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Abstract

Fossil fuel reserves are running out, global warming is becoming a reality, waste recycling

is becoming ever more costly and problematic, and unrelenting population growth will require

more and more energy and consumer products. There is now an alternative to the 100% oil

economy; it is a renewable resource based on biomass. Production and development of these

new products are based on biorefinery concept. The substitution of oil products by bio-based

products will develop a new bio-economy and industrial processes respecting the sustainable

development concept. The carbohydrate fraction of biomass feedstock (i.e. cellulose and

hemicellulose in lignocellulosic biomass) is expected to play the biggest role as a renewable

carbon source for biochemical products.

Scheffersomyces stipitis, a novel yeast for lignocellulosic bioconversion, accepts various

substrates and shows good overall performance in hydrolysate. As one of the best xylose-

fermenting yeast, it has worked long as the gene provider and now it has the potential to be

host for further genetic modification. With the genome sequenced, it is very necessary now

to study S. stipitis in a systematic way.

In this study, the fermentation of glucose and xylose with S. stipitis has been studied

both experimentally and computationally. First, the fermentation of glucose and xylose were

studied via experiment. To solve the washout caused by low growth rate with limited oxy-

gen supply, a “pseudo-continuous” fermentation was used. The system proved its efficiency

and also provided a better approach for improving ethanol tolerance, which was evaluated

by the significant improvements of five different definitions on ethanol tolerance. Following

the experimental results, a constraint-based core carbon metabolic network model has been

constructed based on literatures, databases, and genome data. Flux balance analysis (FBA)
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was used to investigate the properties of the model under various conditions. To evaluate the

performance of the constructed model, bioethanol production was chosen as the study sys-

tem. The model was verified qualitatively and quantitatively with experimental observations

and reported literature data. Different phenotypes in glucose or xylose metabolism with S.

stipitis have been identified via phenotype analysis and thus studied via flux distribution. To

further extract the underlying biological knowledge under the phenotype shifts, we proposed

a new system identification based framework, FBA-PCA, and showed its power on analyz-

ing metabolic network model through the identification of key reactions when oxygen supply

rate or the ratio through NADPH- and NADH-linked reactions catalyzed by xylose reductase

changes. The methodologies proposed in this dissertation can be applied to other biological

system and therefore can broaden the application of the metabolic network models.
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Chapter 1

Introduction

1.1 Sustainable Development from Biomass

The world’s primary source of energy for the transport sector and production of chemi-

cals is oil. World demand is approximately 84 million barrels a day in 2009 and is projected

to increase to about 99 million barrels a day by 2035, with transport accounting for some

60% of such a rising demand (Eisentraut, 2010). Concerning chemicals, their dependence

on fossil resources is even stronger. The majority of chemical products are produced from

oil refinery and almost 4% of oil is worldwide used for chemical and plastic production.

Besides, the strong dependence on fossil fuels comes from the intensive use and consump-

tion of petroleum derivatives which, combined with diminishing petroleum resources, causes

environmental and political concerns (Cherubini, 2010).

In order to simultaneously reduce the dependence on oil and mitigate climate change in

transport and chemical sectors, alternative production chains are necessary. It is increasingly

recognized that there is not a single solution to these problems and that combined actions are

needed, including changes in behavior, changes in vehicle technologies, expansion of public

transport and introduction of innovative fuels and technologies (Cherubini, 2010). Recently,

society began to recognize the opportunities offered by a future sustainable economy based

on renewable sources and has been starting to finance R&D activities for its implementation.

In 2009, the cost of consumption subsidies to fossil fuels in the world is $312 billion, while

the funding support given to renewable energy in 2009 is $57 billion (Eisentraut, 2010). It

is increasingly acknowledged globally that plant-based raw materials (i.e. biomass) have the

1



potential to replace a large fraction of fossil resources as feedstocks for industrial produc-

tions, addressing both the energy and non-energy (i.e. chemicals and materials) sectors. At

national, regional and global levels there are three main drivers for using biomass in biorefin-

ery for production of bioenergy, biofuels and biochemicals. These are climate change, energy

security and rural development. The political motivation to support renewable sources of

energy and chemicals arises from each individual driver or combinations. Policies designed

to target one driver can be detrimental to another. For example, policies aimed at ensuring

energy security may result in increased GHG emissions where local coal reserves are prefer-

entially exploited at the expense of imported oil or gas. In addition, electricity and heat can

be provided by a variety of renewable alternatives (wind, sun, water, biomass and so on),

while biomass is very likely to be the only viable alternative to fossil resources for production

of transportation fuels and chemicals, since it is the only C-rich material source available on

the Earth, besides fossils. As a consequence, the sustainable biomass production is a crucial

issue, especially concerning a possible fertile land competition with food and feed industries

(Langeveld, Sanders, and Meeusen, 2010).

In the following parts, the possibilities to use biomass feedstocks as raw materials in

biorefinery are reviewed briefly. First, the current status in biofuel production is provided

(Naik et al., 2010) and then the emerging biorefinery concept is described. The latter is done

through an overview of the most promising biomass feedstocks, technological processes and

final products. The current oil refinery industry is taken as benchmark.

1.1.1 State of the art in biofuel production

Currently, transportation fuels based on biomass (i.e. biofuels) are identified as 1st and

2nd generation biofuels. First generation biofuels usually refer to the biofuels produced from

raw materials in competition with food and feed industries. Because of this competition,

these biofuels give rise to ethical, political and environmental concerns. In order to overcome

these issues, production of second generation biofuels (i.e. from raw materials based on waste,
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residues or non-food crop biomass) gained an increasing worldwide interest in the last decade

as a possible greener alternative to fossil fuels and conventional biofuels.

1.1.1.1 First generation biofuels

First generation biofuels are produced from sugar, starch, vegetable oil or animal fats us-

ing conventional technologies. The basic feedstocks are often seeds and grains such as wheat,

corn and rapeseed. The most common first generation biofuels are bioethanol, biodiesel and

starch-derived biogas (Deublein and Steinhauser, 2008), but also straight vegetable oils,

biomethanol and bioethers may be included in this category (Cherubini, 2010). Among the

varieties of first-generation biofuels, bioethanol has received extended attention and will be

discussed separately.

The main advantages of first generation biofuels are due to the high sugar or oil content

of the raw materials and their easy conversion into biofuel. Many biofuel production chains

have been analyzed by means of Life Cycle Assessment (LCA) in order to point out their

environmental performances. With the exception of a few studies, most LCAs have found

a net reduction in global warming emissions and fossil energy consumption when the most

common transportation biofuels (bioethanol and biodiesel) are used to replace conventional

diesel and gasoline.

In addition, 1st generation biofuels are in competition with food and feed industries

for the use of biomass and agricultural land, giving rise to ethical implications: as prices

for fossil fuels increase, a larger proportion of cereals or agricultural land will be dedicated

to biofuel production instead of using it to produce food. In conclusion, first generation

biofuels currently produced from sugars, starches and vegetable oils cause several concerns:

these productions compete with food for their feedstock and fertile land, their potential

availability is limited by soil fertility and per hectare yields and the effective savings of CO2

emissions and fossil energy consumption are limited by the high energy input required for

3



crop cultivation and conversion (Lange, 2007; Marris, 2006). These limitations are expected

to be partially overcome by developing the so-called 2nd generation biofuels.

1.1.1.2 Second generation biofuels

Second generation biofuels are produced from a variety of nonfood crops. These in-

clude the utilization of lignocellulosic materials, such as residues from agriculture, forestry

and industry and dedicated lignocellulosic crops. In the scientific literature, the term “2nd

generation” shows wide variation in usage and can variably refer to feedstocks (e.g. lig-

nocellulosic material), conversion routes (e.g. thermochemical, flash pyrolysis, enzymatic,

etc.) and end products (e.g. gas or synthetic liquid biofuels) (Clark, 2007; Naik et al., 2010;

Osmont et al., 2010).

Contrarily to first generation biofuels, where the utilized fraction (grains and seeds),

represents only a small portion of the above-ground biomass, second generation biofuels can

rely on the whole plant for bioenergy production and thus eliminate the disadvantages of

first generation biofuels mentioned above.

Thanks to technology development, environmental performances of 2nd generation bio-

fuels could benefit of the use of high quantities of lignocellulosic residues and waste which

are already available: they can constitute the main raw material sources, which can be also

supplemented with non-food crops such as perennial grasses, and short-rotation forestry.

Most processes and technologies for 2nd generation biofuels from biomass residues are still

at a pre-commercial stage, but could enter the market within 10–15 years if corresponding

investments (R&D, infrastructure) are achieved (Cherubini, 2010; Naik et al., 2010; Osmont

et al., 2010).

On the one side the raw material situation is optimum (widespread, relatively cheap

and easily available); on the other side, their use could allow the co-production of valuable

4



biofuels, chemical compounds as well as electricity and heat, leading to better energy, en-

vironmental and economic performances through the development of biorefinery concepts

(Kamm et al., 2006).

1.1.2 From oil refinery to biorefinery

The structure of biorefinery raw materials is totally different from that on which the

current oil refinery is based. In fact, the crude oil is a mixture of many different organic

hydrocarbon compounds. The first step of oil refinery is to remove water and impurities, then

distill the crude oil into its various fractions as gasoline, diesel fuel, kerosene, lubricating oils

and asphalts. Then, these fractions can be chemically changed further into various industrial

chemicals and final products.

Unlike petroleum, biomass composition is not homogeneous, because the biomass feed-

stock might be made of grains, wood, grass, biological waste and so on, and the elemental

composition is a mixture of C, H and O (plus other minor components such as N, S and other

mineral compounds). Chemical and elemental compositions of some lignocellulosic biomass

feedstocks have been reported (EERE, 2006). If compared to petroleum, biomass generally

has too little hydrogen, too much oxygen, and a lower fraction of carbon. The compositional

variety in biomass feedstocks is both an advantage and a disadvantage. An advantage is that

biorefineries can make more classes of products that can petroleum refineries and can rely on

a wider range of raw materials. A disadvantage is that a relatively larger range of processing

technologies is needed, and most of them are still at a pre-commercial stage (Dale and Kim,

2006). The detailed composition of biomass will be discussed in next section. In order to

be used for production of biofuels and chemicals, biomass needs to be depolymerized and

deoxygenated. Deoxygenation is required because the presence of O in biofuels reduces the

heat content of molecules and usually gives them high polarity, which hinders blending with
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existing fossil fuels (Lange, 2007). Chemical applications may require much less deoxygena-

tion, since the presence of O often provides valuable physical and chemical properties to the

product.

Unlike petroleum, biomass experiences seasonal changes, since harvesting is not possible

throughout the entire year. A switch from crude oil to biomass may require a change in the

capacity of chemical industries, with a requirement to generate the materials and chemicals

in a seasonal time-frame. Alternatively, biomass may have to be stabilized prior to long-

term storage in order to ensure continuous, year-round, operation of the biorefinery (Clark,

Deswarte, and Farmer, 2009).

Biorefinery represents a change from the traditional oil refinery based on large exploita-

tion of natural resources and large waste production towards integrated systems in which all

resources are used (Kamm et al., 2006). Various processing technologies are used in biorefin-

ery processes, such as biological, chemical, thermal, thermo-chemical and physical processes,

etc. (Kamm and Kamm, 2004).

Today’s chemical industry processes crude oil into a limited number of base fractions.

Using numerous cracking and refining catalysts and using distillation as the dominant sep-

aration process, crude oil is refined into fractions such as naphtha, gasoline, kerosene, gas

oil and residues. A biorefinery industry aiming at producing bulk chemicals from biomass

will be based on a different selection of simple platforms than those currently used in the

petrochemical industry. Given the chemical complexity of biomass, there is some choice of

which platform chemicals to produce since, within limits, different processing strategies of

the same material can lead to various breakdown products. Although, in principle, all oil

refinery platform chemicals can be also derived from biomass, but with lower yields and

higher costs (Haveren, Scott, and Sanders, 2008), the future biorefineries are expected to

be based on a limited number of platforms, from which all the other commodity and bulk

chemicals can be derived. In particular, the carbohydrate fraction of biomass feedstock (i.e.

cellulose and hemicellulose in lignocellulosic biomass) is expected to play the biggest role
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as a renewable carbon source for biochemical products. In fact, biomass polysaccharides

can be effectively hydrolyzed to monosaccharides (e.g., glucose, fructose and xylose) which

can then be converted, via fermentations or chemical synthesis, to an array of bio Platform

Molecules (bPM building block chemicals with potential use in the production of numerous

value-added chemicals), analogous to the petro-platform molecules of the current oil refinery

(Werpy et al., 2004).

1.2 Composition of Biomass

Biomass is defined as consisting of all plant and plant-derived materials including live-

stock manures (Mansfield et al., 2006). Through photosynthesis, plants use light energy

from the sun to convert water and carbon dioxide to sugars that can be stored. Some plants,

like sugar cane and sugar beets, store the energy as simple sugars. Other plants, like corn,

potatoes and root crops, store the energy as more complex sugars, called starches. Currently,

industrial ethanol production is carried out by using starchy materials such as corn, wheat

starch and potatoes. However, bioethanol from starchy materials has put the effort into

direct competition with the food industry. Lignocellulosic biomass is the non-starch, fibrous

part of plant materials. It is an attractive resource because it is renewable, abundant and low

cost (Perlack et al., 2005). In recent years, more and more attention is being focused on the

use of lignocellulosic biomass for the production of bioethanol via fermentation. Lignocellu-

losic biomass that can be used as feedstocks to produce bioethanol includes: 1) agricultural

residues (leftover material from crops, such as corn stover and wheat straw); 2) forestry

wastes (chips and sawdust from lumber mills, dead trees, and tree branches); 3) municipal

solid wastes (household garbage and paper products); 4) food processing and other industrial

wastes (black liquor, a paper manufacturing by-product); and 5) energy crops (fast-growing

trees and grasses, such as switchgrass, poplar and willow) (Mansfield et al., 2006).

For this discussion, the word “biomass” will refer to “lignocellulosic biomass”. The

primary components of biomass are carbohydrate polymers (cellulose, hemicellulose) and
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phenolic polymers (lignin). Low concentration of various other compounds, such as proteins,

acids, salts, and minerals, are also present. The general composition of biomass is shown in

Figure 1.1 (Lee et al., 2007).

Cellulose
30–50%

Hemicellulose
20–40%

Lignin
15–25%

Other
5–35%

Figure 1.1: General composition of biomass

Cellulose is the most common form of carbon in biomass, accounting for 30%-50% by

weight. It is a glucose polymer linked by β–1, 4 glycosidic bonds. The basic building block

of this linear polymer is cellubiose, a glucose-glucose dimer. Hydrolysis of cellulose results in

individual glucose monomers, which can be fermented to ethanol directly. Hemicellulose is a

short, highly branched polymer containing five-carbon sugars (usually xylose and arabinose)

and six-carbon sugars (glucose, galactose and mannose). It is at levels of between 20% and

40% by weight depending on the biomass types. Hemicellulose is more easily hydrolyzed than

cellulose because of its branched, amorphous nature. When hydrolyzed, the hemicellulose

from hardwoods releases products high in xylose (a five-carbon sugar). Lignin which provides

structural integrity in plants is the largest non-carbohydrate fraction of lignocellulose. It

makes up 15% to 25% by weight of biomass. Unlike cellulose and hemicellulose, lignin

cannot be utilized in the fermentation process. However, it contains a lot of energy and

can be burned to produce steam and electricity for the biomass-to-bioethanol process. The

composition of cellulose, hemicellulose and lignin varies with the sources of biomass. Table

1.1 shows the composition of several selected agricultural residues, forestry wastes and energy
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crops. An extensive list of chemical compositions of 82 varieties of biomass plus algae have

been published (Vassilev et al., 2010).

Table 1.1: Cellulose, hemicellulose, and lignin content in various sources of biomass

Feedstock Cellulose Hemicellulose Lignin Reference

Corn stover 36.4 22.6 16.6 Mansfield et al. (2006)

Corn cob 42.0 39.0 14.0 Kuhad and Singh (1993)

Rice straw 32.0 24.0 13.0 Kuhad and Singh (1993)

Wheat straw 30.0 24.0 18.0 Kuhad and Singh (1993)

Rice hulls 36.0 15.0 21.0 Kuhad and Singh (1993)

Saw dust 55.0 14.0 21.0 Olsson and Hahn-Hägerdal (1996)

Willow 37.0 23.0 21.0 Olsson and Hahn-Hägerdal (1996)

Switchgrass 31.0 24.4 17.6 Mansfield et al. (2006)

Poplar 49.9 20.4 18.1 Mansfield et al. (2006)

1.3 Bioethanol

1.3.1 Development of bioethanol

The principle fuel used as a gasoline substitute for road transport vehicles is bio-ethanol.

Bioethanol has a number of advantages over fossil fuels. Firstly, it comes from a renewable

resource. Secondly, it is biodegradable, low in toxicity and causes little environmental pollu-

tion. Bioethanol is a high octane fuel and can be added into gasoline as an octane enhancer.

In the United States, ethanol is blended with gasoline at a 10:90 ethanol-to-gasoline ra-

tio to boost the fuel’s octane rating, which allows it to burn more cleanly, reducing urban

smog (Service, 2007). Thirdly, the use of bioethanol can reduce the greenhouse gas emis-

sions. Relative to fossil fuels, greenhouse gas emissions are reduced about 18% by the use

of corn-based ethanol, but it can be up to 88% if using cellulosic ethanol (Service, 2007).
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A closed carbon dioxide cycle can be formed by using bioethanol as fuels. After combus-

tion of bioethanol, the released carbon dioxide is recycled back into crops because crops

use carbon dioxide to synthesize cellulose during photosynthesis (Chandel et al., 2007). In

addition, blending bioethanol with gasoline will help extend the life of the diminishing fossil

oil supplies and ensure greater fuel security, avoiding heavy reliance on oil producing nations

that have not always been very stable. Another advantage of encouraging bioethanol use is

that the rural economy would receive a boost from growing the necessary crops and creating

new employment opportunities (Mansfield et al., 2006). In addition, using agricultural and

industrial residues to produce bioethanol can solve the waste disposal problem and provide

environmental benefits. Currently bioethanol is recovered from biomass feedstocks such as

sugarcane, sugar beet and starch crops (mainly corn and wheat). In 2006, total world pro-

duction reached 51.3 billion liters. USA is currently the largest producer of bioethanol with

a production of 19.8 billion liters per year, with corn as primary feedstock. Sugarcane is

used as primary feedstock in Brazil, currently the world’s second largest producer (17.8 bil-

lion liters per year). The European Union produces 3.44 billion liters of bioethanol, mainly

from sugar beet and starch crops (Cherubini, 2010). However, the increased demand for

bioethanol will result in serious problems, such as supply scarcity and dramatic increases

in the cost of the food. Moreover, even converting all the starch to bioethanol, it can only

reduce 10% of the gasoline demand (Service, 2007). Therefore, lignocellulosic bioethanol is

thought to be the answer for solving these problems.

1.3.2 Conversion from biomass to ethanol

Basically, the overall process for converting lignocellulose to bioethanol is comprised

of four major unit operations: pretreatment, hydrolysis, fermentation and product separa-

tion/distillation. Figure 1.2 shows the basic features of this process.
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Figure 1.2: Stages of producing bioethanol

1.3.2.1 Pretreatment

Pretreatment is an important first step in the conversion process of biomass to bioethanol.

This step reduces the biomass size and opens up the plant structure since native lignocellu-

losic biomass is extremely recalcitrant to hydrolysis, i.e., to make the lignocellulosic biomass

amenable to hydrolysis. There are several pretreatment methods such as mechanical combi-

nation, steam explosion, ammonia fiber explosion, acid or alkaline pretreatment and biologi-

cal treatment (Chandel et al., 2007). Each of these is suitable for different types of biomass.

Currently, pretreatment is still one of the most expensive processing steps with the cost as

high as 30 cents per gallon produced (Mosier et al., 2005). Therefore, lowering the cost of

the pretreatment process is necessary in order to achieve the production of bioethanol from

lignocellulosic biomass on commercial scale.

1.3.2.2 Hydrolysis

After pretreatment, the cellulose and hemicellulose portions need to be broken down

further by enzymes or acids into monomeric sugars for the fermentation into ethanol. There

are three principle methods of extracting sugars from biomass: dilute acid hydrolysis, con-

centrated acid hydrolysis and enzymatic hydrolysis.

The dilute acid hydrolysis process is one of the oldest and simplest methods of extract-

ing fermentable sugars from biomass. This process is carried out in two stages. Different

concentration sulfuric acid and temperature were applied in the two stages to optimize the
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process. Dilute acid hydrolysis has some limitations. If higher temperatures or longer resi-

dence time are applied, the monomeric sugars derived from hemicellulose will degrade to form

some fermentation inhibitors, such as furan compounds and weak carboxylic acids (Olsson

and Hahn-Hägerdal, 1996). In order to remove these fermentation inhibitors, several chem-

ical and biological methods could be used, such as ion exchange, charcoal adsorption and

biological detoxification (Chandel et al., 2007). However, this will increase operating cost.

The concentrated acid hydrolysis process can provide complete and rapid conversion of

cellulose to glucose and hemicellulose to xylose with little degradation. Approximately, 90%

of both cellulose and hemicellulose can be depolymerized into their monomeric sugars with

concentrated hydrolysis, so this process has the advantage of high sugar recovery efficiency

(Chandel et al., 2007).

The enzymatic hydrolysis of cellulose into glucose is a slow and complex process because

of the physical nature of the substrate. Cellulose in its native form has a highly crystalline

structure. In addition, the cellulose is embedded in a matrix of lignin and hemicellulose,

where the number of active enzyme binding sites available is limited. The factors that affect

the enzymatic hydrolysis of lignocellulosic biomass include cellulose property, substrates, and

reaction conditions (temperature, pH, etc.). At the same time, the process is very expensive

compared with acid hydrolysis due to the high enzyme cost. Although the cost of cellulolytic

enzyme has come down to 20 to 30 cents per gallon of ethanol produced, this conversion

process cannot be competitive with the process of ethanol production from starch in corn

kernels at a cost of 3 to 4 cents per gallon of ethanol (Stephanopoulos, 2007).

1.3.2.3 Fermentation

After hydrolysis, the primary fermentable sugars in hydrolysate are pentose and hexose,

such as glucose and xylose. Different microorganisms are used to ferment these sugars to pro-

duce bioethanol, such as Saccharomyces cerevisiae, Scheffersomyces stipitis, Kluyveromyces
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marxianus, Candida shehatate, Zymomonas mobilis and Escherichia coli. Currently, the fer-

mentation of a mixture of hexose and pentose is inefficient because no wild organism has been

found that can convert all sugars into ethanol at a high yield (Ragauskas et al., 2006). There

are several strategies for fermentation process: Consolidated BioProcessing (CBP) (Lynd et

al., 2005), Separate Hydrolysis and Fermentation (SHF) (Toon et al., 1997), Simultaneous

Saccharification and Fermentation (SSF) (Eken-Saraçolu and Arslan, 2000; Tomás-Pejó et

al., 2008), and Simultaneous Saccharification and Co-Fermentation (SSCF) (Chandel et al.,

2007; Ohgren et al., 2007).

1.3.3 Current issues and strategies

Lignocellulosic bioethanol is proposed as having such benefits as: reduction of green-

house gas emissions, reduction of fossil fuel use, increased national energy security, increased

rural development, a sustainable fuel supply for the future. Although significant advances

have been made at bench scale toward the bioethanol generation from lignocellulose, there

are still technical and economic barriers, which make the bioethanol program unsuccessful

on a commercial scale. Currently, the challenges include: 1) low bulk density feedstock; 2)

high viscosity substrate; 3) optimization of hydrolysis and fermentation; 4) fermentability of

substrate; 5) xylose fermentation; 6) cost challenges.

1.4 Scheffersomyces stipitis

1.4.1 Introduction

Scheffersomyces stipitis (S. stipits, formerly known as Pichia stipitis) (Kurtzman and

Suzuki, 2010) has a set of physiological traits that make it very useful for the bioconversion

of lignocellulose. In addition to its extensively studied capacity for xylose fermentation, it

is also able to ferment, glucose, mannose, galactose and cellobiose along with mannan and

xylan oligomers. This makes it a potent organism for hydrolysate or SSF (Jeffries and Van

Vleet, 2009). After glucose, xylose is the second most abundant hemicellulosic component in
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agricultural residues and fast-growing hardwood species, and cellobiose is the primary sugar

formed in enzymatic hydrolysis.

Currently researchers in numerous laboratories have borrowed genes from S. stipitis

and other fermentative microorganisms to modify S. cerevisiae for xylose, xylan or cellulose

metabolism. While partly successful, efficient xylose utilization has been impaired by S. cere-

visiae’s generally low rate of xylose consumption and its inappropriate regulatory responses.

It lacks sufficient levels of the assimilatory genes, sugar transporters and mechanisms for

balancing cofactor levels under oxygen-limiting conditions. Besides providing genes to other

microorganism, the fermentation performance of S. stipitis has been compared with other

strains widely used in biochemical industry. S. stipitis showed to be one of the best overall

performance (Rumbold et al., 2009, 2010).

No matter S. stipitis works as a gene provider for other microorganisms or as a host to

accept genes from other microorganisms, a detailed understanding of physiology, biochem-

istry and genetics of S. stipitis is required. This is possible only when the major pathways

and mechanisms are known. Biochemical and genetic characterization of xylose fermenta-

tion by P. stipitis Pignal (1967) (Yamadazyma stipitis) has been underway for at least 15

years since the development of systems for its genetic transformation (Laplaza et al., 2006;

Lu et al., 1998; Yang et al., 1994) and mating (Melake, Passoth, and Klinner, 1996). Rela-

tively few researchers, however, have attempted its rational modification despite the fact that

native strains produce more ethanol from xylose than any other studied yeast – including

genetically modified S. cerevisiae.

S. stipitis has the highest native capacity for xylose fermentation of any known mi-

croorganism (Dijken et al., 1986; Preez, Driessel, and Prior, 1989). This yeast was originally

isolated from insect larvae and is closely related to several yeast endosymbionts of passalid

beetles (Nardi et al., 2006) that inhabit and degrade white-rotted hardwood (Suh et al.,

2003). It is a predominantly haploid, homothallic, hemiascomycetous yeast (Gupthar, 1994;
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Kurtzman, 1990; Melake, Passoth, and Klinner, 1996) that forms buds along with pseu-

domycelia during vegetative growth, and two hat-shaped ascospores from each ascus. Fed

batch cultures of S. stipitis produce up to 47 g/L of ethanol from xylose at 30 ◦C (Preez,

Driessel, and Prior, 1989) with ethanol yields of 0.35–0.44 g/g xylose (Hahn-Hägerdal and

Pamment, 2004), and they are capable of fermenting sugars from hemicellulosic acid hy-

drolysates with a yield equivalent to about 80% of the maximum theoretical conversion

efficiency (Nigam, 2001a,b).

The genome of S. stipitis codes for cellulases, mannases, xylanase and other degrada-

tive enzymes that enable survival and growth in a wood-inhabiting, insect-gut environment

(Nardi et al., 2006). S. stipitis has the capacity to ferment xylose, xylan (Lee et al., 1986;

Özcan, Kötter, and Ciciary, 1991) and cellobiose, and to use all of the major sugars found

in wood, including arabinose and rhamnose (Koivistoinen et al., 2008). For these reasons, S.

stipitis has been a common source of genes for engineering xylose metabolism in S. cerevisiae

(Jeffries and Jin, 2004).

S. stipitis also has a number of other bioconversion related traits: it modifies low-

molecular-weight lignin moieties (Jeffries and Van Vleet, 2009), reduces acyclic enones to

the corresponding alcohols (Conceição, Moran, and Rodrigues, 2003), forms various esters

and aroma components (Fuganti et al., 1993) and can be engineered to produce lactic acid

(Ilmén et al., 2007) or xylitol (Kim et al., 2001; Rodrigues et al., 2008) in high yield. Strains

of S. stipitis have also been selected for resistance to furfural and hydroxy-methyl furfural

(Liu, Slininger, and Gorsich, 2005).

Metabolic engineering and adaptive evolution of S. cerevisiae for xylose fermentation

has been successful to varying degrees (Harhangi et al., 2003; Karhumaa, Hahn-Hägerdal,

and Gorwa-Grauslund, 2005; Sonderegger et al., 2004). Engineering it with the basic as-

similatory machinery of XYL1, XYL2, XYL3 (or XKS1), TAL1, TKL1, RPE1 and RPI 1

enables ethanol production. Expressing xylose isomerase (Maris et al., 2007; Wiedemann
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and Boles, 2008) or xylose reductases and xylitol dehydrogenases with altered cofactor speci-

ficities (Matsushika and Sawayama, 2008; Petschacher and Nidetzky, 2008) reduces cofactor

imbalances, and increases the ethanol yield. It is not yet clear as to which of these engineering

approaches will prove to be more successful in S. cerevisiae (Karhumaa et al., 2007).

Overexpression of S. stipitis or other fungal sugar transporters can also improve the

performance of engineered S. cerevisiae on xylose (Hector et al., 2008; Katahira et al.,

2008; Leandro, Spencer-Martins, and Gonçalves, 2008; Saloheimo et al., 2007; Weierstall,

Hollenberg, and Boles, 1999), but additional regulatory engineering is necessary because

S. cerevisiae does not possess mechanisms to coordinate ethanol production in response to

xylose (Jin, Laplaza, and Jeffries, 2004). Therefore, even though the genetic tools, detailed

biochemical knowledge and physiological properties of S. cerevisiae hold great promise for

engineering the fermentation of xylose, xylan, cellulose, arabinose, rhamnose (Koivistoinen

et al., 2008) and other sugars, much remains to be learned from S. stipitis and other yeasts

that use these substrates natively. Conversely, the mechanisms S. cerevisiae use to ferment

xylose can be adapted to improve the performance of S. stipitis.

S. stipitis shunts most of its metabolic flux into ethanol, and produces very little xylitol,

but its fermentation rate on xylose is low relative to that of S. cerevisiae on glucose. Glucose

and xylose are not equivalent fermentations for many reasons, but increasing the capacity of

S. stipitis for rapid xylose fermentation could greatly improve its usefulness in commercial

applications. Unlike S. cerevisiae, which regulates fermentation by sensing the presence of

glucose, S. stipitis induces fermentative activity in response to oxygen limitation (Klinner

et al., 2005; Passoth, Zimmermann, and Klinner, 1996; Passoth et al., 2003). This, however,

does not constitute the only fermentative regulatory mechanism. Global expression array

analysis has shown specific response patterns for xylose, cellobiose, arabinose, rhamnose

and other lignocellulosic substrates. It is not fully known whether these are attributable

to carbon catabolite derepression or specific induction. Our expression array results show

evidence for both.
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1.4.2 Physiological features of S. stipitis

Most of the research with S. stipitis has focused on its capacity to ferment xylose.

Even so, relatively little has been established concerning the rate-limiting steps in ethanol

production from this sugar. An early work (Bicho et al., 1988) showed that xylose reductase

(Xyl1) and xylitol dehydrogenase (Xyl2) are repressed by glucose and induced during growth

on xylose. Xylose is generally not consumed in the presence of glucose; hence, under glucose

repression, these activities, along with xylose transport, are rate limiting. In a respiration-

limited, cyc1 mutant of S. stipitis, however, xylose is used coincidently with glucose as

compared with the CYC1 parental strain (Shi et al., 1999), suggesting that reducing ATP

production can bring about a partial derepression of xylose assimilation.

Increasing the expression of XYL1 for xylose reductase (Takuma et al., 1991) increased

the enzymatic activity almost twofold, but had no beneficial effect on ethanol production

(Dahn et al., 1996). To date, the overexpression of XYL2 in S. stipitis has not been examined

(Kötter et al., 1990); however, deletion of XYL2 blocks xylose utilization at the level of xylitol

and prevents its growth on this carbon source (Kim et al., 2001; Laplaza et al., 2006; Shi

et al., 2000). D-Xylulokinase activity (Xks1) (Ho, Chen, and Brainard, 1998) limits the rate

of xylose assimilation by S. cerevisiae (Karhumaa, Hahn-Hägerdal, and Gorwa-Grauslund,

2005; Richard, Toivari, and Penttilä, 2000). D-Xylokinase (Xyl3) does not, however, appear

to be rate limiting in S. stipitis once it is induced on xylose. Xyl3 from S. stipitis exhibits

about three times the specific activity of Xks1 from S. cerevisiae, and cells can still metabolize

xylose via a bypass pathway even in a xyl3D background (Jin et al., 2002). This indicates

that a second pentose kinase pathway is active in S. stipitis.

Deletion of the S. stipitis ADH 1 and ADH 2 genes (Cho and Jeffries, 1998; Passoth

et al., 1998) decreases ethanol production dramatically, while increasing xylitol production.

Adh activities for S. stipitis increase under oxygen-limiting conditions (Cho and Jeffries,

1999; Passoth et al., 2003) in much the same manner as that observed with Candida she-

hatae (Alexander, Chapman, and Jeffries, 1987). Pyruvate decarboxylase activities are also
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induced under oxygen-limiting conditions along with increasing fermentative activity (Lu,

Davis, and Jeffries, 1998; Passoth et al., 1998). Taken together, these findings suggest that

the final steps of the fermentative pathway direct the flow of the reductant from xylitol to

ethanol.

The respiratory capacity of S. stipitis is notably greater than that of S. cerevisiae.

Particularly, S. stipitis possesses an alternative, nonphosphorylating terminal oxidase (Shi

et al., 2002) in addition to a fully functional NADH dehydrogenase complex (respiratory

complex I), both of which are lacking in S. cerevisiae. While these enable much higher

growth yields and the capacity to grow at very low oxygen levels, they also reduce the

intracellular NADH supply for fermentation and result in higher cell yields than with S.

cerevisiae. Deleting S. stipitis cytochrome c (CYC 1) reduces the cell yield and growth rate,

while shunting more substrate into ethanol (Shi et al., 1999). Deleting the alternative oxidase

reduces the capacity of S. stipitis to scavenge oxygen at low levels.

S. stipitis possesses β-xylosidase (Basaran and Ozcan, 2008; Manzanares, Ramón, and

Querol, 1999) and native Family 11 xylanase activities. The latter has been cloned and

characterized from S. stipitis NRRL Y-11543 (Basaran et al., 2001). The published xylanases

sequence does not match with any identified ORF in the sequenced genome of S. stipitis CBS

6054 (= NRRL Y-11545, ATCC 58785), but the sequenced genome does include Family 10

endo-1,4-b-xylanase, and endoglucanase activities that might also act on xylan. S. stipitis ’s

native xylanase activity has been supplemented through heterologous expression (Görgens

et al., 2005; Passoth and Hahn-Hägerdal, 2000).

1.5 Systems biology

In the twentieth century, engineering sciences have inspired numerous successful applica-

tions in the fields of manufacturing, electronics, communications, transportation, computer

and networks, and so on. Compared to the engineering systems, biological systems are more

complex and their mechanisms are less known. Historically, biological questions have been
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approached by a reductionist paradigm that is completely different from methodologies being

applied to engineering systems. This reductionist way of thinking was based on the assump-

tion that by unraveling the function of all the different components the information gained

could be used to piece together the puzzle of complex cellular networks (Hofmeyr and West-

erhoff, 2001). The research paradigm has dominated mainstream biology with enormous

progresses in accumulating biological information at genetic and protein levels. However,

this is a slow and exhaustive process that fails to adequately approach the true complexities

of living phenomena and is of limited relevance to biological systems as a whole.

The fast-growing applications of genomics and high-throughput technologies (Wheeler

et al., 2006) have led to recognition of the limitations of the reductionist/atomistic view

of the world. It is realized that a new systems biology paradigm is needed for the next

level of understanding of the functions of the genes and proteins, and the regulation of

intracellular networks that cannot be obtained by studying the individual constituents on

a part-by-part basis. It is also realized that there is great similarity between biology and

engineering at the system level, despite their obviously different physical implementation, and

that important research challenges in biology may have parallels with those uncomplicated

engineering systems (Fu et al., 2009). This similarity forms a basis for the introduction of

synthetic biology or the engineering applications within biological systems, which is beyond

the scope of this dissertation and will not be discussed here.

Systems biology attempts to investigate the behavior and relations of all the elements

in a particular biological system while it is functioning (Ideker, Galitski, and Hood, 2001;

Palsson, 2000). It aims at system-level understanding of biological processes and biochemical

networks as a whole. This “system-oriented” new biology is shifting our focus from exam-

ining particular molecular details to studying the information flows at all biological levels:

Genomic DNA, mRNA, proteins, informational pathways, and regulatory networks. Systems

biology approaches seek to study the complexity of life to help in understanding how the

cellular networks work together. To this end, the approach emphasizes the investigation of
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biological phenomena by considering system structures, system dynamics, control methods,

and design methods (Kitano, 2002; Wolkenhauer, 2001). It requires a broad interdisciplinary

integration of molecular and cell biology, biochemistry, informatics, mathematics, comput-

ing, and engineering. It does not apply to genome-scale studies that are focused solely on

discovery. Rather, it is a framework for using genome-scale experiments to perform predic-

tive, hypothesis driven science (Figure 1.3) (Chuang, Hofree, and Ideker, 2010).

Classic biology

Detailed
pathways

Prediction
Small-scale

modeling

Hypothesis Measurements

Single-molecule

experiments

Genome-wide

experiments
Prediction

Network interface

Network integration

Abstract
networks

Systems biology

Figure 1.3: Overview of the experimental process in classic biology (top) versus systems
biology (bottom). (Reproduced from Chuang, Hofree, and Ideker (2010))

There are two main approaches to computational analysis of biological data. The causal

approach makes concrete deterministic or stochastic models (differential equations, stochastic

differential equations, Boolean networks, et cetera) of biological processes. The probabilis-

tic view is associated with probabilistic inference approaches, using pattern recognition or

learning algorithms (such as neural networks and graphical models) for analysis of data from

large-scale experimental methods. These two approaches rest on a large part of applied

mathematics (including numerical integration, optimization, interpolation, and control the-

ory) and computer science (search theory, coding theory, and database design). This breadth

necessitates collaborations between people with diverse backgrounds, but an inadequate un-

derstanding of the limitations and applicability of techniques and concepts from different

fields hinders such collaborations. The background information required makes biological
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modeling a difficult task, but the real challenge remains that of making computational mod-

els effective and efficient representations of biological systems (Szallasi, Stelling, and Periwal,

2006).

1.6 Modeling and analysis of metabolic network

Metabolic network modeling can be classified into dynamic and structural metabolic

network modeling. An accurate dynamic metabolic network model can help elucidate com-

plex dynamic cellular phenotypes under different environmental and genetic perturbations.

A general framework has been proposed to develop a dynamic model for a genome-scale

metabolic network (Jamshidi and Palsson, 2008). Its development is hampered by the un-

availability of kinetic parameters and is limited to small-size metabolic networks (typically

¡100 reactions). Several approaches have been developed to generate kinetic parameters

under uncertainty to enable dynamic metabolic network modeling, for instance, cybernetic

kinetic modeling and ensemble metabolic network modeling through various assumptions

(Machado et al., 2012; Song and Ramkrishna, 2012; Tran, Rizk, and Liao, 2008; Wang,

Birol, and Hatzimanikatis, 2004; Young et al., 2008).

Due to lack of kinetic parameters, structural metabolic network modeling has been

widely applied for analyzing cellular metabolism under steady-state. Depending on what as-

sumptions are made and whether experimental data are required, different techniques have

been developed to analyze the invariant of metabolic networks such as metabolic flux anal-

ysis (MFA), flux balance analysis (FBA), and metabolic path-wayanalysis (MPA) including

elementary mode (EMA) and extreme pathway analyses (EPA) (Lewis2012, Stephanopou-

los1998, Trinh2009, Trinh2012).
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1.6.1 Flux balance analysis

Flux Balance Analysis (FBA) is a causal approach for analyzing the flow of metabolites

through a metabolic network (Orth, Thiele, and Palsson, 2010), in particular the genome-

scale metabolic network reconstructions that have been built in the past decade (Duarte

et al., 2007; Feist and Palsson, 2008; Feist et al., 2007; Oberhardt, Palsson, and Papin,

2009). FBA calculates the flow of metabolites through this metabolic network, thereby

making it possible to predict the growth rate of an organism or the rate of production

of a biotechnologically important metabolite. With metabolic models for more than 35

organisms already available (see on-line list) and high-throughput technologies enabling the

construction of many more each year, FBA is an important tool for harnessing the knowledge

encoded in these models.

FBA is based on the fundamental physicochemical constraints on metabolic networks.

It does not require kinetic parameters and can be computed very quickly even for large

networks. This makes it well suited to studies that characterize many different perturbations

such as different substrates or genetic manipulations.

FBA has limitations, however. Because it does not use kinetic parameters, it cannot

predict metabolite concentrations. It is also only suitable for determining fluxes at steady

state. Except in some modified forms, FBA does not account for regulatory effects such

as activation of enzymes by protein kinases or regulation of gene expression. Therefore, its

predictions may not always be accurate.

Flux Balance Analysis usually assumes time-invariant extracellular conditions and gen-

erates steady-state predictions consistent with continuous fermentation (Palsson, 2006).

However, large-scale production of metabolic products is often achieved in batch and fed-

batch culture. Therefore, in order to combine the extracellular kinetics with FBA, Dr. M.A.

Henson has dedicated into the study of Dynamic Flux Balance Analysis (DFBA) (Hjersted

and Henson, 2006; Hjersted, Henson, and Mahadevan, 2007).
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1.6.1.1 General procedure of flux balance analysis

The general procedure of formulation of an FBA problem is shown by Figure 1.4 (Orth,

Thiele, and Palsson, 2010). From the procedure we can tell that the procedure can be

roughly separated into two parts: model preparation, mathematical description and solu-

tion. The modeling part includes the genome-scale metabolic reconstruction, finding the

proper constraints and objective function that are biologically meaningful. The mathe-

matical description and solution part includes describing the reconstructed network with

stoichiometric matrix, mathematically describing the constraints and objective functions,

solve the optimization problem with LP.

1.6.1.2 Model preparation

A comprehensive guide to creating, preparing and analyzing a metabolic model using

FBA, in addition to other techniques, has been published (Thiele and Palsson, 2010). It

is an iterative procedure (Figure 1.5). The key parts of model preparation are: creating

a metabolic network without holes, adding constraints to the model and finally adding an

objective function (often called the Biomass function), usually to simulate the growth of the

organism being modeled.

The network Metabolic networks can vary in scope from those describing the metabolism

in a single pathway, up to the cell, tissue or organism. The only requirement of a metabolic

network that forms the basis of an FBA-ready network is that it contains no gaps. This

typically means that extensive manual curation is required, making the preparation of a

metabolic network for flux balance analysis a process that can take months or years. Software

packages exist to speed up the creation of new FBA-ready metabolic networks. Generally

models are created in SBML format so that further analysis or visualization can take place in

other software although this not a requirement. The details of different steps to reconstruct

the network have been discussed (Thiele and Palsson, 2010).
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that predict which reactions are missing by 
comparing in silico growth simulations to 
experimental results20-22. Constraint-based 
models can also be used for metabolic engi-
neering where FBA-based algorithms, such 
as OptKnock23, can predict gene knockouts 
that allow an organism to produce desirable 
compounds24,25.

A more advanced form of robustness analysis 
involves varying two fluxes simultaneously to 
form a phenotypic phase plane19 (example 5 
in Supplementary Tutorial).

All genome-scale metabolic recon-
structions are incomplete, as they contain 
‘knowledge gaps’ where reactions are miss-
ing. FBA is the basis for several algorithms 

knockouts (example 6 in Supplementary 
Tutorial) can be simulated14. FBA can then be 
used to predict the yields of important cofactors 
such as ATP, NADH, or NADPH15 (example 2 
in Supplementary Tutorial).

Whereas the example described here 
yielded a single optimal growth phenotype, 
in large metabolic networks, it is often pos-
sible for more than one solution to lead to 
the same desired optimal growth rate. For 
example, an organism may have two redun-
dant pathways that both generate the same 
amount of ATP, so either pathway could be 
used when maximum ATP production is the 
desired phenotype. Such alternate optimal 
solutions can be identified through flux vari-
ability analysis, a method that uses FBA to 
maximize and minimize every reaction in 
a network16 (example 3 in Supplementary 
Tutorial), or by using a mixed-integer lin-
ear programming–based algorithm17. More 
detailed phenotypic studies can be performed 
such as robustness analysis18, in which the 
effect on the objective function of varying 
a particular reaction flux can be analyzed 
(example 4 in Supplementary Tutorial).  

Figure 2  Formulation of an FBA problem. (a) A 
metabolic network reconstruction consists of a 
list of stoichiometrically balanced biochemical 
reactions. (b) This reconstruction is converted into a 
mathematical model by forming a matrix (labeled S), 
in which each row represents a metabolite and each 
column represents a reaction. Growth is incorporated 
into the reconstruction with a biomass reaction 
(yellow column), which simulates metabolites 
consumed during biomass production. Exchange 
reactions (green columns) are used to represent the 
flow of metabolites, such as glucose and oxygen, 
in and out of the cell. (c) At steady state, the flux 
through each reaction is given by Sv = 0, which 
defines a system of linear equations. As large 
models contain more reactions than metabolites, 
there is more than one possible solution to these 
equations. (d) Solving the equations to predict the 
maximum growth rate requires defining an objective 
function Z = cTv (c is a vector of weights indicating 
how much each reaction (v) contributes to the 
objective). In practice, when only one reaction, such 
as biomass production, is desired for maximization 
or minimization, c is a vector of zeros with a value 
of 1 at the position of the reaction of interest. In the 
growth example, the objective function is Z = vbiomass  
(that is, c has a value of 1 at the position of the 
biomass reaction). (e) Linear programming is used 
to identify a flux distribution that maximizes or 
minimizes the objective function within the space 
of allowable fluxes (blue region) defined by the 
constraints imposed by the mass balance equations 
and reaction bounds. The thick red arrow indicates 
the direction of increasing Z. As the optimal solution 
point lies as far in this direction as possible, the thin 
red arrows depict the process of linear programming, 
which identifies an optimal point at an edge or 
corner of the solution space. 

To predict growth, Z = vbiomass
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Box 2  Tools for FBA

FBA computations, which fall into the category of constraint-based reconstruction and 
analysis (COBRA) methods, can be performed using several available tools27-29. The 
COBRA Toolbox11 is a freely available Matlab toolbox (http://systemsbiology.ucsd.edu/
Downloads/Cobra_Toolbox) that can be used to perform a variety of COBRA methods, 
including many FBA-based methods. Models for the COBRA Toolbox are saved in 
the Systems Biology Markup Language (SBML)30 format and can be loaded with the 
function ‘readCbModel’. The E. coli core model used in this Primer is available at  
http://systemsbiology.ucsd.edu/Downloads/E_coli_Core/.

In Matlab, the models are structures with fields, such as ‘rxns’ (a list of all reaction 
names), ‘mets’ (a list of all metabolite names) and ‘S’ (the stoichiometric matrix). 
The function ‘optimizeCbModel’ is used to perform FBA. To change the bounds on 
reactions, use the function ‘changeRxnBounds’. The Supplementary Tutorial contains 
examples of COBRA toolbox code for performing FBA, as well as several additional 
types of constraint-based analysis.
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Figure 1.4: Formulation of an FBA problem. Adopted from Orth, Thiele, and Palsson
(2010).

Constraints A key part of FBA is the ability to add constraints to the flux rates of

reactions within networks, forcing them to stay within a range of selected values. This

lets the model more accurately simulate real metabolism and can be thought of biologically

in two subsets: constraints that limit nutrient uptake and excretion and those that limit

the flux through reactions within the organism. FBA-ready metabolic models that have had

constraints added can be analyzed using software such as the COBRA toolbox (Becker et al.,

2007; Schellenberger et al., 2011). Different kind of constraints can be used to limit possible
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1. Draft reconstruction
1) Obtain genome annotation.
2) Identify candidate metabolic functions.
3) Obtain candidate metabolic reactions.
4) Assemble draft reconstruction.
5) Collect experimental data.

2. Refinement of reconstruction
6) Determine and verify substrate and cofactor usage.
7) Obtain neutral formula for each metabolite.
8) Determine the charged formula.
9) Calculate reaction stoichiometry.
10) Determine reaction directionality.
11) Add information for gene and reaction localization.
12) Add subsystems information.
13) Verify gene-protein-reaction association.
14) Add metabolite identifier.
15) Determine and add confidence score.
16) Add references and notes.
17) Flag information from other organisms.
18) Repeat Step 6 to 17 for all genes.
19) Add spontaneous reactions to the reconstruction.
20) Add extracellular and periplasmic transport reactions.
21) Add exchange reactions.
22) Add intracellular transport reactions.
23) Draw metabolic map (optional).
24–32) Determine biomass composition.
33) Add biomass reaction.
34) Add ATP-maintenance reaction (ATPM).
35) Add demand reactions.
36) Add sink reactions.
37) Determine growth medium requirements.

3. Conversion of reconstruction
into computable format
38) Initialize the COBRA toolbox.
39) Load reconstruction into Matlab.
40) Verify S matrix.
41) Set objective function.
42) Set simulation constraints.

4. Network evalution
43–44) Test if network is mass- and charge-balanced.
45) Identify metabolic dead-ends.
46-48) Perform gap analysis.
49) Add missing exchange reactions to model.
50) Set exchange constraints for a simulation condition.
51-58) Test for stoichiometrically balanced cycles.
59) Re-compute gap list.
60–65) Test if biomass precursors can be produced in standard medium.
66) Test if biomass precursors can be produced in other growth media.
67–75) Test if the model can produce known secretion products.
76–78) Check for blocked reactions.
79–80) Compute single gene deletion phenotypes.
81–82) Test for known incapabilities of the organism.
83) Compare predicted physiological properties with know properties.
84–87) Test if the model can grow fast enough.
89–94) Test if the model grows too fast.

Data assembly and dissemination
95) Print Matlab model content.
96) Add gap information to the reconstruction output.

Figure 1.5: Overview of the procedure to iteratively reconstruct metabolic network. Adopted
from Thiele and Palsson (2010).

solutions. An overview of constraints used by flux balance analysis is given by Hjersted,

Henson, and Mahadevan (2007).

• Physico-chemical constraints are the so-called ’hard’ constraints on cell functions.

These constraints will not change due to environmental conditions. Examples of these

hard constraints are mass, energy and momentum which is conserved in the cell, which

means that during the experiment the total quantity of these variables, will be equal

to these initial values. The conservation of mass is described by the mass balance

equations and will form the most important constraints for the FBA model.

• Topobiological constraints. The crowding of molecules in cells leads to topobiolog-

ical or three-dimensional constraints. An example is the DNA tightly packed within

the nucleus because DNA stretched will be a 1000 times larger than the size of the

cell. At the same time DNA has to be accessed for transcription in high quantities and
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fast. Another example is the ratio between the available amount of tRNA molecules

and ribosomes, which are respectively the building blocks and factories for proteins.

• Environmental conditions in cells are time and conditions dependent. Nutrient

concentrations, pH value and temperature are examples of environmental constraints.

Organisms, and all other metabolic systems, require some input of nutrients. Typically

the rate of uptake of nutrients is dictated by their availability, their concentration and

diffusion constants (higher concentrations of quickly-diffusing metabolites are absorbed more

quickly) and the method of absorption (such as active transport or facilitated diffusion versus

simple diffusion).

If the rate of absorption (and/or excretion) of certain nutrients can be experimentally

measured then this information can be added as a constraint on the flux rate at the edges

of a metabolic model. This ensures that nutrients that are not present or not absorbed by

the organism do not enter its metabolism (the flux rate is constrained to zero) and also

means that known nutrient uptake rates are adhered to by the simulation. This provides a

secondary method of making sure that the simulated metabolism has experimentally verified

properties rather than just mathematically acceptable ones. In mathematical terms, the

application of constraints can be considered to reduce the solution space of the FBA model.

In addition to those applied at the edges of a metabolic network, constraints can be

applied to reactions deep within the network. These constraints are normally usually simple;

they may constrain the direction of a reaction due to energy considerations or constrain the

maximum speed of a reaction due to the finite speed of all reactions in nature.

Objective function In FBA there are a large number of mathematically acceptable solu-

tions to the steady-state problem (S~v = 0) but the ones that are biologically interesting are

those that produce the desired metabolites in the correct proportion. The set of metabolites,

in the correct proportions, that an FBA model tries to create is called the objective function.

When modeling an organism the objective function is generally the biomass of the organism
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and simulates growth and reproduction. If the biomass function is defined sensibly, or ex-

actly measured experimentally, it can play an important role in making the results of FBA

biologically applicable: by ensuring that the correct proportion of metabolites are produced

by metabolism and by predicting exact rates of Biomass production for example.

When modeling smaller networks the objective function can be changed accordingly.

An example of this would be in the study of the carbohydrate metabolism pathways where

the objective function would probably be defined as a certain proportion of ATP and NADH

and thus simulate the production of high energy metabolites by this pathway.

1.6.1.3 Mathematical description

A biological network can be thought of as a set of nodes (compounds) connected by

directional edges (reactions) and therefore represented as a matrix. The properties of this

matrix are well known and thus a biological problem becomes amenable to computational

analysis. A real biological system is extremely complex which in turn leads to problems

measuring enough parameters to define the system and in some cases requiring a huge amount

of computing time to perform simulations. Flux balance analysis simplifies the representation

of the biological system, requiring fewer parameters (such as enzyme kinetic rates, compound

concentrations and diffusion constants) and greatly reduces the computer time required for

simulations.

Homeostasis Much of the power of flux balance analysis comes from applying the principle

of homeostasis to the problem. Since the internal concentrations of metabolites within a

biological system remain more or less the same over time we can apply the homeostatic

condition that,

d[C]i
dt

= 0 (1.1)

and thus simplify the problem to one of simply balancing the fluxes within the system, hence

the name flux balance analysis.
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The stoichiometric matrix The representation of the equations above can be general-

ized to any similar biological network and represented in a more powerful manner by using

matrices. In this stoichiometry matrix (S) of size m × n , every row represents one unique

compound (for a system with m compounds) and every column represents one reaction (n

reactions). The entries in each column are the stoichiometric coefficients of the metabolites

participating in a reaction. There is a negative coefficient for every metabolite consumed

and a positive coefficient for every metabolite that is produced. A stoichiometric coefficient

of zero is used for every metabolite that does not participate in a particular reaction. S is a

sparse matrix because most biochemical reactions involve only a few different metabolites.

The flux through all of the reactions in a network is represented by the vector ~v, which has

a length of n.

The systems of mass balance equations at steady state (dCi/dt = 0) is given:

S~v = 0 (1.2)

This general operation is called taking the Null Space of the stoichiometric matrix S and

the technique is valid for all stoichiometric matrices. Since a typical stoichiometric matrix

contains many more metabolites than reactions (m > n) and the majority of reactions are

linearly independent there is no unique solution to this system of equations.

1.6.1.4 Application to the biology of the system

The analysis of the null space of matrices is common within linear algebra and many

software packages such as Matlab can help with this process. Nevertheless, knowing the null

space of S only tells us all the possible collections of flux vectors (or linear combinations

thereof) that balance fluxes within the biological network. Flux balance analysis has two

further aims, to accurately represent the biology limits of the system and to return the flux

distribution closest to that naturally occurring within the target system/organism.
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The stoichiometric matrix is almost always underdetermined meaning that the solution

space to S~v = 0 is very large. The size of the solution space can be reduced, and made more

reflective of the biology of the problem through the application of certain constraints on the

solutions.

Constrains are represented in two ways, as equations that balance reaction inputs and

outputs and as inequalities that impose bounds on the system. The matrix of stoichiometries

imposes flux (that is, mass) balance constraints on the system, ensuring that the total amount

of any compound being produced must be equal to the total amount being consumed at

steady state. Every reaction can also be given upper and lower bounds, which define the

maximum and minimum allowable fluxes of the reactions. These balances and bounds define

the space of allowable flux distributions of a system — i.e. the rates at which every metabolite

— is consumed or produced by each reaction.

Certain flux rates can be measured experimentally and the fluxes within a metabolic

model can be constrained to ensure these known flux rates are accurately reproduced in

the simulation. Flux rates are most easily measured for nutrient uptake at the edge of

the network but measurements of internal fluxes are possible, generally using radioactively

labeled or NMR visible metabolites.

Even after the application of constraints there are usually a large number of possible

solutions to the flux balance problem. If an optimization goal is defined, linear programming

can be used to find a single optimal solution. The most common biological optimization goal

for a whole organism metabolic network would be to choose the flux vector ~v that maximizes

the flux through a biomass function composed of the constituent metabolites of the organism

placed into the stoichiometric matrix and denoted vbiomass or simply vb

max
~v

vb s.t. S~v = 0 (1.3)
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In the more general case any reaction be defined and added defined as a biomass function

with either the condition that it be maximized or minimized if a single “optimal” solution is

desired. Alternatively, and in the most general case, a vector ~c can be defined which defines

the weighted set of reactions that the linear programming model should aim to maximize or

minimize,

max
~v
~v · ~c s.t. S~v = 0 (1.4)

In the case of there being only a single separate biomass function/reaction within the

stoichiometric matrix ~c would simplify to all zeroes with a value of 1 (or any non-zero value)

in the position corresponding to that biomass function. Where there were multiple sepa-

rate objective functions ~c would simplify to all zeroes with weighted values in the positions

corresponding to all objective functions.

1.6.1.5 Dynamic flux balance analysis

FBA assumes time-invariant extracellular conditions and generates steady-state pre-

dictions consistent with continuous culture. However, large-scale production of metabolic

products is often achieved in batch and fed-batch culture. Dynamic flux balance models are

obtained by combining stoichiometric equations for intracellular metabolism with dynamic

mass balances on key extracellular substrates and products assuming fast intracellular dy-

namics. The intracellular and extracellular descriptions are coupled through the cellular

growth rate and substrate uptake kinetics. Dynamic flux balance analysis (DFBA) offers

the possibility of formulating substrate uptake kinetics to account for known regulatory pro-

cesses. DFBA has been primarily used to generate dynamic predictions of substrate, biomass

and product concentrations for wild type growth in batch culture. The utility of yeast dy-

namic flux balance models for optimization of fed-batch operating strategies (Hjersted and

Henson, 2006) and identification of ethanol overproduction mutants (Hjersted, Henson, and

Mahadevan, 2007) have been shown.
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Chapter 2

Experimental Fermentation of

Glucose and Xylose

Although many experimental report of S. stipitis have been published, published re-

sults on continuous fermentation of S. stipitis with glucose and xylose (Fiaux et al., 2003;

Grootjen, Lans, and Luyben, 1990; Skoog and Hahn-Hägerdal, 1990; Skoog, Jeppsson, and

Hahn-Hägerdal, 1992) as carbon source are very limited. One of the reasons is that it is

difficult to maintain continuous fermentation by S. stipitis with xylose under oxygen lim-

ited condition due to low growth rate. Two important aspects of S. sitpitis as discussed

in Section 1.4 have been experimentally studied in this work: (i) influence of oxygen avail-

ability; (ii) ethanol tolerance. In this chapter, the fermentation of glucose and xylose were

carried out in a modified commercial bioreactor under “pseudo-continuous” mode to study

the general performance of S. stipitis CBS 6054 and the influence of oxygen availability. The

investigation on the impact of “pseudo-continuous” fermentation to the ethanol tolerance of

S. stipitis will be discussed later in Chapter 3.

2.1 Materials and methods

2.1.1 Microorganism and media

S. stipitis CBS 6054 was obtained from Dr. Thomas W. Jeffries at the University of

Wisconsin-Madison. The strain was maintained at 4 ◦C on YPX agar plates containing 10

g yeast extract, 20 g peptone, 20 g xylose and 15 g agar per liter deionized (DI) water.
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The culture media are modified based on the minimal medium (Jeffries et al., 2007).

The pre-culture medium contained (per liter DI water): 20 g D-glucose or D-xylose, 1.7 g

yeast nitrogen base without amino acids and ammonium sulfate (YNB w/o AA & AS) (BD,

Fanklin Lakes, NJ) and 2.27 g urea.

The culture medium for batch fermentation and initial phase of pseudo-continuous fer-

mentation contained (per liter DI water): 20 g d-glucose or d-xylose, 1.7 g YNB w/o AA &

AS and 2.27 g urea.

The feed medium for pseudo-continuous fermentation contained (per liter DI water): 50

g D-glucose or D-xylose, 1.7 g YNB w/o AA & AS and 2.27 g urea.

2.1.2 Pseudo-continuous fermentation

The concept of “pseudo-continuous” fermentation is not a new concept. It has been

applied in animal cell culture, which is termed as “perfusion” (Butler, 2005). The main

reason that we introduce “pseudo-continuous” fermentation here is that it can completely

eliminates the potential washout, which allows us to operate and study the fermentation

under various conditions, such as different dilution rates and oxygen supply rates. Note

that for traditional continuous fermentation of xylose using S. stipitis, one major difficulty

is the frequent washout due to the slow or even negative growth rate under micro-aerobic

condition, which has been reported (Rizzi et al., 1989; Shi and Jeffries, 1998) and shown in

our experiments. Besides, there are also two other advantages associated with the pseudo-

continuous fermentation. First, the pseudo-continuous fermentation can help improve the

fermentation rate, as very high cell density can be easily obtained with cell retention, which

will increase the ethanol throughput. Second, this system can be used for ethanol adaptation.

Because the adaptation is provided by the ethanol produced by the cells, it is assured that

the environment pressure always exists. Therefore, whether or not the improved ethanol

tolerance is achieved through mutation, there is no risk of losing the obtained capability
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during the fermentation process.It can also be used for similar situations for strain adaptation

or evolution.

The pseudo-continuous fermentation system has been built upon a modified Bioflo 110

fermenter with the in-house developed cell retention module, which is shown in Figure 2.1.

During the experiments, the temperature was controlled at 30 ◦C and pH was maintained

at 5.0 by automatic addition of 3.0 M KOH. Agitation speed was set to be 300 rpm.

Filtered
outflow

pH measurement and control
Anti-foam detect and control

Agitation control
Medium feed-in

Gas supply
Temperature

DO probe

Control unit

Figure 2.1: Reactor setup for “pseudo-continuous” fermentation.

Based on our experience, the biggest challenge in pseudo-continuous operation is main-

taining the stability and effectiveness of cell filtration module. With the continuous with-

drawal of fermentation broth, there will be a buildup of cells on the filtration surface if no

action is taken to prevent it, which will decrease and eventually completely block the flow

rate. To address this difficulty, we have developed a cell retention module in house, which
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has two membrane surfaces (as shown in Figure 2.1). The cell retention module is installed

to make the two surfaces located right against the propeller blades. In this way, the filtra-

tion surface can be constantly cleaned through shear stress resulted from agitation, which

enabled us to achieve sustained pseudo-continuous fermentation for more than two months.

To evaluate the efficiency of the cell retention module, the cell retention ratio has been

defined as

R = 1−
OD600(efflux)

OD600(bioreator)

(2.1)

where R is the cell retention ratio, OD600(efflux) and OD600(bioreactor) are the optical density

measurements at 600 nm for efflux and broth in the bioreactor.

As normal continuous fermentation, the pseudo-continuous process can be separated

into three phases after inoculation: phase I (cell growth), phase II (batch fermentation) and

phase III (pseudo-continuous fermentation).

Phase I (cell growth) This phase is for S. stipitis to grow from initial inoculum. The

pre-cultured S. stipitis cells were used to inoculate the bioreactor. The cells were cultivated

till OD600 reached certain value with aeration rate of air at 1 vvm (volume volume per

minute).

Phase II (batch fermentation) Phase II is for S. stipitis to transit from growth state to

fermentation state. The temperature and agitation rate were kept the same as in Phase I, but

the aeration rate of air was reduced. To maintain the total gas flow rate (therefore its impact

on agitation) the same as in Phase I, nitrogen gas was introduced to make up the reduced

air flow rate. The phase continued till the sugar (i.e., glucose or xylose) concentration fell

below 1 g/L.

Phase III (pseudo-continuous fermentation) Within Phase III, the system transits

from batch fermentation to pseudo-continuous fermentation. The feed medium defined in

Section 2.1.1 was fed into the bioreactor and the broth was withdrawn from the reactor
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through the cell retention module so that the cells were retained in the reactor. Both feed-in

and withdrawal rates were kept at 0.2 mL/min to maintain a dilution rate of 0.008 h−1. Other

conditions except the aeration rate were the same as previous phases. In Phase III, various

aeration rates were used to test the influence of oxygenation to the ethanol fermentation.

2.1.3 Chemical analytical procedures

The concentrations of glucose/xylose, xylitol, ethanol, glycerol and acetic acid were

measured using an Agilent 1200 series high performance liquid chromatography (HPLC)

with UV/Vis and IR detectors. They were analyzed on an Aminex HPX-87H column (Bio-

Rad, Hercules, CA) at 45 ◦C with 0.05 M H2SO4 solution as the mobile phase at a flow rate

of 0.6 mL/min. The time for each run was 25 min.

2.2 Fermentation of glucose with S. stipitis

To study the performance of S. stipitis with glucose as carbon source under various

oxygenation conditions, a pseudo-continuous fermentation has been carried out.

For glucose fermentation, two stages have been applied in Phase III (pseudo-continuous

fermentation). The only difference between different stages is the oxygenation condition,

which has been shown in Table 2.1. In stage 1 (S1), oxygen-limited condition has been ap-

plied. Stage 2 is the strict anaerobic condition. The general performance of the fermentation

is shown in Figure 2.2.

Table 2.1: Aeration conditions for glucose pseudo-continuous fermentation

Phases/Stages
Air Supply Rate

(mL/min)
Nitrogen Supply Rate

(mL/min)
Duration

(h)

PI 1500 0 22.5

PII 30 1470 47.25

PIII
S1 30 1470 115.25

S2 0 14 465
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Figure 2.2: Performance of S. stipitis with glucose as carbon source under various oxygena-
tion conditions. (open square, �) cell mass concentration, (open circle, #) glucose concen-
tration, (open diamond, 3) ethanol concentration, (open triangle, M) glycerol concentration,
(open inverted triangle, O) acetic acid concentration.

In PI when aeration was high, ethanol was produced when the measured DO dropped

to zero (data not shown) and began to produce in a higher rate when the aeration con-

dition switched to oxygen-limited condition. A relatively high concentration of acetic acid

was accumulated in these two phases (up to 1.35 g/L). A small amount of glycerol was also

produced. After the fermentation switched to oxygen-limited condition under “pseudo con-

tinuous” fermentation (S1), the concentrations of the products gradually dropped to zero due

to the continuous flow-out and low production rates under carbon starvation (the glucose

concentration dropped to zero). Under anaerobic condition (S2), the cells began to produce

ethanol, acetic acid and glycerol at higher rates compared with S1.
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2.3 Fermentation of xylose with S. stipitis

Xylose fermentation with S. stipitis has been reported to be oxygen-sensitive (Jeffries

and Van Vleet, 2009). Therefore, in the pseudo-continuous fermentation of xylose, several

oxygenation conditions have been tested in order to study its influence to ethanol production.

The oxygenation conditions have been summarized in Table 2.2.

Table 2.2: Aeration conditions for xylose pseudo-continuous fermentation

Phases/Stages
Air Supply Rate

(mL/min)
Nitrogen Supply Rate

(mL/min)
Duration

(h)

PI 1000 0 26

PII 20 70 6

PIII
S1 20 70 228

S2 4.7 0 335

S3 13.9 0 216

S4 19.74 0 313

S5 11.57 0 346

The general performance of the process is shown in Figure 2.3. With xylose as the

carbon source, S. stipitis showed different behaviors for ethanol production with that shown

in glucose metabolism and a much higher sensitivity to oxygen supply rate.

During the whole fermentation process, no glycerol production has been observed. Al-

though the cells experienced xylose starvation at the first 500 hours, it didn’t consume ethanol

as the carbon source with oxygen supplied, which is proven by the increase of ethanol con-

centration in S1 and has also been reported. The oxygen supply has big influence on xylose

metabolism. It influences the xylose uptake, cell growth, ethanol production, xylitol produc-

tion as well as acetic acid production.

For different stages in pseudo-continuous fermentation, the oxygenation condition and

various yields for cell mass, ethanol, xylitol as well as acetic acid have been summarized
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Figure 2.3: Performance of S. stipitis with glucose as carbon source under various oxygena-
tion conditions. (open square, �) cell mass concentration, (open circle, #) xylose concen-
tration, (open diamond, 3) ethanol concentration, (open right-pointing triangle, �) xylitol
concentration, (open inverted triangle, O) acetic acid concentration.

in Table 2.3. From the yields, it showed even more clearer how the oxygenation influenced

xylose metabolism. Another factor we needs to consider here is the adaptation of the strain

to the ethanol with the fermentation going on for a long time, which will be discussed later

in Chapter 3.

2.4 Conclusion

S. stipitis shows different phenotypes for glucose and xylose fermentation with minimal

medium. They have different by-products patterns, sensitivities to oxygen conditions and

optimal ethanol production conditions. For glucose, glycerol and acetic acid are the main
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Table 2.3: Yields of various products under different oxygenation conditions for pseudo-
continuous fermentation of xylose

Stages
Specific

growth rate
Ethanol

yield
Xylitol
yield

Acetic acid
yield

S1 0.0012 0.32 0.018 0.0030

S2 -0.00011 0.39 0.21 0.031

S3 -0.0013 0.33 0.30 0.017

S4 -0.0012 0.32 0.22 0.0075

S5 -0.00048 0.41 0.31 0.0059

detected by-products; while for xylose, xylitol and acetic acid are the main detected by-

products. Compared to glucose fermentation with S. stipitis, xylose metabolism is very

sensitive to oxygenation condition. The best ethanol production rate has been reached with

anaerobic condition for glucose while for xylose metabolism oxygen is a much for cell growth

and ethanol production with the minimal medium.
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Chapter 3

Impact of pseudo-continuous fermentation

on the ethanol tolerance

3.1 Abstract

In this work we conducted the pseudo-continuous fermentation, i.e., continuous fermen-

tation with cell retention, using Scheffersomyces stipitis, and studied its effect on ethanol

tolerance of the strain. During the fermentation experiments, S. stipitis was adapted to

a mild concentration of ethanol (20-26 g/L) for two weeks. Two substrates (glucose and

xylose) were used in different fermentation experiments. After fermentation, various experi-

ments were performed to evaluate the ethanol tolerance of adapted cells and unadapted cells.

Compared to the unadapted cells, the viability of adapted cells increased by 8 folds with glu-

cose as the carbon source and 6 folds with xylose as the carbon source following exposure to

60 g/L ethanol for 2 h. Meanwhile, the ethanol limit concentration of cell growth increased

28% (glucose) and 32% (xylose) respectively. Improved ethanol tolerance of the adapted

cells was also revealed in the effects of ethanol on plasma membrane permeability, extracel-

lular alkalization and acidification. The mathematical modeling of cell leakage, extracellular

alkalization and acidification revealed that cells cultured on glucose show better ethanol tol-

erance than cells cultured on xylose but the differences become smaller for adapted cells.

The results show that pseudo-continuous fermentation can effectively improve cell’s ethanol

tolerance due to the environmental pressure during the fermentation process.
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3.2 Introduction

In view of rising concerns over energy sustainability and global warning, the need for

biofuels is expected to increase sharply in the coming years (Eisentraut, 2010; US Congress,

2007). At present, the U.S. biofuels market is dominated by corn-derived ethanol. However,

substantial future growth of fuel ethanol will depend upon developments of cellulosic ethanol

processes due to the following reasons: (i) further growth of corn ethanol is restrained by

the availability of agricultural land, water resources, and the food vs. fuel trade-off which

is already causing concern (Cherubini, 2010; Hoekman, 2009); (ii) cellulosic ethanol reduces

both energy input and greenhouse gas emission by over 85% compared to corn ethanol

(Chandel et al., 2007; Farrell et al., 2006); and (iii) cellulosic biomass is the most abundant

and inexpensive renewable feedstock for ethanol production (Mansfield et al., 2006; Perlack

et al., 2005).

Complete substrate utilization is one of the prerequisites for rendering lignocellulosic

ethanol processes economically competitive. This means that both hexoses and pentoses in

cellulose and hemicellulose must be converted to ethanol, and that microorganisms must be

obtained to efficiently perform this conversion under industrial conditions. While ethanolic

fermentation of hexoses derived from cellulosic biomass, i.e., glucose, mannose and galactose,

using baker’s yeast Saccharomyces cerevisiae is well established on large scale, the conversion

of the pentoses (e.g., xylose and arabinose) to ethanol is still one of the major barriers of

industrializing lignocellulosic ethanol processes.

To address the difficulties of pentose fermentation, vast majority of existing research

has been focusing on genetically modifying a single strain so that it can ferment both hexose

and pentose efficiently into ethanol. The genetic modifications usually include inserting

pentose fermenting pathways and various sugar transporters, as well as making necessary

adjustments to balance the cell’s redox potential (Jeffries and Jin, 2004; Jeffries and Van

Vleet, 2009). By introducing multiple changes to the host genome, numerous recombinant

strains have been successfully developed in laboratories to ferment both glucose and xylose
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simultaneously. Among them, the representative ones are the recombinant S. cerevisiae

(424A) (Sedlak and Ho, 2004), engineered Zymomonas mobilis (CP4) (Rogers et al., 1982;

Zhang et al., 1995), and engineered Escherichia coli (KO-11) (Ohta et al., 1991). However,

despite the promising results in ethanol production from these recombinant strains, few of

them have been realized in industrial applications due to issues related genetically stabilities,

diauxic growth or other reasons (Hahn-Hägerdal et al., 2007).

In parallel to the genetic recombinant strategy, enhancing the innate capabilities of

strains that can ferment both hexose and pentose into ethanol has been explored as well

(Jeffries, 2008). Among all the native xylose fermenting strains, Scheffersomyces stipitis (S.

stipitis, formerly known as Pichia stipitis) (Kurtzman and Suzuki, 2010) has been shown to

be one of the most promising organisms for direct high-yield fermentation of xylose without

significant by-product formation (Ferrari et al., 1992; Jeffries and Van Vleet, 2009; Jeffries

and Shi, 1999). In addition, it naturally ferments both xylose and arabinose (the two major

pentose contained in lignocellulosic material) into ethanol. In fact, S. stipitis has been a

source of genes for engineering xylose metabolism in S. cerevisiae. However, several limi-

tations prevent S. stipitis from being used to ferment mixed sugars at an industrial scale

(McMillan, 1993). Among them, an important one is the low tolerance of S. stipitis to

ethanol and other inhibitors such as acetic acid.

How ethanol affects yeast cells is very complicated. The reported effects include: influ-

ence on the cell membrane (changing the composition, structure, and function of the plasma

and mitochondrial inner membrane) (D’Amore et al., 1990; Jeffries and Jin, 2000), influences

on proteins (enzymes, transporters, signal protein, etc.) (Casey and Ingledew, 1986; Ma and

Liu, 2010), inhibition of cell division (Mikami, Haseba, and Ohno, 1997), decrease of cell

viability (D’Amore et al., 1990; Ma and Liu, 2010), and reduced metabolic activity (Liu and

Qureshi, 2009; Ma and Liu, 2010), etc. The possible targets of ethanol in yeast cells are

illustrated in Figure 3.1. The mechanisms of the tolerance of cells to ethanol are reported

to be composed of many factors: lipid composition of cell membrane (Casey and Ingledew,
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1986; D’Amore et al., 1990; Ding et al., 2009; Jeffries and Jin, 2000; Ma and Liu, 2010),

amino acid compositions of membrane and protein (Ding et al., 2009; Ma and Liu, 2010),

H+-ATPase activity (Ding et al., 2009; Jeffries and Jin, 2000; Ma and Liu, 2010), factors that

stabilize or repair denatured proteins (Ding et al., 2009; Jeffries and Jin, 2000), temperature

(Casey and Ingledew, 1986; Jeffries and Jin, 2000; Preez, Bosch, and Prior, 1987; Van Uden,

1983), and different nutrients and ions (Birch and Walker, 2000; Ding et al., 2009; Furukawa

et al., 2004). Correspondingly, different approaches have been proposed to improve cell’s

ethanol tolerance. Among them, adaptation has been shown to be effective. For example,

Watanabe et al. (2011) reported that 20 cycles’ batch adaptation can notably improve the

ethanol tolerance of S. stipitis. In addition, S. stipitis can also be adapted to tolerate higher

concentration of acetic acid (Mohandas, Whelan, and Panchal, 1995), hardwood hydrolysate

(Nigam, 2001b) and rice straw hydrolysate (Huang et al., 2009) through batch fermentation

process. However, there are a few limitations associated with the traditional batch adapta-

tion approach. First, the commonly used batch adaptation method may take a long time

to reach the desired improvement. Second, it has been suggested that endogenous ethanol

(i.e., ethanol generated within the cells) is more toxic to the cells (D’Amore et al., 1990).

Therefore, exogenous ethanol (i.e., ethanol added externally) used in batch adaptation may

be less effective for adaptation. Finally, if the improved ethanol tolerance through adapta-

tion is not caused by mutation, the adapted strain may lose its acquired capability when

the environmental pressure is removed. At the same time, ethanol tolerance of yeast strains

can be enhanced by cell immobilization (Ciesarová et al., 1998; Desimone et al., 2002; Jirku,

1999; Krisch and Szajáni, 1997), and it is argued that the improved ethanol tolerance is

due to the enhanced hydration layer stability resulted from attaching cells to the carrier.

However, because the cells maintain their enhanced ethanol tolerance after being removed

from the carrier (Zhou, Martin, and Pamment, 2008), the ethanol tolerance enhancement

associated with cell immobilization may be due to adaptation caused by endogenous ethanol.

Due to the mass transfer resistance introduced by the carrier, the ethanol concentration in
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the small vicinity of the immobilized cells is higher than the bulk concentration. Compared

to the free-floating cells, the higher ethanol concentration around the carrier exerts environ-

mental pressure to the immobilized cells. Consequently, during the course of fermentation

process, the immobilized cells gradually adapt to the higher ethanol concentration and show

improved ethanol tolerance.
288 Critical Reviews in Biotechnology 
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FIGURE 1 .  Possible target sites of ethanol in yeast cells. 

theories on the mechanism and regulation of ethanol tolerance in microorganisms, in par- 
ticular yeast, will be discussed, as well as some recent results from this laboratory concerning 
the enhancement of ethanol tolerance in yeast. 

11. INHIBITORY EFFECTS OF ETHANOL 

Ethanol is the major product resulting from yeast sugar fermentation. Yet, at certain 
concentrations, ethanol is very toxic to the yeast cell, as well as other microorganisms. The 
inhibitory action of ethanol produced in the course of fermentation or when added externally 
is complex. Ethanol has been shown to have different and separable effects on the specific 
rate of growth of the yeast population, its viability, and its specific rate of fermenta- 
tion.&" Inhibition of cell growth and viability was observed to increase with increasing 
ethanol concentrations, whereas high fermentative capacity was only inhibited at higher 
ethanol concentrations.12-14 For example, in a study with a sake yeast strain,15 growth was 
completely suppressed by 12% (w/v) ethanol, but at the same concentration, the fermentation 
rate was still 25% of the control rate, with fermentative capacity still detected up to 30% 
(w/v) ethanol. Thus, the fermentation rate is the most ethanol tolerant of the three parameters. 

The possible target sites of ethanol in yeast cells are illustrated in Figure 1. One of the 
major target sites of ethanol is the plasma membrane of yeast and other microorganisms, as 
well as the membrane of the various cellular organelles.'j The damage caused by ethanol to 
the cell membrane results in altered membrane organization and permeability.6*16 It has 
recently been shown that ethanol causes the leakage of essential cofactors and coenzymes 
from Z. mobilis.17 The leakage of these components, which are essential for the activity of 
enzymes involved in glycolysis and alcohol production, was sufficient to explain the inhib- 
itory effect of ethanol on fermentation in Z. mobilis, as well as in In addition, 
there have been many other mechanisms proposed for the inhibitory effects of ethanol. These 
include the inhibition and denaturation of various intracellular proteins and glycolytic en- 
zymes,'* inhibition of glucose, maltose, ammonium, and amino acid transport, 14,19-23 inhi- 
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Figure 3.1: Possible targets of ethanol in yeast cells (D’Amore et al., 1990)

In this work, we propose to ferment different sugars (glucose and xylose) using S. stipi-

tis under a pseudo-continuous operation, characterized by continuous nutrient feeding and

continuous cell-free broth withdrawal. We hypothesize that pseudo-continuous fermentation

provides an ideal environment for the cells to adapt to higher ethanol tolerance while they

produce ethanol. In this work, we will verify this hypothesis by performing fermentation ex-

periments using a modified New Brunswick Bioflo 110 fermentor. By installing an in-house

developed cell retention module in the Bioflo 110 fermentor, we were able to perform pseudo-

continuous operation. With adapted cells obtained through pseudo-continuous operation, we

further examine some of their properties to validate our claim.
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3.3 Materials and methods

3.3.1 Microorganism, media, culture condition and chemical analysis procedure

Microorganism, media, culture condition and chemical analysis procedure have been

described in details in Chapter 2.

3.3.2 Ethanol tolerance evaluation

As mentioned in Introduction, the cellular response of yeasts to ethanol stress is very

complex ((Ma and Liu, 2010) and references cited therein). Therefore, many approaches

have been proposed to evaluate ethanol tolerance of different strains. In this work, we adopt

the following criteria to evaluate the ethanol tolerance of adapted and unadapted strains: (i)

cell viability after ethanol shock; (ii) growth limitation concentration of ethanol; (iii) ethanol

induced membrane leakage; (iv) extracellular alkalization and acidification. Cells in different

physiological states may show different levels of ethanol tolerance (Slininger, Gorsich, and

Liu, 2009). Here the unadapted strain means S. stipitis CBS6054 cells cultured directly

from minimal medium. To eliminate the potential impact of different physiological states

on cells’ ethanol tolerance, before conducting the following evaluation experiments, both

adapted and unadapted cells were cultured in the pre-culture medium for 24 hours and the

cells were harvested in mid-exponential growth phase.

3.3.2.1 Cell viability after ethanol shock

The rate of viability loss in the presence of ethanol has been used as a means to assess

ethanol tolerance in a number of different yeast strains as well as to measure the influences of

nutritional and environmental conditions on ethanol tolerance. Losses in cell viability found

in high-gravity brewery fermentations have been attributed to the killing effects of ethanol

and it has been suggested that resistance to killing by ethanol may be related to ethanol
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tolerance (Casey and Ingledew, 1986). Compared with the other definitions of ethanol tol-

erance, this might show the capability of cells to survive in high ethanol concentration and

therefore be more suitable to describe the performance in continuous fermentation.

In this method, the ethanol tolerance of cells was evaluated by comparing their survival

rates after two hours exposure to fermentation media containing 15, 30, 45, and 60 g/L

ethanol following a modified procedure of Zhou, Martin, and Pamment (2008). In this work,

the unadapted cells means S. stipitis CBS 6054 cells cultured directly from minimal medium.

To eliminate the potential impact of different physiological states on cells’ ethanol tolerance,

before conducting this and all other ethanol tolerance evaluation experiments, both adapted

and unadapted cells were cultured in the pre-culture medium containing glucose or xylose for

24 hours and the cells were harvested in mid-exponential growth phase. Cells were collected

by centrifugation, washed twice with fresh fermentation medium, re-suspended and diluted

with fresh fermentation medium so that the OD600 of the resulted suspension is about

7.0. 0.4 mL of the suspension was then added to 3.6 mL of each of the control and ethanol-

containing treatment solutions. After two hours incubation at 30 ◦C, the cells were harvested

and washed, re-suspended in fresh fermentation medium. The total viable numbers of cells

were determined by plate counts (30 ◦C, 28 hours for cells grown on glucose and 36 hours for

cells grown on xylose due to slower growth on xylose). The ethanol tolerance was calculated

as the number of viable cells that survived exposure to ethanol for two hours as a percentage

of those that survived exposure to the ethanol-free solution for the same period. Three

replicates were conducted for each experiment and then they were pooled to obtain average

ethanol tolerance measures.

3.3.2.2 Graphical determination of the ethanol limitation to growth

This is one of the most widely used methods to define ethanol tolerance. It is usually

defined as the concentration of ethanol which will completely suppress batch growth. This
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could be measured by adding different concentration of ethanol into the medium and measur-

ing the growth rate. In this work the theoretical ethanol concentration to inhibit cell growth

(Em), i.e. the ethanol concentration above which cells do not grow, is graphically determined

following nonlinear kinetics of ethanol inhibition to cell growth proposed by Luong (1985):

µi/µ0 = 1− (E/Em)α (3.1)

where µi is the maximum specific growth rate in the presence of ethanol, µ0 the maximum

specific growth rate at zero initial ethanol concentration, E the initial ethanol concentration,

and α a dimensionless constant. By rearranging Eqn. 3.1 we obtain

ln (1− µi/µ0) = α lnE − α lnEm (3.2)

so that a plot of ln (1− µi/µ0) vs. lnE has a slope equal to α and an intercept equal to

−α lnEm.

The specific growth rates were measured based on batch culture experiments. The

adapted and unadapted cells were inoculated into flasks as described in the previous section

respectively. The optical density of the culture (OD600) was monitored after inoculation.

The specific growth rate was calculated by linear regression of ln OD600 versus time to find

the slope during logarithmic growth phase based on the following equation

µ =
1

X
· dX

dt
=

1

OD600

· dOD600

dt
=

dln (OD600)

dt
(3.3)

where X is the cell density (g/L).

3.3.2.3 Ethanol induced leakage of 260-nm-light-absorbing compounds

Following the procedure described by Salgueiro, Sá-Correia, and Novais (1988), the

adapted and unadapted cells were washed twice with sterile phosphate buffer (50 mM, pH
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5.0), and suspended in sterile buffer plus different ethanol concentrations (0, 5, 10, 15,

20 and 25 g/L) contained in conical flasks closed with a rubber bung. OD600 of these

cellular suspensions was adjusted to around 3. The suspensions were shaken slowly (40

rpm) at 30 ◦C. Samples (1 mL) taken every half an hour were centrifuged for 5 min and

the supernatants were immediately examined for 260-nm-light-absorbing compounds in a

UV/Vis spectrophotometer at 260 nm.

To quantitatively compare the plasma membrane permeability of intracellular metabo-

lites induced by ethanol for both adapted and unadapted strains, we developed a mathemat-

ical model to describe the dynamics of ethanol induced leakage of 260-nm-light-absorbing

compounds as shown in Eqn. 3.4. The detailed model derivation is given in .

OD260 = KL

[
1− exp

(
dL − t
τL

)]
(3.4)

where t denotes time, KL, dL, and τL are the model parameters. KL represents the ultimate

effect of a given ethanol concentration on the leakage of 260-nm compounds, which is the

maximum or steady state OD600 observed for a given ethanol concentration when t is large.

dL represents the onset of the effect after putting the cells in contact with ethanol. τL

indicates how fast the leakage will reach its maximum.

3.3.2.4 Extracellular alkalization and acidification

The extracellular alkalization and acidification experiments were carried out based on

the procedures published by Meyrial et al. (1997).

In the extracellular alkalization experiments, cells were collected by centrifuge, washed

twice and re-suspended in a solution of NaCl (0.9%) to a solution with OD600 = 16. The

re-suspended cells were incubated at 30 ◦C for 2.5 h on a rotary shaker (50 rpm), to deplete

the cells of energy and, thus, deactivate the plasma membrane ATPase. In parallel, 125 mL

flasks containing increasing ethanol concentrations (0, 15, 30, 45, 60, 90, and 120 g/L) in a

total volume of 54 mL, adjusted by addition of a solution of NaCl (0.9%), were equipped
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with a magnetic stirrer and incubated at 30 ◦C. The initial pH of the assay mixture was

adjusted to 4.00 with 0.1 M HCl before the reaction was started by the addition of the cell

suspension (6 mL). The extracellular pH was monitored with a digital pH meter accurate to

two decimal places for 10 min or till the pH value reached steady state. The recorded pH

values are then converted to proton concentration ([H+]) in M. Following a similar modeling

approach as in ethanol induced leakage, we derive a first-order dynamic model to describe

the evolution of [H+] with time, as shown below.

[H+] = [H+]0 +Kp

1− exp

(
dp − t
τp

) (3.5)

where the definitions of model parameters Kp, dp, and τp are similar to those in Eqn. 3.4.

[H+]0 is a constant representing initial [H+]. The time series [H+] values are fitted to Eqn.

3.5 to estimate the maximum net proton influx, which is calculated by Kp/τp in µmol/L/min

then convered to nmol/mg/min by dividing the dry cell weight concentration of 9.9824 g/L

for the broth. All experiments were independently performed three times.

The extracellular acidification experiments were carried out with the starved cells pre-

pared as described above. Compared with the alkalization procedure, the solution in acid-

ification was prepared with the addition of glucose/xylose (10 g/L). The initial pH of the

solution was adjusted to 4.50 with 0.1 M HCl before the reaction was started by adding 6

mL suspension of starved cells (OD600 = 16). The external pH was measured with a digital

pH meter accurate to two decimal places for every 1 minute till 30 minutes or till the pH

value reached steady state. All experiments were independently carried out three times.
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3.4 Results and discussion

3.4.1 General results of the continuous fermentation with cell retention and

adaptation

Two fermentation experiments were carried out in the modified bioreactor with cell

retention module, using glucose and xylose as the carbon source respectively. The overall

processes of the two fermentation experiments are shown in Figure 2.2 and Figure 2.3. The

cell retention ratio was above 99% throughout the experiments.

The detailed general performance of the pseudo-continuous fermentation of glucose and

xylose with S. stipitis has been discussed in Chapter 2. For the experiments, if we consider

the cells entered adaptation when the ethanol concentration was higher than 20 g/L, the

cells have been adapted to mild endogenous ethanol environment for more than two weeks

before sampled for further evaluation. The adaptation time is summarized in Table 3.1.

Table 3.1: Adaptation process summary

Carbon Source Adaptation Ethanol Concentration (g/L) Adaptatiion Duration

Glucose 20 – 23 420 h

Xylose 20 – 26 425 h

There are several advantages associated with the pseudo-continuous fermentation. First,

the pseudo-continuous fermentation can help improve the fermentation rate, as very high cell

density can be easily obtained with cell retention, which will increase the ethanol throughput.

Second, it also completely eliminates the potential washout, which allows us to operate and

study the fermentation under various conditions, such as different dilution rates and oxygen

supply rates. Note that for traditional continuous fermentation of xylose using S. stipitis,

one major difficulty is the frequent washout due to the slow cell growth, or even negative

growth rate as shown in our experiment, under micro-aerobic condition (Rizzi et al., 1989;

Shi and Jeffries, 1998). In other words, if the cell growth rate is lower than the rate of cells
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being carried out from the bioreactor, the cell mass within the bioreactor would eventually

drop to zero, or being washed out. Finally, because the adaptation is provided by the ethanol

produced by the cells, it is assured that the environment pressure always exists. Therefore,

whether or not the improved ethanol tolerance is achieved through mutation, there is no risk

of losing the obtained capability during the fermentation process.

3.4.2 Cell viability under ethanol shock

Ethanol tolerance tests were performed on both unadapted and adapted cells with glu-

cose and xylose as carbon sources. Cell survival rates after two hours exposure to fermen-

tation medium containing 15, 30, 45, and 60 g/L ethanol are summarized and compared in

Figure 3.2. It should be pointed out that both adapted and unadapted cells were harvested

in the mid-exponential growth phase in order to eliminate possible effect of different physi-

ological states on cells’ ethanol tolerance. Figure 3.2 shows that the ethanol tolerance of S.

stipitis CBS 6054 cells was noticeably improved by adaptation during the pseudo-continuous

fermentation. The cell viability difference between the unadapted and adapted cells increases

as ethanol concentration increases. In the case of 60 g/L ethanol shock, the survival rates

increased by 8 folds for the adapted cells cultured on glucose, and 6 folds on xylose. In

terms of the effect of the carbon source on adaptation, for all ethanol concentrations, cells

with glucose as carbon source, either unadapted or adapted, showed a slightly higher ethanol

tolerance than the cells with xylose as carbon source.

3.4.3 Ethanol limitation to growth

The ethanol limitations (Em) to cell growth for different cells have been determined by

Eqn. 3.2. The results are shown in Figure 3.3.

Compared with the cells grown on glucose, the cells grown on xylose always showed a

lower ethanol limit concentration for both adapted and unadapted cells. For the unadapted

cells, the cells grown on glucose has an ethanol limitation concentration of 57.29 g/L while
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Figure 3.2: Viability of adapted and unadapted cells under ethanol shock. A: glucose as
the carbon source; B: xylose as the carbon source. The error bar represents one standard
deviation (±σ) estimated based on 3 independent measurement.

the cells grown on xylose is 50.24 g/L, which is about 7 g/L lower. After the adaptation, no

matter what the carbon source is, the ethanol limit concentration increased. The ethanol

limitation concentration of adapted cells grown on glucose increased from 57.29 g/L to 73.40

g/L, which corresponded to a 28.12% increase. The ethanol limitation concentration of

adapted cells grown on xylose increased from 50.24 g/L to 66.38 g/L, corresponded to a
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Figure 3.3: Limited ethanol concentration for growth of S. stipitis. The results are calculated
from Eqn. 3.2: (red) unadapted cells, (cyan) adapted cells. The results are grouped based
on the carbon source.

32.13% increase although it is still about 7 g/L lower than the adapted cells grown on glucose.

For both cases, the increased upper ethanol limitation concentration further confirms the

increased ethanol tolerance of adapted cells.

3.4.4 Ethanol induced leakage of 260-nm-light-absorbing compounds

Ethanol could induce the leakage of 260-nm-light-absorbing compounds in cells, such

as purine, pyrimidine bases and nucleotides (LEE and LEWIS, 1968). This can be used to

character the resistance of the plasma membrane to membrane permeabilization by ethanol,

which is reported related to the ethanol tolerance of the cells (Jirku, 1999; Salgueiro, Sá-

Correia, and Novais, 1988).

The adapted cells were tested for their plasma membrane permeability of 260-nm-light-

absorbing compounds and compared with the unadapted cells grown on glucose and xylose

respectively. The results are shown in Figure 3.4, where the adapted cells show a much slower

260-nm-light-absorbing compounds leakage compared to the unadapted cells no matter which

carbon source was used.
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Figure 3.4: Comparison of 260-nm-light-absorbing leakage among cells under different
ethanol concentration (g/L). 0 (open circle), 5(open square), 10 (open diamond), 15 (open
inverted triangle), 20 (open triangle), 25 (open left-pointing triangle). A: unadapted cells
grown on glucose; B: unadapted cells grown on xylose; C: adapted cells grown on glucose;
D: adapted cells grown on xylose. Solid lines are model fittings.

The nonlinear least squares fittings of the measurements OD260 to Eqn. 3.4 show well

agreement with the experimental data as shown in Figure 3.4. The maximum leakage rate

(KL/τL), in absorbance units per hour or AU/h, estimated based on the fittings are shown in

Figure 3.5. The maximum leakage rate is exponentially correlated with ethanol concentration

for all four cases studied and the dash and solid lines are the nonlinear least squares fittings

of exponential functions. The effect of adaptation on cells’ ethanol tolerance is clearly shown

in Figure 3.5: although the maximum leakage rate increases exponentially with ethanol

concentration for both adapted and unadapted cells, the increases in the adapted cells are
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dramatically slower than that of the unadapted ones. Specifically, the maximum leakage rate

induced by 25 g/L ethanol decreased by 73.71% and 74.72% respectively after adaptation

for glucose and xylose grown cells. In addition, Figure 3.5 shows the differences on ethanol

tolerance between glucose and xylose grown cells become much smaller after adaptation.
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Figure 3.5: Comparison of maximum leakage rate under different ethanol concentration for
unadapted and adapted cells. (open circle) unadapted cells grown on glucose, (open square)
unadapted cells grown on xylose, (filled circle) adapted cells grown on glucose, (filled square)
adapted cells grown on xylose.

3.4.5 Extracellular alkalization

In this experiment, the de-energized cell suspension of S. stipitis is added to the solution

with different concentration of ethanol and the extracellular pH is measured for 10 minutes.

The recorded pH values are then converted to proton concentration ([H+]) in µM. Under

the experimental condition (i.e. de-energized cells, no sugar available), passive proton influx

would be the dominant mechanism for proton transport and extracellular alkalization is

expected. The evolution of [H+] over time for unadapted and adapted cells with different

ethanol concentrations shows extracellular alkalization. In addition, we observe that after

adaptation the cells show much slower extracellular alkalization, which indicates that the
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adapted cells show a higher resistance to ethanol. The reduced alkalization was observed

for adapted cells grown on both glucose and xylose, although with slight difference in the

changing magnitude.

The maximum net proton influxes are plotted in Figure 3.6. It is shown that the

maximum net proton influx increases with ethanol concentration for both unadapted and

adapted cells. However, the adapted cells show much slower increase, as indicated by the

much smaller slopes compared to those of the unadapted cells. Specifically, with the exposure

to 120 g/L ethanol, the maximum net proton influxes of cells grown on glucose and xylose

decreased to 79.67% and 80.44% respectively after adaptation. In addition, it is worth noting

that within each group (adapted or unadapted), the xylose grown cells always have higher

maximum net proton influx than the glucose grown cells. This is consistent with the results

reported by Meyrial et al. (1997).
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Figure 3.6: Effect of ethanol on maximum net proton influx for unadapted and adapted
cells. (open circle) unadapted cells grown on glucose, (open square) unadapted cells grown
on xylose, (filled circle) adapted cells grown on glucose, (filled square) adapted cells grown
on xylose.
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3.4.6 Extracellular acidification

In this experiment, de-energized cells are added to the solution with different concentra-

tion of ethanol plus 10 g/L of sugar (glucose or xylose) and the extracellular pH is measured

over 40 minutes. Due to the presence of sugar, any of the three mechanisms of proton trans-

port could play a significant role. In our experiments, extracellular acidification is observed,

which indicates that the active proton efflux through proton pump outpaces the proton in-

flux via sugar symport and passive influx. Such extracellular acidification was also observed

and reported by Jiménez and Uden (1985). In our experiments it also shows that the acidifi-

cation rate decreases with the increase of ethanol concentration, probably due to the ethanol

inhibited ATPase activity and ethanol induced plasma membrane leakage. Also, compared

to the unadapted cells, the adapted cells showed a faster acidification rate, which can be

observed at higher ethanol concentration. This indicates that the adapted cells might have

a higher ATPase activity and/or a lower permeability to proton in the presence of ethanol.

Again, xylose grown cells showed a higher ethanol influence compared to glucose grown cells

in both adapted and unadapted groups.

The [H+] changes during extracellular acidification are fitted to the same first-order

dynamic model in extracellular alkalization, i.e. Eqn. 3.5. Based on the first-order dynamic

models, the maximum net proton efflux rates were estimated and plotted in Figure 3.7.

From Figure 3.7, we observe that adapted cells showed higher maximum net proton efflux

compared to unadapted cells in each medium group. Specifically with 120 g/L of ethanol in

presents, the maximum net proton efflux increased by 2.67 folds and 3.9 folds respectively

for cells grown on glucose and xylose after adaptation. In addition, the glucose grown cells

showed a higher maximum net proton efflux rate compared to the xylose grown cells in the

same adapted or unadapted group. With increasing ethanol concentration, the difference in

the maximum net proton efflux rate of glucose grown and xylose grown cells become smaller.

This indicates that at high ethanol concentrations, due to strong effect of ethanol to ATPase
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activity and plasma membrane permeability, the influence of carbon source to the apparent

proton extrusion rates diminishes.
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Figure 3.7: Effect of ethanol on proton extrusion rate in cells: (open circle) unadapted cells
grown on glucose, (open square) unadapted cells grown on xylose, (filled circle) adapted cells
grown on glucose, (filled square) adapted cells grown on xylose.

3.4.7 Remarks

It is worth noting that pseudo-continuous fermentation was proposed as an effective

way to conduct high throughput fermentation for slow growing (or non-growing) cells, not

intended for strain development. Therefore, for all experiments, we did not isolate any

single colony of the adapted strain. Instead, we collected some fermentation broth from

the bioreactor, and cultured all cells together for comparison experiments. In addition, the

adapted samples were collected after about 400 hours of mild adaptation (i.e., with ethanol

concentration higher than 20 g/L), which is usually too short for any ethanol-tolerant mutant

to be isolated. To confirm this claim, we also cultured the adapted cells under non-stressed

condition. We observed that after 3 rounds of batch culture, the adapted cells showed

almost no difference from the unadapted cells in terms of cell viability after 2 h ethanol shock.

Therefore, we believe that the improved ethanol tolerance is mainly due to cell’s physiological
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response to the environmental pressure presented during pseudo-continuous fermentation,

instead of genetic changes. It is also worth noting that the final effect to ethanol tolerance

is a combination of different factors such as fermentation conditions, fermentation time and

ethanol concentration, as well as carbon sources. When comparing the effects of carbon

sources on ethanol tolerance, because other conditions (i.e., aeration condition, fermentation

duration, ethanol concentration, etc.) were not the same, and in fact some of them cannot

be controlled to be the same (e.g., aeration conditions in order to produce ethanol), all the

results and discussions on carbon source effect are qualitative, or semi-quantitative at best.

3.5 Conclusion

Continuous fermentation with cell retention offers an effective means for cell adapta-

tion. In our experiment it shows that the adaptation by continuous fermentation with cell

retention has been proved to be an effective method of improving ethanol tolerance of S.

stipitis, which was one of the biggest obstacle for the cells to be applied in industry. Ethanol

tolerance of S. stipitis has been significantly enhanced. We used different ways to char-

acterize the features of the adapted cells. The viability under 2 h 60 g/L ethanol shock

increased by 8 folds on glucose and 6 folds on xylose respectively. At the same time, the

260-nm-light-absorbing compounds leakage as well as the passive proton influx and active

proton extrusion showed the plasma membrane compositions and plasma ATPase activities

changed significantly after the adaptation, which means that during the adaptation the cells

might change the metabolism a lot. The ethanol limitation concentration calculated from

the specific growth rate increased 28% (on glucose) and 32% (on xylose) respectively. Future

work to measure the change of plasma compositions and intracellular metabolites may well

lead to additional gains in tolerance stability.
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Chapter 4

Reconstruction and validation of

central carbon metabolic network model

S. stipitis, as previously mentioned at Section 1.4, is an important strain for xylose

metabolism. This chapter reports the reconstruction and validation of a central carbon

network model of S. stipitis metabolism. We begin with the draft reconstruction of the

metabolic network model, followed by the refinement of the model. In the end the model is

validated qualitatively and quantitatively.

4.1 Metabolic network model reconstruction

Follow the construction procedure by Orth, Thiele, and Palsson (2010) and Thiele and

Palsson (2010) as discussed in 1.6.1.1, the first stage of reconstruction of metabolic network

is to draft the model based on biochemistry textbooks (Berg, Tymoczko, and Stryer, 2006;

Voet and Voet, 2010; Voet, Voet, and Pratt, 2008) and network databases of genome and

biochemistry.

4.1.1 Draft construction of the reaction list

The very first step of reconstruction is to selection proper reactions for the model. This

has been done by information from biochemistry textbooks, literatures, and online databases.

The textbooks provide the basic structure of the central carbon metabolism. The essential

pathways includes:

1. glycolysis/gluconeogenesis (Voet and Voet, 2010; Voet, Voet, and Pratt, 2008);
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2. pentose phosphate pathway and xylose metabolism (Hahn-Hägerdal et al., 1994a,b;

Jeffries and Van Vleet, 2009; Jeffries et al., 2007; Jeppsson, Alexander, and Hahn-

Hagerdal, 1995; Verduyn et al., 1985; Voet and Voet, 2010; Voet, Voet, and Pratt,

2008);

3. pentose and glucuronate interconversions (Jeffries and Van Vleet, 2009; Jeffries et al.,

2007; Voet and Voet, 2010; Voet, Voet, and Pratt, 2008);

4. glycerolipid metabolism (Costenoble et al., 2007; Jeffries and Van Vleet, 2009);

5. pyruvate metabolism (Agbogbo and Wenger, 2006; Jeffries and Van Vleet, 2009; Nigam,

2002; Parekh, Yu, and Wayman, 1986);

6. TCA cycle (Jeffries and Van Vleet, 2009; Voet and Voet, 2010);

7. oxidative phosphorylation (Jeffries and Van Vleet, 2009; Klinner et al., 2005; Preez,

1994; Shi et al., 1999; Shi et al., 2002);

8. glutamate metabolism;

9. glyoxylate and dicarboxylate metabolism;

10. nicotinate and nicotinamide metabolism (Jeffries and Van Vleet, 2009; Voet and Voet,

2010);

11. transport (Boles and Hollenberg, 1997; Jeffries and Van Vleet, 2009; Kilian and Uden,

1988; Ligthelm, Prior, and Preez, 1988a; Voet and Voet, 2010).

Particularly, the xylose metabolism and oxidative phosphorylation are described in de-

tails here.

Xylose metabolism The first three steps of xylose metabolism with S. stipitis has been

shown in Figure 4.1. As mentioned in Chapter 1, xylose reductase of S. stipitis has dual

cofactor preferences, i.e. it can utilize NADH and NADPH at the same time. For xylitol, it is
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considered to be NAD+-dependent only. However, reports on its preference to NADP+ also

exist. The details will be discussed in Section 4.2.4. Therefore, in the model reconstruction,

the four reactions have been all been included.

Xylose Xylitol Xylulose
Central carbon 

metabolism

NADPH NADP+

NADH NAD+

NADP+ NADPH

NAD+ NADH

XR XDH
XKS

Figure 4.1: Illustration of xylose metabolism in S. stipitis. XR: xyluse reductase; XDH:
xylitol dehydrogenase; XKS: xylulose kinase. The dash line indicates that there’s debate
with the existence of the reaction.

Oxidative phosphorylation In the electron transport chain (ETC) of S. stipitis, alterna-

tive compounds in addition to the standard respiratory systems exist (Shi et al., 2002 and the

references therein). Upstream of the ETC, rotenone-insensitive NAD(P)H dehydrogenases

(non-proton-translocating) are present in addition to the rotenone-sensitive NADH dehy-

drogenase Complex I (proton-translocating). Downstream, an alternative terminal oxidase

that is sensitive to salicylhydroxamic acid (SHAM) is present in addition to the standard

cytochrome c oxidase (Cox). The overview of the system is shown in Figure 4.2. The

corresponding reactions have been constructed in the model.

4.1.2 Charge- and element-balancing the model

After selecting reactions of the central carbon metabolism, online biochemistry, genome

databases are used to assist and facilitate the reconstruction. Some free and commercial

data sources are already available Thiele and Palsson, 2010. In this work, the most involved

databases are: S. stipitis genome database (Pichia stipitis v2.0) (Jeffries et al., 2007), KEGG

(Kanehisa and Goto, 2000; Kanehisa et al., 2010, 2012), ChEBI (Degtyarenko et al., 2008,

2009; Matos et al., 2010) and PubChem Compound(Bolton et al., 2008). The KEGG and

S. stipitis genome database are used to verify the existence of the reactions from gene

62



1204 N.-Q. Shi et al.

Cyt c

II IIICoQ

NADHEX

NADHIN

Sto

IV

Matrix

Cytosol

1/2O2 H2O
1/2O2 H2O

I SHAM

AA

KCNROT

H+ H+ H+

NADPHEX

NADPHIN

[Site I]
[Site IV] 

Figure 1. A diagram of alternative and standard redox components present in the electron transport chain (ETC)
of Crabtree-negative yeasts, such as Pichia stipitis. The action site of SHAM, antimycin A (AA), rotenone (ROT) and
KCN are marked. I, rotenone-sensitive NADH dehydrogenase complex (Complex I); NADHIN, rotenone-insensitive
NADH dehydrogenase (internal); NADHEX, rotenone-insensitive NADH dehydrogenase (external); NADPHIN,
rotenone-insensitive NADPH dehydrogenase (internal); NADPHEX, rotenone-insensitive NADPH dehydrogenase
(external); II, succinate dehydrogenase complex (Complex II); CoQ, ubiquinone complex; Sto, SHAM-sensitive terminal
oxidase; III, cytochrome bc1 complex; Cyt c, cytochrome c; IV, cytochrome c oxidase (Cox). Site I, electron entry site; Site
IV, electron quenching site

yeasts (Viola et al., 1986; Poinsot et al., 1986),
fungi (Lambowitz and Slayman, 1971; Downie and
Gardland, 1973; Lloyd and Edwards, 1977) and
higher plants (Douce and Neuburger, 1989).

Although the SHAM-sensitive respiration system
(STO) was first discovered 70 years ago (Keilin,
1929), its functional components and physiolog-
ical roles in yeasts and fungi remain unclear.
Most of the current information on the biochem-
ical and regulatory aspects of Sto proteins has
been obtained from the studies of plant mito-
chondria. Structurally, the STO pathway branches
from the cytochrome pathway (CYT) at the level
of ubiquinone just before cytochrome b (Storey,
1976; Siedow, 1982). From this point, electrons
are directly donated to Sto, which then reduces
molecular oxygen to water. Sto itself is not cou-
pled to ATP synthesis (Moore and Rich, 1985), so
this alternative route bypasses at least two out of
the three ATP-generating sites, and it is considered
a pathway that conserves no energy by synthesis of
ATP in plants.

Sto proteins from yeasts and fungi display sig-
nificant differences in structure and regulation from
their plant counterparts. Plant Sto proteins have
di-iron centres in their active sites (Bonner et al.,
1986; Minagawa et al., 1990; Moore et al., 1995a;
Moore et al., 1995b). This separates them com-
pletely from the bacterial alternative terminal oxi-
dases, which use heme in their active sites (Gennis
and Stewart, 1996). At the transcriptional level,

unlike the constant presence of low level of STO
transcripts in plants, STO transcripts in yeasts
and fungi only accumulate when the CYT system
is suppressed (Yukioka et al., 1998; Siedow and
Umbach, 2000). Umbach and Siedow (2000) fur-
ther demonstrated that certain fungal Sto proteins
are monomeric, which differentiates them from the
dimeric structure reported in plant Sto proteins.
Thus, the fungal Sto proteins are normally present
in a reduced (active) state while the plant Sto pro-
teins need to be activated from an oxidized (less
active) to its reduced state (active) (Umbach and
Siedow, 1996; Rhoads et al., 1998). In addition,
fungal Sto proteins lack certain conserved amino
acids that are involved in mediating the activation
process (Albury et al., 1998; Rhoads et al., 1998).
These observations imply that the yeast and fungal
Sto proteins may play other important physiologi-
cal roles.

Recently, Veiga et al. (2000) surveyed large
numbers of yeast species in which STO respira-
tion was detected. The list mainly encompasses
yeasts that are unable to produce ethanol in the
presence of fermentable sugars under strictly aer-
obic conditions (Crabtree-negative). Pichia stipitis
has the characteristics of a Crabtree-negative yeast
(Passoth et al., 1996; Jeffries and Shi, 1999) and
it possesses both CYT and STO respiration sys-
tems in its mitochondria (Jeppsson et al., 1995; Shi
et al., 1999; Shi, 2000). Oxygen limitation, rather
than the increase of metabolites in the lower part of

Published in 2002 by John Wiley & Sons, Ltd. Yeast 2002; 19: 1203–1220.

Figure 4.2: A diagram of alternative and standard redox components present in the electron
transport chain (ETC) of S. stipitis. The action site of SHAM, antimycin A (AA), rotenone
(ROT) and KCN are marked. I, rotenone-sensitive NADH dehydrogenase complex (Com-
plex I); NADHIN, rotenone-insensitive NADH dehydrogenase (internal); NADHEX, rotenone-
insensitive NADH dehydrogenase (external); NADPHIN, rotenone-insensitive NADPH dehy-
drogenase (internal); NADPHEX, rotenone-insensitive NADPH dehydrogenase (external);
II, succinate dehydrogenase complex (Complex II); CoQ, ubiquinone complex; Sto, SHAM-
sensitive terminal oxidase; III, cytochrome bc1 complex; Cyt c, cytochrome c; IV, cytochrome
c oxidase (Cox). Site I, electron entry site; Site IV, electron quenching site. Adopted from
Shi et al. (2002).

presentation, location and cofactor specifications by gene annotation in the genome database;

while ChEBI and PubChem Compound are used to provide detailed information for the

compounds, such as, formula, charge, etc.

In databases, the metabolites are generally listed with their uncharged formula. How-

ever, many metabolites are protonated or deprotonated in medium and cells. Therefore, the

charge and the corresponding formula of the compounds are very important to the predic-

tion of the model. The protonation state, and thus, the charged formula, depends on the

pH of interest. The intracellular pH is very important in maintaining normal physiological

activities of the cell and therefore should be controlled within a very narrow range (Madshus,

1988). Once the charged formula is obtained for each metabolite, the reaction stoichiometry

can be determined by counting different elements on the left- and right-hand side of the

reaction. Addition of protons and water may be required in this step, as many databases

and biochemical textbooks omit these molecules from the reactions. The change of proton in

the reactions would have influence to the prediction of the model due to the power of proton
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in cellular physiology. It is intimately involved in the capture of energy from oxidation,

substrates and ion transports, etc., and is therefore necessary to balance every element and

charge on both sides of the reaction.

To calculate the charge of the compounds, the intracellular pH must be determined. Just

as mentioned above, the intracellular pH should be maintained at a relatively constant value

to make normal physiological functions (Halperin, Goldstein, and Kamel, 2010; Madshus,

1988). The measured extracellular pH is usually between 7.4 (Halperin, Goldstein, and

Kamel, 2010; Llopis et al., 1998; Madshus, 1988; Roos and Boron, 1981). With HCO−
3

existing intracellularly, the intracellular pH would be a little lower. Therefore, 7.2 is usually

used to construct the model (Thiele and Palsson, 2010). Although organelles intracellular

might have a different pH as cytosol, the mitochondrion usually has a pH range between

7.4 and 8.0 Porcelli et al., 2005. This would not have a big influence to the charge status

of the different compounds. So pH 7.2 is a reasonable value used in the construction of

the model. With intracellular pH determined, the charged formulas of the compounds are

calculated based on pKa values. In this work, the pKa values for the compounds are from

CRC Handbook of Chemistry and Physics by Lide (2009). In case there’s no pKa value

available, the computation of the charges is based on the functional groups or structures of

the compounds (Thiele and Palsson, 2010) using ChemAxon (Calculator Plugins).

Once the charged formula is obtained for each metabolite, the reaction stoichiometry

can be determined by counting different elements on the left- and right-hand side of the

reaction.

The balanced reactions should fulfill the following equation:

ME × S = 0 (4.1)
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where S is the stoichiometric vector of the reactions, ME is the element matrix, which is in

the format of
c1 c2 c3 . . . cn

ME =

C

H

O

N

P




in which the row vector is the corresponding element number of the chemical compounds in

the reaction, the column vector is the composition of chemical compounds in the reaction.

4.1.3 Compartmentalization of the reactions

Compartmentalization is very important in microorganisms. However, the detailed dis-

tribution of metabolic functions among compartments is often unknown. It is very important

to exam carefully before determining which compartment to include in the model and which

to exclude from the model. But by systematically constraining some individual fluxes in

a de-compartmentalized version of the model, the compartments can be removed without

introducing significant errors (Klitgord and Segrè, 2010). At the same time, for S. cerevisiae,

due to the existence of a symmetrical electron transport chain unlike mammalian mitochon-

dria, the localization of reducing cofactors plays a minor role in S. cerevisiae and can be

ignored for a small scale model (Jin and Jeffries, 2004).

Currently, no obvious information on compartmentalization of S. stipitis has been found.

Meanwhile, the transport reactions of the redox cofactors are very important to correct

prediction of the phenotypes of the in silico strain. Without proper information on the

constraints applied on these reactions, it is hard to predict proper phenotypes, e.g. the

xylitol production under microaerobic conditions without further constraints, which are not

shown in the results of the published genome-scale models for S. stipitis (Balagurunathan et

al., 2012; Caspeta et al., 2012; Liu et al., 2012). Therefore, in this work, only one intracellular

compartment, cytosol, is included in the model.
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4.1.4 Determination of the objective function

To identify optimal solutions in the vast solution space, FBA objective functions are

defined to solve the system of linear equations that represent the mass balance constraints.

While different objectives were proposed for various biological systems (Burgard and Maranas,

2003; Ebenhöh and Heinrich, 2001; Helnrlch et al., 1997; Holzhütter, 2004; Kacser and Beeby,

1984; Knorr, Jain, and Srivastava, 2007; Price, Schellenberger, and Palsson, 2004), by far the

most common assumption is that microbial cells maximize their growth, especially for con-

tinuous culture (Schuetz, Kuepfer, and Sauer, 2007). Therefore, biomass reaction is widely

used in the construction of metabolic network model and is selected as the objective function

in this work. The biomass reaction accounts for all known biomass constituents and their

fractional contributions to the overall cellular biomass. A detailed biomass composition of

the target organism needs to be determined experimentally for cells growing in log phase

(Izard and Limberger, 2003).

Due to the lack of physiological data for S. stipitis, the biomass reaction is constructed

based on the available information on genome and comparison with the model of S. cerevisiae

(Duarte, Herrg̊a rd, and Palsson, 2004; Vanrolleghem et al., 1996). The biomass reaction of

S. stipitis (SLININGER et al., 1990) has been abandoned because it is too simple to reflect

the requirement of cell growth to different nutrients and pre-cursors.

First, the synthesis pathways of DNA, RNA and amino acids of S. stipitis have been

searched based on gene information from KEGG (Kanehisa et al., 2012) and S. stipitis

genome database (Jeffries et al., 2007). The pathways have been lumped by Matlab to

simplify the reactions. Then the compositions of DNA, RNA, and amino acids are extracted

from the data from S. stipitis genome database vis Biopython (Cock et al., 2009).

4.2 Model refinement

After the draft procedure, the model needs to be tuned to remove incorrect information

and make its prediction more reliable. In the published protocol (Thiele and Palsson, 2010)

66



the refine procedure is clearly defined and described. In this part the drafted model have

been tuned in several steps to improve the predictions under various conditions. First, some

“reaction cycles” have been evaluated and most confidential reactions have been kept. This

is due to the limited availability of physiological information fro S. stipitis and therefore some

reactions reported in KEGG and literatures for other strains might not exist. Second, more

constraints have been applied to exchange reactions to make the prediction of the model fit

better with real experimental results. Thereafter the influence of maintenance energy to the

predicted phenotypes have been studied and the proper constraint has been applied for the

further investigations.

4.2.1 Tune-up of exchange reaction constraints

Due to lack of transcription and regulation data, the constraints of reactions are kind

of arbitrary at the beginning. The prediction of the model might be vary far away from the

real phenotypes without proper constraints. Among all kinds of constraints, the ones applied

on exchange reactions have very important impact to the simulation results due to their

affects on the uptake of nutrients or ions from extracellular or the excretion of intracellular

products to fulfill objective function or maintain the redox balance inside the cells. The

drafted exchange reactions might not exist or should be blocked in the real metabolism.

Therefore, the adjustment of constraints on exchange reactions during simulation is crucial

to the accuracy of predication.

In the initial draft model, the exchange reaction of succinate is unbounded, i.e., the

cell is supposed to be able to uptake or excrete succinate without limitation. During the

simulation, the unlimited lower and upper boundaries make the reaction a sink for oxygen

and a pool for ATP generation. Therefore, the simulation results predict flux of succinate

for both glucose and xylose fermentation, which has not been reported in literatures and is

also not shown in our experiments. Thus, the excretion of succinate has been blocked.
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In the same way, the exchange of acetaldehyde has also been blocked. Otherwise, the

main by-product in anaerobic fermentation of glucose will be acetaldehyde, which hasn’t

been observed in real experiments. After blocking the exchange reaction of acetaldehyde,

the main by-product changed to acetic acid, which has been detected in real experiments.

4.2.2 Futile cycles identification

Futile cycle here is defined the cycle formed by reactions that are only used to import or

export proton or to generate energy but are isolated from other parts of the reaction network

or maybe not be isolated but are not biologically meaningful. One significant characteristics

of the futile cycle is that the fluxes of the reactions are usually pushed to very high value

(close to the upper bound). This kind of pathway exists commonly in the published metabolic

network models. For example, in genome-scale model of S. cerevisiae (Duarte, Herrg̊a rd,

and Palsson, 2004), many futile cycles exist in the solution as shown in Table 4.1.

Table 4.1: Futile cycles shown in genome-scale model of S. cerevisiae

Glucose
uptake rate

Oxygen
uptake rate Growth rate Active reactions

Reaction
in futile cycles

5 Unconstrained 0.4779 316 47

5 0 0.0853 302 38

The futile cycles are usually added into the model due to incomplete annotation to the

genome and undetermined thermo properties of the reactions. The large flux values are

biologically meaningless and may cause unexpected results in model analysis. Therefore, it

should be identified and modified to make predictions of the model more reliable.

By setting proper boundary conditions and constraints, in silico culture of S. stipitis

under different aeration conditions and on glucose or xylose have been carried out. The

futile reactions have been identified in the old model and listed in Table 4.2. With few

physiological information on the reaction pairs found, the model was modified based on

the comparison with S. cerevisiae genome-scale model (Duarte, Herrg̊a rd, and Palsson,
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2004). The reactions involved in the futile cycles were removed or changed the reversibility

to irreversible to prevent the occurrences of futile cycles. The corresponding actions are also

listed in Table 4.2.

Table 4.2: List of futile cycles and the actions applied

Reaction pair Formula Action

ADHx acald[c] + nadh[c] + h[c] ⇔ etoh[c] + nad[c]

ADHy acald[c] + nadph[c] + h[c] ⇔ etoh[c] + nadp[c] Removed

GA3PDx+PGK
ga3p[c] + nad[c] + pi[c] ⇔ 13dpg[c] + nadh[c] + h[c]

13dpg[c] + adp[c] ⇔ 3pg[c] + atp[c]

GA3PDHy ga3p[c] + nadp[c] + h2o[c] → 3pg[c] + nadph[c] + 2 h[c] Removed

ICITDHx icit[c] + nad[c] ⇔ akg[c] + co2[c] + nadh[c] To irreversible

ICITDHy icit[c] + nadp[c] ⇔ akg[c] + co2[c] + nadph[c] To irreversible

4.2.3 Influence of non-growth-associated maintenance energy

The ATP generated in metabolism is used in two ways intracellularly. First, the ATP

is required for biomass synthesis (i.e. precursor biosynthesis and polymerization) (growth-

associated maintenance, GAM), and then is used for the maintenance of cell metabolism

not related to cell growth (non-growth-associated maintenance, NGAM), e.g. for keeping

intracellular pH stable. It is usually expressed in the following equation:

rATP = YXATP · µ+mATP (4.2)

where rATP specifies the total amount of ATP being utilized, YXATP corresponds to GAM,

µ is the specific growth rate, and mATP is NGAM. The GAM is shown in biomass reaction

while the NAGAM is defined in the reaction named ATPM:

ATPM: h2o[c] + atp[c] → h[c] + adp[c] + pi[c]
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In this work, the GAM has been calculated as 81.50 mmol/gDCW. The NGAM has been

reported to be between 0.5-3.5 mmmol/gDCW/h (Balagurunathan et al., 2012; Caspeta et

al., 2012; Guebel et al., 1991; Liu et al., 2012; Rizzi et al., 1987). Due to the nature of

FBA, the optimization process is always trying to minimize the NGAM to favor biomass

production. Therefore, a proper lower boundary for reaction ATPM is necessary. However,

the NGAM will change with the physiological status of the cells. In order to set a proper

value for NGAM, we study the influence of NGAM to the phenotype prediction of the model

under various oxygenation condition, especially for xylose metabolism considering its high

sensitivity to oxygen.

The in silico experiment is carried out with sugar uptake rate (glucose/xylose) of

10 mmol/gDCW/h, oxygen uptake rate of [0, 3] mmol/gDCW/h, and NGAM of [0, 4]

mmol/gDCW/h. Due to the significant influence of oxygen to ethanol production, especially

for xylose metabolism, the investigation must be done within a range of OUR instead of a

fixed value. The simulation results of glucose/xylose metabolism are shown in Figure 4.3.

From the results, it showed that for cell growth and ethanol production, NGAM doesn’t

have a significant influence, which is expected. Because NGAM is small compared with GAM,

the change of NGAM within the investigation range is almost negligible. While the main

physiological function of ethanol production is to produce energy, it have, therefore, smaller

influence with higher OUR when energy is most produced from oxidative phosphorylation.

Meanwhile at lower OUR, the portion of NGAM in total energy produced is higher and

the influence is larger. However, for xylitol and acetic acid production, NGAM plays an

important role, which is mostly due to the production of hydrogen ion in this reaction and

thus the influence to intracellular redox state. Regarding glucose metabolism, it shows similar

trend of influence (data not shown). It is hard to determine which data is more confidential

comparing with other sources. In this dissertation, NGAM of 3.5 mmol/gDCW/h from

Guebel et al. (1991) has been used.
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Figure 4.3: Influence of non-growth-associated maintenance energy (NGAM) and oxygen
uptake rate (OUR) to in silico xylose fermentation

4.2.4 Flux coupling constraints on xylose reductase and xylitol dehydrogenase

The experimental determination of metabolic flux and pathway usage through the use

of isotope tracers has significantly contributed to the overall understanding of regulated

metabolism. One approach to characterize metabolism is through the use of metabolic flux

ratio analysis (Fischer, Zamboni, and Sauer, 2004; Sauer et al., 1999). This method is used

to determine the degree of converging pathway usage to produce a metabolite pool when

multiple synthesis routes exist, i.e. it describes the dependencies between reactions. Early

results revealed the robustness of central carbon metabolism of E. coli (Fischer, Zamboni,

and Sauer, 2004; Sauer et al., 1999) as many calculated flux ratios were found impervious

to genetic perturbations. Thus, with the availability of physiological data, the flux ratio will

be an additional constraint on the metabolic network model.
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The general form of flux ratio constraint between reaction 1 (r1) and reaction 2 (r2) is

described in Equation 4.3:

R12 =
vr1
vr2

(4.3)

where R12 is the flux ratio, vr1 and vr2 are the fluxes through r1 and r2 respectively. It

is very clear that this constraint is nonlinear. The early algorithms developed (Bühler et

al., 2008; Sauer et al., 1997) used nonlinear programming methods and was effective given

small metabolic networks of primary metabolism. Unfortunately, these aspects have limited

the applicability to large genome-scale metabolic networks, which often must rely on linear

programming.

McAnulty et al. (2012) linearized the flux ratio constraints and used them to study the

metabolism of Clostridium acetobutylicum via the gnome-scale model. The linearization of

the flux ratio constraint described in Equation 4.3 is done by converting it into the linear

form in Equantion 4.4:

vr1 −R12 × vr2 = 0 (4.4)

which can be easily solved by linear programming. However, in the work of McAnulty

et al. (2012), a fix flux ratio constraint was applied. The dependencies of reactions are

more than fixed ratios. Flux coupling analysis (FCA) has been developed to analyze the

dependicies of reactions in stoichiometric metabolic network model. With the relationship

between evolution of metabolic genes and flux coupling addressed (Notebaart et al., 2008,

2009; Pál, Papp, and Lercher, 2005a,b; Seshasayee et al., 2009), the studies on genomes can

also reveal more information on dependencies of reactions, i.e. flux coupling.

There are totally five flux coupling relationships have been defined (Burgard et al.,

2004; Marashi and Bockmayr, 2011): directional coupling, partial coupling, full coupling,

mutually exclusive, and uncoupled (or sometimes coupled). The definition is listed as below

and illustrated in Figure 4.4.
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Directional coupling (v1 → v2), if a non-zero flux for v1 implies a non-zero flux for v2 but

not necessarily the reverse.

Partial coupling (v1 ↔ v2), if a non-zero flux for v1 implies a non-zero, though variable,

flux ratio for v2 and vice versa.

Full coupling (v1 ⇔ v2), if a non-zero flux for v1 implies not only a non-zero but also a

fixed flux for v2 and vice versa.

Mutually exclusive (v1

⊕
v2), if a non-zero flux for v1 implies a zero flux for v2 and vice

versa.

Uncoupled (v1 = v2), if the reaction pair do not fall into any of the above catagories.

Rmin = min v1/v2 Rmax = max v1/v2 Rmin ≤ v1/v2 ≤ Rmax

Directional 

coupled:

Partial 

coupled:

Full 

coupled:

Directional 

coupled:

Mutually 

exclusive:

Uncoupled:

Rmin = 0 Rmax = c

Rmin = c Rmax = ∞

Rmin = c1 Rmax = c2

Rmin = Rmax =c

Rmin = 0 Rmin = ∞

Rmin = 0 Rmax = ∞

v2 → v1 

v1 → v2 

v1 ↔ v2 

v1  v2 

v1      v2 +

Figure 4.4: Illustration of possible flux coupling between two reactions. Various types of
coupling are related to the flux ratio limits Rmin and Rmax as shown. Adopted and Modified
from Burgard et al. (2004)

Marashi and Bockmayr (2011) proved that FCA is sensitive to the missing reactions.

For the small scale network, FCA can reveal limited and even wrong information. Therefore,

it is meaningless to apply FCA to the developed model.
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Inspired by flux coupling analysis (FCA), the flux ratio constraint is further extend to

be flux coupling constraint (FCC). Totally four types of constraints have been developed:

directional coupling constraint, partial coupling constraint, full coupling constraint, and

mutually exclusive constraint. It is not necessary to apply any constraint if the reaction pair

is uncoupled.

Directional coupling (v1 → v2) indicates that v1/v2 ≤ c. Therefore, after the linearization

it is changed to:

c× v2 − v1 ≥ 0 (4.5)

Partial coupling (v1 ↔ v2) indicates that c1 ≤ v1/v2 ≤ c2, which can be converted to:

v1 − c1 × v2 ≥ 0

c2 × v2 − v1 ≥ 0
(4.6)

Full coupling (v1 ⇔ v2) indicates v1/v2 = c, therefore the linearized form is the same as

Equation 4.4.

Mutually exclusive (v1 ⊕ v2) cannot be implemented by linear programming but mixed

integeral linear programming (MILP). First, two binary variables, i1 and i2, are intro-

duced for the two fluxes v1 and v2 respectively, which follow the constraint:

i1 + i2 = 1 (4.7)

Second a big number B is combined together with the binary variable defines following

constraints:

B × i1 − v1 ≥ 0

B × i1 − v1 ≤ B

B × i2 − v2 ≥ 0

B × i2 − v2 ≤ B

(4.8)
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Changing the problem to MILP problem leads to a NP-hard computation complexity

instead of a P-hard. Thus the computation loads will increase significantly.

Usually most flux coupling constraints are implicated by the network structure. How-

ever, for the branched nodes, at least partial coupling or full coupling constraints will be

very useful to further constrain the solution space of the metabolic flux distribution.

For the central carbon metabolism of S. stipitis, the xylose reductase and xylitol dehy-

drogenase involved in the first two steps of xylose metabolism are dual cofacotr preferred as

discussed in the background and shown in Figure 4.1. It is also reported to be the reason for

low xylitol production in xylose metabolism of S. stipitis, comparing to the mono cofactor

preference of NADPH in other strains. Therefore, the redox imbalance caused by the NAD+-

dependence of xylitol dehydrogenase (XDH) could be reduced (Agbogbo and Coward-Kelly,

2008). Many results on experimental study of XR preference to NADPH and NADH have

been reported (Hou, 2012; Slininger et al., 2011; Verduyn et al., 1985; Yablochkova et al.,

2003, 2004). It would be a very useful constraint to increase the accuracy of in silico study

for xylose metabolism with S. stipitis.

From the network structure, the reactions catalyzed by XR and XDH are intrinsically

partial coupling, i.e. vXRx ↔ vXRy and vXDHx ↔ vXDHy, where subscriptions of x and y

correspond to NAD(H)- and NADP(H)-linked reactions. Due to the difficulty in measure-

ment, no data of real flux values of Rmin and Rmax through the reactions is available. Thus,

the dependencies of the reactions have to be estimated from in vitro measurements of spe-

cific enzyme activities or kinetic parameters of the enzymes. The reported ratios of specific

enzyme activities are summarized in Table 4.3.

From Table 4.3, specific enzyme activitiy ratio of between XRy and XRx is within

the range [0.5 2.3] while the range for XDH is [0, 0.01). Considering that the in vitro

measurements were carried out with saturated substrate concentration in dilute solution

compared with the intracellular system as well as the in vivo concentrations of the cofactors,

the in vivo flux ratios of XR and XDH are within [0.3 3] and [0 0.02] respectively.
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Table 4.3: Summary of the specific enzymes activities to NAD(H) and NAP(H) of xylose
reductase and xylitol dehydrogenase

Enzyme
Specific activitiy (U/mg)

Ratio Citation
NADP(H) NAD(H)

XR

0.23 ± 0.06 0.10 ± 0.02 2.3 Bengtsson, Hahn-Hägerdal, and Gorwa-
Grauslund (2009)

0.73 0.65 1.1 Hou (2012)

0.25 ± 0.05 0.13 ± 0.04 1.9 Eliasson et al. (2000)

47.8 30.7 1.6 Rizzi et al. (1988)

1.61 1.25 1.3 Skoog and Hahn-Hägerdal (1990)

1.39 0.86 1.6 Skoog and Hahn-Hägerdal (1990)

0.38 0.29 1.3 Verduyn et al. (1985)

0.08 ± 0.005 0.03 ± 0.004 2.7 Watanabe et al. (2007b)

10.6 5.96 1.8 Yablochkova et al. (2004)

4.84 10.37 0.5 Yablochkova et al. (2004)

8.24 4.53 1.8 Yablochkova et al. (2004)

XDH

ND 0.31 - Hou (2012)

0.009 ± 0.001 1.272 ± 0.152 0.007 Matsushika et al. (2008)

ND 0.17 ± 0.01 - Watanabe et al. (2007b)

0.56 17.50 0.03 Yablochkova et al. (2004)

0.27 8.37 0.03 Yablochkova et al. (2004)

0.42 9.92 0.04 Yablochkova et al. (2004)

0.001 ± 0.0001 1.11 ± 0.09 0.001 Watanabe, Kodaki, and Makino (2005)

Note: due to the different definition of the enzyme activity, the absolute values may differ significantly among
the researchers.

With the partial coupling constraints applied, the optimal flux distributions calculated

via linear programming always pick up the Rmin of XR and Rmax of XDH (data not shown),

i.e. XR always tries to utilize NADH as much as possible while XDH always tries to generate

NADPH in its highest capacity allowed. Therefore, vXRx ↔ vXRy and vXDHx ↔ vXDHy have

been changed to vXRx ⇔ vXRy and vXDHx ⇔ vXDHy in the model. In other words, the values
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of RXR and RXDH are fixed in the model simulation. In the following studies, RXR is 1 and

RXDH is 0 without explicit statement.

4.2.5 Statistics of the model

The model has been constructed from textbook and on-line databases. It captures the

central metabolism of glucose and xylose. Included in the model are 118 reactions with 66 as

reversible and 52 as irreversible (including transport reactions) and 65 metabolites (ignorance

of compartmentalization). Details of the reactions and metabolites are listed in Appendix

A and B respectively. Fifteen compounds allowed to exchange with external environment

are glucose, xylose, NH+
4 , urea, O2, CO2, SO2−

4 , H+, HO4P2− (Pi2−), H2O, ethanol, acetate,

glycerol, xylitol, and biomass. Full coupling constraint have been applied on XRx and XRy,

XDHx and XDHy as 1 and 0 respectively.

4.3 Validation of the prediction capacity of the model

Metabolic network model must be validated after the reconstruction to prove the reli-

ability of the predictions. Various validation, qualitative and quantitative ones, have been

applied to different models. The most straightforward validation is to compare the model

prediction with the experimental results. However, with little intracellular physiological in-

formation, it is very hard to be confident that the applied constraints are true in the real

metabolism. Therefore, for genome-scale models, the most common validation methods are

(Balagurunathan et al., 2012; Caspeta et al., 2012; Duarte, Herrg̊a rd, and Palsson, 2004;

Liu et al., 2012; Mo, Palsson, and Herrg̊a rd, 2009; Orth et al., 2011): 1) validating the

utilization of substrates, i.e. whether a substrate can be metabolized in silico when it can

be fermented in wet experiments; 2) studying the influence of gene deletions, i.e. whether

the model shows similar phenotypes in silico and in web experiments when certain gene has

been deleted; 3) comparing the in silico predictions and the results of experiments, which
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Figure 4.5: Overview of the metabolic network model. The double arrows in the same
direction for a reaction indicate that the enzyme catalyzes the reaction has affinity to different
cofactors (NADH/NAD+ and NADPH/NADP+). This also applies to the other figures in
this work.

is usually done roughly with limited experimental results due to the wide varieties exists in

wet experiments.

Just as mentioned at the beginning of the chapter, the objective of our work is to study

the glucose and xylose metabolism of S. stipitis. Thus we construct a small-scale central

carbon metabolic network model with only glucose and xylose as the substrates. To validate

the model, we first qualitatively compare the general predicted and real phenotypes as well
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as the flux ratio between glycolysis and pentose phosphate pathway (PPP). Then we focus

on confirm the performance of the model with wet experimental data.

4.3.1 Qualitative validation with general prediction

To validate the model qualitatively, we first compared the model prediction with what

we observed in the experiments, e.g. the main products under various oxygenation. The

results are shown in Table 4.4.

Table 4.4: The comparison of general performance of the model and the experiments

Carbon
source Aeration

Products

Experiments Predictions

Glucose

Aerobic Cellmass, CO2 Cellmass, CO2

Micro-aerobic Cellmass, ethanol, glycerol,
acetic acid, CO2

Cellmass, ethanol, glycerol or
acetic acid, CO2

Anaerobic Cellmass, ethanol, glycerol,
acetic acid, CO2

Cellmass, ethanol, glycerol, CO2

Xylose

Aerobic Cellmass, CO2 Cellmass, CO2

Micro-aerobic Cellmass, ethanol, xylitol, acetic
acid, CO2

Cellmass, ethanol, xylitol or
acetic acid, CO2

Anaerobic No growth Infeasible solution

There is good agreement between the simulated results and the experimental observa-

tions, which indicates that the simulated intracellular fluxes might agree with the ones in

live cells. A major discrepancy between the model predictions and experimental data is the

production of acetic acid. From experimental data, acetic acid is produced with limited rate

and can be secreted simultaneously with glycerol or xylitol. However, in simulations, acetic

acid is produced in a high rate not observed in experiments. Meanwhile, the production of

glycerol or xylitol and acetic acid are mutually exclusive.

The differences between glucose and xylose metabolism, especially the specific growth

rate and ethanol yield, are shown in Figure 4.6. It shows that S. stipitis grows faster with
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glucose than with xylose while ethanol yield with xylose is higher vice versa. These agree

well with the experimental observations.
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Figure 4.6: Growth and products formation with glucose or xylose under various oxygen
conditions

To study the intracellular metabolism, metabolic flux profiling or metabolic flux analysis

(MFA) is a very useful tool. However, comparing with S. cerevisiae, S. stipitis has very lim-

ited information available. To my best knowledge, few papers has been published (Feng and

Zhao, 2013; Fiaux et al., 2003). The information might provide another valuable validation

method to the model. Therefore, the ratio of carbon flux through PPP has been studied and

compared with the reported data (shown in Table 4.5). Because there’s no detailed OUR

available for oxygen-limited condition from the original papers, the OUR has been set to be

0.4 mmol/gDCW/h in the simulations.

From the result, the value of the ratio of carbon flux through PPP for glucose metabolism

under aerobic condition predicted by the model falls into the range of experimental data.

This agreement adds more confidence to the structure of the model.
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Table 4.5: Ratio of carbon flux through PPP of simulated and experimental results

Carbon source Aeration condition
Ratio of carbon flux through PPP

Simulated result Experimental result

Glucose
Aerobic 61.66% 57±9% a

Oxygen-limited 15.24% 15.56±4.67% b

Xylose
Aerobic 49.66% N/A

Oxygen-limited 18.26% 16.36±4.91% b

a: Fiaux et al. (2003)

b: Feng and Zhao (2013)

4.3.2 Quantitative validation with experimental data

FBA supposes steady state of the cell metabolism but only a few studies on continuous

culturing of S. stipitis to investigate its physiology have been done (Fiaux et al., 2003;

Li, 2012; Skoog and Hahn-Hägerdal, 1990; Skoog, Jeppsson, and Hahn-Hägerdal, 1992).

Particularly, the oxygen transfer rate is a crucial factor for xylose metabolism that, at defined

levels, can maximize the productivity and yield of ethanol. The role of oxygen in xylose

fermentation of S. stipitiscan be explained by the fact that cells have to maintain redox

balance, xylose transportation, cell growth or keep mitochondrial function (Skoog, Jeppsson,

and Hahn-Hägerdal, 1992). Results from in silico predictions of specific growth rate (µ),

ethanol yields, and CO2 yield were compared with experimental data (Figure 4.7). The

simulation conditions are listed in Table 4.6.

Figure 4.7 shows that the model predicts the correlation of oxygen transfer rate with

metabolism, which passes from fermentative to respiratory. These results are in agreement

with experimental data (Li, 2012). Furthermore, in silico simulations predicted the inability

of S. stipitis to grow in anaerobic conditions with the minimal medium.

From Figure 4.7, the predictions of the cell growth and ethanol yield agree very well

with the experimental data. The computed CO2 yield is higher than experimental data,
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Table 4.6: Model setup for validation with experimental data from Li (2012)

Condition
Sugar

uptake rate
Oxygen

uptake rate XR ratio XDH ratio

Glucose aerobic (GAO) 4.25 (Glucose) 5.98 - -

Glucose microaerobic (GMA) 3.32 (Glucose) 1.40 - -

Xylose aerobic (XAO) 4.82 (Xylose) 6.40 0.5 0

Xylose microaerobic (XMA) 4.07 (Xylose) 1.67 0.5 0

especially for xylose metabolism under microaerobic condition. The discrepancy should be

caused by the utilization of CO2 in the anabolism which is lumped in the model and some

alternative pathways may be absent. The experimental data for acetic acid production is

not available in Li (2012). The model predicts the secretion of acetic acid in most of the

simulation setup when oxygen is limited. The calculated results show that, however, the

production of acetic acid cannot exist simultaneously with xylitol and glycerol production

in xylose and glucose metabolism respectively. One should note that in the work of Skoog

and Hahn-Hägerdal (1990) no xylitol production was observed. However, in the in silico

evaluations (model setup and results do not list here), other published works (Slininger et

al., 2011) and our experiments, it showed that xylitol is produced in the xylose metabolism

under oxygen-limited condition.

4.4 Conclusion

In this chapter, following the published procedure (Thiele and Palsson, 2010), a central

carbon metabolic network model for S. stipits has been reconstructed, refined and validated.

The compartmentalization of the reactions has been discussed and only one compartment,

cytosol, is involved in the model. The objective function has been chosen to be cellmass

reaction, i.e. the cell growth, which is formed based on the genome and biochemical in-

formation from S. stipitis as well as S. cerevisiae whenever the information specific to S.

stipitis is not available. The model was further improved by tuning up its reactions and
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Figure 4.7: Comparison of cell growth and product yields between computed and experi-
mental results. GAO: glucose aerobic; GMA; glucose microaerobic; XAO: xylose aerobic;
XMA: xylose microaerobic. The dark green bars are experimental data; simulated results
are presented by light yellow bars.

constraints. The futile cycles in the model has been identified and revised. The boundaries

of the exchange reactions have also been evaluated to make the simulated results more close

to the experimental phenotypes. Non-growth-associated maintenance energy has been found

to be important to the prediction of by-products and a suitable value has been chosen based

on literature data and simulation results. Due to the dual cofactor specificities of xylose

reductase and xylitol dehydrogenase, the in vivo fluxes through different reactions are hard

to determine. To further constrain the model, flux coupling constraints, an extension of

flux ratio constraint, have been applied to the reactions catalyzed by the two enzymes. The

ratios were determined based on literature data and model simulation. The finalized model
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totally has 118 reactions (66 reversible and 52 irreversible) with transport reactions and 58

metabolites.

After the reconstruction of the model, simulation results were compared with reported

experimental data qualitatively and quantitatively to validate the prediction capacity of the

model. The general performance, intracellular flux ratio of pentose phosphate pathway all

agree well with reported data. Furthermore, the model was evaluated quantitatively with

published experimental data and showed a good agreement. The validation process gives us

confidence on the quality and prediction capacity of the model. Thus in next chapter, we

will analyze and compare the glucose and xylose metabolism of S. stipitis with the model.
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Chapter 5

Analysis of the reconstructed model

With the metabolic network model reconstructed and validated, various approaches have

been applied to study glucose and xylose metabolism of S. stipitis. In this chapter, the topo-

logical properties have been checked first and compared with the other metabolic network

models. Then we investigated the influence of oxygen to glucose and xylose metabolism,

which have been reported to be important to efficient ethanol production. Different pheno-

types have been identified and the difference of internal fluxes have been studied.

5.1 Methods

5.1.1 Flux balance analysis (FBA)

Flux balance analysis (FBA) is a widely used approach for studying biochemical net-

works (Orth, Thiele, and Palsson, 2010). FBA calculates the flow of metabolites through

this metabolic network, thereby making it possible to predict the growth rate of an organ-

ism or the rate of production of a biotechnologically important metabolite. With metabolic

models for 35 organisms already available (see on-line list) and high-throughput technologies

enabling the construction of many more each year, FBA is an important tool for harnessing

the knowledge encoded in these models.

5.1.2 Robustness analysis

Biological systems exist and have evolved in the face of internal and external pertur-

bations. These perturbations have resulted in a particular biological system organization
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manifested in multiple layered and inter-related components (Yamada and Bork, 2009). The

unprecedented progress in molecular biology propels the understanding of living systems

through integration of these components, and complements the reductionist approach that

has prevailed in various biological disciplines. Moreover, systems biology has revived the in-

terest in gleaning the determinants which contribute to the robustness of biological systems,

i.e., their inherent property to maintain normal performance in presence of perturbations

of changing environments and internal modification (Kitano, 2002; Koonin and Wolf, 2010;

Shinar and Feinberg, 2010; Visser et al., 2003). This has resulted in studies of robustness

at the different levels of organization, from gene regulation to population level (Shinar and

Feinberg, 2010; Visser et al., 2003).

Due to the critical role of metabolism, it is becoming generally accepted that robustness

is one of its salient properties. Determinants of robustness is usually stemmed from graph-

theoretic and stoichiometry-based formalisms: robustness from network structure and from

constraint-based approaches (Larhlimi et al., 2011). Here we adopt the latter approach to

study the robustness of the reconstructed model due to the model size and combinations of

the reactions. Robustness, defined here with respect to metabolic networks, is a measure

of the change in the maximal flux of the objective function when the optimal flux through

any particular metabolic reaction is changed (Edwards and Palsson, 2000). This definition

reveals how sensitive the objective is to a particular reaction.

FBA and a variety of it, such as flux variability analysis (FVA) (Edwards and Palsson,

2000) and phenotype phase plane analysis (PhPP) (Edwards, Covert, and Palsson, 2002),

have been developed to study the robustness based on optimization. In this work, FBA have

been used to study the robustness of particular reaction, i.e. the flux through one reaction

is varied and the optimal objective value is calculated as a function of this flux via FBA.
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5.1.3 Phenotype analysis

All steady-state metabolic flux distributions are mathematically confined to the flux

cone defined for the given metabolic map, where each solution in the flux cone corresponds

to a particular internal flux distribution or a particular metabolite phenotype (Varma and

Palsson, 1994). Under specified growth conditions, the optimal phenotype in the cone can

be determined using linear programming (LP). If the constraints vary, the shape of the

cone changes, and the optimal flux vector may qualitatively change. Phenotype analysis

is to consider all possible variations in constraints (Edwards, Ramakrishna, and Palsson,

2002). The investigated constraining variables can be one or two. If two varibles are studied

simultaneously, it is called phenotype phase plane analysis (PhPP) (BELL and PALSSON,

2005; Edwards, Ramakrishna, and Palsson, 2002).

The phenotype is constructed by calculating the shadow prices throughout the solu-

tion space of the particular problem. The shadow price defines the intrinsic value of each

metabolite toward the objective function. Changes in shadow prices are used to interpret

the metabolic behavior.

Mathematically, the shadow price is the dual solution of the linear programming problem

(Bazaraa, Jarvis, and Sherali, 2009). It is defined as (Edwards, Ramakrishna, and Palsson,

2002; Varma and Palsson, 1993):

γi = − dZ
dbvi

(5.1)

The shadow price defines the sensitivity of the objective function (Z) to changes in the

availability of each metabolite (bvi defines the violation of a mass balance constraint and is

equivalent to an uptake reaction). The shadow price can be either negative, zero, or positive,

depending on the value of the metabolite. The direction and magnitude of the shadow price

vector in each phenotype is different and thus related to the state of the metabolic system.
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5.2 Topological properties of the model

5.2.1 Degrees of metabolites

The degree of a node in a network (sometimes referred to incorrectly as the connectivity)

is the number of connections or edges the node has to other nodes. The metabolites are

connected to each other by reactions in the metabolic network. Therefore, the degree of

metabolites can be calculated by counting the reactions that they present. This is done by

converting the stoichiometric matrix S into a binary matrix and thus counting the non-zero

items in each row. The result is shown in Figure 5.1.
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Figure 5.1: Degree distribution of the metabolites in the S. stipitis model. The dash line
shows the exponential relationship between degree of metabolite and reaction number.

There are total 17 different degrees. The lowest degree is 2 while the highest value

is 52. As Figure 5.1 shows, there are very few metabolites that are high-degree, while
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most metabolites participate only in a few reactions. The few high-degree metabolites are

“global” players, similar to hubs in protein-protein interaction networks, while the low-degree

metabolites are “local” players, many of which only occur in linear pathways (Barabási and

Oltvai, 2004; Palsson, 2006). The approximate linear appearance of the curve of degree of the

metabolites corresponds to a “power law” degree distribution of metabolite, which indicates

that the network is scale-free (Jeong et al., 2000). This result agrees with the structure of

the genome-scale models (Duarte, Herrg̊a rd, and Palsson, 2004; Orth et al., 2011) although

this one is small. The metabolite with highest degree is hydrogen ion, which has a value of

52.

5.2.2 Correlation between reaction essentiality and degree of metabolite

Previous research shows that network topology, especially the degree distribution of

nodes provides significant information about the presumed robustness of microorganisms to

perturbation (Barabási and Oltvai, 2004; Hartwell et al., 1999). Earlier works (Mahadevan

and Palsson, 2005; Samal et al., 2006) reveals that low degree metabolites explain essential

reactions in reaction networks of E. coli, S. cerevisiae and Staphylococcus aureus. Therefore,

it is very interesting to investigate whether the structure of the model implies the same

conclusion.

The reaction essentiality is determined as whether it would cause the cell stop growing

once it has been removed. The results depends on the constraint setup. Specifically, in our

model, it depends on the carbon source (glucose or xylose) and oxygen supply condition

(aerobic or oxygen-limited). With aerobic glucose culture, it shows that a total of 14 reac-

tions are essential to cell growth. When the aeration condition changed to oxygen-limited

(glucose), the number became 18. For xylose culture, the number is 16 and 26 for aerobic and

oxygen-limited conditions respectively. 10 reactions are essential under all conditions. They

are distributed in glycolysis, pentose phosphate pathway, sulfite and urea metabolism. The

larger difference of essential reaction number in xylose metabolism under different aeration
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conditions indicates the higher sensitivity of xylose metabolism to oxygen supply change

compared with glucose metabolism, which agrees with experimental findings (Skoog and

Hahn-Hägerdal, 1990).

The correlation between reaction essentiality and degree of metabolite is evaluated as

the fraction of essential reactions in all the reactions associated with the metabolite. The

result for the reconstructed S. stipitis model is shown in Figure 5.2. Essentiality is evaluated

for glucose (A and C) and xylose metabolism (B and D) respectively.
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Figure 5.2: Correlation between reaction essentiality and degree of metabolite

The results (Figure 5.2) shows that the small-scale model generally follows the trend

that the reactions linked with low degree metabolites have more possibility to be essential

no matter what carbon source is utilized. However, due to size of the model, many reactions
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have been lumped into the cellmass reaction. Therefore, it is not as clear as the results in

genome-scale models. In fact, for the S. stipitis core model, most fractions of essentiality lie

between 0.1 and 0.5 for the majority of the metabolites, regardless of their degree. There

are a few compounds that have a degree of 2 and have a fraction of 1 (e.g., glc[e], 2pg[c]).

These metabolites often occur in a linear pathway, at the end of which an essential biomass

precursor is produced.

The results show differences between glucose metabolism and xylose metabolism. 8 out

of 17 degrees have different average fractions of essentiality. Further investigation shows that

the difference is caused by the unique reactions for glucose or xylose metabolism, e.g. the

first three steps of xylose metabolism, and also some reactions in non-oxidative PPP, which

is not essential to glucose metabolism. The capacity of the model that can grow without

these reactions is most likely due to the highly lumped cellmass reaction.

5.2.3 Reaction participation

From the structure of the model, the reaction participation can be calculated, which

is defined as the number of metabolites per reaction. For the current model, the average

reaction participation is 3.8559, which is very close to the value in E. coli metabolic network

model (Orth, Fleming, and Palsson, 2010). The number indicates that the most common

reaction mode in the model is totally 4 reactants and products and agree with the published

results for genome-scale model (Papin, Price, and Palsson, 2002).

5.3 Influence of oxygenation to glucose and xylose metabolism

It is well known that the metabolism of S. stipitis is sensitive to oxygenation, especially

with xylose (Jeffries and Van Vleet, 2009; Jeffries et al., 2007; Skoog and Hahn-Hägerdal,

1990). Oxygen has also been reported to be important for efficient ethanol production

(Grootjen, Lans, and Luyben, 1990; Ligthelm, Prior, and Preez, 1988b; Skoog, Jeppsson,

and Hahn-Hägerdal, 1992). Meanwhile, by comparing the different performance of glucose
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and xylose metabolism, the impact of the first two steps of xylose metabolism to the internal

redox balance can be clearer.

5.3.1 In silico experiment design

In order to study the impact of aeration condition, or the robustness of oxygen uptake

rate (OUR) in glucose and xylose metabolism, a series of in silico simulations were con-

structed. The intracellular fluxes were calculated with FBA through varying the oxygen

uptake rate from 0 to 20 mmol/gDCW/h with a step size of 0.01. The flux of incoming

glucose or xylose has an upper limit of 10 mmol/gDCW/h, a realistic value. The flux of

uptaking carbon source is set to have an upper limit instead of a fixed value because this

will also provide information on how oxygenation will affect sugar input. Specifically for

xylose uptake, since it is a symport process, i.e. with proton import simultaneously. Other

constraints are set the same values as described above.

The set of experiments resulted in 118 × 2001 matrix for each carbon source, where each

column represents the 118 intracellular fluxes under a certain OUR. The generated results

were then analyzed with phenotype analysis to extract biological sensible information.

5.3.2 Cell growth and product formations in glucose and xylose metabolism

With the varying oxygenation, the cell growth and product formations are shown in

Figure 5.3 and 5.4 for glucose and xylose metabolism respectively. Based on phenotype

analysis, phenotypes have been identified along the aeration conditions and are also marked

in Figure 5.3 and Figure 5.4. The detailed descriptions of the characteristics of different

phenotypes have been summarized in Table 5.1. These results generally agree well with

experiment observations.

From the results in Table 5.1, S. stipitis shows to be more sensitive to OUR, which is

indicated by more phenotypes under oxygen limited condition.
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Figure 5.3: Cell growth and product formations in glucose metabolism. Solid line: cell
growth; dash line: ethanol yield; dash-dot line (non-verticle): glycerol yield; dot line: acetic
acid yield. The vertical dash-dot lines define the boundaries of different phenotypes. The
phenotype number is shown at the top of the figure.

Besides the influence to cell growth and product formation, oxygen also impacts the

xylose uptake rate but not glucose uptake rate. In glucose metabolism, from anaerobic

to aerobic growth, the glucose uptake rate always hit the upper boundary, specifically 10

mmol/gDCW/h. For xylose metabolism, the xylose uptake rate begins to decrease with the

decreasing OUR at phenotype 5, which is shown in Figure 5.5. Therefore, in phenotype 5,

oxygen is the only limiting factor for cell growth under current setup. This phenomenon is

because the uptake process of xylose is symport, i.e. a proton is imported into the cell with
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Figure 5.4: Cell growth and product formations in xylose metabolism. Solid line: cell growth;
dash line: ethanol yield; dash-dot line (non-verticle): xylitol yield; dot line: acetic acid yield.
The vertical dash-dot lines define the boundaries of different phenotypes. The phenotype
number is shown at the top of the figure.

one xylose molecule. With the decrease of aeration, the power of oxidative cannot support

this perturbation and xylose uptake rate decreases consequently.

5.3.3 Interpreting changes of metabolism among phenotypes

The phenotypes show different physiological characteristics, which indicate that the

optimal flux distribution calculated in each phenotype are different. In this part, the flux
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Table 5.1: Summary of the characteristics of identified phenotypes

Carbon
source

Pheno Growth
limitation

Metabolite
product(s)

Main metabolic characteristics

Glucose

1 Glc X Aerobic growth

2 Glc, O2 X, ac Increasing acetic acid production

3 Glc, O2 X, etoh, ac Ethanol production and declined acetic
acid production

4 Glc, O2 X, etoh, glyc Stable ethanol production and increasing
glycerol production

5 Glc X, etoh, glyc Maximal ethanol and glycerol produc-
tion

Xylose

1 Xyl X Aerobic growth

2 Xyl, O2 X, ac Increasing acetic acid production

3 Xyl, O2 X, etoh, ac Ethanol production and declined acetic
acid production

4 Xyl, O2 X, etoh, xylt Declined ethanol production and increas-
ing xylitol production

5 O2 X, etoh, xylt Declined ethanol and xylitol production

6 - - Cannot maintain metabolism (no
growth)

Glc: glucose, Xyl: xylose, X: cell mass, etoh: ethanol, ac: acetic acid, glyc: glycerol, xylt: xylitol.
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Figure 5.5: Oxygen influence to the xylose uptake rate. The number above the figure is the
phenotype number.
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distributions of different phenotypes were compared to study the change of intracellular

metabolism.

5.3.3.1 The metabolism changes with glucose as carbon source

Phenotype 1 to phenotype 2 From Table 5.1, in this change of phenotype acetic acid

is produced. The comparison of flux distribution also confirmed this: the only change is

the activation of acetic acid from acetyle coenzyme A, which is a intermediate product of

pyruvate metabolism. While with the decrease of oxygenation, the electron transport chain

(ETC) cannot utilize all the reductive power generated by TCA cycle. Therefore, acetic acid

is produced.

Phenotype 2 to phenotype 3 In this stage, the metabolism of the cell switches from

respiratory to fermentation. Part of the TCA cycle has been shut down and an alternative

route through glyoxylate cycle is activated. This kind of incomplete (or branched) TCA

cycle as shown in Figure 5.6 has been reported in S. cerevisiae (Nissen et al., 1997; Vargas

et al., 2011). This prediction is further supported by Jeffries et al. (2007), where expressed

sequence tags (EST) from oxygen-limited growth of S. stipitis on xylose showed that KGD2

(the TCA cycle reaction being passed) was down-regulated. Due to partly block of the TCA

cycle, the regeneration of NADH decreases in phenotype 3. The ethanol production pathway

is activated to utilize the extra carbon flux decreased through TCA and also to consume

cofactor and thus provide another way to redox balance.

Phenotype 3 to phenotype 4 With the further decrease of oxygen supply, the oxidative

power of the cell declined as well. So does the cell growth. One consequence of this change

is to change the redox balance. The fluxes through ETC decrease even more and most of

the carbon is consumed by ethanol production. Therefore, the model adapts to this change

by shifting ethanol production way from NADPH-preferred to NADH-preferred reaction.

However, this kind of change lacks validation from experiments.
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Figure 5.6: TCA cycle change occurred in phenotype 3: (a) complete TCA cycle; (b)
branched TCA.

Phenotype 4 to phenotype 5 During this stage, the comparison of flux distribution

doesn’t reveal any further information besides the decrease fluxes through ETC. Phenotype

5 actually is just a point: the anaerobic fermentation.

5.3.3.2 Differences between phenotypes in xylose metabolism

Phenotype 1 to phenotype 2 The physiological characteristics are the same as in glucose

metabolism. However, the activation of acetic acid production is totally different. In glucose

metabolism, the acetic acid is produced from acetyle coenzyme A, which is an intermediate

metabolite between pyruvate and TCA cycle. While in xylose metabolism, acetic acid is

produced via activating production of acetaldehyde and then the generation of acetic acid.

Compared with the acetyle coenzyme A pathway, this pathway generates more NADPH,

which reflects the influence of oxygenation to redox balance in xylose metabolism.

Phenotype 2 to phenotype 3 The same as the shift from phenotype 2 to phenotype 3,

the branched TCA cycle again appears when the xylose metabolism shifts from phenotype 2

to phenotype 3. Except this, the shift of metabolism didn’t introduce any other perturbation

to the intracellular system.
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Phenotype 3 to phenotype 4 During this phenotype change, the decrease of oxidative

power leads to decreasing buildup of building blocks and energy. Therefore, the capacity

of central carbon metabolism declines. Extra generated xylitol excretes outwards. The

regeneration of NADPH through acetic acid production is no longer needed and turned off.

Phenotype 4 to phenotype 5 By simply comparison of flux distribution, it is hard to

extract information for this phenotype variation. After carefully examining intracellular

fluxes, the shift is mainly due to the decrease of xylose uptake rate, i.e. the redox balance

cannot be solved even with xylitol excretion. From Figure 5.4 (a), it shows that the ethanol

yield even increases although the specific production rate drops fast with the decreasing

oxygen supply.

Phenotype 5 to phenotype 6 At the end of phenotype 5, the system cannot generate

enough energy and maintain the redox balance. Therefore, there’s no feasible solution for

the whole system, i.e. no cell growth predicted.

5.3.3.3 Discussion

From the comparison of the results of phenotype analysis on glucose and xylose metabolism,

redox balance is more complicated in xylose metabolism than in glucose metabolism, which is

confirmed by more reactions related to cofactor identified. This further causes the sensitivity

of xylose metabolism to oxygen.

Phenotype analysis definitely shows its power in the study on influences of oxygen. It

can easily identify the phenotypes when one flux varies and is a useful tool for the robustness

analysis. However, the shortcoming of phenotype analysis is also shown clear here. Very

little information can be extracted from the phenotype identified. It is hard to find out

how the system responds to the perturbation introduced. For example, which reactions are

most responsible for the cofactor balance change? In this small scale model, it is possible

but still very hard to answer the question by examining the intracellular fluxes carefully.
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But what if for a genome-scale model? It is very difficult or even impossible to extract

biological information from hundreds of fluxes. Therefore, in next chapter we proposed a

system identification based framework for this purpose.

5.4 Conclusion

In this chapter, flux balance analysis, robustness analysis and phenotype analysis have

been applied to the metabolic network model constructed in the previous chapter. The

topoligical properties of the model was first studied and the results confirmed that the con-

structed small-scale network model shows similar properties as in genome-scale model. The

model also shows some variations which is caused by the combination of reactions in the

construction process. The oxygen influences to glucose and xylose metabolism were also

studied thereafter. Robustness analysis on glucose and xylose metabolism shows that xylose

metabolism is more sensitive to oxygen supply. The best aeration condition identified by

model simulation is anaerobic while the one for xylose metabolism is more complicated and

requires careful control on oxygen supply rate. Different phenotypes have been identified

and some biological sensible information has been revealed by comparison of flux distribu-

tion. While it shows the power of phenotype analysis, the disadvantage of this method also

becomes obvious. A new approach to analyze the results from FBA simulations and thus to

extract biological sensible information is needed, which is proposed and applied to elucidate

xylose metabolism in next chapter.

99



Chapter 6

Study of redox balance

in xylose metabolism

6.1 Introduction

The catabolism of sugars by microorganisms is accomplished by a variety of metabolic

pathways. Yeasts, as a group, are more homogeneous with respect to sugar catabolism than

are bacteria. All yeasts described so far are able to grow on glucose. Invariably, the major

portion of this sugar is catabolized via the Embden-Meyerhof pathway; respiration proceeds

only with oxygen as the terminal electron acceptor, and if fermentation occurs, ethanol is the

major end product. Despite these similarities, however, many differences may be observed

between different yeasts, especially with respect to the ability to utilize various sugars and

the regulation of respiration and fermentation.

In the metabolism of sugars by yeasts the nicotinamide adenine dinucleotides NAD(H)

and NADP(H) play separate and distinct roles. NADH may be regarded as a predominantly

catabolic reducing equivalent, whereas NADPH is mainly involved in anabolic processes (Di-

jken et al., 1986). This is not always the case, however. In fact, the distinction between

assimilatory and dissimilatory reactions in heterotrophic organisms is to some extent artifi-

cial. For example, glycolysis plays an essential role in sugar dissimilation, but also generates

building blocks for biosynthesis. Furthermore, although most biosynthetic reactions use

NADPH as a reductant, some NADH-linked reductions occur in the conversion of central

metabolites (pyruvate, oxaloacetate, acetyl CoA) to cellular monomers, for example in amino

acid biosynthesis (Bakker et al., 2001).
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Under conditions of oxygen depletion, NADH generated in glycolysis can be re-oxidized

in the conversion of pyruvate to ethanol and CO2. In the presence of oxygen many yeasts do

not form ethanol and NADH, generated during catabolism, is re-oxidized with oxygen. Since

catabolic and anabolic pathways share the initial reactions of sugar metabolism, NADH is

also formed during the assimilation of sugars to cell material. The formation of NADH during

assimilation is even higher than is anticipated on the basis of a comparison of the reduction

levels of sugar and biomass. This is due to the fact that the NADH produced during the

formation of intermediates of glycolysis and TCA cycle is not the principal reductant for the

conversion of these intermediates to the building blocks of cell polymers.

The specific requirement for NADPH in the assimilation of sugars to cell material, in

combination with the absence of transhydrogenase activity, necessitates the conversion of

part of the sugar exclusively for the purpose of generating reducing power in the form of

NADPH. This is accomplished in the oxidative steps of the hexose monophosphate pathway.

Thus, in the overall process of aerobic growth and biomass formation, two separate flows

of reducing equivalents can be distinguished: production of NADH for the purpose of ATP

formation and production of NADPH for reductive processes in the cell’s anabolism, mainly

in the synthesis of amino acids and fatty acids. A similar scheme holds for anaerobic growth.

In this case, however, NADH plays no direct role in ATP formation and is re-oxidized in the

final reaction of the alcoholic fermentation.

Apart from ethanol, yeasts may excrete a variety of metabolic products. These include

polyalcohols (glycerol, erythritol, arabinitol, xylitol, ribitol), monocarboxylic acids (mainly

acetic and pyruvic acid), dicarboxylic and tricarboxylic acids (succinic, citric, and isocitric

acid). Generally, the metabolic basis for the formation of these products and the fate of

reducing power during their synthesis is poorly understood. Excretion of metabolites can

occur under either aerobic or anaerobic conditions, and is dependent on the particular species

and on environmental conditions.

101



In this chapter, the redox balance in S. stipitis will be investigated with the recon-

structed model. The redox balance influence to the distribution of products and cell growth

will be investigated.

6.2 Methods

6.2.1 Flux Balance Analysis (FBA)

Flux balance analysis was performed to study the central carbon metabolism of S. stipitis

using a publicly available COBRA toolbox for MATLAB version 2.05 (Schellenberger et al.,

2011). The upper limits of uptake rate of xylose and oxygen under various conditions are

defined in FBA to predict external secretion rates and internal net fluxes. Other exchange

fluxes are constrained accordingly. Maximizing cellular growth rate is used as the objective

function for all FBA simulations. The simulation results are analyzed further to reveal the

intracellular mechanism of xylose metabolism.

6.2.2 Principal Component Analysis (PCA)

Principal component analysis (PCA) is commonly used multivariate analysis method of

dimension reduction, which extracts the directions corresponding to the largest variations

among different variables in a high dimensional data set (Jolliffe, 2002). It has been applied in

the metabolomics studies to analyze metabolites profiles at given conditions (Griffin, 2004).

In this work, we propose a new way of applying PCA to extract the underlying biological

knowledge embedded in the data obtained through designed in silico experiments.

6.2.3 Proposed method: FBA-PCA

In microbial metabolism, hundreds and even thousands reactions are involved. Existing

approaches, such as Elementary Mode Analysis (EMA) and Flux Balance Analysis (FBA),

can provide detailed flux distributions under different conditions and therefore provide de-

scriptions to different phenotypes. However, by simply comparing different flux distributions,
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it is very difficult to extract the underlying biological knowledge, such as what key reactions

or key correlations of different pathways govern the cellular metabolism of a given phenotype.

To fill the gap, we propose a system identification based metabolic flux analysis framework

to extract such knowledge by integrating PCA with FBA in this work. Specifically, in the

proposed framework, we first design in silico experiments to perturb the metabolic network

in order to investigate the interested properties, then we perform system identification by

applying PCA to the high dimensional data generated through the designed in silico ex-

periments. By combining the in silico perturbation experiments with system identification

tools, biologically meaningful information contained in the complex network structure can

be extracted from sufficient amount of in silico experimental data in the form that is easily

interpretable by biologists. It is worth noting that because the metabolic network is linear,

if only one degree of perturbation is introduced within a series of in silico experiments, then

one principal component (PC) is sufficient to capture 100% of the variation, provided that

there is no saturation (i.e., flux reaching its upper/lower limit) nor network structure changes

(i.e., activation/deactivation of reactions). In this case, the correlations among different re-

actions are fully captured by the loading of the PC. Therefore, by examining the loading, we

can easily identify how the introduced perturbation propagates through the whole network

and what reactions are affected most by the introduced perturbation. In Appendix D, an

illustrative example explains how the proposed method works.

6.3 Elucidating influence of oxygen in xylose metabolism with FBA-PCA

It is well known that oxygen plays an important role in cell growth, redox balance,

functioning of the mitochondria and generation of energy for xylose transport in S. stipitis

(Skoog and Hahn-Hägerdal, 1990). However, how oxygen influences the intracellular flux

distribution and redox balance and which reactions would be the most important for redox

balance are not well understood. In this section we design a series of in silico experiments

to perturb the central carbon metabolic network of S. stipitis, and apply PCA to analyze

103



the in silico experimental results. The goal is to identify the key reactions or pathways that

are affected by the introduced perturbation.

6.3.1 Designed in silico experiments

In order to study how different oxygen availability affects cellular metabolism, we per-

formed FBA to calculate the intracellular fluxes by varying the oxygen uptake rate from

0 to 20 mmol/gDCW/h with a step of 0.001,i.e. totally 20001 runs of experiments. This

set of experiments resulted in a 118 × 2001 matrix, where each column represents the 118

intracellular fluxes under a certain OTR and a xylose uptake rate with upper limit of 10

mmol/gDCW/h. In the model, the flux distribution ratio through NADPH-dependent and

NADH-dependent xylose reductase (XR) was set to 1.0 while the xylitol dehydrogenase was

supposed to be NAD+-dependent only. Phenotypical Phase Plane Analysis (PhPP) (BELL

and PALSSON, 2005; Edwards, Ramakrishna, and Palsson, 2002) was also carried out under

the same conditions for comparison.

6.3.2 Phenotype identification

PCA is applied to analyze the in silico experimental results. As shown in Figure 6.1

(a) where scores corresponding to the first two PCs are plotted, totally six phenotypes of

metabolism are identified. One phenotype is distinguished from another phenotype when the

correlation among fluxes has changed, which is shown on the PCA score plot as two different

straight lines each represent a distinctive correlation among fluxes. The distinction between

phenotype 2 and phenotype 3 is not very clear in the figure because of the scale. The results

from PhPP is given in Figure 6.1 (b), where the same six phenotypes are identified. Figure 6.1

(c) plots the cell growth rate and ethanol production rate under different aeration conditions,

which reveals some difference among different phenotypes. The main characteristics of the

different phenotypes are summarized in Table 6.1.
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Figure 6.1: Phenotypes identified with PCA when OUR changes within [0, 20]
mmol/gDCW/h. (a) phenotypes identified by PCA; (b) phenotypes identified by PhPP;
(c) model predicted cell growth rates and specific ethanol production rates. The numbers
1-6 correspond to the identified phenotypes.

Although PhPP and the proposed approach identify the same 6 phenotypes, they are

completely different in revealing the cellular details that underlie the specific phenotype. For
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Table 6.1: Summary of the characteristics of identified phenotypes

Phenotype Growth
limitation

Metabolic
product(s)

Main metabolic
characteristics

1 Xylose Cell mass Aerobic growth

2 Xylose, oxygen Cell mass,
acetic acid

Increasing acetic acid production

3 Xylose, oxygen Cell mass,
ethanol, acetic
acid

Ethanol production and declined
acetic acid production

4 Xylose, oxygen Cell mass,
ethanol, xylitol

Declined ethanol production and
increasing xylitol production

5 Oxygen Cell mass Declined ethanol and xylitol pro-
duction

6 - - Cannot maintain metabolism (no
growth)

PhPP, it can easily identify whether oxygen or carbon source is a limiting factor by exam-

ining the shadow price (Edwards, Covert, and Palsson, 2002), but it is very difficult what

contribute to the change in the shadow price, as it only examines the objective function as

a whole and does not provide the detail on how different reactions are affected by changing

each metabolite. On the other hand, for the proposed approach, the limiting factor can be

identified by checking whether the corresponding fluxes hit their upper limits. More impor-

tantly, one significant advantage of the proposed FBA-PCA approach is that it can reveal

the cellular details, particularly the key reactions that differentiate different phenotypes, by

examing the loading matrix.

To demonstrate the effectiveness of the proposed FBA-PCA method, the reactions that

are affected the most by changing OUR in both phenotype 2 and 3 are plotted in Figure 6.2,

where the metabolic fluxes are colored according to their loadings.

From Figure 6.2, several key differences can be observed. First, the importance of

TCA cycle for cell growth in phenotype 3 has decreased compared to phenotype 2. Further

examination shows that this is caused by turning off of 2-oxoglutarate dehydrogenase due to

decreased oxygen supply in phenotype 3, which further leads to an incomplete (or branched)
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Figure 6.2: Metabolic maps for phenotype2 (a) and phenotype 3 (b) identified in Figure 6.1.

TCA cycle as shown in Figure 6.3 (also shown as gray TCA cycle in Figure 6.2 (b) but green

TCA cycle in Figure 6.2 (a)). This branched TCA cycle has been previously reported in S.

cerevisiae (Nissen et al., 1997; Vargas et al., 2011). This prediction is further supported by

Jeffries et al. (2007), where expressed sequence tags (EST) from oxygen-limited growth of

S. stipitis on xylose showed that KGD2 (the TCA cycle reaction being passed) was down-

regulated. Second, fermentation pathway, i.e. ethanol production, has been activated by the

branched TCA cycle to resolve the redox balance of NADH/NAD+ which are indicated by

gray in phenotype 2 and red in phenotype 3. Third, due to the decrease of cell growth, the

requirement of NADPH has been reduced and caused the down-regulation of fluxes through

pentose phosphate pathway as shown in Figure 6.2 by the color of PPP changing from light

green in phenotype 2 to light yellow in phenotype 3.
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Figure 6.3: TCA cycle change occurred in phenotype 3: (a) complete TCA cycle; (b)
branched TCA.

6.3.3 Effect of OUR on redox balance in phenotype 5

In this subsection, we apply the proposed FBA-PCA method to study the effect of

OUR on redox balance in phenotype 5. Specially, we study the OUR range of [0.2, 0.5]

mmol/gDCW/h, as Figure 6.1 shows that ethanol production is the most sensitive to OUR

in this range. We first conducted a series of in silico experiment where FBA was performed

to compute the flux distribution by varying OUR from 0.2 to 0.5 mmol/gDCW/h, with

step size 0.01. Then PCA was applied to analyze the resulted data matrix. Again, one

PC captures 99.9% of all variance. All reactions that involve cofactor consumption and

regeneration are listed in Table 6.2. The loadings corresponding to the involved reactions

are plotted in Figure 6.4. The loadings are scaled by the rate of change in OUR. The

fluxes of key reactions that are affected the most by the increase of OUR are tabulated

in Table 6.3 for two conditions with OUR of 0.2 and 0.5 mmol/gDCW/h. The seven key

reactions identified in Table 6.3 cover 99% of the total redox shift. The metabolic map with

identified key reactions for phenotype 5 is shown in Figure 6.5. Both Figure 6.5 and Table

6.3 show that the proposed approach can reveal key information about metabolism shift and

therefore help interpret the predictions from metabolic network model and provide insights

into microorganism metabolism.
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Table 6.2: All reactions that involve cofactor consumption and regeneration

No. Abbreviation Formula

1 Cellmass PsScC 4.4318 glu[c] + 3.1644 accoa[c] + 73.3883 h2o[c] + . . .

2 AKGDH nad[c] + akg[c] + coa[c] → nadh[c] + co2[c] + succoa[c]

3 ICITDHxm nad[c] + icit[c] → akg[c] + nadh[c] + co2[c]

4 ICITDHym nadp[c] + icit[c] → nadph[c] + akg[c] + co2[c]

5 MDH nad[c] + mal[c] ⇔ oaa[c] + h[c] + nadh[c]

6 GDHx nh4[c] + akg[c] + h[c] + nadh[c] → glu[c] + h2o[c] + nad[c]

7 GDHy nadph[c] + nh4[c] + akg[c] + h[c] → glu[c] + h2o[c] + nadp[c]

8 GOGATx gln[c] + akg[c] + h[c] + nadh[c] → 2 glu[c] + nad[c]

9 SSADHy h2o[c] + nadp[c] + sucsal[c] → nadph[c] + 2 h[c] + succ[c]

10 GLYC3PDHx h[c] + nadh[c] + dhap[c] → nad[c] + glyc3p[c]

11 ADHx h[c] + nadh[c] + acald[c] ⇔ nad[c] + etoh[c]

12 ADHy nadph[c] + h[c] + acald[c] ⇔ nadp[c] + etoh[c]

13 GAPDHx nad[c] + pi[c] + gap[c] ⇔ h[c] + nadh[c] + 13bpg[c]

14 PDHm nad[c] + pyr[c] + coa[c] → accoa[c] + nadh[c] + co2[c]

15 CPLXI 5 h[c] + nadh[c] + q[c] → nad[c] + qh2[c] + 4 h[e]

16 G6PDH g6p[c] + nadp[c] → nadph[c] + h[c] + 6pgl[c]

17 GND nadp[c] + 6pgc[c] → nadph[c] + ru5p[c] + co2[c]

18 ALDx h2o[c] + nad[c] + acald[c] → 2 h[c] + nadh[c] + ac[c]

19 ALDy h2o[c] + nadp[c] + acald[c] → nadph[c] + 2 h[c] + ac[c]

20 MAExm nad[c] + mal[c] → pyr[c] + nadh[c] + co2[c]

21 XDHx nad[c] + xylt[c] ⇔ h[c] + nadh[c] + xylu[c]

22 XRx h[c] + nadh[c] + xyl[c] → nad[c] + xylt[c]

23 XRy nadph[c] + h[c] + xyl[c] → nadp[c] + xylt[c]

24 XDHy nadp[c] + xylt[c] ⇔ nadph[c] + h[c] + xylu[c]
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Table 6.3: Shift of cofactor consumption and regeneration in phenotype 5

Cofactor Reaction OUR = 0.200 OUR = 0.500 Total shift

NADH consumption
R11 2.00 4.85

6.63
R22 3.61 7.39

NADH regeneration
R13 2.38 5.36

7.16
R21 3.63 7.81

NADPH consumption R23 2.00 4.85 2.85

NADPH regeneration
R16 1 2.57

3.14
R17 1 2.57

6.4 Influence of cofactor specificity of xylose reductase

As discussed before in Section 4.2.4, the flux ratio of XR is very important to xylose

metabolism with S. stipitis. Many results on experimental study of XR preference to NADPH

and NADH have been reported (Hou, 2012; Slininger et al., 2011; Verduyn et al., 1985;

Yablochkova et al., 2003, 2004). However, the reported results are not consistent with

each other (Slininger et al., 2011; Yablochkova et al., 2004). In additional, all reported

enzyme activities are measured in vitro with saturated substrate concentration in dilute

solution. These all deviate from the in vivo condition within the cell. Meanwhile, researchers

have tried to apply protein engineering to alter the cofactor preferences of XR to improve
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ethanol production and/or to reduce by-product productions (Bengtsson, Hahn-Hägerdal,

and Gorwa-Grauslund, 2009; Chu and Lee, 2007; Krahulec et al., 2012; Liang, Zhang, and

Lin, 2007; Matsushika et al., 2009; Watanabe, Kodaki, and Makino, 2005; Watanabe et al.,

2007a). Therefore, studying the influence of cofactor specificity of XR by altering the flux

ratio will help understand the biological details of xylose fermentation in S. stipitis and

engineered S. cerevisiae as well as provide rational design strategy for cofactor engineering.

Here we define XR activity ratio (RXR) as the ratio of the flux through the reaction that

utilizes NADPH to the flux through the reaction that utilizes NADH when converting xylose
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to xylitol. Based on the reported results and general knowledge of the in vivo concentrations

of NADH/NAD+ and NADPH/NADP+ pools (Bergdahl et al., 2012), in this section we first

vary RXR within [0, 2] and study its effect on redox balance and ethanol production.

First we performed simulations to study the general influence of RXR to model pre-

dictions under various oxygenation conditions through FBA. In these experiments, xylose

uptake rate is constrained to be 10 mmol/gDCW/h, oxygen supply rate is changed between

0 to 14 mmol/gDCW/h with a step of 0.1, while RXR is varied between [0, 2] with a step

of 0.2 plus 10 as an extreme case. The resulted cell growth, ethanol production and xylitol

production are shown in Figure 6.6. It shows that the increase of NADH affinity of XR

can improve the ethanol production and reduce xylitol production. The results show dif-

ferent patterns in ethanol production rate caused by different ratios through the reactions

(shown in Figure 6.6 (b) as different combination of increase and decrease), which can be

used for experimental validation and thus provide insights on flux ratio through different

cofactor-linked reactions and intracellular cofactor pool size.

In order to elucidate the cellular details that underlie the predicted cell growth and

ethanol production, we carried out a second set of in silico experiments, where we fixed both

xylose and oxygen uptake rates to 10 mmol/gDCW/h and 0.4 mmol/gDCW/h respectively.

The activity ratio of NADPH- and NADH-linked XR is changed incrementally within [0,

2] with a step of 0.001, which results in 2001 in silico experiments. PCA was applied to

identify the key changes among different reactions when the ratio is changed. The loadings

corresponding to the reactions involving cofactor consumption and regeneration are plotted

in Figure 6.7. The loadings are scaled by the rate of change in XR flux ratio. The fluxes of

key reactions that are affected most by increase of XR flux ratio are tabulated in Table 6.4

for two conditions with XR flux of 0.5 and 2.0. The seven key reactions identified in Table

6.4 cover 98% of the total redox shift. The map with identified key reactions is shown in

Figure 6.8.
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Figure 6.6: Influences of XR flux ratio on specific cell growth rate (a), specific ethanol
production rate (b) and specific xylitol production rate (c) with varying aeration. The
arrows in the plots indicate the increase of XR flux ratio.

6.5 Conclusion

In this chapter, to investigate how cellular redox balance is affected by change in OUR

and XR cofactor specificity, we developed a system identification based metabolic flux anal-

ysis framework to extract the underlying biological knowledge embedded in the network

structure. By applying the proposed framework, we were able to identify the key reactions
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Table 6.4: Shift of cofactor consumption and regeneration

Cofactor Reaction RXR = 0.5 RXR = 2.0 Total shift

NADH consumption
R11 6.67 2.64

-9.66
R22 10.1 4.47

NADH regeneration
R13 6.92 3.32

-9.63
R21 10.6 4.57

NADPH consumption R23 3.33 5.28 1.95

NADPH regeneration
R16 1.83 2.68

1.7
R17 1.83 2.68

that dominant the cellular redox balance. It is interesting to find out that under oxygen-

limited condition, it is the same set of the key reactions that dominate the redox shift caused

by change of OUR or change of XR cofactor specificity, although they are affected in dif-

ferent ways by different factors. The in silico experiments and PCA analysis results show

that xylose reductase plays a key role in xylose fermentation to ethanol. In particular, its

cofactor specificity, if adjusted toward favoring NADH, could improve ethanol yield. Finally,

the set of key reactions (totally 7 reactions) should be considered together when designing

mutant to improve ethanol yield through shifting cellular redox balance.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

Lignocellulosic ethanol production represents an attractive alternative source for long-

term renewable energy supply due to the rising concerns over energy sustainability, global

warming and feed stock availability. However, many barriers exist for industrializing ligno-

cellulosic ethanol processes and one of them is the effective conversion of xylose, the second

abundant mono-saccharide and representative pentose in the hydrolysate of lignocellulosic

biomass.

As the most promising native strain for xylose fermentation, Scheffersomyces stipitis

shows good overall performance on lignocellulosic hydrolysate. Understanding its metabolism,

especially the central carbon metabolism, is very important to improve the strain, or to pro-

vide hints for metabolic adjustment of other strains. In this work, the glucose and xylose

metabolism of S. stipitis have been studied via construction of a central carbon metabolic

network as well as wet experiments.

First, the glucose and xylose metabolism were studied via experiments. Obstacles exist

for industrial adoptation of S. stiptis, e.g. low ethanol tolerance, sensitive to oxygen supply

and low growth rate under micro-aeration condition. To solve the problem, in this work,

continue culture with cell retention module have been carried out with both glucose and

xylose. The system provides a high cell retention ratio and can make cell evolving for long

time and in harsh environment without considering the possible wash out. Meanwhile, the

continuous application of environmental selection pressure makes the strain evolve in the
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desired direction. S. stipitis has been cultured in the system for more than 3 months, which

improved the ethanol tolerance significantly. Various approaches have been evaluated for the

ethanol tolerance improvement. In the experiment, it also confirmed the high sensitivity of

xylose metabolism in S. stipitis to oxygen. To produce ethanol in high yield, an accurate

control over oxygen supply is a necessary.

To study the influence of environmental perturbations to the metabolism of S. stipitis

systematically, a stoichiometric central carbon metabolic network is reconstructed. During

the construction, futile cycles in the model have been identified. The impact of particular

constraints, i.e. non-growth-associated maintenance energy and flux coupling constraints,

has been studied and proper values have been adopted from literature data. The model is

validated against experimental results reported in literature. Even though the reconstructed

metabolic network model does not capture all the cellular details, for example, it only con-

siders one compartment (the cytosol) and does not contain any gene regulatory mechanism;

it still provides a comprehensive picture of the central carbon metabolism of S. stipitis. Such

model enables us to elucidate the xylose metabolism using a systems approach.

The model properties have also been investigated after the reconstruction. The topolog-

ical properties generally agree with that of the genome-scale model. Some variants exist due

to the model size. Flux balance analysis, robustness analysis and phenotype analysis have

been combined together to study the oxygen influence to the glucose and xylose metabolism.

The changes of intracellular metabolism with various aeration conditions have been studied

by phenotype identification and comparison of flux distribution. However, this approach

shows its limitation in our research. Therefore, a system identification based metabolic flux

analysis framework, FBA-PCA, has been proposed and applied to study the influence of

OUR to xylose metabolism. The application of FBA-PCA shows clearly that it can extract

the underlying biological knowledge embedded in the network structure. By applying the

proposed framework, we were able to identify the key reactions that dominant the cellular re-

dox balance. Meanwhile, the proposed framework is utilized to analyze the impact of change
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of XR cofactor specificity, which has been considered to be an important aspect for xylose

metabolism. It is interesting to find out that under oxygen-limited condition, it is the same

set of the key reactions that dominate the redox shift caused by change of OUR or change of

XR cofactor specificity, although they are affected in different ways by different factors. The

in silico experiments and PCA analysis results show that xylose reductase plays a key role

in xylose fermentation to ethanol. In particular, its cofactor specificity, if adjusted toward

favoring NADH, could improve ethanol yield. The set of key reactions (totally 7 reactions re-

lated to cofactors) should be considered together when designing mutant to improve ethanol

yield through shifting cellular redox balance.

7.2 Outlook

As mentioned above, the constructed model has some intrinsic disadvantages, e.g. the

lack of mitochondrial compartment and regulation information integration. Therefore, to

continue study on this model, several research directions show interesting future.

Improvement of the model Although several genome-scale model of S. stipitis have

been published, they have more or less variances from the experimental phenotypes and

literature data. The model needs more development so that more biological knowledge

could be extracted in silico and work together with experimental results to promote the

understanding to the strain.

Dynamic model development Approaches based on flux balance analysis or optimization-

based methods suppose that the intracellular metabolism is in steady state. However, this is

usually not the case with the environmental perturbations. Combining the kinetics informa-

tion from wet experiments, metabolic network model may be applied in wider range. Also,

the study of dynamic properties systematically will also promote the development of human

knowledge.
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Application of FBA-PCA on other system FBA-PCA has been proven to be effective

to extract underlying biological knowledge in our research. With many genome-scale models

constructed, it can be applied to other biological systems to study the metabolism details.
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Passoth, Volkmar and Hahn-Hägerdal, B (2000). Production of a heterologous endo-1,4-
beta-xylanase in the yeast Pichia stipitis with an O(2)-regulated promoter. Enzyme and
microbial technology, 26 (9-10), pp. 781–784. doi: 10.1016/S0141-0229(00)00171-X.

Passoth, Volkmar, Zimmermann, Martin, and Klinner, Ulrich (1996). Peculiarities of the
regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting
yeast Pichia stipitis. Applied biochemistry and biotechnology, 57-58 (1), pp. 201–212.
doi: 10.1007/BF02941701.

Passoth, Volkmar et al. (1998). Molecular cloning of alcohol dehydrogenase genes of the
yeast ¡I¿Pichia stipitis¡/I¿ and identification of the fermentative ADH. Yeast, 14 (14),
pp. 1311–1325.

Passoth, Volkmar et al. (2003). Analysis of the hypoxia-induced ADH2 promoter of the
respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation
in yeast. Yeast (Chichester, England), 20 (1), pp. 39–51. doi: 10.1002/yea.933.

135

http://dx.doi.org/10.1038/msb.2011.65
http://dx.doi.org/10.1016/j.combustflame.2009.12.002
http://dx.doi.org/10.1016/j.combustflame.2009.12.002
http://dx.doi.org/10.1007/BF00164418
http://dx.doi.org/10.1038/ng1686
http://dx.doi.org/10.1093/bioinformatics/bti1136
http://dx.doi.org/10.1038/81125
http://dx.doi.org/10.1101/gr.327702
http://dx.doi.org/10.1007/BF00253667
http://dx.doi.org/10.1016/S0141-0229(00)00171-X
http://dx.doi.org/10.1007/BF02941701
http://dx.doi.org/10.1002/yea.933


Perlack, Robert D et al. (2005). Biomass as Feedstock for a Bioenergy and Bioproducts
Industry: The Technical Feasability of a Billion-Ton Annual Supply. Tech. rep. Oak
Ridge, TN: DOE and Oak Ridge National Laboratory, p. 78. doi: 10.2172/885984.

Petschacher, Barbara and Nidetzky, Bernd (2008). Altering the coenzyme preference of xy-
lose reductase to favor utilization of NADH enhances ethanol yield from xylose in a
metabolically engineered strain of Saccharomyces cerevisiae. Microbial cell factories, 7,
p. 9. doi: 10.1186/1475-2859-7-9.

Porcelli, Anna Maria et al. (2005). pH difference across the outer mitochondrial membrane
measured with a green fluorescent protein mutant. Biochemical and biophysical research
communications, 326 (4), pp. 799–804. doi: 10.1016/j.bbrc.2004.11.105.

Preez, J C du (1994). Process parameters and environmental factors affecting d-xylose fer-
mentation by yeasts. Enzyme and Microbial Technology, 16 (11), pp. 944–956. doi:
10.1016/0141-0229(94)90003-5.

Preez, J C du, Driessel, B van, and Prior, B A (1989). Ethanol tolerance of Pichia stipitis and
Candida shehatae strains in fed-batch cultures at controlled low dissolved oxygen levels.
Applied Microbiology and Biotechnology, 30 (1), pp. 53–58. doi: 10.1007/BF00255996.

Preez, J.C. du, Bosch, M., and Prior, B.A. (1987). Temperature profiles of growth and ethanol
tolerance of the xylose-fermenting yeasts Candida shehatae and Pichia stipitis. Applied
Microbiology and Biotechnology, 25 (6), pp. 547–550. doi: 10.1007/BF00252010.

Price, Nathan D, Schellenberger, Jan, and Palsson, Bernhard O (2004). Uniform sampling of
steady-state flux spaces: means to design experiments and to interpret enzymopathies.
Biophysical journal, 87 (4), pp. 2172–2186. doi: 10.1529/biophysj.104.043000.

Ragauskas, Arthur J et al. (2006). The path forward for biofuels and biomaterials. Science
(New York, N.Y.) 311 (5760), pp. 484–489. doi: 10.1126/science.1114736.
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Tomás-Pejó, Elia et al. (2008). Comparison of SHF and SSF processes from steam-exploded
wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting
Saccharomyces cerevisiae strains. Biotechnology and bioengineering, 100 (6), pp. 1122–
1131. doi: 10.1002/bit.21849.

Toon, S T et al. (1997). Enhanced cofermentation of glucose and xylose by recombinant Sac-
charomyces yeast strains in batch and continuous operating modes. Applied biochemistry
and biotechnology, 63-65, pp. 243–255. doi: 10.1007/BF02920428.

Tran, Linh M, Rizk, Matthew L, and Liao, James C (2008). Ensemble modeling of metabolic
networks. Biophysical journal, 95 (12), pp. 5606–17. doi: 10.1529/biophysj.108.
135442.

US Congress (2007). Energy Independence and Security Act of 2007.

139

http://dx.doi.org/10.1002/bit.23119
http://dx.doi.org/10.1002/bit.23119
http://dx.doi.org/10.1128/AEM.70.4.2307-2317.2004
http://dx.doi.org/10.1128/AEM.70.4.2307-2317.2004
http://dx.doi.org/10.1016/j.ymben.2012.02.003
http://dx.doi.org/10.1126/science.1139612
http://dx.doi.org/10.1126/science.1139612
http://dx.doi.org/10.1046/j.1365-294X.2003.01973.x
http://dx.doi.org/10.1046/j.1365-294X.2003.01973.x
http://dx.doi.org/10.1007/BF02922612
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/10.1002/bit.21849
http://dx.doi.org/10.1007/BF02920428
http://dx.doi.org/10.1529/biophysj.108.135442
http://dx.doi.org/10.1529/biophysj.108.135442


Van Uden, N (1983). Effects of Ethanol on the Temperature Relations of Viability and
Growth in Yeast. Critical Reviews in Biotechnology, 1 (3), pp. 263–272. doi: 10.3109/
07388558309077982.

Vanrolleghem, Peter A et al. (1996). Validation of a metabolic network for Saccharomyces
cerevisiae using mixed substrate studies. Biotechnology progress, 12 (4), pp. 434–448.
doi: 10.1021/bp960022i.

Vargas, Felipe a et al. (2011). Expanding a dynamic flux balance model of yeast fermentation
to genome-scale. BMC systems biology, 5 (1), p. 75. doi: 10.1186/1752-0509-5-75.

Varma, Amit and Palsson, Bernhard O (1993). Metabolic capabilities of Escherichia coli:
I. synthesis of biosynthetic precursors and cofactors. Journal of theoretical biology, 165
(4), pp. 477–502. doi: 10.1006/jtbi.1993.1202.

— (1994). Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Bio/Technology,
12 (10), pp. 994–998. doi: 10.1038/nbt1094-994.

Vassilev, Stanislav V et al. (2010). An overview of the chemical composition of biomass. Fuel,
89 (5), pp. 913–933. doi: 10.1016/j.fuel.2009.10.022.

Verduyn, C et al. (1985). Properties of the NAD(P)H-dependent xylose reductase from the
xylose-fermenting yeast Pichia stipitis. The Biochemical journal, 226 (3), pp. 669–677.

Visser, J. Arjan G. M. de et al. (2003). PERSPECTIVE: EVOLUTION AND DETECTION
OF GENETIC ROBUSTNESS. Evolution, 57 (9), pp. 1959–1972. doi: 10.1111/j.
0014-3820.2003.tb00377.x.

Voet, Donald and Voet, Judith J (2010). Biochemistry. 4th Editio. Wiley, p. 1520. isbn:
978-0470570951.

Voet, Donald, Voet, Judith J, and Pratt, Charlotte W (2008). Fundamentals of Biochemistry:
Life at the Molecular Level. 3rd Editio. Wiley, p. 1240. isbn: 978-0470129302.
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Appendix A

List of reactions in the model

In this appendix, the reactions used in the model have been listed with the information of

abbreviation, name/description, formula, lower and upper boundaries (LB/UB), subsystem

and confidence scores (CS).

The detailed information is shown in Table A.2 (next page). The confidence score is

defined as in Table A.1.

Table A.1: Definition of Confidence Score

Confidence
Score

Evidence type Examples

4 Biochemical data Direct evidence for gene production function and biochemical reac-
tion: protein purification, biochemical assays, experimentally solved
protein structures and comparative gene-expression studies

3 Genetic data Direct and indirect evidence for gene function: knockout character-
ization, knock-in characterization and overexpression

2 Physiological data Indirect evidence for biochemical reactions based on physiological
data: secretion products or defined medium components serve as
evidence for transport and metabolic reactions

2 Sequence data Evidence for gene function: genome annotation and SEED annota-
tion

1 Modeling data No evidence is available, but reaction is required for modeling. The
included function is a hypothesis and needs experimental verfica-
tion. The reaction mechanism may be different from the included
reaction(s)

0 Not evaluated
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Appendix B

List of metabolites in the model

In this appendix, the reactions used in the model have been listed with the information

of abbreviation, name/description, formula, and charge. The formula listed in Table B.1 is

the charged formula.

Table B.1: List of metabolites in the model

Abbreviation Full Name Formula Charge

13bpg 1,3-Bisphospho-D-glycerate C3H4O10P2 -4

2pg 2-Phospho-D-glycerate C3H4O7P -3

3pg 3-Phospho-D-glycerate C3H4O7P -3

4abut 4-Aminobutanoate C4H9NO2 0

6pgc 6-Phospho-D-gluconate C6H10O10P -3

6pgl D-Glucono-1,5-lactone 6-phosphate C6H9O9P -2

ac Acetate C2H3O2 -1

acald Acetaldehyde C2H4O 0

accoa Acetyl coenzyme A C23H34N7O17P3S -4

adp ADP C10H12N5O10P2 -3

akg 2-Oxoglutarate (alpha-Ketoglutaric acid) C5H4O5 -2

allphn Allophanate (urea-1-carboxylate) C2H3N2O3 -1

amp AMP C10H12N5O7P -2

atp ATP C10H12N5O13P3 -4

cit Citrate C6H5O7 -3

Continued on next page. . .

156



Table B.1– Continued from previous page

Abbreviation Full Name Formula Charge

co2 Carbon dioxide CO2 0

coa Coenzyme A C21H32N7O16P3S -4

cytco Ferricytochrome c C42H52FeN8O6S2 3

cytcr Ferrocytochrome c (Reduced cytochrome c) C42H52FeN8O6S2 2

dhap Dihydroxyacetone phosphate C3H5O6P -2

e4p D-Erythrose 4-phosphate C4H7O7P -2

etoh Ethanol C2H6O 0

f6p Fructose 6-phosphate C6H11O9P -2

fad Flavin adenine dinucleotide C27H31N9O15P2 -2

fadh2 FADH2 C27H33N9O15P2 -2

fbp Fructose 1,6-bisphosphate C6H10O12P2 -4

fum Fumarate C4H2O4 -2

g6p Glucose 6-phosphate C6H11O9P -2

gap D-glyceraldehyde 3-phosphate C3H5O6P -2

glc D-Glucose C6H12O6 0

gln L-Glutamine C5H10N2O3 0

glu L-Glutamate C5H8NO4 -1

glx Glyoxylate C2HO3 -1

glyc Glycerol C3H8O3 0

glyc3p Glycerol 3-phosphate C3H7O6P -2

h Hydron H 1

h2o Water H2O 0

hco3 Bicarbonate CHO3 -1

icit Isocitrate C6H5O7 -3

mal Malate C4H4O5 -2

nad Nicotinamide adenine dinucleotide C21H26N7O14P2 -1

Continued on next page. . .
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Table B.1– Continued from previous page

Abbreviation Full Name Formula Charge

nadh Nicotinamide adenine dinucleotide C21H27N7O14P2 -2

nadp Nicotinamide adenine dinucleotide phosphate C21H25N7O17P3 -3

nadph Reduced nicotinamide adenine dinucleotide
phosphate

C21H26N7O17P3 -4

nh4 Ammoniam H4N 1

o2 Oxygen O2 0

oaa Oxaloacetate C4H2O5 -2

pep Phosphoenolpyruvate C3H2O6P -3

pi Orthophosphate HO4P -2

ppi Diphosphate HO7P2 -3

pyr Pyruvate C3H3O3 -1

q Ubiquinone-6 (Coenzyme Q) C39H58O4 0

qh2 Ubiquinol-6 C39H60O4 0

r5p Ribose 5-phosphate C5H9O8P -2

ru5p D-Ribulose 5-phosphate C5H9O8P -2

s7p Sedoheptulose 7-phosphate C7H13O10P -2

so4 Sulfate O4S -2

succ Succinate C4H4O4 -2

succoa Succinyl CoA C25H35N7O19P3S -5

sucsal Succinate semialdehyde (conjugate acid of 4-
oxobutanoate)

C4H5O3 -1

ure Urea CH4N2O 0

xu5p D-Xylulose 5-phosphate C5H9O8P -2

xyl Xylose C5H10O5 0

xylt Xylitol C5H12O5 0

xylu D-xylulose C5H10O5 0
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Appendix C

Modeling of ethanol induced leakage

To model the time response of ethanol induced leakage, we use the following simplified

pathway to describe the leakage:

A→ B (C.1)

where A and B denote the 260nm-light-absorbing compounds that are within the cell and are

in the external environment respectively. Assuming that when external ethanol concentration

is zero, leakage can be described by a first order kinetics, i.e.,

rA = −dCA
dt

= kACA (C.2)

We can derive the first-order dynamics of CB, the concentrations of 260nm-absorbing

compounds in the extracellular environment that are measured experimentally, as a function

of time. Note that for the batch experiment,

VcCA + VeCB = NT (C.3)

where NT is a constant, which accounts for the total amount of 260nm-absobing compounds

in the system; Vc is the volume of the cells; Ve is the volume of the external environment.

By rearranging the above equation, we have

CA = NT
Vc
− Ve
Vc
CB

=C0 − λCB
(C.4)
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where C0 denotes the initial concentration of 260nm-absorbing compounds in the cell, and

λ is the ratio of Ve to Vc.

By taking derivation of the above equation, we have

dCA
dt

= −λdCB
dt

(C.5)

By plugging Eqn. C.4 and Eqn. C.5 into Eqn. C.2, we have

λdCB
dt

= kA (C0 − λCB)

dCB
dt

=−kACB + kAC0
λ

(C.6)

with the initial condition of CB(0) = 0. By solving the above ODE, we have

CB(t) =
C0

λ

[
1− exp(−kAt)

]
(C.7)

To model the time delay (d) introduced by experiment operation, we modify the above

equation to

CB(t) =
C0

λ

{
1− exp

[
−kA(t+ d)

]}
(C.8)

which describe the evolution of CB as a function of time.
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Appendix D

Illustrative example for FBA-PCA

In this appendix, an illustrative example shows how the proposed FBA-PCA method

works.

D.1 Model setup

A simple network is constructed as shown in Figure D.1. The network consists of 5

metabolites and 9 reactions, which are listed in Table D.1. Among all reactions, 3 are and 6

are internal reactions. The corresponding stoichiometric matrix S is shown in Equation D.1,

in which rows correspond to the metabolites while columns represents the reactions. The

constraints we consider are: 0 ≤ re1, · · · , re9 ≤ Inf.

Aex A

B C

D

E

Dex

Eex
re1

re2
re3

re4

re5

re6

re7

re8

re9

Figure D.1: Reaction network scheme of the illustrative example
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Table D.1: Internal and exchange reactions of the illustrative example

Internal reactions Exchange reactions

re2: A → B re5: C → D re1: Aex → A

re3: B → 0.5 C re6: C → 2 E re8: D → Dex

re4: A → 2 D re7: 0.5 D → E re9: E → Eex

S =



1 −1 0 −1 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

0 0 0.5 0 −1 −1 0 0 0

0 0 0 2 1 0 −0.5 −1 0

0 0 0 0 0 2 1 0 −1


(D.1)

D.2 Case studies

Two case studies have been used here. The first one is to maximize production of

metabolite D as the objective function of FBA, the second one picks maximal production of

metabolite E as the object function. For both cases, we investigate how the flux distribution

would be affected if we increase the pickup rate of substrate A. In particular, we would like

to identify what reactions are affected most significantly if pickup rate of A increases.

D.2.1 Case Study I

Objective function: maximal flux of re8 (production of D)

In this case study, we first conduct a series of 100 in silico experiments by varying the

flux of re1 (pick up rate of A) from 2 to 4 mmol/gDCW/hr with a step size of 0.02. This set

of experiments results in a 9 × 101 data matrix, with each column represents the 9 reaction

fluxes for a given substrate pick up rate. We then perform PCA on the data matrix, which

confirms that one principal component (PC) captures 100% of the variance contained in the
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data matrix. The scaled loading of the PC is plotted in Figure D.2. With increased substrate

pickup rate (which is scaled to be 1 as the basis), only re4 and re8 are affected with a scale

of 1 and 4, which indicates that flux of re4 increases with the same amount as that of re1

while flux of re8 increase 4 times the amount of increase in flux of re1. It is worth noting

that a negative loading in this case would indicate a decreased flux. Figure D.3 visualizes

the analysis result by highlighting the fluxes that are affected by increasing flux of re1.

1 2 3 4 5 6 7 8 9
0

1

2

3

Reaction

S
ca

le
d
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o

ad
in

g

Figure D.2: Scaled PCA loading for case study I

D.2.2 Case Study II

Objective function: maximal flux of re9 (production of E)

In this case study, similar steps as in case study I were carried out, with the only

difference in the objective function of FBA. In this case study, the objective function is to

Aex A

B C

D

E

Dex

Eex
re1

re2
re3

re4

re5

re6

re7

re8

re9

Figure D.3: Visualization of the analysis results for Case I. The reactions that are affected
by increasing flux of re1 are highlighted in blue. The line thickness is proportional to its
loading.
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maximize the production of E. The PC loading and network visualization are plotted in

Figure D.4 and Figure D.5.
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Figure D.4: Scaled PCA loading for case study II

D.3 Discussion

Both case studies show that even though the “hypothetical cell” has an alternative route

to produce D and E, i.e., the one with intermediate metabolite C, it does not choose the

alternative route because the route does not maximize the objective function. This is due

to the difference in stoichiometric coefficients (A → 0.5 C → 0.5 D while A → 2 D for the

chosen route). If the alternative route were chosen, less product would be produced.

This illustrative example shows that the proposed method can systematically identify

the reactions that would be affected by the introduced perturbation (e.g., increased substrate

Aex A

B C

D

E

Dex

Eex
re1

re2
re3

re4

re5

re6

re7

re8

re9

Figure D.5: Visualization of the analysis results for Case II. The reactions that are affected
by increasing flux of re1 are highlighted in blue. The line thickness is proportional to its
loading.
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pickup rate in this case) without going through the detailed examination of the network

stoichiometry. Such examination is nontrivial even for relatively small network models, such

as central carbon metabolic networks, and quickly becomes infeasible when the size of the

network increases. But with the proposed method, we can easily examine how a perturbation

would affect the whole network and identify the key reactions that are affected the most by

the perturbation.
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