
GridPick: A High Density Puzzle Based Order Picking System
with Decentralized Control

by

Onur Uludağ

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 3, 2014

Keywords: puzzle based storage systems, grid based intralogistics, decentralized control,
semi automated order picking, message passing algorithms, flexible and modular logistics
solutions, multi agent modeling with petri nets, verification of structural properties with

petri nets, deadlock free analysis.

Copyright 2014 by Onur Uludağ

Approved by

Kevin R. Gue, Associate Professor of Industrial and Systems Engineering,
Auburn University

Jeffrey S. Smith, Professor of Industrial and Systems Engineering, Auburn University
Kai Furmans, Professor of Institute for Conveying Technology and Logistics,

Karlsruhe Institute of Technology

Abstract

We develop a novel semi-automated order picking system called GridPick that enables

high levels of throughput, space usage, and flexibility. The system uses unit sized conveyor

modules in a grid architecture to bring requested items to and away from the pick face

dynamically and as needed to fulfill orders to the system. GridPick uses a message passing

and negotiation algorithm with decentralized control rules, which is a relatively unexplored

area in conveyor based material handling systems. In a second part of the dissertation, we

modify the GridPick system to allow picking from two sides of the grid. This enhancement

allows higher throughput and an improved use of space when compared with single sided,

traditional systems. To investigate structural properties of the system, we present a Petri

Nets model. We use the model to verify deadlock conditions for the single-sided version of

GridPick. We show that the system is deadlock free for up to a 4×4 grid and conjecture

that the general case is also true.

ii

Acknowledgments

This research study is supported by the National Science Foundation (CMMI 0926346)

under the supervision of principal investigator, Dr. Kevin R. Gue (Grant number: 200267-

130501-2000). I cordially appreciate the support of the National Science Foundation and Dr.

Kevin Gue for the initiation of this research. I also appreciate the feedback on the research

from committee members, Dr. Kai Furmans and Dr. Jeffrey S. Smith.

I would like to thank my wife, Ilknur Uludag for her great support and love. She

understood my difficult situations and provided encouragement. We have received another

valuable gift, Kerem Alper Uludag, along the knotted way of PhD.

Also, without the support and love of my family, it would be very difficult for me to make

it through school. Knowing their support and good wishes even from a long distance, my

parents Leyla & Ibrahim Uludag and my sister Incinur Uludag helped me to build necessary

courage and patience.

I also want to express my appreciation to my friends for the spiritual support and

journey in Auburn. There are many of them to name, but some of them are Yusuf Celikbag,

Said Cakir, Yunus Sisman, Emin Ciftci, Vedat Cetinkaya. Also, they were there to help me

when I am in need of anything in Auburn. I am grateful for their support and energy to my

friends in Turkey: Emrah Harmanbasi, Yasin Yazar, Omer Ergul, Fatih Gulay.

Finally, I want to dedicate the value and appreciation to the true owner of this disser-

tation and I would like to acknowledge the real source of information. “They replied: God,

You are limitless and flawless in your power and sovereignty. We do not have knowledge

other than you taught us. You are the alone art all-knowing and truly wise” (Quran, Bakara

(2):32).

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . xvi

1 Introduction . 1

1.1 Motivation . 2

1.2 Background on Order Picking Systems . 3

1.3 Background on Grid Based Storage Systems 5

1.4 Research Objectives . 6

1.5 Organization of the Dissertation . 7

2 Literature Review . 9

2.1 Order Picking Systems . 9

2.1.1 Structural Decisions and Design Questions 10

2.1.2 Picking Methods . 13

2.2 Decentralized Control and Multi Agent Systems 24

2.3 High Density Puzzle Based Storage Systems 27

2.3.1 Unit Sized Transportation Modules 29

3 The GridPick System . 32

3.1 Explanation of the Control Algorithm . 35

3.1.1 System Overview . 35

3.1.2 Symbolism and Representation . 37

3.1.3 Negotiation for the Assignment of the Replenishing Items 42

3.1.4 Assignment of the Replenishing Items for the Convoy Movement . . . 47

iv

3.1.5 Negotiation Process for Movement Decisions 52

3.1.6 North-South Negotiation for Vertical Movement 53

3.2 Considerations on the Application of GridPick 58

3.2.1 Pick to Light Systems . 59

3.2.2 Pick by Voice Systems . 60

3.3 Model Representation . 61

3.3.1 Message Passing . 63

3.3.2 Determining Buffer Lengths for Cyclic Events 65

3.4 Statistical Analysis for Steady-State Parameters 68

3.4.1 Determining the Warmup Period . 68

3.4.2 Determining the Number of Replications 70

3.4.3 Paired t-Tests for the Configuration Comparisons 71

3.5 Performance Analysis . 72

3.5.1 Aspect Ratio Analysis . 84

3.5.2 Variable k Analysis . 92

3.5.3 Analysis with Multiple Copy Configurations 95

3.5.4 Comparison with a Flow Rack Configuration 102

3.5.5 Conclusions . 104

4 A Modified Version of the GridPick System: Picking From Two Sides 106

4.1 System Description . 108

4.2 Solution Approach . 109

4.2.1 Discrete Events and Balance Rules for the Operations 110

4.3 Determination of Buffer Lengths for the Series of Events 126

4.4 Statistical Analysis for Steady-State Parameters 127

4.4.1 Determining the Warmup Period . 127

4.4.2 Determining the Number of Replications 128

4.5 Performance Analysis . 129

v

4.5.1 Performance of the Two Sided Model for Several Parameters 129

4.5.2 Aspect Ratio Analysis . 139

4.5.3 Distribution of Empty Cells . 145

4.5.4 Performance Comparison of the Two Workers 153

4.5.5 Performance Comparison with the One Sided Model 156

4.6 Conclusions . 162

5 A Petri Nets Model for Grid Based Storage Systems 167

5.1 Discrete Event Systems Modeling . 168

5.1.1 Petri Nets Overview . 168

5.2 Fundamental Concepts . 171

5.3 Colored Petri Nets . 173

5.4 Modeling of GridStore System . 175

5.5 Petri Nets Modeling of GridPick . 183

5.5.1 Contributions of the Petri Nets Model and Deadlock Conditions . . . 191

6 Conclusions and Contributions . 194

A Appendix . 206

A.1 Statistical Data and Confidence Intervals for the Analysis 206

A.2 Paired t Tests . 206

vi

List of Figures

1.1 The GridStore System . 6

2.1 Classification of Order Picking Systems According to the Automation Level

[De Koster, 2004] . 13

2.2 Classification of Order Picking Systems with the Multiple Criteria [Dallari et al.,

2009] . 14

2.3 Bin shelving and Gravity Flow Rack [NAVSUP, 1985] 15

2.4 Automated Storage and Retrieval System with Three Cranes [NAVSUP, 1985] 18

2.5 A Carousel with Rotating Shelves [NAVSUP, 1985] 19

2.6 Kiva Robot (on the left, from http : //www.kivasystems.com) and Autostore (on

the right, from http : //www.mwpvl.com/html/swisslog autostore review.html) 20

2.7 A-Frame System, a Worker Replenishes Manually [Caputo and Pelagagge, 2006]. 21

2.8 Flow in a Distribution Center with a Forward Reserve Inventory System [Bartholdi

and Hackman, 2011] . 22

2.9 Abstract Architecture of the Agent [Wooldridge, 2002] 25

2.10 Architecture of the State Maintaining Agent [Wooldridge, 2002] 25

2.11 Different Types of Neighborhood in the Cellular Automaton [Krühn et al., 2010] 26

vii

2.12 Rush Hour Board Game . 28

2.13 FlexConveyor . 30

2.14 Swiveling Wheel Modules [Overmeyer et al., 2010] 30

3.1 Physical Devices for the Proposed Model: the Unit Sized Conveyor and Storage

Container . 32

3.2 The Grid of Modules with Four Neighbors . 33

3.3 Outline of GridPick . 33

3.4 GridPick: an Order Picking System for Carton Picking From Pallets or Piece

Picking From Cartons . 34

3.5 Example steps for the GridPick System . 36

3.6 Representation of the States and the Messages for the Negotiation Algorithm . 39

3.7 Example steps for GridPick . 56

3.8 A Representation of the Pick to Light Systems 59

3.9 Pick by Voice Systems . 60

3.10 GridPick with Several Levels . 61

3.11 Series of Synchronous Events in Each Time Step (Source: Anylogic help files). . 62

3.12 Each event can take a different process time depending on the length of negotia-

tion (Source: Anylogic help files). 63

3.13 Cyclical Events in Each Time Step . 64

viii

3.14 Representation of events executing cyclically. 66

3.15 Initial Transient for Throughput . 69

3.16 Initial Transient for Waiting Time . 69

3.17 Initial Transient for Walking Time . 70

3.18 Initial Transient for Flow Time . 70

3.19 Throughput Plot for Different Expected Order Size Levels 73

3.20 Throughput changing with the order size and empty cells per row. 74

3.21 Walking Time per Pick for Different Expected Order Size Levels 76

3.22 Walking time for various expected order sizes and empty cells per row. 77

3.23 Average Retrieval Time for Different Expected Order Size Levels 79

3.24 Flow time for various expected order sizes and empty cells per row. 80

3.25 Waiting Time per Pick for Different Expected Order Size Levels 82

3.26 Waiting time for various expected order sizes and empty cells per row. 83

3.27 Throughput Plot . 85

3.28 Throughput for different aspect ratios . 86

3.29 Average Retrieval Time Plot . 89

3.30 Flow time for different aspect ratios . 89

3.31 Waiting Time for Aspect Ratio Configurations 90

ix

3.32 Waiting time for different aspect ratios . 90

3.33 Walking Time for Aspect Ratio Configurations 91

3.34 Walking time for different aspect ratios . 91

3.35 Throughput Plot . 92

3.36 Throughput for variable k configurations . 93

3.37 Waiting Time for Variable k Configurations . 95

3.38 Waiting time for Variable k Configurations . 96

3.39 Walking time for Variable k Configurations . 96

3.40 Average Retrieval Time Plot . 97

3.41 Flow time for variable k configurations . 97

3.42 Throughput Plot for Multi Copies of SKUs . 98

3.43 Throughput for multi copies . 98

3.44 Average Retrieval Time Plot . 100

3.45 Flow time for multi copies . 101

3.46 Waiting Time for Multi Copy Configurations . 101

3.47 Waiting time for multi copy configurations . 102

3.48 Walking time for multi copy configurations . 102

3.49 Visual Comparison of GridPick and the flow rack 103

x

3.50 Productivity Increase in GridPick Compared to a Flow Rack 103

3.51 Comparison of Walking Times for the Flow Rack and the GridPick 104

4.1 Abstract Representation of the Two Sided Picking Model 106

4.2 Visualization of the Two Sided Picking Model 107

4.3 Representation of the States and Messages for the Negotiation Algorithm 109

4.4 Initial Transient for Throughput . 127

4.5 Initial Transient for Waiting Time . 127

4.6 Initial Transient for Walking Time . 128

4.7 Initial Transient for Flow Time . 128

4.8 Throughput Plot for Different Expected Order Size Levels 130

4.9 Throughput Plot for Different Expected Order Size Levels 130

4.10 Walking Time per Pick for Different Expected Order Size Levels 133

4.11 Walking Time per Pick for Different Expected Order Size Levels 133

4.12 Average Retrieval Time for Different Expected Order Size Levels 135

4.13 Average Retrieval Time for Different Expected Order Size Levels 135

4.14 Waiting Time per Pick for Different Expected Order Size Levels 138

4.15 Waiting Time per Pick for Different Expected Order Size Levels 138

4.16 Throughput Plot . 140

xi

4.17 Throughput Plot for Different Aspect Ratios . 141

4.18 Average Retrieval Time Plot . 143

4.19 Average Retrieval Time for Different Aspect Ratios 144

4.20 Waiting Time for Aspect Ratio Configurations 144

4.21 Waiting Time per Pick for Different Aspect Ratios 145

4.22 Walking Time for Aspect Ratio Configurations 146

4.23 Walking Time per Pick for Different Aspect Ratios 146

4.24 Different Ways to Allocate Empty Cells in the Two Sided Picking Model 147

4.25 Waiting Time for Variable k Configurations of the Two Sided Model 148

4.26 Waiting Time per Pick for Variable k Configurations 148

4.27 Throughput Plot . 149

4.28 Throughput Plot for Variable k Configurations 149

4.29 % Difference on Throughput . 151

4.30 Average Retrieval Time Plot . 152

4.31 Average Retrieval Time for Variable k Configurations 152

4.32 Walking Time per Pick for Variable k Configurations 153

4.33 Throughput Plot . 154

4.34 Throughput Plot for Two Workers . 154

xii

4.35 Average Retrieval Time Plot . 157

4.36 Average Retrieval Time for Two Workers . 157

4.37 Waiting Time for Aspect Ratio Configurations 158

4.38 Waiting Time per Pick for Two Workers . 158

4.39 Walking Time for Two Workers . 159

4.40 Walking Time per Pick for Two Workers . 159

4.41 Throughput Plot . 160

4.42 Throughput Plot for Two Models . 160

4.43 Average Retrieval Time Plot . 162

4.44 Average Retrieval Time for Two Models . 163

4.45 Waiting Time for One Sided vs. Two Sided . 163

4.46 Waiting Time per Pick for Two Models . 164

4.47 Walking Time for One Sided vs. Two sided . 164

4.48 Walking Time per Pick for Two Models . 165

4.49 Percent Difference on Throughput for Two Sided vs. One Sided GridPick 165

4.50 Percent Difference on Throughput for 2 × Onesided vs. Twosided GridPick . . 166

5.1 Marking before transition firing [Murata, 1989] 169

5.2 Marking after transition firing [Murata, 1989] 169

xiii

5.3 Graphical Representation of an Example Petri Net [Zurawski and Zhou, 1994] . 173

5.4 Vertical Convoy Movement in Column 0 . 178

5.5 Vertical Movement in Column 1 . 179

5.6 Vertical Convoy Movement in Column 2 . 180

5.7 Horizontal Movement in Row 1 . 181

5.8 Horizontal Movement in Row 2 . 181

5.9 Transition from Replenishing to Occupied . 182

5.10 Transition for the Replenishment From the Top Row 182

5.11 Transition for the Release of the Request . 183

5.12 Output of LoLA Software Package for a 3× 3 GridStore 184

5.13 Example of Balance Rule - 1 . 186

5.14 Example of Balance Rule - 2 . 186

5.15 Example of the Convoy Movement Encouragement 187

5.16 Example of the Vertical Movement for the Requested Items 187

5.17 Example of the Vertical Movement for the Replenishing Items 188

5.18 Example of the Horizontal Movement for the Requested Items 188

5.19 Example of the Horizontal Movement for the Replenishing Items 189

5.20 Transition Example from Requested to Being Picked Item 189

xiv

5.21 Transition Example from Being Picked to Occupied item 189

5.22 Example of the transition from Replenishing to Occupied Item 190

5.23 Example of the transition from Occupied to Replenishing Item 190

5.24 Example of the transition from Occupied to Requested Item 190

5.25 Example of the transition for the New Release of the Requested Items 191

xv

List of Tables

3.1 Possible states of the conveyor module . 38

3.2 Additional Negotiation Conditions . 39

3.3 Rule Examples . 41

3.4 First Ten Steps of Balance Rule 1 with the In advance Movement 43

3.5 Last Three Steps of Balance Rule 1 with the In advance Movement 44

3.6 Communication Rules for Balance Rule 1 . 45

3.7 Steps of Balance Rule 2 with the Latter Movement 46

3.8 Communication Rules for Balance Rule 2 . 47

3.9 Steps of the First Event of the Convoy Movement 48

3.10 Communication Rules for the First Event of the Convoy Movement 48

3.11 Steps of the Second Event of the Convoy Movement 49

3.12 Communication Rules for the Second Event of the Tandem Movement 50

3.13 Steps of the Third Event of the Convoy Movement 51

3.14 Communication Rules for the Third Event of the Convoy Movement 52

3.15 Negotiation conditions for the movement decisions 53

3.16 Example 1 for North-South Negotiation . 54

3.17 Communication Rules for North-South Negotiation 55

3.18 Example for East-West Negotiation . 57

3.19 Communication Rules for East-West Negotiation 58

3.20 CIs for the Negotiations (Units are in milliseconds) 67

xvi

3.21 CIs for the Four Performance Measures . 71

3.22 p values for throughput with various expected order sizes and empty cells per row 75

3.23 t values for throughput with various expected order sizes and empty cells per row 75

3.24 CIs for throughput with various expected order sizes and empty cells per row . 76

3.25 p values of walking time with various expected order sizes and empty cells per row. 78

3.26 T values of walking time with various expected order sizes and empty cells per
row. 78

3.27 CIs of walking time with various expected order sizes and empty cells per row. . 79

3.28 p values for flow time with various expected order sizes and empty cells per row 80

3.29 t values for flow time with various expected order sizes and empty cells per row 81

3.30 Confidence Intervals for flow time with various expected order sizes and empty
cells per row . 81

3.31 p values for waiting time with various expected order sizes and empty cells per row 83

3.32 t values for waiting time with various expected order sizes and empty cells per row 84

3.33 CIs for waiting time with various expected order sizes and empty cells per row . 84

3.34 Configurations with Different Aspect Ratio Values 85

3.35 p values for throughput with various aspect ratios 86

3.36 t values for throughput with various aspect ratios 87

3.37 CIs for throughput with various aspect ratios 87

3.38 CIs for throughput with various aspect ratios 87

3.39 CIs for throughput with various aspect ratios 88

3.40 Distribution of Empty Modules for 3 Configurations 92

3.41 p values for throughput with variable k configurations 93

3.42 t values for throughput with variable k configurations 94

3.43 CIs for throughput with variable k configurations 94

3.44 p values for throughput with mull copy configurations 99

xvii

3.45 t values for throughput with mull copy configurations 99

3.46 CIs for throughput with mull copy configurations 100

4.1 Additional Negotiation Conditions . 111

4.2 Rule Examples . 112

4.3 Steps of Balance Rule-1 for Requested-1 in Two Sided GridPick 113

4.4 Communication Rules of Balance Rule-1 for Requested-1 114

4.5 Steps of Balance Rule-1 for Requested-2 in Two Sided GridPick 116

4.6 Communication Rules of Balance Rule-1 for Requested-2 117

4.7 Steps of Balance Rule-2 for Requested-1 in Two Sided GridPick 118

4.8 Communication Rules of Balance Rule-2 for Requested-1 119

4.9 Steps of Balance Rule-3 for Requested-1 in Two Sided GridPick 120

4.10 Communication Rules of Balance Rule-3 for Requested-1 121

4.11 Steps of Balance Rule-3 for Requested-2 in Two Sided GridPick 122

4.12 Communication Rules of Balance Rule-3 for Requested-2 123

4.13 Steps of Balance Rule-4 for Requested-2 in Two Sided GridPick 124

4.14 Communication Rules of Balance Rule-4 for Requested-2 125

4.15 Steps of Balance Rule-5 for Requested-2 in Two Sided GridPick 125

4.16 Communication Rules of Balance Rule-5 for Requested-2 126

4.17 Length of the Message Passing for Negotiation of Events 126

4.18 Confidence Intervals and Statistical Data for 30 Replications 129

4.19 p values of Throughput with Different Expected Order Size Levels 131

4.20 t values of Throughput with Different Expected Order Size Levels 131

4.21 CIs of Throughput with Different Expected Order Size Levels 132

4.22 p values of Walking Time with Different Expected Order Size Levels 132

4.23 t values of Walking Time with Different Expected Order Size Levels 134

xviii

4.24 CIs of Walking Time with Different Expected Order Size Levels 134

4.25 p values of Flow Time with Different Expected Order Size Levels 136

4.26 t values of Flow Time with Different Expected Order Size Levels 136

4.27 CIs of Flow Time with Different Expected Order Size Levels 137

4.28 p values of Waiting Time with Different Expected Order Size Levels 137

4.29 t values of Waiting Time with Different Expected Order Size Levels 139

4.30 CIs of Waiting Time with Different Expected Order Size Levels 139

4.31 Configurations with Different Aspect Ratio Values 140

4.32 p values for throughput with various aspect ratios 141

4.33 t values for throughput with various aspect ratios 142

4.34 CIs for throughput with various aspect ratios 142

4.35 CIs for throughput with various aspect ratios 142

4.36 CIs for throughput with various aspect ratios 143

4.37 Distribution of Empty Modules for 3 Configurations 147

4.38 p values for Throughput with Variable k Configurations 150

4.39 t values for Throughput with Variable k Configurations 150

4.40 CIs for Throughput with Variable k Configurations 151

4.41 p values for Throughput of Two Workers . 155

4.42 t values for Throughput of Two Workers . 155

4.43 CIs for Throughput of Two Workers . 156

4.44 p values for Throughput of Two Models . 161

4.45 t values for Throughput of Two Models . 161

4.46 CIs for Throughput of Two Models . 162

5.1 Some Interpretations of Places and Transitions [Murata, 1989] 172

5.2 Variables for the Arc Inscriptions . 177

xix

5.3 Results of the Petri Nets Models . 192

A.1 Statistical Data for the Throughput of One Sided GridPick 207

A.2 Statistical Data for the Aspect Ratio Configurations of One Sided GridPick . . 208

A.3 Statistical Data for the Variable k Configurations of One Sided GridPick 208

A.4 Statistical Data for the Multi Copy Configurations of One Sided GridPick . . . 281

A.5 Statistical Data for the Throughput of Two Sided GridPick 282

A.6 Statistical Data for the Aspect Ratio Configurations of Two Sided GridPick . . 283

A.7 Statistical Data for the Variable k Configurations of Two Sided GridPick 283

A.8 Statistical Data for the Two Workers Comparison of Two Sided GridPick 284

xx

Chapter 1

Introduction

In a dynamic economy, supply chains with shorter lead times and lower inventory have a

significant advantage because they respond to customer needs much more quickly. With the

recent advancements such as the internet and globalization, companies should provide very

short delivery times and a high variety of products. With the help of e-commerce, companies

often experience high growth rates, which leads to their pursuit of more developed systems.

In conjunction with the internet, global competition has led to new trends in distri-

bution operations and logistics. Efficient management of the material flow is the primary

goal of logistics systems. A logistics system consists of transportation operations, material

flow management, and physical distribution systems. While transportation operations and

material flow management take care of the movement for the manufacturing plants, the

distribution system determines the customer service dimension of the problem.

Distribution operations receive goods from suppliers and fulfill customer orders. These

operations are also referred to as intralogistics, which is the science of moving physical goods

within distribution facilities. Short product flow times and decreasing batch sizes require

sophisticated operations in intralogistics. High growth rates and advanced operations require

relocation of facilities or capacity expansion of current facilities, which can be a big issue.

Companies strive to have flexible material handling systems for their intralogistics operations.

A key component for flexible and responsive supply chains is the distribution center. A

distribution center’s operations are receiving, labeling, picking, replenishing, packing, sorta-

tion, sequencing, controlling inventory, and shipping the customer orders. Order picking is

one of the major functions in a distribution center. Order picking is typically the most costly

1

operation in the distribution center [De Koster et al., 2007]. It is also crucial determinant of

customer service.

1.1 Motivation

In order picking operations, companies adopt automated material handling systems

for a number of reasons: to decrease labor costs, to reach high performance goals, and to

deliver customer orders on time. The task of an automated storage system is to provide

short retrieval times of goods while having high utilization of the worker, and using as little

space as possible. While achieving these goals, automated systems bring other drawbacks.

Automated systems are typically expensive and are not as flexible as manual systems. With a

manual system, we can increase the throughput capacity by simply increasing the number of

workers. When there is a need for additional capacity in an automated system, an overhaul of

the entire system is required in most cases. Furthermore, automated systems should handle

large amounts of goods and process a number of operations at the same time.

For sophisticated and large volume operations, automated material handling systems

embody several levels of mechanical, electrical, and data systems. Even a small change

requires many adjustments, which are costly and time consuming. Companies usually post-

pone these small changes and tuneups, which leads to poor performance. For this reason,

adaptability to different needs while sustaining high performance requirements is an impor-

tant capability. Companies prefer automated material handling systems that have flexible

and adaptive features.

Design of an automated order picking system can be quite complex considering design

goals such as space, costs, and automation level. Traditional design goals are maximization

of throughput, minimization of storage space, and minimization of response time. Recently

other factors have emerged: companies also desire a flexible and adaptable system that can

respond to changes. But, these features require other capabilities.

2

To have a flexible and adaptive order picking system, system components should be

modular, and should be able to integrate with each other. Modularity can provide a recon-

figurable system, which enables easy combination and replacement of system components.

Furthermore, modular system components can enable a scalable system. When there is a

need for additional capacity or a requirement for less capacity, modules can be added or

removed from the system. In case of a breakdown, modules should be changed without

adjustment of the whole system. Furmans et al. [2010] introduced design principles for plug

and work material handling systems. We can obtain highly adaptive and flexible automated

material handling systems with these features.

Consequently, one might wonder how to obtain a more flexible automated order picking

system by handling complications such as scalability, modularity, reconfigurability, and space

constraints. A semi-automated order picking system may handle known restrictions of man-

ual and automated order picking operations. Centralized control is also a drawback because

it is not able to enable flexibility and modularity properties. A centralized control system

includes a central command unit for the decision making process. On the other hand, in

decentralized control, each module has its controller unit, which enables independent oper-

ability of system components. Independent ability of communication and decision making

among the system components provides a decentralized control system instead of a central

controller, which enables adaptability and flexibility features.

This research is motivated by the lack of flexible automated order picking systems in

the literature and in practice. We introduce a novel order picking design with the considered

adaptability and flexibility features. We also analyze specific properties of the system through

simulation and computational models.

1.2 Background on Order Picking Systems

Once an order is received for a product in the distribution center, it should be picked

and prepared for shipping to the customer. Order picking includes traveling to the item,

3

searching for the item, reaching and extracting the item, and bringing it to the shipping

point. There can be additional activities such as labeling, documenting, and sorting the

items. The designer of the order picking system should consider several design parameters,

strategies, and policies.

Most warehouses are divided into two major areas: reserve and forward areas. In the

reserve area, goods are stored in large quantities and sizes such as pallets. Forward areas

are arranged for order picking, and they include frequently requested stock keeping units

(SKUs) for fast picking. The main objective behind an order picking system is to increase

SKU density, which means there are many SKUs with small quantities. Therefore, the worker

can reach a large number of different products with less travel. Generally, forward areas are

replenished from the reserve area. There can be multiple levels of forward areas that provide

different order picking forms and replenish each other [Jernigan, 2004]. Order picking can be

in the form of piece picking, carton picking, or pallet picking. Piece picking is the retrieval

of small numbers of the product, and workers generally consolidate the products to a tote.

Carton picking is picking with cases and consolidation is to a truck or pallet. Pallet picking

is sending the goods directly with large pallets. Replenishment to a forward area is mostly

infrequent and may happen in the facility’s break periods.

The automation level of the order picking can also differ. There can be a manual order

picking system in which workers handle all the material movement. In a semi automated

system, a robotic system can handle the travel of goods to the picker. Some order pick-

ing systems employ fully automated approaches that handle both the travel and picking

processes.

Minimization of the space usage is also an objective of the order picking system design.

Increasing the number of storage levels, having deeper storage locations, and narrowing the

aisles are a couple of ways to increase the storage density [Gue, 2006]. However, they all

have additional disadvantages such as requirement for specialized vehicles, increased safety

issues, and decreased performance.

4

When there is a necessity to move other items to reach a requested item, we can speak

of a “high density” order picking system [Gue, 2006]. Puzzle based storage systems are an

alternative to the aisle based designs, which form the aisles as needed to retrieve the re-

quested items [Gue and Kang, 2001]. Puzzle based storage systems provide a high density

configuration with the movement of only one item at a time [Gue et al., 2013]. Grid based

storage systems consider multiple items moving at the same time in a high density configu-

ration. Simultaneous movement of storage units requires a design methodology of complex

control algorithms.

1.3 Background on Grid Based Storage Systems

We introduce a high density order picking system called GridPick. It relies on a grid

based design methodology introduced with GridStore [Gue and Furmans, 2011, Gue et al.,

2013]. This is a new field of storage and retrieval system that can be applied in several

different intralogistics operations. GridStore has defined the main state transition scheme

for the handling of the movements. GridPick has a decentralized control algorithm with

a message passing protocol in which unit sized conveyors communicate with their local

neighborhood to decide on the cooperative movements.

GridPick is based on the decentralized control algorithm of GridStore (see Figure 1.1),

in which unit sized conveyor modules form a rectangular grid [Gue and Furmans, 2011,

Gue et al., 2013]. Each conveyor module has its own controller, sensors, and mechanical

controls. They can communicate with each other and recognize the totes or cartons via

RFID or other means of communication. Conveyor modules move the storage units without

a centralized command. In this system, conveyor modules communicate only with their four

neighbors (north, south, east and west neighbors). The task is to retrieve requested items

from the takeaway conveyor at the bottom of the grid. Restocking of the items is from the

replenishment conveyor at the top of the grid. Requests come from an external source to

5

the items via RFID or other means of communication. Conveyor modules realize that they

carry a requested item, which needs to be moved down and reach the takeaway conveyor.

Figure 1.1: The GridStore System

In Figure 1.1, black items are requested and required to reach the bottom takeaway

conveyor. Other items are either stored items moving east or west to allow the passage of

requested items or replenishing items that are restocked from the top replenishment conveyor.

A decentralized control algorithm is adopted in GridStore, which enables modularity,

reconfigurability, and scalability. In each time step, conveyor modules assess their own state,

negotiate with their neighbors, and do the conveying. This state transition scheme iterates

in each time unit, and concludes with the required decisions to move requested items to the

takeaway conveyor.

1.4 Research Objectives

In an order picking system design problem, the main objective is to have a high SKU

density, and consequently a high pick density. This will decrease the amount of time spent

for traveling and increase the picks per unit time. Storage density is also preferred to

6

be high in order to minimize space related costs such as electricity, air conditioning, and

land costs. It is also desired to maximize the worker utilization and eliminate activities

unrelated to the picking process. From a customer satisfaction point of view, we want to

have a responsive system that delivers orders on time. With recent trends, flexibility is an

important capability that can enable a responsive system. Flexibility is in conjunction with

adaptability to changing needs.

These objectives are usually incompatible and not easy to achieve at the same time. For

instance, we can store items in a very high density configuration, but this may decrease the

throughput of the system. We can try to have a very responsive system and keep workers

ready for orders, but this can decrease worker utilization. Furthermore, a system can have

very good performance in current conditions, but it may not be able to respond to changes.

For instance, a failure to expand capacity can result in late deliveries or unmet demand.

The main objective of this research is to establish a flexible and efficient order picking

system by taking advantage of decentralized control. We target a high density and high

throughput order picking system by having picking operations with short travel and high

pick density.

1.5 Organization of the Dissertation

In chapter 2, we provide a literature review for related topics. We discuss conventional

order picking systems such as flow rack and bin shelving. We explain design principles and

sections of a distribution center such as forward pick areas and bulk areas. We discuss

performance measures in use for order picking systems and point out a few other goods-

to-man automated systems. We describe decentralized control and agent based modeling

concepts and mention applications in logistics and manufacturing systems.

Chapter 3 introduces the GridPick system and explains the message passing algorithm.

It covers performance analysis and presents a comparison with a traditional order picking

system. We discuss key insights such as keeping empty cells in each row. We also determine

7

how system parameters such as aspect ratio, empty cells per row, expected order size, and

distribution of empty cells affect system performance.

Chapter 4 describes a major enhancement of the GridPick system to retrieve requested

items from two sides of the grid. We discuss the additional balance rules that are introduced

with a two sided model. We have also analyzed the performance of the two sided model

compared to the initial GridPick model for a number of parameters such as expected order

size, empty cells per row, and aspect ratio.

Chapter 5 presents the modeling and structural analysis of GridPick with Petri nets.

This chapter includes a review of Petri nets theory, which is a discrete event system modeling

tool that is able to model concurrent and parallel systems. The Petri nets model does not

describe the message passing scheme explicitly, but it exactly mimics the movement patterns

of the algorithm. Therefore, we are able to determine the properties of the system such as

deadlocks and boundedness. Chapter 6 summarizes the research study and outlines the

contributions.

8

Chapter 2

Literature Review

To be familiar with the concepts and to get the understanding of introduced models

presented in this work, we discuss previous research and studies in related fields. We also give

explanations of necessary terms, classifications and topics. Section 2.1 describes warehouse

design problems and order picking operations. Section 2.2 presents decentralized control

concepts. Section 2.3 introduces discrete event and concurrent system modeling tools.

2.1 Order Picking Systems

A logistics system integrates material flow, management and physical devices into an

overall delivery system [Tompkins et al., 2003]. Therefore, an efficient logistics structure

should effectively manage and perform the flow of goods and services from manufacturers

to customers. For the companies, warehouses play a major role for the storage and distri-

bution of goods and services. According to De Koster et al. [2007] if the facility mainly

performs storage and buffering operations, warehouse is the more appropriate term. When

the distribution of goods is the main concern, distribution center is the correct term. We

use the terms interchangeably because the storage and distribution activities are both vital

and integrated to each other.

There are several terms in the warehousing literature. A stock keeping unit (SKU) is a

number or code that identifies each product. So, each item type in a warehouse has a unique

number that cannot be mixed with another product type. When an order is received, it

generally includes a number of products as a list, which is called an order line [Bartholdi

and Hackman, 2011]. Each request in this list provides information such as required quantity,

product type, and SKU number. The Warehouse Management System (WMS) reorganizes

9

the order line and converts it to a pick line according to the operations and the configurations

of the warehouse. WMS is for the organization and control of warehouse operations, and it

includes the needed information such as product availability, product location, and quantity.

The pick line is the complete guide for the picker such as where to go, what to pick, in

which quantity, etc. [Bartholdi and Hackman, 2011]. The surface of the storage areas in

which SKUs are available is called a pick face. Ideally, warehouses want to have more SKUs

available per unit of area in the pick face, which will decrease required travel and increase

the pick density. So, the pick density is the number of picks made from per unit of area; we

want it to be high for an efficient order picking operation [Bartholdi and Hackman, 2011].

2.1.1 Structural Decisions and Design Questions

Designing a warehouse is a difficult task that involves to determine a number of parame-

ters. With the design and control of the warehouse, we should tackle all design problems and

handle the operations by using as few resources as possible. There are several analytical and

simulation based approaches for the warehouse design problems [Ashayeri and Gelders, 1985],

[Rouwenhorst et al., 2000] and [Baker and Canessa, 2009]. Van den Berg [1999a] reviewed

planning and control related decisions in the warehouse such as inventory management, lo-

cation assignment, order batching and routing. Gray et al. [1992] introduced models and

applications for warehouse design and planning problems such as technology selection, item

location, zoning, picker routing, pick list generation, and order batching. Kostrzewski [2012]

described a warehouse designing method in a procedure for the optimization of functional

and spatial areas with a software.

Order picking is a major activity in distribution centers. The design and selection of

appropriate order picking system is vital for operations. Brynzer et al. [1994] introduced

a methodology called zero based analysis to compare order picking systems that divides

resource consumption into three parts: necessary work (reaching, grabbing and transferring

items), time losses (traveling, waiting, etc.), and administrative tasks (picking preparation,

10

quality check, etc.). By dividing activities that are common in all order picking systems,

different order picking system designs can be compared. Yoon and Sharp [1996] introduced a

structured procedure for order picking system design and control by considering relationships

between functional areas (retrieval, picking, sorting, etc.). Dallari et al. [2009] proposed an

order picking system classification and developed a design methodology based on Yoon and

Sharp [1996]. The methodology uses data from companies such as picking rates, outflow,

order size and response time. After that, they specify the operating strategies, storage

capacities and equipment requirements with analytical expressions. They compared the

final order picking system designs with a number of considerations and constraints.

Load Policies

There are several types of picking operations according to the number of tasks assigned.

A single command cycle includes picking or storing one item, usually a pallet or a carton

due to its size and weight. After the completion of task, the worker or the crane performs

another single command cycle. Each time, the worker or the crane picks a unit and comes

back to the deposit location. Dual command cycles have two tasks in a single trip. The

worker or the crane stores an item to the location and makes a pick before returning to the

pick and deposit point.

Unit load AS/RSs can be an example to both single command and dual command cycles.

Cranes can pick and drop an item with a single command cycle or can store an item, pick

another one in the same trip as a dual command cycle. If the worker or crane picks several

items in a single trip, it is called multiple command order picking. Usually storage areas

are large, and travel time comprises a major part of the processing time. For this reason,

multiple picks in a trip allocate travel time among a number of items.

11

Storage Policies

After the decision of which order picking system to use, we should assign items to storage

locations. There are several ways to assign SKUs to the slots in a storage area. One can

adopt the random storage policy in which pickers place items in randomly selected locations.

The random storage policy can result in a high space utilization. On the other hand, it can

lead to increased travel time for order picking operations [De Koster et al., 2007]. Because

it is easy to implement, randomized storage is preferred by many distribution centers.

Warehouses can also adopt a dedicated storage policy, in which items are assigned to one

or multiple fixed locations. In this policy, it is likely to have a low utilization due to having

an assigned location for out of stock items; but, it has the advantage of learning curve for

order pickers with the fixed location of SKUs [De Koster et al., 2007]. In most cases, the

dedicated storage assignment policy depends on constraints such as weight, size, fragility,

temperature, and humidity conditions [Tompkins et al., 2003].

Some warehouses adopt a volume based or full turnover storage policy in which items

are allocated according to demand rate. Petersen and Schmenner [1999] claimed that volume

based storage reduces travel time significantly. The demand based assignment policy has

a considerable drawback: demand rates of the products change frequently and it requires

reassignment of SKUs [De Koster et al., 2007]. Also, the cube per order index (COI) based

storage assignment policy can be adopted, which is based on an index value calculated as

the ratio of the item’s required space over number of required trips for the demand [Lee,

1992].

A combined policy is the class based storage policy. In this assignment policy, SKUs are

divided into classes based on a measure of demand and pick volume. Items are allocated

randomly within each class. The assumption in this policy is the 15-20% of the items

correspond to the 80-85% of the activity in the order picking operations [De Koster et al.,

2007]. We should assign this class of fast moving items to the best locations. We can also

allocate the SKUs with respect to their similarities in the orders. Items that are frequently

12

ordered together will be placed close to each other, which is called family based storage

[Frazelle and Sharp, 1989]. These storage assignment policies are used in both manual

systems and AS/RSs [Roodbergen and Vis, 2009].

2.1.2 Picking Methods

Depending on the degree of automation, we can classify order picking systems into

several groups. Dallari et al. [2009] proposed a classification for the order picking systems

(see Figure 2.2) based on the classification introduced by Sharp [1992] and reviewed by

De Koster [2004] (see Figure 2.1).

Figure 2.1: Classification of Order Picking Systems According to the Automation Level
[De Koster, 2004]

De Koster [2004] classified order picking systems into two major groups as employing

human and employing machine (see Figure 2.1). Without any automation, the picker should

travel along aisles to fulfill orders (picker to parts). Order picking systems that employ

human may still have an automation level that brings the items to the picker (parts to

picker).

Dallari et al. [2009] pointed out the classification rationale and stated several criteria

such as use of conveyors for the connection of picking zones (see Figure 2.2). So, there are

13

Figure 2.2: Classification of Order Picking Systems with the Multiple Criteria [Dallari et al.,
2009]

many levels of automation starting from the manual picking and usage of basic tools to highly

automated cranes and picker robots. Parts to picker systems provide a larger throughput

capacity with its automation capabilities. Furthermore, parts to picker system solve the

problem of labor constraints and costs. Therefore, the companies have an increasing interest

on the parts to picker systems or goods to man systems. They put more effort and time

for developing novel systems. We explain different types of order picking systems in the

consequent subsections.

Picker to Parts Systems

In a picker to parts system, the order picker travels to the picking location by walking

or driving through aisles. It is the most common method and can be low level picking

from racks or bin shelves, or high level picking with a lift truck or crane [De Koster, 2004].

In high level picking, there can be many vertically oriented storage locations, and a crane

enables picking from the storage places. Order picking includes several elements depending

on the system in use. If we employ a picker to parts system, there are many worker-oriented

14

activities. The picker should search for the picking location and travel to, from, and between

the picking locations. After that, the picker should reach and retrieve the item.

Figure 2.3: Bin shelving and Gravity Flow Rack [NAVSUP, 1985]

Bin shelving is the most common and least expensive storage equipment [Bartholdi and

Hackman, 2011]. It requires minimal maintenance and is easy to adjust. It allows storage

of many different kinds of items like cartons, paper containers, bins and small items. The

shelves are typically shallow and storage of large quantities for each SKU results in fewer

SKUs on the pick face. For the bin shelving, 50-100 picks/hour is the common picking rate

[Bartholdi and Hackman, 2011]. Picking and replenishment is typically from the same side

of the shelves.

A storage mode with higher SKU density is gravity flow rack. It is for broken case or

piece picking of items with high turnover. It has multiple levels that are tilted, or works

with rollers to slide items to the front after an item is picked from the pick face. So, only

one copy of a SKU occupies the pick face and SKU density is high, resulting in high pick

density and less travel. Replenishment is from the back and picking is from the front; so,

15

it maintains FIFO principle. Generally, replenishment is in large quantities and is triggered

when one copy or a few copies of the SKU is left.

Assistive Technologies for the Pickers

There are different assisting techniques for picking the right item in the right quantity

from its location. Picker may use either paper based pick lists or digital control systems

having stored pick lists. There are also other paperless picking technologies, such as light

directed or pick to light systems. In a pick to light system, lights on the racks direct the

picker to the location and indicate the quantity. In a voice-directed system, the picker uses a

headset to receive voice commands for the information such as location and required quantity

of the SKU. Some companies use handheld radio frequency directed devices to communicate

with the picker.

Picking Strategies

There are also different picking strategies for picker to parts order picking systems. The

order can be batched to pick multiple orders in a single tour, and routing algorithms can

optimize the travel time by rearranging the pick list and determining an appropriate route

[Roodbergen and De Koster, 2001]. In the batch picking policy, since the picker accumulates

multiple orders in a tour, the picker may sort the items immediately (sort while pick system),

and place them in different totes in the picking cart. Another approach is to have a sortation

workstation or a chute conveyor that can sort items out according to the orders.

In another picking policy, the picking area is divided into zones and assigned to the

pickers. Pickers pass the order tote or the carton to the picker operating in the next zone

(pick and pass system). In the zone picking policy, there is no need for sorting and picking

is completed order by order. There might be a need of sortation for the delivery destination

of the orders. Self organizing order picking systems such as bucket brigades are also example

of pick and pass order picking with a self stabilizing zone picking policy [Bartholdi and

16

Eisenstein, 1996]. In a regular zone picking system, one should manage workload balancing

among picking zones. Warehouses may prefer zone picking when the picking frequency is

high with small sized items.

Distribution centers also sort items after the picking of multiple orders as in batch

picking. In this case, orders are fed into a takeaway conveyor and sortation conveyors send

each item to a destination bay (pick and sort system). These systems are often integrated

with wave picking [De Koster et al., 2007], in which the WMS releases orders to balance

the workload of the picking operations. So, it is expected to have a high number of orders

or large batches in each wave. In some cases, warehouses prefer to have manual sortation

activities. Especially in piece picking operations, the order picking and sortation operations

are costly to automate, and hard to handle. For this reason, after the retrieval of the items,

they are sent to workers for the allocation of customer orders (put system) [De Koster et al.,

2007]. This system can give good performance for the orders with high quantities of small

items.

In a picker to parts system, travel time is the largest part of the processing time.

A number of studies developed routing policies to determine the sequence of picks and

determined the routes that each picker will follow [Ratliff and Rosenthal, 1983], [Roodbergen

and De Koster, 2001]. Ratliff and Rosenthal [1983] modeled the routing policy as a traveling

salesman problem and adopted dynamic programming. Hall [1993] discussed several routing

policies such as traversal, midpoint return, largest gap return for narrow-aisles, wide-aisle

and zoned warehouses. Petersen and Aase [2004] used a simulation model to evaluate several

picking, storage and routing policies, and determined which policies provide savings in order

picker travel.

Parts to Picker Order Picking Systems

In parts to picker systems, an automated system brings items to the pickers. A common

parts to picker system is the automated storage/retrieval system (AS/RS), which consists

17

of multi level storage locations with a crane carrying items out of the storage area through

aisles (see Figure 2.4). If the order picking system is piece picking, the conveyors bring

totes or cartons back to the storage cranes of the AS/RS for putting back. These systems

are called end of aisle systems or mini load AS/RS for the bin storing systems. In case of

carton picking, cartons leave the system and newly arrived items are stored in the AS/RS.

Double deep storage can be employed in case of a low variety of SKUs with high turnover

rate [Tompkins et al., 2003].

Figure 2.4: Automated Storage and Retrieval System with Three Cranes [NAVSUP, 1985]

The main advantage of an AS/RS is the picking cost reduction with the initial investment

of automation; but it has the possibility of bottlenecks and low productivity in case of a small

number of cranes [Dallari et al., 2009]. There are also savings in floor space and high order

accuracy. AS/RSs have a large number of options, most common version has one crane in

each aisle and works with the unit load command [Roodbergen and Vis, 2009]. Other studies

have introduced flow rack variations of AS/RSs ([Sari et al., 2005] and [De Koster et al.,

2008b]). Sari et al. [2005] developed travel time expressions for a flow rack AS/RS that has

a retrieval machine on the pick face of the AS/RS and a storage machine at the back. There

18

is one pick up location, one drop off location and a restoring conveyor for the link between

the picking and replenishment side. De Koster et al. [2008b] considered an AS/RS with

gravity or powered flow racks. A crane moves the items to and from the storage area. They

developed travel time expressions and addressed the sizing problem.

Hu et al. [2005] introduced a new AS/RS for heavy loads like shipping containers and

provided travel time analysis for such systems. In this system, a vertical platform moves

items among levels of the rack, and several horizontal platforms transfer the items to a

specific storage location. For a higher utilization, two racks share the horizontal platforms.

The main advantage of this system is the ability to move heavier loads at a higher speed by

separating horizontal and vertical drives [Hu et al., 2005].

A relatively new class of AS/RSs is called autonomous vehicle storage and retrieval

systems (AVS/RS) , in which autonomous vehicles perform storage and retrieval operations

[Zizzi, 2000]. Malmborg [2002] discussed the design features of AVS/RS technology. The au-

tonomous vehicles move on rail guides from and to the storage locations. Vertical movement

is handled by mounted lifts to the vehicle. Vertical moves of the lifts are significantly slower

than the horizontal movements, which affects the throughput performance directly. Heragu

et al. [2009] and Kuo et al. [2008] studied performance analysis and modeling of AVS/RSs

with simulation based and queueing-theoretic approaches.

Figure 2.5: A Carousel with Rotating Shelves [NAVSUP, 1985]

A carousel is a set of shelves that are able to rotate and bring required items to the pick

face of the worker rather than the picker traveling to the storage location. Since shelves with

19

requested orders come in the front of the picker, there is no need for aisles for traveling to

the storage location. Therefore, one can place carousels in a high density configuration. To

compensate for possible picker idleness during the rotating of the carousel, one should employ

multiple carousels for high volume picking [Bartholdi and Hackman, 2011]. However, in most

cases, each carousel includes a number of items for the order, which causes an unavoidable

waiting of the worker.

Picking robots as a goods to man system

Companies have recently introduced new approaches to automated storage and retrieval

systems. Conventional AS/RSs are often not flexible to changes in demand. They may

require huge investments for additional capacity, and throughput is restricted to the few

cranes operating in the system.

Figure 2.6: Kiva Robot (on the left, from http : //www.kivasystems.com) and
Autostore (on the right, from http : //www.mwpvl.com/html/swisslog autostore review.html)

Newer systems use unit sized devices and grid based systems for more flexibility. Fea-

tures such as modularity and scalability enable easy adjustments in case of a change in

demand, moving, and sizing the systems for different needs. It also provides reduction in

space and labor costs. For instance, there are two recent systems introduced: Kiva robots

and Swisslog’s Autostore. Kiva robots are able to go under shelves or other portable storage

units and bring them to the pickers. Autostore units are standing on stacks of totes and they

carry items to and from the pick up and drop off points. Both systems have the advantage of

flexible order picking with the cost of automation. To justify an investment on these systems,

high volume picking of fast moving items should be the case in the distribution center. These

20

systems are not for the picking process itself but to operate as a parts to picker order picking

system. With these devices, in case of a change in needs, the storage and retrieval system

can be scaled. Additional units can be easily added to the system for additional throughput

or units can be used somewhere else if there is low demand in a particular system.

Automated Picking Systems

Figure 2.7: A-Frame System, a Worker Replenishes Manually [Caputo and Pelagagge, 2006].

There are also order picking systems employing automation for the picking process

itself such as dispenser based systems. The main idea in these systems is automatically

dispensing small items to a takeaway conveyor that are stacked in the channel like racks

[Caputo and Pelagagge, 2006]. A-frame picking systems are common examples, which have

stacked dispensing shelves side by side on two sides of the takeaway conveyor. In especially

distribution centers for pharmaceutical products and small items of retail and e-commerce

stores, A-frame systems are suitable.

The A-frame picking system can either fulfill the order one at a time and the takeaway

conveyor can drop items to a tote for the specific order, or totes can travel within the take-

away conveyor and system can dispense items directly into the tote. A-frames can perform

up to 750,000 picks/day with a high order accuracy [Caputo and Pelagagge, 2006]. Replen-

ishment is generally manual with a worker filling the channel racks (please see Figure 2.7).

A high volume and small items order picking can justify this kind of investment.

21

Order Picking Areas

Most distribution centers have two different sections: bulk and forward areas. Efficient

picking areas are generally called forward pick or fast pick areas. In the bulk storage area,

SKUs are stored in large, pallet quantities. Most SKUs are stored in the forward pick areas

in small amounts to complete orders with a short travel time and high picking efficiency.

The picking areas get replenished from the bulk storage or from other forward pick areas.

Therefore, there is a benefit of picking with the cost of replenishment. Often warehouses use

separate picking operations depending on the size of the orders. Case picking, piece picking,

broken case picking, and pallet picking are common types of order picking operations. Items

can be picked from both forward and bulk areas. Picking from the forward area may reduce

the cost of picking depending on the size of the order and restocking costs. There can also be

multiple forward areas, which are restocked from another forward area or from bulk, which

is called a “multi tier inventory system”.

Figure 2.8: Flow in a Distribution Center with a Forward Reserve Inventory System
[Bartholdi and Hackman, 2011]

Piece picking operations such as the bin shelving, flow rack, and A-frame automated

systems can significantly decrease picking cost. At the same time, these systems will need

restocks and we want it to be as low costly as possible. A common forward picking area type

is the first level of the pallet rack; pickers can pick cartons of popular items and replenish

22

from the upper levels [Bartholdi and Hackman, 2011]. For less costly restocking, we may

increase the capacity of the current forward area, but it is generally expensive to expand it

and it can increase the picking costs with a longer travel time. We may adopt an intermediate

forward area between bulk storage and forward pick area with less capital investment and

without increased picking costs for the current forward area [Jernigan, 2004].

Hackman and Rosenblatt [1990] introduced a model to assign SKUs to forward areas

and to determine the volume of each SKU in the forward area. They provided a knap-

sack based heuristic and compared it with a ranking based approach considering real data.

Van den Berg et al. [1998] studied a forward reserve problem that considers which products

in what quantities should be stored to the forward area in order to minimize labor time.

They assumed that there are busy periods with picking periods and idle periods for the

replenishment from the reserve area. They formulated the problem as a binary program-

ming problem and introduced a heuristic that provides a performance guarantee. Also, they

considered the LP relaxation of this model and showed the optimal solution with fractional

values.

Heragu et al. [2005] developed a mixed integer programming model and a heuristic

algorithm for the product allocation and size determination problems in the forward reserve

areas and cross docking. They were able to obtain good results for large problems with the

heuristic algorithm. Frazelle et al. [1994] considered product allocation while using the size

of the forward area as a variable. Bartholdi and Hackman [2008] compared equal space and

equal time allocations of the products with the optimal allocation of the fast pick area. In

equal space allocation, the same space is assigned to each SKU, and in equal time allocation,

SKUs spend the same time in the forward area. Bartholdi and Hackman [2008] showed that

these two common allocation policies result in the same number of restocks, and that the

optimal allocations model of Hackman and Rosenblatt [1990] is significantly better. Gu et al.

[2010] developed a branch and bound algorithm for the forward reserve allocation problem

that is able to solve practical problems quickly.

23

2.2 Decentralized Control and Multi Agent Systems

We can adopt several different types of control architecture for a complex system. Mayer

[2009] indicates three types of control concepts. If an independent unit operates the complete

decision process and includes the entire logic for the system, we call this centralized control.

In the case of unavailability of the central control unit, the entire system does not know what

to do and a change in the system requires an update to the central control. Another approach

is a hierarchical control, in which responsibilities and decision making processes are divided

into subunits. This allows local decisions at lower levels and takes some workload from the

central controller. In hierarchical control, subcomponents still need decisions and control

from the central unit for the interoperability of system components. In the decentralized

control approach, each system component decides individually and communicates on the

same level. There can be specific capabilities and different functionalities of the units.

Specific capabilities do not affect the equal ability of communication.

A closely related modeling approach for decentralized control is multi-agent systems.

Architecture of the agents and interaction protocols are two main concerns of the multi-

agent systems. Wooldridge [2002] introduced an abstract architecture of agents based on the

concept of perception and action (see Figure 2.9). Common visualization of the agents is

to assign attributes that determine the action and behavior of the agent. Wooldridge [2002]

stated that architecture of an agent can be reactive, deliberative or a hybrid of both. In a

multi-agent system, we can refer to some surroundings or circumstances called the environ-

ment. So, interaction between agents are either direct or indirect through the environment.

For the indirect reaction, an agent may change things in the shared environment, which

results in some reaction from other agents. Reactive agents are able to perceive the environ-

ment and react within the defined logic. Deliberative agents follow a goal directed manner,

which means they act with the defined objectives and try to reach a specific goal.

In Figure 2.9, the perception part captures changes in the environment. It is a function

to sense the environment and to convert the state of the environment to an impression. The

24

Figure 2.9: Abstract Architecture of the Agent [Wooldridge, 2002]

perception is an input for the action function, and action decides on a behavior according

to perceptions.

Figure 2.10: Architecture of the State Maintaining Agent [Wooldridge, 2002]

The agent can exchange information and interpret messages with a communication

protocol [Weiss, 1999]. The protocol defines the set of rules for the understanding of messages

25

and the language among the agents. With this interaction mechanism, agents may cooperate

for goal oriented behavior, compete for resources, or do negotiations for self defined rules.

Multi agent systems have broad application in areas such as computational science, biology,

and logistics [Davidsson et al., 2005].

An agent can have a state, which is a position already taken or a decision making

mechanism. With perception from the environment, the agent can go to a new state and

also act to change the environment. An internal state provides the computational power and

a mechanism for the agent specialization (see Figure 2.10).

Another closely related modeling approach is the cellular automaton. It is a discrete

modeling architecture including a cellular space in which each cell can take a finite number

of states [Smith, 1971]. A certain set of cells stands as the neighborhood for each cell. We

assign an initial state for each cell. According to the rules, each cell goes to a new state

depending on the current state of the cell, and the state of the cells in the neighborhood.

Generally, for each cell, state updating rules and the neighborhood types are the same, and

there are no specialized cells.

Figure 2.11: Different Types of Neighborhood in the Cellular Automaton [Krühn et al., 2010]

Common types of neighborhoods are the von Neumann neighborhood [von Nuemann,

1966] and the Moore Neighborhood [Moore, 1962] (see Figure 2.11). Conway’s “Game of

Life” is a well known cellular automaton application in which cells are born or die depending

on their Moore neighborhood on a two dimensional cellular space [Gardner, 1970]. A live

cell stays alive with two or three live neighbors and a dead cell is born with exactly three

26

live neighbors. In all other cases, the cell dies due to overcrowding or loneliness. With these

simple rules, interesting patterns emerge.

Efforts for high flexibility material handling systems are introduced under the term

“Internet of Things” (IoT). This refers to a self configuring network of material handling

systems with decentralized control [Ten Hompel et al., 2006]. Materials with RFID tags

can be recognized and flow through the individual objects of a network of the material

handling system. With decentralized control, “what you see is what you get” from a physical

device. So, modularity and reconfigurability can be provided by independent subcomponents

of a system. Montreuil [2011] introduced a similar term called “Physical Internet” and

argued that current logistic systems are not sustainable. The Physical Internet is based on

a metaphor between the digital internet and global material flow. Highly integrated and

standardized logistics systems may provide globally efficient material handling systems.

2.3 High Density Puzzle Based Storage Systems

Due to high costs and limited availability of places for distribution centers, effective use

of space is an objective for companies. One way to have higher density is to narrow the

aisles. But, it brings additional complications like specialized vehicles and the possibility

of pickers blocking each other. Another way might be to make the racks taller. However,

it also requires specialized vehicles and it increases safety issues. There are also storage

areas with deeper storage locations. Lane depth is the maximum number of items stored

in a storage location. Generally, a lane is dedicated to a single SKU to prevent additional

material handling. We can refer to a storage system as “high density” when it is usually

necessary to move the interfering items according to reach the required item [Gue, 2006].

Assuming that the lane will be replenished when it is depleted, storage positions close to the

aisle will be empty after picked until it is replenished again, which is called “honeycombing

waste” [Bartholdi and Hackman, 2011]. Gue [2006] introduced an algorithm to fill multi

27

deep storage spaces with high density and showed that with a maximum lane depth of k,

the density of storage space cannot be greater than 2k/(2k + 1).

Gue and Kim [2007] introduced a high density storage system that defines puzzle based

movement inspired by the children’s game, 15-Puzzle. They assumed that each cell is self

propelled, which means the cell can move independently with its own devices. Furthermore,

“puzzle movement” is defined as the independent motion of open cells only one at a time.

There is one input/output point and one unit moves at a time. They developed an optimal

algorithm with one empty cell, performed the expected time analysis for multiple empty

cells and compared puzzle based systems with aisle based storage systems. Taylor and Gue

[2010] presented design parameters and the best placement for multiple empty cells case of

puzzle based storage systems. Alfieri et al. [2010] considered puzzle based storage systems

with a limited number of vehicles. They developed heuristics and conducted the retrieval

time analysis. These studies have a central control algorithm.

A related problem in the literature is the “Warehouseman’s Problem” studied in Hopcroft

et al. [1984]. They showed the PSPACE-hardness of this problem, stronger than being NP-

hard. The problem is basically arranging and moving different sized rectangle items in a

large rectangular space to obtain a required configuration. Sharma and Aloimonos [1992]

proposed some constraints and concepts of temporary storage space to obtain a tractable

problem and developed polynomial time algorithms that give coordinated arrangements.

Figure 2.12: Rush Hour Board Game

28

Another associated problem is the board game “Rush Hour.” In this game, there are 3×1

trucks and 2× 1 cars and one specific car needs to exit the board by moving other vehicles

either vertically or horizontally (see Figure 2.12). Therefore, a certain number of moves in

cardinal directions will form an aisle for this specific car, allowing it to exit. Flake and Baum

[2002] showed that “Rush Hour” is PSPACE-hard with a reversible logic approach. Hearn

[2006] introduced a framework called nondeterministic constraint logic that can be used to

evaluate the complexity of Rush Hour as well as other puzzle games.

The “Discrete Warehouse Problem” is also a related problem studied by Sarrafzadeh

and Maddila [1995], in which unit sized objects such as robots, movable and non-movable

obstacles occupy a grid-like space. The task is to construct a clear path for the robot

with a motion planning procedure. They consider two types of movement for the obstacles:

movement by a remote mechanism and movement by the robot. A more general case of

motion planning problems with movable obstacles was studied by Wilfong [1988]. He showed

that with one robot and movable obstacles, the problem is NP-hard. These problems consider

one move at a time and central control. Today’s automated systems enable simultaneous

movements by multiple modules and complexity of such integrated subsystems necessitate

decentralized control concepts along with the benefits like high throughput and flexibility.

2.3.1 Unit Sized Transportation Modules

In this part, we mention several transportation modules working with decentralized

control and developed by research institutions. These devices are unit sized conveyor modules

that provide underlying technology for grid based storage systems.

Mayer [2009] presented a decentralized control system with identical modules, which

includes the development of a unit sized conveyor module called the FlexConveyor (see

Figure 2.13). His control algorithm for each module provides generation of a topological

map, recognition of an incoming item, planning of the route to the destination, and deadlock

29

Figure 2.13: FlexConveyor

avoidance. The FlexConveyor is a modular, unit sized conveyor that can be plugged into

other conveyor modules to form a conveyor network.

Each conveyor module has its own controller, which enables decentralized control, and

its own motor and sensor control that enables it to convey in the four cardinal directions

(north, south, east and west). It also has an RFID reader to recognize the tote or carton

above the conveyor. So, it identifies the tote and determines the destination. The conveyor

modules are able to communicate and send messages to each other for the aim of conveying

in the required direction. Information of the totes and cartons can be also passed within

the conveyor modules. The FlexConveyor has all the design principles mentioned above. We

can reconfigure it easily by plugging it with other modules and we can scale the system with

a smaller or larger number of modules. Furthermore, failures of the individual modules can

be handled without the break down of the whole system while the system is still running,

which is studied by Furmans et al. [2012].

Figure 2.14: Swiveling Wheel Modules [Overmeyer et al., 2010]

30

Another small scaled modular system is the swiveling wheel [Overmeyer et al., 2010]

(see Figure 2.14). An advantage of these modules is that they are able to roll in any

x-y coordinate. The grid formed with the swivel wheel modules can be also expanded

with a larger number of modules. Based on this technology, roller and belt conveyors can

take on different functionalities such as sorting tasks, discharge and transfer with adjusted

orientation. Krühn et al. [2010] introduced a decentralized, self organizing control for the

swiveling wheel modules that fulfills the transfer and sorting tasks.

31

Chapter 3

The GridPick System

We introduce a novel order picking system called GridPick for carton picking from pallets

or piece picking from cartons. GridPick is developed from the puzzle based architecture

defined in GridStore [Gue et al., 2013]. Assumptions are based on unit sized conveyors able

to convey loads in the four cardinal directions (see Figure 3.1). Unit conveyors have their

own controllers, motors and sensor controls, and can be connected to form a grid for storage

of items. They are able to send and receive messages digitally and items physically.

Storage unit, possessing attri-
butes such as state, targetrow,
etc. with its RFID tag or other
attached communication tags.

Conveyor module, able to convey
four cardinal directions, execute
control logic with its controller and
communicate with the neighbors
and the storage unit.

Figure 3.1: Physical Devices for the Proposed Model: the Unit Sized Conveyor and Storage
Container

GridPick can be filled with storage containers at a high storage density. There are no

fixed lanes or aisles; only empty locations distributed on the grid to allow the movement and

retrieval of items. The problem is to provide a high pick rate by moving requested items to

the pick face while avoiding any possible congestion.

Decentralized control addresses flexibility concerns by providing modularity, scalability

and reconfigurability. Each conveyor module has identical control logic and executes the

32

Conveyor
Module

West
Neighbor

North
Neighbor

East
Neighbor

South
Neighbor

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

Figure 3.2: The Grid of Modules with Four Neighbors

same algorithm as a synchronous set of discrete events. The synchronous events guarantee

that we have the modules in the same phase of the algorithm.

Retrievals and Moveaways

Pick Face

Figure 3.3: Outline of GridPick

33

Unlike GridStore, items in GridPick do not leave the grid. Requested items move down

to the edge of the system. Other interfering items allow the passage of the requested items

by moving east and west. There is also a backward vertical movement to balance the empty

cells in each row. We sustain the system liveness or avoid deadlocks with these balancing

vertical movements. A picker goes back and forth on the pick face to pick the cartons from

the pallet or the pieces from a carton (see Figure 3.4). The worker accumulates the order to

a storage container or a picking cart.

Figure 3.4: GridPick: an Order Picking System for Carton Picking From Pallets or Piece
Picking From Cartons

Figure 3.4 shows an instance of GridPick. Gray items are the stored items that are not

requested in the current order or in orders soon to be picked. Black items are requested and

they travel to the pick face for processing by the worker. Gray items with black circles are

balancing items moving in the opposite direction from the pick face. The numbers on top

of the items show the order numbers of the requested items. Once all the items of an order

arrive to the pick face, the next order is released. Order release or requests come from an

external source to the system that communicates and activates the storage containers. So,

for a series of small orders, the system can release a number of orders. For a series of large

orders, the system can activate the next order while the worker is picking the current order.

Therefore, we want to have the next order ready before the worker starts picking the current

order. GridPick provides a dynamically changing pick face that provides a high pick density.

34

Therefore, the proportion of walking time in the total process time will decrease and picks

per unit time will increase.

Since the worker picks a few items out of the storage container, the storage containers

do not deplete often in GridPick. For this reason, we assume that the storage containers

circulate in the grid for a long time and they need less frequent restocks. After a while,

a storage container may deplete and this can provide more empty cells. We assume that

items stay in the grid and density does not decrease over time, which is a more conservative

assumption than having a less dense grid over time. Furthermore, while having multiple

copies of a SKU, the problem of which copy to request appears in GridPick. We assume a

copy is chosen randomly, which is a more strict policy without an enforcement to choose the

specific items. It provides the ability of realistic performance analysis for a new developed

system without the approaches for choosing a specific copy of SKU. Additionally, we adopt

an order release policy in which the items of the next order arrive to the pick face while the

worker is processing the current order.

3.1 Explanation of the Control Algorithm

The decentralized control algorithm is based on a series of negotiations conducted by

passing messages between the conveyor modules. Each module’s environment consist of four

neighbors and the storage container. The conveyor modules can receive the information from

the environment. They can respond to the messages, and take new states. They can also

change the environment by sending messages to neighbors or by changing the attributes of

the storage container.

3.1.1 System Overview

Figure 3.5 shows an example of the algorithm steps. The grid consists of unit sized

modules. Unit sized modules include storage containers. Black items are requested items,

and they include goods that are required to be shipped to the customers. The picker operates

35

1

2

4

3

Figure 3.5: Example steps for the GridPick System

36

on one side of the grid, and makes some picks out of the storage containers. In the shown

steps, the worker processes order number 3. Black requested items travel to the pick face

to be picked by the worker. Gray items are not requested, but are occupied items in the

grid. Occupied items move to the east or west to form empty cells and allow vertically

moving storage units (see time steps 1 and 2). White cells show the empty locations. Some

other items move away from the pick face to keep some empty cells in each row. So, the

replenishing items keep the balance of the grid occupancy. Items with the black circles have

the replenishing storage units (see time steps 3 and 4).

In each time step, each module executes the algorithm and negotiates with other modules

to decide on the movements. In time step 1, row 6 has a requested item moving towards the

pick face. Occupied items in row 8 move to the east to allow the passage of the requested

item. A replenishing item in row 7 balances the movement of the requested item. In row 9,

occupied items move to the east to allow the vertical movement of another requested item.

In time step 2, row 5 has a group of occupied items moving to the west to open an empty

cell for the replenishing item. Since order 3 has already arrived to the pick face, order 4 is

released, and its items are traveling to the pick face.

3.1.2 Symbolism and Representation

The model consists of discrete synchronous events. We will go through these events and

explain state changes, negotiation and decision steps. The model first runs setup functions

to place the conveyor modules and stored items to form a grid. Setup functions mimic the

physical establishment of the grid and initial configuration. The function for the placement of

the items leaves a number of empty cells in each row, which is defined as a system parameter.

The conveyor modules take initial states, which are determined by the stored item. We

have used conveyor “modules” and conveyor “units” interchangeably throughout the doc-

ument. We say an item is replenishing when it is moving to balance the occupancy of a

requested item. Requested items of the order move to the pick face for processing. Stored

37

items are stationary unless they must move to allow passage of Requested or Replenishing

items. Table 3.1 represents the states taken according to the attributes of the storage con-

tainer. The conveyor modules take negotiation positions and evaluate decisions based on

these states. These states can change either by a movement of the item or as a result of the

negotiations.

Symbol Conveyor module state Definition

Empty The conveyor module did not perceive an item. So, it is
not occupied by any item.

Requested The conveyor module carries a requested item.

Replenishing The conveyor module carries a replenishing item.

Occupied The conveyor module is occupied by a stored item that
is not intended to move without a trigger.

Table 3.1: Possible states of the conveyor module

Furthermore, we define each conveyor module’s neighborhood to mimic the physical

environment. The conveyor module’s West port is connected to the West neighbor, North

port to North neighbor, and so on. The conveyor modules get the information of their

location (specifically, row and column number). Consequently, the modules can consider

this information during their decision. A module that is on the edge of the grid will know it

does not have a neighbor on one side, and it will not forward a message that way.

For the purpose of better understanding state changes, other symbols provide additional

information used in the negotiation steps. In Figure 3.6, symbols represent the state of

the conveyor module (black circle with gray square in the background, black square, etc.).

Numbers on the top right of the symbol show either target row, departure row or current

row depending on the state. So, a number on the Replenishing item always shows the target

row. The target row represents the row to which a Replenishing item should go. A number

on the Requested item always indicates the departure row. The departure row represents the

row to which a Requested item belongs or has departed from. A number on the Occupied

38

2

3

Forward and Incoming
Messages

Target Row

Departure Row

3

Current Row
Initiation and

Response Messages

Figure 3.6: Representation of the States and the Messages for the Negotiation Algorithm

item always represents the present row of the stored item. An arrow with a bar shows a

forward message or an arbitrary incoming message. An arrowhead without a bar shows the

initiation message for the negotiation or the response message.

Symbol
Negotiation
Condition

Definition

Candidate to be
Replenishing

The module has a stored item that is South of a replen-
ishing module. It can turn to a replenishing module that
enables a convoy.

Willing to be
Replenishing

An Occupied module is one step away from turning into
a Replenishing module and will be a Replenishing mod-
ule upon reception of a message.

Candidate to be
Occupied

A Replenishing module received a message from a Can-
didate to be Replenishing and has a chance to transfer
its Replenishing state.

Willing to be
Occupied

The module has a replenishing item that received the
first request from a module that is Willing to be Re-
plenishing.

Table 3.2: Additional Negotiation Conditions

Convoy movement is a desired movement, in which Requested or Replenishing items can

follow each other as a block and use only one empty cell for a movement of multiple items.

39

Otherwise, the items will use multiple empty cells for the movement of multiple Requested

or Replenishing items.

There are additional negotiation conditions that are taken by the conveyor module

during the negotiation for the assignment of Replenishing items and the encouragement of

the convoy movement (see Table 3.2). These negotiation conditions will be understood more

clearly in the following examples and rules for the related events.

A message is a package of information transmitted between modules electronically. An

event can be described as the initiation of the negotiation for movement decisions. In the

algorithm, there are sequential events for different purposes such as vertical movement of the

requested item. Messages include several information. An important information included

in the message is process number. A process number in the message points to a particular

event. The next important piece of information is the included negotiation condition.

In the modeling architecture, message passing also mimics other communication proto-

cols such as information flow between storage container and the conveyor module. It also

reflects the possible interactions between the worker and the conveyor module. For instance,

during picking from a location, the module should not convey to move the item in order to

enable the picking. For this reason, the worker sends a message to the conveyor module that

represents a button to lock the module during the pick. So, the module will not participate

in the negotiation. In practice, the conveyor module can include two modes: active in nego-

tiation and passive in negotiation. When the worker arrives for picking, she can bring the

conveyor module to a passive mode to prevent possible negotiation and movements during

the pick by pushing a button integrated to the conveyor module. After the worker is done

with the picking, he/she can push again to bring the conveyor module to the active mode.

Information transfer from the storage container is done in a similar manner. We mention

other information included within the message in the respective events.

Tables throughout the next section denote the communication rules for the respective

negotiation events. For a better understanding, the reader should follow a few guidelines

40

during the review of communication rules. These rules are only for the cases that require

state change(s) and/or trigger of message(s). Combinations of states and messages that are

not feasible or do not require any action are not shown in the tables. Also, only rules with

the messages coming from the east are shown. The rules are axis symmetric and the same

rules apply for the messages coming from the west. We classify the rules according to the

type of action.

A module is responsible for the initial message to start the respective event. There is

a target group that will respond to these initial messages, which are shown in the response

message row. Some other modules are not directly related to the negotiation and they

forward the messages back and forth. Toward the end of the negotiation, final state updates

happen, which are shown in the final state change row.

r
r r

r

Response
Message
Type 1

Response
Message
Type 2

Forward
Message
Type 1

Forward
Message
Type 2

Final State
Change
Type 1

Final State
Change
Type 2

Table 3.3: Rule Examples

In the response messages, if the module receives a message from the east or west, we

show the new state and the response to the south of the current state of the module (see

Figure 3.3). If the module receives a message from the North or South, we show the new

state and the response to the East of the current state of the module.

In the forward messages, the module passes the message in the direction shown with

the arrow (see Figure 3.3). In the final state change rules, if the module receives a message

from the east or west, we show the final state of the module to the south of the current

state. If the module receives a message from the north or south, we show the final state of

the module to the east of the current state. The messages in these events also include the

41

column number of the requested unit that has initiated the message and the column number

of the occupied unit that has responded to the message (see Figure 3.3). Reader should

follow these guidelines to review the communication rules in the latter sections.

3.1.3 Negotiation for the Assignment of the Replenishing Items

Before any negotiation for movement, there are events to determine which items will

move north as Replenishing items and to encourage convoy movement. Since there are

requested items moving downward to the pick face, congestion may occur if not managed

properly. Our approach is to have some other items move upward to distribute the density

evenly over the grid. There are two events that provide balance rules and turn some regular

stored items into replenishing items. After the initial state update in each iteration, these

two events initiate. For the balance rules, we use a departure row, target row and current

row exchange.

Table 3.4 shows an example of Balance Rule 1. In the initiating message, the requested

module includes its departure row information. Whenever, an empty module receives the

message, it forwards the message to the south neighbor. If the south neighbor is an occupied

module and has not already received a message for Balance Rule 1, it responds to the message

and goes to a new condition called candidate to be replenishing. The response message

includes the current row of the occupied module. The requested module will take the current

row information upon reception of the message. So, the current row of the occupied module

will be the new departure row of the requested module. The requested module will respond

to this message including its old departure row. The response to the incoming message by

the requested module is on a first come, first serve manner. In the example, the message

of the module on the right comes first to the requested module. Therefore, the requested

module takes its current row. Then, the occupied module will receive the old departure row

information. It will turn into a replenishing module and will take the old departure row as

a target row. The requested module will also respond to the message coming from the west

42

Instance of the Negotiation Description

1

2

3 3

A requested unit is at its departure row and it initiates a
message with a “process number” to make an occupied
item move upward.

2

2

3 3
Stored items forward the messages to their neighbors.

3

2

3 3

On the left of the initiated message, another occupied
unit forwards the message to the west. On the right
of the initiated message, an empty unit is found and
it forwards the message to the south based on the rule
index number.

4

2

3 3

On the left, an empty unit is found and it forwards the
message to the south. On the right, an occupied unit
receives and responds to the message.

5

2

3 3

On the left, an occupied unit receives and responds to
the message. On the right, an empty unit forwards the
message to the east based on the column information of
the message.

6

2

3 3

On the left, an empty unit forwards the message to the
east. On the right, an occupied unit forwards the mes-
sage to the west.

7

3

3 3

The requested unit received the respond message, it
takes the row number information and sends its depar-
ture row with a new process number.

8

3

3 3

On the left, the occupied unit forwards the message to
the requested unit. But, the requested unit will respond
to this message with new departure row information.

9

3

3 3

The empty unit forwards the message to the south. The
requested item responds to the message.

10

3

3 2

The occupied unit received the message and turned to a
replenishing unit with a target row “2”. The requested
unit’s departure row is now “3”.

Table 3.4: First Ten Steps of Balance Rule 1 with the In advance Movement

43

Instance of the Negotiation Description

11

3

3 2

The occupied unit forwards the response message to the
west.

12

3

3 2 The empty unit forwards the message to the south.

13

3

3 2

The occupied unit receives the message that includes the
same row number with its current row and it stays in
the occupied state.

Table 3.5: Last Three Steps of Balance Rule 1 with the In advance Movement

side (see Table 3.5). It will send the updated departure row information to the occupied

module and this will match with the current row of the occupied module. So, this unit will

stay as stored.

Table 3.6 shows the communication rules for Balance Rule 1. See the guidelines at the

end of the Symbolism and Representation section to review the rules properly. In the final

state change rules, if the willing to be replenishing module receives a row information smaller

than its current row, it becomes a replenishing state because it understands that it should

arrive to the target row. If the received row information is the same as its row information

it stays occupied.

Table 3.7 presents an example for Balance Rule 2. In this case, the requested unit could

not exchange its departure row in Balance Rule 1. In Balance Rule 1, the initiated message

should arrive to an empty unit and an occupied unit should be present to the south. There

can be cases without this combination. Balance Rule 2 has a greater chance to find an

occupied unit that can turn into a replenishing unit since it looks for an occupied unit in

the same row. When the requested unit receives the response message, it takes the current

44

Requested Stored Replenishing Empty

Initiation
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

r

r

r-1

r

Table 3.6: Communication Rules for Balance Rule 1

row of the occupied unit as the departure row and the requested unit sends its old departure

row to the occupied unit. The occupied unit takes this information as a target row and

transitions into a replenishing unit. The requested unit responds to the message in a first

come, first serve manner. The message from the left comes first and the requested unit takes

its row information. The other message from the east gets the new row information and the

module stays in the occupied state.

Table 3.8 lists the communication rules for Balance Rule 2. The requested module

initializes the message passing by sending a message to the east and west. An occupied unit

will respond to it and other units will just forward the message with the information included.

In the final state change rules, if the willing to be replenishing receives a row information

smaller than its current row, it becomes a replenishing state because it understands that

45

Instance of the Negotiation Description

1
3 2 3 Initially, Balance Rule 1 did not work for the requested

unit and it has already moved while having a departure
row “2”. Its current row is “3”.

2
3 2 3 The requested unit initiates message passing to turn a

regular occupied into replenishing unit. So, it will keep
the occupancy of the row in balance.

3
3 2 3

Empty cells forward the messages to the west and east.

4
3 2 3 On the left, an occupied unit responds to the message

with the column number information. On the right, an-
other empty cell forwards the message to the east.

5
3 2 3

On the left, empty cell forwards back the message to
the east. On the right, an occupied unit is found and it
responds to the message with the column number infor-
mation.

6
3 3 3 The requested unit receives the message, it takes the

column number “3” and sends its departure row infor-
mation with a message.

7
3 3 3

On the left, an empty cell forwards the message to the
west. The requested unit receives the forward message,
and since it has already taken another unit’s column
number information, it responds with the new departure
row information.

8
2 3 3 The occupied unit receives the departure row informa-

tion and it becomes a replenishing unit with the target
row of “2”.

9
2 3 3

The empty cell forwards the response from the requested
unit to the east.

10
2 3 3

The empty cell forwards the response message. Incom-
ing message’s row information matches with the unit’s
current row. So, the module stays in the occupied state.
The last two steps are combined for brevity.

Table 3.7: Steps of Balance Rule 2 with the Latter Movement
46

Requested Stored Replenishing Empty

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

r
r

r
< r

Table 3.8: Communication Rules for Balance Rule 2

it should move to the target row. If the received row information is the same as its row

information it stays occupied.

3.1.4 Assignment of the Replenishing Items for the Convoy Movement

After the assignment of replenishing items, the system has some balancing items and the

requested items do not have to go back to their initial row to balance the empty cells. How-

ever, the replenishing items mostly require one empty cell and there is no convoy movement.

To achieve such a movement, some occupied items that are south of a replenishing item

can take the responsibility of replenishing items and can turn into replenishing items them-

selves. For this purpose, we have defined three consecutive events that are using negotiation

positions as a result of the previous event.

The first event for the convoy movement determines the candidate to be replenishing

units. Table 3.9 shows an example of the first convoy movement event. The occupied units

can turn into replenishing units and they will not require extra space to move upward.

47

Negotiation Steps Description

Progression of the Negotiation

R1

R2

R3

Index numbers on the left show the row numbers
of the units. In the first column, a replenishing
unit sends a message to the south neighbor. The
south neighbor is an occupied module and it turns
to candidate to be replenishing upon receipt of the
message. In the second time step, it sends the
same message to the south neighbor. If there is an
occupied module, it also turns to candidate to be
replenishing. The message passing goes on until a
unit is found other than an occupied module.

Table 3.9: Steps of the First Event of the Convoy Movement

Replenishing Occupied

Initial
Message(s)

Forward
Message(s)

Table 3.10: Communication Rules for the First Event of the Convoy Movement

First event of the convoy movement require only two rules (see Table 3.10). A replen-

ishing unit will initiate the message and if an occupied unit is present to the south, it will

update its condition and forward the message.

Table 3.11 shows an example for the second convoy movement event. After the first

event, the replenishing units initiate the second event for the convoy movement. They will

send a message to the east and west. If a candidate to be replenishing is present in the row,

it will respond to it. The replenishing module turns into a candidate to be occupied upon

reception of the response message. Message passing rules for the second convoy movement

event are shown in Table 3.12.

48

Instance of the Negotiation Description

1
The replenishing units initiate a message to the
east and west to discover options to be a replen-
ishing unit instead of itself.

2

The occupied units forward the message of the re-
plenishing unit in the middle. On the right, a can-
didate to be replenishing receives the message, re-
sponds to it and goes to a negotiation position,
willing to be replenishing.

3

An empty cell forwards the message of the replen-
ishing unit in the middle. The replenishing unit on
the right receives the response message and turns
into a candidate to be occupied.

4 On the left, the module responds to the message
and turns to a willing to be replenishing condition.

5 The empty cell forwards the message to the west.

6

The occupied unit forwards the message to the re-
plenishing unit and it takes the negotiating posi-
tion of candidate to be occupied. We have omitted
one step here for brevity.

Table 3.11: Steps of the Second Event of the Convoy Movement

We provide an example for the third event of the convoy movement (see Table 3.13).

An important point is the third convoy movement event’s cyclic behavior. After an occupied

module turns into a replenishing module it will send a message to the south. If there is a

candidate to be replenishing to the south, it will send another message to reinitiate the third

event of the convoy movement. This is necessary to enable convoy movement of multiple

replenishing items.

Table 3.14 shows the communication rules for the third event of the convoy movement.

The replenishing unit will initiate the event by sending a message to the south. After getting

49

Replenishing Occupied Requested Empty

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Table 3.12: Communication Rules for the Second Event of the Tandem Movement

this trigger message, a willing to be replenishing unit will send a message to the east and west.

The negotiation will happen between a candidate to be occupied and willing to be replenishing

unit. The occupied, empty and requested units will forward the incoming messages. The

message includes the target row of the replenishing unit and the current row of the occupied

unit. In the final state change, if the replenishing unit sends its target row to an occupied

unit, it will take the responsibility and turn into a replenishing unit. After the occupied unit

becomes a replenishing unit, it will send its current row to the sender of the message. The

receiver of this message will turn into an occupied unit. The replenishing unit will respond to

later messages with its target row. The receiver of this message will stay in the replenishing

state.

One might wonder about the possibility of performing the replenishing units assign-

ment for the convoy movement with a single event or a shorter negotiation. In the first

event, candidate to be replenishing can directly initiate a message to look for replenishing

units to take over their responsibility. However, this does not guarantee a convoy, because

other replenishing units can exchange with the occupied units, which results in disruption

of the convoy. In the second event, we observe a similar complication. We do not know

which replenishing units transfer their replenishing state. So, the second event determines

50

Instance of the Negotiation Description

1
A replenishing module initiates a message to the south
neighbor. There is a willing to be replenishing unit in
the south.

2
The unit with the willing to be replenishing condition
sends message to both east and west neighbors. Mes-
sages will look for candidate to be occupied units.

3 The occupied units forward the received messages.

4
On the left, a candidate to be occupied unit receives the
message, turns to the willing to be occupied condition
and responded to the message.

5

On the left, the occupied unit responds back the mes-
sage. On the right, a candidate to be occupied unit re-
ceives the message, turns to a willing to be occupied, and
responds to the message.

6

The willing to be replenishing unit turns into a replen-
ishing unit, responds to the message, and also initiates
another negotiation by sending a message to the south
neighbor.

7 The occupied units forward the messages to the west.

8

The unit with the willing to be occupied condition turns
to an occupied unit upon reception of the message. The
replenishing unit responds to the message coming from
the east including its new state.

9 The occupied unit forwards the message.

10
The unit with the willing to be occupied condition stays
as a replenishing unit. We have combined two steps here
for brevity.

Table 3.13: Steps of the Third Event of the Convoy Movement

51

Replenishing Occupied Requested Empty

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

< r
< r

< r
r

Table 3.14: Communication Rules for the Third Event of the Convoy Movement

the replenishing units that have a chance to transfer its replenishing responsibility. The re-

plenishing modules without a chance to be an occupied module will initiate the third event

and they will lead the convoy.

3.1.5 Negotiation Process for Movement Decisions

After the events for the assignment of the replenishing units, and the convoy movement,

negotiation events execute for the movement decisions of the modules. At first, north-south

negotiation events happen for the vertical movement decisions of the modules. So, the verti-

cal movements have a priority over the horizontal since their decision process executes first.

The logic of these events are based on the gridstore system [Gue et al., 2013]. Further-

more, the replenishing units have separate events from the requested units. The replenishing

units have a priority over the requested units by taking the movement decision before the

52

Request East or West Requested

Request East Replenishing

Request West Commit North

Willing East Commit South

Willing West Commit East

Available Empty Commit West

Available Occupied No movement

Table 3.15: Negotiation conditions for the movement decisions

requested units. By having the priority for the replenishing units, we enable movement of

the balancing items before the Requested items, which tends to avoid deadlock. Table 3.15

represents the negotiation conditions used in the events for the movement decisions.

3.1.6 North-South Negotiation for Vertical Movement

In the north-south negotiation, the replenishing and the requested units initiate the ne-

gotiation. The requested units send a message to their south neighbors and the replenishing

units send messages to north neighbors to check the availability of the modules.

Table 3.16 shows two examples of the north-south negotiation for the upward movement

of replenishing units. The left side of the Table 3.16 results in a commit north decision. So,

in the next iteration, three units will convey upward and two replenishing units will move

to the north. Downward vertical movement of the requested units take place in a similar

manner.

53

−→Progress of the Negotiation −→Progress of the Negotiation

Table 3.16: Example 1 for North-South Negotiation

The right side of the Table 3.16 shows an example of the north-south negotiation for

the replenishing units. In this case, the north neighbor is occupied and it needs go east or

west to allow passage of the replenishing units. For this reason, the occupied unit goes to a

new negotiation condition called request east or west.

Table 3.17 shows the message passing rules for the north-south negotiation.

East-West Negotiation for Horizontal Movement

When there are obstacles preventing the vertical movement of requested and replenishing

units, they should move east or west. In the north-south negotiation, the requested and

replenishing units look for an empty cell to send their storage container. If there is an

occupied module, it receives the message that says it should become available.

Table 3.18 shows an example east-west negotiation. An occupied unit that knows it

should move east or west turns into a new condition called request east or west. This unit

sends a message to both east and west neighbors. If there is an occupied unit it forwards

the message until an empty cell receives the message. If a module, other than the occupied

or empty state, receives the message, its response informs that there are no empty cells. If

an occupied unit on the edge receives the message it also informs that there are no empty

cells. If an empty cell receives the request, it goes to a new condition called willing (east in

this instance) and it responds to the message. When the occupied unit with request east or

54

Requested Occupied Replenishing Empty

Initiation
Message(s)

Response
Message(s)

Forward
Message(s)

Table 3.17: Communication Rules for North-South Negotiation

west condition, which initiated the message receives the response, it goes to a new condition

called commit (east in this case) and sends a final message that turns other units into commit

for the movement. Rules for the east-west negotiation are listed in the Table 3.19.

After documenting all the rules and negotiation steps, we can revisit the steps of the

algorithm. If we take a close look in Figure 3.7, in step 1 row number 2, we can see that a

replenishing item is assigned with the balance rule-1. In step 1 row number 9, a replenishing

item is assigned with the balance rule-2. In step 4 rows 4 and 5, replenishing items has

formed a convoy. The replenishing item in row 4 is assigned by the requested item in row 3.

55

1

2

4

3

Figure 3.7: Example steps for GridPick

56

P
ro

gr
es

s
of

th
e

N
eg

ot
ia

ti
on

⇓

⇓

⇓

⇓

⇓

⇓

⇓

Table 3.18: Example for East-West Negotiation

The replenishing item in row 5 was at another location at the same row, but it is transferred

to form a convoy.

Figure 3.7 shows steps of the GridPick algorithm in a 10 × 29 grid. At the beginning,

the worker picks the 3rd order and items of the 4th order are moving toward the pick face.

At the 8th step, all items of the 4th order have arrived and 5th order is released. For a better

understanding, see the video (http://www.youtube.com/watch?v=Yiv12N10h-I&feature=

relmfu).

57

http://www.youtube.com/watch?v=Yiv12N10h-I&feature=relmfu
http://www.youtube.com/watch?v=Yiv12N10h-I&feature=relmfu

Request E or W Occupied Empty Request Willing

Initiation
Message(s)

Response
Message(s)

Forward
Message(s)

Table 3.19: Communication Rules for East-West Negotiation

3.2 Considerations on the Application of GridPick

There are aspects worth mentioning for the application of GridPick as an operating

order picking system. GridPick should be able to integrate with the picker and rest of the

distribution center. An entry on the request list is called an order line, which consists of

the item and the quantity requested. Because carton picking and each picking are generally

separate order picking operations, an order with both cartons and eaches should be handled

separately. The Warehouse Management System checks and divides the order into pick-lines

(for cartons and eaches) if necessary. These data management activities are also required

for the operations of GridPick.

58

Pick-lines are detailed descriptions of the order: location of the order, product identity

(SKU number), quantity, and units of measure. A pick-line may include more than one pick,

which means the picker should reach into the location several times to complete the pick.

Pick-lines are organized into pick-lists to enable multiple picks of the worker. Pick-lines can

be reorganized to have the picks sequenced for efficient and reduced travel. A pick-list can

be a sheet of paper, RF, printed shipping labels as well as pick by light or voice transmission.

As with a flow rack configuration, all these components of instructions are required for a

worker operating on the GridPick system. We will discuss two order picking interfaces which

are appropriate for the GridPick system.

3.2.1 Pick to Light Systems

Pick to light order picking systems have light indicators and digital screens to direct

the worker to the correct pick. These devices are generally mounted to flow rack or other

storage locations to indicate the requests. When the light indicator turns on, it draws the

attention of the worker. The picker knows that there is a pick required to be processed in

the corresponding location. The required quantity is also displayed on the digital screen.

So, the worker picks the shown quantity and presses the lighted button to indicate that the

pick has been processed (see Figure 3.8).

Figure 3.8: A Representation of the Pick to Light Systems

For GridPick, in addition to these functions, there is a need for another press of the

button at the start of the picking process. Therefore, the unit modules will know that there

is a “being picked” item and they should not move until the process is done. Also, there are

59

occasional horizontal moves to allow other requested item to reach the pick face. The unit

modules should be able to deactivate and activate the light indicator and the digital screen

considering the status of the storage container. An arrow indicator showing the direction

of the current movement would also be helpful to direct the picker. So, the worker would

know the item is moving to another location and that he should wait for this movement.

In this case, a red light indicator for both the origin and destination would be turned off

and movement arrows will show up. After the movement is done, the red indicator light will

display in the current requested location.

3.2.2 Pick by Voice Systems

Order pickers can be directed via voice messages that tell the worker about the order

details (locations, quantity, SKU number). In the pick by voice system, the picker generally

has a headphone to receive the requests and a microphone to respond to the messages. A

main benefit of having a pick by voice system is that the picker does not have to carry a

paper list or computer screen. It also saves some time because it does not require looking at

sheets or screens (see Figure 3.9).

Figure 3.9: Pick by Voice Systems

For GridPick with a pick by voice system, the picker must know the column location of

the requested items. Therefore, there should be column numbers indicated on the pick face so

that the voice instructions can direct the picker to a column by its number. The instructions

should also include other information (quantity, SKU number). The system should also

60

report any sudden changes in the column number due to an occasional horizontal movement

on the pick face.

Figure 3.10: GridPick with Several Levels

Similar to a flow rack configuration, GridPick for totes could be built with several levels

(see Figure 3.10). This would increase the SKU density and consequently the pick density.

For a 3-level configuration, there is the possibility of having 3 requested items instead of 1

by having them stored vertically.

Since we have a restriction of order size up to the number of columns, the warehouse

management system should divide orders into parts if necessary. Also, two consecutive orders

cannot be larger than 2c − 1, where c is the number of columns. Therefore, sequencing of

the orders may be necessary. Restocking of the GridPick system could be done during off

peak times or could be integrated into picking operations directly.

3.3 Model Representation

For the modeling of GridPick, we have used, fundamentally, an agent based modeling

approach. In agent based models, each agent executes a step function, which is mainly a

set of individual based rules. In our model, we create an object and all unit modules are

61

instances of this object. Therefore, they execute the same algorithm. In each time step,

agents execute the same logic (see Figure 3.11). So, agents do not go to the next time step,

and all of them are updated in a synchronous manner in each iteration.

Since computers execute instructions serially, agent instructions are executed sequen-

tially. To prevent any bias, a random sequential order is determined and agents are executed

in this order. In our case, random execution of parallel events is handled automatically by

the AnyLogic software. All agents update their states before an agent executes the next

event. This approach introduces a synchronous behavior. This is also called a pseudo dis-

tributed system, and it reflects the behavior of a parallel system. Use of parallel machines in

agent based models is for the purpose of increased performance and a better computational

time. They are not intended to reflect the dynamics of the parallel system.

Figure 3.11: Series of Synchronous Events in Each Time Step (Source: Anylogic help files).

In each iteration of GridPick, there are cyclic events executed for different purposes of

the negotiation. Each event corresponds to a specific negotiation. Each agent is scheduled

to execute at the same time, so they do not go into the next event before all agents are

done with the event. If an event includes negotiation, process time of the event depends on

the length of the negotiations, which is not known beforehand. There are also events not

including any negotiation and the process time is not negotiation dependent.

62

Figure 3.12: Each event can take a different process time depending on the length of nego-
tiation (Source: Anylogic help files).

3.3.1 Message Passing

Message transfer time depends on the size of the message. In our model, a message

includes a java class object. Therefore, it includes related set() and get() functions and

comments, which increases the size. Actually, we only pass a few values to another unit

63

module. According to size calculations, message sizes can be up to 3,000 bytes. The transfer

time of a message will take only up to 100 microseconds, which is 0.1 milliseconds [Dongarra

and Dunigan, 1997].

Figure 3.13: Cyclical Events in Each Time Step

At the startup of the model, there are several initial setup functions to form the grid and

adjust the locations of the storage containers. After that there are synchronous cyclic events

that is executed by each unit module. Synchronization is achieved by executing all subevents

for each event before a module executes the next event. The model runs in continuous time

with a series of events in each cycle. We specify a frequency for the iteration that is sufficient

to run all negotiation events and for the movement of items. For simplicity, we have used 1

second as an iteration time or step length.

At first, there are two events called setupcondition and sendcondition for the detection

of current state of the unit module. In the setupcondition event, unit modules set their

state to empty. In the sendcondition event, the state of the stored items is received by the

unit module, and they update their state (requested, replenishing, etc.) as well as other

information such as target row and negotiation condition.

After that there are two balance rule events called receive and climbreplenish, which

are executed for the assignment of balancing item. Unit modules are required to finish the

negotiation before the next event begins. To enable tandem movement encouragement, there

are three additional events.

64

To prioritize the movements of replenishing items, we execute the North-South nego-

tiation and East-West negotiation events for replenishing items separately and before the

negotiation events of requested items. There are also transition events between negotiation

events, which are for transferring the current condition of the module into the format of the

next negotiation event. To prevent confusion, we use separate variables and numbers for the

negotiation conditions in each event. After all negotiation events and state assignments, all

modules execute the convey phase, and they move in the appropriate direction depending

on the result of the negotiations.

There are a few sources of randomness in the model. In the initial setup, orientation of

the empty cells in each row is determined randomly. A major random component is the order

release policy. All items are equally likely to be requested, which may change the movement

during the execution. Therefore, when there is a request, any occupied item can be requested.

Also, expected order size is generated from a Poisson distribution. Furthermore, during the

initiation of the events, sending messages are serially executed. If the module is required to

send two messages to East and West, it chooses one side randomly to send first.

In a physical system, controllers have timers to keep the clock time and determine the

timings of the event executions. Occasionally, timers may drift, which will prevent accurate

execution of the logic. This difficulty could be addressed by updating the clock times of

controllers periodically. For instance, during each order release, a broadcast or message to

the modules including the current time can help keeping the time updated and accurate.

Depending on the severity of the time drift, the update could be more or less frequent.

3.3.2 Determining Buffer Lengths for Cyclic Events

The model includes a series of events, which execute sequentially and synchronously.

When an event starts, there is a process time for the negotiation. One crucial consideration

is to avoid overlapping negotiation processes. Therefore, the time between initiation of

the events should be large enough to allow sufficient time for unit modules to finish the

65

execution and negotiation before the next event initiates (see Figure 3.14). Some events

do not include negotiation. They are mostly for updating the states and transferring the

negotiation conditions to the next event. These events, which typically take less than one

millisecond, not include variability due to the negotiation.

We have recorded the finish time of the events that have negotiation during their process.

So, we can assign timings of the events considering the length of the negotiation. We have

obtained 50 replications for the negotiation length analysis.

Figure 3.14: Representation of events executing cyclically.

Bonferroni Inequality

Since we have multiple events that should be finished within a specified interval, we

would like to obtain an overall confidence for the respective events.

When there is a 100(1− αs) percent confidence interval represented by Is for the mea-

sure of µs, the probability that all k confidence intervals simultaneously contain their trues

measures satisfies

P (µ ε Is for all s = 1, 2, 3, ..., k) ≥ 1−∑k
s=1 αs

This is known as the Bonferroni inequality. So, if we have multiple performance mea-

sures, the sum of α values provides the overall significance level. This means the confidence

level will decrease with an increasing number of measures. One solution to this problem is

setting the α values at a high level to obtain a sufficient confidence level. We have 99.5%

66

confidence intervals for each event, which results in at least 98% overall confidence level for

the series of events.

Since we have a 98% confidence interval, we can say that we are 98% confident that

the true value of the parameters lies in the determined confidence interval. If an event’s

negotiation still does not finish on time, it will appear in the transfer event, because we

have transfer events that translate the current negotiation condition into the new event’s

related variables. We can easily detect if the negotiation does not finish by printing an error

message. Furthermore, in the transfer event, wrong negotiation conditions can be translated

as no movement, which will prevent a failure of the system.

Variable N Mean StDev SE Mean 99.5% CI UCL

NS-rep 50 1.2909 0.5331 0.0719 (1.0805, 1.5013) 1.5066

EW-rep 50 1.926 1.226 0.167 (1.437, 2.415) 2.427

NS-req 50 1.491 0.791 0.107 (1.179, 1.803) 1.812

EW-req 50 2.455 1.399 0.189 (1.903, 3.007) 3.022

Table 3.20: CIs for the Negotiations (Units are in milliseconds)

Initially, we have determined large inter-startup times for the events. These times

are determined by considering the number of columns and number of rows. Because the

North-South negotiation happens only between North and South neighbors with two waves

of messages, and considering that a message transfer time takes 0.1 milliseconds [Dongarra

and Dunigan, 1997], “2×number of rows×transfer time” provides a long inter-startup time.

This means that a North-South negotiation can take at most this length. For a configuration

with 10 rows, North-South negotiation takes at most 2 milliseconds (2 × 10 × 0.1). For an

East-West negotiation, there are three waves of messages for the event. For a configuration

with 30 columns, the E-W negotiation can take at most 9 milliseconds (3× 30× 0.1). From

the confidence intervals, we see that this is very conservative assumption, especially for the

67

East-West negotiation (see Table 3.20). We can determine the inter-startup times by having

upper control limits for each negotiation length. We obtain upper control limits by adding

three standard errors to the mean.

3.4 Statistical Analysis for Steady-State Parameters

3.4.1 Determining the Warmup Period

Observations at the startup of the simulation may not represent the steady state behav-

ior of the model. To deal with this problem, generally we should “warm up” the model by

removing initial data. A common approach to determine warmup period is Welch’s method.

In this approach, at first a number of replications is obtained for the simulation. Then the

average of the replications for each observation is acquired. To have a smooth the oscilla-

tions, we get a moving average with a window size w (such that w ≤ m/2), where m is the

simulation length.

For the throughput, results are low initially, and waiting times are longer at the startup

of the simulation. Since initial bias is very short at the beginning of the simulation, by

inspecting the plots, we determine that a warmup period of “200” is sufficiently large. So,

the Welch’s method helps us determining the warmup period by inspecting the moving

averages of data. We have used a window size of 10.

At the startup, due to the waiting of the first order, throughput is small. The throughput

increases and this initial transient stabilizes quickly (see Figure 3.15). For the next order,

items are already arrived to the pick face, and the picker does not wait for them.

Waiting time is large at the startup because the picker waits for the item for certain.

While the picker is processing the current order, next order is released and they are for

picking while the worker is done with the current order (see Figure3.16). A little bit of

oscillation in the data can be removed by having larger window size for the moving average.

Because it does not show any pattern and it is around the stabilized trend, a warmup period

of “200” is decided to be sufficient.

68

æ

æ

æ
ææ
æææææ
æææ
æææææææææææææææææ

ææææææææææææææ
æææææ
æ
ææææææ
æææææ
æææææææ
ææææææ
ææææææææ

ææææ
ææææææææææ

ææææ
ææææææææææææææææ

æææææææ
æ
æææææææææææææææææ

æææææ
æææææ
æææææææ
ææææææææ

ææ
ææææææ
æææææææ
ææææææææææææææææ

ææææ
ææææææ
æææææææææææææææææææææ

ææææææææææ
æææææ
ææææ
ææ
æææææ
æææ
ææææ
æææ
ææææ
ææææææ
ææææ
æææææææææ

ææææææææææææ
æææææææ
æææææ
æææ
ææææ
æææææææ
æææ
ææææ
ææ
æææææ
æææææææææææææ

æææ
æææææ
ææææ
æææ
æææææææ
ææææææææææææææ

ææææ
æ
ææææææææ

æ
ææææææææ

æ

0 1000 2000 3000 4000
0

1

2

3

4

5

Time @cyclesD

M
o

v
in

g
A

v
e

ra
g

e
fo

r
T

h
ro

u
g
h

p
u

t
@i
te

m
s

p
e
r

c
y
c
le
D

Figure 3.15: Initial Transient for Throughput

æ

æ

æ

æ
æ

æææææ
æ

æææ
æææææææ

æ
æææ
ææ
ææææ

ææ
æ

æææ
æææææææ

ææ
æææææææææææææææææææ

æææææ

ææææææææææ

ææææææ

ææææææææææ

ææ
æææææ
æææ
æ
æææææææ
ææ
ææææææææ

ææææææææ
æææ
ææææ
ææææ
ææ
æææææææææææ

æææ
æ
æææ

æææææææ
æææ
ææ
ææææææææ

ææ
æ
æææ
ææææ
æææææ

æææææ
æææææ
æææææ
ææææ
æææ
ææ
æææ
ææ
ææææææ
æææææææ
ææ
ææææææ
ææ
æ
ææ
æææ
ææ
æææ
ææ
æ
ææææ
ææ
æ
æææ
ææææææ
æ
æææææ
æææ
æææææææ
æææ
ææææææ
æ

æææææ
ææææ
æ
ææææ
ææææ
ææ
æææ
ææææææææææ

æææææææææææææ
ææææææ
æææææææ
ææææ
æææææææ
æææææææ
ææææææææææ

ææææææææææææææææææ

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

Time @cyclesD

M
o
v
in

g
A

v
e
ra

g
e

fo
r

W
a
it
in

g
ti
m

e
@c

y
c
le

s
p
e
r

p
ic

k
D

Figure 3.16: Initial Transient for Waiting Time

Walking time measure is not effected from the initial transient (see Figure 3.17). It is

similar for all time instances.

69

æææ
ææææææææææææææææææææ

æææ
æææææææ
æææ
ææææææææææææææææææææææææææææææææææææ

ææææææ
æææææææææ

ææææææ
æææææ
æææææææææææææææææææææææææææææææææ

ææ
ææææææææææææææææ

ææææææææææææææææææææ
ææææ
ææææææææææææææææææææ

æææææææææææææææææ
æææææææææææææææææææ

æææ
ææææææææææææææææææ

ææææææææææææææææææææææææææææææææ
æææ
ææææææææææ

ææææææææææææææææææææææææææææ
ææææææææ

æææææ
ææææ
æææææææææææ

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

Time @cyclesD

M
o
v
in

g
A

v
e

ra
g
e

fo
r

W
a

lk
in

g
T

im
e
@c

y
c
le

s
p

e
r

p
ic

k
D

Figure 3.17: Initial Transient for Walking Time

ææ
æææ
æ
æ
æææ
ææææææææææææ

æææææææææææææææææææææ
æææææææææææææææ

ææææææææææææ
ææææææææ

æææææææææææææææææ
ææææææææææææææææ

ææææææææææææ
æ
ææææææ
æææ
æææ
ææææææææææææææææææææ

ææ
ææææææ
ææ
ææææææææææææææææ

ææææææ
ææææææææææææææææ

ææææ
ææææææææææææææææ

æææ
æææææææææææææææææææææææææææ

ææ
æææææææ
æææææææææææ

ææææ
ææææææææ

ææææææææææææ
æææææææææææææææææææ

ææææææææææææææææææææææææææ
ææææææ
ææææææææææææææææ

æææææææææææææææ

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

Time @cyclesD

M
o
v
in

g
A

v
e
ra

g
e

fo
r

F
lo

w
ti
m

e
@c

y
c
le

s
D

Figure 3.18: Initial Transient for Flow Time

3.4.2 Determining the Number of Replications

We have four performance measures for the simulation analysis (throughput, walking

time, waiting time, and flow time). For this reason, we have considered bonferroni inequality

70

to acquire an overall confidence interval. Four 99 % confidence intervals provides at least 96

% overall confidence.

Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean

Thr. k3− 14 30 0.473242 0.002792 0.00051 (0.471837,
0.474647)

0.001405 0.3%

Walking k3− 14 30 0.6707 0.01153 0.0021 (0.66490,
0.67651)

0.00581 0.87%

Waiting k3− 14 30 0.69261 0.0116 0.00212 (0.68677,
0.69844)

0.00583 0.84%

Flow
time

k3− 14 30 15.0662 0.2703 0.0494 (14.9302,
15.2023)

0.1361 0.9%

Table 3.21: CIs for the Four Performance Measures

Since halfwidths are not larger than 1 % of the mean for all confidence intervals, a value

of “30” is sufficient for the number of replications (see Table 3.21). This result is obtained

for a k = 3 configuration with an expected order size of 14. We have obtained confidence

intervals for different k values and expected order sizes (small and large). They are included

in the Appendix. These confidence intervals show similar results, halfwidth is approximately

1% of the mean.

3.4.3 Paired t-Tests for the Configuration Comparisons

In the next section, we have detailed performance analysis of the one sided GridPick. To

statistictically compare the configurations, we have used the paired t-test. We do not know

the population’s variance and mean. Also, all other conditions are same for the simulations

other than the comparison criteria.

Since the number of pairs is 30, which is the number of replications, degree of freedom

is 29 for our configurations. Corresponding t table value for α = 0.05 is 2.045. Therefore, we

compare the t values with 2.045. Larger values indicates that configurations are significantly

71

different at the 5 % significance level. Values smaller than 2.045 show that there is no

significant difference.

We can also compare p values with the significance level alpha to understand the result

of the hypothesis testing. P values larger than α = 0.05 implies that there is no significant

difference. P values smaller than 0.05 shows a significant difference between configurations.

We can also understand the case from the confidence intervals. If the confidence inter-

val includes “0”, then there is no significant difference. Otherwise, there is a statistically

significant difference.

3.5 Performance Analysis

Our main performance criteria for GridPick are picks per unit time, average retrieval

time, walking time and waiting time of the worker. Furthermore, we evaluate the effect of

the aspect ratio on system performance. In order to examine the performance, we compare

GridPick to an equivalent flow rack picking system.

Performance of GridPick relies on several parameters and design policies. We explore

the effects of the expected order size and empty cells per row on performance. Parameters

and assumptions for the experiments are as follows: The grid includes 250 storage containers,

and there are 2, 3, or 4 empty cells per row (k), which makes 20, 30, or 40 empty positions

total. Each simulation run is with 4,000 iterations, 200 iterations for the warmup period,

and 30 replications. The AnyLogic software package is used for the experiments. We analyze

the system with a number of parameters for various configurations to capture the effect on

the performance.

For this model, distance units are meters and time units are seconds. Picking times

were derived from data of the Jo-Ann Stores Distribution Center in Opelika, Alabama and

it is assumed to be 7.5 seconds. The conveyor speed is an important parameter, because

it directly affects the possible waiting time of the worker. If the conveyor speed is high, it

lowers the waiting time of the worker significantly. The common conveyor speed is given as

72

65 fpm (feet per minute), which we convert to 0.4 m/s for the simulation. Lastly, a worker

has an assumed walking speed of 3.6 km/hour, which is approximately equal to 1.0 m/s.

It is taken from a publication that has a direct warehouse application and analysis [Dekker

et al., 2004].

æ

æ

æ

æ

æ
æ

æ æ æ æ æ æ æ

à

à

à

à

à

à
à à à à

à
à

à

ì

ì

ì

ì

ì

ì
ì

ì ì ì ì
ì ì

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

Expected order size @itemsD

T
h

ro
u

g
h

p
u

t
@i
te

m
s

p
e

r
c
y
c
le
D

ì k = 4

à k = 3

æ k = 2

Figure 3.19: Throughput Plot for Different Expected Order Size Levels

Throughput of the example GridPick system increases with the increasing expected

order size until the level of approximately 10 (see Figure 3.19). From expected order size of 10

to 28, throughput stabilizes and does not improve. This is due to stabilizing walking time per

pick. Performance results of the expected order size will change for different configurations

such as various aspect ratio values, which is the subject of the next section.

The throughput plot shows an expected result; configurations with more empty modules

have better performance (see Figure 3.19). Increasing the number of empty cells per row

increases throughput, but with diminishing returns.

Because all the experiments results in a distribution and does not represent a single

value, we have prepared box whisker plots for the performance analysis. Distributions does

73

2 4 6 8 10 12 14 16 18 20 22 24 26
0.0

0.1

0.2

0.3

0.4

0.5

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

k = 2

k = 3

k = 4

Figure 3.20: Throughput changing with the order size and empty cells per row.

not overlap and shown next to each other. For instance, in the throughput plot (see Fig-

ure 3.20) for the expected order size of 2 there are 3 box-whiskers, which shows the three k

configurations. Therefore, we should compare first three, second three, third three config-

urations and so on. k = 2 configuration has longer whisker for larger expected order sizes,

due to intense traffic and lower traffic capacity with small number of empty cells.

Table 3.22 shows significant and insignificant differences between configuration. A value

smaller than 0.05, which is significance level, means there is a significant difference. Other-

wise, two configurations are statistically same. Table ?? shows that only four configurations

are statistically same and have values larger than 0.05.

We can interpret the results more easily by considering the t table (see Table ??).

Values larger than 2.045 or smaller than 2.045 mean there is a significant difference. If

there is a negative value second configuration in the comparison has a statistically larger

value. Otherwise, first configuration has a statistically larger value. We see that smaller

k configurations are significantly better for small order sizes. There is a brekeven point in

which configurations arrive to a insignificant level of expected order size. This is expected

74

order size k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 0 0 0
4 0 0 0.004
6 0.458 0 0
8 0 0 0
10 0 0 0.15
12 0 0 0.12
14 0 0 0.086
16 0 0 0
18 0 0 0
20 0 0 0
22 0 0 0
24 0 0 0
26 0 0 0

Table 3.22: p values for throughput with various expected order sizes and empty cells per
row

order size k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 4.47 12.11 5.88
4 3.92 7.51 3.11
6 -0.75 4.39 7.24
8 -14.44 -7.99 5.58
10 -18.02 -17.7 1.48
12 -30.8 -27.97 1.6
14 -39.38 -41.9 -1.78
16 -35.5 -40.56 -7.67
18 -27.69 -39.63 -8.1
20 -31.1 -30.25 -5.82
22 -21.7 -29.71 -5.07
24 -24.04 -24.47 -5.09
26 -17.98 -25.44 -9.15

Table 3.23: t values for throughput with various expected order sizes and empty cells per
row

order size of 6 for k = 2 vs. k = 3 comparison and the break even is at expected order sizes

of 10, 12, and 14 for k = 3 vs. k = 4 comparison. All differences are significant for k = 2 vs.

k = 4 configurations.

75

order size k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 (0.00307, 0.00823) (0.009835, 0.013832) (0.00403, 0.00833)
4 (0.00253, 0.00805) (0.00719, 0.01257) (0.00157, 0.00761)
6 (-0.00341, 0.00158) (0.00281, 0.00771) (0.004430, 0.007920)
8 (-0.015003, -0.011280) (-0.009337, -0.005530) (0.00362, 0.00780)
10 (-0.02417, -0.01924) (-0.02258, -0.01790) (-0.000562, 0.003496)
12 (-0.03339, -0.02923) (-0.03250, -0.02807) (-0.000282, 0.002332)
14 (-0.035599, -0.032084) (-0.036446, -0.033054) (-0.001955, 0.000138)
16 (-0.03975, -0.03542) (-0.04387, -0.03966) (-0.005300, -0.003067)
18 (-0.03912, -0.03373) (-0.04489, -0.04048) (-0.007839, -0.004677)
20 (-0.03774, -0.03308) (-0.04311, -0.03765) (-0.006723, -0.003227)
22 (-0.03668, -0.03036) (-0.04313, -0.03757) (-0.00959, -0.00408)
24 (-0.03268, -0.02755) (-0.04048, -0.03424) (-0.01015, -0.00433)
26 (-0.02904, -0.02311) (-0.03896, -0.03316) (-0.01221, -0.00775)

Table 3.24: CIs for throughput with various expected order sizes and empty cells per row

We represent the confidence intervals for the differences between throughput configura-

tions in Table 3.24. If the confidence interval includes 0, this means there is no significant

differences between configurations.

æ

æ

æ

æ

æ

æ
æ

æ
æ æ æ æ æ

à

à

à

à

à

à
à

à
à à à à à

ì

ì

ì

ì

ì

ì
ì

ì
ì ì ì ì ì

0 5 10 15 20 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Expected order size @itemsD

W
a

lk
in

g
ti
m

e
p

e
r

P
ic

k
@c

y
c
le

s
p

e
r

p
ic

k
D

ì k = 4

à k = 3

æ k = 2

Figure 3.21: Walking Time per Pick for Different Expected Order Size Levels

76

Walking time per pick for all k configurations decreases with increasing expected order

size, and stabilizes for larger expected order sizes (see Figure 3.21).

2 4 6 8 10 12 14 16 18 20 22 24 26

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

k = 2

k = 3

k = 4

Figure 3.22: Walking time for various expected order sizes and empty cells per row.

For walking time per pick configuration, experiments have higher variation for small

expected order sizes due to longer and variable walking times between picks. With larger

expected order size values, walking time per pick decreases and becomes less variable.

For the k = 2 vs. k = 3 comparisons, only largest expected order size indicates an

insignificant difference (see Table 3.25). For the k = 3 vs. k = 4 comparison, expected order

size of 20 is insignificantly different.

T values shows that k = 2 configuration has a shorter walking time up to larger expected

order sizes (see Table 3.26). Becauses there is another column of empty cells for larger k

configurations. For very larger order sizes, k = 4 configuration became to have a shorter

walking time because less empty cell configuration cannot handle the traffic well and has

adjustment movements. These movements are due to having requested items waiting at the

back and make other requested items move horizontally on the pick face. If the worker arrives

after the movement decision, he adjusts the movement by walking to very next location.

77

k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 0 0 0
4 0 0 0.002
6 0 0 0
8 0 0 0
10 0 0 0.001
12 0 0 0
14 0 0 0
16 0 0 0.001
18 0 0 0.012
20 0 0 0.367
22 0 0.004 0.008
24 0.007 0.007 0
26 0.14 0 0

Table 3.25: p values of walking time with various expected order sizes and empty cells per
row.

order size k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 -4.35 -12.2 -6.27
4 -4.53 -8.17 -3.49
6 -5.54 -10.3 -7.02
8 -6.04 -15.76 -6.13
10 -8.75 -11.56 -3.58
12 -8.61 -15.59 -5.4
14 -11.76 -20.03 -6.87
16 -17.04 -23.55 -3.85
18 -14.01 -15.8 -2.69
20 -9.57 -13.71 -0.92
22 -8.26 -3.11 2.83
24 -2.93 2.92 5.02
26 -1.52 6.58 7.58

Table 3.26: T values of walking time with various expected order sizes and empty cells per
row.

Confidence intervals for the differences between walking time configurations are shown

on Table 3.27. If the confidence interval includes 0, it means there is no significant difference.

Because there are more active items and higher traffic intensity with larger order sizes,

average retrieval time increases with the expected order size (see Figure 3.24). This is due

to the increased waiting time. Waiting time per pick increases with the expected order size,

78

order size k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 (-0.1819, -0.0656) (-0.3202, -0.2283) (-0.1996, -0.1014)
4 (-0.0922, -0.0349) (-0.1483, -0.0889) (-0.0874, -0.0228)
6 (-0.06859, -0.03162) (-0.12046, -0.08056) (-0.06508, -0.03573)
8 (-0.04336, -0.02143) (-0.08054, -0.06203) (-0.05186, -0.02592)
10 (-0.05159, -0.03205) (-0.07124, -0.04982) (-0.02941, -0.00801)
12 (-0.03853, -0.02374) (-0.05796, -0.04452) (-0.02772, -0.01249)
14 (-0.04039, -0.02842) (-0.05506, -0.04486) (-0.02018, -0.01092)
16 (-0.03572, -0.02806) (-0.04557, -0.03829) (-0.01537, -0.00471)
18 (-0.03335, -0.02486) (-0.04055, -0.03125) (-0.01196, -0.00163)
20 (-0.02753, -0.01783) (-0.02885, -0.02136) (-0.00784, 0.00299)
22 (-0.01990, -0.01200) (-0.01193, -0.00246) (0.00243, 0.01509)
24 (-0.01146, -0.00203) (0.00212, 0.01202) (0.00818, 0.01944)
26 (-0.00551, 0.00082) (0.01210, 0.02302) (0.01453, 0.02528)

Table 3.27: CIs of walking time with various expected order sizes and empty cells per row.

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à à

à

à

à

à

à

à

à

à

à

à

à

ì ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0

5

10

15

20

25

Expected order size @itemsD

A
v
e

ra
g

e
re

tr
ie

v
a

l
ti
m

e
@c

y
c
le

s
D

ì k = 4

à k = 3

æ k = 2

Figure 3.23: Average Retrieval Time for Different Expected Order Size Levels

which results in a longer retrieval time (see Figure 3.25). As expected, average retrieval

time is shorter with more empty cells, especially for the larger expected order size values.

Waiting time per pick is significantly larger for the k = 2 configuration. Since waiting time

is combined with the travel time for the computation of the retrieval time, the difference on

the average retrieval times becomes less significant.

79

2 4 6 8 10 12 14 16 18 20 22 24 26

10

15

20

25

30

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

k = 2

k = 3

k = 4

Figure 3.24: Flow time for various expected order sizes and empty cells per row.

Variation of the average retrieval times increase with the larger expected order sizes (see

Figure 3.24). This is due to having more traffic with more requested items.

order size k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 0 0 0
4 0 0 0
6 0 0 0.001
8 0.568 0 0
10 0 0 0.006
12 0 0 0.066
14 0 0 0.524
16 0 0 0.009
18 0 0 0.001
20 0 0 0.009
22 0 0 0.279
24 0 0.001 0.77
26 0.332 0.061 0.322

Table 3.28: p values for flow time with various expected order sizes and empty cells per row

80

Similar to the throughput results, expected order size of 8 is insignificant for k = 2 vs.

k = 3 configurations (see Table 3.28). k = 3 vs. k = 4 configurations show insignificant

results for expected order size of 10 and 12. For very large expected order sizes, there are

also insignificant results.

order size k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 -8.78 -15.24 -6.72
4 -9.33 -16.83 -5.85
6 -6.54 -9.19 -3.88
8 -0.58 -4.4 -3.95
10 7.01 4.11 -3
12 7.58 5.19 -1.91
14 12.95 15.73 -0.64
16 16.76 17.39 2.79
18 15.17 16.23 3.84
20 9.84 13.91 2.8
22 4.89 6.3 1.1
24 4.53 3.77 0.29
26 0.99 1.95 1.01

Table 3.29: t values for flow time with various expected order sizes and empty cells per row

order size k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 (-0.3959, -0.2464) (-0.6303, -0.4812) (-0.3059, -0.1632)
4 (-0.3614, -0.2315) (-0.5619, -0.4401) (-0.2762, -0.1330)
6 (-0.3381, -0.1770) (-0.4817, -0.3063) (-0.2083, -0.0645)
8 (-0.1226, 0.0686) (-0.2836, -0.1037) (-0.2530, -0.0803)
10 (0.2870, 0.5233) (0.1162, 0.3463) (-0.2926, -0.0552)
12 (0.4631, 0.8056) (0.3023, 0.6956) (-0.2806, 0.0097)
14 (0.9739, 1.3391) (0.9696, 1.2593) (-0.1753, 0.0913)
16 (1.3566, 1.7337) (1.575, 1.995) (0.0641, 0.4155)
18 (1.526, 2.001) (1.954, 2.518) (0.221, 0.724)
20 (1.127, 1.719) (1.585, 2.131) (0.118, 0.752)
22 (0.595, 1.448) (0.864, 1.695) (-0.220, 0.735)
24 (0.406, 1.075) (0.364, 1.226) (-0.319, 0.426)
26 (-0.249, 0.711) (-0.022, 0.943) (-0.236, 0.694)

Table 3.30: Confidence Intervals for flow time with various expected order sizes and empty
cells per row

81

k = 2 configuration has a shorter average retrieval time for small expected order sizes

(see Table 3.29). This gets to a breakeven and for large order sizes, k = 3 and k = 4

configurations becomes better because they handle the traffic flow better with more empty

cells.

Confidence intervals for the differences between average retrieval times of k configura-

tions are shown on Table 3.30.

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

à
à

à

à

à

à

à

à

à

à

à

à

à

ì
ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Expected order size @itemsD

W
a

it
in

g
ti
m

e
p

e
r

P
ic

k
@c

y
c
le

s
p

e
r

p
ic

k
D

ì k = 4

à k = 3

æ k = 2

Figure 3.25: Waiting Time per Pick for Different Expected Order Size Levels

Waiting time per pick for k = 2 configuration has more variability because of lower

traffic capacity with less empty cells (see Figure 3.26).

For very small expected order sizes, there is no significant difference between configu-

rations (see Table 3.31). Also for larger expected order sizes difference between k = 3 vs.

k = 4 becomes insignificant because both configurations have more difficulty handling the

traffic.

T values shows that k = 2 has a significantly longer waiting time except the smallest

order size of 2 compared to other two configurations (see Table ??). k = 3 configuration has

a significantly longer waiting time due to less empty cells per row.

82

2 4 6 8 10 12 14 16 18 20 22 24 26

0.6

0.8

1.0

1.2

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

k = 2

k = 3

k = 4

Figure 3.26: Waiting time for various expected order sizes and empty cells per row.

k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 0.704 0.057 0.068
4 0.035 0 0.032
6 0 0 0.023
8 0 0 0.009
10 0 0 0
12 0 0 0
14 0 0 0
16 0 0 0
18 0 0 0
20 0 0 0
22 0 0 0.013
24 0 0 0.026
26 0 0 0

Table 3.31: p values for waiting time with various expected order sizes and empty cells per
row

Confidence intervals are shown for the waiting time per pick differences of k configura-

tions.

83

k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 -0.38 1.98 1.9
4 2.21 5.01 2.25
6 13.33 14.48 2.41
8 23.54 28.49 2.82
10 32.33 34.38 5.49
12 32.49 35.43 5.32
14 44.41 49.55 8.08
16 37.67 49.59 10.42
18 28.12 38.25 7.87
20 29.18 29.19 4.53
22 20.69 25.36 2.63
24 19.93 19.28 2.35
26 17.22 18.7 4.03

Table 3.32: t values for waiting time with various expected order sizes and empty cells per
row

k=2 vs k=3 k=2 vs k=4 k=3 vs k=4
2 (-0.00748, 0.00511) (-0.00017, 0.01083) (-0.00051, 0.01353)
4 (0.00048, 0.01278) (0.00693, 0.01649) (0.00046, 0.00970)
6 (0.04812, 0.06557) (0.05311, 0.07058) (0.00075, 0.00925)
8 (0.10129, 0.12056) (0.10809, 0.12480) (0.00152, 0.00952)
10 (0.14660, 0.16640) (0.15792, 0.17790) (0.00716, 0.01567)
12 (0.17576, 0.19937) (0.19117, 0.21459) (0.00942, 0.02120)
14 (0.18827, 0.20645) (0.20800, 0.22591) (0.01463, 0.02454)
16 (0.20114, 0.22423) (0.23114, 0.25103) (0.02283, 0.03398)
18 (0.19019, 0.22002) (0.22686, 0.25250) (0.02559, 0.04356)
20 (0.18260, 0.21012) (0.20533, 0.23628) (0.01341, 0.03549)
22 (0.16691, 0.20352) (0.19082, 0.22430) (0.00499, 0.03969)
24 (0.14561, 0.17891) (0.16341, 0.20220) (0.00269, 0.03840)
26 (0.12272, 0.15580) (0.14940, 0.18608) (0.01403, 0.04293)

Table 3.33: CIs for waiting time with various expected order sizes and empty cells per row

3.5.1 Aspect Ratio Analysis

We investigate the effect of the aspect ratio (number of columns / number of rows)

on performance. Aspect ratio configurations for the experiments are in Table 3.34. All

configurations have approximately the same number of conveyors, storage containers, and

empty cells.

84

Config. No Aspect Ratio Rows Cols. k Conveyors Items Empty Cells

1 8 (6:50) 6 50 8 300 252 48

2 3 (10:30) 10 30 5 300 250 50

3 1 (16:19) 16 19 3 304 256 48

4 0.5 (25:12) 25 12 2 300 250 50

5 0.16 (42:7) 42 7 1 294 252 42

Table 3.34: Configurations with Different Aspect Ratio Values

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

à
à à à

à à
à

ì

ì

ì

ì

ì

ì ì ì

ò

ò

ò

ò

ò

ô

ô

ô

0 10 20 30 40

0.0

0.1

0.2

0.3

0.4

Expected order size @itemsD

T
h

ro
u

g
h

p
u

t
@i
te

m
s

p
e

r
c
y
c
le
D

ô A.R. = 0.16

ò A.R. = 0.5

ì A.R. = 1

à A.R. = 3

æ A.R. = 8

Figure 3.27: Throughput Plot

All aspect ratio configurations are significantly different from each other except aspect

ratio of 0.5 vs. 8 and aspect ratio of 1 vs. 3 at the expected order size 2 (see Table 3.35).

These points are breakeven points where longer walking time balances the effect of shorter

waiting time and these configurations become statistically same.

T values shows that aspect ratio of 3 is better for all expected order sizes (see Fig-

ure 3.36). Aspect ratio of 8 is worse than the aspect ratios of 1 and 3 due to excess walking.

85

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
0.0

0.1

0.2

0.3

0.4

0.5

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

a.r. = 8

a.r. = 3

a.r. = 1

a.r. = 0.5

a.r. = 0.16

Figure 3.28: Throughput for different aspect ratios

0.16vs0.5 0.16vs1 0.16vs3 0.16vs8 0.5vs1 0.5vs3 0.5vs8 1vs3 1vs8 3vs8

2 0 0 0 0 0 0 0.309 0.721 0 0
4 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
8 - - - - 0 0 0 0 0 0
10 - - - - 0 0 0 0 0 0
12 - - - - - - - 0 0 0
14 - - - - - - - 0 0 0
16 - - - - - - - 0 0 0
18 - - - - - - - - - 0
20 - - - - - - - - - 0
22 - - - - - - - - - 0.004
24 - - - - - - - - - 0
26 - - - - - - - - - 0

Table 3.35: p values for throughput with various aspect ratios

Aspect ratio of 8 is better than the aspect ratios of 0.16 and 0.5 because of shorter waiting

time.

Confidence intervals for the aspect ratio configurations are shown on Tables 3.37, 3.38

and 3.39.

86

0.16vs0.5 0.16vs1 0.16vs3 0.16vs8 0.5vs1 0.5vs3 0.5vs8 1vs3 1vs8 3vs8

2 -56.16 -135.13 -117.13 -56.04 -64.3 -56.26 -1.04 -0.36 71.08 60.86
4 -71.1 -115.74 -143.63 -86.88 -57.91 -79.12 -11.69 -8.12 59.23 80.96
6 -82.79 -134.49 -179.75 -94.34 -68.38 -96.99 -20.88 -9.26 49.69 80.04
8 - - - - -99.66 -147.87 -42.22 -9.56 64.52 70.86
10 - - - - -79.87 -120.56 -53.07 -11.88 45.48 68.87
12 - - - - - - - -24.44 46.51 79.6
14 - - - - - - - -46.6 24.96 69.1
16 - - - - - - - -49.64 6.69 56.74
18 - - - - - - - 50.19
20 - - - - - - - 23.8
22 - - - - - - - 3.1
24 - - - - - - - -14.65
26 - - - - - - - -23.5

Table 3.36: t values for throughput with various aspect ratios

0.16vs0.5 0.16vs1 0.16vs3 0.16vs8

2 (-0.0511, -0.0476) (-0.118, -0.115) (-0.1188, -0.1147) (-0.052, -0.048)
4 (-0.077, -0.073) (-0.1688, -0.163) (-0.180, -0.175) (-0.093, -0.089)
6 (-0.105, -0.100) (-0.2117, -0.2054) (-0.226, -0.2208) (-0.134, -0.128)

Table 3.37: CIs for throughput with various aspect ratios

0.5vs1 0.5vs3 0.5vs8

2 (-0.06906, -0.06480) (-0.06984, -0.06494) (-0.002403, 0.000787)
4 (-0.09415, -0.08773) (-0.10554, -0.10022) (-0.01885, -0.01323)
6 (-0.10904, -0.10271) (-0.12319, -0.11810) (-0.03115, -0.02560)
8 (-0.12600, -0.12093) (-0.137197, -0.133453) (-0.04763, -0.04322)
10 (-0.13558, -0.12881) (-0.14986, -0.14486) (-0.06816, -0.06310)

Table 3.38: CIs for throughput with various aspect ratios

Up to expected order size of approximately 15, throughput increases with the increasing

aspect ratio until the aspect ratio of 3. For the lower expected order sizes, an aspect ratio

of 8 has a lower throughput than the aspect ratio configurations with 3 and 1. For larger

expected order sizes, throughput stabilizes. Since we restrict the expected order size with

the number of columns, for different aspect ratio levels curves end at different expected order

size levels.

87

1vs3 1vs8 3vs8

2 (-0.00306, 0.00214) (0.064222, 0.068028) (0.06435, 0.06882)
4 (-0.01495, -0.00893) (0.07231, 0.07749) (0.08465, 0.08904)
6 (-0.01803, -0.01151) (0.07431, 0.08069) (0.08991, 0.09462)
8 (-0.01439, -0.00932) 0.07557, 0.08052) (0.08731, 0.09249)
10 (-0.01778, -0.01256) (0.06357, 0.06955) (0.07930, 0.08415)
12 (-0.023425, -0.019808) (0.04724, 0.05159) (0.069208, 0.072858)
14 (-0.033004, -0.030229) (0.02375, 0.02800) (0.055790, 0.059193)
16 (-0.041249, -0.037984) (0.004390, 0.008260) (0.044286, 0.047598)
18 - - (0.031184, 0.033833)
20 - - (0.015966, 0.018967)
22 - - (0.000814, 0.003986)
24 - - (-0.010551, -0.007966)
26 - - (-0.020763, -0.017437)

Table 3.39: CIs for throughput with various aspect ratios

Waiting time per pick and wasted walking time plots help us to interpret the throughput

and average retrieval time results (see Figures 3.31 and 3.33). For the worker, the ideal

case is walking to the very next location and processing a pick. Wasted walking represents

walking longer than the very next location between picks. Because the pick face is narrow for

small aspect ratio values, waiting times are significantly larger, which increases the average

retrieval time and decreases the throughout (see Figure 3.31).

For small expected order sizes, walking time increases with the increasing aspect ratio.

After the aspect ratio of 3, walking times becomes larger per pick, which decreases the

throughput for the aspect ratio of 8. For the lower expected order sizes, aspect ratio of 8

shows an interesting phenomenon: several orders are able to arrive to the pick face since

order sizes are small and the worker is walking excessively, which leads to waiting time of the

items (not the worker waiting), which increases the average retrieval time for the requested

items. Average retrieval time keeps increasing with the increasing expected order size and

stabilizes when change in the walking time per pick is small.

88

æ
æ æ æ æ

æ
æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à à
à

à

à

à

à

à

à

à

à

à

à

ì
ì

ì

ì

ì

ì

ì

ì

ò
ò

ò

ò
ò

ô
ô ô

0 10 20 30 40

0

10

20

30

40

Expected order size @itemsD

A
v
e

ra
g

e
R

e
tr

ie
v
a

l
T

im
e
@c

y
c
le

s
D

ô A.R. = 0.16

ò A.R. = 0.5

ì A.R. = 1

à A.R. = 3

æ A.R. = 8

Figure 3.29: Average Retrieval Time Plot

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

10

20

30

40

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

a.r. = 8

a.r. = 3

a.r. = 1

a.r. = 0.5

a.r. = 0.16

Figure 3.30: Flow time for different aspect ratios

89

æ æ

à à à à à à à à à à à à à

ì

ì

ì
ì ì ì ì ì

ò

ò

ò

ò
ò

ô

ô

ô

0 10 20 30 40 50
0

2

4

6

8

10

12

Expected order size @itemsD

W
a

it
in

g
T

im
e
@c

y
c
le

s
p

e
r

p
ic

k
D

ô A.R. = 0.16

ò A.R. = 0.5

ì A.R. = 1

à A.R. = 3

æ A.R. = 8

Figure 3.31: Waiting Time for Aspect Ratio Configurations

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0

2

4

6

8

10

12

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

a.r. = 8

a.r. = 3

a.r. = 1

a.r. = 0.5

a.r. = 0.16

Figure 3.32: Waiting time for different aspect ratios

90

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à
à

à
à à à à à

ì

ì

ì

ì
ì

ì ì ì

ò

ò

ò
ò

ò

ô

ô
ô

0 10 20 30 40 50
0

1

2

3

4

5

6

7

Expected order size @itemsD

W
a

s
te

d
W

a
lk

in
g

T
im

e
@c

y
c
le

s
p

e
r

p
ic

k
D

ô A.R. = 0.16

ò A.R. = 0.5

ì A.R. = 1

à A.R. = 3

æ A.R. = 8

Figure 3.33: Walking Time for Aspect Ratio Configurations

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0

1

2

3

4

5

6

7

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

a.r. = 8

a.r. = 3

a.r. = 1

a.r. = 0.5

a.r. = 0.16

Figure 3.34: Walking time for different aspect ratios

91

3.5.2 Variable k Analysis

Empty cells do not have to be distributed uniformly throughout the grid. As long

as there is at least one empty cell per row, we can distribute the empty cells arbitrarily.

We investigate the effect of the distribution of empty cells with three configurations (see

Table 3.40).

Row Uniform Decreasing k Increasing k

1 4 6 2
2 4 6 2
3 4 6 2
4 4 4 4
5 4 4 4
6 4 4 4
7 4 4 4
8 4 2 6
9 4 2 6
10 4 2 6

Table 3.40: Distribution of Empty Modules for 3 Configurations

æ

æ

æ

æ

æ

æ

æ
æ æ

æ
æ

æ æ

à

à

à

à

à

à

à
à à à

à
à à

ì

ì

ì

ì

ì

ì
ì ì ì

ì ì ì
ì

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

Expected order size @itemsD

T
h

ro
u

g
h

p
u

t
@i
te

m
s

p
e

r
c
y
c
le
D

ì decreasing k

à increasing k

æ uniform

Figure 3.35: Throughput Plot

92

2 4 6 8 10 12 14 16 18 20 22 24 26
0.0

0.1

0.2

0.3

0.4

0.5

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

uniform

increasing k

decreasing k

Figure 3.36: Throughput for variable k configurations

Throughput plots shows close results so we want to take a look at the statistical test

results (see Figures 3.35 and 3.36).

uniform vs. inc-k uniform vs. dec-k inc-k vs. dec-k
2 0.347 0.618 0.629
4 0.201 0.009 0.24
6 0.473 0.501 0.229
8 0.022 0.993 0.029
10 0.567 0 0
12 0.011 0 0
14 0 0 0
16 0.003 0 0
18 0 0 0
20 0 0 0
22 0.004 0 0
24 0 0 0
26 0 0 0

Table 3.41: p values for throughput with variable k configurations

For small expected order sizes up to 8, there is no significant difference between config-

uration because all of them handles the traffic well. For larger expected order sizes there is

a significant difference.

93

uniform vs. inc-k uniform vs. dec-k inc-k vs. dec-k
2 0.96 0.5 -0.49
4 1.31 2.79 1.2
6 -0.73 0.68 1.23
8 -2.41 0.01 2.3
10 0.58 5.3 4.71
12 -2.71 9.64 12.69
14 -4.68 14.05 16.66
16 -3.29 21.47 22.84
18 -4.73 13.48 15.99
20 -4.21 12.54 16.66
22 -3.15 12.53 18.09
24 -4.03 8 14.95
26 -4.74 7.88 15.8

Table 3.42: t values for throughput with variable k configurations

T values show that increasing-k configuration is significantly better compared to both

uniform and decreasing-k configurations after the expected order size of 8 (see Table 3.42).

The reason is probability of having requested items in a row increase when we get closer to

the pick face. Therefore, we need more empty cells close to pick face. Uniform configuration

is significantly better than decreasing-k configuration because it has more empty cells closer

to the pick face.

uniform vs. inc-k uniform vs. dec-k inc-k vs. dec-k
2 (-0.00127, 0.00351) (-0.00176, 0.00291) (-0.00281, 0.00173)
4 (-0.00094, 0.00427) (0.00086, 0.00554) (-0.00108, 0.00415)
6 (-0.00293, 0.00139) (-0.00187, 0.00374) (-0.00113, 0.00453)
8 (-0.003741, -0.000309) (-0.001903, 0.001919) (0.000229, 0.003838)
10 (-0.000972, 0.001739) (0.002665, 0.006019) (0.002239, 0.005678)
12 (-0.002663, -0.000370) (0.005101, 0.007849) (0.006704, 0.009279)
14 (-0.003341, -0.001309) (0.008908, 0.011942) (0.011185, 0.014315)
16 (-0.002717, -0.000633) (0.012757, 0.015443) (0.014362, 0.017188)
18 (-0.004334, -0.001716) (0.01192, 0.01618) (0.01489, 0.01926)
20 (-0.005485, -0.001898) (0.01234, 0.01716) (0.01618, 0.02071)
22 (-0.00585, -0.00125) (0.01157, 0.01608) (0.015411, 0.019339)
24 (-0.00671, -0.00219) (0.00884, 0.01492) (0.01410, 0.01857)
26 (-0.00804, -0.00319) (0.00959, 0.01632) (0.01617, 0.02098)

Table 3.43: CIs for throughput with variable k configurations

94

Confidence intervals for the throughput differences between variable k configurations

are shown on Table 3.43. For small expected order sizes, the distribution of empty cells

does not have a significant effect on the throughput. For larger expected order sizes, the

decreasing k configuration performs worse than the other two configurations.

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à
à

à

à

à

à

à

à

à

à

à

à

à

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Expected order size @itemsD

W
a

it
in

g
ti
m

e
@c

y
c
le

s
p

e
r

p
ic

k
D

ì decreasing k

à increasing k

æ uniform

Figure 3.37: Waiting Time for Variable k Configurations

We can explain this difference with the average retrieval time and waiting time of the

worker. Because all items try to reach the pick face, traffic density increases when items get

closer to the pick face row. Because there are fewer empty positions toward the pick face

in the decreasing k configuration, waiting time per pick increases and throughput decreases

(see Figure 3.37).

3.5.3 Analysis with Multiple Copy Configurations

Towards the larger expected order sizes, one copy vs. two copy configuration becomes

statistically same (see Table 3.44). For the very large expected order size, all configurations

are statistically same. This is because of high traffic density for all configurations and

deepness does not matter.

95

2 4 6 8 10 12 14 16 18 20 22 24 26

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

uniform

increasing k

decreasing k

Figure 3.38: Waiting time for Variable k Configurations

2 4 6 8 10 12 14 16 18 20 22 24 26

1

2

3

4

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

uniform

increasing k

decreasing k

Figure 3.39: Walking time for Variable k Configurations

T values shows that one copy configuration is significantly better because of having shal-

low grid and shorter retrieval time (see Table 3.45). Two copy configuration is significantly

96

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à à

à

à

à

à

à

à

à

à

à

à

à

ì ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0

5

10

15

20

25

Expected order size @itemsD

F
lo

w
ti
m

e
@c

y
c
le

s
D

ì decreasing k

à increasing k

æ uniform

Figure 3.40: Average Retrieval Time Plot

2 4 6 8 10 12 14 16 18 20 22 24 26

10

15

20

25

30

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

uniform

increasing k

decreasing k

Figure 3.41: Flow time for variable k configurations

better than the three configuration due to same reasons shorter waiting time and average

retrieval time.

97

æ

æ

æ

æ

æ

æ

æ
æ æ

æ
æ

æ æ

à

à

à

à

à

à

à
à à à

à
à à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì ì ì
ì

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

Expected Order Size @itemsD

T
h

ro
u

g
h

p
u

t
@i
te

m
s

p
e

r
c
y
c
le
D

ì Three copies

à Two copies

æ One copy

Figure 3.42: Throughput Plot for Multi Copies of SKUs

2 4 6 8 10 12 14 16 18 20 22 24 26
0.0

0.1

0.2

0.3

0.4

0.5

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

One copy

Two copies

Three copies

Figure 3.43: Throughput for multi copies

We also investigate the effect of having multiple copies of SKUs versus having a single

copy from each SKU. Therefore, for one copy configuration, there are unique SKUs in the

grid. Because the number of columns is the same for all configurations, the grid becomes

98

one vs. two copy one vs. three copy two vs. three copy
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0
10 0 0 0
12 0 0 0
14 0 0 0
16 0 0 0
18 0 0 0
20 0.057 0 0
22 0.204 0 0
24 0.811 0 0
26 0.93 0.109 0.1

Table 3.44: p values for throughput with mull copy configurations

one vs. two copy one vs. three copy two vs. three copy
2 37.25 101.71 54.22
4 44.95 116.06 56.09
6 40.38 96.85 49.34
8 31.45 110.16 78.78
10 20.13 94 62.37
12 15.91 61.02 50.13
14 12.33 56.3 51.2
16 10.29 41.9 37.63
18 7.79 35.53 26.95
20 1.98 26.09 18.82
22 1.3 11.88 13.16
24 -0.24 6.93 8.51
26 -0.09 1.66 1.7

Table 3.45: t values for throughput with mull copy configurations

deeper with additional copies. Since we assume that storage containers do not deplete very

often, density does not change over time.

Throughput rate is lower with more copies of each SKU (see Figures 3.42 and 3.44).

When an arbitrary copy of the SKU is chosen, not necessarily closer item is chosen, which

leads to preference with longer travel in some cases. Therefore, the worker waits longer for

the requested items with the increased travel time of the storage containers. The significant

99

one vs. two copy one vs. three copy two vs. three copy
2 (0.03764, 0.04201) (0.090232, 0.093935) (0.050287, 0.054229)
4 (0.05749, 0.06297) (0.13093, 0.13562) (0.07038, 0.07570)
6 (0.05309, 0.05876) (0.13892, 0.14491) (0.08243, 0.08956)
8 (0.04013, 0.04571) (0.13701, 0.14219) (0.09417, 0.09919)
10 (0.02426, 0.02975) (0.12513, 0.13070) (0.09760, 0.10422)
12 (0.012331, 0.015969) (0.09845, 0.10528) (0.08414, 0.09130)
14 (0.007966, 0.011134) (0.07511, 0.08077) (0.06566, 0.07112)
16 (0.004661, 0.006973) (0.05216, 0.05752) (0.04636, 0.05169)
18 (0.003891, 0.006659) (0.03650, 0.04096) (0.03092, 0.03600)
20 (-0.000061, 0.003695) (0.021366, 0.025000) (0.01905, 0.02369)
22 (-0.00088, 0.00393) (0.01319, 0.01868) (0.01217, 0.01665)
24 -0.00261, 0.00206) (0.00610, 0.01120) (0.00678, 0.01107)
26 (-0.00242, 0.00222) (-0.00230, 0.02187) (-0.00200, 0.02177)

Table 3.46: CIs for throughput with mull copy configurations

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à
à

à

à

à

à

à

à

à

à

à

à

à

ì
ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0

5

10

15

20

25

Expected Order Size @itemsD

F
lo

w
ti
m

e
@c

y
c
le

s
D

ì Three copies

à Two copies

æ One copy

Figure 3.44: Average Retrieval Time Plot

difference between configurations decrease with the larger expected order sizes. In these

cases, the worker is busy with the larger orders and the system can tolerate longer retrieval

times. With the larger expected order sizes, traffic density increases in the grid, which causes

the increase in the flow time in all configurations.

100

2 4 6 8 10 12 14 16 18 20 22 24 26

10

15

20

25

30

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

One copy

Two copies

Three copies

Figure 3.45: Flow time for multi copies

æ æ æ æ æ æ æ æ
æ

æ
æ

æ æ

à

à

à

à
à

à à à à à
à à à

ì

ì

ì

ì

ì

ì

ì
ì

ì ì ì ì ì

0 5 10 15 20 25
0

1

2

3

4

5

Expected Order Size @itemsD

W
a

it
in

g
ti
m

e
@c

y
c
le

s
p

e
r

p
ic

k
D

ì Three copies

à Two copies

æ One copy

Figure 3.46: Waiting Time for Multi Copy Configurations

101

2 4 6 8 10 12 14 16 18 20 22 24 26

1

2

3

4

5

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

One copy

Two copies

Three copies

Figure 3.47: Waiting time for multi copy configurations

2 4 6 8 10 12 14 16 18 20 22 24 26

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

One copy

Two copies

Three copies

Figure 3.48: Walking time for multi copy configurations

3.5.4 Comparison with a Flow Rack Configuration

Flow rack is widely used in industry for high volume order picking operations. Flow

rack guarantees a SKU density of one SKU per location. In flow rack, slot contain at most

one SKU. GridPick allows effectively more than one SKU per slot.

102

Figure 3.49: Visual Comparison of GridPick and the flow rack

0 5 10 15 20 25

0

10

20

30

40

50

Order Size

%
In

c
re

a
s
e

in
P

ro
d
u

c
ti
v
it
y

Figure 3.50: Productivity Increase in GridPick Compared to a Flow Rack

We compare the arrangements and performance of GridPick and an equivalent flow rack

with the same number of SKUs. In both systems, there are 48 SKUs, 5 copies per SKU,

and 240 storage containers. GridPick has 10 rows, 29 columns, and 5 empty cells per row.

The flow rack configuration has 48 columns, and 5 rows. Having 48 columns is due to the

103

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Order Size

W
al
ki
ng
Ti
m
e
pe
rP
ic
k

FlowRack

GridPick

Figure 3.51: Comparison of Walking Times for the Flow Rack and the GridPick

presence of 48 SKUs. We assign a slot for each SKU. Figure 3.49 shows the orientation of

both GridPick and the equivalent flow rack.

Figure 3.50 shows the percent difference in the throughput rate between GridPick and

the flow rack configurations. There is a 20-50 % productivity improvement with GridPick.

This is due to the decreased walking time per pick for all expected order sizes (see Fig-

ure 3.51). Because walking time in between picks decreases with the larger expected order

sizes, improvement in the performance decreases with increasing expected order size. When

the expected order size reaches the capacity of the pick face (number of columns), there is a

sudden performance drop due to the traffic density in the pick face.

3.5.5 Conclusions

In brief, we introduce a new order picking system design that has a dynamically changing

pick face. The requested items travel to the pick face when there is a demand for them. The

system employs decentralized control as a design methodology, which enables flexibility and

adaptability features. We develop the cell based rules that apply to each module. Decentral-

ized control rules relieve the burden for the solution of large scale systems.GridPick provides

104

high SKU density, which results with a higher pick density. The system provides productiv-

ity improvement by reducing the travel time between items of an order. Simulation analysis

shows the performance for different parameters and configurations. Expected order size,

aspect ratio, and number of SKU copies are crucial factors on the performance.Performance

improvement and flexibility are acquired with the cost of automation and algorithm devel-

opment. Since the required hardware equipments are already available, the system can be

implemented with current material handling technologies.

105

Chapter 4

A Modified Version of the GridPick System: Picking From Two Sides

We introduce a major enhancement to the one sided GridPick system that modifies

the message passing algorithm to enable picking from two sides of the grid. In one sided

GridPick, the system is constrained to the one side, which limits performance. Two sided

picking offers another level of flexibility with the same sized grid. If there is a need for

additional throughput capacity, an additional picker can work on the other side of the same

grid to increase the picks per unit time. Therefore, we can scale the throughput by simply

changing the labor use without extra costs of automation devices and inventory kept in the

facility.

Retrievals and Moveaways

Pick Face-1

Pick Face-2

Retrievals and Moveaways

Figure 4.1: Abstract Representation of the Two Sided Picking Model

106

This problem is more difficult than one sided GridPick due to the higher traffic intensity,

which may lead to conflicts and deadlocks if not managed properly (see Figure 4.1). There

is a higher traffic intensity because the requested items are trying to move in two opposite

directions.

Figure 4.1 shows the outline of the two sided GridPick model. There are requested

items traveling to the two pick faces. Pick face-1 represents the bottom pick face and pick

face-2 indicates the pick face on top. Requested items arrive at the edge of the system and

workers on both sides are processing the orders by means of piece picking from cartons or

carton picking from pallets. Whenever the worker processes the item, the storage container

is free to move in the grid. We call the worker on pick face-1, worker-1, and the worker on

pick face-2, worker-2.

Figure 4.2: Visualization of the Two Sided Picking Model

Figure 4.2 represents a snapshot of the two sided picking model simulation. Worker-1

is picking order number 3, and items of order number 5 are still traveling to pick face-1. On

the other side, worker-2 is picking order number 4, and items of order number 6 are still

traveling to pick face-2.

107

By introducing this model, we expect to have a more convenient way of increasing

throughput by enabling an alternative of one sided GridPick. With this model, in case of a

higher demand, additional pickers can enable a larger throughput capacity. Additional hard-

ware and equipment may not be available in these cases, especially when we consider the high

cost of the investment. Therefore, with the same equipment, additional workers can provide

required throughput capacity. Furthermore, this configuration does not require additional

areas for a space restricted facility that needs extra activity for its operations.Without a two

sided picking system, we would need a larger grid for additional performance. A basically

equivalent system can be two one sided GridPick systems. This means additional inventory

in the facility, which increases costs and decreases supply chain response time. We could add

another worker to one sided GridPick on the same side of the grid. However, one side can

only manage up to a certain traffic intensity. With the two sided GridPick enhancement,

instead of having one two-deep picking location, we have two one-deep locations. Two sided

picking enables a more shallow lane configuration than the one sided picking. It increases

accessibility to the storage units by opening more space for order picking.

We will compare this model with the one sided GridPick model and will detect the

performance improvement for the system. We do not address the optimization of which

picking side is better for a particular order. Our study mainly achieves the design goals and

fulfills the complex dynamics of decentralized control systems.

4.1 System Description

In the following negotiation figures, representation style is analogous to the rules repre-

sentation of the one sided GridPick model. Row information is shown on the top right of the

figure. It is the target row for the replenishing item. If it is a requested item, the number

shows the departure or origin row. It indicates the current row for the stored item. There-

fore, in the examples we can easily see the current row of a stored item. Arrow heads without

108

a bar show the initiation and response messages. Arrows with a bar show the forward and

incoming messages (see Figure 4.3).

2

3

Forward and Incoming
Messages

Target Row

Departure Row

3

Current Row
Initiation and

Response Messages

Figure 4.3: Representation of the States and Messages for the Negotiation Algorithm

4.2 Solution Approach

Similar to the initial model, we have adopted a decentralized control algorithm as a

solution methodology. The conveyor module communicates with its four neighbors (north,

south, east, and west). The decentralized control logic includes a series of events that initiate

negotiations by passing messages between conveyor modules. Each conveyor module takes a

state and negotiation condition depending on the state of the storage container and the phase

of the negotiation. We will discuss the events that involve the balancing movements, which

are the key events for the algorithm. These are the items moving to balance the requested

items. There are also functions to setup initial configuration. We define events that update

the states of the modules, and actuate the movement of the storage containers. Depending

on the necessity of the information, messages between modules may include negotiation

conditions of the modules, process number of the events, row information of the module,

column number of the message sender and receiver, etc.

Another important point is: a conveyor module cannot send and receive multiple mes-

sages at the same time instance due to the discrete nature of the simulation. For instance,

109

during the initiation, the conveyor module cannot send messages to the east and west at

the same time. One or the other is sent first. For this reason, we introduce randomness to

the initiation by randomly choosing one of them to send first. Furthermore, the conveyor

module cannot receive multiple messages at the same time instance, which prevents any

conflict resulting from the incoming messages. Even if the incoming messages come from

the same distance conveyor units, they will arrive the conveyor module in different time

instances.Similar to the one sided GridPick model, vertical movements are prioritized over

horizontal movements by having vertical movement negotiation events before the horizon-

tal movement events. An important property for the system is: we have prioritized the

movement towards the pick face-2 to avoid any conflict. We ensure this by executing the

negotiation events of the items traveling towards pick face-2 before the items moving towards

pick face-1.

4.2.1 Discrete Events and Balance Rules for the Operations

For handling the movement of requested items in two opposite directions, we have

additional balance rules along with the rules already defined in one sided GridPick. While

requested items move towards the pick faces, balancing items also move to balance the

occupancy of the grid.

There are two types of requested items: requested-1 and requested-2 (see Table 4.1).

Requested-1 needs processing on pick face-1 and requested-2 requires picking on pick face-

2. There are also replenishing items that are moving to balance the movements of the

requested items. Replenishing-1 units move towards pick face-1, and replenishing-2 units

convey towards pick face-2, which will arrive at a target row and turn into a regular occupied

storage unit.

There are also additional negotiating positions taken by the conveyor modules. If the

requested item is about to change its row information, in the first step of the negotiation,

it turns into candidate to exchange. If it is requested-1 originally it becomes candidate to

110

Symbol
Negotiation
Condition

Definition

Requested-1
The module has a requested storage container that will
travel to pick face-1.

Requested-2
The module has a requested item that will travel to pick
face-2.

Replenishing-1
The module has a replenishing item that is moving to-
wards pick face-1.

Replenishing-2
The module has a replenishing item that is moving to-
wards pick face-2.

Candidate to
Exchange-1

The module has a requested-1 item that may exchange
its row information after the confirmation from the other
negotiating side.

Candidate to
Exchange-2

The module has a requested-2 item that may exchange
its row information after the confirmation from the other
negotiating side.

Willing to be
Replenishing-1

The module has an occupied item that will turn into
replenishing-1 after the confirmation from the other ne-
gotiating side.

Willing to be
Replenishing-2

The module has an occupied item that will turn into
replenishing-2 after the confirmation from the other ne-
gotiating side.

Table 4.1: Additional Negotiation Conditions

exchange-1. It turns into candidate to exchange-2 if it is requested-2 originally. Also in

the first step of the negotiation, if an occupied item receives a message to be replenishing,

it turns into willing to be replenishing-1 or willing to be replenishing-2 depending on the

direction it will move (see Table 4.1). There are 5 balance rules and 4 of them are defined

for both requested-1 and requested-2 items, which makes a total of 9 balance rules.

This section includes tables for the examples of the balance rules and rules of the

balancing movements. To understand the rule tables throughout the next section, the reader

should follow a few guidelines for the negotiation events. These are the rules for the cases

involving only state change(s) and/or trigger of message(s). State and message combinations

that are not possible or do not necessitate an action are not shown in the tables. Also, for

brevity, only rules coming from one side are shown. We have classified the rules with respect

111

to the type of action (forward, response, final state change, etc.).A module under certain

states and conditions is responsible for the initiation of the respective event, which is checked

by “if” statements. There is also a target group that will receive the messages and take action

(response, forward, etc.) for the execution of the event. Other modules with unrelated states

will forward the messages back and forth between the corresponding modules.

r
r

Response
Message
Type 1

Response
Message
Type 2

Forward
Message
Type 1

Forward
Message
Type 2

Final State
Change
Type 1

Final State
Change
Type 2

Table 4.2: Rule Examples

In the following rule tables, incoming messages and new states are shown. The reader

should review the following guidelines for a better understanding of the communication rules.

In the response message, if the module receives a message from the east or west neighbor,

we show the new state of the module and the response message to the south of the module’s

current state (see Table 4.2). If the module receives a message from the north or south, we

show the new state and the response message to the east of the module’s current state. In

the forward messages, the module passes the incoming message in the direction shown with

the arrow. In the final state change rules, if the module receives a message from east or

west, the new state of the module is shown to the south of the module’s current state. If the

module receives a message from the north or south, the new state of the module is shown to

the east of the module’s current state.

Balance rule-1 is between requested-1 and requested-2 items that executes the exchange

of their row information. Therefore, the balance rule-1 regulates an existing balancing move-

ment between requested items moving in opposite directions. Table 4.3 shows an example of

112

Instance of the Negotiation Description

1

3

4 4

A requested-1 module initiates balance rule-1. Its cur-
rent row is “3,” and it is at its departure row.

2

3

4 4

On the left side of the initiated message, an empty mod-
ule forwards the message to the south. On the right of
the initiated message, an occupied module forwards the
message to the east.

3

3

4 4

On the left, a requested-2 module receives the message
and responds to it by becoming candidate to exchange-
2. It is at its departure row, which is “4.” On the right,
an occupied module forwards the message to the east.

4

3

4 4

On the left, an empty module forwards the response
message to the east. On the right, another empty mod-
ule forwards the message to the south.

5

4

4 4

On the left, the requested-1 module responds to the mes-
sage by sending its departure row information. It takes
the row information from the first incoming message.
Now, its departure row is “4.” On the right, requested-2
module responds to the message by becoming candidate
to exchange-2.

6

4

4 4 The empty modules forward the messages.

7

4

3 4

On the left, the requested-2 module receives the mes-
sage and takes the row information. Now, its depar-
ture row is “3,” which is the row it is about to move
in. On the right, an occupied item forwards the mes-
sage. Requested-1 module will respond to it with its
exchanged row information, which will serve as a neg-
ative response to the requested-2 module. Remaining
steps are omitted for brevity.

Table 4.3: Steps of Balance Rule-1 for Requested-1 in Two Sided GridPick

113

balance rule-1 initiated by a requested-1 item. In this example, if the requested-1 item’s de-

parture row is smaller than or equal to its current row, it initiates balance rule-1 by sending

a message to both east and west including the rule’s process number, row information, and

column number. Whenever an empty module receives the message, it forwards the message

to the south. If there is a requested-2 item which is about to move to the north, it sends

back its row information for a possible exchange. The requested-1 item takes the row infor-

mation from the first incoming message and sends back its row information. Other incoming

messages cannot execute the exchange. In this manner, requested items moving in opposite

directions exchange their departure rows, which balances the system without an assignment

of balancing items.

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

r.c.

Table 4.4: Communication Rules of Balance Rule-1 for Requested-1

Table 4.4 shows the communication rules for balance rule-1 for the requested-1 items.

In the final state change rules, if the module receives row information other than its current

row information, it updates its row information, and becomes the exchanging module in this

114

negotiation. Otherwise, it keeps its same row information, and remains as a requested-2

item.

A requested-2 item can also initiate balance rule-1 if its departure row is larger than or

equal to its current row. Table 4.5 shows an example of balance rule-1 for the requested-2

item. The requested-2 item initiates the message by sending a message to both east and west

neighbors. Whenever a message is received by an empty module, it forwards the message

to the north. If there is a requested-1 module, it will respond to the message by sending

its row information. The requested-2 module will record the row information from the first

incoming message and will send its row information to the corresponding requested-1 module

by specifying its column number. It will reply to other messages by simply sending the same

incoming message without changing any information. Therefore, requested items moving in

opposite directions will exchange their row information without assignment of any additional

balancing items, which will prevent further traffic flow.

Table 4.6 indicates the rules of balance rule-1 for the requested-2 items. A requested-2

item initiates the row exchange before its movement. A requested-1 item in the row below

replies to the message if its departure row is equal to or larger than its current row. In the

final state change message, if the requested-1 item receives new row informatio, it exchanges

its departure row number. Otherwise, its keeps the same row information.

A row exchange between two kinds of requested items can happen even if they are in the

same row. Table 4.7 shows an example of balance rule-2. The requested-1 module initiates

the negotiation by sending messages to both east and west if its departure row is smaller

than its current row. A requested-2 module replies to the message if its departure row is

larger than its current row. The requested-1 module evaluates the first incoming message,

takes the row information, and sends its departure row. The requested-2 item receives the

new departure row information. This rule does not require an empty spot in front of the

requested item.

115

Instance of the Negotiation Description

1

3 3

4

A requested-2 module initiates balance rule-1. Its cur-
rent row is “4,” and it is at its departure row.

2

3 3

4

On the left of the initiated message, an occupied mod-
ule forwards the message to the west. On the right of
the initiated message, an empty module forwards the
message to the north.

3

3 3

4

On the left, an occupied module forwards the message to
the west. On the right, a requested-1 module responds
to the message by turning into candidate to exchange-1.

4

3 3

4 The empty modules forward the messages.

5

3 3

3

The requested-2 module responds to the first incoming
message with its departure row information. It takes the
row information from the incoming message and makes
its new departure row (3).

6

3 3

3 The empty modules forward the messages.

7

3 4

3

On the right, the requested-1 item takes the row infor-
mation. Now, its departure row is “4,” which is the
row it is about to move intp. On the left, the respond
message is on the way. It will be evaluated negatively.
Remaining steps are not shown for brevity.

Table 4.5: Steps of Balance Rule-1 for Requested-2 in Two Sided GridPick

116

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

r.c.

Table 4.6: Communication Rules of Balance Rule-1 for Requested-2

We list the communication rules for balance rule-2 in Table 4.8. If its departure row is

smaller than its current row, a requested-1 item initiates the negotiation (see initial message).

If a requested-2 item has a larger departure row than the current row, it responds to the

message with its departure row information. The requested-1 item replies to the returning

message with its departure row information (see response messages). Other items forward

the incoming messages (see forward messages). In the final state change message, if the

requested-2 item receives the new departure row information from the requested-1 item, it

updates its row information. Otherwise, it keeps the same departure row number without a

row change.

If the requested item cannot find another requested item to exchange its departure row,

which is the convenient way without causing additional traffic flow. They initiate additional

balance rules for the assignment of a balancing item, which replenishes to the departure row

of the requested item for a more immediate balancing of occupancy .Balance rule-3 provides

117

Instance of the Negotiation Description

1
4 3 4

The requested-1 module has already moved down,
and its current row is larger than its departure row.
The current row is “4,” and its departure row is
“3.” It initiates balance rule-2 by sending messages
to the both east and west.

2
4 3 4

On the left of the initiated message, an occupied
module forwards the message. On the right of the
initiated message, an empty module forwards the
message.

3
4 3 4

On the left, a requested-2 module receives the mes-
sage, and responds to the message by being can-
didate to exchange-2. On the right, an occupied
item forwards the message to the east.

4
4 3 4

On the right, another requested-2 module responds
to the message by being candidate to exchange-
2. On the left, an occupied module forwards the
response message.

5
4 4 4 The requested-1 module responds to the first in-

coming message with its row information. It takes
the row information from the message.

6
4 4 4 Occupied and empty modules respond the mes-

sages.

7
3 4 4

On the left, the requested-2 module receives the
message, and gets the row information. Now, its
departure row is “3,” which is the row it is about
to move in. On the right, the requested-1 module
responds to the message with a negative reply.

8
3 4 4

The empty module forwards the response message.

9
3 4 4

The occupied item forwards the response message.

10
3 4 4 The requested-2 item receives the negative reply,

and does not exchange its row information.

Table 4.7: Steps of Balance Rule-2 for Requested-1 in Two Sided GridPick

118

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

r.c.

Table 4.8: Communication Rules of Balance Rule-2 for Requested-1

a balancing item for the requested item to move into its departure row. It also encourages

convoy movement by assigning an occupied item that is next to a requested item, which is

going to move together vertically.

In balance rule-3, an occupied module forwards the message to the north, which is a

possible replenishing item (see Table 4.9). If there is a requested-2 module in the north

neighbor, it responds to the message. This message goes back to the initial requested-1

item. The requested-1 item evaluates the first incoming message, updates its departure row

to current row number, and send its departure row information back. The occupied item

receiving this message turns into a replenishing item with a target row, which is equal to the

departure row of the requested-1 item. We list the communication rules of balance rule-3

for the requested-1 items in Table 4.10.

Table 4.11 shows an example of balance rule-3 for the requested-2 modules. If the

departure row of the requested-2 item is larger than the current row, it initiates balance

rule-3. Unrelated items forward the messages, and an occupied item forwards the message

to the south neighbor. If there is a requested-1 module in the south, it replies back to this

message. The requested-2 item evaluates the first incoming message, updates its departure

119

Instance of the Negotiation Description

1

2 2

2

A requested-1 module initiates balance rule-3 by sending
messages to both east and west.

2

2 2

2

On the left of the initiated message, an occupied mod-
ule forwards the message to the north. On the right of
the initiated message, an empty module forwards the
message to the east.

3

2 2

2

On the left, a requested-2 module responds to the mes-
sage, so, it is known that there is an requested-2 module,
which will eventually move. On the right, an occupied
module forwards the message to the north.

4

2 2

2

On the left, an occupied module forwards the message
to the east. On the right, requested-2 module replies to
the message.

5

2 2

3

On the left, a requested-1 module responds to the mes-
sage with its row information. It takes the current row
information from the message.

6

2 2

2 3

Upon receiving the message, the occupied will turn into
replenishing, and it will take the row information of the
requested-1 module as a target row. The requested-1
module will not respond to the message coming from
the other side.

Table 4.9: Steps of Balance Rule-3 for Requested-1 in Two Sided GridPick

120

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

Table 4.10: Communication Rules of Balance Rule-3 for Requested-1

row to the current row number, and sends a reply. The occupied item receives this reply

message, turn into a replenishing by taking the departure row of the requested-2 item as

the target row information. This means the replenishing item should move into the row

indicated by the target row. We document the rules of balance rule-3 for the requested-2

items in Table 4.12.

We have also adopted balance rules similar to the ones defined in one sided GridPick.

Balance rule-4 is analogous to balance rule-1 of one sided GridPick, but it is defined for both

requested-1 and requested-2 modules. We have shown an example and rules of balance rule-4

for a requested-2 item (see Tables 4.13 and 4.14), not for a requested-1 item for brevity. The

rules and example for the requested-1 items would be similar to the requested-2 items. In

the example for balance rule-4, a requested-2 module initiates the negotiation if its departure

row is equal to or larger than the current row number (see Table 4.13).

We show an example of two competing requested-2 items. An occupied item forwards

the message to the north. If there is an occupied item, it evaluates the first incoming message,

121

Instance of the Negotiation Description

1

4

4 4

A requested-2 module initiates balance rule-3 by sending
message to both east and west.

2

4

4 4

On the left of the initiated message, an empty mod-
ule forwards the message to the west. On the right of
the initiated message, an occupied module forwards the
message to the south.

3

4

4 4

On the right, a requested-1 item responds to the mes-
sage. So, it is known that there is a requested-1 module
that will move. On the left, an occupied module for-
wards the message to the south.

4

4

4 4

On the left, a requested-1 module responds to the mes-
sage. So, it is known that there is a requested-1 module
that will eventually move south. On the right, an occu-
pied module forwards the message to the West.

5

3

4 4

On the left, an occupied module forwards the message to
the East. On the right, the requested-2 module responds
to the message with its row information. Also, it takes
the current row information.

6

3 4

4 4

Upon reception of the message, the occupied module
turns into replenishing. It takes the row information as
its target row. The requested-1 module does not respond
to the message coming from the other side.

Table 4.11: Steps of Balance Rule-3 for Requested-2 in Two Sided GridPick

122

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

Table 4.12: Communication Rules of Balance Rule-3 for Requested-2

replies to it, and becomes willing to be replenishing-1. With the response message, it takes

the departure row of the requested-1 item as its target row, and turn into a replenishing item.

We indicate the general rules of balance rule-4 for the requested-2 modules in Table 4.14.

Balance rule-5 for two sided GridPick is similar to balance rule-2 of one sided GridPick.

We show the example and the rules of balance rule-5 only for the requested-2 items (see

Tables 4.15 and 4.16). We show an example of two competing requested-2 items in the

example (see Table 4.15). The occupied item evaluates the first incoming message. The

requested-2 item updates its departure row to the current row number. In the last message

wave, the occupied item turns into a replenishing item, and takes the departure row of the

requested-2 item as its target row. We indicate the rules of balance rule-5 for the requested-2

modules in Table 4.16.

123

Instance of the Negotiation Description

1
4 4

Two requested-2 modules initiate balance rule-4 by
sending message to both east and west. In this example,
we show the competition for an empty module.

2
4 4

Occupied modules forward the messages.

3
4 4

The empty module forwards the message to the north.
The occupied item forwards the message to the west.

4
4 4

An occupied item responds to the message, and sends
its row information by turning into willing to be
replenishing-1. The occupied item does not respond to
the other incoming message.

5
4 4

The empty module forwards the message to the west.

6
4 4

The occupied module forwards the message to the west.

7
3 4

The requested-2 module responds to the message with
its row information. It takes the current row of the
occupied module as its new row information.

8
3 4

The occupied module forwards the message to the east.

9
3 4

The empty module forwards the message to the north.

10

4

3 4

Upon reception of the message, the occupied module
turns into replenishing module, by taking the row infor-
mation as its target row, which is the row it is about to
move.

Table 4.13: Steps of Balance Rule-4 for Requested-2 in Two Sided GridPick

124

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

Table 4.14: Communication Rules of Balance Rule-4 for Requested-2

Instance of the Negotiation Description

1
4 4 Two requested-2 modules initiates balance rule-5 by

sending messages to both east and west.

2
4 4

Empty modules forward the messages.

3
4 4

The occupied module responds to the first incoming
message from the east with its current row information,
and it turns into candidate to be replenishing-1. It does
not respond to the message coming from the west.

4
4 4

The empty module forwards the message to the east.

5
4 3

The requested-2 module responds to the message with
its row information. It takes the row information of the
occupied module.

6
4 3

The empty module forwards the message to the west.

7
4 4 3

The occupied module receives the message, and turns
into replenishing by taking the row information of the
requested-2 module.

Table 4.15: Steps of Balance Rule-5 for Requested-2 in Two Sided GridPick

125

Initial
Message(s)

Response
Message(s)

Forward
Message(s)

Final State
Change(s)

Table 4.16: Communication Rules of Balance Rule-5 for Requested-2

4.3 Determination of Buffer Lengths for the Series of Events

Again, we have captured the negotiation length of the message dependent events. We

have obtained 99.5 % confidence intervals, which provides at least 98% overall confidence

according to the Bonferroni Inequality.

Variable N Mean StDev SE Mean 99.5% CI UCL

NS-rep 50 1.38 0.5303 0.075 (1.1595, 1.6005) 1.605

EW-rep 50 3.26 2.648 0.375 (2.159, 4.361) 4.385

NS-req 50 1.48 0.6773 0.0958 (1.1984, 1.7616) 1.7674

EW-req 50 3.208 2.699 0.371 (2.121, 4.294) 4.321

Table 4.17: Length of the Message Passing for Negotiation of Events

We have determined upper control limits for all negotiation events.Since we are inter-

ested in the upper control limits, UCL provides us a inter-startup time for the events. UCL

is obtained by adding three standard errors to the mean.

126

4.4 Statistical Analysis for Steady-State Parameters

4.4.1 Determining the Warmup Period

For the throughput, results are low initially, and waiting times are longer at the startup

of the simulation. Since initial bias is very short at the beginning of the simulation, a warmup

period of “200” is sufficiently large.

æ

æ

æ
ææææææææææææææ

æææææ
ææ
ææææææææææææææææ

ææ
ææææææææææææææ

ææææææ
ææææææ
æææææææææææææ

ææææ
æ
æææææææææ

æ
ææææ
æææææææ
æææ
ææææ
ææææ
ææ
ææææ
æææ
ææææææ
æææææææææ

æææ
ææææ
æææææææææææææ

æ
ææ
æææææææææ

ææææææ
æææ
æææ
ææææ
æææ
æææææ
æææææ
ææææ
æææ
æææææææææææ

ææææææææ
ææææææææææææææææææææææææææ

æ
ææ
ææ
ææææææææææ

æææ
ææææææææææææ

ææææææææææ
æ
æææ
æææææææ
æ
æææææ
æææææææææ

ææææææ
æææææææ
æ
æææææææææææææ

ææææ
æææ
ææææ
æææææ
æææ
æ
æææ
æ
ææ
æææ
æææææææææ

æ
æææ
æææ
æææ
ææ
æææææææææ

æææ
æ

0 1000 2000 3000 4000
0

1

2

3

4

5

Time @cyclesD

M
o
v
in

g
A

v
e
ra

g
e

fo
r

T
h
ro

u
g
h
p
u
t
@i
te

m
s

p
e
r

c
y
c
le
D

Figure 4.4: Initial Transient for Throughput

æ

æ

æ

æ

ææ
æ
æ
æ
æææææææææææææææææææææææææææææææææææææææ

ææ
æææææææææææææææææææææ

æææææææææææææææææææææææ
æææææææææææææææææææææææ

ææææææææææææææææææææ
æææææææææææææææææææ

æææææææææææææææææææææææææææææ
ææææææææææææææ

æææ
ææææææ
æææ

ææ
ææææææææææææææææææ

ææææææ

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

Time @cyclesD

M
o
v
in

g
A

v
e
ra

g
e

fo
r

W
a
it
in

g
ti
m

e
@c

y
c
le

s
p
e
r

p
ic

k
D

Figure 4.5: Initial Transient for Waiting Time

127

ææææ
æææææææææææææææææ

æææææææææææææææææææææææææææææææææææææææ
ææææææ
ææææææææ

ææææææ
æææ

ææææææææææææææ
ææ

ææ
æææææææææææææ

ææææææææææææææææææææ
ææææææææææææææææ

ææ
æææ

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

Time @cyclesD

M
o
v
in

g
A

v
e
ra

g
e

fo
r

W
a
lk

in
g

T
im

e
@c

y
c
le

s
p
e
r

p
ic

k
D

Figure 4.6: Initial Transient for Walking Time

æ
ææ
æ
æ
ææ
ææ
ææ
ææææ
ææ
ææææ
æææææææææææææ

æææææææ
ææææææææ

æææææææææææææææææææææææææ
ææææææææææææææææ

æææææææææææ
ææææææææææææææææ

ææææææææææææææææææææææææææææææ
æææ
æææææææææææææææ

æææææææææææ
æææææææ
æææææææææææ

æææ
æææææ
ææææææææææææææææææææææ

æææææææææææ
æææææææææææææææææææææ

ææææææææææ
æææææææææææææææææææææææææææ

æææææææ
ææææææææææææææææææææææææææææææ

ææææææææææææææææææææææ
æææææ
ææææææ
æææ
æææææææææææææææ

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

Time @cyclesD

M
o
v
in

g
A

v
e
ra

g
e

fo
r

F
lo

w
ti
m

e
@c

y
c
le

s
D

Figure 4.7: Initial Transient for Flow Time

4.4.2 Determining the Number of Replications

Since halfwidths are not larger than 1% of the mean for all confidence intervals, a value

of 30 is sufficient for the number of replications. We have obtained at least 96% overall

confidence by having 99% confidence intervals for each performance measure.

128

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

thr. k3-14 30 0.86712 0.00608 0.00111 (0.86406, 0.87019) 0.00307 0.35 %

walking k3-14 30 0.67007 0.00926 0.00169 (0.66541, 0.67473) 0.00466 0.70 %

waiting k3-14 30 0.88443 0.01484 0.00271 (0.87697, 0.89190) 0.00747 0.84 %

flow k3-14 30 16.9712 0.3079 0.0562 (16.8162, 17.1261) 0.1549 0.91 %

Table 4.18: Confidence Intervals and Statistical Data for 30 Replications

4.5 Performance Analysis

We have performed a number of analyses to evaluate the performance of two sided

GridPick. Similar to one sided GridPick, the main performance measures are pick per unit

time (throughput), walking time per pick, waiting time per pick, and the average retrieval

time per item (flow time). We have used an order profile of various expected order sizes with

Poisson distribution. We evaluate the effect of expected order size and empty cells per row

(k) as important system parameters.

We also consider the effect of aspect ratio on performance. We compare the performance

of two workers to detect any possible bias. Furthermore, we perform variable k analysis to

see the effect of the distribution of empty cells on the productivity. Finally, we detect

the performance improvement compared to one sided GridPick. Considered assumptions

(conveyor speed, walking speed, etc.) are analogous to one sided GridPick.

4.5.1 Performance of the Two Sided Model for Several Parameters

For the experiments with different expect order sizes and k values, we have used following

parameters and assumptions:

There are 25 occupied columns, 10 rows and k = 2, 3 and 4 empty columns in the grid.

Therefore, each configuration has 250 storage containers. Each simulation run has length of

4,000 iterations, 200 iterations for the warmup period, and 30 replications. We have used

AnyLogic as the simulation software package.

129

æ

æ

æ

æ

æ
æ

æ æ æ æ æ æ æ

à

à

à

à

à

à
à à

à
à

à à à

ì

ì

ì

ì

ì

ì
ì ì

ì
ì

ì ì ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

Expected order size @itemsD

T
h

ro
u

g
h

p
u

t
@i
te

m
s

p
e

r
c
y
c
le
D

ì k = 4

à k = 3

æ k = 2

Figure 4.8: Throughput Plot for Different Expected Order Size Levels

2 4 6 8 10 12 14 16 18 20 22 24 26

0.4

0.5

0.6

0.7

0.8

0.9

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

k = 2

k = 3

k = 4

Figure 4.9: Throughput Plot for Different Expected Order Size Levels

130

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 0 0 0
4 0 0 0
6 0 0 0.151
8 0 0 0.185
10 0 0 0.324
12 0 0 0
14 0 0 0.264
16 0 0 0.027
18 0 0 0.002
20 0 0 0
22 0 0 0.002
24 0 0 0
26 0 0 0

Table 4.19: p values of Throughput with Different Expected Order Size Levels

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 5.62 14.62 8.39
4 -19.43 -11.54 8.52
6 -46.67 -37.33 1.48
8 -49.75 -48.59 -1.36
10 -64.36 -63.29 1
12 -75.38 -80.01 4.7
14 -65.76 -67.61 1.14
16 -62.37 -72.79 -2.32
18 -41.13 -49.79 -3.47
20 -54.37 -65.86 -4.18
22 -49.25 -52.02 -3.33
24 -49.62 -55.03 -6.38
26 -48.22 -57.52 -9.72

Table 4.20: t values of Throughput with Different Expected Order Size Levels

131

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 (0.00562, 0.01205) (0.01735, 0.02300) (0.00858, 0.01411)
4 (-0.03853, -0.03119) (-0.02289, -0.01600) (0.01172, 0.01912)
6 (-0.07693, -0.07047) (-0.07459, -0.06684) (-0.00115, 0.00712)
8 (-0.10567, -0.09733) (-0.10898, -0.10017) (-0.00771, 0.00156)
10 (-0.12187, -0.11436) (-0.12038, -0.11284) (-0.00157, 0.00459)
12 (-0.13452, -0.12741) (-0.12887, -0.12245) (0.00300, 0.00762)
14 (-0.13391, -0.12583) (-0.13246, -0.12469) (-0.00103, 0.00361)
16 (-0.12456, -0.11665) (-0.12724, -0.12028) (-0.00592, -0.00038)
18 (-0.11377, -0.10299) (-0.11784, -0.10854) (-0.00764, -0.00197)
20 (-0.10076, -0.09346) (-0.10546, -0.09911) (-0.00771, -0.00264)
22 (-0.09289, -0.08548) (-0.09758, -0.09020) (-0.00760, -0.00182)
24 (-0.08983, -0.08272) (-0.10046, -0.09326) (-0.01398, -0.00719)
26 (-0.08954, -0.08226) (-0.10337, -0.09628) (-0.01685, -0.01100)

Table 4.21: CIs of Throughput with Different Expected Order Size Levels

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0
10 0 0 0
12 0 0 0
14 0 0 0
16 0 0 0
18 0 0 0
20 0 0 0
22 0 0 0
24 0 0 0
26 0 0 0

Table 4.22: p values of Walking Time with Different Expected Order Size Levels

Throughput of two sided GridPick increases with the expected order size up to approx-

imately expected order size of 14. Then, it stabilizes, and there is a minor decrease (see

Figure 4.8). The main reason behind this phenomenon is the traffic capacity of the system.

Up to a certain number of active items (around the expected order size of 14), it handles

additional traffic, and throughput keeps increasing. After the expected order size of 14,

the system reaches its traffic volume, and it starts to perform a little worse due to greater

132

æ

æ

æ

æ

æ

æ
æ

æ
æ æ æ æ æ

à

à

à

à

à

à
à

à à à à à à

ì

ì

ì

ì

ì

ì
ì

ì ì ì ì ì ì

0 5 10 15 20 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Expected order size @itemsD

W
a

lk
in

g
ti
m

e
p

e
r

P
ic

k
@c

y
c
le

s
p

e
r

p
ic

k
D

ì k = 4

à k = 3

æ k = 2

Figure 4.10: Walking Time per Pick for Different Expected Order Size Levels

2 4 6 8 10 12 14 16 18 20 22 24 26

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

k = 2

k = 3

k = 4

Figure 4.11: Walking Time per Pick for Different Expected Order Size Levels

congestion. More empty cells per row (k) has a diminishing benefit on the performance.

From k = 2 to k = 3, throughput improvement is more significant; from k = 3 to k = 4,

performance differs insignificantly (see Figure 4.8). This result suggests that the number of

133

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 -7.4 -17.74 -8.85
4 -7.73 -17.68 -10.38
6 -9.8 -16.06 -7.92
8 -8.15 -18.66 -8.08
10 -8.86 -25.26 -14.86
12 -13.05 -27.12 -18.61
14 -18.45 -37.19 -20.5
16 -27.31 -46.34 -17.01
18 -25.8 -56.68 -16.36
20 -28.45 -53.94 -12.64
22 -27.9 -40.99 -14.91
24 -27.49 -29.8 -7.35
26 -23.7 -25.65 -6.65

Table 4.23: t values of Walking Time with Different Expected Order Size Levels

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 (-0.1647, -0.0934) (-0.3105, -0.2463) (-0.1839, -0.1148)
4 (-0.09012, -0.05243) (-0.2013, -0.1596) (-0.1307, -0.0877)
6 (-0.06921, -0.04530) (-0.13357, -0.10339) (-0.07703, -0.04543)
8 (-0.05863, -0.03510) (-0.10434, -0.08373) (-0.05912, -0.03523)
10 (-0.04832, -0.03020) (-0.10080, -0.08570) (-0.06142, -0.04656)
12 (-0.04058, -0.02958) (-0.09683, -0.08325) (-0.06100, -0.04892)
14 (-0.04529, -0.03625) (-0.09461, -0.08475) (-0.05379, -0.04403)
16 (-0.05689, -0.04896) (-0.09122, -0.08351) (-0.03858, -0.03030)
18 (-0.06961, -0.05938) (-0.09932, -0.09240) (-0.03528, -0.02744)
20 (-0.06784, -0.05874) (-0.09847, -0.09128) (-0.03669, -0.02647)
22 (-0.06525, -0.05634) (-0.09673, -0.08753) (-0.03564, -0.02704)
24 (-0.05716, -0.04924) (-0.07782, -0.06782) (-0.02508, -0.01416)
26 (-0.04562, -0.03837) (-0.06406, -0.05460) (-0.02267, -0.01200)

Table 4.24: CIs of Walking Time with Different Expected Order Size Levels

empty cells is a restricting factor on the performance up to the k = 3 configuration. If we

increase empty cells from k = 3 configuration to k = 4 configuration, empty cells do not

add additional value to the system. Because there are already sufficient empty cells to the

traffic density. Because there is less walking time for each pick and the worker walks less

from pick to pick, walking time per pick gets lower with the larger expected order sizes (see

134

Figure 4.10). The performance difference with various k values is not related to the walking

time, because there is not much change on the length of the pick face (see Figure 4.10).

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à à

à

à

à

à

à

à

à

à

à

à

à

ì ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0

5

10

15

20

25

30

Expected order size @itemsD

A
v
e

ra
g

e
re

tr
ie

v
a

l
ti
m

e
@c

y
c
le

s
D

ì k = 4

à k = 3

æ k = 2

Figure 4.12: Average Retrieval Time for Different Expected Order Size Levels

2 4 6 8 10 12 14 16 18 20 22 24 26

10

15

20

25

30

35

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

k = 2

k = 3

k = 4

Figure 4.13: Average Retrieval Time for Different Expected Order Size Levels

135

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0
10 0 0 0
12 0 0 0
14 0 0 0.008
16 0 0 0.639
18 0 0 0.077
20 0 0 0.001
22 0 0 0.001
24 0 0 0.011
26 0 0 0.001

Table 4.25: p values of Flow Time with Different Expected Order Size Levels

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 -14.63 -25.44 -11.67
4 4.76 -6.56 -17.72
6 15.01 4.47 -12.09
8 19.47 11.97 -10.92
10 20.08 15.45 -11.82
12 18.87 15.39 -7.85
14 23.39 21.33 -2.83
16 22.16 21.82 0.47
18 21.72 27.25 1.83
20 18.83 26.4 3.61
22 19.87 24.41 3.58
24 21.58 20.68 2.71
26 23.11 22.23 3.78

Table 4.26: t values of Flow Time with Different Expected Order Size Levels

Average retrieval time for the system is significantly longer for the k = 2 configuration,

and other two configurations (k = 3 and k = 4) are close to each other (see Figure 4.12). The

number of empty cells in the k = 2 configuration is not sufficient to handle the movements

of the requested and balancing units. A small number of empty cells slows down the vertical

movements significantly. A larger number of empty cells allows more traffic capacity, and

shorter retrieval times. Empty cells have a diminishing benefit on the performance. The

136

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 (-0.4553, -0.3436) (-0.7476, -0.6363) (-0.3438, -0.2412)
4 (0.0742, 0.1860) (-0.2780, -0.1459) (-0.3815, -0.3025)
6 (0.5577, 0.7337) (0.1154, 0.3101) (-0.5062, -0.3597)
8 (0.9724, 1.2007) (0.5494, 0.7758) (-0.5034, -0.3445)
10 (1.4687, 1.8019) (0.9779, 1.2763) (-0.5962, -0.4202)
12 (1.837, 2.283) (1.343, 1.755) (-0.6436, -0.3775)
14 (2.1316, 2.5400) (1.938, 2.349) (-0.3308, -0.0533)
16 (2.278, 2.741) (2.323, 2.804) (-0.178, 0.286)
18 (2.503, 3.023) (2.756, 3.203) (-0.025, 0.457)
20 (2.379, 2.959) (2.853, 3.333) (0.184, 0.664)
22 (2.482, 3.052) (3.027, 3.580) (0.230, 0.843)
24 (2.622, 3.171) (2.939, 3.584) (0.090, 0.640)
26 2.507, 2.994) (2.863, 3.443) (0.184, 0.619)

Table 4.27: CIs of Flow Time with Different Expected Order Size Levels

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0
10 0 0 0
12 0 0 0
14 0 0 0
16 0 0 0
18 0 0 0
20 0 0 0
22 0 0 0
24 0 0 0
26 0 0 0

Table 4.28: p values of Waiting Time with Different Expected Order Size Levels

average retrieval time increases with expected order size for all configurations due to a larger

number of requested items, and high traffic density. Longer average retrieval times in the

k = 2 configuration cause a significantly longer waiting time per pick for the worker, which

is the main reason for performance difference (see Figure 4.14). Furthermore, the k = 4 is

not significantly different to the k = 3 configuration, which is seen from the waiting time

per pick.

137

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ

à

à

à

à
à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Expected order size @itemsD

W
a

it
in

g
ti
m

e
p

e
r

P
ic

k
@c

y
c
le

s
p

e
r

p
ic

k
D

ì k = 4

à k = 3

æ k = 2

Figure 4.14: Waiting Time per Pick for Different Expected Order Size Levels

2 4 6 8 10 12 14 16 18 20 22 24 26

0.6

0.8

1.0

1.2

1.4

1.6

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

k = 2

k = 3

k = 4

Figure 4.15: Waiting Time per Pick for Different Expected Order Size Levels

138

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 6.07 7.85 4.11
4 40.05 41.04 7.05
6 58.07 68.95 14.56
8 64.74 68.13 15.87
10 78.06 73.47 10.95
12 67.89 76.63 14.67
14 59.19 69.58 12.27
16 53.89 67.34 10.06
18 56.19 70.63 11.9
20 59.47 57.74 9.67
22 60.4 65.59 9.23
24 43.63 52.05 10.5
26 47.82 52.16 12.79

Table 4.29: t values of Waiting Time with Different Expected Order Size Levels

k=2 vs. k=3 k=2 vs. k=4 k=3 vs. k=4
2 (0.01772, 0.03571) (0.02795, 0.04764) (0.00557, 0.01659)
4 (0.27011, 0.29918) (0.28746, 0.31762) (0.01270, 0.02309)
6 (0.37782, 0.40540) (0.42741, 0.45354) (0.04200, 0.05573)
8 (0.42405, 0.45172) (0.48058, 0.51033) (0.05015, 0.06499)
10 (0.43768, 0.46123) (0.48519, 0.51297) (0.04036, 0.05889)
12 (0.44590, 0.47360) (0.48562, 0.51226) (0.03373, 0.04465)
14 (0.43233, 0.46327) (0.47656, 0.50542) (0.03599, 0.05039)
16 (0.41523, 0.44799) (0.45707, 0.48570) (0.03169, 0.04787)
18 (0.38217, 0.41105) (0.42521, 0.45057) (0.03418, 0.04838)
20 (0.36003, 0.38567) 0.40301, 0.43261) (0.03545, 0.05448)
22 (0.33161, 0.35485) (0.37607, 0.40028) (0.03498, 0.05491)
24 (0.31082, 0.34140) (0.36172, 0.39131) (0.04059, 0.06022)
26 (0.30929, 0.33693) (0.36780, 0.39782) (0.05016, 0.06924)

Table 4.30: CIs of Waiting Time with Different Expected Order Size Levels

4.5.2 Aspect Ratio Analysis

To understand the effects of aspect ratio, we used the same configurations as with one

sided GridPick (see Table 4.31). All configurations have approximately same total number

of conveyor modules, storage containers, and empty cells.

The data lines for the aspect ratio configurations end at different points due to having

expected order sizes up to the number of columns (see Figure 4.16). The number of columns

139

Config. No Aspect Ratio Rows Cols. k Conveyors Items Empty Cells

1 8 (6:50) 6 50 8 300 252 48

2 3 (10:30) 10 30 5 300 250 50

3 1 (16:19) 16 19 3 304 256 48

4 0.5 (25:12) 25 12 2 300 250 50

5 0.16 (42:7) 42 7 1 294 252 42

Table 4.31: Configurations with Different Aspect Ratio Values

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ æ
æ

æ
æ æ æ æ æ æ æ æ

à

à

à

à

à

à
à

à à
à

à à à

ì

ì

ì

ì

ì

ì
ì ì ì

ò

ò

ò

ò

ò

ô

ô

ô

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

Expected order size @itemsD

T
h
ro

u
g
h
p
u
t
@i
te

m
s

p
e
r

c
y
c
le
D

ô A.R. = 0.16

ò A.R. = 0.5

ì A.R. = 1

à A.R. = 3

æ A.R. = 8

Figure 4.16: Throughput Plot

is distinct for each configuration. An aspect ratio of 3 is best for the expected order sizes

up to approximately 20. Other aspect ratio configurations have a pattern of smaller aspect

ratio with worse performance.Deeper grids have longer travel of requested items, an higher

average retrieval time (see Figure 4.18). When the number of rows increases (smaller aspect

ratio), the system gets deep, and it takes more time for the items to travel to the pick face.

Therefore, the worker waits for the requested items, which result in worse performance.

When aspect ratio increases the travel time improves. Up to aspect ratio of 3, the system

performance improves. When aspect ratio increases again to 8, the system performance gets

140

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0.2

0.4

0.6

0.8

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

a.r. = 8

a.r. = 3

a.r. = 1

a.r. = 0.5

a.r. = 0.16

Figure 4.17: Throughput Plot for Different Aspect Ratios

0.16vs0.5 0.16vs1 0.16vs3 0.16vs8 0.5vs1 0.5vs3 0.5vs8 1vs3 1vs8 3vs8
2 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
8 - - - - 0 0 0 0 0 0
10 - - - - 0 0 0 0 0 0
12 - - - - - - - 0 0 0
14 - - - - - - - 0 0.793 0
16 - - - - - - - 0 0 0
18 - - - - - - - - - 0
20 - - - - - - - - - 0.164
22 - - - - - - - - - 0
24 - - - - - - - - - 0
26 - - - - - - - - - 0

Table 4.32: p values for throughput with various aspect ratios

worse. The reason is: this configuration makes the worker walk excessively. In this case,

requested items “wait” for the worker on the pick face, the SKU density is lower, and the

picker walk a significantly longer distance.

We have analyzed the system’s waiting time per pick and wasted walking time per pick.

While processing the picks, walking to the very next location is the ideal case. We can

141

0.16vs0.5 0.16vs1 0.16vs3 0.16vs8 0.5vs1 0.5vs3 0.5vs8 1vs3 1vs8 3vs8
2 -83.21 -146.73 -174.09 -142.34 -75.83 -102.35 -13.19 -22.71 70.28 88.83
4 -83.71 -166.29 -213.76 -125.58 -104.3 -137.39 -38.02 -31.51 51.85 86.3
6 -78.94 -138.79 -325.73 -216.84 -57.52 -98.48 -43.54 -25.33 25.84 100.43
8 - - - - -39.75 -53.22 -27.18 -36.66 46.13 95.21
10 - - - - -30.28 -222.57 -147.54 -9.74 6.53 100.83
12 - - - - - - - -48.88 18.68 74.51
14 - - - - - - - -47.44 -0.26 63.87
16 - - - - - - - -63.86 -24.03 47.33
18 - - - - - - - - - 24.45
20 - - - - - - - - - 1.43
22 - - - - - - - - - -18.86
24 - - - - - - - - - -32.33
26 - - - - - - - - - -32.48

Table 4.33: t values for throughput with various aspect ratios

0.16 vs 0.5 0.16 vs 1 0.16 vs. 3 0.16 vs. 8
2 (-0.10244, -0.09753) (-0.22245, -0.21633) (-0.25473, -0.24882) (-0.120896, -0.117471)
4 (-0.14626, -0.13929) (-0.31140, -0.30383) (-0.38414, -0.37686) (-0.21916, -0.21214)
6 (-0.20162, -0.19143) (-0.39778, -0.38622) (-0.47864, -0.47267) (-0.31076, -0.30495)

Table 4.34: CIs for throughput with various aspect ratios

imagine a pick face with all requested items, and the worker processes each item in the pick

face. Waiting time per pick decrease with the larger aspect ratio values (see Figure 4.20).

A larger aspect ratio means shallow grid, shorter retrieval time, and a longer pick face,

which results with longer walking for the worker and shorter travel of the requested item

that minimizes the waiting time. Wasted walking time per pick decreases with the smaller

aspect ratios (see Figure 4.22). The reason is: with a smaller aspect ratio, the SKU density

increases and the pick face gets full with the requested items. Therefore, the picker walks to

0.5 vs. 1 0.5 vs. 3 0.5 vs. 8
2 (-0.12263, -0.11619) (-0.15482, -0.14876) (-0.02218, -0.01622)
4 (-0.16807, -0.16161) (-0.24126, -0.23419) (-0.07679, -0.06896)
6 (-0.20243, -0.18852) (-0.28493, -0.27334) (-0.11656, -0.10610)
8 (-0.24620, -0.22210) (-0.32415, -0.30015) (-0.16805, -0.14452)
10 (-0.25497, -0.22270) (-0.32234, -0.31646) (-0.18990, -0.18470)

Table 4.35: CIs for throughput with various aspect ratios

142

1 vs. 3 1 vs. 8 3 vs. 8
2 (-0.03530, -0.02947) (0.09729, 0.10312) (0.12954, 0.13564)
4 (-0.07761, -0.06815) (0.08834, 0.09559) (0.16094, 0.16876)
6 (-0.09041, -0.07690) (0.07748, 0.09080) (0.16438, 0.17122)
8 (-0.08235, -0.07365) (0.07441, 0.08132) (0.15252, 0.15921)
10 (-0.09749, -0.06365) (0.03538, 0.06769) (0.12942, 0.13478)
12 (-0.08049, -0.07403) (0.02486, 0.03097) (0.10229, 0.10806)
14 (-0.08487, -0.07785) (-0.00393, 0.00303) (0.07832, 0.08350)
16 (-0.09205, -0.08633) (-0.03551, -0.02994) (0.05403, 0.05891)
18 - - (0.02404, 0.02843)
20 - - (-0.00092, 0.00517)
22 - - (-0.03087, -0.02483)
24 - - (-0.04825, -0.04250)
26 - - (-0.06104, -0.05381)

Table 4.36: CIs for throughput with various aspect ratios

æ
æ æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à à
à

à

à

à

à

à

à

à

à

à

à

ì
ì

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò
ò

ô

ô

ô

0 10 20 30 40

0

10

20

30

40

50

Expected order size @itemsD

A
v
e
ra

g
e

R
e
tr

ie
v
a
l
T

im
e
@c

y
c
le

s
D

ô A.R. = 0.16

ò A.R. = 0.5

ì A.R. = 1

à A.R. = 3

æ A.R. = 8

Figure 4.18: Average Retrieval Time Plot

143

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

10

20

30

40

50

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

a.r. = 8

a.r. = 3

a.r. = 1

a.r. = 0.5

a.r. = 0.16

Figure 4.19: Average Retrieval Time for Different Aspect Ratios

æ æ

æ

à à à à à à à à à à à à à

ì

ì

ì
ì ì ì ì ì ì

ò

ò

ò

ò
ò

ô

ô

0 10 20 30 40 50
0

2

4

6

8

10

12

Expected order size @itemsD

W
a
it
in

g
T

im
e
@c

y
c
le

s
p

e
r

p
ic

k
D

ô A.R. = 0.16

ò A.R. = 0.5

ì A.R. = 1

à A.R. = 3

æ A.R. = 8

Figure 4.20: Waiting Time for Aspect Ratio Configurations

the very next location in the pick face in most cases. A smaller aspect ratio means a shorter

pick face and shorter walking time for the worker.

We explain the middle level performance of the largest aspect ratio (8) configuration

with the combination of waiting time per pick and walking per pick analysis. The largest

144

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0

2

4

6

8

10

12

14

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

a.r. = 8

a.r. = 3

a.r. = 1

a.r. = 0.5

a.r. = 0.16

Figure 4.21: Waiting Time per Pick for Different Aspect Ratios

aspect ratio (8) configuration has the best performance for the waiting time per pick and the

worst performance for the walking time per pick, which results in a moderate performance

(see Figures 4.20 and 4.22). The smallest aspect ratio (0.16) configuration has the worst

performance for both waiting time and wasted walking time per pick, which brings the worst

productivity compared to other configurations. The largest aspect ratio (8) configuration

has a decreasing throughput toward the larger expected order size values, due to reaching

the traffic flow capacity of the system.

4.5.3 Distribution of Empty Cells

Considering that two sided GridPick will keep the empty cells in balance for each row,

the distribution of empty cells can have a direct effect on the system performance. If uniform

distribution of empty spots is not the best configuration, distribution of the empty cells in

the two sided picking model could be different than the one in one sided GridPick.

Figure 4.24 shows possible different configurations for the distribution of empty cells.

Having more empty cells on the edges can be a viable approach because the edges will have

145

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à
à

à
à à à à à à

ì

ì

ì

ì
ì

ì ì ì ì

ò

ò

ò
ò ò

ô

ô
ô

0 10 20 30 40 50
0

1

2

3

4

5

6

7

Expected order size @itemsD

W
a

s
te

d
W

a
lk

in
g

T
im

e
@c

y
c
le

s
p
e

r
p

ic
k
D

ô A.R. = 0.16

ò A.R. = 0.5

ì A.R. = 1

à A.R. = 3

æ A.R. = 8

Figure 4.22: Walking Time for Aspect Ratio Configurations

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
0

1

2

3

4

5

6

7

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

a.r. = 8

a.r. = 3

a.r. = 1

a.r. = 0.5

a.r. = 0.16

Figure 4.23: Walking Time per Pick for Different Aspect Ratios

the major activity and a dense traffic flow. Another plausible approach would be the opposite

case – having more empty cells in the middle. In this case, more items will be close to the

pick face, which might ease the travel of requested items.

146

(a) Uniform Distribution (b) Low Density in the Middle (c) Low Density on the Edges

Figure 4.24: Different Ways to Allocate Empty Cells in the Two Sided Picking Model

Row Uniform Abundancy
in the Middle

Abundancy
on the Edges

1 4 2 6
2 4 2 6
3 4 4 4
4 4 6 2
5 4 6 2
6 4 6 2
7 4 6 2
8 4 4 4
9 4 2 6
10 4 2 6

Table 4.37: Distribution of Empty Modules for 3 Configurations

Table 4.37 shows the configurations used for the variable k analysis. All configurations

have 25 occupied columns, 10 rows, and 40 empty cells. They differ only in the distribution of

empty cells. The first configuration has uniform distribution of empty cells. The “Abundant

Middle” configuration has more empty cells in the intermediate rows. “Abundant Edges”

has more empty cells toward the pick faces.

We obtain the most distinct results for the waiting time per pick. “Abundant Edges”

has a significantly longer waiting time per pick for relatively small expected order sizes. We

interpret this result as follows: we can request items from all over the grid for both pick

faces, therefore, some items have to travel all the way from one side another. Fewer empty

147

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì
ì

ì
ì

ì

ì

ì

ì

ì
ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Expected order size @itemsD

W
a

it
in

g
ti
m

e
p

e
r

P
ic

k
@c

y
c
le

s
p

e
r

p
ic

k
D

ì Abundant Edges

à Abundant Middle

æ Uniform

Figure 4.25: Waiting Time for Variable k Configurations of the Two Sided Model

2 4 6 8 10 12 14 16 18 20 22 24 26

0.6

0.8

1.0

1.2

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

Uniform

Abundant Edges

Abundant Middle

Figure 4.26: Waiting Time per Pick for Variable k Configurations

cells in the intermediate rows causes a bottleneck and slows down the travel of the requested

items passing the intermediate rows.

Variable k configurations are statistically the same for a very small expected order

size (2). We can see the percent difference of the throughput results from Figure 4.29.The

148

æ

æ

æ

æ

æ

æ
æ æ

æ
æ

æ æ æ

à

à

à

à

à

à
à à

à
à

à à à

ì

ì

ì

ì

ì

ì

ì
ì ì ì

ì ì ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

Expected order size @itemsD

T
h

ro
u

g
h

p
u

t
@i
te

m
s

p
e
r

c
y
c
le
D

ì Abundant Edges

à Abundant Middle

æ Uniform

Figure 4.27: Throughput Plot

2 4 6 8 10 12 14 16 18 20 22 24 26

0.4

0.5

0.6

0.7

0.8

0.9

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

Uniform

Abundant Edges

Abundant Middle

Figure 4.28: Throughput Plot for Variable k Configurations

Abundant Middle configuration is better than the Unifor configuration up to the expected

order size of 20. Its pick point is around 1.7% at the expected order size of 12. Abundant

Edges is worse than the Uniform configuration until the expected order size of 20. The

largest difference is 5% at the expected order size of 8. After the expected order size of

149

Uniform vs aEdges Uniform vs aMiddle aEdges vs aMiddle
2 0.598 0.055 0.203
4 0.116 0.018 0
6 0 0.632 0
8 0 0 0
10 0 0 0
12 0 0 0
14 0 0 0
16 0 0 0
18 0.014 0 0
20 0.737 0.875 0.654
22 0.524 0.191 0.099
24 0.342 0 0
26 0.002 0 0

Table 4.38: p values for Throughput with Variable k Configurations

Uniform vs aEdges Uniform vs aMiddle aEdges vs aMiddle
2 -0.53 -2 -1.3
4 1.62 -2.51 -3.95
6 15.3 -0.48 -16.61
8 18.77 -5.54 -23.94
10 25.59 -7.43 -28.98
12 17.99 -13 -27.51
14 12.83 -11.36 -19.17
16 8.74 -5.85 -11.83
18 2.62 -4.6 -6.42
20 0.34 -0.16 -0.45
22 -0.64 1.34 1.7
24 -0.97 5.97 6.32
26 -3.37 6.34 9.2

Table 4.39: t values for Throughput with Variable k Configurations

20, the case is reversed. This is due to having so many requested items that should occupy

the edges. When there is a high number of requested items, Abundant Edges configuration

makes it easier to reach the pick face.

Throughput results are consistent with the waiting time per pick. Abundant Edges has

a lower throughput for relatively low expected order sizes due to longer waiting times (see

Figure 4.27). Variable k analysis results are interesting when we look at the average retrieval

150

Uniform vs aEdges Uniform vs aMiddle aEdges vs aMiddle
2 (-0.00391, 0.00229) (-0.00529, 0.00006) (-0.00465, 0.00103)
4 (-0.00069, 0.00597) (-0.00691, -0.00070) (-0.00979, -0.00311)
6 (0.02237, 0.02928) (-0.00492, 0.00304) (-0.03006, -0.02347)
8 (0.03519, 0.04380) (-0.01045, -0.00481) (-0.05115, -0.04310)
10 (0.03305, 0.03879) (-0.01343, -0.00763) (-0.04973, -0.04317)
12 (0.02541, 0.03193) (-0.01667, -0.01214) (-0.04628, -0.03987)
14 (0.01814, 0.02501) (-0.010767, -0.007483) (-0.03398, -0.02742)
16 (0.00846, 0.01363) (-0.00816, -0.00394) (-0.02005, -0.01414)
18 (0.00079, 0.00640) (-0.00851, -0.00327) (-0.01250, -0.00646)
20 (-0.00210, 0.00293) (-0.00232, 0.00198) (-0.00322, 0.00205)
22 (-0.00337, 0.00176) (-0.00113, 0.00539) (-0.00059, 0.00648)
24 (-0.00506, 0.00181) (0.00502, 0.01026) (0.00627, 0.01226)
26 (-0.00778, -0.00190) (0.00776, 0.01514) (0.01267, 0.01991)

Table 4.40: CIs for Throughput with Variable k Configurations

æ æ

æ

æ
æ

æ

æ
æ æ

æ
æ

æ
æ

à

à

à

à

à

à

à

à

à
à à à

à

0 5 10 15 20 25
-0.10

-0.05

0.00

0.05

0.10

Expected order size @itemsD

P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

à Abundant Edges

æ Abundant Middle

Figure 4.29: % Difference on Throughput

times for the three configurations (see Figure 4.30). They do not differ, unlike the waiting

time per pick results.

Based on the observations, there are two kinds of delay in average retrieval time or flow

time of the requested item. The first is the expected one – delay due to the high traffic

flow, causing some requested items not to be able to move vertically in all iterations. The

151

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à
à

à

à

à

à

à

à

à

à

à

à

à

ì ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0

5

10

15

20

25

30

Expected order size @itemsD

A
v
e

ra
g

e
re

tr
ie

v
a
l
ti
m

e
@c

y
c
le

s
D

ì Abundant Edges

à Abundant Middle

æ Uniform

Figure 4.30: Average Retrieval Time Plot

2 4 6 8 10 12 14 16 18 20 22 24 26

10

15

20

25

30

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

Uniform

Abundant Edges

Abundant Middle

Figure 4.31: Average Retrieval Time for Variable k Configurations

second happens when the system is well adjusted, and items arrive to the pick face, and

the worker is almost always busy. In this case, because the pick face is almost full with

requested items, some items cannot reach the pick face. They wait at the back of the pick

face in the second row. This phenomenon also causes a delay in the average retrieval time.

152

2 4 6 8 10 12 14 16 18 20 22 24 26

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

Uniform

Abundant Edges

Abundant Middle

Figure 4.32: Walking Time per Pick for Variable k Configurations

Therefore, there are delays due to two cases, and only one of them results in worker waiting.

As a result, we cannot see the effect of the average retrieval time results on the worker’s

waiting time (see Figure 4.30). Actually, up to the expected order size of 20, the Uniform

and Abundant Middle configurations have a longer average retrieval time than the Abundant

Edges configuration. Our intuition is that the second type of delay causes this result, which

is the waiting time at the back of the pick face in a well adjusted system.

4.5.4 Performance Comparison of the Two Workers

We have also compared performance of the two workers to detect any possible bias in

the two sided GridPick model. We used configuration of 25 occupied columns, 10 rows, and

4 empty cells per row (k).

Unexpectedly, Worker 1 has better performance compared to Worker 2 (see Figure 4.33).

We expected a better performance for Worker 2, because we have a priority for the movement

of items toward the pick face 2. We offer the following interpretation: occupancy of requested-

1 items should be higher toward the pick face-1, and occupancy of requested-2 items should be

153

æ

æ

æ

æ

æ
æ æ æ æ æ æ æ æ

à

à

à

à
à

à
à à à à à à à

ì

ì

ì

ì

ì

ì
ì ì

ì
ì

ì ì ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

Expected order size @itemsD

T
h

ro
u

g
h

p
u

t
@i
te

m
s

p
e

r
c
y
c
le
D

ì Overall

à Worker-2

æ Worker-1

Figure 4.33: Throughput Plot

2 4 6 8 10 12 14 16 18 20 22 24 26

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

Overall

Worker-1

Worker-2

Figure 4.34: Throughput Plot for Two Workers

higher toward pick face 2. This means there will be more balancing items for the requested-1

items close to the pick face-1, and there will be more balancing items of the requested-2 items

close to the pick face-2. Since there is a priority of movement for the items moving towards

the pick face-2, replenishing items of the requested-1 items clear more quickly, providing space

154

overall vs. w1 overall vs w-2 w-1 vs w-2
2 0 0 0.333
4 0 0 0.002
6 0 0 0
8 0 0 0
10 0 0 0
12 0 0 0
14 0 0 0
16 0 0 0
18 0 0 0
20 0 0 0
22 0 0 0
24 0 0 0
26 0 0 0

Table 4.41: p values for Throughput of Two Workers

overall vs. w1 overall vs w-2 w-1 vs w-2
2 246.87 292.59 0.98
4 403.01 313.99 3.4
6 407.41 371.9 9.05
8 484.38 668.29 14.8
10 650.89 801.15 20.69
12 645.77 737.92 15.88
14 803.87 945.72 17.21
16 927.91 1029.57 16.23
18 644.47 877.77 14.78
20 672.24 717.85 12.7
22 807.69 643.38 20.5
24 519.99 469.64 6.29
26 673.97 559.46 10.14

Table 4.42: t values for Throughput of Two Workers

for the movement of the requested-1 items, which results in slightly better performance for

Worker 1.

Average retrieval time shows consistent but different results from the throughput and

waiting time analysis for reasons explained in the variable k analysis. Pick face 2 has a larger

average retrieval time compared to pick face 1 (see Figure 4.35). Based on the observations

of the simulation, because pick face 2 is almost full of requested items, later requested items

155

overall vs. w-1 overall vs w-2 w-1 vs w-2
2 (0.197872, 0.201178) (0.199231, 0.202036) (-0.00119, 0.00341)
4 (0.283827, 0.286723) (0.287134, 0.290899) (0.00149, 0.00599)
6 (0.342671, 0.346129) (0.352550, 0.356450) (0.00782, 0.01238)
8 (0.379823, 0.383044) (0.393384, 0.395799) (0.011339, 0.014977)
10 (0.400969, 0.403497) (0.418180, 0.420320) (0.015334, 0.018699)
12 (0.415779, 0.418421) (0.431035, 0.433431) (0.013184, 0.017083)
14 (0.425797, 0.427969) (0.438001, 0.439899) (0.010633, 0.013501)
16 (0.427140, 0.429027) (0.438011, 0.439755) (0.009439, 0.012161)
18 (0.420885, 0.423565) (0.433172, 0.435195) (0.010304, 0.013613)
20 (0.415715, 0.418252) (0.427794, 0.430239) (0.010095, 0.013971)
22 (0.409710, 0.411790) (0.423084, 0.425783) (0.012318, 0.015049)
24 (0.410819, 0.414064) (0.418694, 0.422356) (0.00545, 0.01071)
26 (0.408905, 0.411395) (0.417900, 0.420967) (0.007411, 0.011155)

Table 4.43: CIs for Throughput of Two Workers

wait at the back of the pick face in the second row to arrive the pick face, and there is a

delay of the requested items for pick face 2.

For the waiting time per pick and walking time per pick analysis, there is a difference

between two workers (see Figures 4.37 and 4.39). The difference in the average retrieval time

does not reflect the waiting time since there is no waiting time due to delay of the requested

items.

4.5.5 Performance Comparison with the One Sided Model

In this section, we compare the performance of one sided and two sided GridPick models.

Both models have the same configuration: 25 occupied columns, 10 rows, and 4 empty cells

per row (k). In the one sided GridPick model, a single worker operates on one side of the

grid, and in the two sided GridPick, there are two pick faces and two workers.

Throughput results show three configurations (see Figure 4.41). The first configuration

indicates two sided GridPick, second one shows one sided GridPick, and third configuration

represent two grids of one sided GridPick, which is equivalent to the operations of two sided

GridPick. As the results point out, two sided GridPick performs significantly better than the

one sided model. Two grids of one sided GridPick is better than the two sided model, which

156

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à
à

à

à

à

à

à

à

à

à

à

à

à

ì ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0

5

10

15

20

25

30

Expected order size @itemsD

A
v
e
ra

g
e

re
tr

ie
v
a
l
ti
m

e
@c

y
c
le

s
D

ì Overall

à Worker-2

æ Worker-1

Figure 4.35: Average Retrieval Time Plot

2 4 6 8 10 12 14 16 18 20 22 24 26

10

15

20

25

30

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

Overall

Worker-1

Worker-2

Figure 4.36: Average Retrieval Time for Two Workers

is expected due to having more traffic intensity in the two sided model. Average retrieval

time of the two sided model is longer than the one sided GridPick (see Figure 4.43). Having

more requested items leads to delay in the travel time of requested items.

157

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

à

à

à

à

à

à

à

à

à

à

à
à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Expected order size @itemsD

W
a
it
in

g
ti
m

e
p
e

r
p
ic

k
@c

y
c
le

s
�p

ic
k
s
D

ì Overall

à Worker-2

æ Worker-1

Figure 4.37: Waiting Time for Aspect Ratio Configurations

2 4 6 8 10 12 14 16 18 20 22 24 26
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

Overall

Worker-1

Worker-2

Figure 4.38: Waiting Time per Pick for Two Workers

Longer waiting times per pick in the two sided model are the result of longer average

retrieval times (see Figure 4.45). Walking time per pick does not differ for one sided and

two sided GridPick models (see Figure 4.47).

158

æ

æ

æ

æ

æ

æ
æ

æ
æ æ æ æ æ

à

à

à

à

à

à
à

à à à à
à à

ì

ì

ì

ì

ì

ì
ì

ì ì ì ì ì ì

0 5 10 15 20 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Expected order size @itemsD

W
a

lk
in

g
ti
m

e
p

e
r

p
ic

k
@c

y
c
le

s
�p

ic
k
s
D

ì Overall

à Worker-2

æ Worker-1

Figure 4.39: Walking Time for Two Workers

2 4 6 8 10 12 14 16 18 20 22 24 26

1

2

3

4

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

Overall

Worker-1

Worker-2

Figure 4.40: Walking Time per Pick for Two Workers

We have also looked at the percent difference between three configurations (see Fig-

ure 4.49 and 4.50). When the one sided GridPick model is the base case, two sided GridPick

performs 80 - 95 % better than one sided GridPick with the cost of labor (one extra worker)

159

æ

æ

æ

æ

æ
æ

æ æ æ æ æ æ æ

à

à

à

à

à

à
à

à à à à
à à

ì

ì

ì

ì

ì

ì
ì ì

ì
ì

ì ì ì

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

Expected order size @itemsD

T
h

ro
u

g
h

p
u

t
@i
te

m
s

p
e

r
c
y
c
le
D

ì Twosided GP

à 2 x Onesided GP

æ Onesided GP

Figure 4.41: Throughput Plot

2 4 6 8 10 12 14 16 18 20 22 24 26

0.2

0.4

0.6

0.8

1.0

Expected Order Size @itemsD

T
hr

ou
gh

pu
t@

ite
m

s
pe

r
cy

cl
eD

2xOnesided GP

Onesided GP

Twosided GP

Figure 4.42: Throughput Plot for Two Models

(see Figure 4.49). Using two sides of the grid provides a great improvement on the through-

put. If we employ two one sided GridPick instead of one, there would be a 100% improvement

on the performance. Therefore, there is a difference of 5 - 20% in performance due to having

two sided picking. The reason is increased traffic intensity in the grid. Vertical movements

160

onesided vs. twosided twosided vs. 2xonesided
2 0 0
4 0 0
6 0 0
8 0 0
10 0 0
12 0 0
14 0 0
16 0 0
18 0 0
20 0 0
22 0 0
24 0 0
26 0 0

Table 4.44: p values for Throughput of Two Models

T-
value

onesided vs. twosided twosided vs. 2xonesided

2 -145.3 -4.06
4 -161.15 -9.6
6 -183.22 -12.91
8 -277.24 -25.56
10 -399.42 -49.02
12 -442.83 -67.11
14 -483.75 -81.7
16 -566.57 -97.02
18 -415.43 -91.65
20 -382.01 -70.89
22 -253.77 -48.34
24 -253.11 -42.71
26 -318.17 -51.34

Table 4.45: t values for Throughput of Two Models

are constrained to the number of empty cells in the grid. More items moving in opposite

directions causes a waiting for some items.

When two sided GridPick model is the base case, two grids of one sided GridPick model

performs 1 - 12 % better than two sided GridPick, with the cost of another grid of unit

modules (300 modules) (see Figure 4.50). This is a large capital investment for a 1- 10%

improvement considering the availability of two sided picking.

161

onesided vs. twosided twosided vs. 2xonesided
2 (-0.19902, -0.19350) (-0.01149, -0.00380)
4 (-0.27903, -0.27204) (-0.02817, -0.01828)
6 (-0.33729, -0.32984) (-0.03680, -0.02673)
8 (-0.36802, -0.36263) (-0.04901, -0.04174)
10 (-0.379542, -0.375675) (-0.06903, -0.06350)
12 (-0.388335, -0.384765) (-0.07856, -0.07391)
14 (-0.393339, -0.390027) (-0.08453, -0.08040)
16 (-0.388840, -0.386043) (-0.094024, -0.090142)
18 (-0.378747, -0.375036) (-0.10492, -0.10033)
20 (-0.373196, -0.369221) (-0.10657, -0.10059)
22 (-0.36796, -0.36207) (-0.10960, -0.10070)
24 (-0.37218, -0.36622) (-0.09910, -0.09004)
26 (-0.37225, -0.36750) (-0.09341, -0.08625)

Table 4.46: CIs for Throughput of Two Models

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à à

à

à

à

à

à

à

à

à

à

à

à

0 5 10 15 20 25

0

5

10

15

20

25

30

Expected order size @itemsD

A
v
e
ra

g
e

re
tr

ie
v
a
l
ti
m

e
@c

y
c
le

s
D

à Twosided GP

æ Onesided GP

Figure 4.43: Average Retrieval Time Plot

4.6 Conclusions

In addition to the other flexibility features (modularity, reconfigurability, etc.), two

sided GridPick provides another level of flexibility for the order picking system design for

grid based storage systems. It provides the flexible scaling of throughput capacity in the

162

2 4 6 8 10 12 14 16 18 20 22 24 26

10

15

20

25

30

Expected Order Size @itemsD

Fl
ow

T
im

e
@c

yc
le

sD

Onesided GP

Twosided GP

Figure 4.44: Average Retrieval Time for Two Models

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

à

à

à

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Expected order size @itemsD

W
a
it
in

g
ti
m

e
p

e
r

P
ic

k
@c

y
c
le

s
p
e
r

p
ic

k
D

à Twosided GP

æ Onesided GP

Figure 4.45: Waiting Time for One Sided vs. Two Sided

case of fluctuating demand levels. It also relieves the need for additional automation devices

for the additional throughput.

We have discussed the effects of aspect ratio and distribution of empty cells on the

performance. An application should consider the required expected order sizes and then

163

2 4 6 8 10 12 14 16 18 20 22 24 26

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Expected Order Size @itemsD

W
ai

tin
g

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

Onesided GP

Twosided GP

Figure 4.46: Waiting Time per Pick for Two Models

æ

æ

æ

æ

æ

æ
æ

æ
æ æ æ æ æ

à

à

à

à

à

à
à

à à à à à à

0 5 10 15 20 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Expected order size @itemsD

W
a
lk

in
g

ti
m

e
p
e
r

P
ic

k
@c

y
c
le

s
p
e
r

p
ic

k
D

à Twosided GP

æ Onesided GP

Figure 4.47: Walking Time for One Sided vs. Two sided

determine the appropriate configuration among the different values of parameters. An aspect

ratio of 3 performs well with the respectively moderate expected order sizes (around 15 while

number of columns is 30). Longer grids (aspect ratio of 8, for instance) can enable larger

expected order sizes, but they result in worse performance. In the case of larger expected

164

2 4 6 8 10 12 14 16 18 20 22 24 26

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Expected Order Size @itemsD

W
al

ki
ng

T
im

e
@c

yc
le

s
pe

r
pi

ck
D

Onesided GP

Twosided GP

Figure 4.48: Walking Time per Pick for Two Models

æ

æ
æ

æ

æ
æ

æ

æ

æ æ æ

æ
æ

0 5 10 15 20 25
0

20

40

60

80

100

Expected order size @itemsD

%
D

if
fe

re
n
c
e

Figure 4.49: Percent Difference on Throughput for Two Sided vs. One Sided GridPick

order sizes, we may want to have a wider pick face. If we want to keep the number of columns

large enough to have large order sizes, we should adjust the aspect ratio value accordingly.

The performance will be better with a lower aspect ratio (aspect ratio of 3, for example),

and additional conveyor modules. If we want to keep the number of modules lower, there

165

æ

æ
æ

æ

æ
æ

æ

æ

æ æ æ

æ
æ

0 5 10 15 20 25
0

10

20

30

40

50

Expected order size @itemsD

%
D

if
fe

re
n
c
e

Figure 4.50: Percent Difference on Throughput for 2 × Onesided vs. Twosided GridPick

would be a sacrifice in performance. Generally speaking, a configuration of 10 occupied cells

to one empty cell (k = 3 in our experiments) seems to provide sufficient performance, which

results in around 90% occupancy. Further increase in the number of empty cells provides

small benefit.

Two sided GridPick is a significant extension with a 80-95% performance improvement

with the cost of a single worker compared to the one sided GridPick. This extension provides

the capability of additional throughput without any additional automation devices, which is

a highly positive feature for automated system. Therefore, the automation system would be

responsive to seasonal peaks and higher demand conditions. The two sided GridPick algo-

rithm provides this availability without additional investment. In brief, two sided GridPick

offers an effective alternative to the investments for a capacity expansion.

166

Chapter 5

A Petri Nets Model for Grid Based Storage Systems

Grid based storage systems are multi-agent systems in which conveyor modules interact

and communicate to accomplish complex tasks. In multi-agent systems, individual units

are expected to work together correctly in a large scale dynamic environment [Pujari and

Mukhopadhyay, 2012]. A multi-agent system consists of autonomously working agents, which

are evaluated as a discrete event dynamic system [Celaya et al., 2009]. These systems present

concurrent and distributed computer system characteristics that have communication and

interactivity based operations [Jensen, 1992]. The capabilities and complexity of multi-agent

systems require formal analysis of system properties for these large scale dynamic systems

[Celaya et al., 2009].

Simulation based models are able to show the presence of errors, validation of the

system, and achievement of design objectives in a multi-agent system. In addition to the

simulation environment, analytical methodologies are needed for the development of model-

ing and analysis approaches to verify formal system properties. Petri nets is an appropriate

modeling tool because of its wide range of application areas such as communication pro-

tocols [Berthomieu and Diaz, 1991, Billington et al., 1988], distributed computer programs

[Agerwala, 1979, Murata, 1989], flexible manufacturing design [Kamath and Vishwanatham,

1987], and material handling systems [Celaya et al., 2009, Basile et al., 2011, Dotoli and

Fanti, 2002].

Petri nets modeling has a number of advantages: (1) Petri nets provide a graphical

representation, which allows easy visualization of a large system. (2) Petri nets enable the

capability of state space analysis for the detection of structural properties. (3) Corresponding

systems can be modeled in various levels of abstraction or detail. (4) Performance analysis

167

of the system is available through timed Petri nets [Kamath and Vishwanatham, 1987]. (5)

Petri nets can require less time and effort in the design, modeling and analysis of large

software systems [Zurawski and Zhou, 1994].

5.1 Discrete Event Systems Modeling

A system is characterized as a discrete event system when its state space consists of

discrete states and state changes happen in discrete time steps [Cassandras and Lafortune,

2008]. System components have several state changing actions or events at various time

steps, which is also called an event driven structure. With the changing states of the sub-

components, the whole system state also changes.

There are various discrete event modeling tools in the literature such as Automata

theory, Markov chains, Petri nets, Supervisory control, and Queueing theory. We have

chosen to use Petri nets because it allows analysis of structural properties. Petri nets theory

is a strong discrete event modeling approach for a number of reasons: (1) Petri nets enable

modeling of concurrent, distributed and parallel operating event driven systems. This makes

it suitable for systems with decentralized control. (2) Petri nets provide analysis of structural

properties such as boundedness, reachability, and liveness.

5.1.1 Petri Nets Overview

Petri nets theory is a graphical and mathematical modeling approach first introduced

by Carl Adam Petri in 1962 [Murata, 1989]. It evolved over time with additional concepts

and extensions. A basic Petri net includes a set of places (P), a set of transitions (T), a set

of arcs (A) and an initial marking (M0). Places are represented as nodes or circles in the net.

Places are always connected to the transitions and transitions are connected to places with

arcs. A marking represents the whole system state that is attributed to the tokens included

in the places. Tokens travel through the net with the firing of the transitions. There can

be significant variations of Petri nets. Arcs can have a weight function that represents the

168

required number of tokens flowing through the arc. Another property is having guards in

the transitions. Guards are logical expressions that evaluate to true or false. If a guard is

defined in a transition, it should also be true in addition to the required tokens in the places

to enable the transition. Time delays and priorities can be also assigned to the transitions.

Tokens can also have colors. So, the system can have specialized entities.

Figure 5.1: Marking before transition firing [Murata, 1989]

Figure 5.1 shows an example of an enabled transition. There are three places: H2,

O2 and H2O. The transition requires two tokens from the H2 and one token from the O2.

Weight of the arcs is generally not shown, if the weight is one. An outgoing arc from the

transition also has a weight of 2.

Figure 5.2: Marking after transition firing [Murata, 1989]

Figure 5.2 shows the markings after the firing of the transition. Now place H2O has two

tokens and the place O2 is left with one token. Several structural properties can be applied

to multi agent systems.

Reachability

The marking of all places corresponds to the state of the Petri net. The reachability

graph has the marking of the Petri net as a node. So, a fully explored reachability graph

169

shows all possible system states of a net. If there is a sequence of transition firings from a

marking Mi to a marking Mj, it is said that Mj is reachable from Mi.

Liveness

A Petri net is said to be live if it is always possible to fire a transition from a marking

reachable from the initial marking. A closely related property is deadlock freeness. The

liveness property ensures the absence of deadlocks. A marking of the net is dead if there

is no enabled transition in this state. The Petri net is said to be live if there is no dead

marking reachable from the initial marking. Deadlock is a set of places in which, for each

transition, an output place is also an input place [Wegrzyn et al., 2004]. So, once all places

are unmarked, they will never receive any token again.

Boundedness

The Petri net is said to be k-bounded, if the number of tokens in each place does not

exceed a finite number, k, for any marking reachable from the initial marking R(M0). If k

is 1, then the system is said to be a safe Petri net.

For more computational power, colored Petri nets and high level Petri nets are intro-

duced. With colored Petri nets, tokens have distinct features. In high level Petri nets, tokens

consist of data values. So, the tokens carry more information. We give more information

about the high level Petri nets in the related chapter.

There are several Petri nets modeling tools in the literature. Colored Petri net (CPN)

tools is one of the many developed software programs for Petri nets modeling. It is a

popular program for the modeling of high level Petri nets, introduced by Jensen et al. [2007].

It has a graphical user interface (GUI) and support for state space analysis. Especially in

computational sciences, CPN tools is used for Petri nets modeling and protocol verification.

There is a number of applications that are using CPN tools as a modeling program. Xu

et al. [2008] presented Petri nets modeling and formal verification of XML firewall with

170

CPN tools that is in use for web services of businesses. Sornkhom and Permpoontanalarp

[2008] introduced a colored Petri nets model of Micali’s fair contract signing protocol and

analysis with CPN tools. These protocols play a crucial role in e-commerce in which a third

trusted party ensures security of both sides. Wang et al. [2008] represented colored Petri nets

modeling and verification of structural properties for a stream control transmission protocol

with CPN tools. It is a protocol for reliable and secure transmission of applications over

networks. There are several other tools such as LoLA [Schmidt, 2000], Alpina [Buchs et al.,

2010], and Helena [Evangelista, 2005] providing condensed state space analysis.

Petri nets modeling approach is also used in logistics applications. Celaya et al. [2009]

presented Petri nets modeling of a simple example of two agents carrying objects from one

point to another cooperatively. They construct the reachability graph and show the liveness

property of the system with invariants analysis. Dotoli and Fanti [2002] proposed a colored

Petri net model for an AS/RS integrated with rail guided vehicles, which provides deadlock

avoidance and control policies analysis. He et al. [2007] introduced Petri nets modeling of

an AS/RS with three cranes, narrow aisles, and buffer stations. They used the model in a

modular approach for the monitoring of control and scheduling policies. Hsieh et al. [1998]

divided the AS/RS into four different modules: command typing module, profile module,

compilation module and execution module. Then, they proposed a Petri net based structure

for the operation modeling of AS/RS.

5.2 Fundamental Concepts

A Petri net is a graphical language for the modeling of concurrent systems, which are

special bipartite directed graphs [Kamath and Vishwanatham, 1987]. Standard Petri nets

consist of three kinds of components: a set of places, a set of transitions, and directed

arcs. These arcs connect input places to the transitions, and they connect the transitions

to the output places. Tokens flow through these places by firing transitions that represent a

particular condition or state of the system.

171

Input Places Transitions Output Places

Conditions Events Conclusions
Input Signals Signal Processors Output Signals
Resources Needed Tasks or Jobs Resources Released
Input Data Computation Steps Output Data

Table 5.1: Some Interpretations of Places and Transitions [Murata, 1989]

There are several interpretations of input places, transitions, and output places (see

Table 5.1). In a material handling system, places typically represent a resource (device) or a

state of the system. Transitions typically represent the movement of the goods or an event.

The formal definition of a Petri net has a 5-tuple N = (P, T, I, O,M0) [Wang, 2007],

where:

(1) P = {p1, p2, p3, ..., pm} is a finite set of places,

(2) T = {t1, t2, t3, ..., tn} is a finite set of transitions,

(3) I : P × T → N is the set of directed arcs from input places to transitions. N is a

nonnegative integer.

(4) O : T × P → N is the set of directed arcs from transitions to output places. N is a

nonnegative integer.

(5) M0 : P → N is the initial marking of the Petri net, which corresponds to the tokens

present in places.

There are additional features and extensions to Petri nets. A weight function can be

assigned to an arc in which the arc carries multiple tokens. Another variation is the inhibitor

arcs that enable the transition in the case of absence of tokens in the input place. Inhibitor

arcs are shown with a circle instead of an arrowhead. We can also assign priorities and

guards to the transitions. Priorities determine the sequence of transition firings if multiple

transitions are enabled at the same time. Guards are additional logical operators for enabling

the transitions. In the presence of guards, tokens of the input places do not guarantee a

sufficient condition for the transition firings. The guard should also evaluate to true for an

enabled transition. Transitions may have either immediate firings or time delays.

172

Figure 5.3: Graphical Representation of an Example Petri Net [Zurawski and Zhou, 1994]

Figure 5.3 shows a simple Petri net that has a token in the place 1. It consists of five

places and four transitions. Place 1 is the input place for transition 1, and transition 1 is

enabled in this configuration. Transitions 2 and 3 are synchronous.

5.3 Colored Petri Nets

Petri nets applications and modeled systems can be quite large and complex, depending

on the level of detail required. Modeling of several identical and similar processes will

necessitate a large net with a great number of places, arcs, and transitions. Therefore, in

some cases representation by Petri nets will not be useful or even not possible. A more

powerful and functional type of Petri nets is Colored Petri Nets (CPN) [Jensen, 1981, 1992,

1994, 1997]. A Colored Petri Net is the generalized form of Petri nets that has an associated

color set for each token [Kamath and Vishwanatham, 1987]. Furthermore, a set of colors

may be associated with places and transitions.

173

Tokens can carry complex data values with the help of color sets. Each place can

include one or more tokens, which is called marking of the place. Additionally, each place

will have a data domain or a place inscription that shows the type of token the place can

carry. Color sets should be defined initially that represent the data formats of the tokens.

Initial token assignment to the places refers to the initial marking (M0) of the Petri net.

With the transition firings, tokens will move within the places and a current marking (Mi)

will refer to the current state of the Petri net. Directed arcs also have a data domain or an

inscription that shows the type of data that particular arc can carry during the firing of a

transition.

Occurrence of events refers to the firings of the transitions in a Petri net. A transition

should be enabled to fire in a given marking. A transition is enabled when a binding of

variables is present in the input places that matches with the arc inscriptions [Jensen et al.,

2007]. During the firing of a transition, tokens are removed from the input places that

match the arc inscriptions, and tokens are added to each output place according to the

corresponding output arc inscription. Since the colored Petri net is a generalization of the

Petri nets, colored Petri nets can unfold to be represented in a Petri net.

Most Petri nets research study groups have developed their own software tool that pro-

vides the modeling, analysis, and simulation environment for Petri nets applications [Murata,

1989]. There are a number of Petri nets tools developed by scholars, which include differ-

ent capabilities and features. Some of them have a graphical user interface (GUI) for easy

visualization. Some other tools focus on systems with large state spaces (condensed) that

employ different techniques for the exploration of state spaces.

We have chosen to use “CPN Tools,” which provides a graphical user interface (GUI)

and the capability of modeling in colored Petri nets [Jensen et al., 2007]. It also has a

fairly good online documentation. Furthermore, CPN tools provides a simulation capability

and error checker for the validity of developed models. CPN tools does provide state space

analysis but, to the best of our knowledge, it does not use techniques to analyze condensed

174

state spaces. For state space analysis, we use “LoLA.” LoLA does not have a GUI but it has

the ability to handle condensed state space analysis. LoLA requires the model in a textual

format with its own modeling language. It runs in Linux or in a Cygwin environment on a

Windows computer.

With the state space analysis of Petri nets, we can detect and analyze several properties

of a system (boundedness, reachability, safeness, liveness, etc.). We are particularly inter-

ested in the absence (or presence) of deadlocks in our systems. Deadlock is a reached state

that does not have a possible consecutive state and there is not any further available action

[Iordache et al., 1999]. This definition matches the understanding of deadlock in Petri nets.

We can examine the state space of the Petri net and determine a dead state, which does not

have a subsequent state, in the presence of a deadlock.

5.4 Modeling of GridStore System

We start Petri nets modeling with GridStore system since it includes the negotiations for

the movement decisions, which are also used in GridPick. The GridStore algorithm handles

vertical movements of the requested items and horizontal movement of the occupied items.

In GridStore, items leave the system and replenishing items reach the same row to keep the

occupancy in balance. The GridPick model is a harder problem in which items do not leave

the grid and occupancy should be adjusted in an alternative way. We keep the occupancy

in balance with the items moving in opposite direction to “substitute” the requested items.

Therefore, with GridStore we obtain the modeling of main movements. After observing that

it is deadlock free, we can model a more complex model on top of it. By defining these

events in GridStore Petri nets model, we acquire the modeling of fundamental events, so we

can build on it with additional insights.

Different scenarios and approaches can be adopted for the modeling of a particular sys-

tem. In our Petri nets modeling approach for grid based storage systems, nodes represent

175

the conveyor modules. Tokens represent the storage containers moving on the grid of con-

veyor modules. Each transition corresponds to an event for a particular movement or a state

change of the storage container.

We have represented the variables and the color sets with the syntax defined in CPN

tools. We have defined two color sets for the tokens. Each storage container has a state and

target row information declared as:

colset state = int with 0..3;

colset targetrow = int with 0..2;

In the state color set, 0 represents the empty state, 1 shows the occupied state, 2

indicates the requested state, and 3 corresponds to the replenishing state. In the “targetrow”

color set, integer values represent the target row of the storage container. For the domain

or inscription of the places, we have defined a color set called “box” that includes the state

and target row color sets, which means the places can only include the tokens (representing

storage containers) in this format:

colset box = product state * targetrow;

“∗” is the combination operator of the color sets, not a multiplication operator. It is the

syntax of CPN tools. For instance, (3,1) represents a replenishing unit, which has target row

of 1. Since we use target row value for only replenishing units, other tokens have a target

row value of 0. For instance, (2,0) corresponds to a requested unit.

The replenishing and requested items move in a similar manner. The only difference is:

the replenishing items turn into occupied when they have arrived to their target row. For

this reason, we have defined a sub color set for the requested and replenishing units and

another sub color set for the occupied and empty units. Now, we can refer to both requested

and replenishing units by defining a variable from the color set mov and we can refer to

occupied and empty units by defining a variable from the color set nonmov.

colset mov = subset state with [2,3];

colset nonmov = subset state with [0,1];

176

Another important point on the modeling approach is: we have tokens to represent

the “empty” state. During a movement, empty tokens are also moving compatible with the

particular movement. Therefore, we can follow the movement of empty spots.

In GridStore, since we have one synchronous event executing after another one, the

events have a sequence and priority. For instance, North-South negotiation executes before

East-West negotiation. Therefore, North-South negotiation has a priority over the East-West

negotiation. CPN tools has a priority feature and we can assign priorities to the transitions

in this respect (higher priority or a smaller value to the North-South negotiation). However,

LoLA does not support priority assignment to the transition. For this reason, we have

defined the transitions with a priority enforcement without any assignment of priority to the

transitions.

We have defined places to form a 3×3 grid as P00, P01, P02, P10, P11, P12, P20, P21,

P22. Additionally, we have a place to release request, NReq and a place to replenish items,

Rep. To limit the capacity of NReq and Rep places, we have described anti-places, AntiReq

and AntiRep. Therefore, each time NReq is an input place, AntiReq will be the output place

and vice versa. Also each time Rep is an input place, AntiRep will be the output place and

vice versa.

State Variables Target Row Variables
var s0 : mov; var t0 : targetrow;
var s1 : mov; var t1 : targetrow;
var s2 : mov; var t2 : targetrow;
var s3 : mov; var t3 : targetrow;
var snr : nonmov; var t4 : targetrow;

Table 5.2: Variables for the Arc Inscriptions

Several variables are defined to use in arc inscriptions and to assign color sets to the

binding of the transitions (see Table 5.2). Variables s0...s3 refer to the presence of requested

or replenishing items. Variables t0...t4 indicate the target row values. Variable snr represents

an empty or occupied state.

177

We have enumerated all possible movements with the transitions in the model. So, there

are a few places and many transitions. Graphical representation of this net is impractical

due to the high number of arcs going in and out of the places. We have used a feature called

fusion places to represent transitions separately. When we define transitions in different

pages and fuse the places, they refer to the same places and the result of a transition firing

is reflected in all nodes of the fusion set. Graphical representations are shown for better

understanding (see figures starting from Figure 5.4).

Symbols in the circles represent the name of the node, and the numbers on the top

right corner of the node show the current marking of the node with the token inscription.

Arc inscriptions on the arcs indicate the binding of the transition with the defined variables.

Definitions in the transition bar denote the transitions’ names and we assign a time delay

for representation purposes. We also define a boolean expression as a transition guard at

the top right corner of the transition if necessary.

(0,t2)

(s1,t0)

(s2,t1)

(0,t2)

(s2,t1)

(s1,t0)

T1c0
@+1

[((s1=3 andalso t0<>0)orelse s1=2)andalso
((s2=3 andalso t1<>1)orelse s2=2)]P20

Fusion 20

1`(1,2)

box

P10
Fusion 10

1`(0,0)

box

P00
Fusion 00

1`(1,0)

box
Fusion 00

Fusion 10

Fusion 20

Figure 5.4: Vertical Convoy Movement in Column 0

Figure 5.4 shows a convoy movement. Place P20 is empty, and places 00 and 10 have

either a requested or a replenishing item. Items in places 00 and 10 can move down to places

10 and 20. Since we do not assign any priority, we should check if a replenishing item has

178

arrived to its target row. We have declared a boolean expression to the transition guard for

this reason. It enables the transition if the item is requested or a replenishing item has not

arrived to its target row.

(snr,t4)

(snr,t4)

(0,t1)

(s2,t2)

(0,t1)

(s2,t2)

T5c1
@+1

[if ((s2=3 andalso t2<>1)orelse s2=2)
then true
else false]

P01Fusion 01
1`(2,0)

box

P21
Fusion 21

1`(1,2)

box

P11
Fusion 11

1`(2,1)

box
Fusion 11

Fusion 21

Fusion 01

Figure 5.5: Vertical Movement in Column 1

Figure 5.5 indicates a vertical movement with one item from row 1 to row 2. Place 21 is

in state empty and place 11 carries a requested or a replenishing item. The transition ensures

the absence of a requested or replenishing item in row 0 by having it as an input place. The

arc inscription from place 01 to the transition has snr color set, which corresponds to an

empty or occupied unit. A transition guard evaluates to true and enables the transition if

the module in row 1 has a requested item or a replenishing item has not arrived to its target

row.

Figure 5.6 represents a vertical convoy movement in rows 1 and 2. Since we require that

in the availability of convoys, items move with a convoy movement, the transition checks

the absence of a requested or replenishing item in row 0. We also have a transition guard to

confirm that the item in place 21 is either a requested item or a replenishing item that has

not arrived to its target row. In this transition, the item in the last row (2nd row) leaves the

system; for the release of a new request, we add a token to the place NReq. For a replenishing

179

e

e

(snr,t4)

(snr,t4)

(2,0)

(3,t3)

(0,0)

(s2,t2)

(2,t3)

(s2,t2)

T6c2 @+1

[if ((s2=3 andalso t2<>1) orelse s2=2)
then true
else false]

AntiReq

Fusion AntiReq

2`e

E

AntiRep

Fusion AntiRep

3`e

EP02Fusion 02

1`(0,0)

box

NReq
Fusion req

box

Rep
Fusion rep

box

P22
Fusion 22

1`(0,0)

box

P12Fusion 12

1`(1,1)

box

Fusion 12

Fusion 22

Fusion rep

Fusion req

Fusion 02 Fusion AntiRep

Fusion AntiReq

Figure 5.6: Vertical Convoy Movement in Column 2

item from the top, we add a token to the place Rep. To limit the capacity of these places,

AntiRep and AntiReq places are input places. In this case, WIP = 2; therefore, AntiReq has

2 tokens initially. We assume an unlimited capacity for the replenishment row. However, for

a finite state space, we assign a large enough value for the place AntiRep.

In Figure 5.7, this transition is possible when there is a requested or a replenishing item

in place 00 that needs to move down. Furthermore, places 10 and 11 carry occupied items

and place 12 is in state empty. To allow the priority of vertical movement, the transition

checks the absence of a requested or a replenishing item in place 02. The transition is

only enabled when there is an occupied or empty token in place 02. After the firing of the

transition, place 10 becomes empty, and occupied items move to places 11 and 12.

In Figure 5.8, the transition is enabled when place 11 has a requested or a replenishing

item that needs to move down. Place 21 has an occupied item that should allow the passage

180

(snr,t4)

(snr,t4)

(1,t1)

(1,t2)(0,t3)

(s1,t0)

(1,t1)

(1,t2)
(0,t3)

(s1,t0)

T1r1

@+2

P02

Fusion 02 1`(0,0)

box

P12

Fusion 12 1`(1,1)

box

P11

Fusion 11

1`(2,1)

box

P10
Fusion 10

1`(0,0)

box

P00Fusion 00

1`(1,0)

box

Fusion 00

Fusion 10 Fusion 11

Fusion 12

Fusion 02

Figure 5.7: Horizontal Movement in Row 1

(snr,t4)

(snr,t4)

(s1,t0)

(1,t1)

(0,t2)

(0,t2)

(1,t1)

(s1,t0)

T3r2
@+2

P10
Fusion 10

1`(0,0)

box

P20
Fusion 20

1`(1,2)

box P21

Fusion 21
1`(1,2)

box

1`(2,1)

box

Fusion 21

Fusion 20

Fusion 10 P11

Fusion 11Fusion 11

Figure 5.8: Horizontal Movement in Row 2

of the item to the north. Place 20 is in the empty state and there is no requested or

replenishing item in the north neighbor that will move to place 10.

When a replenishing item arrives to its target row, it should turn into an occupied item.

Figure 5.9 shows the transitions from replenishing to occupied for an item. Each transition

has a guard to check the target row, which evaluates to true if the target row matches the

current row. Since we do not assign a priority to the transitions, we have added guards in

the vertical movement transitions. These replenishing items should not move in the vertical

movement events if they have arrived to their target row.

181

(1,t2) (1,t2)
(1,t2)

(1,t1)(1,t1)(1,t1)

(3,t2) (3,t2) (3,t2)

(3,t1)(3,t1)(3,t1)

(1,t0)

(3,t0)

(1,t0)

(3,t0)

(1,t0)

(3,t0)

T9rep[t2 = 2]T8rep
[t2 = 2]T7rep[t2 = 2]

T4rep[t1 = 1] T5rep[t1 = 1] T6rep[t1 = 1]

T3rep[t0 = 0]T2rep
[t0 = 0]

T1rep
[t0 = 0]

P12
Fusion 12

1`(1,1)

box

P11Fusion 11

1`(2,1)

box

P22
Fusion 22

1`(0,0)

box

P21Fusion 21

1`(1,2)

box

P20Fusion 20

1`(1,2)

box

P10
Fusion 10

1`(0,0)

box

P02Fusion 02

1`(0,0)

box

P01
Fusion 01

1`(2,0)

box

P00
Fusion 00

1`(1,0)

box
Fusion 00 Fusion 01

Fusion 02

Fusion 10

Fusion 20 Fusion 21 Fusion 22

Fusion 11 Fusion 12

Figure 5.9: Transition from Replenishing to Occupied

e

(0,0)

(3,t1)

(3,t1)

Trep1

AntiRep

Fusion AntiRep3`e

E

P00

Fusion 00

1`(1,0)

box

Rep
Fusion rep

box
Fusion rep

Fusion 00

Fusion AntiRep

Figure 5.10: Transition for the Replenishment From the Top Row

When a requested item leaves the system, we add a token as a replenishing item to

place Rep. lace Rep is our replenishment queue. Figure 5.10 represents a transition for

the movement from the replenishment queue to the top row. This transition is enabled if

place 00 is in state empty and there is a replenishing item in place Rep. Upon firing of the

182

transition, the replenishing item enters the grid. To have a finite capacity for place Rep, the

transition has AntiRep as an output place.

e (2,t1)

(2,0) (1,t1)

T1
@+3

AntiReq

Fusion AntiReq
2`e

E

P11

Fusion 11 1`(2,1)

box

NReq

Fusion req

box

Fusion req Fusion 11

Fusion AntiReq

Figure 5.11: Transition for the Release of the Request

After a requested item has left the grid, another request will be released. In Figure 5.11,

the transition is enabled when there is a token in place NReq and the corresponding place

(01 for this case) has an occupied item. To have a finite capacity for place NReq, AntiReq is

the output place for the transition.

We have used the LoLA Petri nets tool for the state space analysis of a 3× 3 GridStore

system. We have prepared the model with LoLA’s modeling language with the appropriate

syntax. Figure 5.12 shows the output window, and the system does not have deadlocks. It

appears that LoLA unfolds the colored Petri net to have a basic Petri net, and performs the

state space analysis with the unfolded Petri net.

5.5 Petri Nets Modeling of GridPick

For the structural analysis of GridPick, we have modeled the system with Petri Nets. We

are interested mainly in the deadlock conditions. We have used CPN tools for the graphical

user interface and simulation environment, and the package Helena for the analysis. To

detect that the Petri Nets model shows the desired behavior and to validate the model,

we have used the simulation ability of CPN tools. With Helena, we have detected possible

deadlocks in the system. We have explored the deadlock conditions of one sided GridPick.

183

Figure 5.12: Output of LoLA Software Package for a 3× 3 GridStore

We have not modeled and explored two sided GridPick’s deadlock conditions due to the

similar logic of the two sided model and level of complexity.

In this section, we explain the Petri nets model in detail. For the unit modules, we

have defined places according to their location on the grid such as P00, P01, P11, etc. We

represent the storage containers with colored tokens. There are two color sets. First one is

for the state of the storage container (requested, occupied, replenishing, empty). Absence

of a storage container is also represented with a token (empty). The second color set is

for the row information of the storage container (target row in general). Because we have

consecutive discrete events in each iteration, they are prior to one another. For each event,

we have defined transitions and assigned priorities for the transitions. This is an enumeration

based approach, so we have defined all possible state changes, assignments, and movement

decisions with transitions.

Variables for the place domains are defined with the Helena package as follows:

• type state : enum(e0,o1,r2,p3,bp);

• type targetrow : range 0 .. T;

184

• type E : enum(e);

• type pickerprocess : enum(pr);

• type ordersize : range 2 .. 5;

State variables show possible states of the storage container as: e0 for empty, o1 for

occupied, r2 for requested, p3 for replenishing, and bp for being picked. Target row is the

row information of the storage container. “E” is used for the release of the requests. “pr”

is for the worker processing. Order size defines the number of requests that will be released

with the transition.

Below is an example of place definition. Domain of the place (dom) and the initial

marking (init) are defined for the place. Initial marking shows the initial state or the tokens

initially present in the place. In the example, the place contains a token, which is in the

requested state and has row information of “1.”

place p10 {

dom : state * targetrow;

init : < (r2, 1) >;

}

In the below figures, we have shown examples for each type of transition. Definitions

on the top right of the place show the initial marking or initial state of the place. The

number on the left shows the number of tokens and definition in the parenthesis represent

the state of the token (1‘(e0, 0), for instance). Definitions on the incoming arcs from the

particular place to the transition show the binding of the transition. Binding refers to the

activation requirement of the transition. A specific token should be present in the incoming

place ((r2, t0), for instance). The outgoing token description from the transition to the

places is shown on the outgoing arcs. To represent same place in several transitions, we have

used fusion concept of CPN tools, which enables the definition of the same place in several

transitions. In the package Helena, we enumerate all the transitions and use the same place

185

names in the enumeration. In the transition, a guard is shown if necessary on the top left

side. In addition to bindings, this guard should also evaluate to true for the transition firing.

On the bottom left side, a priority number is given to the transition depending on the order

of the events.

(e0,t1)

(p3,t0)
(r2,t2)

(o1,t2)

(e0,t1)
(r2,t0)

tb1_02

@+1[t0 = 0]

b1

P12

Fusion 12 1` (e0, 0)

box

P02
Fusion 02 1` (r2,0)

boxP00

Fusion 00 1` (e0,0)

box

Fusion 00
Fusion 02

Fusion 12

2

3

3

2

R2

R3

R2

R3

Figure 5.13: Example of Balance Rule - 1

Figure 5.13 shows an example of balance rule-1. In this case, a requested item exchanges

its target row with an occupied item, which is in the below row. Graphics on the right shows

the change on the system after the transition firing. Row numbers are for representation

purposes and may not match Petri nets transitions.

(p3,t0)(r2,t1)

(o1,t1)(r2,t0)

tb2_23

@+2[t0 < 2]

b2

P22

Fusion 22
1` (o1,2)

box
P21

Fusion 21
1` (o1,2)

box

Fusion 22Fusion 21

3 2

2 3R3

R3

Figure 5.14: Example of Balance Rule - 2

For balance rule-2, we check if the requested item is already moved, and did not exchange

its departure row before the movement (see Figure 5.14). If the guard evaluates to true, it

exchanges its row information with an occupied item, and the occupied item turns into a

replenishing item.

186

(np,t3)
(p3,t0)

(p3,t2)
(o1,t1)

(o1,t1)

tt1_1

@+3

tm

box

boxbox

box

1` (o1,1)

1` (e0,0)

1` (o1,1)

(p3,t2)
P21

Fusion 21
1` (o1,2)
Fusion 21

P11

Fusion 11Fusion 11

P20

Fusion 20Fusion 20

P10

Fusion 10Fusion 10
(p3,t0) (np,t3)

R2

R3

R3

R2

Figure 5.15: Example of the Convoy Movement Encouragement

To decrease the usage of empty cells by the replenishing items, we encourage convoys

with the exchange of replenishing items. So, a replenishing item passes its balancing respon-

sibility to an occupied item. In these transitions, we also check the northern neighbor of the

replenishing item and make sure we do not interrupt a convoy (see Figure 5.15).

(e0,t2)

(r2,t0)

(r2,t1)

(r2,t0)

(r2,t1)

(e0,t2)

tvreq0_3

@+5

rmov

P20

Fusion 20

1` (e0,0)

box

P10
Fusion 10

1` (o1,1)

box

P00Fusion 00

1` (e0,0)

box

Fusion 00

Fusion 10

Fusion 20

Figure 5.16: Example of the Vertical Movement for the Requested Items

Events enable convoy movements by checking the existence of requested items (see

Figure 5.16). We also enable singular vertical movement by checking absence of consecutive

requested items.

Events perform the vertical movement of replenishing items in a similar manner with

the requested items (see figure 5.17). If places contain replenishing items (tokens with p3

187

(e0,t0)

(p3,t2)

(p3,t1)

(p3,t2)

(p3,t1)

(e0,t0)

tvrep1_3

@+4

repmov

P21

Fusion 21

1` (o1,2)

box

P11

Fusion 11
1` (o1,1)

box

P01

Fusion 01

1`(r2,0)

box

Fusion 01

Fusion 11

Fusion 21

Figure 5.17: Example of the Vertical Movement for the Replenishing Items

state), and there exists a place with an empty (e0) token, the transition is enabled and may

fire.

R2

R3

R3

R2

(r2,t0)

(e0,t3)

(nr,t2)

(hr1,t1)

(nr,t2)

(e0,t3)

(hr2,t4)
(hr1,t1)

thr01 @+5
rmov

box

P12

Fusion 12 box

box
P10

Fusion 10

box

box

1` (e0,0) (r2,t0)

1` (o1,1)
Fusion 10

P00

Fusion 00Fusion 00

P11

Fusion 11

1` (r2,0)

(hr2,t4)

1` (e0, 0)
Fusion 12

1` (o1,1)
Fusion 11

P02

Fusion 02Fusion 02

Figure 5.18: Example of the Horizontal Movement for the Requested Items

Horizontal movement aims to clear the way of the requested items. It checks the absence

of a vertical movement availability to avoid assignment of additional priority among vertical

and horizontal movements (see Figure 5.18). Since we have detected a deadlock case due to

unavailability of replenishing item side movement in the pick face, we enabled side movement

of the replenishing items by defining variables (hr1, hr2. etc.), which includes both the

occupied and replenishing items.

Horizontal movement clears the way of replenishing items. Horizontally moving items

have the variables (m1, m2, etc.) that include both requested and occupied items (see

188

R2

R3

R3

R2

(np,t4)

(m2,t2)

(p3,t0)

(e0,t3)

(m1,t1)

(p3,t0)

(m1,t1)

(m2,t2)

thp11

@+4

repmov

box

box

box
box

box
P22

Fusion 22
(np,t4)

P12

Fusion 12

(e0,t3)
1` (e0, 0)
Fusion 12

1` (o1,2)

1` (o1,1)
P11

Fusion 11Fusion 11

1` (o1,1)
P10

Fusion 10Fusion 10

1` (e0,0)
P20

Fusion 20Fusion 20

Fusion 22

Figure 5.19: Example of the Horizontal Movement for the Replenishing Items

Figure 5.19). Horizontal movement of replenishing items is similar to the requested item

movements, but it occurs prior to the requested items.

R2

R2
(bp,t0)

pr

ReqBp20

@+5

rmov

Worker

Fusion W 1` pr

pickerprocess

P20
Fusion 20

1` (e0,0)

box

Fusion 20

Fusion W

(r2,t0)

Figure 5.20: Transition Example from Requested to Being Picked Item

We have defined the worker with a place, and a token shows the processing of the worker

place. So, the worker is a limited source, and we make sure worker cannot process multiple

items at the same time in this way. Whenever the worker starts processing, the item goes

to a state being picked (bp) from the state requested (see Figure 5.20). Therefore, the being

picked item cannot move during the processing.

R2

R2
(o1,t2) pr

(bp,t2)

BpOcc22 @+5
rmov

Worker

Fusion W 1` pr

pickerprocess

P22
Fusion 22

1` (o1,2)

box

Fusion 22

Fusion W

Figure 5.21: Transition Example from Being Picked to Occupied item

189

R2

R2(o1,t1)

(p3,t1)

(o1,t1)

(p3,t1)

(o1,t1)

(p3,t1)

trc12
@+0[t1 = 1]

tr1
trc11

@+0[t1 = 1]
tr1

trc10
@+0[t1 = 1]

tr1

P12

Fusion 12 1` (e0, 0)

box

P11

Fusion 11
1` (o1,1)

box

P10

Fusion 10 1` (o1,1)

box

Fusion 10 Fusion 11 Fusion 12

Figure 5.22: Example of the transition from Replenishing to Occupied Item

After the worker processes the order, the item goes from a state of being picked to the

state occupied (see Figure 5.21). When the replenishing items reach their target row (it is

checked with the guard), they turn into occupied item (see Figure 5.22).

R2

R2(p3,t0)

OccRep20

@+0[t0 <> 2]

tr1

P20Fusion 20

1` (e0,0)

box

Fusion 20
(o1,t0)

Figure 5.23: Example of the transition from Occupied to Replenishing Item

If the item turns into occupied suddenly due to an immediate picking process, it may

not have the row information of current row, which is checked by the guard (see Figure 5.23).

In this case, it turns into a replenishing item and travels to its target row.

R2

R2
(r2,0)

e

e(o1,0)

nreq01
@+0

tr1

AntiReq

Fusion AR
3` e

E

NReq

Fusion NReq

E

P01
Fusion 01

1`(r2,0)

box

Fusion 01
Fusion NReq

Fusion AR

Figure 5.24: Example of the transition from Occupied to Requested Item

After the order is released, requested items are assigned by turning occupied items into

requested items (see Figure 5.24). These transitions also decrease the number of tokens (e)

in NReq place to control the number of requests for the order size.

190

2

3`e

3

(nr01,t01)

(nr00,t00)

(nr02,t02)

(nr11,t11)

(nr11,t11)

(nr12,t12)

(nr02,t02)

(nr10,t10)

(nr00,t00)

(nr01, t01)

NewRelease1

@+0

tr1

E

3` e

E

1` 3

ordersize

box

box

box

box
1`(r2,0)

box

box

P01

Fusion 01

P00

Fusion 00

P10

Fusion 10

(nr10,t10)

Fusion 01

OrdRls

Fusion OrdRlsFusion OrdRls

1` (e0,0)

Fusion 00

1` (o1,1)

Fusion 10

AntiReq

Fusion ARFusion AR

1` (r2,0)

P02

Fusion 02Fusion 02

1` (e0, 0)
P12

Fusion 12Fusion 12

P11

Fusion 11Fusion 11

1` (o1,1)

(nr12,t12)

NReq2`e

Figure 5.25: Example of the transition for the New Release of the Requested Items

The transition in Figure 5.25 mimics the order release policy. The transition checks

all the positions other than the pick face for the absence of the requested items. If rows

other than the pick face do not include requested items, it releases the order by assigning

tokens to place NReq. Therefore, transitions for the new request will turn occupied items

into requested items by using tokens in place NReq(see Figure 5.24).

5.5.1 Contributions of the Petri Nets Model and Deadlock Conditions

We have checked the existence of deadlock cases in GridPick with the Petri Nets models.

Package Helena enabled us to check this property with the following definitions.

state property not dead :

reject deadlock;

We were able to analyze several configurations of GridPick with Petri Nets, and we

have reached deadlock free models for small systems. To allow the movement of active items

between rows, we require at least one empty cell (k > 0) in each row. Furthermore, the

system is restricted to having at most 2c− 1 requested items in the grid, and a single order

cannot exceed the number of columns, c. Under these conditions we are able to prove that

191

Theorem 1 GridPick systems of size 3×3, 3×4, 3×5, 4×3, 5×3 and 4×4 are deadlock free.

Configuration States
Deadlock
States

Arcs
Compilation
Time

State Space
Search

Max.
Memory

3×3 9,521 0 13,241 22.46 s. 0.02 s. 29.9 mb

3×4 215,840 0 340,560 43.61 s. 0.88 s. 33.1 mb

3×5 3,495,452 0 5,866,359 91.08 s. 24.05 s. 87.5 mb

4×3 83,346 0 133,083 37.53 s. 0.31 s. 31.1 mb

5×3 629,869 0 1,068,905 64.75 s. 3.61 s. 44.3 mb

4×4 4,335,866 0 7,627,308 90.24 s. 29.27 s. 98.0 mb

Table 5.3: Results of the Petri Nets Models

We run into memory storage overflow problems for larger grids such as 4× 5 and 5× 4

configurations (see Table 5.3).

Conjecture 1 One sided GridPick is deadlock free for an arbitrarily large grid.

Because the state space of a Petri Nets Model explodes, a computational proof is beyond

reach. There are, however, several arguments to support the conjecture:

1. Small grids are deadlock free (Theorem 1).

2. Small, deadlock free grids embody the characteristics found in larger grids. For exam-

ple, they contain boundary cells and middle cell, and are capable of convoy movement

of requested and replenishing items.

3. Small grids are a sort of worst case in the sense that they have a very high percentage

of requested items in the grid. For instance, in a 3×4 grid, having 2c − 1 requested

items corresponds to 7 requested items out of 9.

For a two sided GridPick model, we have the same policies used in one sided GridPick,

and therefore we conjecture

Conjecture 2 A two sided GridPick system is deadlock free for an arbitrarily large grid.

192

Unfortunately, even the smallest two-sided system is beyond reasonable representation

with a Petri Nets model.

193

Chapter 6

Conclusions and Contributions

Dynamic order picking systems are not new to industry, but they have not been explored

in the material handling research literature. To the best of our knowledge, GridPick is the

first research study to introduce a dynamic pick face order picking system. Dynamic order

picking systems improve forward area operations by providing a higher pick density.

GridPick also provides a high density configuration without any aisle assignment, which

provides space savings for distribution centers. Companies with special requirements for

high density might benefit from GridPick. For instance, order picking operations under cold

storage have high energy cost per unit area. Harsh business environments also require high

throughput with the constraint of space. Order picking under special conditions such as

large commercial green houses and food processing facilities might also be candidates for

adoption.

GridPick accomplishes complex operations with a decentralized control algorithm that

uses message passing and negotiation. Message passing schemes and negotiation protocols

are well explored in data flow and digital networks, but they are not well studied in material

handling systems design. We have built on the work of Mayer [2009] to show that very

complex behavior is possible with very simple rules. As global logistics systems continue to

increase in complexity capabilities models such as we have demonstrated in this dissertation

will become even more important for effective control.

We have introduced Petri nets modeling for grid based storage systems to show the

structural properties of the model (specifically, the deadlock-free property). Decentralized

control models and material handling systems have been modeled with Petri nets in the

literature; however, Petri nets modeling of material handling systems with decentralized

194

control has not been well addressed in the literature. Celaya et al. [2009] is one of the

few exceptions. Petri nets modeling provides a formal methodology for the detection of

deadlocks. Our Petri nets model can provide a general approach for deadlock detection for

the future applications of grid based storage systems.

The two sided GridPick model enables order picking from two edges of the grid without

additional space. With this major extension, we develop a higher level of functionality and

flexibility for various demand levels. Expansion of automated material handling systems

generally requires expensive equipment and significant investment cost. With the two sided

extension, with the same system and physical devices, without additional space usage, the

throughput increases significantly (80-95 %) with the cost of additional worker.

An even more flexible system that allows picking from all four sides is the ideal, but

such a system would be much more complex even than the two sided system. We must leave

that system for future research.

195

Bibliography

T. Agerwala. Putting petri nets to work. Computer, 12(2):85–94, 1979.

A. Alfieri, M. Cantamessa, A. Monchiero, and F. Montagna. Heuristics for puzzle-based

storage systems driven by a limited set of automated guided vehicles. Journal of Intelligent

Manufacturing, pages 1–11, 2010. published online.

J. Ashayeri and L. F. Gelders. Warehouse design optimization. European, 21(3):285–294,

1985.

P. Baker and M. Canessa. Warehouse design: a structured approach. European J, 193:

425–436, 2009.

J. J. Bartholdi and D. Eisenstein. Bucket brigades: A self-organizing order picking system

for a warehouse. Technical report, School of Industrial and Systems Engineering, Georgia

Tech, Atlanta, 1996.

J. J. Bartholdi and S. T. Hackman. Allocating space in a forward pick area of a distribution

center for small parts. IIE Transactions, 40:1046–1053, 2008.

J. J. Bartholdi and S. T. Hackman. Warehouse & distribution science. Available online at

http://www.warehouse-science.com/ Release 0.95, 2011.

F. Basile, P. Chiacchio, and J. Coppola. Colored hybrid petri nets for modeling material

handling systems. In 50th IEEE Conference on Decision and Control and European Control

Conference, 2011.

B. Berthomieu and M. Diaz. Modelling and verification of time dependent systems. IEEE

Trans. Software Eng., 17(3):259–273, 1991.

196

J. Billington, G. R. Wheeler, and M. C. Wilbur-Ham. Protean: A high level petri net tool

for the specification and verification of communication protocols. IEEE Trans. Software

Eng., 14(3):301–331, 1988.

H. Brynzer, M. Johansson, and L. Medbo. A methodology for evaluation of order picking

systems as a base for system design and managerial decisions. International Journal of

Operations and Production Management, 14(3):126–139, 1994.

D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. Alpina: A symbolic model checker.

In International Conference on Application and Theory of Petri Nets, 2010.

A. C. Caputo and P. M. Pelagagge. Management criteria of automated order picking systems

in high rotation high volume distribution centers. Industrial Management & Data Systems,

106(9):1359–1383, 2006.

C. G. Cassandras and S. Lafortune. Introduction to discrete event systems. Springer, 2008.

J. R. Celaya, A. A. Desrochers, and R. J. Graves. Modeling and analysis of multi agent

systems using petri nets. Journal of Computers, 4(10):981–996, 2009.

F. Dallari, G. Marchet, and M. Melacini. Design of order picking system. International,

42(1):1–12, 2009.

P. Davidsson, L. Henesey, L. Ramstedt, J. Törnquist, and F. Wernstedt. An analysis of

agent-based approaches to transport logistics. Transportation Research Part C, 13:255–

271, 2005.

R. De Koster. How to assess a warehouse operation in a single tour. Technical report, RSM

Erasmus University, the Netherlands, 2004.

R. De Koster, T. Le-Duc, and K. J. Roodbergen. Design and control of warehouse order

picking: A literature review. European Journal of Operational Research, 182:481–501,

2007.

197

R. B. M. De Koster, T. Le-duc, and Y. Yu. Optimal storage rack design for a 3-dimensional

compact as/rs. International Journal of Production Research, 46(6):1495–1514, 2008b.

R. Dekker, R. B. M. De Koster, K. J. Roodbergen, and H. Van Kalleveen. Improving order

picking response time at ankor’s warehouse. Interfaces, 34(4):303–313, 2004.

Jack J Dongarra and Tom Dunigan. Message-passing performance of various computers.

Concurrency - Practice and Experience, 9(10):915–926, 1997.

M. Dotoli and M. P. Fanti. Modeling of an as/rs serviced by rail guided vehicles with colored

petri nets: A control perspective. In IEEE SMC, 2002.

S. Evangelista. High Level Petri Nets Analysis with Helena, volume 3536. LNCS Springer

Berlin, 2005.

G. W. Flake and E. B. Baum. Rush hour is pspace-complete, or “why you should generously

tip parking lot attendants”. Theoretical Computer Science, 270:1–2, 2002.

E. A. Frazelle and G. P. Sharp. Correlated assignment strategy can improve order picking

operation. Industrial Engineering, 21(4):33–37, 1989.

E. H. Frazelle, S. T. Hackman, U. Passy, and L. K. Platzman. The Forward-reserve problem,

in Optimization in Industry, vol. II. Wiley, New York, NY, 1994.

K. Furmans, F. Schönung, and K. R. Gue. Plug and work material handling systems. In

Progress in Material Handling Research: 2010, pages 132–142, 2010.

K. Furmans, K. R. Gue, and Z. Seibold. Optimization of failure behavior of a decentralized

high density 2d storage system. In Proceedings of The 3rd International Conference on

Dynamics in Logistics, 2012.

M. Gardner. Mathematical games: The fantastic combinations of john conway’s new solitaire

game“life”. Scientific American, 223:120–123, 1970.

198

A. E. Gray, U. S. Karmarkar, and A. Seidman. Design and operation of an order consolidation

warehouse - models and application. European Journal of Operational Research, 58(1):14–

36, 1992.

J. Gu, M. Goetschalckx, and L. F. McGinnis. Solving the forward-reserve allocation problem

in warehouse order picking systems. Journal of the Operational Research Society, 61:1013–

1021, 2010.

K. R. Gue. Very high density storage systems. IIE Transactions, 38:93–104, 2006.

K. R. Gue and K. Furmans. Decentralized control in a grid-based storage system. In

T. Doolen and E. Van Aken, editors, Proceedings of the 2011 Industrial Engineering Re-

search Conference, 2011.

K. R. Gue and K. Kang. Staging queues in material handling and transportation systems.

In Proceedings of 2001 Winter Simulation Conference, 2001.

K. R. Gue and B. S. Kim. Puzzle-based storage systems. Naval Research Logistics, 54(5):

556–567, 2007.

K. R. Gue, K. Furmans, Z. Seibold, and O. Uludag. Gridstore: A puzzle-based storage system

with decentralized control. forthcoming in IEEE Transactions on Automation Science and

Engineering, 2013.

S. T. Hackman and M. J. Rosenblatt. Allocating items to an automated storage and retrieval

system. IIE Transactions: Industrial Engineering Research and Development, 22(1):7–14,

1990.

R.W. Hall. Distance approximations for routing manual pickers in a warehouse. IIE Trans-

actions, 25(4):76–87, 1993.

199

S. J. He, F. Cheng, and J. Luo. Modeling and implementing of an automated warehouse via

coloured timed petri nets. In IEEE International Conference on Control and Automation,

2007.

R. A. Hearn. Games, Puzzles, and Computation. PhD thesis, Massachusetts Institute of

Technology, 2006.

S. S. Heragu, L. Du, R. J. Mantel, and P. C. Schuur. Mathematical model for warehouse

design and product allocation. International Journal of Production Research, 43(2):327–

338, 2005.

S. S. Heragu, X. Cai, A. Krishnamurthy, and C. J. Malmborg. Analysis of autonomous vehicle

storage and retrieval system by open queueing network. In 5th Annual IEEE Conference

on Automation Science and Engineering, 2009.

J. Hopcroft, J. T. Schwarts, and M. Sharir. On the complexity of motion planning for multiple

independent objects; pspace-hardness of the “warehouseman’s problem”. International

Journal of Robotics Research, 3(4):76–88, 1984.

S. Hsieh, J. s. Hwang, and H. C. Chou. A petri net based structure for as/rs operation

modelling. Int. J. Prod. Res., 36(12):3323–3346, 1998.

Y. H. Hu, S. Y. Huang, C. Y. Chen, W. J. Hsu, A. C. Toh, C. K. Loh, and T. C. Song. Travel

time analysis of a new automated storage and retrieval system. Computers & Operations

Research, 32:1515–1544, 2005.

M.V. Iordache, J.O. Moody, and P.J. Antsaklis. A method for deadlock prevention in discrete

event systems. Technical report, University of Notre Dame, 1999.

K. Jensen. Colored petri nets and the invariant method. Theoretical Computer Science, 14:

317–336, 1981.

200

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume

1: Basic Concepts. Springer-Verlag, 1992.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume

2: Analysis Methods. Springer-Verlag, 1994.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume

3: Practical Use. Springer-Verlag, 1997.

K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools for modelling

and validation of concurrent systems. Int. J. Softw. Tools Technology Transfer, 9:213–254,

2007.

S. A. Jernigan. Multi-tier inventory systems with space constraints. PhD thesis, Georgia

Institue of Technology, Atlanta, GA, 2004.

M. Kamath and N. Vishwanatham. Applications of petri net based models in the modeling

and analysis of fmss. In Proceedings of the IEEE Conference on Robotics and Automation,

1987.

M. Kostrzewski. The procedure of warehouses designing as an integral part of the warehouses

designing method and the designing software. International Journal of Mathematical Mod-

els and Methods in Applied Sciences, 6:535–543, 2012.

T. Krühn, S. Falkenberg, and L. Overmeyer. Decentralized control for small scaled conveyor

modules with cellular automata. In Proceedings of the 2010 IEEE International Conference

on Automation and Logistics, 2010.

P. H. Kuo, A. Krishnamurthy, and C. J. Malmborg. Performance modelling of autonomous

vehicle storage and retrieval systems using class-based storage policies. Int. J. Computer

Applications in Technology, 31(3/4):238–248, 2008.

201

M. K. Lee. A storage assignment policy in a man on board automated storage retrieval

system. International Journal of Production Research, 30(10):2281–2292, 1992.

C. J. Malmborg. Conceptualizing tools for autonomous vehicle storage and retrieval systems.

International Journal of Production Research, 40(8):1807–1822, 2002.

S. H. Mayer. Development of a completely decentralized control system for modular contin-

uous conveyors. PhD thesis, Universität Karlsruhe, 2009.

B. Montreuil. Towards a physical internet: meeting the global logistics sustainability grand

challenge. Technical report, CIRRELT, 2011.

E. F. Moore. Machine models of self-reproduction. In Proceedings of Symposia in Applied

Mathematics, 1962.

T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE,

volume 77(4), pages 541–580, April 1989.

NAVSUP. Warehouse Modernization and Layout Planning Guide. Department of Navy,

Naval Supply Systems Command, NAVSUP Publication 529, March 1985.

L. Overmeyer, K. Ventz, S. Falkenberg, and T. Krühn. Interfaced multidirectional small-

scaled modules for intralogist. Logistics Research, 2:123–133, 2010.

C. G. Petersen and G. Aase. A comparison of picking, storage, and routing policies in manual

order picking. International Journal of Production Economics, 92:11–19, 2004.

C. G. Petersen and R. W. Schmenner. An evaluation of routing and volume based storage

policies in an order picking operation. Decision Sciences, 31(3):507–521, 1999.

S. Pujari and S. Mukhopadhyay. Petri net: A tool for modeling and analyze multi-agent

oriented systems. I. J. Intelligent Systems and Applications, 10:103–112, 2012.

202

H. D. Ratliff and A. S. Rosenthal. Order picking in a rectangular warehouse: A solvable

case of the traveling salesman problem. Operations Research, 31(3):507–521, 1983.

K. J. Roodbergen and R. De Koster. Routing methods for warehouses with multiple cross

aisles. International Journal of Production Research, 39(9):1865–1883, 2001.

K. J. Roodbergen and I. F. A. Vis. A survey of literature on automated storage and retrieval

systems. European Journal of Operational Research, 194:343–362, 2009.

B. Rouwenhorst, B. Reuter, V. Stockrahm, G. J. van Houtum, R. J. Mantel, and W. H. M.

Zijm. Warehouse design and control: Framework and literature review. European Journal

of Operational Research, 122(3):515–533, 2000.

Z. Sari, C. Saygin, and N. Ghouali. Travel-time models for flow-rack automated storage

and retrieval systems. International Journal of Advanced Manufacturing Technology, 25:

979–987, 2005.

M. Sarrafzadeh and S. R. Maddila. Discrete warehouse problem. Theoretical Computer

Science, 140:231–247, 1995.

K. Schmidt. Lola - a low level analyser. In International Conference on Application and

Theory of Petri Nets, 2000.

R. Sharma and Y. Aloimonos. Coordinated motion planning: the warehouseman’s problem

with constraints on free space. IEEE Transactions on Systems, Man and Cybernetics,

22(1):130–141, 1992.

G. P. Sharp. Order picking: principles, practices and advanced analysis, perspectives on

material handling practice. Technical report, MHIA, 1992.

A. R. Smith. Cellular automata complexity trade-offs. Information and Control, 18(5):

466–482, 1971.

203

P. Sornkhom and Y. Permpoontanalarp. Security analysis of micali’s fair contract signing

protocol by using coloured petri nets. In 9th ACIS International Conference on Software

Engineering, Artificial Intelligence Networking and Parallel/Distributed Computing, 2008.

G. D. Taylor and K. R. Gue. Retrieval time performance in puzzle-based storage systems. In

A. Johnson and J. Miller, editors, Proceedings of the 2010 Industrial Engineering Research

Conference, 2010.

M. Ten Hompel, S. Libert, and U. Sondhof. Distributed control nodes for material flow

system controls on the example of unit load conveyor and sorter facilities. Logistics Journal,

2:1–8, 2006.

J. A. Tompkins, J. A. White, Y. A. Bozer, and J. M. A. Tanchoco. Facilities Planning. John

Wiley & Sons, Inc., 2003.

J. P. Van den Berg. A literature survey on planning and control of warehousing systems.

IIE Transactions, 31:751–762, 1999a.

J. P. Van den Berg, G. P. Sharp, A. J. R. M. Gademann, and Y. Pochet. Forward-reserve

allocation in a warehouse with unit load replenishment. European Journal of Operational

Research, 111(1):98–113, 1998.

J. von Nuemann. The Theory of Self-Producing Automata. University of Illinois Press,

Urbana, Illinois, 1966.

J. Wang. Petri nets for dynamic event driven system modeling. CRC Press, 2007.

J. Wang, S. Zhang, and F. Chen. Modeling and verification of sctp association manage-

ment based on colored petri nets. In ISECS International Colloquium on Computing,

Communication, Control, and Management, 2008.

204

A. Wegrzyn, A. Karatkevich, and J. Bieganowski. Detection of deadlocks and traps in petri

nets by means of thelen’s prime implicant method. Int. J. Appl. Math. Comput. Sci.,

14(1):113–121, 2004.

G. Weiss, editor. Multiagent systems: a modern approach to distributed artificial intelligence.

Cambridge, MA, USA: MIT Press, 1999.

G. Wilfong. Motion planning in the presence of movable obstacles. In Proceedings of 4th

Symposium on Computational Geometry, 1988.

M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Inc., 2002.

H. Xu, M. Ayachit, and A. Reddyreddy. Formal modeling and analysis of xml firewall for

service oriented systems. Int. J. Security and Networks, 3(3):1–13, 2008.

C. S. Yoon and G. P. Sharp. A structured procedure for analysis and design of order pick

systems. IIE Transactions, 28(5):379–389, 1996.

D. V. Zizzi. What’s new in the equipment field. In International Material Handling Research

Colloquium, Material Handling Institute, 2000.

R. Zurawski and M. Zhou. Petri nets and industrial applications: A tutorial. IEEE Trans-

actions on Industrial Electronics, 41(6):567–583, 1994.

205

Appendix A

Appendix

A.1 Statistical Data and Confidence Intervals for the Analysis

Below tables provide the statistical information and confidence intervals for the perfor-

mance measures. First number for the variable shows the k value or aspect ratio or number

of copies. Second number always shows the expected order size.

A.2 Paired t Tests

Below paired t tests include comparisons for throughput, flow time, walking time, and

waiting time. First number in the variable name shows the k value. The second number

indicates the expected order size.

206

thr Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-4 30 0.30335 0.00621 0.00113 (0.30022,

0.30648)
0.00313 1.03%

thr Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-14 30 0.473242 0.002792 0.00051 (0.471837,

0.474647)
0.001405 0.30 %

thr Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-24 30 0.456525 0.00408 0.000745 (0.454472,

0.458578)
0.002053 0.45 %

walking Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-4 30 2.0146 0.0654 0.0119 (1.9817,

2.0475)
0.0329 1.63%

walking Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-14 30 0.6707 0.01153 0.0021 (0.66490,

0.67651)
0.00581 0.87%

walking Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-24 30 0.49893 0.00941 0.00172 (0.49419,

0.50367)
0.00474 0.95 %

waiting Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-4 30 0.53424 0.01016 0.00186 (0.52913,

0.53935)
0.00511 0.96 %

waiting Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-14 30 0.69261 0.0116 0.00212 (0.68677,

0.69844)
0.00583 0.84%

waiting Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
k3-24 30 0.94191 0.02659 0.00485 (0.92853,

0.95529)
0.01338 1.42%

flowtime Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
flowk3-4 30 9.3867 0.1058 0.0193 (9.3335,

9.4400)
0.0533 0.57%

flowtime Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
flowk3-14 30 15.0662 0.2703 0.0494 (14.9302,

15.2023)
0.1361 0.90 %

flowtime Variable N Mean StDev SE Mean 99% CI Halfwidth % Mean
flwk3-24 30 24.867 0.59 0.108 (24.569,

25.164)
0.297 1.19%

Table A.1: Statistical Data for the Throughput of One Sided GridPick

207

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

0.5-4 30 0.188192 0.005448 0.000995 (0.185450, 0.190933) 0.002741 1.46%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

1-4 30 0.27913 0.00659 0.0012 (0.27582, 0.28245) 0.00332 1.19%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

1-14 30 0.4416 0.003601 0.000657 (0.439788, 0.443412) 0.001812 0.41%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

8-14 30 0.415725 0.003765 0.000687 (0.413830, 0.417620) 0.001895 0.46%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

8-24 30 0.479442 0.002169 0.000396 (0.478350, 0.480533) 0.001091 0.23%

Table A.2: Statistical Data for the Aspect Ratio Configurations of One Sided GridPick

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

inck-4 30 0.297092 0.004702 0.000858 (0.294725, 0.299458) 0.002366 0.80%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

inck-14 30 0.476475 0.00202 0.000369 (0.475459, 0.477491) 0.001016 0.21%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

inck-24 30 0.468217 0.003359 0.000613 (0.466526, 0.469907) 0.00169 0.36%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

deck-4 30 0.295558 0.004528 0.000827 (0.293280, 0.297837) 0.00228 0.77%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

deck-14 30 0.463725 0.003401 0.000621 (0.462014, 0.465436) 0.0017 0.37%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

deck-24 30 0.45188 0.0062 0.00113 (0.44876, 0.45500) 0.00312 0.69%

Table A.3: Statistical Data for the Variable k Configurations of One Sided GridPick

208

Paired T-Tests for Throughput Analysis of One Sided GridPick

Paired T-Test and CI: k2_2, k3_2

Paired T for k2_2 - k3_2

 N Mean StDev SE Mean
k2_2 30 0.215733 0.003769 0.000688
k3_2 30 0.210083 0.004640 0.000847
Difference 30 0.00565 0.00692 0.00126

95% CI for mean difference: (0.00307, 0.00823)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.47 P-Value = 0.000

Paired T-Test and CI: k2_2, k4_2

Paired T for k2_2 - k4_2

 N Mean StDev SE Mean
k2_2 30 0.215733 0.003769 0.000688
k4_2 30 0.203900 0.003603 0.000658
Difference 30 0.011833 0.005352 0.000977

95% CI for mean difference: (0.009835, 0.013832)
T-Test of mean difference = 0 (vs not = 0): T-Value = 12.11 P-Value = 0.000

Paired T-Test and CI: k3_2, k4_2

Paired T for k3_2 - k4_2

 N Mean StDev SE Mean
k3_2 30 0.210083 0.004640 0.000847
k4_2 30 0.203900 0.003603 0.000658
Difference 30 0.00618 0.00576 0.00105

95% CI for mean difference: (0.00403, 0.00833)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5.88 P-Value = 0.000

Paired T-Test and CI: k2_4, k3_4

Paired T for k2_4 - k3_4

 N Mean StDev SE Mean
k2_4 30 0.30864 0.00587 0.00107
k3_4 30 0.30335 0.00621 0.00113
Difference 30 0.00529 0.00739 0.00135

95% CI for mean difference: (0.00253, 0.00805)
T-Test of mean difference = 0 (vs not = 0): T-Value = 3.92 P-Value = 0.000

Paired T-Test and CI: k2_4, k4_4

Paired T for k2_4 - k4_4

 N Mean StDev SE Mean
k2_4 30 0.30864 0.00587 0.00107
k4_4 30 0.29876 0.00473 0.00086
Difference 30 0.00988 0.00721 0.00132

95% CI for mean difference: (0.00719, 0.01257)
T-Test of mean difference = 0 (vs not = 0): T-Value = 7.51 P-Value = 0.000

Paired T-Test and CI: k3_4, k4_4

Paired T for k3_4 - k4_4

 N Mean StDev SE Mean
k3_4 30 0.30335 0.00621 0.00113
k4_4 30 0.29876 0.00473 0.00086
Difference 30 0.00459 0.00808 0.00148

95% CI for mean difference: (0.00157, 0.00761)
T-Test of mean difference = 0 (vs not = 0): T-Value = 3.11 P-Value = 0.004

Paired T-Test and CI: k2_6, k3_6

Paired T for k2_6 - k3_6

 N Mean StDev SE Mean
k2_6 30 0.370592 0.005237 0.000956
k3_6 30 0.371508 0.003729 0.000681
Difference 30 -0.00092 0.00667 0.00122

95% CI for mean difference: (-0.00341, 0.00158)
T-Test of mean difference = 0 (vs not = 0): T-Value = -0.75 P-Value = 0.458

Paired T-Test and CI: k2_6, k4_6

Paired T for k2_6 - k4_6

 N Mean StDev SE Mean
k2_6 30 0.370592 0.005237 0.000956
k4_6 30 0.365333 0.004632 0.000846
Difference 30 0.00526 0.00657 0.00120

95% CI for mean difference: (0.00281, 0.00771)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.39 P-Value = 0.000

Paired T-Test and CI: k3_6, k4_6

Paired T for k3_6 - k4_6

 N Mean StDev SE Mean
k3_6 30 0.371508 0.003729 0.000681
k4_6 30 0.365333 0.004632 0.000846
Difference 30 0.006175 0.004673 0.000853

95% CI for mean difference: (0.004430, 0.007920)
T-Test of mean difference = 0 (vs not = 0): T-Value = 7.24 P-Value = 0.000

Paired T-Test and CI: k2_8, k3_8

Paired T for k2_8 - k3_8

 N Mean StDev SE Mean
k2_8 30 0.403267 0.004584 0.000837
k3_8 30 0.416408 0.004239 0.000774
Difference 30 -0.013142 0.004986 0.000910

95% CI for mean difference: (-0.015003, -0.011280)
T-Test of mean difference = 0 (vs not = 0): T-Value = -14.44 P-Value = 0.000

Paired T-Test and CI: k2_8, k4_8

Paired T for k2_8 - k4_8

 N Mean StDev SE Mean
k2_8 30 0.403267 0.004584 0.000837
k4_8 30 0.410700 0.003518 0.000642
Difference 30 -0.007433 0.005098 0.000931

95% CI for mean difference: (-0.009337, -0.005530)
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.99 P-Value = 0.000

Paired T-Test and CI: k3_8, k4_8

Paired T for k3_8 - k4_8

 N Mean StDev SE Mean
k3_8 30 0.416408 0.004239 0.000774
k4_8 30 0.410700 0.003518 0.000642
Difference 30 0.00571 0.00560 0.00102

95% CI for mean difference: (0.00362, 0.00780)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5.58 P-Value = 0.000

Paired T-Test and CI: k2_10, k3_10

Paired T for k2_10 - k3_10

 N Mean StDev SE Mean
k2_10 30 0.423633 0.004592 0.000838
k3_10 30 0.445342 0.004015 0.000733
Difference 30 -0.02171 0.00660 0.00120

95% CI for mean difference: (-0.02417, -0.01924)
T-Test of mean difference = 0 (vs not = 0): T-Value = -18.02 P-Value = 0.000

Paired T-Test and CI: k2_10, k4_10

Paired T for k2_10 - k4_10

 N Mean StDev SE Mean
k2_10 30 0.423633 0.004592 0.000838
k4_10 30 0.443875 0.003180 0.000581
Difference 30 -0.02024 0.00626 0.00114

95% CI for mean difference: (-0.02258, -0.01790)
T-Test of mean difference = 0 (vs not = 0): T-Value = -17.70 P-Value = 0.000

Paired T-Test and CI: k3_10, k4_10

Paired T for k3_10 - k4_10

 N Mean StDev SE Mean
k3_10 30 0.445342 0.004015 0.000733
k4_10 30 0.443875 0.003180 0.000581
Difference 30 0.001467 0.005434 0.000992

95% CI for mean difference: (-0.000562, 0.003496)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.48 P-Value = 0.150

Paired T-Test and CI: k2_12, k3_12

Paired T for k2_12 - k3_12

 N Mean StDev SE Mean
k2_12 30 0.432500 0.005359 0.000978
k3_12 30 0.463808 0.002021 0.000369
Difference 30 -0.03131 0.00557 0.00102

95% CI for mean difference: (-0.03339, -0.02923)
T-Test of mean difference = 0 (vs not = 0): T-Value = -30.80 P-Value = 0.000

Paired T-Test and CI: k2_12, k4_12

Paired T for k2_12 - k4_12

 N Mean StDev SE Mean
k2_12 30 0.432500 0.005359 0.000978
k4_12 30 0.462783 0.002381 0.000435
Difference 30 -0.03028 0.00593 0.00108

95% CI for mean difference: (-0.03250, -0.02807)
T-Test of mean difference = 0 (vs not = 0): T-Value = -27.97 P-Value = 0.000

Paired T-Test and CI: k3_12, k4_12

Paired T for k3_12 - k4_12

 N Mean StDev SE Mean
k3_12 30 0.463808 0.002021 0.000369
k4_12 30 0.462783 0.002381 0.000435
Difference 30 0.001025 0.003501 0.000639

95% CI for mean difference: (-0.000282, 0.002332)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.60 P-Value = 0.120

Paired T-Test and CI: k2_14, k3_14

Paired T for k2_14 - k3_14

 N Mean StDev SE Mean
k2_14 30 0.439400 0.004433 0.000809
k3_14 30 0.473242 0.002792 0.000510
Difference 30 -0.033842 0.004707 0.000859

95% CI for mean difference: (-0.035599, -0.032084)
T-Test of mean difference = 0 (vs not = 0): T-Value = -39.38 P-Value = 0.000

Paired T-Test and CI: k2_14, k4_14

Paired T for k2_14 - k4_14

 N Mean StDev SE Mean
k2_14 30 0.439400 0.004433 0.000809
k4_14 30 0.474150 0.001779 0.000325
Difference 30 -0.034750 0.004543 0.000829

95% CI for mean difference: (-0.036446, -0.033054)
T-Test of mean difference = 0 (vs not = 0): T-Value = -41.90 P-Value = 0.000

Paired T-Test and CI: k3_14, k4_14

Paired T for k3_14 - k4_14

 N Mean StDev SE Mean
k3_14 30 0.473242 0.002792 0.000510
k4_14 30 0.474150 0.001779 0.000325
Difference 30 -0.000908 0.002803 0.000512

95% CI for mean difference: (-0.001955, 0.000138)
T-Test of mean difference = 0 (vs not = 0): T-Value = -1.78 P-Value = 0.086

Paired T-Test and CI: k2_16, k3_16

Paired T for k2_16 - k3_16

 N Mean StDev SE Mean
k2_16 30 0.437758 0.004541 0.000829
k3_16 30 0.475342 0.002939 0.000537
Difference 30 -0.03758 0.00580 0.00106

95% CI for mean difference: (-0.03975, -0.03542)
T-Test of mean difference = 0 (vs not = 0): T-Value = -35.50 P-Value = 0.000

Paired T-Test and CI: k2_16, k4_16

Paired T for k2_16 - k4_16

 N Mean StDev SE Mean
k2_16 30 0.437758 0.004541 0.000829
k4_16 30 0.479525 0.002163 0.000395
Difference 30 -0.04177 0.00564 0.00103

95% CI for mean difference: (-0.04387, -0.03966)
T-Test of mean difference = 0 (vs not = 0): T-Value = -40.56 P-Value = 0.000

Paired T-Test and CI: k3_16, k4_16

Paired T for k3_16 - k4_16

 N Mean StDev SE Mean
k3_16 30 0.475342 0.002939 0.000537
k4_16 30 0.479525 0.002163 0.000395
Difference 30 -0.004183 0.002989 0.000546

95% CI for mean difference: (-0.005300, -0.003067)
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.67 P-Value = 0.000

Paired T-Test and CI: k2_18, k3_18

Paired T for k2_18 - k3_18

 N Mean StDev SE Mean
k2_18 30 0.436833 0.005329 0.000973
k3_18 30 0.473258 0.003853 0.000703
Difference 30 -0.03642 0.00720 0.00132

95% CI for mean difference: (-0.03912, -0.03373)
T-Test of mean difference = 0 (vs not = 0): T-Value = -27.69 P-Value = 0.000

Paired T-Test and CI: k2_18, k4_18

Paired T for k2_18 - k4_18

 N Mean StDev SE Mean
k2_18 30 0.436833 0.005329 0.000973
k4_18 30 0.479517 0.002124 0.000388
Difference 30 -0.04268 0.00590 0.00108

95% CI for mean difference: (-0.04489, -0.04048)
T-Test of mean difference = 0 (vs not = 0): T-Value = -39.63 P-Value = 0.000

Paired T-Test and CI: k3_18, k4_18

Paired T for k3_18 - k4_18

 N Mean StDev SE Mean
k3_18 30 0.473258 0.003853 0.000703
k4_18 30 0.479517 0.002124 0.000388
Difference 30 -0.006258 0.004234 0.000773

95% CI for mean difference: (-0.007839, -0.004677)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.10 P-Value = 0.000

Paired T-Test and CI: k2_20, k3_20

Paired T for k2_20 - k3_20

 N Mean StDev SE Mean
k2_20 30 0.434408 0.005195 0.000948
k3_20 30 0.469817 0.003821 0.000698
Difference 30 -0.03541 0.00624 0.00114

95% CI for mean difference: (-0.03774, -0.03308)
T-Test of mean difference = 0 (vs not = 0): T-Value = -31.10 P-Value = 0.000

Paired T-Test and CI: k2_20, k4_20

Paired T for k2_20 - k4_20

 N Mean StDev SE Mean
k2_20 30 0.434408 0.005195 0.000948
k4_20 30 0.474792 0.003534 0.000645
Difference 30 -0.04038 0.00731 0.00134

95% CI for mean difference: (-0.04311, -0.03765)
T-Test of mean difference = 0 (vs not = 0): T-Value = -30.25 P-Value = 0.000

Paired T-Test and CI: k3_20, k4_20

Paired T for k3_20 - k4_20

 N Mean StDev SE Mean
k3_20 30 0.469817 0.003821 0.000698
k4_20 30 0.474792 0.003534 0.000645
Difference 30 -0.004975 0.004682 0.000855

95% CI for mean difference: (-0.006723, -0.003227)
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.82 P-Value = 0.000

Paired T-Test and CI: k2_22, k3_22

Paired T for k2_22 - k3_22

 N Mean StDev SE Mean
k2_22 30 0.42982 0.00604 0.00110
k3_22 30 0.46333 0.00476 0.00087
Difference 30 -0.03352 0.00846 0.00154

95% CI for mean difference: (-0.03668, -0.03036)
T-Test of mean difference = 0 (vs not = 0): T-Value = -21.70 P-Value = 0.000

Paired T-Test and CI: k2_22, k4_22

Paired T for k2_22 - k4_22

 N Mean StDev SE Mean
k2_22 30 0.42982 0.00604 0.00110
k4_22 30 0.47017 0.00480 0.00088
Difference 30 -0.04035 0.00744 0.00136

95% CI for mean difference: (-0.04313, -0.03757)
T-Test of mean difference = 0 (vs not = 0): T-Value = -29.71 P-Value = 0.000

Paired T-Test and CI: k3_22, k4_22

Paired T for k3_22 - k4_22

 N Mean StDev SE Mean
k3_22 30 0.463333 0.004760 0.000869
k4_22 30 0.470167 0.004800 0.000876
Difference 30 -0.00683 0.00738 0.00135

95% CI for mean difference: (-0.00959, -0.00408)
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.07 P-Value = 0.000

Paired T-Test and CI: k2_24, k3_24

Paired T for k2_24 - k3_24

 N Mean StDev SE Mean
k2_24 30 0.42641 0.00587 0.00107
k3_24 30 0.45653 0.00408 0.00074
Difference 30 -0.03012 0.00686 0.00125

95% CI for mean difference: (-0.03268, -0.02755)
T-Test of mean difference = 0 (vs not = 0): T-Value = -24.04 P-Value = 0.000

Paired T-Test and CI: k2_24, k4_24

Paired T for k2_24 - k4_24

 N Mean StDev SE Mean
k2_24 30 0.42641 0.00587 0.00107
k4_24 30 0.46377 0.00528 0.00096
Difference 30 -0.03736 0.00836 0.00153

95% CI for mean difference: (-0.04048, -0.03424)
T-Test of mean difference = 0 (vs not = 0): T-Value = -24.47 P-Value = 0.000

Paired T-Test and CI: k3_24, k4_24

Paired T for k3_24 - k4_24

 N Mean StDev SE Mean
k3_24 30 0.456525 0.004080 0.000745
k4_24 30 0.463767 0.005276 0.000963
Difference 30 -0.00724 0.00780 0.00142

95% CI for mean difference: (-0.01015, -0.00433)
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.09 P-Value = 0.000

Paired T-Test and CI: k2_26, k3_26

Paired T for k2_26 - k3_26

 N Mean StDev SE Mean
k2_26 30 0.42365 0.00699 0.00128
k3_26 30 0.44973 0.00450 0.00082
Difference 30 -0.02607 0.00794 0.00145

95% CI for mean difference: (-0.02904, -0.02311)
T-Test of mean difference = 0 (vs not = 0): T-Value = -17.98 P-Value = 0.000

Paired T-Test and CI: k2_26, k4_26

Paired T for k2_26 - k4_26

 N Mean StDev SE Mean
k2_26 30 0.42365 0.00699 0.00128
k4_26 30 0.45971 0.00456 0.00083
Difference 30 -0.03606 0.00776 0.00142

95% CI for mean difference: (-0.03896, -0.03316)
T-Test of mean difference = 0 (vs not = 0): T-Value = -25.44 P-Value = 0.000

Paired T-Test and CI: k3_26, k4_26

Paired T for k3_26 - k4_26

 N Mean StDev SE Mean
k3_26 30 0.449725 0.004503 0.000822
k4_26 30 0.459708 0.004559 0.000832
Difference 30 -0.00998 0.00598 0.00109

95% CI for mean difference: (-0.01221, -0.00775)
T-Test of mean difference = 0 (vs not = 0): T-Value = -9.15 P-Value = 0.000

	

Paired T-Tests for Walking Time Analysis of One Sided GridPick

Paired T-Test and CI: k2_2, k3_2

Paired T for k2_2 - k3_2

 N Mean StDev SE Mean
k2_2 30 3.3761 0.0834 0.0152
k3_2 30 3.4998 0.1071 0.0195
Difference 30 -0.1237 0.1556 0.0284

95% CI for mean difference: (-0.1819, -0.0656)
T-Test of mean difference = 0 (vs not = 0): T-Value = -4.35 P-Value = 0.000

Paired T-Test and CI: k2_4, k3_4

Paired T for k2_4 - k3_4

 N Mean StDev SE Mean
k2_4 30 1.9511 0.0632 0.0115
k3_4 30 2.0146 0.0654 0.0119
Difference 30 -0.0635 0.0767 0.0140

95% CI for mean difference: (-0.0922, -0.0349)
T-Test of mean difference = 0 (vs not = 0): T-Value = -4.53 P-Value = 0.000

Paired T-Test and CI: k2_6, k3_6

Paired T for k2_6 - k3_6

 N Mean StDev SE Mean
k2_6 30 1.33289 0.04214 0.00769
k3_6 30 1.38299 0.03030 0.00553
Difference 30 -0.05011 0.04950 0.00904

95% CI for mean difference: (-0.06859, -0.03162)
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.54 P-Value = 0.000

Paired T-Test and CI: k2_8, k3_8

Paired T for k2_8 - k3_8

 N Mean StDev SE Mean
k2_8 30 1.02971 0.02311 0.00422
k3_8 30 1.06211 0.02418 0.00441
Difference 30 -0.03240 0.02937 0.00536

95% CI for mean difference: (-0.04336, -0.02143)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.04 P-Value = 0.000

Paired T-Test and CI: k2_10, k3_10

Paired T for k2_10 - k3_10

 N Mean StDev SE Mean
k2_10 30 0.83257 0.01824 0.00333
k3_10 30 0.87439 0.02098 0.00383
Difference 30 -0.04182 0.02617 0.00478

95% CI for mean difference: (-0.05159, -0.03205)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.75 P-Value = 0.000

Paired T-Test and CI: k2_12, k3_12

Paired T for k2_12 - k3_12

 N Mean StDev SE Mean
k2_12 30 0.71705 0.01642 0.00300
k3_12 30 0.74818 0.01322 0.00241
Difference 30 -0.03114 0.01980 0.00361

95% CI for mean difference: (-0.03853, -0.02374)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.61 P-Value = 0.000

Paired T-Test and CI: k2_14, k3_14

Paired T for k2_14 - k3_14

 N Mean StDev SE Mean
k2_14 30 0.63630 0.01106 0.00202
k3_14 30 0.67070 0.01153 0.00210
Difference 30 -0.03441 0.01603 0.00293

95% CI for mean difference: (-0.04039, -0.02842)
T-Test of mean difference = 0 (vs not = 0): T-Value = -11.76 P-Value = 0.000

Paired T-Test and CI: k2_16, k3_16

Paired T for k2_16 - k3_16

 N Mean StDev SE Mean
k2_16 30 0.58461 0.00815 0.00149
k3_16 30 0.61650 0.00787 0.00144
Difference 30 -0.03189 0.01025 0.00187

95% CI for mean difference: (-0.03572, -0.02806)
T-Test of mean difference = 0 (vs not = 0): T-Value = -17.04 P-Value = 0.000

Paired T-Test and CI: k2_18, k3_18

Paired T for k2_18 - k3_18

 N Mean StDev SE Mean
k2_18 30 0.54602 0.00625 0.00114
k3_18 30 0.57512 0.00846 0.00154

Difference 30 -0.02910 0.01137 0.00208

95% CI for mean difference: (-0.03335, -0.02486)
T-Test of mean difference = 0 (vs not = 0): T-Value = -14.01 P-Value = 0.000

Paired T-Test and CI: k2_20, k3_20

Paired T for k2_20 - k3_20

 N Mean StDev SE Mean
k2_20 30 0.52296 0.00830 0.00151
k3_20 30 0.54564 0.01035 0.00189
Difference 30 -0.02268 0.01298 0.00237

95% CI for mean difference: (-0.02753, -0.01783)
T-Test of mean difference = 0 (vs not = 0): T-Value = -9.57 P-Value = 0.000

Paired T-Test and CI: k2_22, k3_22

Paired T for k2_22 - k3_22

 N Mean StDev SE Mean
k2_22 30 0.50640 0.00653 0.00119
k3_22 30 0.52235 0.00796 0.00145
Difference 30 -0.01595 0.01058 0.00193

95% CI for mean difference: (-0.01990, -0.01200)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.26 P-Value = 0.000

Paired T-Test and CI: k2_24, k3_24

Paired T for k2_24 - k3_24

 N Mean StDev SE Mean
k2_24 30 0.49219 0.00710 0.00130
k3_24 30 0.49893 0.00941 0.00172
Difference 30 -0.00674 0.01262 0.00230

95% CI for mean difference: (-0.01146, -0.00203)
T-Test of mean difference = 0 (vs not = 0): T-Value = -2.93 P-Value = 0.007

Paired T-Test and CI: k2_26, k3_26

Paired T for k2_26 - k3_26

 N Mean StDev SE Mean
k2_26 30 0.48209 0.00700 0.00128
k3_26 30 0.48443 0.00627 0.00114
Difference 30 -0.00234 0.00847 0.00155

95% CI for mean difference: (-0.00551, 0.00082)
T-Test of mean difference = 0 (vs not = 0): T-Value = -1.52 P-Value = 0.140

Paired T-Test and CI: k2_2, k4_2

Paired T for k2_2 - k4_2

 N Mean StDev SE Mean
k2_2 30 3.3761 0.0834 0.0152
k4_2 30 3.6503 0.0831 0.0152
Difference 30 -0.2742 0.1231 0.0225

95% CI for mean difference: (-0.3202, -0.2283)
T-Test of mean difference = 0 (vs not = 0): T-Value = -12.20 P-Value = 0.000

Paired T-Test and CI: k2_4, k4_4

Paired T for k2_4 - k4_4

 N Mean StDev SE Mean
k2_4 30 1.9511 0.0632 0.0115
k4_4 30 2.0697 0.0524 0.0096
Difference 30 -0.1186 0.0795 0.0145

95% CI for mean difference: (-0.1483, -0.0889)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.17 P-Value = 0.000

Paired T-Test and CI: k2_6, k4_6

Paired T for k2_6 - k4_6

 N Mean StDev SE Mean
k2_6 30 1.33289 0.04214 0.00769
k4_6 30 1.43340 0.03512 0.00641
Difference 30 -0.10051 0.05342 0.00975

95% CI for mean difference: (-0.12046, -0.08056)
T-Test of mean difference = 0 (vs not = 0): T-Value = -10.30 P-Value = 0.000

Paired T-Test and CI: k2_8, k4_8

Paired T for k2_8 - k4_8

 N Mean StDev SE Mean
k2_8 30 1.02971 0.02311 0.00422
k4_8 30 1.10100 0.02166 0.00395
Difference 30 -0.07129 0.02478 0.00452

95% CI for mean difference: (-0.08054, -0.06203)
T-Test of mean difference = 0 (vs not = 0): T-Value = -15.76 P-Value = 0.000

Paired T-Test and CI: k2_10, k4_10

Paired T for k2_10 - k4_10

 N Mean StDev SE Mean
k2_10 30 0.83257 0.01824 0.00333
k4_10 30 0.89311 0.01801 0.00329
Difference 30 -0.06053 0.02867 0.00523

95% CI for mean difference: (-0.07124, -0.04982)
T-Test of mean difference = 0 (vs not = 0): T-Value = -11.56 P-Value = 0.000

Paired T-Test and CI: k2_12, k4_12

Paired T for k2_12 - k4_12

 N Mean StDev SE Mean
k2_12 30 0.71705 0.01642 0.00300
k4_12 30 0.76829 0.01231 0.00225
Difference 30 -0.05124 0.01800 0.00329

95% CI for mean difference: (-0.05796, -0.04452)
T-Test of mean difference = 0 (vs not = 0): T-Value = -15.59 P-Value = 0.000

Paired T-Test and CI: k2_14, k4_14

Paired T for k2_14 - k4_14

 N Mean StDev SE Mean
k2_14 30 0.63630 0.01106 0.00202
k4_14 30 0.68626 0.00952 0.00174
Difference 30 -0.04996 0.01366 0.00249

95% CI for mean difference: (-0.05506, -0.04486)
T-Test of mean difference = 0 (vs not = 0): T-Value = -20.03 P-Value = 0.000

Paired T-Test and CI: k2_16, k4_16

Paired T for k2_16 - k4_16

 N Mean StDev SE Mean
k2_16 30 0.58461 0.00815 0.00149
k4_16 30 0.62653 0.00960 0.00175
Difference 30 -0.04193 0.00975 0.00178

95% CI for mean difference: (-0.04557, -0.03829)
T-Test of mean difference = 0 (vs not = 0): T-Value = -23.55 P-Value = 0.000

Paired T-Test and CI: k2_18, k4_18

Paired T for k2_18 - k4_18

 N Mean StDev SE Mean
k2_18 30 0.54602 0.00625 0.00114
k4_18 30 0.58192 0.01007 0.00184

Difference 30 -0.03590 0.01245 0.00227

95% CI for mean difference: (-0.04055, -0.03125)
T-Test of mean difference = 0 (vs not = 0): T-Value = -15.80 P-Value = 0.000

Paired T-Test and CI: k2_20, k4_20

Paired T for k2_20 - k4_20

 N Mean StDev SE Mean
k2_20 30 0.52296 0.00830 0.00151
k4_20 30 0.54807 0.00920 0.00168
Difference 30 -0.02510 0.01003 0.00183

95% CI for mean difference: (-0.02885, -0.02136)
T-Test of mean difference = 0 (vs not = 0): T-Value = -13.71 P-Value = 0.000

Paired T-Test and CI: k2_22, k4_22

Paired T for k2_22 - k4_22

 N Mean StDev SE Mean
k2_22 30 0.50640 0.00653 0.00119
k4_22 30 0.51359 0.01232 0.00225
Difference 30 -0.00720 0.01268 0.00231

95% CI for mean difference: (-0.01193, -0.00246)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.11 P-Value = 0.004

Paired T-Test and CI: k2_24, k4_24

Paired T for k2_24 - k4_24

 N Mean StDev SE Mean
k2_24 30 0.49219 0.00710 0.00130
k4_24 30 0.48512 0.01170 0.00214
Difference 30 0.00707 0.01324 0.00242

95% CI for mean difference: (0.00212, 0.01202)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.92 P-Value = 0.007

Paired T-Test and CI: k2_26, k4_26

Paired T for k2_26 - k4_26

 N Mean StDev SE Mean
k2_26 30 0.48209 0.00700 0.00128
k4_26 30 0.46453 0.01345 0.00246
Difference 30 0.01756 0.01463 0.00267

95% CI for mean difference: (0.01210, 0.02302)
T-Test of mean difference = 0 (vs not = 0): T-Value = 6.58 P-Value = 0.000

Paired T-Test and CI: k3_2, k4_2

Paired T for k3_2 - k4_2

 N Mean StDev SE Mean
k3_2 30 3.4998 0.1071 0.0195
k4_2 30 3.6503 0.0831 0.0152
Difference 30 -0.1505 0.1315 0.0240

95% CI for mean difference: (-0.1996, -0.1014)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.27 P-Value = 0.000

Paired T-Test and CI: k3_4, k4_4

Paired T for k3_4 - k4_4

 N Mean StDev SE Mean
k3_4 30 2.0146 0.0654 0.0119
k4_4 30 2.0697 0.0524 0.0096
Difference 30 -0.0551 0.0865 0.0158

95% CI for mean difference: (-0.0874, -0.0228)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.49 P-Value = 0.002

Paired T-Test and CI: k3_6, k4_6

Paired T for k3_6 - k4_6

 N Mean StDev SE Mean
k3_6 30 1.38299 0.03030 0.00553
k4_6 30 1.43340 0.03512 0.00641
Difference 30 -0.05040 0.03930 0.00718

95% CI for mean difference: (-0.06508, -0.03573)
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.02 P-Value = 0.000

Paired T-Test and CI: k3_8, k4_8

Paired T for k3_8 - k4_8

 N Mean StDev SE Mean
k3_8 30 1.06211 0.02418 0.00441
k4_8 30 1.10100 0.02166 0.00395
Difference 30 -0.03889 0.03472 0.00634

95% CI for mean difference: (-0.05186, -0.02592)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.13 P-Value = 0.000

Paired T-Test and CI: k3_10, k4_10

Paired T for k3_10 - k4_10

 N Mean StDev SE Mean
k3_10 30 0.87439 0.02098 0.00383
k4_10 30 0.89311 0.01801 0.00329
Difference 30 -0.01871 0.02866 0.00523

95% CI for mean difference: (-0.02941, -0.00801)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.58 P-Value = 0.001

Paired T-Test and CI: k3_12, k4_12

Paired T for k3_12 - k4_12

 N Mean StDev SE Mean
k3_12 30 0.74818 0.01322 0.00241
k4_12 30 0.76829 0.01231 0.00225
Difference 30 -0.02011 0.02039 0.00372

95% CI for mean difference: (-0.02772, -0.01249)
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.40 P-Value = 0.000

Paired T-Test and CI: k3_14, k4_14

Paired T for k3_14 - k4_14

 N Mean StDev SE Mean
k3_14 30 0.67070 0.01153 0.00210
k4_14 30 0.68626 0.00952 0.00174
Difference 30 -0.01555 0.01239 0.00226

95% CI for mean difference: (-0.02018, -0.01092)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.87 P-Value = 0.000

Paired T-Test and CI: k3_16, k4_16

Paired T for k3_16 - k4_16

 N Mean StDev SE Mean
k3_16 30 0.61650 0.00787 0.00144
k4_16 30 0.62653 0.00960 0.00175
Difference 30 -0.01004 0.01427 0.00260

95% CI for mean difference: (-0.01537, -0.00471)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.85 P-Value = 0.001

Paired T-Test and CI: k3_18, k4_18

Paired T for k3_18 - k4_18

 N Mean StDev SE Mean
k3_18 30 0.57512 0.00846 0.00154

k4_18 30 0.58192 0.01007 0.00184
Difference 30 -0.00680 0.01383 0.00253

95% CI for mean difference: (-0.01196, -0.00163)
T-Test of mean difference = 0 (vs not = 0): T-Value = -2.69 P-Value = 0.012

Paired T-Test and CI: k3_20, k4_20

Paired T for k3_20 - k4_20

 N Mean StDev SE Mean
k3_20 30 0.54564 0.01035 0.00189
k4_20 30 0.54807 0.00920 0.00168
Difference 30 -0.00242 0.01450 0.00265

95% CI for mean difference: (-0.00784, 0.00299)
T-Test of mean difference = 0 (vs not = 0): T-Value = -0.92 P-Value = 0.367

Paired T-Test and CI: k3_22, k4_22

Paired T for k3_22 - k4_22

 N Mean StDev SE Mean
k3_22 30 0.52235 0.00796 0.00145
k4_22 30 0.51359 0.01232 0.00225
Difference 30 0.00876 0.01695 0.00309

95% CI for mean difference: (0.00243, 0.01509)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.83 P-Value = 0.008

Paired T-Test and CI: k3_24, k4_24

Paired T for k3_24 - k4_24

 N Mean StDev SE Mean
k3_24 30 0.49893 0.00941 0.00172
k4_24 30 0.48512 0.01170 0.00214
Difference 30 0.01381 0.01508 0.00275

95% CI for mean difference: (0.00818, 0.01944)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5.02 P-Value = 0.000

Paired T-Test and CI: k3_26, k4_26

Paired T for k3_26 - k4_26

 N Mean StDev SE Mean
k3_26 30 0.48443 0.00627 0.00114
k4_26 30 0.46453 0.01345 0.00246
Difference 30 0.01990 0.01439 0.00263

95% CI for mean difference: (0.01453, 0.02528)
T-Test of mean difference = 0 (vs not = 0): T-Value = 7.58 P-Value = 0.000

	

Paired T-Tests for Waiting Time Analysis of One Sided GridPick

Paired T-Test and CI: k2_2, k3_2

Paired T for k2_2 - k3_2

 N Mean StDev SE Mean
k2_2 30 0.51272 0.00976 0.00178
k3_2 30 0.51390 0.01114 0.00203
Difference 30 -0.00118 0.01686 0.00308

95% CI for mean difference: (-0.00748, 0.00511)
T-Test of mean difference = 0 (vs not = 0): T-Value = -0.38 P-Value = 0.704

Paired T-Test and CI: k2_4, k3_4

Paired T for k2_4 - k3_4

 N Mean StDev SE Mean
k2_4 30 0.54087 0.01049 0.00192
k3_4 30 0.53424 0.01016 0.00186
Difference 30 0.00663 0.01646 0.00301

95% CI for mean difference: (0.00048, 0.01278)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.21 P-Value = 0.035

Paired T-Test and CI: k2_6, k3_6

Paired T for k2_6 - k3_6

 N Mean StDev SE Mean
k2_6 30 0.61647 0.02133 0.00390
k3_6 30 0.55963 0.00761 0.00139
Difference 30 0.05685 0.02337 0.00427

95% CI for mean difference: (0.04812, 0.06557)
T-Test of mean difference = 0 (vs not = 0): T-Value = 13.33 P-Value = 0.000

Paired T-Test and CI: k2_8, k3_8

Paired T for k2_8 - k3_8

 N Mean StDev SE Mean
k2_8 30 0.70082 0.02245 0.00410
k3_8 30 0.58989 0.00814 0.00149
Difference 30 0.11093 0.02581 0.00471

95% CI for mean difference: (0.10129, 0.12056)
T-Test of mean difference = 0 (vs not = 0): T-Value = 23.54 P-Value = 0.000

Paired T-Test and CI: k2_10, k3_10

Paired T for k2_10 - k3_10

 N Mean StDev SE Mean
k2_10 30 0.77807 0.02508 0.00458
k3_10 30 0.62158 0.00611 0.00112
Difference 30 0.15650 0.02651 0.00484

95% CI for mean difference: (0.14660, 0.16640)
T-Test of mean difference = 0 (vs not = 0): T-Value = 32.33 P-Value = 0.000

Paired T-Test and CI: k2_12, k3_12

Paired T for k2_12 - k3_12

 N Mean StDev SE Mean
k2_12 30 0.84566 0.03046 0.00556
k3_12 30 0.65810 0.01177 0.00215
Difference 30 0.18757 0.03162 0.00577

95% CI for mean difference: (0.17576, 0.19937)
T-Test of mean difference = 0 (vs not = 0): T-Value = 32.49 P-Value = 0.000

Paired T-Test and CI: k2_14, k3_14

Paired T for k2_14 - k3_14

 N Mean StDev SE Mean
k2_14 30 0.88997 0.02221 0.00406
k3_14 30 0.69261 0.01160 0.00212
Difference 30 0.19736 0.02434 0.00444

95% CI for mean difference: (0.18827, 0.20645)
T-Test of mean difference = 0 (vs not = 0): T-Value = 44.41 P-Value = 0.000

Paired T-Test and CI: k2_16, k3_16

Paired T for k2_16 - k3_16

 N Mean StDev SE Mean
k2_16 30 0.95015 0.02601 0.00475
k3_16 30 0.73747 0.01289 0.00235
Difference 30 0.21269 0.03093 0.00565

95% CI for mean difference: (0.20114, 0.22423)
T-Test of mean difference = 0 (vs not = 0): T-Value = 37.67 P-Value = 0.000

Paired T-Test and CI: k2_18, k3_18

Paired T for k2_18 - k3_18

 N Mean StDev SE Mean
k2_18 30 0.99330 0.02902 0.00530

k3_18 30 0.78819 0.02059 0.00376
Difference 30 0.20510 0.03994 0.00729

95% CI for mean difference: (0.19019, 0.22002)
T-Test of mean difference = 0 (vs not = 0): T-Value = 28.12 P-Value = 0.000

Paired T-Test and CI: k2_20, k3_20

Paired T for k2_20 - k3_20

 N Mean StDev SE Mean
k2_20 30 1.02935 0.03066 0.00560
k3_20 30 0.83299 0.02318 0.00423
Difference 30 0.19636 0.03685 0.00673

95% CI for mean difference: (0.18260, 0.21012)
T-Test of mean difference = 0 (vs not = 0): T-Value = 29.18 P-Value = 0.000

Paired T-Test and CI: k2_22, k3_22

Paired T for k2_22 - k3_22

 N Mean StDev SE Mean
k2_22 30 1.07110 0.03500 0.00639
k3_22 30 0.88588 0.02748 0.00502
Difference 30 0.18522 0.04902 0.00895

95% CI for mean difference: (0.16691, 0.20352)
T-Test of mean difference = 0 (vs not = 0): T-Value = 20.69 P-Value = 0.000

Paired T-Test and CI: k2_24, k3_24

Paired T for k2_24 - k3_24

 N Mean StDev SE Mean
k2_24 30 1.10417 0.03507 0.00640
k3_24 30 0.94191 0.02659 0.00485
Difference 30 0.16226 0.04460 0.00814

95% CI for mean difference: (0.14561, 0.17891)
T-Test of mean difference = 0 (vs not = 0): T-Value = 19.93 P-Value = 0.000

Paired T-Test and CI: k2_26, k3_26

Paired T for k2_26 - k3_26

 N Mean StDev SE Mean
k2_26 30 1.12908 0.03990 0.00729
k3_26 30 0.98981 0.02515 0.00459
Difference 30 0.13926 0.04429 0.00809

95% CI for mean difference: (0.12272, 0.15580)

T-Test of mean difference = 0 (vs not = 0): T-Value = 17.22 P-Value = 0.000

Paired T-Test and CI: k2_2, k4_2

Paired T for k2_2 - k4_2

 N Mean StDev SE Mean
k2_2 30 0.51272 0.00976 0.00178
k4_2 30 0.50739 0.01099 0.00201
Difference 30 0.00533 0.01472 0.00269

95% CI for mean difference: (-0.00017, 0.01083)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.98 P-Value = 0.057

Paired T-Test and CI: k2_4, k4_4

Paired T for k2_4 - k4_4

 N Mean StDev SE Mean
k2_4 30 0.54087 0.01049 0.00192
k4_4 30 0.52916 0.00692 0.00126
Difference 30 0.01171 0.01279 0.00234

95% CI for mean difference: (0.00693, 0.01649)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5.01 P-Value = 0.000

Paired T-Test and CI: k2_6, k4_6

Paired T for k2_6 - k4_6

 N Mean StDev SE Mean
k2_6 30 0.61647 0.02133 0.00390
k4_6 30 0.55462 0.00832 0.00152
Difference 30 0.06185 0.02339 0.00427

95% CI for mean difference: (0.05311, 0.07058)
T-Test of mean difference = 0 (vs not = 0): T-Value = 14.48 P-Value = 0.000

Paired T-Test and CI: k2_8, k4_8

Paired T for k2_8 - k4_8

 N Mean StDev SE Mean
k2_8 30 0.70082 0.02245 0.00410
k4_8 30 0.58437 0.00699 0.00128
Difference 30 0.11644 0.02238 0.00409

95% CI for mean difference: (0.10809, 0.12480)
T-Test of mean difference = 0 (vs not = 0): T-Value = 28.49 P-Value = 0.000

Paired T-Test and CI: k2_10, k4_10

Paired T for k2_10 - k4_10

 N Mean StDev SE Mean
k2_10 30 0.77807 0.02508 0.00458
k4_10 30 0.61016 0.00875 0.00160
Difference 30 0.16791 0.02675 0.00488

95% CI for mean difference: (0.15792, 0.17790)
T-Test of mean difference = 0 (vs not = 0): T-Value = 34.38 P-Value = 0.000

Paired T-Test and CI: k2_12, k4_12

Paired T for k2_12 - k4_12

 N Mean StDev SE Mean
k2_12 30 0.84566 0.03046 0.00556
k4_12 30 0.64279 0.00855 0.00156
Difference 30 0.20288 0.03137 0.00573

95% CI for mean difference: (0.19117, 0.21459)
T-Test of mean difference = 0 (vs not = 0): T-Value = 35.43 P-Value = 0.000

Paired T-Test and CI: k2_14, k4_14

Paired T for k2_14 - k4_14

 N Mean StDev SE Mean
k2_14 30 0.88997 0.02221 0.00406
k4_14 30 0.67302 0.00637 0.00116
Difference 30 0.21695 0.02398 0.00438

95% CI for mean difference: (0.20800, 0.22591)
T-Test of mean difference = 0 (vs not = 0): T-Value = 49.55 P-Value = 0.000

Paired T-Test and CI: k2_16, k4_16

Paired T for k2_16 - k4_16

 N Mean StDev SE Mean
k2_16 30 0.95015 0.02601 0.00475
k4_16 30 0.70906 0.01133 0.00207
Difference 30 0.24109 0.02663 0.00486

95% CI for mean difference: (0.23114, 0.25103)
T-Test of mean difference = 0 (vs not = 0): T-Value = 49.59 P-Value = 0.000

Paired T-Test and CI: k2_18, k4_18

Paired T for k2_18 - k4_18

 N Mean StDev SE Mean
k2_18 30 0.99330 0.02902 0.00530

k4_18 30 0.75362 0.01473 0.00269
Difference 30 0.23968 0.03432 0.00627

95% CI for mean difference: (0.22686, 0.25250)
T-Test of mean difference = 0 (vs not = 0): T-Value = 38.25 P-Value = 0.000

Paired T-Test and CI: k2_20, k4_20

Paired T for k2_20 - k4_20

 N Mean StDev SE Mean
k2_20 30 1.02935 0.03066 0.00560
k4_20 30 0.80854 0.02041 0.00373
Difference 30 0.22081 0.04144 0.00757

95% CI for mean difference: (0.20533, 0.23628)
T-Test of mean difference = 0 (vs not = 0): T-Value = 29.19 P-Value = 0.000

Paired T-Test and CI: k2_22, k4_22

Paired T for k2_22 - k4_22

 N Mean StDev SE Mean
k2_22 30 1.07110 0.03500 0.00639
k4_22 30 0.86354 0.03144 0.00574
Difference 30 0.20756 0.04483 0.00818

95% CI for mean difference: (0.19082, 0.22430)
T-Test of mean difference = 0 (vs not = 0): T-Value = 25.36 P-Value = 0.000

Paired T-Test and CI: k2_24, k4_24

Paired T for k2_24 - k4_24

 N Mean StDev SE Mean
k2_24 30 1.10417 0.03507 0.00640
k4_24 30 0.92137 0.03286 0.00600
Difference 30 0.18280 0.05194 0.00948

95% CI for mean difference: (0.16341, 0.20220)
T-Test of mean difference = 0 (vs not = 0): T-Value = 19.28 P-Value = 0.000

Paired T-Test and CI: k2_26, k4_26

Paired T for k2_26 - k4_26

 N Mean StDev SE Mean
k2_26 30 1.12908 0.03990 0.00729
k4_26 30 0.96134 0.03078 0.00562
Difference 30 0.16774 0.04912 0.00897

95% CI for mean difference: (0.14940, 0.18608)

T-Test of mean difference = 0 (vs not = 0): T-Value = 18.70 P-Value = 0.000

————— 11/19/2013 12:10:24 AM ————————————————————

Paired T-Test and CI: k3_2, k4_2

Paired T for k3_2 - k4_2

 N Mean StDev SE Mean
k3_2 30 0.51390 0.01114 0.00203
k4_2 30 0.50739 0.01099 0.00201
Difference 30 0.00651 0.01880 0.00343

95% CI for mean difference: (-0.00051, 0.01353)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.90 P-Value = 0.068

Paired T-Test and CI: k3_4, k4_4

Paired T for k3_4 - k4_4

 N Mean StDev SE Mean
k3_4 30 0.53424 0.01016 0.00186
k4_4 30 0.52916 0.00692 0.00126
Difference 30 0.00508 0.01236 0.00226

95% CI for mean difference: (0.00046, 0.00970)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.25 P-Value = 0.032

Paired T-Test and CI: k3_6, k4_6

Paired T for k3_6 - k4_6

 N Mean StDev SE Mean
k3_6 30 0.55963 0.00761 0.00139
k4_6 30 0.55462 0.00832 0.00152
Difference 30 0.00500 0.01139 0.00208

95% CI for mean difference: (0.00075, 0.00925)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.41 P-Value = 0.023

Paired T-Test and CI: k3_8, k4_8

Paired T for k3_8 - k4_8

 N Mean StDev SE Mean
k3_8 30 0.58989 0.00814 0.00149
k4_8 30 0.58437 0.00699 0.00128
Difference 30 0.00552 0.01071 0.00196

95% CI for mean difference: (0.00152, 0.00952)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.82 P-Value = 0.009

Paired T-Test and CI: k3_10, k4_10

Paired T for k3_10 - k4_10

 N Mean StDev SE Mean
k3_10 30 0.62158 0.00611 0.00112
k4_10 30 0.61016 0.00875 0.00160
Difference 30 0.01141 0.01139 0.00208

95% CI for mean difference: (0.00716, 0.01567)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5.49 P-Value = 0.000

Paired T-Test and CI: k3_12, k4_12

Paired T for k3_12 - k4_12

 N Mean StDev SE Mean
k3_12 30 0.65810 0.01177 0.00215
k4_12 30 0.64279 0.00855 0.00156
Difference 30 0.01531 0.01577 0.00288

95% CI for mean difference: (0.00942, 0.02120)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5.32 P-Value = 0.000

Paired T-Test and CI: k3_14, k4_14

Paired T for k3_14 - k4_14

 N Mean StDev SE Mean
k3_14 30 0.69261 0.01160 0.00212
k4_14 30 0.67302 0.00637 0.00116
Difference 30 0.01959 0.01327 0.00242

95% CI for mean difference: (0.01463, 0.02454)
T-Test of mean difference = 0 (vs not = 0): T-Value = 8.08 P-Value = 0.000

Paired T-Test and CI: k3_16, k4_16

Paired T for k3_16 - k4_16

 N Mean StDev SE Mean
k3_16 30 0.73747 0.01289 0.00235
k4_16 30 0.70906 0.01133 0.00207
Difference 30 0.02840 0.01493 0.00273

95% CI for mean difference: (0.02283, 0.03398)
T-Test of mean difference = 0 (vs not = 0): T-Value = 10.42 P-Value = 0.000

Paired T-Test and CI: k3_18, k4_18

Paired T for k3_18 - k4_18

 N Mean StDev SE Mean
k3_18 30 0.78819 0.02059 0.00376
k4_18 30 0.75362 0.01473 0.00269
Difference 30 0.03458 0.02407 0.00439

95% CI for mean difference: (0.02559, 0.04356)
T-Test of mean difference = 0 (vs not = 0): T-Value = 7.87 P-Value = 0.000

Paired T-Test and CI: k3_20, k4_20

Paired T for k3_20 - k4_20

 N Mean StDev SE Mean
k3_20 30 0.83299 0.02318 0.00423
k4_20 30 0.80854 0.02041 0.00373
Difference 30 0.02445 0.02957 0.00540

95% CI for mean difference: (0.01341, 0.03549)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.53 P-Value = 0.000

Paired T-Test and CI: k3_22, k4_22

Paired T for k3_22 - k4_22

 N Mean StDev SE Mean
k3_22 30 0.88588 0.02748 0.00502
k4_22 30 0.86354 0.03144 0.00574
Difference 30 0.02234 0.04646 0.00848

95% CI for mean difference: (0.00499, 0.03969)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.63 P-Value = 0.013

Paired T-Test and CI: k3_24, k4_24

Paired T for k3_24 - k4_24

 N Mean StDev SE Mean
k3_24 30 0.94191 0.02659 0.00485
k4_24 30 0.92137 0.03286 0.00600
Difference 30 0.02054 0.04782 0.00873

95% CI for mean difference: (0.00269, 0.03840)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.35 P-Value = 0.026

Paired T-Test and CI: k3_26, k4_26

Paired T for k3_26 - k4_26

 N Mean StDev SE Mean
k3_26 30 0.98981 0.02515 0.00459
k4_26 30 0.96134 0.03078 0.00562
Difference 30 0.02848 0.03870 0.00707

95% CI for mean difference: (0.01403, 0.04293)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.03 P-Value = 0.000

Paired T-Tests for Flow Time Analysis of One Sided GridPick

Paired T-Test and CI: flowk2_2, flowk3_2

Paired T for flowk2_2 - flowk3_2

 N Mean StDev SE Mean
flowk2_2 30 8.8280 0.1294 0.0236
flowk3_2 30 9.1492 0.1524 0.0278
Difference 30 -0.3211 0.2003 0.0366

95% CI for mean difference: (-0.3959, -0.2464)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.78 P-Value = 0.000

Paired T-Test and CI: flowk2_4, flowk3_4

Paired T for flowk2_4 - flowk3_4

 N Mean StDev SE Mean
flowk2_4 30 9.0903 0.1076 0.0196
flowk3_4 30 9.3867 0.1058 0.0193
Difference 30 -0.2964 0.1740 0.0318

95% CI for mean difference: (-0.3614, -0.2315)
T-Test of mean difference = 0 (vs not = 0): T-Value = -9.33 P-Value = 0.000

Paired T-Test and CI: flowk2_6, flowk3_6

Paired T for flowk2_6 - flowk3_6

 N Mean StDev SE Mean
flowk2_6 30 9.8721 0.1734 0.0317
flowk3_6 30 10.1296 0.1407 0.0257
Difference 30 -0.2575 0.2158 0.0394

95% CI for mean difference: (-0.3381, -0.1770)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.54 P-Value = 0.000

Paired T-Test and CI: flowk2_8, flowk3_8

Paired T for flowk2_8 - flowk3_8

 N Mean StDev SE Mean
flowk2_8 30 11.0970 0.1922 0.0351
flowk3_8 30 11.1240 0.1471 0.0269
Difference 30 -0.0270 0.2560 0.0467

95% CI for mean difference: (-0.1226, 0.0686)
T-Test of mean difference = 0 (vs not = 0): T-Value = -0.58 P-Value = 0.568

Paired T-Test and CI: flowk2_10, flowk3_10

Paired T for flowk2_10 - flowk3_10

 N Mean StDev SE Mean
flowk2_10 30 12.7355 0.2756 0.0503
flowk3_10 30 12.3304 0.2394 0.0437
Difference 30 0.4051 0.3165 0.0578

95% CI for mean difference: (0.2870, 0.5233)
T-Test of mean difference = 0 (vs not = 0): T-Value = 7.01 P-Value = 0.000

Paired T-Test and CI: flowk2_12, flowk3_12

Paired T for flowk2_12 - flowk3_12

 N Mean StDev SE Mean
flowk2_12 30 14.3682 0.4173 0.0762
flowk3_12 30 13.7338 0.2607 0.0476
Difference 30 0.6344 0.4586 0.0837

95% CI for mean difference: (0.4631, 0.8056)
T-Test of mean difference = 0 (vs not = 0): T-Value = 7.58 P-Value = 0.000

Paired T-Test and CI: flowk2_14, flowk3_14

Paired T for flowk2_14 - flowk3_14

 N Mean StDev SE Mean
flowk2_14 30 16.2227 0.2997 0.0547
flowk3_14 30 15.0662 0.2703 0.0494
Difference 30 1.1565 0.4891 0.0893

95% CI for mean difference: (0.9739, 1.3391)
T-Test of mean difference = 0 (vs not = 0): T-Value = 12.95 P-Value = 0.000

Paired T-Test and CI: flowk2_16, flowk3_16

Paired T for flowk2_16 - flowk3_16

 N Mean StDev SE Mean
flowk2_16 30 18.2717 0.4967 0.0907
flowk3_16 30 16.7265 0.3086 0.0563
Difference 30 1.5452 0.5050 0.0922

95% CI for mean difference: (1.3566, 1.7337)
T-Test of mean difference = 0 (vs not = 0): T-Value = 16.76 P-Value = 0.000

Paired T-Test and CI: flowk2_18, flowk3_18

Paired T for flowk2_18 - flowk3_18

 N Mean StDev SE Mean
flowk2_18 30 20.431 0.562 0.103

flowk3_18 30 18.667 0.437 0.080
Difference 30 1.764 0.637 0.116

95% CI for mean difference: (1.526, 2.001)
T-Test of mean difference = 0 (vs not = 0): T-Value = 15.17 P-Value = 0.000

Paired T-Test and CI: flowk2_20, flowk3_20

Paired T for flowk2_20 - flowk3_20

 N Mean StDev SE Mean
flowk2_20 30 22.161 0.486 0.089
flowk3_20 30 20.738 0.580 0.106
Difference 30 1.423 0.792 0.145

95% CI for mean difference: (1.127, 1.719)
T-Test of mean difference = 0 (vs not = 0): T-Value = 9.84 P-Value = 0.000

Paired T-Test and CI: flowk2_22, flowk3_22

Paired T for flowk2_22 - flowk3_22

 N Mean StDev SE Mean
flowk2_22 30 23.920 0.720 0.132
flowk3_22 30 22.899 0.741 0.135
Difference 30 1.021 1.143 0.209

95% CI for mean difference: (0.595, 1.448)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.89 P-Value = 0.000

Paired T-Test and CI: flowk2_24, flowk3_24

Paired T for flowk2_24 - flowk3_24

 N Mean StDev SE Mean
flowk2_24 30 25.607 0.640 0.117
flowk3_24 30 24.867 0.590 0.108
Difference 30 0.741 0.896 0.164

95% CI for mean difference: (0.406, 1.075)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.53 P-Value = 0.000

Paired T-Test and CI: flowk2_26, flowk3_26

Paired T for flowk2_26 - flowk3_26

 N Mean StDev SE Mean
flowk2_26 30 26.974 0.896 0.164
flowk3_26 30 26.742 0.702 0.128
Difference 30 0.231 1.285 0.235

95% CI for mean difference: (-0.249, 0.711)

T-Test of mean difference = 0 (vs not = 0): T-Value = 0.99 P-Value = 0.332

Paired T-Test and CI: flowk2_2, flowk4_2

Paired T for flowk2_2 - flowk4_2

 N Mean StDev SE Mean
flowk2_2 30 8.8280 0.1294 0.0236
flowk4_2 30 9.3838 0.1558 0.0285
Difference 30 -0.5557 0.1997 0.0365

95% CI for mean difference: (-0.6303, -0.4812)
T-Test of mean difference = 0 (vs not = 0): T-Value = -15.24 P-Value = 0.000

Paired T-Test and CI: flowk2_4, flowk4_4

Paired T for flowk2_4 - flowk4_4

 N Mean StDev SE Mean
flowk2_4 30 9.0903 0.1076 0.0196
flowk4_4 30 9.5913 0.1557 0.0284
Difference 30 -0.5010 0.1631 0.0298

95% CI for mean difference: (-0.5619, -0.4401)
T-Test of mean difference = 0 (vs not = 0): T-Value = -16.83 P-Value = 0.000

Paired T-Test and CI: flowk2_6, flowk4_6

Paired T for flowk2_6 - flowk4_6

 N Mean StDev SE Mean
flowk2_6 30 9.8721 0.1734 0.0317
flowk4_6 30 10.2660 0.1484 0.0271
Difference 30 -0.3940 0.2349 0.0429

95% CI for mean difference: (-0.4817, -0.3063)
T-Test of mean difference = 0 (vs not = 0): T-Value = -9.19 P-Value = 0.000

Paired T-Test and CI: flowk2_8, flowk4_8

Paired T for flowk2_8 - flowk4_8

 N Mean StDev SE Mean
flowk2_8 30 11.0970 0.1922 0.0351
flowk4_8 30 11.2906 0.1570 0.0287
Difference 30 -0.1936 0.2409 0.0440

95% CI for mean difference: (-0.2836, -0.1037)
T-Test of mean difference = 0 (vs not = 0): T-Value = -4.40 P-Value = 0.000

Paired T-Test and CI: flowk2_10, flowk4_10

Paired T for flowk2_10 - flowk4_10

 N Mean StDev SE Mean
flowk2_10 30 12.7355 0.2756 0.0503
flowk4_10 30 12.5043 0.2027 0.0370
Difference 30 0.2312 0.3081 0.0563

95% CI for mean difference: (0.1162, 0.3463)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.11 P-Value = 0.000

Paired T-Test and CI: flowk2_12, flowk4_12

Paired T for flowk2_12 - flowk4_12

 N Mean StDev SE Mean
flowk2_12 30 14.3682 0.4173 0.0762
flowk4_12 30 13.8693 0.2120 0.0387
Difference 30 0.4989 0.5267 0.0962

95% CI for mean difference: (0.3023, 0.6956)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5.19 P-Value = 0.000

Paired T-Test and CI: flowk2_14, flowk4_14

Paired T for flowk2_14 - flowk4_14

 N Mean StDev SE Mean
flowk2_14 30 16.2227 0.2997 0.0547
flowk4_14 30 15.1082 0.2509 0.0458
Difference 30 1.1145 0.3880 0.0708

95% CI for mean difference: (0.9696, 1.2593)
T-Test of mean difference = 0 (vs not = 0): T-Value = 15.73 P-Value = 0.000

Paired T-Test and CI: flowk2_16, flowk4_16

Paired T for flowk2_16 - flowk4_16

 N Mean StDev SE Mean
flowk2_16 30 18.2717 0.4967 0.0907
flowk4_16 30 16.4867 0.3267 0.0597
Difference 30 1.785 0.562 0.103

95% CI for mean difference: (1.575, 1.995)
T-Test of mean difference = 0 (vs not = 0): T-Value = 17.39 P-Value = 0.000

Paired T-Test and CI: flowk2_18, flowk4_18

Paired T for flowk2_18 - flowk4_18

 N Mean StDev SE Mean
flowk2_18 30 20.431 0.562 0.103
flowk4_18 30 18.195 0.421 0.077

Difference 30 2.236 0.755 0.138

95% CI for mean difference: (1.954, 2.518)
T-Test of mean difference = 0 (vs not = 0): T-Value = 16.23 P-Value = 0.000

Paired T-Test and CI: flowk2_20, flowk4_20

Paired T for flowk2_20 - flowk4_20

 N Mean StDev SE Mean
flowk2_20 30 22.161 0.486 0.089
flowk4_20 30 20.303 0.648 0.118
Difference 30 1.858 0.732 0.134

95% CI for mean difference: (1.585, 2.131)
T-Test of mean difference = 0 (vs not = 0): T-Value = 13.91 P-Value = 0.000

Paired T-Test and CI: flowk2_22, flowk4_22

Paired T for flowk2_22 - flowk4_22

 N Mean StDev SE Mean
flowk2_22 30 23.920 0.720 0.132
flowk4_22 30 22.641 0.978 0.179
Difference 30 1.279 1.113 0.203

95% CI for mean difference: (0.864, 1.695)
T-Test of mean difference = 0 (vs not = 0): T-Value = 6.30 P-Value = 0.000

Paired T-Test and CI: flowk2_24, flowk4_24

Paired T for flowk2_24 - flowk4_24

 N Mean StDev SE Mean
flowk2_24 30 25.607 0.640 0.117
flowk4_24 30 24.813 0.834 0.152
Difference 30 0.795 1.154 0.211

95% CI for mean difference: (0.364, 1.226)
T-Test of mean difference = 0 (vs not = 0): T-Value = 3.77 P-Value = 0.001

Paired T-Test and CI: flowk2_26, flowk4_26

Paired T for flowk2_26 - flowk4_26

 N Mean StDev SE Mean
flowk2_26 30 26.974 0.896 0.164
flowk4_26 30 26.513 0.998 0.182
Difference 30 0.461 1.292 0.236

95% CI for mean difference: (-0.022, 0.943)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.95 P-Value = 0.061

Paired T-Test and CI: flowk3_2, flowk4_2

Paired T for flowk3_2 - flowk4_2

 N Mean StDev SE Mean
flowk3_2 30 9.1492 0.1524 0.0278
flowk4_2 30 9.3838 0.1558 0.0285
Difference 30 -0.2346 0.1911 0.0349

95% CI for mean difference: (-0.3059, -0.1632)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.72 P-Value = 0.000

Paired T-Test and CI: flowk3_4, flowk4_4

Paired T for flowk3_4 - flowk4_4

 N Mean StDev SE Mean
flowk3_4 30 9.3867 0.1058 0.0193
flowk4_4 30 9.5913 0.1557 0.0284
Difference 30 -0.2046 0.1917 0.0350

95% CI for mean difference: (-0.2762, -0.1330)
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.85 P-Value = 0.000

Paired T-Test and CI: flowk3_6, flowk4_6

Paired T for flowk3_6 - flowk4_6

 N Mean StDev SE Mean
flowk3_6 30 10.1296 0.1407 0.0257
flowk4_6 30 10.2660 0.1484 0.0271
Difference 30 -0.1364 0.1926 0.0352

95% CI for mean difference: (-0.2083, -0.0645)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.88 P-Value = 0.001

Paired T-Test and CI: flowk3_8, flowk4_8

Paired T for flowk3_8 - flowk4_8

 N Mean StDev SE Mean
flowk3_8 30 11.1240 0.1471 0.0269
flowk4_8 30 11.2906 0.1570 0.0287
Difference 30 -0.1666 0.2312 0.0422

95% CI for mean difference: (-0.2530, -0.0803)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.95 P-Value = 0.000

Paired T-Test and CI: flowk3_10, flowk4_10

Paired T for flowk3_10 - flowk4_10

 N Mean StDev SE Mean
flowk3_10 30 12.3304 0.2394 0.0437
flowk4_10 30 12.5043 0.2027 0.0370
Difference 30 -0.1739 0.3179 0.0580

95% CI for mean difference: (-0.2926, -0.0552)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.00 P-Value = 0.006

Paired T-Test and CI: flowk3_12, flowk4_12

Paired T for flowk3_12 - flowk4_12

 N Mean StDev SE Mean
flowk3_12 30 13.7338 0.2607 0.0476
flowk4_12 30 13.8693 0.2120 0.0387
Difference 30 -0.1354 0.3886 0.0710

95% CI for mean difference: (-0.2806, 0.0097)
T-Test of mean difference = 0 (vs not = 0): T-Value = -1.91 P-Value = 0.066

Paired T-Test and CI: flowk3_14, flowk4_14

Paired T for flowk3_14 - flowk4_14

 N Mean StDev SE Mean
flowk3_14 30 15.0662 0.2703 0.0494
flowk4_14 30 15.1082 0.2509 0.0458
Difference 30 -0.0420 0.3570 0.0652

95% CI for mean difference: (-0.1753, 0.0913)
T-Test of mean difference = 0 (vs not = 0): T-Value = -0.64 P-Value = 0.524

Paired T-Test and CI: flowk3_16, flowk4_16

Paired T for flowk3_16 - flowk4_16

 N Mean StDev SE Mean
flowk3_16 30 16.7265 0.3086 0.0563
flowk4_16 30 16.4867 0.3267 0.0597
Difference 30 0.2398 0.4706 0.0859

95% CI for mean difference: (0.0641, 0.4155)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.79 P-Value = 0.009

Paired T-Test and CI: flowk3_18, flowk4_18

Paired T for flowk3_18 - flowk4_18

 N Mean StDev SE Mean
flowk3_18 30 18.6671 0.4374 0.0799
flowk4_18 30 18.1948 0.4213 0.0769
Difference 30 0.472 0.674 0.123

95% CI for mean difference: (0.221, 0.724)
T-Test of mean difference = 0 (vs not = 0): T-Value = 3.84 P-Value = 0.001

Paired T-Test and CI: flowk3_20, flowk4_20

Paired T for flowk3_20 - flowk4_20

 N Mean StDev SE Mean
flowk3_20 30 20.738 0.580 0.106
flowk4_20 30 20.303 0.648 0.118
Difference 30 0.435 0.850 0.155

95% CI for mean difference: (0.118, 0.752)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.80 P-Value = 0.009

Paired T-Test and CI: flowk3_22, flowk4_22

Paired T for flowk3_22 - flowk4_22

 N Mean StDev SE Mean
flowk3_22 30 22.899 0.741 0.135
flowk4_22 30 22.641 0.978 0.179
Difference 30 0.258 1.279 0.234

95% CI for mean difference: (-0.220, 0.735)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.10 P-Value = 0.279

Paired T-Test and CI: flowk3_24, flowk4_24

Paired T for flowk3_24 - flowk4_24

 N Mean StDev SE Mean
flowk3_24 30 24.867 0.590 0.108
flowk4_24 30 24.813 0.834 0.152
Difference 30 0.054 0.998 0.182

95% CI for mean difference: (-0.319, 0.426)
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.29 P-Value = 0.770

Paired T-Test and CI: flowk3_26, flowk4_26

Paired T for flowk3_26 - flowk4_26

 N Mean StDev SE Mean
flowk3_26 30 26.742 0.702 0.128
flowk4_26 30 26.513 0.998 0.182
Difference 30 0.229 1.245 0.227

95% CI for mean difference: (-0.236, 0.694)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.01 P-Value = 0.322

	

Paired T-Tests for Throughput Analysis of Two Sided GridPick

Paired T-Test and CI: k2_2, k3_2

Paired T for k2_2 - k3_2

 N Mean StDev SE Mean
k2_2 30 0.42033 0.00501 0.00091
k3_2 30 0.41150 0.00640 0.00117
Difference 30 0.00883 0.00861 0.00157

95% CI for mean difference: (0.00562, 0.01205)
T-Test of mean difference = 0 (vs not = 0): T-Value = 5.62 P-Value = 0.000

Paired T-Test and CI: k2_4, k3_4

Paired T for k2_4 - k3_4

 N Mean StDev SE Mean
k2_4 30 0.55485 0.00635 0.00116
k3_4 30 0.58971 0.00707 0.00129
Difference 30 -0.03486 0.00982 0.00179

95% CI for mean difference: (-0.03853, -0.03119)
T-Test of mean difference = 0 (vs not = 0): T-Value = -19.43 P-Value = 0.000

Paired T-Test and CI: k2_6, k3_6

Paired T for k2_6 - k3_6

 N Mean StDev SE Mean
k2_6 30 0.62818 0.00779 0.00142
k3_6 30 0.70188 0.00594 0.00108
Difference 30 -0.07370 0.00865 0.00158

95% CI for mean difference: (-0.07693, -0.07047)
T-Test of mean difference = 0 (vs not = 0): T-Value = -46.67 P-Value = 0.000

Paired T-Test and CI: k2_8, k3_8

Paired T for k2_8 - k3_8

 N Mean StDev SE Mean
k2_8 30 0.67145 0.00902 0.00165
k3_8 30 0.77295 0.00932 0.00170
Difference 30 -0.10150 0.01117 0.00204

95% CI for mean difference: (-0.10567, -0.09733)
T-Test of mean difference = 0 (vs not = 0): T-Value = -49.75 P-Value = 0.000

Paired T-Test and CI: k2_10, k3_10

Paired T for k2_10 - k3_10

 N Mean StDev SE Mean
k2_10 30 0.70488 0.00927 0.00169
k3_10 30 0.82299 0.00762 0.00139
Difference 30 -0.11812 0.01005 0.00184

95% CI for mean difference: (-0.12187, -0.11436)
T-Test of mean difference = 0 (vs not = 0): T-Value = -64.36 P-Value = 0.000

Paired T-Test and CI: k2_12, k3_12

Paired T for k2_12 - k3_12

 N Mean StDev SE Mean
k2_12 30 0.72367 0.00903 0.00165
k3_12 30 0.85464 0.00636 0.00116
Difference 30 -0.13097 0.00952 0.00174

95% CI for mean difference: (-0.13452, -0.12741)
T-Test of mean difference = 0 (vs not = 0): T-Value = -75.38 P-Value = 0.000

Paired T-Test and CI: k2_14, k3_14

Paired T for k2_14 - k3_14

 N Mean StDev SE Mean
k2_14 30 0.73726 0.01003 0.00183
k3_14 30 0.86712 0.00608 0.00111
Difference 30 -0.12987 0.01082 0.00197

95% CI for mean difference: (-0.13391, -0.12583)
T-Test of mean difference = 0 (vs not = 0): T-Value = -65.76 P-Value = 0.000

Paired T-Test and CI: k2_16, k3_16

Paired T for k2_16 - k3_16

 N Mean StDev SE Mean
k2_16 30 0.74321 0.00924 0.00169
k3_16 30 0.86382 0.00571 0.00104
Difference 30 -0.12061 0.01059 0.00193

95% CI for mean difference: (-0.12456, -0.11665)
T-Test of mean difference = 0 (vs not = 0): T-Value = -62.37 P-Value = 0.000

Paired T-Test and CI: k2_18, k3_18

Paired T for k2_18 - k3_18

 N Mean StDev SE Mean
k2_18 30 0.74322 0.01196 0.00218
k3_18 30 0.85160 0.00540 0.00099

Difference 30 -0.10838 0.01443 0.00264

95% CI for mean difference: (-0.11377, -0.10299)
T-Test of mean difference = 0 (vs not = 0): T-Value = -41.13 P-Value = 0.000

Paired T-Test and CI: k2_20, k3_20

Paired T for k2_20 - k3_20

 N Mean StDev SE Mean
k2_20 30 0.74372 0.00778 0.00142
k3_20 30 0.84083 0.00701 0.00128
Difference 30 -0.09711 0.00978 0.00179

95% CI for mean difference: (-0.10076, -0.09346)
T-Test of mean difference = 0 (vs not = 0): T-Value = -54.37 P-Value = 0.000

Paired T-Test and CI: k2_22, k3_22

Paired T for k2_22 - k3_22

 N Mean StDev SE Mean
k2_22 30 0.74129 0.00755 0.00138
k3_22 30 0.83047 0.00747 0.00136
Difference 30 -0.08918 0.00992 0.00181

95% CI for mean difference: (-0.09289, -0.08548)
T-Test of mean difference = 0 (vs not = 0): T-Value = -49.25 P-Value = 0.000

Paired T-Test and CI: k2_24, k3_24

Paired T for k2_24 - k3_24

 N Mean StDev SE Mean
k2_24 30 0.73611 0.00902 0.00165
k3_24 30 0.82238 0.00656 0.00120
Difference 30 -0.08627 0.00952 0.00174

95% CI for mean difference: (-0.08983, -0.08272)
T-Test of mean difference = 0 (vs not = 0): T-Value = -49.62 P-Value = 0.000

Paired T-Test and CI: k2_26, k3_26

Paired T for k2_26 - k3_26

 N Mean StDev SE Mean
k2_26 30 0.72976 0.00804 0.00147
k3_26 30 0.81566 0.00669 0.00122
Difference 30 -0.08590 0.00976 0.00178

95% CI for mean difference: (-0.08954, -0.08226)
T-Test of mean difference = 0 (vs not = 0): T-Value = -48.22 P-Value = 0.000

Paired T-Test and CI: k2_2, k4_2

Paired T for k2_2 - k4_2

 N Mean StDev SE Mean
k2_2 30 0.420333 0.005011 0.000915
k4_2 30 0.400158 0.005422 0.000990
Difference 30 0.02017 0.00756 0.00138

95% CI for mean difference: (0.01735, 0.02300)
T-Test of mean difference = 0 (vs not = 0): T-Value = 14.62 P-Value = 0.000

Paired T-Test and CI: k2_4, k4_4

Paired T for k2_4 - k4_4

 N Mean StDev SE Mean
k2_4 30 0.55485 0.00635 0.00116
k4_4 30 0.57429 0.00667 0.00122
Difference 30 -0.01944 0.00923 0.00168

95% CI for mean difference: (-0.02289, -0.01600)
T-Test of mean difference = 0 (vs not = 0): T-Value = -11.54 P-Value = 0.000

Paired T-Test and CI: k2_6, k4_6

Paired T for k2_6 - k4_6

 N Mean StDev SE Mean
k2_6 30 0.62818 0.00779 0.00142
k4_6 30 0.69890 0.00775 0.00141
Difference 30 -0.07072 0.01038 0.00189

95% CI for mean difference: (-0.07459, -0.06684)
T-Test of mean difference = 0 (vs not = 0): T-Value = -37.33 P-Value = 0.000

Paired T-Test and CI: k2_8, k4_8

Paired T for k2_8 - k4_8

 N Mean StDev SE Mean
k2_8 30 0.67145 0.00902 0.00165
k4_8 30 0.77603 0.00586 0.00107
Difference 30 -0.10457 0.01179 0.00215

95% CI for mean difference: (-0.10898, -0.10017)
T-Test of mean difference = 0 (vs not = 0): T-Value = -48.59 P-Value = 0.000

Paired T-Test and CI: k2_10, k4_10

Paired T for k2_10 - k4_10

 N Mean StDev SE Mean
k2_10 30 0.70488 0.00927 0.00169
k4_10 30 0.82148 0.00436 0.00080
Difference 30 -0.11661 0.01009 0.00184

95% CI for mean difference: (-0.12038, -0.11284)
T-Test of mean difference = 0 (vs not = 0): T-Value = -63.29 P-Value = 0.000

Paired T-Test and CI: k2_12, k4_12

Paired T for k2_12 - k4_12

 N Mean StDev SE Mean
k2_12 30 0.72367 0.00903 0.00165
k4_12 30 0.84933 0.00428 0.00078
Difference 30 -0.12566 0.00860 0.00157

95% CI for mean difference: (-0.12887, -0.12245)
T-Test of mean difference = 0 (vs not = 0): T-Value = -80.01 P-Value = 0.000

Paired T-Test and CI: k2_14, k4_14

Paired T for k2_14 - k4_14

 N Mean StDev SE Mean
k2_14 30 0.73726 0.01003 0.00183
k4_14 30 0.86583 0.00389 0.00071
Difference 30 -0.12857 0.01042 0.00190

95% CI for mean difference: (-0.13246, -0.12469)
T-Test of mean difference = 0 (vs not = 0): T-Value = -67.61 P-Value = 0.000

Paired T-Test and CI: k2_16, k4_16

Paired T for k2_16 - k4_16

 N Mean StDev SE Mean
k2_16 30 0.74321 0.00924 0.00169
k4_16 30 0.86697 0.00322 0.00059
Difference 30 -0.12376 0.00931 0.00170

95% CI for mean difference: (-0.12724, -0.12028)
T-Test of mean difference = 0 (vs not = 0): T-Value = -72.79 P-Value = 0.000

Paired T-Test and CI: k2_18, k4_18

Paired T for k2_18 - k4_18

 N Mean StDev SE Mean
k2_18 30 0.74322 0.01196 0.00218
k4_18 30 0.85641 0.00456 0.00083

Difference 30 -0.11319 0.01245 0.00227

95% CI for mean difference: (-0.11784, -0.10854)
T-Test of mean difference = 0 (vs not = 0): T-Value = -49.79 P-Value = 0.000

Paired T-Test and CI: k2_20, k4_20

Paired T for k2_20 - k4_20

 N Mean StDev SE Mean
k2_20 30 0.74372 0.00778 0.00142
k4_20 30 0.84600 0.00419 0.00077
Difference 30 -0.10228 0.00851 0.00155

95% CI for mean difference: (-0.10546, -0.09911)
T-Test of mean difference = 0 (vs not = 0): T-Value = -65.86 P-Value = 0.000

Paired T-Test and CI: k2_22, k4_22

Paired T for k2_22 - k4_22

 N Mean StDev SE Mean
k2_22 30 0.74129 0.00755 0.00138
k4_22 30 0.83518 0.00532 0.00097
Difference 30 -0.09389 0.00989 0.00180

95% CI for mean difference: (-0.09758, -0.09020)
T-Test of mean difference = 0 (vs not = 0): T-Value = -52.02 P-Value = 0.000

Paired T-Test and CI: k2_24, k4_24

Paired T for k2_24 - k4_24

 N Mean StDev SE Mean
k2_24 30 0.73611 0.00902 0.00165
k4_24 30 0.83297 0.00602 0.00110
Difference 30 -0.09686 0.00964 0.00176

95% CI for mean difference: (-0.10046, -0.09326)
T-Test of mean difference = 0 (vs not = 0): T-Value = -55.03 P-Value = 0.000

Paired T-Test and CI: k2_26, k4_26

Paired T for k2_26 - k4_26

 N Mean StDev SE Mean
k2_26 30 0.72976 0.00804 0.00147
k4_26 30 0.82958 0.00555 0.00101
Difference 30 -0.09982 0.00951 0.00174

95% CI for mean difference: (-0.10337, -0.09628)
T-Test of mean difference = 0 (vs not = 0): T-Value = -57.52 P-Value = 0.000

Paired T-Test and CI: k3_2, k4_2

Paired T for k3_2 - k4_2

 N Mean StDev SE Mean
k3_2 30 0.41150 0.00640 0.00117
k4_2 30 0.40016 0.00542 0.00099
Difference 30 0.01134 0.00741 0.00135

95% CI for mean difference: (0.00858, 0.01411)
T-Test of mean difference = 0 (vs not = 0): T-Value = 8.39 P-Value = 0.000

Paired T-Test and CI: k3_4, k4_4

Paired T for k3_4 - k4_4

 N Mean StDev SE Mean
k3_4 30 0.58971 0.00707 0.00129
k4_4 30 0.57429 0.00667 0.00122
Difference 30 0.01542 0.00991 0.00181

95% CI for mean difference: (0.01172, 0.01912)
T-Test of mean difference = 0 (vs not = 0): T-Value = 8.52 P-Value = 0.000

Paired T-Test and CI: k3_6, k4_6

Paired T for k3_6 - k4_6

 N Mean StDev SE Mean
k3_6 30 0.70188 0.00594 0.00108
k4_6 30 0.69890 0.00775 0.00141
Difference 30 0.00298 0.01108 0.00202

95% CI for mean difference: (-0.00115, 0.00712)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.48 P-Value = 0.151

Paired T-Test and CI: k3_8, k4_8

Paired T for k3_8 - k4_8

 N Mean StDev SE Mean
k3_8 30 0.77295 0.00932 0.00170
k4_8 30 0.77603 0.00586 0.00107
Difference 30 -0.00307 0.01242 0.00227

95% CI for mean difference: (-0.00771, 0.00156)
T-Test of mean difference = 0 (vs not = 0): T-Value = -1.36 P-Value = 0.185

Paired T-Test and CI: k3_10, k4_10

Paired T for k3_10 - k4_10

 N Mean StDev SE Mean
k3_10 30 0.82299 0.00762 0.00139
k4_10 30 0.82148 0.00436 0.00080
Difference 30 0.00151 0.00824 0.00150

95% CI for mean difference: (-0.00157, 0.00459)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.00 P-Value = 0.324

Paired T-Test and CI: k3_12, k4_12

Paired T for k3_12 - k4_12

 N Mean StDev SE Mean
k3_12 30 0.85464 0.00636 0.00116
k4_12 30 0.84933 0.00428 0.00078
Difference 30 0.00531 0.00618 0.00113

95% CI for mean difference: (0.00300, 0.00762)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.70 P-Value = 0.000

Paired T-Test and CI: k3_14, k4_14

Paired T for k3_14 - k4_14

 N Mean StDev SE Mean
k3_14 30 0.86712 0.00608 0.00111
k4_14 30 0.86583 0.00389 0.00071
Difference 30 0.00129 0.00621 0.00113

95% CI for mean difference: (-0.00103, 0.00361)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.14 P-Value = 0.264

Paired T-Test and CI: k3_16, k4_16

Paired T for k3_16 - k4_16

 N Mean StDev SE Mean
k3_16 30 0.86382 0.00571 0.00104
k4_16 30 0.86697 0.00322 0.00059
Difference 30 -0.00315 0.00742 0.00136

95% CI for mean difference: (-0.00592, -0.00038)
T-Test of mean difference = 0 (vs not = 0): T-Value = -2.32 P-Value = 0.027

Paired T-Test and CI: k3_18, k4_18

Paired T for k3_18 - k4_18

 N Mean StDev SE Mean
k3_18 30 0.851600 0.005398 0.000986
k4_18 30 0.856408 0.004560 0.000833

Difference 30 -0.00481 0.00760 0.00139

95% CI for mean difference: (-0.00764, -0.00197)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.47 P-Value = 0.002

Paired T-Test and CI: k3_20, k4_20

Paired T for k3_20 - k4_20

 N Mean StDev SE Mean
k3_20 30 0.84083 0.00701 0.00128
k4_20 30 0.84600 0.00419 0.00077
Difference 30 -0.00517 0.00679 0.00124

95% CI for mean difference: (-0.00771, -0.00264)
T-Test of mean difference = 0 (vs not = 0): T-Value = -4.18 P-Value = 0.000

Paired T-Test and CI: k3_22, k4_22

Paired T for k3_22 - k4_22

 N Mean StDev SE Mean
k3_22 30 0.83047 0.00747 0.00136
k4_22 30 0.83518 0.00532 0.00097
Difference 30 -0.00471 0.00775 0.00141

95% CI for mean difference: (-0.00760, -0.00182)
T-Test of mean difference = 0 (vs not = 0): T-Value = -3.33 P-Value = 0.002

Paired T-Test and CI: k3_24, k4_24

Paired T for k3_24 - k4_24

 N Mean StDev SE Mean
k3_24 30 0.82238 0.00656 0.00120
k4_24 30 0.83297 0.00602 0.00110
Difference 30 -0.01058 0.00909 0.00166

95% CI for mean difference: (-0.01398, -0.00719)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.38 P-Value = 0.000

Paired T-Test and CI: k3_26, k4_26

Paired T for k3_26 - k4_26

 N Mean StDev SE Mean
k3_26 30 0.81566 0.00669 0.00122
k4_26 30 0.82958 0.00555 0.00101
Difference 30 -0.01393 0.00785 0.00143

95% CI for mean difference: (-0.01685, -0.01100)
T-Test of mean difference = 0 (vs not = 0): T-Value = -9.72 P-Value = 0.000

Paired T-Tests for Walking Time Analysis of Two Sided GridPick

Paired T-Test and CI: k2_2, k3_2

Paired T for k2_2 - k3_2

 N Mean StDev SE Mean
k2_2 30 3.4129 0.0567 0.0104
k3_2 30 3.5420 0.0792 0.0145
Difference 30 -0.1291 0.0955 0.0174

95% CI for mean difference: (-0.1647, -0.0934)
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.40 P-Value = 0.000

Paired T-Test and CI: k2_4, k3_4

Paired T for k2_4 - k3_4

 N Mean StDev SE Mean
k2_4 30 1.94832 0.03748 0.00684
k3_4 30 2.01959 0.04034 0.00736
Difference 30 -0.07127 0.05047 0.00921

95% CI for mean difference: (-0.09012, -0.05243)
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.73 P-Value = 0.000

Paired T-Test and CI: k2_6, k3_6

Paired T for k2_6 - k3_6

 N Mean StDev SE Mean
k2_6 30 1.33859 0.02629 0.00480
k3_6 30 1.39584 0.02126 0.00388
Difference 30 -0.05725 0.03201 0.00584

95% CI for mean difference: (-0.06921, -0.04530)
T-Test of mean difference = 0 (vs not = 0): T-Value = -9.80 P-Value = 0.000

Paired T-Test and CI: k2_8, k3_8

Paired T for k2_8 - k3_8

 N Mean StDev SE Mean
k2_8 30 1.02705 0.02058 0.00376
k3_8 30 1.07391 0.02078 0.00379
Difference 30 -0.04686 0.03150 0.00575

95% CI for mean difference: (-0.05863, -0.03510)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.15 P-Value = 0.000

Paired T-Test and CI: k2_10, k3_10

Paired T for k2_10 - k3_10

 N Mean StDev SE Mean
k2_10 30 0.83770 0.01584 0.00289
k3_10 30 0.87696 0.01366 0.00249
Difference 30 -0.03926 0.02427 0.00443

95% CI for mean difference: (-0.04832, -0.03020)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.86 P-Value = 0.000

Paired T-Test and CI: k2_12, k3_12

Paired T for k2_12 - k3_12

 N Mean StDev SE Mean
k2_12 30 0.71549 0.01223 0.00223
k3_12 30 0.75057 0.01311 0.00239
Difference 30 -0.03508 0.01473 0.00269

95% CI for mean difference: (-0.04058, -0.02958)
T-Test of mean difference = 0 (vs not = 0): T-Value = -13.05 P-Value = 0.000

Paired T-Test and CI: k2_14, k3_14

Paired T for k2_14 - k3_14

 N Mean StDev SE Mean
k2_14 30 0.62930 0.00918 0.00168
k3_14 30 0.67007 0.00926 0.00169
Difference 30 -0.04077 0.01210 0.00221

95% CI for mean difference: (-0.04529, -0.03625)
T-Test of mean difference = 0 (vs not = 0): T-Value = -18.45 P-Value = 0.000

Paired T-Test and CI: k2_16, k3_16

Paired T for k2_16 - k3_16

 N Mean StDev SE Mean
k2_16 30 0.57152 0.00986 0.00180
k3_16 30 0.62445 0.00880 0.00161
Difference 30 -0.05293 0.01062 0.00194

95% CI for mean difference: (-0.05689, -0.04896)
T-Test of mean difference = 0 (vs not = 0): T-Value = -27.31 P-Value = 0.000

Paired T-Test and CI: k2_18, k3_18

Paired T for k2_18 - k3_18

 N Mean StDev SE Mean
k2_18 30 0.53021 0.00883 0.00161
k3_18 30 0.59471 0.00860 0.00157

Difference 30 -0.06450 0.01369 0.00250

95% CI for mean difference: (-0.06961, -0.05938)
T-Test of mean difference = 0 (vs not = 0): T-Value = -25.80 P-Value = 0.000

Paired T-Test and CI: k2_20, k3_20

Paired T for k2_20 - k3_20

 N Mean StDev SE Mean
k2_20 30 0.50310 0.00814 0.00149
k3_20 30 0.56640 0.00886 0.00162
Difference 30 -0.06329 0.01218 0.00222

95% CI for mean difference: (-0.06784, -0.05874)
T-Test of mean difference = 0 (vs not = 0): T-Value = -28.45 P-Value = 0.000

Paired T-Test and CI: k2_22, k3_22

Paired T for k2_22 - k3_22

 N Mean StDev SE Mean
k2_22 30 0.48330 0.00708 0.00129
k3_22 30 0.54409 0.00799 0.00146
Difference 30 -0.06079 0.01193 0.00218

95% CI for mean difference: (-0.06525, -0.05634)
T-Test of mean difference = 0 (vs not = 0): T-Value = -27.90 P-Value = 0.000

Paired T-Test and CI: k2_24, k3_24

Paired T for k2_24 - k3_24

 N Mean StDev SE Mean
k2_24 30 0.46783 0.00645 0.00118
k3_24 30 0.52103 0.00987 0.00180
Difference 30 -0.05320 0.01060 0.00194

95% CI for mean difference: (-0.05716, -0.04924)
T-Test of mean difference = 0 (vs not = 0): T-Value = -27.49 P-Value = 0.000

Paired T-Test and CI: k2_26, k3_26

Paired T for k2_26 - k3_26

 N Mean StDev SE Mean
k2_26 30 0.45887 0.00563 0.00103
k3_26 30 0.50086 0.00943 0.00172
Difference 30 -0.04199 0.00971 0.00177

95% CI for mean difference: (-0.04562, -0.03837)
T-Test of mean difference = 0 (vs not = 0): T-Value = -23.70 P-Value = 0.000

Paired T-Test and CI: k2_2, k4_2

Paired T for k2_2 - k4_2

 N Mean StDev SE Mean
k2_2 30 3.4129 0.0567 0.0104
k4_2 30 3.6913 0.0656 0.0120
Difference 30 -0.2784 0.0860 0.0157

95% CI for mean difference: (-0.3105, -0.2463)
T-Test of mean difference = 0 (vs not = 0): T-Value = -17.74 P-Value = 0.000

Paired T-Test and CI: k2_4, k4_4

Paired T for k2_4 - k4_4

 N Mean StDev SE Mean
k2_4 30 1.94832 0.03748 0.00684
k4_4 30 2.12875 0.03945 0.00720
Difference 30 -0.1804 0.0559 0.0102

95% CI for mean difference: (-0.2013, -0.1596)
T-Test of mean difference = 0 (vs not = 0): T-Value = -17.68 P-Value = 0.000

Paired T-Test and CI: k2_6, k4_6

Paired T for k2_6 - k4_6

 N Mean StDev SE Mean
k2_6 30 1.33859 0.02629 0.00480
k4_6 30 1.45707 0.03341 0.00610
Difference 30 -0.11848 0.04040 0.00738

95% CI for mean difference: (-0.13357, -0.10339)
T-Test of mean difference = 0 (vs not = 0): T-Value = -16.06 P-Value = 0.000

Paired T-Test and CI: k2_8, k4_8

Paired T for k2_8 - k4_8

 N Mean StDev SE Mean
k2_8 30 1.02705 0.02058 0.00376
k4_8 30 1.12108 0.02084 0.00380
Difference 30 -0.09404 0.02760 0.00504

95% CI for mean difference: (-0.10434, -0.08373)
T-Test of mean difference = 0 (vs not = 0): T-Value = -18.66 P-Value = 0.000

Paired T-Test and CI: k2_10, k4_10

Paired T for k2_10 - k4_10

 N Mean StDev SE Mean
k2_10 30 0.83770 0.01584 0.00289
k4_10 30 0.93095 0.01252 0.00229
Difference 30 -0.09325 0.02022 0.00369

95% CI for mean difference: (-0.10080, -0.08570)
T-Test of mean difference = 0 (vs not = 0): T-Value = -25.26 P-Value = 0.000

Paired T-Test and CI: k2_12, k4_12

Paired T for k2_12 - k4_12

 N Mean StDev SE Mean
k2_12 30 0.71549 0.01223 0.00223
k4_12 30 0.80553 0.01237 0.00226
Difference 30 -0.09004 0.01818 0.00332

95% CI for mean difference: (-0.09683, -0.08325)
T-Test of mean difference = 0 (vs not = 0): T-Value = -27.12 P-Value = 0.000

Paired T-Test and CI: k2_14, k4_14

Paired T for k2_14 - k4_14

 N Mean StDev SE Mean
k2_14 30 0.62930 0.00918 0.00168
k4_14 30 0.71898 0.00821 0.00150
Difference 30 -0.08968 0.01321 0.00241

95% CI for mean difference: (-0.09461, -0.08475)
T-Test of mean difference = 0 (vs not = 0): T-Value = -37.19 P-Value = 0.000

Paired T-Test and CI: k2_16, k4_16

Paired T for k2_16 - k4_16

 N Mean StDev SE Mean
k2_16 30 0.57152 0.00986 0.00180
k4_16 30 0.65889 0.00724 0.00132
Difference 30 -0.08737 0.01033 0.00189

95% CI for mean difference: (-0.09122, -0.08351)
T-Test of mean difference = 0 (vs not = 0): T-Value = -46.34 P-Value = 0.000

Paired T-Test and CI: k2_18, k4_18

Paired T for k2_18 - k4_18

 N Mean StDev SE Mean
k2_18 30 0.53021 0.00883 0.00161

k4_18 30 0.62607 0.00570 0.00104
Difference 30 -0.09586 0.00926 0.00169

95% CI for mean difference: (-0.09932, -0.09240)
T-Test of mean difference = 0 (vs not = 0): T-Value = -56.68 P-Value = 0.000

Paired T-Test and CI: k2_20, k4_20

Paired T for k2_20 - k4_20

 N Mean StDev SE Mean
k2_20 30 0.50310 0.00814 0.00149
k4_20 30 0.59798 0.00856 0.00156
Difference 30 -0.09487 0.00963 0.00176

95% CI for mean difference: (-0.09847, -0.09128)
T-Test of mean difference = 0 (vs not = 0): T-Value = -53.94 P-Value = 0.000

Paired T-Test and CI: k2_22, k4_22

Paired T for k2_22 - k4_22

 N Mean StDev SE Mean
k2_22 30 0.48330 0.00708 0.00129
k4_22 30 0.57543 0.00876 0.00160
Difference 30 -0.09213 0.01231 0.00225

95% CI for mean difference: (-0.09673, -0.08753)
T-Test of mean difference = 0 (vs not = 0): T-Value = -40.99 P-Value = 0.000

Paired T-Test and CI: k2_24, k4_24

Paired T for k2_24 - k4_24

 N Mean StDev SE Mean
k2_24 30 0.46783 0.00645 0.00118
k4_24 30 0.54065 0.01192 0.00218
Difference 30 -0.07282 0.01339 0.00244

95% CI for mean difference: (-0.07782, -0.06782)
T-Test of mean difference = 0 (vs not = 0): T-Value = -29.80 P-Value = 0.000

Paired T-Test and CI: k2_26, k4_26

Paired T for k2_26 - k4_26

 N Mean StDev SE Mean
k2_26 30 0.45887 0.00563 0.00103
k4_26 30 0.51819 0.01017 0.00186
Difference 30 -0.05933 0.01267 0.00231

95% CI for mean difference: (-0.06406, -0.05460)

T-Test of mean difference = 0 (vs not = 0): T-Value = -25.65 P-Value = 0.000

Paired T-Test and CI: k3_2, k4_2

Paired T for k3_2 - k4_2

 N Mean StDev SE Mean
k3_2 30 3.5420 0.0792 0.0145
k4_2 30 3.6913 0.0656 0.0120
Difference 30 -0.1494 0.0925 0.0169

95% CI for mean difference: (-0.1839, -0.1148)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.85 P-Value = 0.000

Paired T-Test and CI: k3_4, k4_4

Paired T for k3_4 - k4_4

 N Mean StDev SE Mean
k3_4 30 2.01959 0.04034 0.00736
k4_4 30 2.12875 0.03945 0.00720
Difference 30 -0.1092 0.0576 0.0105

95% CI for mean difference: (-0.1307, -0.0877)
T-Test of mean difference = 0 (vs not = 0): T-Value = -10.38 P-Value = 0.000

Paired T-Test and CI: k3_6, k4_6

Paired T for k3_6 - k4_6

 N Mean StDev SE Mean
k3_6 30 1.39584 0.02126 0.00388
k4_6 30 1.45707 0.03341 0.00610
Difference 30 -0.06123 0.04232 0.00773

95% CI for mean difference: (-0.07703, -0.04543)
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.92 P-Value = 0.000

Paired T-Test and CI: k3_8, k4_8

Paired T for k3_8 - k4_8

 N Mean StDev SE Mean
k3_8 30 1.07391 0.02078 0.00379
k4_8 30 1.12108 0.02084 0.00380
Difference 30 -0.04717 0.03199 0.00584

95% CI for mean difference: (-0.05912, -0.03523)
T-Test of mean difference = 0 (vs not = 0): T-Value = -8.08 P-Value = 0.000

Paired T-Test and CI: k3_10, k4_10

Paired T for k3_10 - k4_10

 N Mean StDev SE Mean
k3_10 30 0.87696 0.01366 0.00249
k4_10 30 0.93095 0.01252 0.00229
Difference 30 -0.05399 0.01991 0.00363

95% CI for mean difference: (-0.06142, -0.04656)
T-Test of mean difference = 0 (vs not = 0): T-Value = -14.86 P-Value = 0.000

Paired T-Test and CI: k3_12, k4_12

Paired T for k3_12 - k4_12

 N Mean StDev SE Mean
k3_12 30 0.75057 0.01311 0.00239
k4_12 30 0.80553 0.01237 0.00226
Difference 30 -0.05496 0.01617 0.00295

95% CI for mean difference: (-0.06100, -0.04892)
T-Test of mean difference = 0 (vs not = 0): T-Value = -18.61 P-Value = 0.000

Paired T-Test and CI: k3_14, k4_14

Paired T for k3_14 - k4_14

 N Mean StDev SE Mean
k3_14 30 0.67007 0.00926 0.00169
k4_14 30 0.71898 0.00821 0.00150
Difference 30 -0.04891 0.01307 0.00239

95% CI for mean difference: (-0.05379, -0.04403)
T-Test of mean difference = 0 (vs not = 0): T-Value = -20.50 P-Value = 0.000

Paired T-Test and CI: k3_16, k4_16

Paired T for k3_16 - k4_16

 N Mean StDev SE Mean
k3_16 30 0.62445 0.00880 0.00161
k4_16 30 0.65889 0.00724 0.00132
Difference 30 -0.03444 0.01109 0.00203

95% CI for mean difference: (-0.03858, -0.03030)
T-Test of mean difference = 0 (vs not = 0): T-Value = -17.01 P-Value = 0.000

Paired T-Test and CI: k3_18, k4_18

Paired T for k3_18 - k4_18

 N Mean StDev SE Mean
k3_18 30 0.59471 0.00860 0.00157

k4_18 30 0.62607 0.00570 0.00104
Difference 30 -0.03136 0.01050 0.00192

95% CI for mean difference: (-0.03528, -0.02744)
T-Test of mean difference = 0 (vs not = 0): T-Value = -16.36 P-Value = 0.000

Paired T-Test and CI: k3_20, k4_20

Paired T for k3_20 - k4_20

 N Mean StDev SE Mean
k3_20 30 0.56640 0.00886 0.00162
k4_20 30 0.59798 0.00856 0.00156
Difference 30 -0.03158 0.01368 0.00250

95% CI for mean difference: (-0.03669, -0.02647)
T-Test of mean difference = 0 (vs not = 0): T-Value = -12.64 P-Value = 0.000

Paired T-Test and CI: k3_22, k4_22

Paired T for k3_22 - k4_22

 N Mean StDev SE Mean
k3_22 30 0.54409 0.00799 0.00146
k4_22 30 0.57543 0.00876 0.00160
Difference 30 -0.03134 0.01151 0.00210

95% CI for mean difference: (-0.03564, -0.02704)
T-Test of mean difference = 0 (vs not = 0): T-Value = -14.91 P-Value = 0.000

Paired T-Test and CI: k3_24, k4_24

Paired T for k3_24 - k4_24

 N Mean StDev SE Mean
k3_24 30 0.52103 0.00987 0.00180
k4_24 30 0.54065 0.01192 0.00218
Difference 30 -0.01962 0.01463 0.00267

95% CI for mean difference: (-0.02508, -0.01416)
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.35 P-Value = 0.000

Paired T-Test and CI: k3_26, k4_26

Paired T for k3_26 - k4_26

 N Mean StDev SE Mean
k3_26 30 0.50086 0.00943 0.00172
k4_26 30 0.51819 0.01017 0.00186
Difference 30 -0.01734 0.01428 0.00261

95% CI for mean difference: (-0.02267, -0.01200)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.65 P-Value = 0.000

Paired T-Tests for Waiting Time Analysis of Two Sided GridPick

Paired T-Test and CI: k2_2, k3_2

Paired T for k2_2 - k3_2

 N Mean StDev SE Mean
k2_2 30 0.59780 0.02299 0.00420
k3_2 30 0.57108 0.01107 0.00202
Difference 30 0.02671 0.02409 0.00440

95% CI for mean difference: (0.01772, 0.03571)
T-Test of mean difference = 0 (vs not = 0): T-Value = 6.07 P-Value = 0.000

Paired T-Test and CI: k2_4, k3_4

Paired T for k2_4 - k3_4

 N Mean StDev SE Mean
k2_4 30 0.90791 0.04042 0.00738
k3_4 30 0.62326 0.00861 0.00157
Difference 30 0.28465 0.03893 0.00711

95% CI for mean difference: (0.27011, 0.29918)
T-Test of mean difference = 0 (vs not = 0): T-Value = 40.05 P-Value = 0.000

Paired T-Test and CI: k2_6, k3_6

Paired T for k2_6 - k3_6

 N Mean StDev SE Mean
k2_6 30 1.09605 0.02945 0.00538
k3_6 30 0.70445 0.01614 0.00295
Difference 30 0.39161 0.03693 0.00674

95% CI for mean difference: (0.37782, 0.40540)
T-Test of mean difference = 0 (vs not = 0): T-Value = 58.07 P-Value = 0.000

Paired T-Test and CI: k2_8, k3_8

Paired T for k2_8 - k3_8

 N Mean StDev SE Mean
k2_8 30 1.20218 0.03974 0.00726
k3_8 30 0.76430 0.01946 0.00355
Difference 30 0.43788 0.03704 0.00676

95% CI for mean difference: (0.42405, 0.45172)
T-Test of mean difference = 0 (vs not = 0): T-Value = 64.74 P-Value = 0.000

Paired T-Test and CI: k2_10, k3_10

Paired T for k2_10 - k3_10

 N Mean StDev SE Mean
k2_10 30 1.25317 0.03459 0.00631
k3_10 30 0.80372 0.02061 0.00376
Difference 30 0.44946 0.03154 0.00576

95% CI for mean difference: (0.43768, 0.46123)
T-Test of mean difference = 0 (vs not = 0): T-Value = 78.06 P-Value = 0.000

Paired T-Test and CI: k2_12, k3_12

Paired T for k2_12 - k3_12

 N Mean StDev SE Mean
k2_12 30 1.29856 0.03623 0.00662
k3_12 30 0.83880 0.01342 0.00245
Difference 30 0.45975 0.03709 0.00677

95% CI for mean difference: (0.44590, 0.47360)
T-Test of mean difference = 0 (vs not = 0): T-Value = 67.89 P-Value = 0.000

Paired T-Test and CI: k2_14, k3_14

Paired T for k2_14 - k3_14

 N Mean StDev SE Mean
k2_14 30 1.33224 0.03733 0.00682
k3_14 30 0.88443 0.01484 0.00271
Difference 30 0.44780 0.04144 0.00757

95% CI for mean difference: (0.43233, 0.46327)
T-Test of mean difference = 0 (vs not = 0): T-Value = 59.19 P-Value = 0.000

Paired T-Test and CI: k2_16, k3_16

Paired T for k2_16 - k3_16

 N Mean StDev SE Mean
k2_16 30 1.36972 0.03636 0.00664
k3_16 30 0.93811 0.01677 0.00306
Difference 30 0.43161 0.04386 0.00801

95% CI for mean difference: (0.41523, 0.44799)
T-Test of mean difference = 0 (vs not = 0): T-Value = 53.89 P-Value = 0.000

Paired T-Test and CI: k2_18, k3_18

Paired T for k2_18 - k3_18

 N Mean StDev SE Mean
k2_18 30 1.39741 0.03296 0.00602
k3_18 30 1.00080 0.01889 0.00345

Difference 30 0.39661 0.03866 0.00706

95% CI for mean difference: (0.38217, 0.41105)
T-Test of mean difference = 0 (vs not = 0): T-Value = 56.19 P-Value = 0.000

Paired T-Test and CI: k2_20, k3_20

Paired T for k2_20 - k3_20

 N Mean StDev SE Mean
k2_20 30 1.43438 0.03477 0.00635
k3_20 30 1.06153 0.02059 0.00376
Difference 30 0.37285 0.03434 0.00627

95% CI for mean difference: (0.36003, 0.38567)
T-Test of mean difference = 0 (vs not = 0): T-Value = 59.47 P-Value = 0.000

Paired T-Test and CI: k2_22, k3_22

Paired T for k2_22 - k3_22

 N Mean StDev SE Mean
k2_22 30 1.45794 0.02901 0.00530
k3_22 30 1.11471 0.02180 0.00398
Difference 30 0.34323 0.03112 0.00568

95% CI for mean difference: (0.33161, 0.35485)
T-Test of mean difference = 0 (vs not = 0): T-Value = 60.40 P-Value = 0.000

Paired T-Test and CI: k2_24, k3_24

Paired T for k2_24 - k3_24

 N Mean StDev SE Mean
k2_24 30 1.48791 0.03737 0.00682
k3_24 30 1.16180 0.01778 0.00325
Difference 30 0.32611 0.04094 0.00747

95% CI for mean difference: (0.31082, 0.34140)
T-Test of mean difference = 0 (vs not = 0): T-Value = 43.63 P-Value = 0.000

Paired T-Test and CI: k2_26, k3_26

Paired T for k2_26 - k3_26

 N Mean StDev SE Mean
k2_26 30 1.52608 0.03357 0.00613
k3_26 30 1.20297 0.02118 0.00387
Difference 30 0.32311 0.03701 0.00676

95% CI for mean difference: (0.30929, 0.33693)
T-Test of mean difference = 0 (vs not = 0): T-Value = 47.82 P-Value = 0.000

Paired T-Test and CI: k2_2, k4_2

Paired T for k2_2 - k4_2

 N Mean StDev SE Mean
k2_2 30 0.59780 0.02299 0.00420
k4_2 30 0.56000 0.01002 0.00183
Difference 30 0.03780 0.02636 0.00481

95% CI for mean difference: (0.02795, 0.04764)
T-Test of mean difference = 0 (vs not = 0): T-Value = 7.85 P-Value = 0.000

Paired T-Test and CI: k2_4, k4_4

Paired T for k2_4 - k4_4

 N Mean StDev SE Mean
k2_4 30 0.90791 0.04042 0.00738
k4_4 30 0.60537 0.00947 0.00173
Difference 30 0.30254 0.04038 0.00737

95% CI for mean difference: (0.28746, 0.31762)
T-Test of mean difference = 0 (vs not = 0): T-Value = 41.04 P-Value = 0.000

Paired T-Test and CI: k2_6, k4_6

Paired T for k2_6 - k4_6

 N Mean StDev SE Mean
k2_6 30 1.09605 0.02945 0.00538
k4_6 30 0.65558 0.01076 0.00196
Difference 30 0.44047 0.03499 0.00639

95% CI for mean difference: (0.42741, 0.45354)
T-Test of mean difference = 0 (vs not = 0): T-Value = 68.95 P-Value = 0.000

Paired T-Test and CI: k2_8, k4_8

Paired T for k2_8 - k4_8

 N Mean StDev SE Mean
k2_8 30 1.20218 0.03974 0.00726
k4_8 30 0.70673 0.00760 0.00139
Difference 30 0.49546 0.03983 0.00727

95% CI for mean difference: (0.48058, 0.51033)
T-Test of mean difference = 0 (vs not = 0): T-Value = 68.13 P-Value = 0.000

Paired T-Test and CI: k2_10, k4_10

Paired T for k2_10 - k4_10

 N Mean StDev SE Mean
k2_10 30 1.25317 0.03459 0.00631
k4_10 30 0.75409 0.00935 0.00171
Difference 30 0.49908 0.03720 0.00679

95% CI for mean difference: (0.48519, 0.51297)
T-Test of mean difference = 0 (vs not = 0): T-Value = 73.47 P-Value = 0.000

Paired T-Test and CI: k2_12, k4_12

Paired T for k2_12 - k4_12

 N Mean StDev SE Mean
k2_12 30 1.29856 0.03623 0.00662
k4_12 30 0.79962 0.00986 0.00180
Difference 30 0.49894 0.03566 0.00651

95% CI for mean difference: (0.48562, 0.51226)
T-Test of mean difference = 0 (vs not = 0): T-Value = 76.63 P-Value = 0.000

Paired T-Test and CI: k2_14, k4_14

Paired T for k2_14 - k4_14

 N Mean StDev SE Mean
k2_14 30 1.33224 0.03733 0.00682
k4_14 30 0.84124 0.00836 0.00153
Difference 30 0.49099 0.03865 0.00706

95% CI for mean difference: (0.47656, 0.50542)
T-Test of mean difference = 0 (vs not = 0): T-Value = 69.58 P-Value = 0.000

Paired T-Test and CI: k2_16, k4_16

Paired T for k2_16 - k4_16

 N Mean StDev SE Mean
k2_16 30 1.36972 0.03636 0.00664
k4_16 30 0.89833 0.01036 0.00189
Difference 30 0.47139 0.03834 0.00700

95% CI for mean difference: (0.45707, 0.48570)
T-Test of mean difference = 0 (vs not = 0): T-Value = 67.34 P-Value = 0.000

Paired T-Test and CI: k2_18, k4_18

Paired T for k2_18 - k4_18

 N Mean StDev SE Mean
k2_18 30 1.39741 0.03296 0.00602
k4_18 30 0.95951 0.01261 0.00230

Difference 30 0.43789 0.03396 0.00620

95% CI for mean difference: (0.42521, 0.45057)
T-Test of mean difference = 0 (vs not = 0): T-Value = 70.63 P-Value = 0.000

Paired T-Test and CI: k2_20, k4_20

Paired T for k2_20 - k4_20

 N Mean StDev SE Mean
k2_20 30 1.43438 0.03477 0.00635
k4_20 30 1.01657 0.01389 0.00254
Difference 30 0.41781 0.03963 0.00724

95% CI for mean difference: (0.40301, 0.43261)
T-Test of mean difference = 0 (vs not = 0): T-Value = 57.74 P-Value = 0.000

Paired T-Test and CI: k2_22, k4_22

Paired T for k2_22 - k4_22

 N Mean StDev SE Mean
k2_22 30 1.45794 0.02901 0.00530
k4_22 30 1.06977 0.01643 0.00300
Difference 30 0.38817 0.03242 0.00592

95% CI for mean difference: (0.37607, 0.40028)
T-Test of mean difference = 0 (vs not = 0): T-Value = 65.59 P-Value = 0.000

Paired T-Test and CI: k2_24, k4_24

Paired T for k2_24 - k4_24

 N Mean StDev SE Mean
k2_24 30 1.48791 0.03737 0.00682
k4_24 30 1.11140 0.01929 0.00352
Difference 30 0.37652 0.03962 0.00723

95% CI for mean difference: (0.36172, 0.39131)
T-Test of mean difference = 0 (vs not = 0): T-Value = 52.05 P-Value = 0.000

Paired T-Test and CI: k2_26, k4_26

Paired T for k2_26 - k4_26

 N Mean StDev SE Mean
k2_26 30 1.52608 0.03357 0.00613
k4_26 30 1.14327 0.01657 0.00303
Difference 30 0.38281 0.04020 0.00734

95% CI for mean difference: (0.36780, 0.39782)
T-Test of mean difference = 0 (vs not = 0): T-Value = 52.16 P-Value = 0.000

Paired T-Test and CI: k3_2, k4_2

Paired T for k3_2 - k4_2

 N Mean StDev SE Mean
k3_2 30 0.57108 0.01107 0.00202
k4_2 30 0.56000 0.01002 0.00183
Difference 30 0.01108 0.01476 0.00269

95% CI for mean difference: (0.00557, 0.01659)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.11 P-Value = 0.000

Paired T-Test and CI: k3_4, k4_4

Paired T for k3_4 - k4_4

 N Mean StDev SE Mean
k3_4 30 0.62326 0.00861 0.00157
k4_4 30 0.60537 0.00947 0.00173
Difference 30 0.01789 0.01391 0.00254

95% CI for mean difference: (0.01270, 0.02309)
T-Test of mean difference = 0 (vs not = 0): T-Value = 7.05 P-Value = 0.000

Paired T-Test and CI: k3_6, k4_6

Paired T for k3_6 - k4_6

 N Mean StDev SE Mean
k3_6 30 0.70445 0.01614 0.00295
k4_6 30 0.65558 0.01076 0.00196
Difference 30 0.04886 0.01838 0.00336

95% CI for mean difference: (0.04200, 0.05573)
T-Test of mean difference = 0 (vs not = 0): T-Value = 14.56 P-Value = 0.000

Paired T-Test and CI: k3_8, k4_8

Paired T for k3_8 - k4_8

 N Mean StDev SE Mean
k3_8 30 0.76430 0.01946 0.00355
k4_8 30 0.70673 0.00760 0.00139
Difference 30 0.05757 0.01987 0.00363

95% CI for mean difference: (0.05015, 0.06499)
T-Test of mean difference = 0 (vs not = 0): T-Value = 15.87 P-Value = 0.000

Paired T-Test and CI: k3_10, k4_10

Paired T for k3_10 - k4_10

 N Mean StDev SE Mean
k3_10 30 0.80372 0.02061 0.00376
k4_10 30 0.75409 0.00935 0.00171
Difference 30 0.04963 0.02481 0.00453

95% CI for mean difference: (0.04036, 0.05889)
T-Test of mean difference = 0 (vs not = 0): T-Value = 10.95 P-Value = 0.000

Paired T-Test and CI: k3_12, k4_12

Paired T for k3_12 - k4_12

 N Mean StDev SE Mean
k3_12 30 0.83880 0.01342 0.00245
k4_12 30 0.79962 0.00986 0.00180
Difference 30 0.03919 0.01463 0.00267

95% CI for mean difference: (0.03373, 0.04465)
T-Test of mean difference = 0 (vs not = 0): T-Value = 14.67 P-Value = 0.000

Paired T-Test and CI: k3_14, k4_14

Paired T for k3_14 - k4_14

 N Mean StDev SE Mean
k3_14 30 0.88443 0.01484 0.00271
k4_14 30 0.84124 0.00836 0.00153
Difference 30 0.04319 0.01928 0.00352

95% CI for mean difference: (0.03599, 0.05039)
T-Test of mean difference = 0 (vs not = 0): T-Value = 12.27 P-Value = 0.000

Paired T-Test and CI: k3_16, k4_16

Paired T for k3_16 - k4_16

 N Mean StDev SE Mean
k3_16 30 0.93811 0.01677 0.00306
k4_16 30 0.89833 0.01036 0.00189
Difference 30 0.03978 0.02166 0.00395

95% CI for mean difference: (0.03169, 0.04787)
T-Test of mean difference = 0 (vs not = 0): T-Value = 10.06 P-Value = 0.000

Paired T-Test and CI: k3_18, k4_18

Paired T for k3_18 - k4_18

 N Mean StDev SE Mean
k3_18 30 1.00080 0.01889 0.00345

k4_18 30 0.95951 0.01261 0.00230
Difference 30 0.04128 0.01901 0.00347

95% CI for mean difference: (0.03418, 0.04838)
T-Test of mean difference = 0 (vs not = 0): T-Value = 11.90 P-Value = 0.000

Paired T-Test and CI: k3_20, k4_20

Paired T for k3_20 - k4_20

 N Mean StDev SE Mean
k3_20 30 1.06153 0.02059 0.00376
k4_20 30 1.01657 0.01389 0.00254
Difference 30 0.04497 0.02547 0.00465

95% CI for mean difference: (0.03545, 0.05448)
T-Test of mean difference = 0 (vs not = 0): T-Value = 9.67 P-Value = 0.000

Paired T-Test and CI: k3_22, k4_22

Paired T for k3_22 - k4_22

 N Mean StDev SE Mean
k3_22 30 1.11471 0.02180 0.00398
k4_22 30 1.06977 0.01643 0.00300
Difference 30 0.04494 0.02668 0.00487

95% CI for mean difference: (0.03498, 0.05491)
T-Test of mean difference = 0 (vs not = 0): T-Value = 9.23 P-Value = 0.000

Paired T-Test and CI: k3_24, k4_24

Paired T for k3_24 - k4_24

 N Mean StDev SE Mean
k3_24 30 1.16180 0.01778 0.00325
k4_24 30 1.11140 0.01929 0.00352
Difference 30 0.05040 0.02629 0.00480

95% CI for mean difference: (0.04059, 0.06022)
T-Test of mean difference = 0 (vs not = 0): T-Value = 10.50 P-Value = 0.000

Paired T-Test and CI: k3_26, k4_26

Paired T for k3_26 - k4_26

 N Mean StDev SE Mean
k3_26 30 1.20297 0.02118 0.00387
k4_26 30 1.14327 0.01657 0.00303
Difference 30 0.05970 0.02556 0.00467

95% CI for mean difference: (0.05016, 0.06924)
T-Test of mean difference = 0 (vs not = 0): T-Value = 12.79 P-Value = 0.000

Paired T-Tests for Flow Time Analysis of Two Sided GridPick

Paired T-Test and CI: k2_2, k3_2

Paired T for k2_2 - k3_2

 N Mean StDev SE Mean
k2_2 30 8.8554 0.0905 0.0165
k3_2 30 9.2549 0.1227 0.0224
Difference 30 -0.3994 0.1495 0.0273

95% CI for mean difference: (-0.4553, -0.3436)
T-Test of mean difference = 0 (vs not = 0): T-Value = -14.63 P-Value = 0.000

Paired T-Test and CI: k2_4, k3_4

Paired T for k2_4 - k3_4

 N Mean StDev SE Mean
k2_4 30 9.6373 0.1464 0.0267
k3_4 30 9.5073 0.0985 0.0180
Difference 30 0.1301 0.1497 0.0273

95% CI for mean difference: (0.0742, 0.1860)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.76 P-Value = 0.000

Paired T-Test and CI: k2_6, k3_6

Paired T for k2_6 - k3_6

 N Mean StDev SE Mean
k2_6 30 11.1027 0.2074 0.0379
k3_6 30 10.4570 0.0985 0.0180
Difference 30 0.6457 0.2356 0.0430

95% CI for mean difference: (0.5577, 0.7337)
T-Test of mean difference = 0 (vs not = 0): T-Value = 15.01 P-Value = 0.000

Paired T-Test and CI: k2_8, k3_8

Paired T for k2_8 - k3_8

 N Mean StDev SE Mean
k2_8 30 12.9113 0.2371 0.0433
k3_8 30 11.8248 0.1587 0.0290
Difference 30 1.0865 0.3057 0.0558

95% CI for mean difference: (0.9724, 1.2007)
T-Test of mean difference = 0 (vs not = 0): T-Value = 19.47 P-Value = 0.000

Paired T-Test and CI: k2_10, k3_10

Paired T for k2_10 - k3_10

 N Mean StDev SE Mean
k2_10 30 14.9464 0.3529 0.0644
k3_10 30 13.3110 0.2021 0.0369
Difference 30 1.6353 0.4462 0.0815

95% CI for mean difference: (1.4687, 1.8019)
T-Test of mean difference = 0 (vs not = 0): T-Value = 20.08 P-Value = 0.000

Paired T-Test and CI: k2_12, k3_12

Paired T for k2_12 - k3_12

 N Mean StDev SE Mean
k2_12 30 17.0255 0.4330 0.0790
k3_12 30 14.9656 0.2726 0.0498
Difference 30 2.060 0.598 0.109

95% CI for mean difference: (1.837, 2.283)
T-Test of mean difference = 0 (vs not = 0): T-Value = 18.87 P-Value = 0.000

Paired T-Test and CI: k2_14, k3_14

Paired T for k2_14 - k3_14

 N Mean StDev SE Mean
k2_14 30 19.3070 0.4906 0.0896
k3_14 30 16.9712 0.3079 0.0562
Difference 30 2.3358 0.5469 0.0998

95% CI for mean difference: (2.1316, 2.5400)
T-Test of mean difference = 0 (vs not = 0): T-Value = 23.39 P-Value = 0.000

Paired T-Test and CI: k2_16, k3_16

Paired T for k2_16 - k3_16

 N Mean StDev SE Mean
k2_16 30 21.802 0.598 0.109
k3_16 30 19.292 0.330 0.060
Difference 30 2.510 0.620 0.113

95% CI for mean difference: (2.278, 2.741)
T-Test of mean difference = 0 (vs not = 0): T-Value = 22.16 P-Value = 0.000

Paired T-Test and CI: k2_18, k3_18

Paired T for k2_18 - k3_18

 N Mean StDev SE Mean
k2_18 30 24.4767 0.4664 0.0851

k3_18 30 21.7137 0.5168 0.0944
Difference 30 2.763 0.697 0.127

95% CI for mean difference: (2.503, 3.023)
T-Test of mean difference = 0 (vs not = 0): T-Value = 21.72 P-Value = 0.000

Paired T-Test and CI: k2_20, k3_20

Paired T for k2_20 - k3_20

 N Mean StDev SE Mean
k2_20 30 26.725 0.616 0.112
k3_20 30 24.056 0.476 0.087
Difference 30 2.669 0.777 0.142

95% CI for mean difference: (2.379, 2.959)
T-Test of mean difference = 0 (vs not = 0): T-Value = 18.83 P-Value = 0.000

Paired T-Test and CI: k2_22, k3_22

Paired T for k2_22 - k3_22

 N Mean StDev SE Mean
k2_22 30 29.029 0.606 0.111
k3_22 30 26.262 0.525 0.096
Difference 30 2.767 0.763 0.139

95% CI for mean difference: (2.482, 3.052)
T-Test of mean difference = 0 (vs not = 0): T-Value = 19.87 P-Value = 0.000

Paired T-Test and CI: k2_24, k3_24

Paired T for k2_24 - k3_24

 N Mean StDev SE Mean
k2_24 30 31.097 0.599 0.109
k3_24 30 28.201 0.496 0.091
Difference 30 2.896 0.735 0.134

95% CI for mean difference: (2.622, 3.171)
T-Test of mean difference = 0 (vs not = 0): T-Value = 21.58 P-Value = 0.000

Paired T-Test and CI: k2_26, k3_26

Paired T for k2_26 - k3_26

 N Mean StDev SE Mean
k2_26 30 32.7086 0.5453 0.0996
k3_26 30 29.9577 0.4692 0.0857
Difference 30 2.751 0.652 0.119

95% CI for mean difference: (2.507, 2.994)

T-Test of mean difference = 0 (vs not = 0): T-Value = 23.11 P-Value = 0.000

Paired T-Test and CI: k2_2, k4_2

Paired T for k2_2 - k4_2

 N Mean StDev SE Mean
k2_2 30 8.8554 0.0905 0.0165
k4_2 30 9.5474 0.0981 0.0179
Difference 30 -0.6920 0.1490 0.0272

95% CI for mean difference: (-0.7476, -0.6363)
T-Test of mean difference = 0 (vs not = 0): T-Value = -25.44 P-Value = 0.000

Paired T-Test and CI: k2_4, k4_4

Paired T for k2_4 - k4_4

 N Mean StDev SE Mean
k2_4 30 9.6373 0.1464 0.0267
k4_4 30 9.8493 0.1033 0.0189
Difference 30 -0.2119 0.1768 0.0323

95% CI for mean difference: (-0.2780, -0.1459)
T-Test of mean difference = 0 (vs not = 0): T-Value = -6.56 P-Value = 0.000

Paired T-Test and CI: k2_6, k4_6

Paired T for k2_6 - k4_6

 N Mean StDev SE Mean
k2_6 30 11.1027 0.2074 0.0379
k4_6 30 10.8899 0.1429 0.0261
Difference 30 0.2127 0.2607 0.0476

95% CI for mean difference: (0.1154, 0.3101)
T-Test of mean difference = 0 (vs not = 0): T-Value = 4.47 P-Value = 0.000

Paired T-Test and CI: k2_8, k4_8

Paired T for k2_8 - k4_8

 N Mean StDev SE Mean
k2_8 30 12.9113 0.2371 0.0433
k4_8 30 12.2487 0.1912 0.0349
Difference 30 0.6626 0.3032 0.0554

95% CI for mean difference: (0.5494, 0.7758)
T-Test of mean difference = 0 (vs not = 0): T-Value = 11.97 P-Value = 0.000

Paired T-Test and CI: k2_10, k4_10

Paired T for k2_10 - k4_10

 N Mean StDev SE Mean
k2_10 30 14.9464 0.3529 0.0644
k4_10 30 13.8193 0.1428 0.0261
Difference 30 1.1271 0.3995 0.0729

95% CI for mean difference: (0.9779, 1.2763)
T-Test of mean difference = 0 (vs not = 0): T-Value = 15.45 P-Value = 0.000

Paired T-Test and CI: k2_12, k4_12

Paired T for k2_12 - k4_12

 N Mean StDev SE Mean
k2_12 30 17.0255 0.4330 0.0790
k4_12 30 15.4762 0.2569 0.0469
Difference 30 1.549 0.551 0.101

95% CI for mean difference: (1.343, 1.755)
T-Test of mean difference = 0 (vs not = 0): T-Value = 15.39 P-Value = 0.000

Paired T-Test and CI: k2_14, k4_14

Paired T for k2_14 - k4_14

 N Mean StDev SE Mean
k2_14 30 19.3070 0.4906 0.0896
k4_14 30 17.1632 0.2373 0.0433
Difference 30 2.144 0.550 0.100

95% CI for mean difference: (1.938, 2.349)
T-Test of mean difference = 0 (vs not = 0): T-Value = 21.33 P-Value = 0.000

Paired T-Test and CI: k2_16, k4_16

Paired T for k2_16 - k4_16

 N Mean StDev SE Mean
k2_16 30 21.802 0.598 0.109
k4_16 30 19.238 0.435 0.079
Difference 30 2.563 0.644 0.117

95% CI for mean difference: (2.323, 2.804)
T-Test of mean difference = 0 (vs not = 0): T-Value = 21.82 P-Value = 0.000

Paired T-Test and CI: k2_18, k4_18

Paired T for k2_18 - k4_18

 N Mean StDev SE Mean
k2_18 30 24.4767 0.4664 0.0851

k4_18 30 21.4976 0.3810 0.0696
Difference 30 2.979 0.599 0.109

95% CI for mean difference: (2.756, 3.203)
T-Test of mean difference = 0 (vs not = 0): T-Value = 27.25 P-Value = 0.000

Paired T-Test and CI: k2_20, k4_20

Paired T for k2_20 - k4_20

 N Mean StDev SE Mean
k2_20 30 26.725 0.616 0.112
k4_20 30 23.632 0.477 0.087
Difference 30 3.093 0.642 0.117

95% CI for mean difference: (2.853, 3.333)
T-Test of mean difference = 0 (vs not = 0): T-Value = 26.40 P-Value = 0.000

Paired T-Test and CI: k2_22, k4_22

Paired T for k2_22 - k4_22

 N Mean StDev SE Mean
k2_22 30 29.029 0.606 0.111
k4_22 30 25.725 0.613 0.112
Difference 30 3.304 0.741 0.135

95% CI for mean difference: (3.027, 3.580)
T-Test of mean difference = 0 (vs not = 0): T-Value = 24.41 P-Value = 0.000

Paired T-Test and CI: k2_24, k4_24

Paired T for k2_24 - k4_24

 N Mean StDev SE Mean
k2_24 30 31.097 0.599 0.109
k4_24 30 27.836 0.574 0.105
Difference 30 3.261 0.864 0.158

95% CI for mean difference: (2.939, 3.584)
T-Test of mean difference = 0 (vs not = 0): T-Value = 20.68 P-Value = 0.000

Paired T-Test and CI: k2_26, k4_26

Paired T for k2_26 - k4_26

 N Mean StDev SE Mean
k2_26 30 32.7086 0.5453 0.0996
k4_26 30 29.5559 0.4123 0.0753
Difference 30 3.153 0.777 0.142

95% CI for mean difference: (2.863, 3.443)

T-Test of mean difference = 0 (vs not = 0): T-Value = 22.23 P-Value = 0.000

Paired T-Test and CI: k3_2, k4_2

Paired T for k3_2 - k4_2

 N Mean StDev SE Mean
k3_2 30 9.2549 0.1227 0.0224
k4_2 30 9.5474 0.0981 0.0179
Difference 30 -0.2925 0.1373 0.0251

95% CI for mean difference: (-0.3438, -0.2412)
T-Test of mean difference = 0 (vs not = 0): T-Value = -11.67 P-Value = 0.000

Paired T-Test and CI: k3_4, k4_4

Paired T for k3_4 - k4_4

 N Mean StDev SE Mean
k3_4 30 9.5073 0.0985 0.0180
k4_4 30 9.8493 0.1033 0.0189
Difference 30 -0.3420 0.1057 0.0193

95% CI for mean difference: (-0.3815, -0.3025)
T-Test of mean difference = 0 (vs not = 0): T-Value = -17.72 P-Value = 0.000

Paired T-Test and CI: k3_6, k4_6

Paired T for k3_6 - k4_6

 N Mean StDev SE Mean
k3_6 30 10.4570 0.0985 0.0180
k4_6 30 10.8899 0.1429 0.0261
Difference 30 -0.4330 0.1962 0.0358

95% CI for mean difference: (-0.5062, -0.3597)
T-Test of mean difference = 0 (vs not = 0): T-Value = -12.09 P-Value = 0.000

Paired T-Test and CI: k3_8, k4_8

Paired T for k3_8 - k4_8

 N Mean StDev SE Mean
k3_8 30 11.8248 0.1587 0.0290
k4_8 30 12.2487 0.1912 0.0349
Difference 30 -0.4239 0.2127 0.0388

95% CI for mean difference: (-0.5034, -0.3445)
T-Test of mean difference = 0 (vs not = 0): T-Value = -10.92 P-Value = 0.000

Paired T-Test and CI: k3_10, k4_10

Paired T for k3_10 - k4_10

 N Mean StDev SE Mean
k3_10 30 13.3110 0.2021 0.0369
k4_10 30 13.8193 0.1428 0.0261
Difference 30 -0.5082 0.2356 0.0430

95% CI for mean difference: (-0.5962, -0.4202)
T-Test of mean difference = 0 (vs not = 0): T-Value = -11.82 P-Value = 0.000

Paired T-Test and CI: k3_12, k4_12

Paired T for k3_12 - k4_12

 N Mean StDev SE Mean
k3_12 30 14.9656 0.2726 0.0498
k4_12 30 15.4762 0.2569 0.0469
Difference 30 -0.5106 0.3563 0.0650

95% CI for mean difference: (-0.6436, -0.3775)
T-Test of mean difference = 0 (vs not = 0): T-Value = -7.85 P-Value = 0.000

Paired T-Test and CI: k3_14, k4_14

Paired T for k3_14 - k4_14

 N Mean StDev SE Mean
k3_14 30 16.9712 0.3079 0.0562
k4_14 30 17.1632 0.2373 0.0433
Difference 30 -0.1920 0.3716 0.0678

95% CI for mean difference: (-0.3308, -0.0533)
T-Test of mean difference = 0 (vs not = 0): T-Value = -2.83 P-Value = 0.008

Paired T-Test and CI: k3_16, k4_16

Paired T for k3_16 - k4_16

 N Mean StDev SE Mean
k3_16 30 19.2920 0.3305 0.0603
k4_16 30 19.2382 0.4349 0.0794
Difference 30 0.054 0.621 0.113

95% CI for mean difference: (-0.178, 0.286)
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.47 P-Value = 0.639

Paired T-Test and CI: k3_18, k4_18

Paired T for k3_18 - k4_18

 N Mean StDev SE Mean
k3_18 30 21.7137 0.5168 0.0944
k4_18 30 21.4976 0.3810 0.0696

Difference 30 0.216 0.646 0.118

95% CI for mean difference: (-0.025, 0.457)
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.83 P-Value = 0.077

Paired T-Test and CI: k3_20, k4_20

Paired T for k3_20 - k4_20

 N Mean StDev SE Mean
k3_20 30 24.0556 0.4762 0.0869
k4_20 30 23.6319 0.4768 0.0870
Difference 30 0.424 0.643 0.117

95% CI for mean difference: (0.184, 0.664)
T-Test of mean difference = 0 (vs not = 0): T-Value = 3.61 P-Value = 0.001

Paired T-Test and CI: k3_22, k4_22

Paired T for k3_22 - k4_22

 N Mean StDev SE Mean
k3_22 30 26.262 0.525 0.096
k4_22 30 25.725 0.613 0.112
Difference 30 0.537 0.821 0.150

95% CI for mean difference: (0.230, 0.843)
T-Test of mean difference = 0 (vs not = 0): T-Value = 3.58 P-Value = 0.001

Paired T-Test and CI: k3_24, k4_24

Paired T for k3_24 - k4_24

 N Mean StDev SE Mean
k3_24 30 28.201 0.496 0.091
k4_24 30 27.836 0.574 0.105
Difference 30 0.365 0.736 0.134

95% CI for mean difference: (0.090, 0.640)
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.71 P-Value = 0.011

Paired T-Test and CI: k3_26, k4_26

Paired T for k3_26 - k4_26

 N Mean StDev SE Mean
k3_26 30 29.9577 0.4692 0.0857
k4_26 30 29.5559 0.4123 0.0753
Difference 30 0.402 0.582 0.106

95% CI for mean difference: (0.184, 0.619)
T-Test of mean difference = 0 (vs not = 0): T-Value = 3.78 P-Value = 0.001

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

twoC-4 30 0.238525 0.004381 0.0008 (0.236320, 0.240730) 0.0022 0.92%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

twoC-14 30 0.4646 0.003923 0.000716 (0.462626, 0.466574) 0.002 0.425%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

twoC-24 30 0.464042 0.003673 0.000671 (0.462193, 0.465890) 0.0018 0.40%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

threeC-4 30 0.16548 0.0057 0.00104 (0.16262, 0.16835) 0.0029 1.73%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

threeC-14 30 0.39621 0.00724 0.00132 (0.39256, 0.39985) 0.00364 0.92%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

threeC-24 30 0.455117 0.004885 0.000892 (0.452658, 0.457575) 0.0025 0.54%

Table A.4: Statistical Data for the Multi Copy Configurations of One Sided GridPick

281

throughput Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-4 30 0.58971 0.00707 0.00129 (0.58615,

0.59327)
0.00356 0.60%

throughput Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-14 30 0.86712 0.00608 0.00111 (0.86406,

0.87019)
0.00307 0.354%

throughput Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-24 30 0.82238 0.00656 0.0012 (0.81908,

0.82569)
0.00331 0.4025%

walking Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-4 30 2.01959 0.04034 0.00736 (1.99929,

2.03989)
0.0203 1.01%

walking Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-14 30 0.67007 0.00926 0.00169 (0.66541,

0.67473)
0.00466 0.70%

walking Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-24 30 0.52103 0.00987 0.0018 (0.51606,

0.52599)
0.00496 0.95%

waiting Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-4 30 0.62326 0.00861 0.00157 (0.61893,

0.62759)
0.00433 0.69%

waiting Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-14 30 0.88443 0.01484 0.00271 (0.87697,

0.89190)
0.00747 0.844%

waiting Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-24 30 1.1618 0.01778 0.00325 (1.15285,

1.17075)
0.00895 0.77%

flow Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-4 30 9.5073 0.0985 0.018 (9.4577,

9.5568)
0.0495 0.52%

flow Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-14 30 16.9712 0.3079 0.0562 (16.8162,

17.1261)
0.1549 0.91%

flow Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean
k3-24 30 28.2008 0.4958 0.0905 (27.9513,

28.4503)
0.2495 0.88%

Table A.5: Statistical Data for the Throughput of Two Sided GridPick

282

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

0.5-4 30 0.32997 0.00673 0.00123 (0.32658, 0.33336) 0.00339 1.03%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

1-4 30 0.49481 0.00806 0.00147 (0.49075, 0.49887) 0.00406 0.82%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

1-14 30 0.78439 0.0077 0.00141 (0.78052, 0.78827) 0.0039 0.49%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

8-14 30 0.78484 0.00553 0.00101 (0.78206, 0.78762) 0.00278 0.35%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

8-24 30 0.886667 0.00519 0.000947 (0.884055, 0.889278) 0.0026 0.29%

Table A.6: Statistical Data for the Aspect Ratio Configurations of Two Sided GridPick

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

aedges-4 30 0.57165 0.00625 0.00114 (0.56851, 0.57479) 0.0031 0.55%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

aedges-14 30 0.84426 0.00785 0.00143 (0.84031, 0.84821) 0.004 0.47%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

aedges-24 30 0.83459 0.00606 0.00111 (0.83154, 0.83764) 0.00305 0.37%

Table A.7: Statistical Data for the Variable k Configurations of Two Sided GridPick

283

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

w1-4 30 0.289017 0.005042 0.00092 (0.286480, 0.291554) 0.002537 0.88%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

w1-14 30 0.43895 0.002542 0.000464 (0.437671, 0.440229) 0.0013 0.29%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

w1-24 30 0.420525 0.004904 0.000895 (0.418057, 0.422993) 0.0025 0.59%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

w2-4 30 0.285275 0.003877 0.000708 (0.283324, 0.287226) 0.002 0.68%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

w2-14 30 0.426883 0.002909 0.000531 (0.425420, 0.428347) 0.0015 0.34%

Variable N Mean StDev SE Mean 99% CI Halfwidth %Mean

w2-24 30 0.412442 0.004344 0.000793 (0.410255, 0.414628) 0.0022 0.53%

Table A.8: Statistical Data for the Two Workers Comparison of Two Sided GridPick

284

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background on Order Picking Systems
	Background on Grid Based Storage Systems
	Research Objectives
	Organization of the Dissertation

	Literature Review
	Order Picking Systems
	Structural Decisions and Design Questions
	Picking Methods

	Decentralized Control and Multi Agent Systems
	High Density Puzzle Based Storage Systems
	Unit Sized Transportation Modules

	The GridPick System
	Explanation of the Control Algorithm
	System Overview
	Symbolism and Representation
	Negotiation for the Assignment of the Replenishing Items
	Assignment of the Replenishing Items for the Convoy Movement
	Negotiation Process for Movement Decisions
	North-South Negotiation for Vertical Movement

	Considerations on the Application of GridPick
	Pick to Light Systems
	Pick by Voice Systems

	Model Representation
	Message Passing
	Determining Buffer Lengths for Cyclic Events

	Statistical Analysis for Steady-State Parameters
	Determining the Warmup Period
	Determining the Number of Replications
	Paired t-Tests for the Configuration Comparisons

	Performance Analysis
	Aspect Ratio Analysis
	Variable k Analysis
	Analysis with Multiple Copy Configurations
	Comparison with a Flow Rack Configuration
	Conclusions

	A Modified Version of the GridPick System: Picking From Two Sides
	System Description
	Solution Approach
	Discrete Events and Balance Rules for the Operations

	Determination of Buffer Lengths for the Series of Events
	Statistical Analysis for Steady-State Parameters
	Determining the Warmup Period
	Determining the Number of Replications

	Performance Analysis
	Performance of the Two Sided Model for Several Parameters
	Aspect Ratio Analysis
	Distribution of Empty Cells
	Performance Comparison of the Two Workers
	Performance Comparison with the One Sided Model

	Conclusions

	A Petri Nets Model for Grid Based Storage Systems
	Discrete Event Systems Modeling
	Petri Nets Overview

	Fundamental Concepts
	Colored Petri Nets
	Modeling of GridStore System
	Petri Nets Modeling of GridPick
	Contributions of the Petri Nets Model and Deadlock Conditions

	Conclusions and Contributions
	Appendix
	Statistical Data and Confidence Intervals for the Analysis
	Paired t Tests

