wu et al. 2012). In addition, it has been shown that the application of exogenous SA 
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is able to activate phospholipase D (PLD) and subsequently to induce the accumulation of 

phosphatidic acid (PA), which in turn results in the rapid increase of ROS generated by NADPH 

oxidase (Kalachova et al. 2013).  

            Studies have shown that cross-talks between phytohormones and other molecules might 

be present in plant stress response. For example, ROS and reactive nitrogen species, nitric oxide 

(NO), are key molecules regulating ABA-induced signaling (Zhao et al. 2001; Desikan et al. 

2004).  These observations suggest that plant hormones, like ABA, regulate plant stress response 

through a complicated networks and other studies have shown that at least ethylene- and salicylic 

acid- signaling networks are involved in heat stress signaling (Larkindale et al. 2005). 

1.3. Heat Shock and Heat-induced Changes in Gene Expression. 

Plants, like many other organisms, have developed various adaptive mechanisms to cope 

with stress (Floris et al. 2009; Wu and Jinn 2012; Kimura et al. 2013).  These mechanisms 

invariably involve changes in the expression of genes (Kotak et al. 2007b; Wu and Jinn 2012; 

Mackova et al. 2013).  Although the level of protein expression largely relies on regulation at the 

transcriptional level, studies have revealed that post-transcriptional regulation of gene expression 

plays crucial roles in plant responses to environmental stresses (Wang et al. 2010a; Li et al. 

2011; Zhu et al. 2011; Khraiwesh et al. 2012).   

Heat stress changes the pattern of gene expression leading to the up-regulation of heat 

shock proteins (HSPs) and the down-regulation of many housekeeping proteins (Volkov et al. 

2003; Goswami et al. 2010). The HSPs are molecular chaperones that are required for the 

development of thermotolerance in plants and other organisms (Hong and Vierling 2001). These 

proteins are highly conserved across different species and are produced in response to a brief 
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sublethal high temperature exposure followed by exposure to an otherwise lethal temperature in 

virtually all organisms (Bondino et al. 2012). Exposure to high temperature results in protein 

denaturation with the HSP proteins serving as chaperones to prevent protein denaturation. HSPs 

play a crucial role in protein folding by maintaining protein conformation and function (Hilton et 

al. 2013).  

 Stress granules are stress-induced messenger riboucleoprotein (mRNP) particles that 

consist of the small ribosomal subunit, translation initiation factors, poly(A)-binding protein 

(PABP), and other RNA-binding proteins (Anderson and Kedersha 2006; Mazroui et al. 2006; 

Uniacke and Zerges 2008; Buchan and Parker 2009). These granules function to sequester, 

silence and/or degrade RNA transcripts as part of a mechanism that adapts patterns of local RNA 

translation to facilitate the stress response (Buchan and Parker 2009; Adeli 2011; Wolozin 2012). 

Housekeeping transcripts are stored in stress granules whereas stress-responsive gene transcripts 

are excluded from these particles in heat- stressed cells (Kedersha and Anderson 2002). In plants, 

stress granules can be induced in chloroplast by associating with the large subunit of Rubisco in 

response to oxidative stress under high light (Uniacke and Zerges 2008). The stress granules are 

speculated to protect the mRNAs from heat-induced damage, though the mechanism of 

formation of stress granules remains elusive (Hu et al. 2010; Onomoto et al. 2012).  

2. Small Regulatory RNAs: An Overview. 

The lin-4 mutation in Caenorhabditis elegans was first shown to regulate developmental 

timing, through inhibiting the translation of the Lin-14 gene (Lee et al. 1993). This was the initial 

study that uncovered an evolutionarily conserved mechanism of regulating gene expression by 

non-coding small RNAs. The small regulatory RNA was named micro-RNA (miRNA).  The 
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miRNAs are 20-24nt non-coding RNAs that post-transcriptionally regulate gene silencing in 

eukaryotes (Bartel 2004). In the past decade, thousands of miRNAs and a variety of other classes 

of small regulatory RNAs have been identified from various animal and plant sources 

(Kozomara and Griffiths-Jones 2011) and their functions have been explored in considerable 

details (Fehniger et al. 2010; Zhang et al. 2011b; Wu et al. 2012).   

In higher plants, miRNAs regulate a variety of physiological processes, including vegetative 

growth, flower timing, and auxin signaling (Wu et al. 2006; Nag et al. 2009).  Recent studies 

have shown that among the myriad of plant small regulatory RNAs, miRNAs play a critical role 

in the regulatory responses to various environmental stimuli (Trindade et al. 2010; Li et al. 2011; 

Zhu et al. 2011; Khraiwesh et al. 2012).  Our current knowledge of small regulatory RNAs 

provide diverse classes and complex mechanisms of biogenesis and mode of action among these 

regulatory RNAs. Following is a brief overview of the small regulatory RNAs.. 

Small regulatory RNAs (srRNAs), are short non-protein coding RNAs that regulate gene 

expression by either transcriptional gene silencing (TGS) or posttranscriptional gene silencing 

(PTGS) (Khraiwesh et al. 2012).  Based on their characteristics, origin and biogenesis, small 

RNAs are grouped into three major classes: hairpin RNAs (hpRNAs), short interfering (siRNA), 

and piwi-interacting siRNAs (piRNAs) (Axtell 2013).  The hpRNAs can be divided into 

miRNAs and a variety of other hpRNAs or non-mRNA hpRNAs), and siRNA can be divided 

into heterochromatic siRNAs (hc-siRNAs), natural-antisense transcript siRNAs (nat-siRNA), and 

secondary siRNAs such as trans-acting siRNAs (ta-siRNA) (Axtell 2013). The piRNAs are a 

class of special small RNAs that are expressed in germ line cells and have only been found in 

animals (Sarot et al. 2004; Vagin et al. 2006; Axtell 2013).  
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The hpRNAs are produced from single-stranded hairpin precursors cleaved by DCL 

proteins (Axtell 2013). The miRNAs are produced by precise excision primarily by DCL1 that 

yield one or a few functional small RNAs, whereas non-miRNA hpRNAs are processed from 

hairpins by imprecise cleavage of DCL2-4 that produce small RNA population with size 

distribution of 21 to 24nt (Axtell 2013). Typically, precursors of non-miRNA hpRNAs are much 

larger than typical miRNAs (Axtell 2013). 

In plants, canonical miRNAs are ~21nt in length, while a small subset of miRNAs are 

longer or shorter (Axtell et al. 2011). Generally, canonical miRNAs are produced by DCL1, and 

other classes are produced by different DLCs (DCL2-4) and associated with different AGO 

proteins (Axtell 2013). Canonical miRNAs usually repress gene expression either by inhibition 

of target gene translation or by guiding their cleavage (Chorostecki et al. 2012), while the 24nt 

long miRNAs can direct the methylation of target genes (Wu et al. 2010). Some canonical 

miRNAs can trigger the biogenesis of so-called secondary siRNAs, such as ta-siRNAs (Zhai et 

al. 2011; Xia et al. 2013). 

Non-miRNA hpRNAs are initially observed in plants and produced from long inverted 

repeats (IRs) (Henderson et al. 2006). The hpRNAs can be processed by different DCLs 

depending upon their respective RNA polymerase and corresponding promoters (Wang et al. 

2008). The 21nt small RNAs are typically produced by 35 S Pol line, whereas 24-and/or 22-nt 

small RNAs are produced by Pol III line (Wang et al. 2008). The 24nt small RNAs can direct 

mRNA degradation, and both 24nt and other small RNAs can induce histone cytosine 

methylation (Wang et al. 2008). These observations suggest that non-miRNA hpRNAs are 

regulatory small RNAs and that their processing depends upon respective promoters (Wang et al. 

2008). 
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In animals, some non-miRNAs hpRNAs are produced from the loop of miRNA hairpins 

and can be recruited into Argonaute complexes to direct target repression (Okamura et al. 2013). 

The load of loop small RNAs into AGO complexes are highly regulated and conserved in flies 

and mammals (Okamura et al. 2013). Thus, hairpins can be processed by DCLs in at least two 

distinct manners, precision and imprecision. But the mechanism controlling the precise or 

imprecise cleavage of hairpins is not well understood. 

2.1 miRNAs and siRNAs 

Two major classes of small RNAs are the miRNAs and the siRNAs that are produced by 

a ribonuclease III-like protein referred to as Dicer that cleaves sRNAs from a double-stranded 

region of RNA (Bartel 2004; Khraiwesh et al. 2012).  Although miRNAs and siRNAs are similar 

in size (21-24 nt) and composition, they differ by their origin and biogenesis (Bartel 2004; Chen 

2009).   

The endogenous siRNAs are more diverse and are 21-24nt in length. These are often 

derived from perfectly double-stranded precursors produced by the RNA polymerase IV or V 

and RNA-dependent RNA polymerase (RDR2) (Mosher et al. 2009; Haag et al. 2012; Zhang et 

al. 2012). The siRNAs represent largest family of small RNAs typically found in most 

eukaryotes, and can be classified into several functional groups such as heterochromatic siRNAs 

(hc-siRNAs) also known as repeat associated siRNAs (ra-siRNAs), tans-acting RNAs (ta-

siRNAs), natural antisense siRNAs (nat-siRNAs), and long siRNA (lsiRNA). The hc-siRNAs, 

also referred to as ra-siRNAs, are typically 23nt-24nt in length, and are produced from repeat-

regions of the chromosome (Pikaard et al. 2008).  These siRNAs are specifically involved in 

transcriptional gene silencing by sequence specific DNA methylation and are particularly 
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important in maintaining silencing of transposable element sequences in the heterochromatic 

regions of chromosomes utilizing DNA-methylation (Blevins et al. 2009; Zhai et al. 2011). The 

24-nucleotide hc-siRNAs or ra-siRNAs are produced by the PolIV/RDR2/DCL3 pathway and 

function in RNA-directed DNA methylation and histone modifications (Matzke and Birchler 

2005; Zaratiegui et al. 2007; Matzke et al. 2009; Wierzbicki et al. 2009). The ta-siRNAs are 

generally 21nt in length, and are produced by TAS genes (Yoshikawa et al. 2005). The TAS genes 

are only found in plants and are not known to encode any proteins (Yoshikawa et al. 2005). The 

processing of TAS transcripts is trigged by certain miRNAs, and requires RNA-dependent RNA 

polymerase (RdRP) (Yoshikawa et al. 2005).  The ta-siRNAs require DCL4, RDR6, and a 

miRNA to mediated cleavage to initiate processing (Howell et al. 2007).  

The nat-siRNAs are likely the most abundant group of siRNAs (Borsani et al. 2005; 

Katiyar-Agarwal et al. 2007; Zubko and Meyer 2007; Jin 2008; Ron et al. 2010; Zhang et al. 

2012), and are produced from many diverse locations in the genome utilizing the RNAi pathway 

described above.  Functionally, these RNAs are more likely involved in biotic and abiotic stress 

in plants (Borsani et al. 2005; Katiyar-Agarwal et al. 2006; Jin et al. 2008; Zhang et al. 2012). 

Some nat-siRNAs accumulate in specific developmental stages (Zubko and Meyer 2007; Ron et 

al. 2010). The biogenesis of salt- and bacterium-induced nat-siRNAs appear to require DCL1 

and/or DCL2, RDR6, and PolIV in Arabidopsis (Borsani et al. 2005; Katiyar-Agarwal et al. 

2006). Moreover, the expression of ARIADNE14 is de-repressed in dcl1, hen1, hyl1, sde4, rdr2 

and sgs3, suggesting that the nat-siRNAs generated from the ARIADNE14 /KOKOPELLI  

overlapping pair is dependent on DCL1, HEN1, HYL1, RDR2, SGS3 and PolIV (Ron et al. 

2010). The nat-siRNAs have been found in budding yeast and Schistosoma japonicum 

(Drinnenberg et al. 2009; Cai et al. 2011). Despite these reports, there remains a need for 
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conclusive evidence for the occurrence of nat-siRNAs in plants (Henz et al. 2007), because their 

features are not well understood. 

  

 

Table 1. A summary of miRNAs and siRNAs in plants 

Small RNAs 
Length 

(nt) 

Enzyme for 

transcription 

Enzyme for 

cleavage 
Precursors 

miRNAs 
21-24 

(majority 21) 
Pol II DCL1 Hairpin-like precursors 

hpRNAs 21, 22 or 24 Pol II or Pol III DCL2-4 Hairpin-like precursors 

ta-siRNAs 21 - 
DCL4, SGS3 

and RDP6 
TAS gene 

hc-siRNAs 23-24  Pol IV 
RDP2, and 

DCL3 
Repeat sequences 

nat-siRNAs 

 
24 Pol IV 

DCL1, DCL2, 

or DCL3, and 

RDP6 

Hybridization of 

complementary and 

independently transcribed 

RNAs 

 

On the other hand, miRNAs are typically 21nt-22nt in length, and regulate gene 

expression post-transcriptionally (Bartel 2004; Khraiwesh et al. 2012). The miRNAs are 

generated from the double stranded stem of a hairpin loop structure that is transcribed as a single 

strand RNA using RNA polymerase II (Bartel 2004; Axtell et al. 2011).   

2.2 Biogenesis of plant miRNAs. 
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The primary miRNAs (pri-miRNAs) are transcribed as long RNA precursor by RNA 

polymerase II from miRNA genes that are located in the intergenic regions between protein-

coding genes, as shown in Figure 2 (Chen 2009). The pri-miRNAs are post-transcriptionally 

modified with 5’-cap and 3’-polyadenylate tail in a manner similar to mRNA (Chen 2009).  The 

pri-miRNAs are processed by dicer protein to produce precursor miRNA (pre-miRNAs).  Pre-

miRNAs are capable of self-folding into hairpins, which is a key characteristic for bioinformatic 

identification of miRNAs (Fang and Spector 2007; Meyers et al. 2008).  Pre-miRNAs are then 

cleaved by DCLs into miRNA-miRNA* (miRNA*=miRNA star, the complementary strand to 

the mature miRNAs) duplexes, with the assistance of two proteins: HYL1 (a double-stranded 

RNA binding protein) (Han et al. 2004) and SE (a zinc finger protein) (Yang et al. 2006).  The 

miRNA-miRNA* duplexes are stabilized by 2-base methylated overhangs at 3’ ends,  which are 

generated the HEN1 protein (Yu et al. 2005).  With the assistance of HSATY, miRNA-miRNA* 

duplexes are exported into cytoplasm (Park et al. 2005; Chen 2009).  In the cytoplasm, mature 

miRNAs are loaded into AGO protein complex to form an RNA Induced Silencing Complex 

(RISC) that guides the degradation or translation inhibition of target mRNAs (Baumberger and 

Baulcombe 2005). Sequence partners of mature miRNAs, miRNA*s, are proposed to be 

degraded without further function (Brodersen and Voinnet 2009).  

In Arabidopsis, there are four Dicer-like (DCL) proteins (named for the genes from 

which they derive, i.e. DCL1, DCL2, DCL3, and DCL4).  These DCL protein homologs are 

believed to be responsible for miRNA biogenesis, but different DCLs produce different length 

miRNAs (Axtell et al. 2011).  DCL1 is responsible for the biogenesis of 21nt miRNAs, while 

DCL2, DCL3, and DCL4 generate 22nt, 24nt, and 21nt miRNAs, respectively.  Different length 

miRNAs appear to be associated with different AGO clades.  For example, 21nt miRNAs are 
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associated with AGO1/10/7, while 24nt miRNAs is loaded into AGO4/6/9 complex (Axtell et al. 

2011; Manavella et al. 2011).  Some studies have shown that the first base of miRNAs may be 

crucial for miRNA loading to AGO proteins (Wang et al. 2010; Manavella et al. 2011). 

  

 

 

 

 

 

Figure 1.  Biogenesis of plant miRNAs, modified from Chen (2009) 

The primary miRNA transcripts (pri-miRNAs) are transcribed by RNA polymerase II and modified by 

adding 5’ cap and 3’ poly adenine (A). Pri-miRNAs are cleaved into pre-miRNAs (miRNA 

precursors) and then mina-miRNA* duplexes characterized with two base overhangs. The duplexes 

are methylated by HEN1 at the 3’ ends, and then exported into cytoplasm by HASTY (HST). The 

mature miRNAs are incorporated into RNA-induced silencing complex with the core of AGO 

(Argonaute), which functions to slice the target mRNAs.  
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Although plant and animal miRNAs share some similarities in functions, these are 

distinct in their origins and biogenesis pathways (Axtell et al. 2011).  The biogenesis of plant 

miRNAs is completed in nucleus. First, plant pri-miRNAs are transcribed by RNA polymerase 

II, and processed into pre-miRNAs by Dicer-like proteins (primarily DCL1) and consequently 

miRNA-miRNA* duplexes are produced (Axtell et al. 2011). In contrast, the maturation of 

animal miRNAs is primarily completed in cytoplasm. Most of animal pri-miRNAs are 

transcribed by RNA polymerase II (Kim et al. 2009), though some of animal pri-miRNAs are 

products of RNA polymerase III (Borchert et al. 2006). The pre-miRNAs of animals are exported 

into cytoplasm and subsequently processed to miRNA-miRNA duplexes by Dicer (Kim et al. 

2009).  In addition, plant miRNA-miRNA* complexes are methylated at 3’-ends for preventing 

degradation (Yu et al. 2005), whereas most products of animal miRNAs are not  (Axtell et al. 

2011).  Also plant miRNA precursors vary in length and minimum free energy (MFE) compared 

to animal pre-miRNAs (Thakur et al. 2011; Xuan et al. 2011).  For example, pre-miRNAs in 

plants vary from 60 to several hundred nucleotides, whereas most of animal pre-miRNAs are 70- 

80nt (Zhang et al. 2006a; Thakur et al. 2011; Yang and Li 2011).  

2.3 Recognition of miRNA-target 

The miRNAs regulate gene expression either by inhibition of translation or by 

degradation of mRNAs, and the specificity of this regulation is determined by the 

complementarity between miRNAs and their targets (Bartel 2004).  When miRNAs show perfect 

or near-perfect complementary match to their target mRNA, the target mRNAs are cleaved and 

degraded (Brodersen and Voinnet 2009).  Alternatively, if the mRNA does not have a perfect 

match to miRNA, translational inhibition rather than cleavage can occur (Zeng et al. 2003; Bartel 

2004; Dai et al. 2011).  In some cases, translational repression can also occur even with near-
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perfect complementarity between the target and the miRNA (Gandikota et al. 2007). For 

example, a mutation in miR398 does not affect the accumulation target genes (CSD1 and CSD2) 

(Dugas and Bartel 2008).  Alternatively, translational repression can also occur even with near-

perfect complementarity between targets and miRNAs (Gandikota et al. 2007).  Target sites of 

plant miRNAs are predominantly found in coding regions, but can be located in UTRs regions, 

as well (Brodersen and Voinnet 2009). 

In both animals and plants, miRNAs recognize their targets through “seed” sequences 

(Wang et al. 2010). The core of the seed sequences resides between nucleotides 2-7 measured 

from the 5’-end of the guide strand, which sometimes can include the nucleotide in position 8 

(Wang et al. 2010).  However, in some cases a single nucleotide change beyond the seed with 

central pairing can be important for miRNA-target recognition (Wang et al. 2010).  It has also 

been observed that both an unpaired “bulge” and GU-wobble are present in plant miRNA/target-

interaction (Jones-Rhoades and Bartel 2004). 

2.4 Regulatory Roles of miRNAs in Plants. 

Plant Growth and Development. The functions of plant miRNAs have been intensively 

reviewed (Bartel 2004; Yang et al. 2007; Chen 2009; Cuperus et al. 2011).  In plants, miRNAs 

are involved in a variety of physiological processes, including growth and development, auxin 

homeostasis, and biotic and abiotic stress responses (Abdel-Ghany and Pilon 2008; Meng et al. 

2010; Zhu et al. 2011; Yu et al. 2012).  The functions of plant miRNAs have been determined 

using transgenic plants overexpressing miRNA genes (Chuck et al. 2011) or using gain-of-

function mutants in which miRNA-resistant mutant genes are expressed (Jung et al. 2009). The 

targets of miR165/166 are PHABULOSA (PHB) and PHAVOLUTA (PHV), two genes that 
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control leaf polarity (Mallory et al. 2004). When a single mismatch is added to the 

complementary region between miR165 and the PHB mRNA, transgenic plants have radicalized 

leaves with ectopic patches of adaxial tissue on the abaxial surface, and ectopic meristems 

(Mallory et al. 2004).  

The first identified miRNA in Arabidopsis, MIR-JAW encoded by jaw-D, guides 

messenger RNA cleavage of several TCP genes (TCP1-4) controlling leaf development (Palatnik 

et al. 2003).  In the dominant mutant of jaw-D in which MIR-JAW is overexpressed, the 

expression of TCP genes is reduced (Palatnik et al. 2003) .  As a results, the leaves are not flat, 

but are epinastic and “crinkly” similar to the CIN gene mutation of Antirrhinum majus (Palatnik 

et al. 2003).  The constitutive expression of TCP2 and TCP4 partially rescues the leaf defects of 

jaw-D (Palatnik et al. 2003).  In addition , a mutant of TCP2 is able to rescue the leaf shape and 

curvature defects of jaw-D more completely than overexpression of TCP2 (Palatnik et al. 2003), 

and a TCP4 overexpression mutant has longer hypocotyles and smaller leaves than wild type, 

which is similar to plants with TCP4 mutation (Palatnik et al. 2003).  

Jaw-D is currently known as miR319a that regulates the development of sepals through 

TCP4 as a target (Nag et al. 2009).  A miR319a mutant, miR319a129, displays aberrant 

development of petals, while wild-type miR319a is able to rescue this defect. GUS activity tests 

show that there is no functional-overlapping among miR319a, miR319b, and miR319c.  The 

mutant of miR319a129 (G→A at the 12th base) causes miR319a129 to lose targeting ability to 

TCP4 mRNA.  However, introduction of a mutated recognition site for miR319a129 into TCP4 

mRNA suppresses the phenotypic defect. Therefore, miR319a functions to regulate the 

development of petals by controlling posttranscriptional expression of the TCP4 gene (Nag et al. 

2009).  In addition, miR319 also participates in plant stress response, such as salt and drought, et 
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al. (Zhou et al. 2013). Overexpressing osa-miR319a (rice miR319a) in Creeping bentgrass 

(Agrostis stolonifera ‘Penn A-4’) alters morphological changes and exhibits enhanced tolerance 

to salt and drought via regulating at least putative target genes belonging to TCP family, 

AsPCE5-8 and AsTCP14 (Zhou et al. 2013). 

The miR172 regulates the expression of the APETALA2 (AP2) transcription factor gene 

in Arabidopsis by regressing AP2 translation (Aukerman and Sakai 2003; Wollmann et al. 2010; 

Zhu and Helliwell 2011).  The AP2 family belongs to class A gene in the ABC model of floral 

organ identities.  The overexpression of EAT encoding miR172a-2 causes extremely early 

flowering and floral organ identity defects (Aukerman and Sakai 2003).  In addition, miR172 has 

also acquired specialized species-specific functions in other aspects of plant development such as 

cleistogamy and tubeerization (Zhu and Helliwell 2011). 

Auxin, regulates almostmany different aspects of plant growth and development (Perrot-

Rechenmann 2010). At least three distinct miRNAs, miR393, miR160 and miR167, have been 

demonstrated to be involved in auxin responses via regulating either TAAR (TRANSPORT 

INHIBITOR RESPONSE1 / AUXIN SIGNALING F-BOX1 AUXIN RECEPTOR) genes 

(encoding a crucial proteins for perceiving the auxin signal) or auxin response transcription 

factors (ARFs that transcriptionally activate the expression of auxin response genes) (Si-

Ammour et al. 2011; Windels and Vazquez 2011).  miR393 regulates the expression TAAR 

genes via producing secondary siRNAs (so-called siTAARs) that mediate expression of TAAR 

genes (Si-Ammour et al. 2011). miR160 and miR167 target ARFs and consequently control the 

expression of auxin response genes (Mallory et al. 2005; Wu et al. 2006).   
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Stress-responsive miRNAs. Plant responses to abiotic stresses are regulated by a 

complicated network of various factors. Recent studies have demonstrated that post-

transcriptional regulation of gene expression by miRNAs or siRNAs is crucial for environmental 

stress adaption/ tolerance of plants (Gao et al. 2010; Giacomelli et al. 2012; Khraiwesh et al. 

2012).  

Nutrient Deficiency and Toxicity Stresses.  miRNAs are responsive to various nutrient 

deficiency, including phosphate deficiency (Chiou et al. 2006) and sulfate deficiency (Jones-

Rhoades and Bartel 2004).  The miR399, the first miRNA demonstrated to respond phosphate 

deficiency via regulating the expression of the PHO gene (Aung et al. 2006; Chiou et al. 2006; 

Valdes-Lopez et al. 2008; Kuo and Chiou 2011). In Arabidopsis, the PHO gene (PHOSPHATE), 

also known as UBC24, encodes E2 enzyme that functions in Pi translocation and remobilization 

(Aung et al. 2006). Upon Pi deficiency, the transcripts of the PHO gene are cleaved under the 

direction of miR399, which is crucial for Pi hemostasis (Bari et al. 2006; Chiou and Lin 2011). 

This process also is regulated by transcription factors, such as PHR1 (phosphate response gene) 

(Valdes-Lopez et al. 2008). These studies suggest that plants possess a possible Pi signaling 

pathway consisting of PHO, PHR1, and miR399 (Bari et al. 2006; Wu and Wang 2008; Yang 

and Finnegan 2010) .   

The miR395 regulates the plant response to sulfate deficiency among other things (Jones-

Rhoades and Bartel 2004).  Under sulfate starvation, miR395 is up-regulated to represses the 

expression of ATP sulfurylase genes (Jones-Rhoades and Bartel 2004; Liang et al. 2010; 

Matthewman et al. 2012). In addition, miR395 might be involved in the allocation of sulfate, 

because the shoots in the transgenic plants overexpressing miR395 still display sulfate deficiency 

even though the over-accumulation of sulfate is found in the shoot (Liang et al. 2010). 



24 
 

Matthewman et al. (Matthewman et al. 2012) show that miR395 participates not only in the 

uptake of sulfate, but also in the assimilation of sulfate.  

A number of miRNAs are involved in plant response to the copper availability (Abdel-

Ghany and Pilon 2008; Lu et al. 2011).  Copper is an essential micronutrient for all living 

organisms (Puig et al. 2007). In higher plants, two major copper proteins are plastocynain 

participating in photosynthetic electron transport in the thylakoid lumen of chloroplasts 

(Yamasaki et al. 2008), and Cu/Zn superoxide dismutase (Cu/Zn CSD) localized to the 

cytoplasm, the chloroplast stroma and peroxisome (Kliebenstein et al. 1998). Under copper 

deficiency, expression of Cu/Zn CSD is inhibited through the cleavage directed by miR398 

(Yamasaki et al. 2007). In the copper-replete plants, almost no miR498 is observed, while 

miRNA498 is highly accumulated when copper is deficient or limited (Abdel-Ghany and Pilon 

2008).  In addition, miR397 and miR857 are strongly expressed in stem and root tissues in 

response to low levels of copper (Abdel-Ghany and Pilon 2008). Lu et al. report that at least four 

miRNAs of Populus trichocarpa, miR397, miR398, miR408 and miR144, are responsive to Cu-

deficiency (Lu et al. 2011).    

Oxidative stress. The miR398 is a conserved miRNA family present in most seed plants 

(Cuperus et al. 2011) that is responsive to and appears to regulate plant oxidative stress (Sunkar 

et al. 2006; Zhu et al. 2011). miR398 targets two closely related Cu/Zn superoxide dismutase 

genes (cytosolic CSD1 and chloroplastic CSD2) (Sunkar et al. 2006)(ref). As discussed above in 

section 1, Cu/Zn SODs are crucial enzymes that are responsible for oxidative stress responses. 

The expression of CSDs is regulated by miR398-directed cleavage of the CSD (Sunkar et al. 

2006; Guan et al. 2013)(ref).  Overexpression of miR398 resulted inresistant form of CSD2 
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accumulate more CSD2 than plants overexpressing nonmutant CSD2 and consequently show 

greater tolerance to oxidative stress (Sunkar et al. 2006).   

Lyer et al. (Iyer et al. 2012), demonstrated that 22 miRNAs are differentially expressed 

early in response to ozone (a model abiotic elicitor of reactive oxygen species) in Arabidopsis. 

They identified several stress responsive cis-elements that were enriched in the promoters of 

ozone responsive genes through in silico promoter analysis of miRNA gene.  

miRNAs involved in Heat Stress. In wheat, the expression levels of 24 and 12 miRNAs 

are altered in response to powdery mildew infection and heat stress, respectively (Xin et al. 

2010).  Through NGS sequencing, Chen, et al., identified 52 miRNAs from 15 families are 

responsive to heat stress in Populus, and most of them are down-regulated (Chen et al. 2012).  

Five miRNA families, including miR398, are responsive to heat stress in cabbage (Brassica 

rapa) (Yu et al. 2012).  Under heat stress, miR398 is heat-inhibitive and regulates BracCSD1, 

and miR156 is heat-induced and its putative target BracSPL2 is down-regulated (Yu et al. 2012).  

Based these studies, some miRNAs, such as, miR398, are implicated in plant responses to heat.  

One of the possible mechanisms is to regulate the expression of antioxidant proteins, such as 

SODs. But it may not be the only pathway for regulating plant heat tolerance.  Further studies are 

needed to understand the regulatory roles of miRNAs in plant heat tolerances.  The data to date 

only demonstrate that changes in certain miRNAs correlate with heat stress, and do not 

unequivocally demonstrate a link between heat stress tolerance and the expression of any 

miRNA. 

The roles of various miRNAs in plant response to various stresses have been 

demonstrated, but most of these studies are limited to a few model species, such as, Arabidopsis, 
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or rice. Our current knowledge is rather limited about regulatory roles of miRNAs in non-model 

plants, such as, cotton and other economically important plants species to potentially take 

advantage of this new and emerging tool in crop improvement.  

2.5 Identification and nomenclature of miRNAs in plants 

Deep sequencing or next generation sequencing of RNA has vastly revolutionized our 

ability to identify and analyze RNAs of various length (Ansorge 2009; Malone and Oliver 2011; 

Williamson et al. 2013). This technology allows us to simultaneously produce billions of 

sequences, which is highly efficient and low cost for DNA or RNA analysis (Zhou et al. 2010).  

Typically, miRNAs can be divided into conserved and non-conserved miRNAs, 

according to their conservation in plants (Cuperus et al. 2011). Alternatively, miRNAs that have 

been reported or identified in specific species are called known miRNAs. But some miRNAs 

with identical sequences but generated from different genomic loci are assigned the same 

number with sequential alphabetical suffixes, such as, a, b and c, etc. according to the order of 

discovery (Meyers et al. 2008). Due to historical reasons, some miRNAs, such as 

miR156/miR157, miR165/166, and miR170/171, are assigned different numbers, but in reality 

they should belong to the same families (Meyers et al. 2008). The strand complementary to 

miRNAs are called miRNA*s (miRNA stars), but recently miRBase has changed the star (*) and 

instead assigns these by their arms, such as 3p (3’ end) or 5p (5’ end).  Novel miRNAs represents 

three types of miRNAs, undiscovered in plants, undiscovered in specific species, or discovered 

in new genomic loci. But novel miRNAs can be conserved miRNAs, or identical to known 

miRNAs in sequence.  
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Identification of known and conserved miRNAs.  Identification of known miRNAs is 

quite straight forward and can be completed by mapping to miRNA loci previously reported in 

the genomes (Meyers et al. 2008; Mackowiak 2011) using open-source mapping software, such 

as Bowtie (Langmead 2010) and Blastn (Boratyn et al. 2013).  Alternatively, a subset of highly 

conserved miRNAs in plants (Cuperus et al. 2011) can be identified by sequence comparison 

with conserved miRNAs found in other plant species (Zhang et al. 2005; Sunkar and 

Jagadeeswaran 2008; Zhang et al. 2011a).  

The miRBase, a collective database of miRNAs (http://www.mirbase.org), has become be 

an important source of miRNAs for both animals and plants (Kozomara and Griffiths-Jones 

2011). But a large proportion of miRNAs registered in miRBase appear to be not authentic 

(Jeong et al. 2011). It has been suggested that the miRNA list in miRBase should be carefully 

refined (Meng et al. 2012). Thus, sequence similarity or homology is insufficient for annotation 

of authentic miRNAs (Meyers et al. 2008). 

Identification of miRNA*s.  The miRNA*s are complementary sequence of miRNAs, 

and the base-pairing between miRNAs and miRNA*s is crucial for identification of plant 

miRNAs (Meyers et al. 2008). miRNA-miRNA* complexes produced by DCL proteins are 

characterized as two base overhangs at 3’ ends (Axtell et al. 2011), which is the major basis 

identifying miRNA*s. We have developed a Perl script that can identify corresponding miRNA* 

sequences, which facilitates the identification of miRNAs. 

Identification of novel miRNAs. Identification of novel miRNAs are required to meet the 

criteria of plant miRNAs (Meyers et al. 2008). Computational programs or scripts are designed 

to search potential hairpins that can be qualified as miRNA precursors (Jones-Rhoades and 
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Bartel 2004; Friedlander et al. 2008).  In animals, many computational methods have been 

developed, such as miRDeep (Friedlander et al. 2008) and MIReNA (Mathelier and Carbone 

2010). But these methods are designed specifically for animal miRNAs, such as human and dog 

(Friedlander et al. 2008), and cannot be directly applied in plants, because of distinct 

characteristics of plant miRNAs (Thakur et al. 2011; Yang and Li 2011).  In plants, algorithms, 

such as, MIRCheck (Jones-Rhoades and Bartel 2004) and miRDeep-P (Yang and Li 2011), have 

been developed and applied in analyzing miRNA transcriptome data, as follows. 

The MIRCheck algorithm is the first algorithm designed specifically for plant miRNAs 

(Jones-Rhoades and Bartel 2004). It is a Perl script that computationally identifies 20mers within 

the potential to encode plant miRNAs (Jones-Rhoades and Bartel 2004). MIRCheck extracts the 

imperfectly inverted repeats and evaluates the secondary structure by examining the base-pairing 

between miRNA and miRNA* (Jones-Rhoades and Bartel 2004). This algorithm has been 

applied in Arabidopsis, rice, and other plants (Jones-Rhoades and Bartel 2004; Ma et al. 2010; 

Schreiber et al. 2011).  

The miRDeep-P is a recently developed algorithm that is modified from miRDeep, based 

on the characteristics of plant miRNAs (Yang and Li 2011). The algorithm of miRDeep uses a 

probabilistic model of miRNA biogenesis to score compatibility of the position and frequency of 

sequenced RNA with the secondary structure of the miRNA precursor, based on data generated 

from human and dog (Friedlander et al. 2008). Due to lower minimum free energy of plant 

miRNAs that leads to lower miRDeep scores, many plant miRNAs cannot pass the scoring 

system of miRDeep. To use miRDeep in plants, Yang and Li reduced the scoring threshold of 

miRDeep scoring system for allowing plant miRNAs (Yang and Li 2011). This algorithm has 
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been used in Arabidopsis, potato, and peach, et al. (Yang et al. 2011; Colaiacovo et al. 2012; 

Zhang et al. 2013).   

The miREAP (http://sourceforge.net/projects/mireap/) is another algorithm that has been 

used for miRNA. This algorithm is developed to detect and score Dicer hairpin products (Jeong 

et al. 2011). A crucial aspect of miREAP is to evaluate secondary structures by examining the 

base-paring of miRNA:miRNA* (Jeong et al. 2011). This algorithm has been used in Medicago, 

rice, cassava, and cotton, et al. (Jeong et al. 2011; Perez-Quintero et al. 2012; Yin et al. 2012).  

Li et al. investigated the performance of eight computational programs including 

miRDeep and miREAP, and found that miREAP is better than miRDeep in efficiency and 

effectiveness (Li et al. 2012). In our preliminary test, we found that miREAP had a relatively 

better performance than miRDeep-P (unpublished data). But miREAP produces a large number 

of false positives. For example, miREAP predicts 2,420 putative miRNAs from 14,469 unique 

sequences, and consequently only 106 are identified to authentic miRNAs (Zhai et al. 2011). 

Although some computational methods have been developed for the identification of 

plant miRNAs, there are a large proportion of reported miRNAs that are not authentic (Jeong et 

al. 2011; Meng et al. 2012).  

The majority of sequences in plant small RNA libraries are siRNAs, with miRNAs 

representing only a very small proportion of total sequence (Xie et al. 2005; Kasschau et al. 

2007; Zhai et al. 2011). The RDR2 (RNA-dependent RNA polymerase 2) is a crucial protein 

involved in the biogenesis of 24nt siRNAs (Xie et al. 2004). In wild type, 24nt siRNAs are the 

most abundant class, but dramatically reduced in rdr2 mutants (Kasschau et al. 2007).  In 

addition, so-called hairpin RNAs (non-miRNAs) and siRNAs often complicate the identification 
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of miRNAs (Jeong et al. 2011; Axtell 2013). For example, ~150 out of ~400 reported rice 

miRNAs in miRBase (a database of miRNAs, http://www.mirbase.org) are characterized as 

siRNAs and unable to assign as authentic miRNAs (Jeong et al. 2011). 

Computational method for identification of novel miRNAs largely relies on the analysis 

of secondary structures of precursor RNAs. Thus, accuracy of secondary structures of precursors 

is crucial for authentic miRNAs (Zhai et al. 2011). RNAfold is very useful in analyzing 

secondary structures of RNAs, including miRNA precursors (Friedlander et al. 2008; Wan et al. 

2012), but might produce less accurate secondary structures (Sato et al. 2009). This might lead to 

some false positives (Jeong et al. 2011). 

Solution to reduce false positives: miRNAs are proposed to be characterized as strand 

bias and abundance bias, because miRNAs are produced from single stranded precursors (Jeong 

et al. 2011). Stand bias is a parameter that indicates the proportion of small RNAs matching the 

sense strand of miRNA precursors, and abundance bias indicates that the proportion of the most 

small RNA (miRNA candidate) and abundant (isomer of miRNA candidate) in the total of all 

small RNAs matching the corresponding precursors. Jeong et al. (2011) reported that 0.9 and 0.6 

could be the threshold of strand bias and abundance bias, respectively. The hpRNAs are 

produced from imprecise excision probably by DCL proteins (Axtell 2013), and can be 

speculated to lack strand bias and abundance bias. In addition, conserved miRNAs have lower 

minimum free energy, and some energetic-related parameters, such as MFEI (minimum free 

energy index), and are able to distinguish miRNAs from other non-protein coding RNAs (Zhang 

et al. 2006b). These indicators have been applied in recent studies of miRNAs (Wang et al. 2011; 

Yang et al. 2012). 
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Finally, use of CentroidFold for the analysis, produce more accurate secondary structure results 

(Jeong et al. 2011; Zhai et al. 2011). By examining Arabidopsis miRNAs registered in miRBase, 

some dead miRNAs that are to be removed from miRBase cannot form hairpins using 

CentroidFold (unpublished data). Although a large number of miRNAs have been identified 

primarily through deep sequencing, several pieces of evidences show that a relatively large 

proportion of those are not authentic (Jeong et al. 2011). This suggests that new, operational 

criteria should be proposed to uniform the annotation of plant miRNAs. Use of CentroidFold 

software might help improve the true positive and reduce false positives (Jeong et al. 2011; Zhai 

et al. 2011). 

 3.0.  Summary and Proposal 

Small regulatory RNAs from plants can be classified into two distinct families, short 

interfering RNAs (siRNAs) and hairpin RNAs (hpRNAs), on the basis of their origin and 

function (Axtell 2013).  siRNAs arise from linear double stranded precursors, while hpRNAs are 

produced from single-stranded, hairpin-shaped precursor (Axtell 2013).  

Based on their biogenesis and function, siRNAs can be divided into three major 

subgroups, repeat associated siRNAs (ra-siRNA) or heterochromatic siRNAs (hc-siRNAs), 

trans-acting siRNAs (ta-siRNAs), and natural antisense siRNAs (NAT-siRNAs) (Jamalkandi and 

Masoudi-Nejad 2009; Allen and Howell 2010).  hc-siRNAs typically are 24 nt small RNAs that 

are produced from repetitive sequences by the RNA polymerase IV/RDP2/DCL3 pathway 

(Chapman and Carrington 2007; Xie and Qi 2008).  ta-siRNAs are a class of secondary siRNAs 

that are produced from so-called TAS transcripts (Allen and Howell 2010).  Their synthesis is 

dependent on a miRNA or siRNA trigger (Allen et al. 2005) and requires the involvement of 
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DCL4, RDP6 (RNA-dependent RNA polymerase6) and SGS3 (suppressor of gene silencing3) 

(Allen and Howell 2010). 

NAT-siRNAs are produced from complementary mRNA transcripts (or natural antisense 

transcripts, NATs), and their synthesis is dependent on RDP6, and DCL1, DCL2 and/or DCL3 

(Borsani et al. 2005; Zhang et al. 2012). There are two types of NAT-siRNAs, cis-NAT-siRNAs 

and trans-NAT-siRNAs (Borsani et al. 2005; Zhang et al. 2012). cis-NAT-siRNAs are produced 

from NATs transcribed from the same genomic loci, while trans-NAT-siRNAs arise from NATs 

that are transcribed from different genomic loci (Axtell 2013). 

Based the characteristics of biogenesis, hpRNAs can be divided into two subgroups, 

micro RNAs (miRNAs) and other hpRNAs (ohpRNAs) (Axtell 2013). Canonical miRNAs are 

~21nt small RNAs that are precisely cleaved by DCL1, and posttranscriptionally regulate the 

gene expression (Meyers et al. 2008; Axtell et al. 2011).  Whereas so-called long miRNAs 

(lmiRNAs), ~24nt miRNAs, are cleaved by DCL3 and mediate DNA methylation (Wu et al. 

2010). ohpRNAs arise from imprecisely/precise cleavage of one or two different DCL proteins 

from long inverted repeat sequences (up to several kb in length), leading to one or more sizes of 

small RNAs (Henderson et al. 2006; Dunoyer et al. 2010; Yelina et al. 2010; Axtell 2013). 

ohpRNAs mediate the expression of genes either in a transcriptional or in a posttranscriptional 

way (Henderson et al. 2006; Wang et al. 2008; Dunoyer et al. 2010). To date, the biogenesis of 

ohpRNAs remains largely unknown, but it appears that their processing pathway is determined 

by their promoter components (Wang et al. 2008).  

miRNAs are a well-studied subclass of hpRNAs that are produced by precise cleavage of 

DCLs in plants and that function to regulate the expression of genes at the posttranscriptional 



33 
 

level (Huang et al. 2013; Rogers and Chen 2013). miRNAs are transcribed by RNA polymerase 

II from miRNA genes (Meyers et al. 2008), and the primary transcripts (pri-miRNAs) experience 

modification by adding 3’-ployadenosine and a 5’-cap (Chen 2009). Pri-miRNAs are processed 

by DCLs into precursor miRNAs, and then the miRNA-miRNA* (miRNA star, the pattern strand 

of miRNA) duplexes (Naqvi et al. 2012). The miRNA-miRNA* duplexes are stabilized through 

methylation at 3’-ends by HEN1 (Yang et al. 2006) and then exported into cytoplasm by the 

Exportin 5 homologue, HASTY (Park et al. 2005). In cytoplasm, mature miRNAs are recruited 

into an Argonaute protein complex (RISC) in which they bind to target mRNAs by Watson-

Crick base pairs (Rogers and Chen 2013). This consequently results in their degradation or in 

translation inhibition of target mRNAs (Rogers and Chen 2013).  

Based on the information reviewed above, it is possible to annotate the complete set of 

sRNAs including hairpin RNAs for a species including each class of sRNAs.  An efficiently way 

to accomplish this task is to produce a so called pipeline of scripts to accomplish this task.  Such 

a pipeline has been created for the purpose of discovering and annotating the small regulatory 

RNAs within the genus Gossypium. 

As reviewed above heat stress caused by elevated temperature adversely affects an array 

of physiological processes from anatomical, biochemical, to gene levels, and often leads to a 

drastic reduction in economic yield (Wahid et al. 2007). The mechanism of plant heat response 

has been well-documented at the biochemical and gene levels and has been recently reviewed in 

(Hasanuzzaman et al. 2013; Qu et al. 2013). The expression of genes regulated by small RNAs, 

such as miRNAs, at transcriptional and post transcriptional levels has been shown to be highly 

conserved during plant responses to a variety of stresses (Khraiwesh et al. 2012; Guan et al. 2013; 

Lu et al. 2013). 
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Studies have shown that miRNAs are specifically involved in plant responses to thermal stress 

(Sunkar et al. 2006; Xin et al. 2010; Khraiwesh et al. 2012; Yu et al. 2012). Of stress-responsive 

miRNAs, miR398 is a well-studied stress-responsive miRNAs and regulates plant tolerance to 

various oxidative stresses by controlling the expression of Cu/Zn superoxide dismutase (CSD) 

(Sunkar et al. 2006; Zhu et al. 2011). Overexpressing a miR398-resistant form of CSD genes 

induces stress tolerance due to the accumThulation of CSD mRNAs (Sunkar et al. 2006).  In 

addition to miR398, Yu et al. show that miR156h/g of Brassica rapa are induced by heat stress 

and their target is BracSPL2 (Squamosa Promoter Binding Protein-Like).   This transcription 

factor is down-regulated by heat stress (Yu et al. 2012). Recently, some ohpRNAs were also 

shown to be responsive to heat stress and pathogen infection (Xin et al. 2011).  

 The second objective of the work summarized here will be to identify changes in each 

class of small RNAs of Gossypium as discovered and annotated above.  Characterizing these 

changes on a genome-wide basis to generate genotype specific patterns of gene regulation by 

small regulatory RNAs that can make such results available for plant improvement is the 

ultimate goal of the work to be subsequently described. 
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Abstract 

Six small RNA libraries from heat-stressed and non-heat-stressed leaves of G. raimondii 

seedlings were sequenced using Illumina deep sequencing. This generated approximately 90 

million raw reads, and about 43% of them exactly matched the G. raimondii genome. To analyze 

the G. raimondii small RNA transcriptome, a bioinformatic pipeline was built and used to 

analyze the G. raimondii small RNA data. This allowed us to profile and to annotate the five 

major classes of small RNAs in the G. raimondii genome yielding 146 miRNAs, 2,236 

ohpRNAs, 268,246 ra-siRNAs, 791 pha-siRNAs, and 147,058 cis-NAT-siRNAs. Statistical data 

analysis (Baggerley’s test) revealed that 45 miRNAs, 51 ohpRNAs, 4,278 ra-siRNAs, 28 pha-

siRNAs and 1,415 cis-nat siRNAs were significantly differentially expressed in response to 

either 4 h or 24 h of heat stress treatment. This is consistent with a role for small RNAs in the G. 

raimondii response to heat stress deriving from involvement of ra-siRNA in changing DNA 

methylation and hpRNA and cis-NAT-siRNA mediated changes at the transcriptional and/or 

posttranscriptional levels.  

Introduction 

RNA silencing (RNAi) is a specific mechanism that regulates the developmental, stress-

responses, and defense functions in eukaryotes by guiding mRNA cleavage/translational 

inhibition, or chromatin modification (Vazquez et al. 2010; Khraiwesh et al. 2012) (Saze et al. 

2012). RNAi is mediated by a class of 20 to 24 nt small RNAs (or small regulatory RNAs) that 

are processed from long precursors by DICER, an RNaseIII type ribonuclease,  in animals or 

DICER-like proteins (DCLs) in plants (Axtell et al. 2011) . These small RNAs are loaded into 
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Argonaute (AGO) proteins to form RNA induced silencing complex (RISC) in which they 

complimentarily bind to target RNAs or DNAs (Rogers and Chen 2013).  

Small RNAs can be classified into two distinct families, short interfering RNAs (siRNAs) and 

hairpin RNAs (hpRNAs), on the basis of their origin and function (Axtell 2013). siRNAs arise 

from linear double stranded precursors, while hpRNAs are produced from single-stranded, 

hairpin-shaped precursor (Axtell 2013).  

Based on their biogenesis and function, siRNAs can be divided into three major subgroups, 

repeat associated siRNAs (ra-siRNA) (also referred to as heterochromatic siRNAs or hc-

siRNAs), phased secondary siRNAs (pha-siRNAs) (including trans-acting siRNAs that have 

known targets in gene silencing also referred to as ta-siRNAs), and natural antisense siRNAs 

(NAT-siRNAs) (Jamalkandi and Masoudi-Nejad 2009; Allen and Howell 2010). ra/hc-siRNAs 

typically are 24 nt small RNAs that are produced from repetitive sequences by the RNA 

polymerase IV/RDP2/DCL3 pathway (Chapman and Carrington 2007; Xie and Qi 2008). pha/ta-

siRNAs are a class of secondary siRNAs that are produced from so-called phased secondary 

RNA gene transcripts (PSRG or TAS transcripts)(Allen and Howell 2010). Their synthesis is 

dependent on a miRNA or siRNA trigger (Allen et al. 2005) and requires the involvement of 

DCL4, RDP6 (RNA-dependent RNA polymerase6) and SGS3 (suppressor of gene silencing3) 

(Allen and Howell 2010). NAT-siRNAs are produced from complementary mRNA transcripts 

(or natural antisense transcripts, NATs), and their synthesis is dependent on RDP6, and DCL1, 

DCL2 and/or DCL3 (Borsani et al. 2005; Zhang et al. 2012b). There are two types of NAT-

siRNAs, cis-NAT-siRNAs and trans-NAT-siRNAs (Borsani et al. 2005; Zhang et al. 2012b). cis-

NAT-siRNAs are produced from NATs transcribed from the same genomic loci, while trans-

NAT-siRNAs arise from NATs that are transcribed from different genomic loci (Axtell 2013). 
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Based the characteristics of biogenesis, hpRNAs can be divided into two subgroups, micro 

RNAs (miRNAs) and other hpRNAs (ohpRNAs) (Axtell 2013). Canonical miRNAs are ~21nt 

small RNAs that are precisely cleaved by DCL1 and posttranscriptionally regulate the gene 

expression (Meyers et al. 2008; Axtell et al. 2011), Whereas so-called long miRNAs (lmiRNAs), 

~24nt miRNAs, are cleaved by DCL3 and mediate DNA methylation(Wu et al. 2010). ohpRNAs 

arise from cleavage by possibly one or two different DCL proteins from long inverted repeat 

sequences up to several kb in length, leading to one or more sizes of small RNAs (Henderson et 

al. 2006; Dunoyer et al. 2010; Yelina et al. 2010). ohpRNAs mediate the expression of genes 

either transcriptionally or posttranscriptionally (Henderson et al. 2006; Dunoyer et al. 2010). To 

date, the control of ohpRNAs biogenesis remains largely unknown, but it appears that this may 

be determined by promoter components (Wang et al. 2008).  

miRNAs are a well-studied subclass of hpRNAs that are produced by precise cleavage of DCLs 

in plants and that function to regulate the expression of genes at the posttranscriptional level 

(Huang et al. 2013; Rogers and Chen 2013). miRNAs are transcribed by RNA polymerase II 

from miRNA genes (Meyers et al. 2008), and the primary transcripts (pri-miRNAs) experience 

modification by adding 3’-ployadenosine and a 5’-cap (Chen 2009). Pri-miRNAs are processed 

by DCLs into precursor miRNAs, and then the miRNA-miRNA* (miRNA star, the pattern strand 

of miRNA) duplexes (Naqvi et al. 2012). The miRNA-miRNA* duplexes are stabilized through 

methylation at 3’-ends by HEN1 (Yang et al. 2006) and then exported into cytoplasm by the 

Exportin 5 homologue, HASTY (Park et al. 2005). In the cytoplasm, mature miRNAs are 

recruited into an Argonaute protein complex (RISC) in which they bind to target mRNAs by 

Watson-Crick base pairs (Rogers and Chen 2013). This subsequently results in the degradation 

of the target mRNA or in mRNA translation inhibition (Rogers and Chen 2013).  
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Heat stress caused by elevated temperature adversely affects an array of physiological processes 

from anatomical, biochemical, to gene levels, and often leads to a drastic reduction in economic 

yield (Wahid et al. 2007). The mechanism of plant heat responses have been well-documented at 

the biochemical and gene levels and have recently been reviewed in (Hasanuzzaman et al. 2013; 

Qu et al. 2013). The expression of genes regulated by small RNAs during plant responses to a 

variety of stresses is conserved among the various stresses and common to many if not all plants 

(Khraiwesh et al. 2012; Guan et al. 2013; Lu et al. 2013). 

Studies have shown that miRNAs are specifically involved in plant responses to thermal stress 

(Sunkar et al. 2006; Xin et al. 2010; Khraiwesh et al. 2012; Yu et al. 2012). Of stress-responsive 

miRNAs, miR398 is a well-studied stress-responsive miRNAs and regulates plant tolerance to 

various oxidative stresses by controlling the expression of Cu/Zn superoxide dismutase (CSD) 

(Sunkar et al. 2006; Zhu et al. 2011). Over-expressing a miR398-resistant form of CSD genes 

induces stress tolerance due to the accumulation of CSD mRNAs (Sunkar et al. 2006).  In 

addition to miR398, Yu et al. have shown that miR156h/g of Brassica rapa are induced by heat 

stress and one of their targets is BracSPL2 (Squamosa Promoter Binding Protein-Like).   This 

transcription factor is down-regulated by heat stress (Yu et al. 2012). Recently, some ohpRNAs 

were also shown to be responsive to heat stress and pathogen infection (Xin et al. 2011).  

Gossypium raimondii is a diploid species that is considered one of the progenitor species of 

modern fiber-bearing, commercial cottons, including upland (G. hirsutum) and Pima (G. 

barbadense) cottons.  A number of studies have been conducted that have identified several 

hundred miRNAs in G. hirsutum, and a subset of cotton miRNAs were shown to be involved in 

cotton fiber development (Pang et al. 2009; Wang et al. 2012). However, little is known about 

miRNAs of G. raimondii and their roles in the heat response.  
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In this study, we applied high-throughput, deep sequencing to profile G. raimondii small RNAs 

and subsequently used a bioinformatic pipeline to annotate the small RNA population expressed 

in the stressed and unstressed leaves of G. raimondii. This identified a large number of hpRNAs 

and siRNAs, and their expression in response to heat stress was subsequently analyzed. Our 

findings provide an insight into small RNAs that are associated with regulatory roles in the G. 

raimondii heat stress response.  

Materials and Methods 

Growth of plant material, total RNA preparation, and sRNA library sequencing 

The youngest fully expanded leaves of four-week-old G. raimondii seedlings were used to obtain 

total RNA.  Samples were harvested from at least 3 seedlings treated at 46oC. for 0 h (no heat 

stress treatment), and after 4 or 24 h of heat stress (heat stress treatment). The total RNA was 

separately isolated from each sample using hot borate method (Wan and Wilkins 1994). The 

constructing and sequencing of small RNAs was performed at the HudsonAlpha Institute 

Genome Sequencing Laboratory in Huntsville, AL, USA using an Illumina Small RNA 

Preparation Kit following manufacturer’s protocol. Each small RNA sample was sequenced 

twice generating 2 sequencing replicates of each sample. 

G. raimondii transcriptome sequences 

For subsequent bioinformatic work it was necessary to produce a set of transcriptome sequences 

derived from the G. raimondii genome since existing publically available unigene and EST 

datasets were limited in scope.  A GraTS dataset was built using the GORAGI.release_1 G. 

raimondii unigene sets (ftp://occams.dfci.harvard.edu/pub/bio/tgi/ 
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data/Gossypium_raimondii/GORAGI.release_1.zip), the G. raimondii unigene set at NCBI 

(ftp://ftp.ncbi.nih.gov/repository/UniGene/), and an ESTs dataset constructed from Trinity 

assembled Illumina sequencing reads from G. raimondii leaf (unpublished data).  

Processing of sequencing data 

The raw sequencing data was processed using a pipeline consisting of a combination of custom-

designed scripts, open source scripts, and CLC WorkBench 5.8 (http://www.clcbio.com/). Raw 

sequence data was filtered to remove sequencer reads lacking a 3’ sequencing adaptor sequence, 

and the adaptor sequences and low quality bases were removed using CLC WorkBench 5.8. 

After filtering sequences 17 to 28 nt were retained for further analysis and designated as the 

preliminary sRNA libraries. Sequences from each of the 6 libraries and from a combined total 

library were separately collapsed to create read counts for each unique sequence in each of the 

single libraries and for the combined library. 

The unique libraries were mapped to the genome of G. raimondii, version 2 (G.raimondii_v2) 

(Paterson et al. 2012), using the Bowtie mapping utility, version 1.0.0 (Langmead 2010), and 

only sequences exactly matching the G. raimondii genome were retained for further analysis. 

Unique sequences that exactly matched the non-protein coding sequences (rRNAs, tRNAs, 

snRNAs, and snoRNAs) were removed from the genome matching sequences above using the 

Bowtie mapping utility leaving total sRNA libraries for each treatment and replication and a 

combined total sRNA library that were used for subsequent analysis.  

Bioinformatics determination of hairpin RNAs 
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The total sRNA library above was used to extract hairpin precursors using the open source 

miREAP script (http://sourceforge.net/projects/mireap/). To obtain the maximal number of 

hpRNAs, miREAP was employed by searching the G.raimondii_v2 genome sequence (Paterson 

et al. 2012) with the collapsed sRNA library using three combinations of two parameters: 1) the 

maximum distance between the putative sRNA and the corresponding complementary putative 

sRNA* sequences, and 2) the maximal number of copies of small RNAs found in the genome.  

The three combinations used were: 1a) 350nt and 2a) 12 loci, 1b) 350nt and 2b) 232 loci, and 1c) 

500 nt and 2c) 500 loci.  The derived putative hairpin precursors were examined using 

CentroidFold0.9 (Sato et al. 2009), considering two aspects: 1) unpaired nucleotides in the stem 

of the hairpin were less than 50% of the total; and 2) no more than four mismatches between 

hpRNA and hpRNA* were allowed. The putative hpRNAs passing the above filter were 

collapsed by removing duplicated sequences the summed dataset from the 3 runs using a custom 

Perl script. This generated a list of all predicted hpRNAs in the total sRNA library, and a library 

of the remaining non-hpRNAs that was used for siRNA determination as indicated below. 

Identification of miRNAs 

MiRNAs were identified using a pipeline of custom scripts and the miREAP open source script 

(http://sourceforge.net/projects/mireap) as follows. The hpRNA dataset (see above) was 

submitted to a custom Perl script that retained unique sequences with a read count of at least 

eight and that mapped to the G.raimondii_v2 genome  at no more than 12 loci. These parameters 

were empirically determined to be the minimal values that permitted determination of known 

Gossypium sequences in the total sRNA library without inclusion of low abundance sequences 

that had questionable significance as legitmate sRNAs.   
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The read count > 8, genome loci < 12 sequences were submitted to the miREAP script and 

putative miRNA precursors were identified based on four characteristics: 1) minimum free 

energy of the predicted precursor ≤ -30 kcal/mol; 2) < 4 four mismatches between the putative 

miRNA and putative miRNA*; 3) < 2 “bulges” between the putative miRNA and putative 

miRNA*; and 4) the maximal distance between miRNAs and miRNA* < 350nt.  These 

parameters were chosen based on previously published values (Thakur et al. 2011) and empirical 

optimization with the datasets used in this study. 

 The miREAP output was further filtered using a custom Perl script that selected unique 

precursor sequences with a stand bias ≥ 0.9, calculated by dividing the count of sRNA reads 

mapping to a putative miRNA precursor in the forward manner by the total sRNA reads mapping 

to the putative precursor. Additionally, this script selected precursors based on an abundance bias 

≥ 0.6, calculated by dividing the count of the most abundant and the second most abundant 

sRNA reads for a precursor by the total count of sRNA reads mapping that precursor according 

to Jeong et al. (Jeong et al. 2011; Zhai et al. 2011). The most abundant sRNAs mapping to a 

given precursor were condsidered to be miRNA candidates, and the second most abundant were 

considered either the miRNA* or in the miRNA region but truncated [16, with empirical 

optimization for these datasets]. 

The miRNA candidates passing the strand-bias and abundance bias filters were subsequently 

filtered based on secondary structure using CentroidFold0.9 (Sato et al. 2009), and an additional 

Perl script considering six criteria: 1) the maximal unpaired nucleotide bulges located in the 

miRNA:miRNA* regions are < 2, and there are < 3 nucleotides per bulge; 2) there are < 4 

mismatches allowed between miRNA and miRNA*; 3) MFEI (minimum free energy index) 

(Zhang et al. 2006) is between 0.38 and 1.6; 4) the unpaired nucleotides in the secondary 
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structure are > 50% of total length; 5) CG content is > 25%;  6) AMFE (adjusted minimum free 

energy) (Zhang et al. 2006) is < -22 kcal/mol/100nt.  

Candidate hpRNAs passing the secondary structure filter above were annotated as putative 

miRNAs, and those hpRNAs not annotated as miRNAs were annotated as other hpRNAs (ohp-

RNAs). Subsequently, those miRNAs with lengths of 23-24 nt were annotated as long-miRNAs, 

while those 20 through 22 nt in length were considered as canonical miRNAs, and those 

canonical miRNAs with two or fewer mismatches to mature miRNAs registered as Viridiplantae 

miRNAs in miRBase version 20 (http://www.mirbase.org) were annotated as conserved 

miRNAs (con-miRNAs). The remainder of the canonical miRNAs were annotated as novel G. 

raimondii lineage-specific miRNAs (ls-miRNA). Note that only 891 of the 7385 miRNAs found 

in miRBase version 20 (12.1%) were > 23 nt in length so a separate conserved long-miRNA 

class is not necessary at this time. 

Bioinformatics analysis of repeat-associated siRNAs siRNAs. 

A first step in identifying repeat-associated siRNAs was to generate a plant repeat dataset for use. 

Plant repeat sequences derived from both the Repbase Update database housed at Genetic 

Information Research Institute (GIRI, http://www.girinst.org) (Jurka et al. 2005) and the Plant 

Repeat Database (http://plantrepeats.plantbiology.msu.edu) (Ouyang and Buell 2004)  were 

combined to generate a Viridiplantae repeat database (VRD) consisting of 21,141 putative repeat 

sequences found in plant genomes. 

To identify repeat-associated siRNAs (ra-siRNAs), the G. raimondii non hpRNA sequences (see 

above) with read counts ≥ 2 were compared to the above VRD dataset, allowing for a maximal 

substitution rate of 20% (default) using ReaptMasker3.2.7 (http://www.repeatmasker.org) 
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(Tempel 2012). The sequences resulting from this were annotated as ra-siRNAs, while the 

remaining sequences in the non hpRNA library were left as the non ra-siRNA library.  

Bioinformatics analysis of phased siRNAs (ta-siRNAs) 

Phased siRNAs (phasiRNAs) and phasiRNA-producing transcripts were identified by submitting 

the non-ra-siRNA library from the previous step to the ta-siRNA prediction tool in the plant 

version of the UEA sRNA Workbench version 3.0 (Chen et al. 2007; Stocks et al. 2012).  

Sequences found in the G.raimondii_v2 genome (Paterson et al. 2012) and the GraTS dataset 

(see above) using a phasing register of 21, 22, or 24 nt and a p-value < 0.01 were obtained along 

with their putative secondary siRNA producing transcrips. A custom Perl script was 

subsequently used to identify those transcripts where the abundance of sRNAs in the phased loci 

divided by the total sRNAs matching the transcript is > 0.6. Such transcripts were annotated as 

phased-siRNA-producing transcripts (sometimes historically referred to as TAS genes), and 

sRNAs in phased loci were considered as phased-siRNAs. Phase-initiating miRNAs were 

predicted using a combination of the psRNATarget (Dai and Zhao 2011) utility and a custom 

Perl script that determines potential cleavage site of the phased-siRNA-producing transcripts 

based on previously published methods (Dai and Zhao 2008; Zhang et al. 2012a). All non ra-

siRANs not annotated as phased-siRNAs were considered non-phased-siRNAs. 

Bioinformatics analysis of cis-natural antisense siRNAs 

Putative natural antisense transcripts cis natural antisense transcripts (cis-NATs) were identified 

as overlapping, opposite strand transcript pairs using a Perl script that was developed to qualify 

the putative cis-NATs by mapping the putative pairs to the G.raimondii_v2 genome by using the 

SSAHA2 utility, version2.5.5 (Ning et al. 2001). cis-NAT sequences matching the genome with 

greater than 98% identity having an overlap of  > 50 bp located on opposite strands at the same 



71 
 

non-repetitive locus in the genome and that formed a stable RNA-RNA heteroduplex using the 

RNA cofolder utility in the Vienna RNA Package (http://www.tbi.univie.ac.at/RNA/) (Lorenz et 

al. 2011) were annotated as cis-NAT-pairs. Sequencces found in the non-phased-siRNA dataset 

from the previous step exactly matching the cis-NATs were annotated as cis-NAT-siRNAs, 

while all remaining sequences in the non-phased-siRNA dataset, not annotated as cis-NAT-

siRNAs were considered as uncharacterized siRNAs.  

Statistical analysis 

Baggerley’s test was conducted using the statistical package built into CLC Genomic 

WorkBench 5.5.8. (Baggerly et al. 2003). 

Target prediction and GO analysis of target genes 

The prediction of miRNA and siRNA targets was performed with psRNATarget (Dai and Zhao 

2011) using the GraTS dataset (see above) with a maximum expectation of 2.5 and other 

parameters set at default. 

The predicted target genes were subjected to Gene Ontology analysis performed using Blast2GO 

(Conesa and Gotz 2008). A Blastx search of the NCBI protein database was conducted, and 

target genes hitting matching the database were annotated according to the GO database. 

 

Results  

Deep sequencing of small RNA libraries from heat stress-treated G. raimondii seedlings 
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Illumina deep sequencing was employed to generate six G. raimondii small RNA libraries.  The 

six small RNA libraries were made from the youngest, fully expanded leaves from G. raimondii 

seedlings at 0h (before), 4h, or 24h of heat-treatment at 45 oC.  Each small RNA sample was 

sequenced twice creating sequencing replicates.  This generated a total sequence library for all 

treatments of just over 90 million total reads that were used for sRNA prediction, and the raw 

sequencing reads of individually sequenced libraries varied from 12,494,803 to 16,275,490 reads 

(Table 1 and Supplemental Table S1).   

The first step was to filter out reads missing sequencing adaptors, remove the adaptors from the 

remaining reads, and subsequently to filter out reads that contain low-quality nucleotide 

predictions.  Reads shorter than 17 nt, and sequences longer than 28 nt were excluded from the 

analysis at this point as well.  As shown in Table 2 and Supplementary Table S1, this left 

46,738,621 total reads which could be assembled into 8,057,647 unique putative sRNA 

sequences. Of those, 39,534,260 reads (84.6%), represented by 5,609,335 unique sequences, 

exactly matched the G. raimondii genome.   

The total small regulatory RNA library was established by removing the sequences that 

corresponded to the non-protein coding sequences from the sequences exactly matching the G. 

raimondii genome (EMG sequences).  This left a total of 25,885,344 reads (65.5% of EMG reads) 

that corresponded to 5,490,184 unique sequences.  These sequences will subsequently be 

referred to as the total sRNA library. 

Diversity of small regulatory RNAs in G. raimondii 

As shown in Table 2, 475,241 reads (1.20% of EGM), which can be collapsed into 2,375 unique 

sequences, arose from hairpin-shaped precursors and were annotated into hairpin RNAs 
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(hpRNAs). Of those, 448,133 reads, corresponding to 146 unique sequences, met the criteria of 

plant miRNAs (Zhang et al. 2006; Meyers et al. 2008; Jeong et al. 2011) and were annotated as 

miRNAs, whereas 27,699 reads represented by 2,236 unique sequences failed to meet the criteria 

for consideration as plant miRNAs (Zhang et al. 2006; Meyers et al. 2008; Jeong et al. 2011), 

and these were annotated as other hairpin RNAs (ohpRNAs).  Notably, seven unique sequences 

were annotated into both miRNAs and ohpRNAs, because they were produced from multiple 

genomic loci, and a subset of these loci failed to meet the criteria for annotation as plant miRNA 

precursors.  

To identify the ra-siRNAs, the repeat sequence loci in the G. raimondii genome were first 

identified by sequence comparison with plant repeat sequences deposited in the Plant Repeats 

Database (http://plantrepeats.  plantbiology.msu.edu and http://www.girinst.org) using Repeat 

Masker 3.2.7 (http://www.repeatmasker.org/) (Tempel 2012) allowing up to 20% base 

substitution in the homologous repeat regions. Consequently, 12,645,751 repeat-associated reads 

were identified corresponding to 159,701 unique repeat-associated sRNA (ra-siRNA) sequences. 

Repeat-associated siRNAs were the most abundant class of the G. raimondii sRNAs, accounting 

for 58.9% of the total sRNA reads and 13.2% of the unique sequences. 

The non-ra-siRNA library was subjected to phasing analysis, and as a result, we obtained 52,060 

putative secondary phased siRNA (pha-siRNA) reads, which can be collapsed into 791 unique 

sequences derived from 296 phased siRNA-producing transcripts.  These 791 putative pha-

siRNA sequences were annotated as phased siRNAs, and the remaining sequences in the non-ra-

siRNA library were considered the non-pha-siRNAs. 
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A total of 5,247,152 reads (1.0% of the total sRNAs), corresponding to 147,058 unique 

sequences were identified by the sRNA pipeline as cis-nat-siRNAs, making the cis-nat-siRNAs 

the second most abundant group of sRNAs in the G. raimondii sRNA library. These cis-nat-

siRNAs were derived from a 1,001 expressed cis-NAT transcript pairs from the 12,114 putative 

total cis-NAT pairs found in the G. raimondii genome.   

Unexpectedly, 33.1% of the total reads or 92.4% unique sequences were not categorized in this 

study.  Most of the uncharacterized reads were 24-nt in length, which suggests that these 

sequences may be siRNAs, because 24-nt siRNAs are the most abundant sRNA species found in 

plants (Kasschau et al. 2007). However, the average read number of the uncharacterized 

sequences was 1.4 indicating that many of these sequences have low expression in only one 

library. Thus, it is impossible to annotate these low abundance reads at this time based on the 

available data.  

Characteristics of G. raimondii miRNAs 

As shown in Supplemental Table S2, 146 mature miRNAs derived from 213 distinct loci were 

identified. These included 46 mature miRNA sequences that were conserved in one or more 

species of Viridiplantae according to miRBase version 20 that were derived from 96 distinct G. 

raimondii lineage-specific loci, and 100 novel, G. raimondii lineage-specific mature miRNAs 

(ls-miRNA) produced from 107 G. raimondii lineage-specific loci. The G. raimondii miRNAs 

ranged from 19 nt to 24 nt in length, but no miRNAs 23 nt in length were observed. miRNA < 23 

nt in length were considered canonical miRNAs, whereas miRNAs (> 23 nt) were annotated as 

long miRNAs (Axtell et al. 2011).  
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As shown in Figure 2A, conserved mature miRNAs of G. raimondii ranged from 19 nt to 22 nt 

in length, and most of the conserved miRNAs (about 71%) were 21 nt long, whereas only 46% 

of ls-miRNAs were 21 nt long; approximately 40% of ls-miRNAs were 24 nt in length. Uridine 

was the most common 5’-terminal nucleotide for miRNAs less than 23 nt in length (Figure 2B) 

and a low occurrence of 5’-adenine (less than 22%) appeared in the canonical miRNAs (Figure 

1B). In contrast to canonical miRNAs, 5’-adenine was predominant among long miRNAs and 

counted for approximately 80%. Interestingly, a low occurrence of 5’-cystine (less than 19%) 

and no 5’-guanine was detected among G. raimondii miRNAs. Previous studies show that 5’-

nucleotide is essential for sorting miRNAs and loading onto AGO proteins (Mi et al. 2008).  

Thus, this characteristic may be functionally important for G. raimondii miRNAs. 

G. raimondii is a putative progenitor of economically important, allotetraploid cottons, such as 

upland cotton (G. hirsutum L.) and Pima (G. barbadense L.).  Currently, 80 miRNAs of upland 

cotton derived from 78 precursors are registered in miRBase (Release 20.  To investigate 

sequence variations of miRNA genes between G. raimondii and G. hirsutum, we performed an 

analysis of sequence alignment using BLASTN (Boratyn et al. 2013). As a result, 14 G. 

raimondii miRNA precursors were exactly mapped to 15 G. hirsutum precursors, whereas 22 G. 

raimondii miRNA precursors can be aligned to 17 G. hirsutum miRNA precursors with one or 

more mismatches.  As shown in Figure 3A, the sequence variations appeared at different regions 

of miRNA precursors, including miRNA, miRNA* (the pattern strands of miRNAs), loop or/and 

stem regions. Phylogenetic analysis showed that gra-MIR7459#a (the precursor for gra-

miR7459#a of G. raimondii) and ghr-MIR7459a/b (the precursors for ghr-miR7459a/b) were in 

different clades (Figure 3B).  It should be noted that variations in miRNA regions influenced the 

regulatory function of miR7495. As shown in Figure 3C, among the 38 putative targets of 
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miR7495, only 5 (approximately 13%) were shared between gra-miR7495#a and ghr-

miR7495a/b. These findings revealed that the divergence between miRNAs of G. raimondii and 

G. hirsutum is present and the variation in sequences may be functionally important for gene 

regulation in cotton. 

miRNA-directed phased secondary siRNA networks 

In this study, a total of 296 pha-siRNA gene (PSRG) candidates were identified, of which 177 

PSRGs (60%) produced 21 nt pha-siRNAs, 48 PSRGs (16%) generated 22 nt pha-siRNAs,  and 

71 others (24%) yielded 24 nt pha-siRNAs (Figure 4 and Supplemental Table S3-S5). Among 

these PSRGs, 255 (~87%) were detected in the GraTS dataset, and were therefore considered 

transcriptionally active. Of the 177 PSRGs that produced pha-siRNAs 21 nt in length, 89 (50.3%) 

were found to code for known protein coding genes, while 53 (29.9%) corresponded to non-

protein-coding sequences, and 35 (19.8%) corresponded to uncharacterized protein coding genes.  

Of the 89 protein coding genes, the largest group (32) was putative NBS-LRR disease resistance 

proteins.  Other PSRGs included 22 mutator proteins, 12 auxin response factor/signaling F-box 

proteins, 7 MYB or bHLH transcription factors, 6 polyproteins, 4 NAC domain protein, and 7 

others (Figure 4A). By contrast, 24/48 and 60/71 PSRGs produced pha-siRNAs 22nt and 24nt in 

length respectively that corresponded to non-protein-coding genes, and 12/48 and 2/71 PSRGs 

produced pha-siRNAs 22nt and 24nt in length respectively that corresponded to 

uncharacterized/hypothetical protein genes, while 11/48 and 9/71 PSRGs produced pha-siRNAs 

22nt and 24nt in length respectively that corresponded to known protein coding genes (Figure 

4B and 4C).  
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A total of 123 PSRGs (~39% of the total) were predicted to be triggered by 55 miRNAs 

(Supplemental Figure 1A, 1B, and 1C). The miRNA triggers included 19 conserved and 36 

lineage-specific miRNAs ranging from 19 nt to 22 nt in length, and most of them (~79%) were 

21 nt in length. Interestingly, a subset of nine G. raimondii PSRGs were targeted by at least two 

or more, distinct miRNAs.  

A PSRG, TAS3, found other plants (Montgomery et al. 2008; Marin et al. 2010), which encodes 

auxin response factor (ARF), is an apparently conserved plant PSRG (TAS gene) triggered by 

miR390. As shown in Figure 5A and 5B, the cleavage site of miR390 is highly conserved across 

at least 5 plant species. Three G. raimondii mR390-targeted TAS3-like sequences were 

character-ized, and each had the ability to produced 7 to 9 pha-siRNAs. In order to better 

understand the roles of these putative pha-siRNAs, we performed a target analysis using pssRNA 

Target (Dai and Zhao 2011).  These pha-siRNAs were predicted to regulate diverse protein-

coding genes, of which 22 to 41% were proteins associated with transcription, such as auxin 

response factors.  Other pha-siRNA targets are enzymes, such as protein kinases and other 

signaling enzymes (Figure 5C and Supplemental Table S9).  

In addition to known, conserved miRNA-TAS pathways, such as miR390-TAS3 (ARF), 

miR482-NBS-LRR, miR393-MYB, a number of putative novel pathways were found, and a 

subset of pha-siRNAs yielded by these pathways were abundantly represented in the total small 

RNA library (Supplemental Table S3 to S5). As shown in Figure 6A, miR2218/miRC136 that 

targeted TMV resistance protein N-LIKE (TMV RPN) defined a novel pha-siRNA-producing 

PSRG pathway found only in G. raimondii.  In this pathway, six pha-siRNAs were highly 

expressed (1.5- 69 RPM) (Figure 6A). This putative PSRG is a conserved plant protein, and the 
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cleavage site of miRNAs is also conserved in plants (Figure 6B). This is consistent with this 

being a potential conserved PSRG/TAS pathway, though this is not reported in other plants. 

In the absence of DCL4, DCL2 and DCL3 may act to produce 22 nt or 24 nt pha-siRNAs 

respectively (Axtell et al. 2006; Song et al. 2012; Zhang et al. 2012a). Forty-eight PSRGs can 

produce pha-siRNAs 22 nt in length and 71 PSRGs can produce pha-siRNAs 24 nt in length 

(Supplemental Table 5). A number of pha-siRNAs in these groups accumulated to a high levels, 

for example, the D1(+) siRNA produced from a MYB-like gene on chromosome 9 produced 

4,728 reads (Supplemental Table S4).  Combined with previous studies, this provides additional 

evidence that 22 nt and 24 nt pha-siRNAs have functional significance in plants. 

Natural antisense transcripts and cis-NAT derived siRNAs 

A total of 12,114 cis-NAT gene pairs were identified in the G. raimondii genome (see Methods). 

According to the overlapping patterns, these NATs can be classified into three major types, tail-

to-tail (Figure 7A), head-to-head (Figure 7B) and enclosed (Figure 7C). As shown in Figure 7, 

sRNAs were not randomly distributed, but displayed obvious expression peaks at distinct 

locations in both the overlapping and non-overlapping regions of the cis-NAT pair.  Additionally, 

1,001 (8%) of the total cis-NAT pairs produced siRNAs found in our leaf databases.  The 

average total cis-nat-siRNA read count produced from each expressed cis-NAT pair was 616, 

while only 755 (6%) of the cis-NAT gene pairs produced total cis-nat-siRNA read counts greater 

than 500 reads per NAT as shown in Figure 8A, and only 230 cis-NAT gene pairs (1.9%) 

accumulated cis-nat-siRNAs reflecting greater than 50,0000 counts per sequence. 

The 1,001 cis-NAT gene pairs yielded 147,058 unique cis-nat-siRNA sequences, corresponding 

to 5,247,152 total reads (Table 2). According to the expression value, a subset of cis-nat siRNAs 
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accumulated to a very high level, of which the top 10 expressed cis-nat-siRNAs are shown in 

Figure 8B. The most abundantly expressed cis-nat-siRNAs, cis-nat-siR49762 and cis-nat-

siR145324 were among the most abundantly expressed sequences (307,626 and 210,953 reads 

per sequence) in the entire library, and the ten most abundantly expressed cis-nat-siRNAs 

showed significant changes in expression during heat stress treatment (Figure 8C). Specifically, 

five of the abundantly expressed cis-nat-siRNAs were down-regulated by as much as 2.5 fold 

and five were up-regulated by as much as 3 fold after 4h heat stress treatment, but after 24 h heat 

stress treatment all ten of these cis-nat-siRNAs returned to within 20% of their unstressed levels. 

Global expression of sRNAs during heat stress 

As shown in Figure 9A, sRNAs were not evenly distributed along the chromosome, but 

displayed site-specific expression patterns (so-called “hot-spots”, defined as the loci in 1,000 nt 

on the chromosomes where the sRNAs accumulated to at least 5,000 RPM). Among the 13 G. 

raimondii chromosomes a total of 111 hotspots (Supplemental Figure S2 to S14) were 

identified similar to those shown in Figure 8A for chromosome 1.  In a 770 nt region between 

position 55,849,200 and 55,849,970 nt) on chromosome 1, there were 12 loci where individual or 

multiple sRNAs accumulated to levels of more than 1,000 RPMs.  Among these “hot-spots”, 

shown sRNAs that were in the regions around 55,849,237 on chromosome 1 accumulated to the 

highest level (~23,000 RPM) although a second “hot spot around position 21,000×103 nt also 

showed high levels of expression of multiple sRNAs. It can also be seen that there are other 

regions on chromosome 1 (see Figure 9A) where expression of fewer individual sRNAs is 

shown at nearly or even higher levels.  Consistent with sRNAs playing an important regulatory 

role in the heat stress response, the expression patterns of G. raimondii sRNAs in this region of 
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chromosome 1 displayed significantly altered expression patterns during heat stress (Figure 9B). 

The sRNAs in the hotspots showed, in various degrees, expression changes (Figure 9C).  

Differentially expressed small regulatory RNAs during heat stress 

As shown in Figure 10 and Supplemental Table S10-S13, 45 miRNAs, 51 ohpRNAs, 4,278 ra-

siRNAs, 28 pha-siRNAs, and 1,415 cis-nat siRNAs were significantly regulated during heat 

treatments.  Of these, 30 miRNAs, 35 ohpRNAs, 3,498 ra-siRNAs, 24 pha-siRNAs, 1,274 cis-nat 

siRNAs showed more than 2 fold changes (up or down) in expression level in either 4 hrs or 24 

hrs of heat stress compared to unstressed control.   

miRNAs showing differential expression patterns were classified into five clades (Figure 11). 

Clade 1 included 7 miRNAs that were up-regulated in the 4h heat stress library and down-

regulated in the 24 h heat stress library. Clade 2 consisted of 10 miRNAs that were down-

regulated in both 4h and 24h library. Clade 3 was composed of 5 miRNAs that were up-regulated 

in both 4h and 24h libraries. Clade 4 included 14 miRNAs that were down-regulated in the 4h 

library, whereas returned to higher levels in the 24h libraries. Clade 5 included 9 miRNAs that 

were down-regulated in 4h and up-regulated in the 24h heat treatment.  

Among differentially expressed miRNAs, 29 were conserved miRNAs, including known stress-

responsive miRNAs reported in other plants, such as miR156, miR172, miR396 and miR398 

(Zhou et al. 2008; Zhou et al. 2010; Eldem et al. 2012; Guan et al. 2013). miR398 is a well-

characterized miRNA that plays a crucial role in plant adaption to thermal stress by controlling 

the expression of Copper/Zinc Superoxide dismutases (Cu/Zn-SODs) (Sunkar et al. 2006). 

Notably, two isoforms of miR398 were 5-fold up-regulated in the 4h heat stress treatment, and 

then 5-fold down-regulated in the 24 h treatment.  
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Only 51 ohpRNAs were differentially expressed during heat stress, including four miRNA-like 

ohpRNAs (Figure 12). Of these, the miR167-like ohpRNAs were most highly expressed with 

about 219 to 380 RPM in different libraries, and others were mostly expressed less than 50 rpm 

and had less than 2 fold changes. 

In contrast to miRNAs or ohpRNAs, a larger number of ra-siRNAs and cis-nat siRNAs were 

differentially expressed during heat stress. The expression level of these siRNAs with more than 

50 RPM in at least a library was shown in Figure 13 and 14. A subset of these siRNAs showed a 

differential expression during heat stress. For example, ra-siR98018 (7,369 RPM in the 0h heat 

stress library) was the most abundant among all repeat-associated siRNAs, and this siRNA 

dramatically decreased 2-fold in the 4h library and then increased 2 folds in the 24 h library 

compared to the 4h library. Most of the ra-siRNAs tended to show similar expression patterns, i.e. 

a decreased during heat stress. Similar to ra-siRNAs, Most of the highly expressed cis-nat 

siRNAs were down-regulated in both 4 h and 24 h heat stressed libraries.  

As shown in Figure 15, 28 pha-siRNAs (3.5% of the total) were differentially expressed during 

the heat stress treatments. Among these, 18 were 21 nt long pha-siRNAs, and others were 22 nt 

or 24 nt long. These pha-siRNAs can be categorized into four clades.  Pha-siRNAs in Clade 1 

were up-regulated in 4h but not in 24 h. Clade 2 contained pha-siRNAs were up-regulated in 

both 4 h and 24 h libraries.  Pha-siRNAs in Clade 3 were down-regulated in the 4 h library and 

returned to the expression levels similar to the 0h (before heat), while clade 4 was up-regulated 

in both the 24 h libraries (Clade 4). A few pha-siRNAs showed a great variation in expression in 

response to heat stress. For example, pha-siRNA-21-290 was one of the most abundantly 

expressed ta-siRNAs and was upgraded approximately 12-fold in the 4 h library and down-

regulated about 6-fold in the 24 h library.  
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Discussion 

Discussion 

In this study, a bioinformatic pipeline was developed and implemented to identify the various 

classes of sRNAs found in the G. raimondii genome. This pipeline was used to demonstrate the 

great diversity of sRNAs that were found in this genome (Table 2), and quantitatively estimate 

the number of each species of sRNA found.  Many of these sRNAs were expressed at significant 

levels in one or more of our libraries, although a large number of sRNAs demonstrate very low 

expression levels in only one or a few libraries making it impossible to demonstrate that these 

can be meaningfully classified into specific functional sRNA types at this time.  It is more likely 

that many of these sRNAs with low abundance result from random or nonrandom RNA 

degradation processes occurring inside cells or during the preparation of total RNA from tissues.  

However, low abundance reads were retained in our original total sRNA library since many 

sRNAs are produced from dsRNA precursors, but only 1 of the 2 strands has functional 

significance and is consequently more stable (e.g. is loaded into a RISC complex).  However, the 

existence of the complementary strand in the sRNA dataset can assist in determination of the 

functional sRNA (e.g. the existence of miRNA* improves the likelihood of authentic miRNA 

prediction).  This led to a significant number of specific sequences in the total sRNA libraries 

that remain unclassified at the end of the pipeline (Table 2) as evidenced by the relatively low 

abundance of these reads (average abundance below 1.6 reads per sequence).  Nevertheless, a 

significant number of G. raimondii sRNA sequences have been discovered in these leaf libraries, 

many of which have abundances well above minimal, random levels.  However, since we only 

used leaf tissues for our library preparation, the list of discovered sRNAs cannot be considered 

exhaustive of all sRNAs found in the G. raimondii genome. By analyzing six leaf small RNA 
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libraries from G. raimondii with/without heat stress treatments, we sought to identify the 

genome-wide spectrum of sRNAs present in G. raimondii and determine the role of various 

sRNA species in the regulation of gene expression during heat stress.  The major species of 

sRNAs identified, included miRNAs, ohpRNAs, ra-siRNAs, and cis-nat siRNAs. Conserved and 

novel putative miRNA-directed ta-siRNAs regulatory network were identified, and expression 

analysis of these sRNAs showed that a subset of sRNAs was significantly regulated during heat 

stress.  

Hairpins RNAs in G. raimondii 

It is apparent that based on numbers miRNAs are a minor class of the entire hpRNA family.  

Unlike ohpRNAs, which are expressed at only a few reads per sequence, many miRNAs are 

highly expressed in the leaf small RNA libraries of G. raimondii.  Thus, even though the number 

of miRNAs is smaller, their expression levels suggest that they may be more functionally 

important than ohpRNAs.   

Among G. raimondii miRNAs identified in this study, only 32% were conserved across plants.  

Similarly, a high proportion of lineage-specific, non-conserved miRNAs are also observed in rice 

[58], Medicago [59], and Glycine [60].  In Arabidopsis, approximately 30% miRNA families are 

not shared between A. thaliana and A. lyrate [61].  Therefore, miRNAs are evolved and lost at a 

high frequency [61].  miR7495 is a newly identified miRNA family that is found only in G. 

hirsutum, a tetraploid hybrid derived from a diploid G. raimondii-like and a diploid G. 

arboreum-like progenitor [29].  A miR7495 locus was identified in the genome of G. raimondii, 

whereas nucleotide variations were found between this miRNA locus in  G. raimondii and G. 

hirsutum consistent with  evolution of G. raimondii miRNAs following the formation of the G. 
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hirsutum tetraploid,, and this change potentially influences the recognition of target mRNAs by 

their miRNAs (Figure 3C).   

miRNA-directed pha-siRNA regulatory networks 

Pha-siRNAs, traditionally referred to as phased siRNAs, have been identified in a wide range of 

plants, from mosses to eudicots [63-65], including G. hirsutum [66,67], but pha-siRNAs have not 

previously been reported in G. raimondii.  In this study, we made a global investigation of pha-

siRNA loci in the genome of G. raimondii, which enabled us to identified 294 pha-siRNA genes 

(PSRGs) that generated 21 nt, 22 nt or 24 nt ta-siRNAs. 

Among the 21 nt generating PSRGs, 28% corresponded to previously reported PSRG/ TAS 

genes, such as Arabidopsis TAS3 (Auxin Response Factor, ARF), NB-LRR disease resistance 

genes and MYB transcription factors .  These PSRG/TAS pathways are conserved across plants 

and play crucial roles in plant development and stress responses [34,63,68].    

Approximately 80% of the 24 nt-generating pha-siRNA genes reported here are non-protein 

coding, which is consistent with previous studies [39,69].  Previous studies have shown that 24 

nt pha-siRNAs are produced from the DCL3/5-assocatied pathway (previously DCL-3 now 

considered as DCL5) [48], and these pha-siRNAs specifically accumulate in reproductive tissues 

(Johnson et al. 2009; Song et al. 2012) and are associated with transcriptional regulation of 

repeated sequence elements (transposons) [69].  Our results demonstrate that 24 nt pha-siRNAs 

are also abundantly made in leaf tissues, and likely play a role in the regulation of transposable 

elements in leaf tissues as they do in reproductive tissues in other systems.  

The G. raimondii genome encodes six DCL proteins (two more than Arabidopsis) (Henderson et 

al. 2006) and appears to be a eudicots with two DCL3 homologs [29].  Although the functions of 

G. raimondii DCL proteins are not fully characterized, they generate a complicated population of 
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G. raimondii pha-siRNAs that likely have play important roles in sRNA regulation of 

posttranscriptional silencing in this species. 

Only a small fraction of PSRGs appeared to be cleaved by predicted G. raimondii miRNAs. This 

may be due to two major reasons: 1) the miRNAs are not fully annotated in the genome of G. 

raimondii genome, and 2) the mechanism of biogenesis of pha-si/RNAs may be not fully 

understood. In the other words, other types of sRNAs might be capable of functionally acting to 

cleave the PSRG transcripts [70].  

Ra-siRNAs and cis-nat siRNAs are major species of G. raimondii sRNA population 

ra-siRNAs and cis-nat-siRNAs, the least  represent two least understood classes of sRNA classes, 

whereas theyse siRNAs are shownappear to be associated with a variety of physiological 

processes, including abiotic and biotic stress responses [11,65,71].  In the our G. raimondii leaf 

sRNA libraries, ra-siRNAs and cis-nat-siRNAs accounted for approximately 51% and 16% of 

the total sRNA reads, respectively (Table 1).  This is consistent with the previous study in 

Arabidopsis in which most of sRNAs are derived from repeat-associated loci [50] and also might 

reflect their significance for G. raimondii.   

Repeat-derived associated ra-siRNAs (or also known as heterochromaticc-siRNAs) largely act to 

maintain epigenetic situationhave been shown to regulate  by inducing or maintaining DNA 

methylation, heterochromatin formation, and chromatin remodeling associated with epigenetic 

inheritance controling many aspects of plant growth, development, and stress responses [72,73].  

Although ra-siRNA loci in the genome of G. raimondii are poorly characterized, the recent 

studies show that DNA methylation is associated with cotton fiber development [72].   

Cis-nat siRNAs are associated with plant organ development and stress [11,74] and have been 

identified in several plant species [10,65], though their existence has been questioned [48].  
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Using previously described methods [10,49], we identified a large number of cis-NAT gene pairs.  

However, 94% of these cis-NAT pairs did not produce cis-nat-siRNAs at a significant level in 

our leaf libraries, but a small subset of the cis-nat-siRNAs were highly expressed in the G. 

raimondii sRNA libraries. This was previously observed in Arabidopsis [75] and thus we can 

conclude that cis-NAT expression may be tissue-specific and only a fraction of the possible cis-

nat-siRNAs is produced in leaf.   

In other plant species cis-NAT pairs can be produced from protein-coding genes and 

environmental cues may be crucial for the formation of NAT pairs [75].  Surprisingly, sRNAs 

sequenced from natural antisense small RNA biogenesis mutants including dcl1, dcl2, dcl3, and 

rdr6 map to cis-NATs as frequently as small RNAs sequenced from wild-type plants [75].  

Nonetheless, DCL1 and/or DCL3 are required for the biogenesis of cis-nat siRNAs [10].   This 

might reflect that different types of NATs may be processed through different DCL-associated 

pathways.  

Regulatory roles of small RNAs in G. raimondii heat stress response 

Plant heat stress responses haves been well-documented in various levels, from biochemical, 

protein to gene levels, whereas recent studies show the importance of sRNAs in the regulation of 

plant thermal tolerance [24,25].  Although damaging at high concentrations, ROS (reactive 

oxygen species) appears to be a crucial signaling molecules that transduce stress signal to 

downstream effectors [76] and rapidly increase in the early stages of heat stress [77,78]. ,In G. 

raimondii miR398 increased 5-fold, the highest level of all heat-responsive miRNAs, and then 

was down-regulated by 24 h of heat stress. This result confirms results with Arabidopsis that 

implicate miR398 the regulation of plant oxidative stress by targeting Cu/Zn superoxide 

dismutase [24,25].  In addition to miR398, other conserved miRNAs, including miR166, miR396, 
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miR482, and novel miRNAs, such as miRC114 and miRC136 were differentially expressed 

during heat stress.  This result is consistent with a role of conserved miRNAs, such as miR166, 

miR396 and miR482 in various stresses [57,79,80] and further shows that other lineage-specific 

miRNAs are coordinately regulated by heat stress in G. raimondii, consistent with a diversity of 

miRNAs being involved in the G. raimondii heat stress response.    

In addition to miRNAs, several ohpRNAs were shown to be regulated during heat stress.  

Previous studies have shown that DCL2, DCl3 and DCL4 are required for the biogenesis 

ohpRNAs and produced small RNA populations with sizes from 21 nt to 24 small RNAs [13,81].  

These ohpRNAs can be functionally loaded into AGO proteins and perform post-transcriptional 

gene silencing, but these genes show more species- or tissue-specific expression [13].  

A subset of pha-siRNAs was also responsive to heat stress, including pha-siRNAs that were 

processed from MYB transcription factors. Although the biological function of many pha-

siRNAs remains largely unknown, previous studies and our data showed that PSR/TAS genes, 

such as auxin response factor, NB-LRR and MYB TF, are functionally important for plant 

growth, development, and stress responses (Zhai et al. 2011; Cho et al. 2012).  

Environmental stress influences genetic and epigenetic regulation in eukaryotes [82,83],   and 

repeat-derived siRNAs (or heterochromatic siRNAs) play crucial roles in this epigenetic 

regulation [84,85].  In insects heat stress induces the rapid increase of ra-siRNAs as well as 

epigenetic modification of histones accompanied by changes in heterochromatin during the heat 

stress response [71]. Our data showed that repeat-derived siRNAs displayed different expression 

patterns. For example, ra-siRNAs-86281 was up-regulated 16-fold in 4 h library and then down-

regulated 2-fold (compared to unstressed) in 24 h.  However, most of ra-siRNAs tended to be 

down-regulated during heat stress. It might suggest the following: 1) different ra-siRNAs might 
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be associated with different heterochromatins that regulates different genes, and thus displayed 

different expression patterns; 2) G. raimondii heat response might be divided into different 

phases in which different genes are involved to perform different functions.  In the future work, 

we will continue to work on elucidating the potential mechanism of ra-siRNA-directed 

heterochromatins and their roles in G. raimondii response during heat stress. 

In Arabidopsis and rice, cis-nat siRNAs are differentially expressed in various tissues and organs 

and during stresses, such as salt and pathogen infection [9,74,86], and appear to play critical 

roles in histone acetylation and methylation [75]. In this study, we developed a bioinformatic 

pipeline that permits us to find potential cis-NAT gene pairs derived the same genomic loci.  Our 

data showed that cis-nat siRNAs are the second largest class of G. raimondii sRNA population, 

and many were highly expressed in the leaf and differentially expressed during heat stress.  This 

suggested that the expression of cis-nat siRNAs is associated with heat stress.  However, future 

works will be needed to discover the mechanism of cis-nat siRNAs in response to heat stress. 

When the sRNAs found in our libraries are mapped to specific chromosomal locations, many 

map to distinct proximal locations on the 13 G. raimondii chromosomes, creating genomic “hot 

spots” from which possibly functionally related sRNAs are produced (Qi et al. 2009).  This 

phenomenon, and possible roles of chromosomal clustering of sRNAs in stress and 

developmental sRNA regulation are currently under further investigation since sRNAs often 

have multiple targets, or define regions of interest relative to heterochromatin formation (Smith 

et al. 2008) suggesting that specific chromosomal locations where “sRNA hot spots” exist 

produce signals that have the capacity to control numerous other genes throughout the genome.   

This preliminary bioinformatic in this study, an investigation of the nature of and possible roles 

for small regulatory RNAs of G. raimondii was performed by analyzing six small RNA libraries 
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constructed from G. raimondii seedlings treated with heat stress.  Our findings showed that a 

diversity of sRNAs is encoded in the genome of G. raimondii, and we also found that ta-siRNAs 

are organically connected to miRNAs to form sRNA regulatory networks, and that these 

networks may be further chromosomally related.  A subset of these sRNAs were differentially 

expressed during heat stress, suggesting that sRNAs are playing a role in mediating the  G. 

raimondii  leaf heat stress response consistent with the emerging role of sRNAs in mediating 

stress responses in other plant species.   
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Table 1. Summary of small RNA library of G. raimondii 

  Total reads Unique reads 

Raw sequencing 90,795,602   

      

Sequences after adaptor, low quality, & 
length trimming 46,738,621 8,057,647 

      

Exactly matching the genome 39,534,260 5,609,535 
      

ncRNA-matched 13,648,916 119,351 
      

sRNA 25,885,344 5,490,184 
  100.0% 100.0% 

hpRNA 475,241 2,375 
  1.8% 0.2% 

miRNAs 448,133 146 

  1.7% 0.0% 

Other hpRNA 27,669 2,236 
  0.1% 0.2% 

siRNA 17,944,963 307,550 

  69.3% 5.6% 

Repeat-associated 12,645,751 159,701 

  48.9% 13.2% 

Phased siRNAs 52,060 791 
  0.3% 0.2% 

21 nt phasiRNA 36,488 441 
  0.1% 0.0% 

22 nt ta-siRNA 10,395 139 

  0.0% 0.0% 

24 nt ta-siRNA 5,177 211 
  0.0% 0.0% 

cis-nat-20-to-24nt 5,247,152 147,058 

  20.3% 2.7% 

Uncharacterized 7,465,140 5,180,259 

  33.1% 92.4% 
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Figure 2. Length distribution and 5’ end nucleotide of G. raimondii miRNAs 

The length distribution of G. raimondii miRNAs is shown in A; G. raimondii miRNAs 

rage from 19 nt to 24 nt in length, but no 23 nt miRNA.  The 5’ nucleotide of miRNAs is 

shown in B; The 5’ nucleotide of miRNAs are represented by different colors, U (blue), A 

(light orange), C (light red), and G (green) 
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Figure 4. Summary for phasiRNA-generating genes found in G. raimondii 

The numbers of phasiRNA-generating genes for 21 nt, 22 nt, and 24 nt are shown in A, B, C, 

respectively. These genes are divided into three major groups, defined protein-coding genes 

(encoding known protein products), undefined protein-coding genes (encoding proteins that 

are not well characterized or hypothetical ), and non-protein coding genes whose translated 

products have no hit in NCBI protein database. 
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Abstract 

In the present study, we constructed and sequenced forty four G. hirsutum small RNA 

libraries from eight types of tissues, using ABI Solid deep sequencing. These samples were 

prepared from heat-stressed/non-heat-stressed seedlings grown in green house and growth 

chamber, or nematode-infected/non-infected roots from the seedlings grown in green house, 

or reproductive tissues at six different developmental stages from the plants grown in EV 

Smith Experiment Station in summer. This generated a total of 708 million reads, 

corresponding to 85 million unique sequences. The analysis of these small RNAs identified a 

large number of small RNAs, which included 303 miRNAs, 6,114 ohpRNAs, 390,064 ra-

siRNAs, 3,122 phased siRNAs, 238,813 cis-nat siRNAs, and 150,426 trans-nat siRNAs. 

Analysis of expression of small RNAs showed a subset of these small RNAs were 

differentially expressed in different tissues, either highly expressed in the root or leaf, or 

highly expressed in the reproductive tissues.  

This work systematically investigated and profiled the major species of currently-documented 

small RNAs and analyzed their expression patterns in different tissues from the root to the 

boll. The identification of differentially expressed small RNAs would facilitate the further 

functional studies of small RNAs in the organ development and stress response. This 

provides an insight into the molecular mechanisms of nematode/heat tolerance and genetic 

breeding in cotton. 

Introduction 

Deep sequencing technology has become a powerful method for global analysis of 

transcriptomes of small regulatory RNAs (srRNAs) and for the study in their roles in plant 

growth, development and stress response (Kasschau et al. 2007; Zhang et al. 2013). Plant 

small RNAs are generated from diverse, complicated pathways that require Dicer-like 



114 
 

proteins (DCLs), Argonaute proteins (AGO), and/or RNA dependent polymerases (RDPs) 

(Axtell 2013). Based on the origin, biogenesis and function, plant small RNAs can be divided 

into two major families, hairpin RNAs (hpRNAs) and short interfering RNAs (siRNAs), and 

each family can be subdivided into different subgroups (Axtell 2013). 

hpRNAs are generated from single-stranded precursors that are capable of forming hairpin-

shape secondary structures, while siRNAs are processed from double-stranded precursors and 

require RNA dependent RNA polymerases (Axtell 2013). On the basis of biogenesis 

mechanism, hpRNAs and siRNAs can be subdivided into two and three groups, respectively 

(Axtell 2013). 

hpRNAs consist of two major groups, microRNAs (miRNAs) and other hairpin RNAs 

(ohpRNAs). miRNAs are considered as the products that are precisely processed by DCLs, 

while ohpRNAs are produced from the imprecise cleavage by DCLs (Axtell 2013). miRNAs 

are well-documented in a variety of plants. The majority of plant miRNAs is ~21nt in length 

and regulates gene expression at post-transcription level. However, the biogenesis and 

function of ohpRNAs remain largely unknown. 

In plants, siRNAs are classified into three major groups, heterochromatic siRNAs (or repeat-

associated siRNAs), secondary siRNAs (sec-siRNAs), and natural antisense siRNAs (nat-

siRNAs). Heterochromatic siRNAs (hc-siRNAs) are generated from heterochromatic or 

repetitive regions and associated with DNA methylation. sec-siRNAs are a specific type of 

siRNAs whose synthesis are dependent on the trigger or initiator of small RNAs, such as 

miRNAs. sec-siRNAs are demonstrated to be involved in the plant development and 

resistance to pathogen infection (Zhang C et al. 2012; Quintero et al. 2013). Natural antisense 

siRNAs (nat-siRNAs) are produced from a pair of transcripts, which are overlapping from 

opposite polarity. Nat-siRNAs are divided into cis-nat siRNAs and trans-nat siRNAs. cis-nat 
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siRNAs are processed from a pair of NAT that are transcribed from the same loci, while the 

precursors of trans-nat siRNAs are transcribed from different loci. 

Growing evidences have shown the importance of siRNAs in plant growth, development, and 

stress response (Ron et al. 2010; Ito et al. 2011; Zhang X et al. 2012). Although miRNAs 

have been relatively-well profiled in G. hirsutum (Li et al. 2012; Yang et al. 2013), the 

species, expression, and function of siRNAs in G. hirsutum remain largely unknown. 

Especially, the molecular mechanism of fiber development still remains elusive, though some 

genes have been shown to be highly regulated in the fiber development (Taliercio and Boykin 

2007; Rapp et al. 2010). 

To gain insight into the roles of small RNAs, a large scale of deep sequencing was performed 

to sequence and profile G. hirsutum small RNAs from either stressed/unstressed seedlings, or 

reproductive tissues of heat tolerance/susceptible genotypes. The analysis of these data led to 

the identification of a large number of small RNAs, and a subset was highly regulated in 

different tissues, or between the vegetable and reproductive tissues. The data presented here 

will serve as foundation for future studies addressing fundamental molecular and 

developmental mechanisms that govern the organ development and regulatory mechanisms of 

plant abiotic/biotic tolerance.  

Results 

Deep sequencing of small RNA libraries from heat stress-treated G. raimondii seedlings 

As shown in Table 3 and Supplementary Table S15, ABA Solid Deep sequencing was 

employed to produce 708 million raw sequencing reads. After the preliminary treatment, 

84,964,962 unique sequences, representing 230,202,658 total reads, were retained in the 

library.  Of those, 34 million unique sequences (corresponding to 131 million reads) exactly 
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matched the genome of either G. raimondii (classified as D5 genome), G. arboreum 

(classified as A2 genome), or G. hirsutum-derived ESTs.  Note that an almost equal 

percentage of unique sequences (or total reads) exactly matched the G. raimondii or G. 

arboreum genome.  A total small RNA (sRNA) library was established by removing the 

sequences that corresponded to the non-protein coding sequences from the exactly genome-

matching sequences (EMG). This left 34,363,412 unique sequences corresponding to 

120,943,269 reads, and all these sequences will subsequently be referred to as the total sRNA 

library. 

From the total sRNA library, 6,402 hpRNAs were identified, including 303 miRNAs 

(representing 8,376,873 reads) and 6,114 ohpRNAs (corresponding to 336,116 reads) (Table 

3 and Supplemental Table S15 and S16). Notably, fourteen unique sequences were 

annotated into both miRNAs and ohpRNAs, because they were produced from multiple 

precursors, and a subset of the precursors failed to meet the criteria for annotation as plant 

miRNA precursors. Of the annotated miRNAs, 254 were lineage-specific miRNAs (ls-

miRNAs), and the other 49 were long miRNAs, and among the ls-miRNAs, 140 putative 

miRNAs were homologous to known Viridiplantae miRNAs reported in miRBase version 20 

(http://www.mirbase.org), and the other 163 were annotated as novel miRNAs currently 

found in only G. raimondii or G. arboreum.  

After removal of the hpRNAs, the remaining sRNA sequences (34,357,009 unique sequences) 

were mapped to the repeat sequence loci in the G. raimondii genome. Consequently, 390,064 

repeat-associated siRNAs (ra-siRNAs), corresponding to 9,299,246 reads, were identified, 

which accounted for 8% of the total sRNA reads or 1.25% of the unique sRNA sequences 

subsequently discovered in the total sRNA library.  
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The sRNAs after excluding hpRNAs and ra-siRNAs, the remaining sequences were utilized 

for identification of phasiRNAs. Consequently, 3,122 phased siRNAs (phasiRNAs), which 

represents 479,676 reads, were identified (Table 3), and these included  700, 146, and 2,276 

siRNAs that were 21 nt, 22 nt, and 24 nt long, respectively. These phasiRNAs were produced 

from 510 phasiRNA-generating transcripts (also known as trans-acting siRNA-generating 

transcripts, TASs) derived from either protein-coding or non-protein-coding genes 

(Supplemental Table S17-S19).  Most of 21nt phasiRNA-generating transcripts (184 of 232 

21nt-phasiRNA-generating transcripts) were derived from various protein-coding genes, 

TAS3 homologs (Auxin Response factors), NBS-LRR disease proteins, and MYB 

transcription factors, et al. (Supplemental Table S4).  Of these, NBS-LRR genes (79) were 

the biggest source for 21nt-phasiRNA-generating transcripts. By contrast, most of 22nt or 

24nt phasiRNAs were derived from non-protein coding genes (Supplemental Table S5 and 

S6).   

To identify cis-nat or trans-nat siRNAs, sRNAs that have been categorized were excluded, 

and the retained sRNAs were used for further analysis. This resulted in identification of 

389,239 siRNAs derived from a pair of transcripts that were transcribed from either the same 

or different genomic loci. 238,813 siRNAs that were derived from pairs of transcripts 

transcribed from the same loci were assigned cis-nat siRNAs, and others (150,426) derived 

from transcripts transcribed from different loci were trans-nat siRNAs (Supplemental Table 

S25 and S26).  

The sequences in the total sRNA not annotated as hpRNAs or siRNA but annotated as 

uncharacterized sRNAs, represent what is most likely to be novel uncharacterized sRNAs 

found in the G. hirsutum genome.  As the sequencing and assembly of the G. hirsutum 

genome is completed, it can be expected that more sRNAs would be characterized and 

annotated. 
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Expression of small RNAs of G. hirsutum among different tissues 

To analyze the extent of the expression patterns of small RNAs, the sequencing data for the 

different classes of small RNAs were subjected to an analysis of hierarchical clustering. The 

abundance of each class of sRNAs within the different tissues was compared by averaging 

normalized read counts from libraries of the same treatments. Because the lowly expressed 

small RNAs represent the limit of detection rather than differential abundance analysis (Jeong 

et al. 2011), the small RNAs with at least one RPM at least one type of tissue were selected 

for the hierarchical analysis. To understand the expression change of sRNAs in different 

tissues, a detail analysis of each group of sRNAs is given below. 

a. Expression of miRNAs in the different types of tissues 

Based the hierarchical analysis, the miRNAs that were detected to be expressed in at least one 

TPM at least one type of tissue. As shown in Figure 16, these miRNAs were relatively well 

clustered by tissues according to tissue developmental stages and were grouped by the 

vegetable or reproductive tissues.  

Almost all miRNAs, in a somewhat degree, displayed differential changes among different 

tissues (Supplemental Table S21).  197 miRNAs expressed with at least one RPMA in at 

least a tissue were selected to show in the Figure 1. According to the expression patterns, 

these miRNAs were divided into four major clades, clade 1 to 4 (Figure 15A). miRNAs in 

Clade 1, including 14 miRNAs, were relatively highly expressed in the reproductive tissues, 

with the highest expressed TPM value (257 TPM)  being detected for miRC166 in the large 

square.  Clade 2 contained 43 miRNAs that were relatively higher expressed in the root, and 

the highest expression level (18,606 TPM) was detected for miR399 in the root and was more 

than twenty times than the leaf. but a subset also were detected to be relatively high 
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expressed in the square, boll or flower. The Clade 3 included 18 miRNAs that were relatively 

higher expressed in the root and leaf.  Interestingly, conserved miRNAs in this clade, such as 

miR171, miR156, and miR482, and these miRNAs were detected to be expressed more than 

1,000 TPM in the root.  Surprisingly, miRC1448 were overexpressed with more than 12,000 

TPM in both root and leaf.  The clade 4 contained 50 miRNAs that were higher expressed in 

the leaf, and 31 miRNAs (62%) were conserved miRNAs. Of these, miR2949 and miRC158 

were intensively expressed in the leaf with more than 12,000 TPM, which was more than 

fifteen times than reproductive tissues.  The clade 5 was the biggest clade and included 69 

miRNAs, and 49 miRNAs (71%) were conserved miRNAs. The highest expression value 

(17,678 TPM) was detected for miR482b/c in the white flower. Notably, a subset of miRNAs 

such as miR396a and miR167a, was higher expressed in the root as well. 

On the basis of the total abundance of miRNAs (Supplemental Table S21), miRNAs in the 

root and leaf accumulated to the highest level (186,4235 TPM in the root and 165,987 TPM 

in the leaf), while those were the lowest accumulation in the square or pink flower. 

Surprisingly, the abundance of miRNAs in the white flower and large boll were 

approximately more than two folds than other reproductive tissues.  Although the total 

abundant dramatically varied between distinct tissues, 88% miRNAs (267/303) were detected 

at all types of tissues (Figure 16B).  In addition, a few miRNAs were specifically detected in 

the specific tissues. For example, miR395a and miR395p were only detected in reproductive 

tissues, whereas miRC297 was detected in only flower and boll. 

Based on the above analysis, it appeared that miRNAs were highly regulated between 

different tissues, and a subset of miRNAs was specifically expressed in the specific tissues, 

suggesting miRNAs were associated with G. hirsutum organ development. 

b. Expression of ohpRNAs among different types of tissues  
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In present work, 6,114 ohpRNAs were identified through bioinformatical method, and 5,174 

of those were expressed with at least one TPM in at least one type tissue. To better show the 

results, ohpRNAs that were detected at least 5 TPM in at least one library and were 

differentially expressed between any two different tissues (p<0.05) were selected as the 

representatives to demonstrate the expression change of ohpRNAs in different tissues. This 

remained 861 ohpRNAs for the hierarchical analysis, and the details were described in 

Supplemental Table S8.  

As shown in Figure 17A, these ohpRNAs were clustered into three groups, the reproductive-

tissue-specific (Clade 1), leaf-specific ohpRNAs (Clade 2) and leaf- and root-specific 

ohpRNAs (Clade 3), root-specific ohpRNAs (clade 4), and root-specific ohpRNAs. It should 

be noted that this classification only represented the trend of expression of ohpRNAs and a 

subset of ohpRNAs was higher expression on both vegetable and reproductive tissues.  

Based on the total abundance, the ohpRNAs were higher expressed in the reproductive tissues 

than the vegetable tissues, root or leaf (Supplemental Table S22). Similar to miRNAs, 75% 

ohpRNAs were detected to be expressed among all types of tissues, while a subset of 

ohpRNAs appeared to be accumulated in only one or more specific tissues (Figure 17B). 

The biogenesis and function of ohpRNAs are not well documented, but our analysis showed 

that ohpRNAs were differentially regulated between the vegetable tissues and reproductive 

tissues and that ohpRNAs were preferentially expressed in the reproductive tissues rather 

than the vegetable tissues. Although there is no evidence that ohpRNAs are associated with 

the tissue development in plants, our data implied that ohpRNAs might be vital for the 

development of G. hirsutum reproductive tissues. 

c. Differentially expressed repeat-associated siRNAs 
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In this work, we profiled 390,064 repeat-associated siRNAs. But most of them were detected 

only one or two counts in only one type of tissue. To better analyze these siRNAs, ra-siRNAs 

that were with at least 8 TPM in at least one library as the representative to analyze their 

expression in different tissues. This remained 2,846 ra-siRNAs for the further analysis 

(Supplemental Table S23).  

Based on the hierarchical analysis (Figure 18A), these ra-siRNAs can be divided into four 

clades, Clade 1 to 4. ra-siRNAs in Clade 1 were relatively highly expressed in the root, 

while ra-siRNAs in Clade 2 were higher expressed in both root and leaf. The Clade 3 

contained the ra-siRNAs that were relatively higher expressed in the leaf. The clade 4 

contained ra-siRNAs that were relatively higher expressed in reproductive tissues.  

d. Expression of phasiRNAs in different tissues 

In this study, 3,122 phasiRNAs were identified from the G. hirsutum small libraries, whereas 

most of them were lowly expressed with one or two count. To find phasiRNAs with 

biological significance, the phasiRNAs with at least five TPM were selected for the analysis 

of hierarchical clustering. This remained 170 phased-siRNAs for the further analysis 

(Supplemental Table S24). 

 These siRNAs were classified into six clades, Clade 1 to 4, on the basis of the expression 

patterns (Figure 19A). Clade 1 contained phasiRNAs that were relatively higher expressed 

in the root. The clade 2 included phasiRNAs that were higher expressed in the leaf. The clade 

3 included phasiRNAs that were higher expressed in both leaf and small square. The clade 

4was the biggest subgroup that contained phasiRNAs that were higher expressed in 

reproductive tissues. Of these phasiRNAs, 149 (87%) were detected among all eight tissues, 

and only 20 (12%) were detected in only the reproductive tissues (Figure 19B).  
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e. Expression of cis-nat siRNAs in different tissues 

In this study, 238,813 cis-nat siRNAs were identified from the G. hirsutum small libraries. To 

find cis-nat siRNAs with biological significance, the cis-nat siRNAs with at least five TPM 

were selected for the analysis of hierarchical clustering. This remained 806 cis-nat siRNAs 

for the further analysis (Supplemental Table S25). 

 These cis-nat siRNAs were classified into three groups/clades, Clade 1 to 3, on the basis of 

the expression patterns (Figure 20A). Clade 1 included cis-nat siRNAs that were 

preferentially expressed in the root, while Clade 2 and 3 contained cis-nat siRNAs that were 

higher expressed in the reproductive tissues and leaf, respectively. Although the abundance of 

each cis-nat siRNAs appeared to vary in a large degree from tissues to tissues, most of cis-nat 

siRNAs (678 out of 806) were detected in all tissue types, and very few were detected in only 

one specific tissue (Figure 20B). 

f. Expression of trans-nat siRNAs in different tissues 

In this study, 150,426 trans-nat siRNAs were identified from the G. hirsutum small libraries. 

To find trans-nat siRNAs with biological significance, the trans-nat siRNAs with at least five 

TPM were selected for the analysis of hierarchical clustering. This remained 830 cis-nat 

siRNAs for the further analysis (Supplemental Table S26). 

 These cis-nat siRNAs were classified into three groups/clades, Clade 1 to 3, on the basis of 

the expression patterns (Figure 21A). Clade 1 included cis-nat siRNAs that were 

preferentially expressed in the root, while Clade 2 and 3 contained cis-nat siRNAs that were 

higher expressed in the reproductive tissues and leaf, respectively. Although the abundance of 

each cis-nat siRNAs appeared to vary in a large degree from tissues to tissues, most of cis-nat 
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siRNAs (678 out of 806) were detected in all tissue types, and very few were detected in only 

one specific tissue (Figure 21B). 

Discussion and conclusion 

Small RNAs in Gossypium hirsutum 

Upland cotton (G. hirsutum) is a worldwide, economically importance crop, because it 

produces the largest source of the irreplaceable nature fiber for textile industry. The 

mechanism of development of cotton fiber has been intensively studied in anatomical, 

biochemical, and gene levels (Wang et al. 2004; Taliercio and Boykin 2007). Recently, the 

importance of gene expression regulated by small RNAs is shown to be crucial for the fiber 

development (Pang et al. 2009; Wang et al. 2012). Due to a lack of the completely sequenced 

and fully assembled genome, the study of the small RNAs in G. hirsutum is impeded and 

lagging behind the model species, such as Arabidopsis and rice. In this work, we used a 

newest, fully sequenced and the currently best assembled genome of G. raimondii, the model 

of DT subgenome in G. hirsutum (T represents tetraploid) and a partially sequenced and 

assembled genome of G. arboreum (the model of AT subgenome in G. hirsutum), combined a 

large scale of deep sequencing of small RNAs, to profile the small RNAs of G. hirsutum.  

The work in this study constructed and sequenced the largest small RNA profiles of G. 

hirsutum, which comprised forty four small RNA libraries prepared from eight distinct of 

tissues or developmental stages, including root, leaf, square, flower and boll. This generated 

708 M raw reads and left 230 M small RNAs. We noticed that the total reads of sRNAs 

matched the A2 or D5 genome were almost equal, suggesting the expression of sRNAs 

derived from the subgenome of AT or DT were equally expressed in the G. hirsutum genome. 

However, only 55.5% total reads or 40.1% unique reads exactly matched the A2 or D5 

genome, while 85% total reads of G. raimondii small RNAs exactly matched the D5 genome. 
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This reflected that the genome of A2 (G. arboreum) or D5 (G. raimondii) might not be fully 

sequenced and assembled or the A2/D5 genome is substantially different with the 

subgenomes of AT or DT of polyploidy G. hirsutum genome.  

It is known that 60% genes remained unchanged between G. hirsutum and diploid progenitors 

after polyploidization (Paterson et al. 2012). We noticed that ~63% conserved miRNAs or 

siRNAs are found in both A2 and D5 genome, suggesting at least 60% small RNA genes 

remained unchanged after divergence of the genome. However, only ~23% novel miRNAs or 

uncharacterized siRNAs were found in both A2 and D5 genome. This indicated a large 

number of G. hirsutum small RNAs that are evolutionarily non-conserved between different 

genomes. Among the uncharacterized sRNAs, 54% are 24 in length and characterized to be 

more like siRNAs. Due to importance of siRNAs in heterochromatic modification, it could be 

reasonably speculated that these non-conserved small RNAs might be especially biologically 

significant or important in the G. hirsutum genome for maintaining the epigenetic states. 

Differentially expressed small RNAs in G. hirsutum 

In this study, a large number of small RNAs were identified, and a subset of small RNAs was 

highly regulated in different tissues or developmental stage. This suggested these small 

RNAs are highly associated with the tissues or developmental stage. 

Among the miRNAs highly expressed in reproductive tissues, miR156a-b and miR172 were 

highly upgraded at least 5-folds in square, flower and boll. These miRNAs have been shown 

to regulate the plant phase transition and flower timing (Wang et al. 2009; Zhu and Helliwell 

2011). These miRNAs were very lowly expressed in the root or leaf samples, suggesting their 

crucial roles in the development of reproductive tissues in G. hirsutum. However, some 

miRNAs, such as miR164 and miR827, were highly expressed in the root or leaf, while lowly 

expressed in the reproductive tissues. This suggested that miRNAs were differentially 
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expressed in different tissues and might be associated with the development of vegetative and 

reproductive tissues. 

Comparing to miRNAs, ohpRNAs were relatively lower expressed, whereas most of 

ohpRNAs were relatively higher expressed in reproductive tissues, rather than vegetable 

tissues (root and leaf). The function of ohpRNAs were not well-documented currently, but it 

is reported that these sRNAs are produced from complex, DCL-involved pathways in which 

multiple functional sRNAs ranging from 20 nt to 24 nt  are produced and regulate gene 

expression by either DNA methylation and/or cleavage of target mRNAs (Dunoyer et al 2010; 

Henderson et al. 2006).   Thus, we can infer that these differentially expressed ohpRNAs 

might play tissue-specific roles in the development of G. hirsutum reproductive tissues. 

Unexpectedly, most of ra-siRNAs appeared to be highly expressed in the root or leaf, rather 

than in other reproductive tissues. A subset of ra-siRNAs was expressed with more than 1000 

TPM in the leaf or roots, while down-graded two to five folds in the reproductive tissues. 

Previous studies have shown that ra-siRNAs regulate the heterochromatin formation 

(Fagegaltier et al. 2009) and varied greatly between parents and hybrids (Barber et al. 2012). 

However, our data showed that ra-siRNAs were associated with the organ development of G. 

hirsutum. Although the regulatory mechanism and roles of ra-siRNAs remained elusive, the 

data in this study provided an insight into the regulatory roles of ra-siRNAs in plant 

development.  

Sec-siRNAs and cis-nat siRNAs have been recently found in various plant species (Zhai et al. 

2011; Zhang et al. 2012). But none has been found in Gossypium plants to date. In this study, 

we bioinformatically identified a large number of putative sec-siRNA and cis-nat siRNAs. 

Unexpectedly, most of them were lowly expressed in the sequenced libraries. However, it 

appeared that the sec-siRNAs or cis-nat siRNAs were preferentially expressed in the leaf, 
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instead of other tissues, root or reproductive tissues. It indicated that the siRNAs were 

primarily produced from the leaf, rather than other tissues. This might be caused by the bias 

of EST or Unigene libraries of G. hirsutum, because most of G. hirsutum ESTs or Unigenes 

are produced from the leaf, while the identification of cis-nat siRNAs or sec-siRNAs are 

intensively dependent on the ESTs or Unigenes. Although a bias is present, our data still 

showed that a subset of sec-siRNAs or cis-nat was differentially expressed between 

vegetative and reproductive tissue. This suggested that sec-siRNAs or cis-nat siRNAs might 

be involved in the organ development of G. hirsutum. However, the further experimental 

evidences would be needed to confirm their roles. 

In conclusion, we constructed and sequenced the forty four small RNA libraries of G. 

hirsutum that included eight different tissues or developmental stages. This generated the 

largest profiles of G. hirsutum small RNAs. The work in this study bioinformatically 

identified the five major classes of small RNAs currently documented in plants and profiled 

their expression in different tissues or developmental stages. This revealed that a large 

number of miRNAs or other siRNAs were differentially regulated between vegetative and 

reproductive tissues, suggesting small RNAs are involved in the organ development of G. 

hirsutum. This work would facilitate the further studies in the regulatory mechanism of organ 

development and molecular breeding of better-quality fiber or more stress-tolerant cotton. 

Materials and Methods 

Growth of plant material, total RNA preparation, and sRNA library sequencing 

The youngest fully expanded leaves of four-week-old G. raimondii seedlings were used to 

obtain total RNA.  Samples were harvested from at least 3 seedlings treated at 46oC. for 0 h 

(no heat stress treatment), and after 4 or 24 h of heat stress (heat stress treatment). The total 

RNA was separately isolated from each sample using hot Borate method (Wan and Wilkins 
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1994). The constructing and sequencing of small RNAs was performed at the HudsonAlpha 

Institute Genome Sequencing Laboratory in Huntsville, AL, USA using an Illumina Small 

RNA Preparation Kit following manufacturer’s protocol. Each small RNA sample was 

sequenced twice generating 2 sequencing replicates of each sample. 

Processing of sequencing data 

The raw sequencing data was processed using a pipeline consisting of a combination of 

custom-designed scripts, open source scripts, and CLC WorkBench 5.8 

(http://www.clcbio.com/). Raw sequence data was filtered to remove sequencer reads lacking 

a 3’ sequencing adaptor sequence, and the adaptor sequences and low quality bases were 

removed using CLC WorkBench 5.8. After filtering sequences 17 to 28 nt were retained for 

further analysis and designated as the preliminary sRNA libraries. Sequences from each of 

the 6 libraries and from a combined total library were separately collapsed to create read 

counts for each unique sequence in each of the single libraries and for the combined library. 

Due to the unavailability of the genome of G. hirsutum, three reference database were used 

for further analysis, including the genome of G. raimondii, version 2 (G.raimondii_v2) 

(Paterson et al. 2012), and the preliminarily assembled genome of G. arboreum (the raw 

sequencing reads were downloaded from Comparative Evolutionary Genomics of Cotton, 

http://128.192.141.98/CottonFiber/) and the G. hirsutum-derived ESTs/unigenes downloaded 

from NCBI (ftp://ftp.ncbi.nlm.nih.gov/repository/UniGene/), DFCI 

(http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=cotton), Comparative 

Evolutionary Genomics of Cotton, http://128.192.141.98/CottonFiber/) and PlantGDB 

(http://www.plantgdb.org/download/download.php?dir=/Sequence/ESTcontig/Gossypium_hi

rsutum/current_version). Bowtie mapping utility, version 1.0.0 (Berrier et al. 2010) was 

emplyoed to map sRNAs to the reference database, and only sequences exactly matching the 
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reference database were retained for further analysis. Unique sequences that exactly matched 

the non-protein coding sequences (rRNA, tRNA, snRNA, and snoRNA) were removed from 

the genome matching sequences above using the Bowtie mapping utility leaving total sRNA 

libraries for each treatment and replication and a combined total sRNA library that were used 

for subsequent analysis.  

Bioinformatics determination of sRNAs 

The identification of sRNAs, including hpRNAs, ra-siRNAs, phasiRNAs and cis-nat siRNAs, 

was performed using the methods and pipelines described in Chapter II, but the reference 

database above was used for this study. 

The trans-nat siRNAs were identified by referring to the method previously described (Zhou 

et al. 2009).  The pairs of transcripts that were not derived from the same loci from either G. 

raimondii or G. arboreum genome were used for trans-NAT analysis. Those putative NAT 

pairs that were able to form double stranded RNAs in which at least 100 nt long, 

complementary regions were found were annotated to trans-NATs, using a combination of in-

house Perl script, BLASTN 2.2.28+ 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/) and RNAcofold version 2.0.7 

that was built in Vienna RNA Package 2.0.7 (Lorenz et al. 2011).  

Uncharacterized sRNAs 

Those non hpRNAs that could not be annotated as ra-siRNAs, sec-siRNAs, or cis-NAT 

siRNAs as described above were grouped as currently uncharacterized sRNAs.  Note that this 

remains the bulk of sRNAs in our library, and it is expected that many of these will ultimately 

be annotated to the current groups of siRNAs or to other new categories of siRNAs through 

time, but at the present time the bioinformatic tools available are not particularly robust, and 
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this forces the use of a conservative approach that may fail in full recognition of significant 

siRNAs. 

Statistical analysis 

kal’s test is conducted by using statistical package built in commercial software CLC 

Genomic WorkBench 5.8.  

miRNA and siRNA target prediction and GO analysis of target genes 

The prediction of miRNAs and siRNAs targets was performed using psRNATarget (Dai and 

Zhao 2011) to search in the G. raimondii transcript database collected by JGI genomic 

Project, Phytozomev8.0 (http://www.jgi.doe.gov/), with maximum expectation of 2.0 and 

default for other parameters. The predicted target genes were subjected to Gene Ontology 

analysis performed using Blast2GO (Conesa and Gotz 2008) with default setts.  
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Table 3. Categories of G. hirsutum small RNAs 
  Total Unique 

Raw reads 707,671,830 

Reads after trmimming adaptor, low qualtity nucleotides and reads 
shorter than 17nt or longer than 28nt 230,202,658 84,964,962

Genome/uniqge matched 130,922,432 34,478,006

G. raimondii 92,826,037 21,354,725

71% 62%

G. arboreum 93,741,833 21,964,906

72% 64%

Unigenes of G. hirsutum 46,768,762 4,082,028

36% 12%

Small RNAs ( excluding non-protein RNAs) 120,943,269 34,363,412

  100% 100%

Hairpin RNAs 8,708,893 6,403

7% 0%

MicroRNAs (miRNAs) 8,376,873 303

7% 0%

Other hairpin RNAs (ohpRNAs) 336,116 6,114

0% 0%

Short interfering RNAs (siRNAs) 13,060,052 631,999

9% 2%

 Repeat-associated RNAs 9,299,246 390,064

8% 1%

Phased siRNAs 479,676 3,122

0% 0.00

Phased siRNAs (21nt) 263,732 700

0% 0%

Phased siRNAs (22nt) 39,292 146

0% 0%

Phased siRNAs (24nt) 176,652 2,276

0% 0%

cis natural antisense siRNAs 3,281,130 238,813

 (cis-nat siRNAs) 3% 1%

Uncharacterized 101,408,187 33,784,795
  84% 98%
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Figure 17. Expression of ohpRNAs among different tissues 

The Hierarchical analysis of expression of miRNAs among different tissues is shown in A;  
the Z-score of the expression value for each miRNA is shown in different colors; The tissues 
were denoted as root, leaf, ss (small square), ls (large square), wf (white flower), pf (pink 
flower), sb (small boll), and lb (large boll).  

The Venn diagram (Panel B) shows the number of miRNAs that were detected among 
different tissues. 
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Legends for Supplemental Figures  

Supplemental Figure 1. Diagram for G. raimondii pha-siRNAs biogenesis 

The diagrams for the biogenesis of G. raimondii pha-siRNAs are shown in A (21nt), B (22nt), 

and C (24). The line beginning with the sign “>” represent the genomic loci of pha-siRNA 

transcripts, the “Initiator” represent miRNA initiator of pha-siRNA transcripts from 3’-> 5. The 

plus (+) or negative signs (-) indicates the derivation of pha-siRNAs from plus strand or 

complementary strand, respectively, and the number represents the expression value of each pha-

siRNA. 

Supplemental Figure S2-14. Global changes of sRNAs along the 13 chromosomes during 

heat stress 

The expression changes of sRNAs along the 13 chromosomes are shown in Supplemental Figure 

S2 to S14. The x-axis represents the chromosome and the number on the x-axis represents the 

base position. The expression value of sRNAs (rpm) at each locus is shown in y-axis. The black, 

red and blue cycles represent the different treatments, 0h (before heat treatment), 4h (after heat 

treatment), and 24h (after heat treatment). 
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