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Dissertation Abstract
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Emilia Moore
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98 Typed Pages

Directed by Dean Hoffman

The concept of an an even matching was first introduced by Billington and Hoffman.

They were used to find gregarious 4-cycle decompositions of K8t(a),b with a and b odd.

Their paper contains even matchings of type (α8, β) for α, β even and 0 ≤ β ≤ 4α.

This paper considers the necessary and sufficient conditions for the existence of even

matchings as well as k-divisible matchings. We present a construction of even matchings

and 3-divisible matchings of type (a1, a2, . . . , ap) provided the necessary conditions are

satisfied.
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Chapter 1

Introduction

1.1 Even Matchings

In a recent paper by Dean Hoffman and Elizabeth Billington a definition of an even

matching was introduced [1].

Definition 1.1 Let a1, . . . , ap be non-negative integers. We define the complete mul-

tipartite graph K(a1, a2, . . . , ap) as the graph whose vertex set is partitioned into parts

A1, . . . , Ap of size a1, . . . , ap respectively. Two vertices are adjacent if and only if they

are in two different parts.

Definition 1.2 Let a1, a2, . . . , ap be non-negative integers, and let Ai denote the vertex

partite set of size ai, for 1 ≤ i ≤ p. Then for the graph K(a1, a2, . . . , ap), the ordered set

M = (M1,M2, . . . , Mp) is an even matching of type (a1, a2, . . . , ap) if

1. for each i, 1 ≤ i ≤ p, the set Mi is a perfect matching in the graph

K(a1, a2, . . . , ap)\Ai, and

2. every edge of K(a1, a2, . . . , ap) lies in an even number of matchings Mi (this number

could be zero). We will refer to this as the “evenness” condition.

In the above mentioned paper, a limited number of even matchings was used to

help construct gregarious 4-cycle decompositions of K(a, a, a, a, a, a, a, a, b) for odd size

parts and a ≥ 3. The matchings used were of the form (α8, β) for all even α and β, with

0 ≤ β ≤ 4α. We wanted to know the necessary and sufficient conditions for the existence
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of even matchings. Throughout the paper we will use the notation (ap) to represent a

matching type with p parts of size a.

In Chapter 2 we prove the following theorem.

Theorem 1.3 Assume even matchings of the types (02h, 22h, 4h− 2), (13h+c, 3h−c, 6h−

3 − 2c), (1h+c, 33h−c, 10h − 5 − 2c), (1h+c, 32h−c, 7h, 14h − 7 − 2c) for h ≥ c, (14h, i)

for 3 ≤ i ≤ 4h − 3 odd, (14h−1, j, i) for 3 ≤ i ≤ 4h − 1 and 3 ≤ j ≤ i odd, and

(02h+1, 22h+1, 4h) exist. Assume a1 ≤ a2 ≤ . . . ≤ ap and define n =
∑p

i=1 ai. An even

matching of the type (a1, . . . , ap) exists if and only if

1. p is odd,

2. 2ap + ap−1 ≤ n,

3. either ai are even for all 1 ≤ i ≤ p or ai are odd for all 1 ≤ i ≤ p and

p ≡ 1 (mod 4),

4. 2(p− 2)ap ≤ (p− 3)n.

In Chapter 3 we will generalize this notion to that of k-divisible-matchings and

consider the existence problem for them. More precisely, we prove the following theorem.

Theorem 1.4 Assume 3-divisible-matchings of the types (04h, 22h, 4h− 2),

(14h+c, 32h−c, 10h − 5 − 2c), (12h+c, 34h−c, 7h, 14h − 7 − 2c) for 0 ≤ c ≤ 2h − 3, (16h, i)

for 3 ≤ i ≤ 6h − 3 odd, (16h−1, j, i) for 3 ≤ i ≤ 6h − 1 and 3 ≤ j ≤ i odd, and

(04h+2, 22h+1, 4h) exist. Assume a1 ≤ a2 ≤ . . . ≤ ap and define n =
∑p

i=1 ai.

A 3-divisible-matching of the type (a1, . . . , ap) exists if and only if

1. p ≡ 1 (mod 3),
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2. 2ap + ap−1 ≤ n,

3. Either all ai are even or all ai are odd and p is odd.

4. (2p− 5)ap ≤ (p− 4)n.

3



Chapter 2

Existence of Even Matchings

2.1 Necessary conditions

In this Section we present the necessary conditions for the existence of even match-

ings of type (a1, a2, . . . , ap). Let us define the set

S2 = {(a1, . . . , ap)| an even matching on the graph K(a1, . . . , ap) exists}.

We assume a1 ≤ a2 ≤ . . . ≤ ap and define n =
∑p

i=1 ai. The necessary conditions are as

follows:

1. p is odd,

2. 2ap + ap−1 ≤ n,

3. either ai are even for all 1 ≤ i ≤ p or ai are odd for all 1 ≤ i ≤ p and

p ≡ 1 (mod 4),

4. 2(p− 2)ap ≤ (p− 3)n.

Let us confirm the above conditions. We assume that (M1, . . . , Mp) is an even matching

of the type (a1, . . . , ap).

1. Each vertex (element of Ai) will be used in p−1 edges of
⋃p

i=1 Mi, and the number

of edges that vertex is in must be even, equivalently p−1
2 must be an integer.

Therefore p must be odd.
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2. For every i < p, n − ai − 2ap ≥ 0, since we must have enough vertices in each

K(a1, . . . , ap)\Ai to “match” the vertices of the largest part. Since a1 ≤ a2 ≤

. . . ≤ ap, it is sufficient that n− ap−1 − 2ap ≥ 0 ⇒ 2ap + ap−1 ≤ n.

3. Since each Mi is to be a perfect matching, (
∑p

i=1 ai) − ai must be even for all i;

hence all ai have same parity. The “evenness” condition requires
∑p

i=1
n−ai

2 = (p−1)n
2 be even. Therefore either all ai are even, or all ai are odd and

p−1
2 even, hence p ≡ 1 (mod 4).

4. None of the edges in Mp use vertices in Ap. There must be enough edges in

M1 ∪M2 ∪ . . .∪Mp−1 not intersecting Ap to satisfy the evenness condition. So,

n− ap

2
≤

p−1∑

i=1

n− ai − 2ap

2
=

(p− 2)n− (2p− 3)ap

2
,

hence

2(p− 2)ap ≤ (p− 3)n.

Notice that, by Property 4, p > 3.

2.2 Sufficiency of Conditions

The paper by Billington and Hoffman contains the following Lemmas regarding even

matchings.

Lemma 2.1 If M = (M1,M2, . . . ,Mp) is an even matching of type (a1, a2, . . . , ap) and

N = (N1, N2, . . . , Np) is an even matching of type (b1, b2, . . . , bp), on disjoint vertex sets,

then
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M ∪ N = (M1 ∪ N1,M2 ∪ N2, . . . , Mp ∪ Np) is an even matching of type (a1 + b1, a2 +

b2, . . . , ap + bp).

Lemma 2.2 If M = (M1,M2, . . . ,Mp) is an even matching of type (a1, a2, . . . , ap) and

N = (N1, N2, . . . , Nq) is an even matching of type (a1, b2, . . . , bq), then there exists an

even matching for K(a1, a2, . . . , ap, b2, b3, . . . , bq) of type (a1, a2, . . . , ap, b2, b3, . . . , bq).

Using the above Lemma 2.2 we can inductively construct even matchings of type (c1, c2, . . . , cr),

for any r ≥ 9, from matchings with five, (a1, a2, a3, a4, a5), and seven, (b1, b2, . . . , b7),

parts. This construction is limited as the converse of Lemma 2.2 is not true.

We use the following Lemma in various proofs throughout the paper.

Lemma 2.3 If the graph K(a1, . . . , ap) satisfies the four necessary conditions and ai is

even for all i, then there exists a perfect matching on K(a1, . . . , ap).

Proof: By property 2, ap < n
2 . Also, the total number of vertices is even. The rest of

the proof is trivial. ¤

The following Lemmas are useful when working with even matchings.

Lemma 2.4 If a1, . . . , ap are even and (a1, . . . , ap) is in S2, then (02n, a1, . . . , ap) is also

in S2 for any integer n.

Proof: Let (M1, . . . , Mp) be an even matching of type (a1, . . . , ap). Let N be any perfect

matching on K(a1, . . . , ap). By Lemma 2.3, N exists. We construct an even matching

of K(02n, a1, . . . , ap) as follows.

M ′
i = N for 1 ≤ i ≤ kn

M ′
j+kn = Mj for 1 ≤ j ≤ p

Clearly this is an even matching. ¤
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Lemma 2.5 If a1, . . . , ap, b2, . . . , bq are all even and (a1, . . . , ap), (0, b2, . . . , bq) are both

in S2, then (b2, . . . , bq, a1, . . . , ap) is in S2.

Proof: Let (M1, . . . , Mp) be an even matching of type (a1, . . . , ap) and (N1, . . . , Nq) be

an even matching of type (0, b2, . . . , bq). Let R be any perfect matching on K(a1, . . . , ap).

By Lemma 2.3, R exists. We construct an matching of K(b2, . . . , bq, a1, . . . , ap) as follows.

M ′
i = Ni+1 ∪R for 1 ≤ i ≤ q − 1

M ′
j+q−1 = N1 ∪Mj for 1 ≤ j ≤ p

Since p− 1 and q − 1 are both even this is an even matching. ¤

In the next Sections we will consider p = 5, p = 7 and p = 9. Then we will generalize

the argument for any odd p.

2.2.1 Any number of parts of the same size

Let us consider even matchings of the type (a5) and (a7), with a even in the

latter case. It is sufficient to consider (1, 1, 1, 1, 1), (2, 2, 2, 2, 2) and (2, 2, 2, 2, 2, 2, 2).

We can then use Lemma 2.1, with an appropriate number of copies of (2, 2, 2, 2, 2) or

(2, 2, 2, 2, 2, 2, 2), to construct even matchings of types (a5) and (a7). Also, using Lemma

2.2 we can construct even matchings of type (ap) for any odd p ≥ 5.

Through out the paper we let the parts of K(a1, . . . , ap) be

{1, 1′, 1′′, 1′′′, 14, . . . , 1a1−1}, . . . , {p, p′, p′′, p′′′, p4, . . . , pap−1}. We let {1′, p} be the edge

joining 1′ and p.

The following is an even matching of type (1, 1, 1, 1, 1):

M1: {{2, 3}, {4, 5}}

M2: {{1, 3}, {4, 5}}
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M3: {{1, 5}, {2, 4}}

M4: {{1, 5}, {2, 3}}

M5: {{1, 3}, {2, 4}}

Here is an even matching of type (2, 2, 2, 2, 2):

M1: {{2, 3}, {4, 5}, {2′, 3′}, {4′, 5′}}

M2: {{3, 4}, {5, 1′}, {3′, 4′}, {5′, 1}}

M3: {{1, 2}, {4, 5}, {1′, 2′}, {4′, 5′}}

M4: {{2, 3}, {5, 1′}, {2′, 3′}, {5′, 1}}

M5: {{3, 4}, {1′, 2′}, {3′, 4′}, {1, 2}}

Here is an even matching of type (2, 2, 2, 2, 2, 2, 2):

M1: {{2, 3}, {2′, 4}, {3′, 4′}, {5, 6}, {5′, 7}, {6′, 7′}}

M2: {{3, 4}, {3′, 5}, {4′, 5′}, {6, 7}, {1, 6′}, {1′, 7′}}

M3: {{4, 5}, {4′, 6}, {5′, 6′}, {1, 7}, {2, 7′}, {1′, 2′}}

M4: {{5, 6}, {5′, 7}, {6′, 7′}, {1, 2}, {1′, 3}, {2′, 3′}}

M5: {{6, 7}, {1, 6′}, {1′, 7′}, {2, 3}, {2′, 4}, {3′, 4′}}

M6: {{1, 7}, {2, 7′}, {1′, 2′}, {3, 4}, {3′, 5}, {4′, 5′}}

M7: {{1, 2}, {1′, 3}, {2′, 3′}, {4, 5}, {4′, 6}, {5′, 6′}}

2.2.2 Five parts of any size

In this Section we will give even matchings of type (a1, a2, a3, a4, a5). Since p = 5 ≡ 1

(mod 4) we can have all parts of even size or all parts of odd size. We will describe how

to use Lemma 2.1 with (2, 0, 0, 2, 2) to construct an even matching (a1, . . . , a5) from

(1, 1, 1, , ) or (0, 2, , , ).
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Here are the “building blocks” we will use.

(0, 0, 2, 2, 2)

M1: {{3, 5}, {3′, 4}, {4′, 5′}}

M2: {{3, 4′}, {4, 5}, {3′, 5′}}

M3: {{4, 5}, {4′, 5′}}

M4: {{3, 5}, {3′, 5′}}

M5: {{3, 4′}, {3′, 4}}

(0, 2, 2, 2, 2)

M1: {{2, 4′}, {3, 5′}, {4, 2′}, {5, 3′}}

M2: {{3, 4′}, {4, 5′}, {5, 3′}}

M3: {{2, 4′}, {4, 5′}, {5, 2′}}

M4: {{2, 3′}, {3, 5′}, {5, 2′}}

M5: {{2, 3′}, {3, 4′}, {4, 2′}}

To find an even matching of type (a1, . . . , a5) we use the following algorithm.

1. Check if the four necessary conditions are satisfied. If not, the matching does not

exist and we stop. If a1 = 0 and a2 = 0, 2 or a1 = a2 = a3 = 1 look at the listing

below to find the even matching. Otherwise continue below.

2. Subtract (2, 0, 0, 2, 2) to obtain (a1 − 2, a2, a3, a4 − 2, a5 − 2).

3. If necessary, rearrange the terms to ensure that the sequence is nondecreasing.

4. Repeat the above steps until you obtain (1, , , , ) or (0, , , , ).

9



5. Subtract (0, 2, 0, 2, 2) and rearrange the terms when necessary until you obtain

(1, 1, , , ) or (0, 2, , , ).

6. Subtract (0, 0, 2, 2, 2) and rearrange the terms when necessary until you obtain

(1, 1, 1, , ).

7. Look up the obtained matching in the list provided below.

Let us consider the four necessary conditions during the “subtracting process.”

1. p = 5 is not affected.

2. If (a1, a2, a3, a4, a5) satisfies 2a5+a4 ≤ a1+. . .+a5, then (a1−2, a2, a3, a4−2, a5−2)

satisfies 2(a5 − 2) + (a4 − 2) ≤ (a1 − 2) + a2 + a3 + (a4 − 2) + (a5 − 2). We are,

however, rearranging the terms to ensure a nondecreasing sequence. Let us con-

sider the following cases:

Case 1: If after such rearranging a5 − 2 is not the largest, but the second

largest part, then a3 = a5. So we started with (a1, a2, a5, a5, a5) and now have

(a1 − 2, a2, a5 − 2, a5 − 2, a5). By Properties 2 and 4, (a1 − 2, a2, a5 − 2, a5 − 2, a5)

is in S2 as long as 6 ≤ a1 + a2. Let us consider the cases when a1 + a2 < 6.

We could have (1, 1, a5, a5, a5), (1, 3, a5, a5, a5), (0, 0, a5, a5, a5), (0, 2, a5, a5, a5),

(0, 4, a5, a5, a5) and (2, 2, a5, a5, a5). Each one of those is listed below.

Case 2: If after rearranging a5 − 2 is not the largest or second largest part, then

a2 = . . . = a5. So we started with (a1, a5, a5, a5, a5) and now have (a1 − 2, a5 −

2, a5 − 2, a5, a5). By Properties 2 and 4, (a1 − 2, a5 − 2, a5 − 2, a5, a5) is in S2 as

long as 6 ≤ a1 + a5. Let us consider the cases when a1 + a5 < 6. We could have

(1, 1, 1, 1, 1), (1, 3, 3, 3, 3), (0, 2, 2, 2, 2), (0, 4, 4, 4, 4) and (2, 2, 2, 2, 2). Each one of

10



those is included in Case 1.

Case 3: If after rearranging a5 − 2 is the largest, but a4 − 2 is not the second

largest part, then a3 = a4. So we started with (a1, a2, a4, a4, a5) and now have

(a1 − 2, a2, a4 − 2, a4, a5 − 2). By Property 2, (a1 − 2, a2, a4 − 2, a4, a5 − 2) is in S2

as long as a5 6= a1 + a2 + a4. Let us consider the case when a5 = a1 + a2 + a4, then

by Property 4, a4 = a5 and we had (a1, a2, a5, a5, a5). But since by assumption

a5 = a1 + a2 + a4 = a1 + a2 + a5, we have 0 = a1 + a2, hence we started with

(0, 0, a5, a5, a5) which is discussed below and shown to be in S2.

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, a2, a3, a4, a5) satisfies 3a5 ≤ a1 + a2 + a3 + a4 + a5, then (a1 − 2, a2, a3, a4 −

2, a5−2) satisfies 3(a5−2) ≤ (a1−2)+a2 +a3 +(a4−2)+(a5−2). The problems

that arise with rearranging the terms were discussed under Property 2.

Therefore, each time we subtract we obtain a member of S2. When we reach (1, 1, 1, , )

or (0, 2, , , ) all four conditions are satisfied. Hence, an even matching of such a type

exists. Following is a list of all even matchings of type (1, 1, 1, , ).

(1, 1, 1, 1, 1) was given in Section 2.2.1

(1, 1, 1, 3, 3):

M1: {{2, 5′}, {3, 4′}, {4′′, 5′′}, {4, 5}}

M2: {{1, 4}, {3, 5}, {4′, 5′}, {4′′, 5′′}}

M3: {{1, 5′′}, {2, 4′′}, {4, 5}, {4′, 5′}}

M4: {{1, 5′′}, {2, 5′}, {3, 5}}

M5: {{1, 4}, {2, 4′′}, {3, 4′}}

11



(1, 1, a5, a5, a5)=(1, 1, 1, 1, 1)+a5−1
2 copies of (0, 0, 2, 2, 2)

(1, 3, a5, a5, a5)=(1, 1, 1, 1, 1)+(0, 2, 2, 2, 2)+a5−3
2 copies of (0, 0, 2, 2, 2)

Following are even matchings of types (0, 2, , , ).

(0, 0, 2, 2, 2) given in Section 2.2.2

By Property 2, an even matching of type (0, 0, a3, a4, a5) must satisfy a5 ≤ a3. Since

a3 ≤ a5 by definition, we must have types (0, 0, a5, a5, a5).

(0, 0, a5, a5, a5) from a5/2 copies of (0, 0, 2, 2, 2)

(0, 2, 2, 2, 2) given in Section 2.2.2

By Properties 2 and 4 the possible elements of S2 with a1 = 0 and a2 = 2 are of the

form (0, 2, a5 − 2, a5, a5) or (0, 2, a5, a5, a5).

(0, 2, a5 − 2, a5, a5) = (0, 2, 0, 2, 2) + a5−2
2 copies of (0, 0, 2, 2, 2)

(0, 2, a5, a5, a5)= (0, 2, 2, 2, 2) + a5−2
2 copies of (0, 0, 2, 2, 2)

(0, 4, a5, a5, a5)= 2 copies of (0, 2, 2, 2, 2) + a5−4
2 copies of (0, 0, 2, 2, 2)

(2, 2, a5, a5, a5)= (2, 2, 2, 2, 2) + a5−2
2 copies of (0, 0, 2, 2, 2)

We now have even matchings of type (a1, a2, a3, a4, a5) as long as (a1, a2, a3, a4, a5)

satisfies the necessary conditions.

2.2.3 Seven parts of any size

Let us now consider even matchings of type (a1, . . . , a7) where the sequence is non-

decreasing, i.e. a1 ≤ . . . ≤ a7. Since p = 7 6≡ 1 (mod 4), all parts must be of even size.

Similar to the case of five parts, to find an even matching of type (a1, . . . , a7) we use the

following algorithm.
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1. Check if the four necessary conditions are satisfied. If not, the matching does not

exist. If a1 = a2 = a3 = 0 and a4 = 0, 2 or K = (0, 0, 2, 2, 2, 2, 2) look up the

matching in list provided. Otherwise continue below.

2. For 0 ≤ i ≤ 3 repeat the following steps.

3. If 5a7 = 2n skip down to the Special Case 1 section.

If a5 = a6 and a7 = a1 + . . . + a5 skip down to Special Case 2 section. Otherwise

continue below.

4. Subtract (0i, 2, 04−i, 2, 2).

5. If necessary, rearrange the terms to ensure that the sequence is nondecreasing.

6. Repeat steps 3-5 until you obtain (0, 0, 0, 2, , , ).

7. The even matchings of type (0, 0, 0, 2, , , ) are listed below.

Let us consider the four necessary conditions during steps 3-5 of the algorithm.

1. p = 7 is not affected.

2. If (a1, . . . , a7) satisfies 2a7+a6 ≤ a1+. . .+a7, then (a1−2, a2, a3, a4, a5, a6−2, a7−2)

satisfies 2(a7 − 2) + (a6 − 2) ≤ (a1 − 2) + a2 + a3 + a4 + a5 + (a6 − 2) + (a7 − 2).

We are, however, rearranging the terms. Let us consider the following cases:

Case 1: If after such rearranging a7 − 2 is not the largest, but the second largest

part, then a5 = a7. So we started with (a1, a2, a3, a4, a7, a7, a7) and now have (a1−

2, a2, a3, a4, a7−2, a7−2, a7). By Properties 2 and 4, (a1−2, a2, a3, a4, a7−2, a7−

2, a7) is in S2 as long as 4 ≤ a1+a2+a3+a4 and 12−a7 ≤ 2a1+2a2+2a3+2a4. Let
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us consider the case when a1 +a2 +a3 +a4 < 4. We could have (0, 0, 0, 0, a7, a7, a7)

or (0, 0, 0, 2, a7, a7, a7). Each one of those is discussed and shown to be an element

of S2 below. Let us consider the case when 12−a7 > 2a1+2a2+2a3+2a4. We could

have (0, 0, 0, 0, 2, 2, 2), (0, 0, 0, 0, 4, 4, 4), . . . , (0, 0, 0, 0, 10, 10, 10), (0, 0, 0, 2, 2, 2, 2),

(0, 0, 0, 2, 4, 4, 4), (0, 0, 0, 2, 6, 6, 6) or (0, 0, 2, 2, 2, 2, 2). Each one of those is shown

to be in S2.

Case 2: If after rearranging a7 − 2 is not the largest or second largest part,

then a4 = . . . = a7. So we started with (a1, a2, a3, a7, a7, a7, a7) and now have

(a1 − 2, a2, a3, a7 − 2, a7 − 2, a7, a7). By Properties 2 and 4, (a1 − 2, a2, a3, a7 −

2, a7−2, a7, a7) is in S2 as long as 6−a7 ≤ a1+a2+a3 and 12−3a7 ≤ 2a1+2a2+2a3.

Let us consider the cases when 6−a7 > a1 +a2 +a3 or 12− 3a7 > 2a1 +2a2 +2a3.

We could have (0, 0, 0, 2, 2, 2, 2), (0, 0, 0, 4, 4, 4, 4) or (0, 0, 2, 2, 2, 2, 2). Each one of

those is in S2.

Case 3: If after rearranging a7−2 is the largest, but a6−2 is not the second largest

part, then a5 = a6. So we started with (a1, a2, a3, a4, a6, a6, a7) and now have

(a1−2, a2, a3, a4, a6−2, a6, a7−2). By Property 2, (a1−2, a2, a3, a4, a6−2, a6, a7−2)

is in S2 as long as a7 6= a1 + . . .+a5. The case when a7 = a1 + . . .+a5 and a5 = a6

is discussed below as Special Case 2.

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, . . . , a7) satisfies 5a7 < 2(a1+. . .+a7), then (a1−2, a2, a3, a4, a5, a6−2, a7−2)

satisfies 5(a7−2) ≤ 2((a7−2)+a2+a3+a4+a5+(a6−2)+(a7−2)). If 5a7 = 2n we
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refer to Special Case 1. Problems arising from rearranging the terms are discussed

under item 2 above.

Therefore, each time we repeat steps 2-5 we obtain an element of S2 and if we reach

(0, 0, 0, 2, , , ) all four conditions are satisfied. Notice that the above holds for the

remaining steps of the algorithm. So it is sufficient to give even matchings of type

(0, 0, 0, 2, , , ) and consider the special cases mentioned above.

Let us consider the Special Case 1.

We define the set SP1 as the set of all matching types satisfying the four necessary

conditions and 3a7 = 2(a1 + . . . + a6). We construct an even matching of type K =

(a1, . . . , a7) ∈ SP1 by induction. We start by subtracting (0, 0, 0, 2, 2, 2, 4) to obtain

K ′ = (a1, a2, a3, a4 − 2, a5 − 2, a6 − 2, a7 − 4). As long as no rearranging is necessary K ′

is in SP1. If rearranging is necessary, we started with K = (a1, a2, a6, a6, a6, a6, a7) and

now have K ′′ = (a1, a2, a6 − 2, a6 − 2, a6 − 2, a6, a7 − 4). This is always in SP1. This

concludes the inductive argument, since each time we repeat this process we obtain a

smaller element of SP1. Thus Special Case 1 is solved.

Now let us consider Special Case 2.

If a5 = a6 and a7 = a1 + . . . + a5 we have types of the form (a1, a2, a3, a4, a7 − (a1 +

. . . + a4), a7 − (a1 + . . . + a4), a7). We will construct an even matching of such type

as follows: a1/2 copies of (2, 0, 0, 0, 2, 2, 4), a2/2 copies of (0, 2, 0, 0, 2, 2, 4), a3/2 copies

of (0, 0, 2, 0, 2, 2, 4), a4/2 copies of (0, 0, 0, 2, 2, 2, 4) and (a7 − 2(a1 + . . . + a4))/2 copies

of (0, 0, 0, 0, 2, 2, 2). Notice that by Property 4, a7 ≥ 2(a1 + . . . + a4). This concludes

Special Case 2.
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The following are even matchings of type (0, 0, 0, 2, , , ).

(0, 0, 0, 0, 2, 2, 2):

M1: {{5, 7}, {6, 7′}, {5′, 6′}}

M2: {{5, 6′}, {6, 7′}, {5′, 7}}

M3: {{5, 6}, {6′, 7′}, {5′, 7}}

M4: {{5, 6′}, {6, 7}, {5′, 7′}}

M5: {{6, 7}, {6′, 7′}}

M6: {{5, 7}, {5′, 7′}}

M7: {{5, 6}, {5′, 6′}}

By Property 2, an even matching of type (0, 0, 0, 0, a5, a6, a7) exists if a7 ≤ a5. Hence we

must have (0, 0, 0, 0, a7, a7, a7).

(0, 0, 0, 0, a7, a7, a7) from a7/2 copies of (0, 0, 0, 0, 2, 2, 2)

(0, 0, 0, 2, 2, 2, 2):

M1: {{4, 5}, {6, 7}, {4′, 5′}, {6′, 7′}}

M2: {{4, 5}, {6, 7}, {4′, 7′}, {5′, 6′}}

M3: {{4, 5}, {6, 7}, {4′, 7′}, {5′, 6′}}

M4: {{5, 7′}, {5′, 6′}, {6, 7}}

M5: {{4, 7}, {4′, 6}, {6′, 7′}}

M6: {{4, 7}, {4′, 5′}, {5, 7′}}

M7: {{4, 5}, {4′, 6}, {5′, 6′}}

(0, 0, 0, 2, 2, 2, 4):

M1: {{4, 5}, {6, 7′}, {6′, 7}, {4′, 7′′}, {5′, 7′′′}}

M2: {{4, 7′′}, {4′, 6}, {5, 7′′′}, {5′, 7′}, {6′, 7}}
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M3: {{4, 7}, {4′, 7′′}, {5, 7′′′}, {5′, 6′}, {6, 7′}}

M4: {{5, 7′′}, {5′, 7′′′}, {6, 7}, {6′, 7′}}

M5: {{4, 7′′}, {4′, 7′′′}, {6, 7}, {6′, 7′}}

M6: {{4, 7}, {4′, 7′′′}, {5, 7′′}, {5′, 7′}}

M7: {{4, 5}, {4′, 6}, {5′, 6′}}

In general, by Property 2, an even matching of type (0, 0, 0, 2, a5, a6, a7) exists if a5 ≥

a7 − 2.

(0, 0, 0, 2, a7, a7, a7) from (0, 0, 0, 2, 2, 2, 2) and (a7 − 2)/2 copies of (0, 0, 0, 0, 2, 2, 2)

(0, 0, 0, 2, a7 − 2, a7, a7) from (0, 0, 0, 2, 0, 2, 2) and (a7 − 2)/2 copies of (0, 0, 0, 0, 2, 2, 2)

Since a7 ≥ 2, a7 − 2 ≥ 0.

(0, 0, 0, 2, a7−2, a7−2, a7) from (0, 0, 0, 2, 2, 2, 4) and (a7−4)/2 copies of (0, 0, 0, 0, 2, 2, 2)

Since a7 − 2 ≥ 2, a7 − 4 ≥ 0.

(0, 0, 0, 4, 4, 4, 4)= 2 copies of (0, 0, 0, 2, 2, 2, 2)

Hence we have even matchings of type (a1, . . . , a7).

2.2.4 Nine parts of any size

Notice that when p = 9 condition 4 becomes 7a9 ≤ 3n which is equivalent to

4a9 ≤ 3(a1 + . . . + a8). Condition 2 is a9 ≤ a1 + . . . + a7. With the use of Lemma

2.4 finding an even matching of type (0, 0, a3, . . . , a9) simply requires the even matching

(a3, . . . , a9), which we constructed in the previous Section.

Let us now consider even matchings of type (a1, a2, a3, a4, a5, a6, a7, a8, a9) where

a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6 ≤ a7 ≤ a8 ≤ a9. Since p = 9 ≡ 1(mod 4), we can have all
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parts of odd or all parts of even size. Similar to the case of five or seven parts, to find

an even matching of type (a1, a2, a3, a4, a5, a6, a7, a8, a9) we use the following algorithm.

1. Check if the four necessary conditions are satisfied. If not, the matching does not

exist. If a1 = a2 = a3 = a4 = a5 = 0, a6 = 2 or a1 = a2 = a3 = a4 = a5 =

a6 = a7 = 1 or K = (0, 0, 0, 0, 2, 2, 2, 2, 2) or K = (0, 0, 0, 0, 2, 2, 2, 2, 6) look up the

matching in list provided. Otherwise continue below.

2. For 0 ≤ i ≤ 5 repeat the following steps.

3. If 7a9 = 3n skip down to the Special Case 1 section.

If 7a9 = 3n− 2 skip down to the Special Case 2 section.

If a7 = a8 and a9 = a1 + a2 + a3 + a4 + a5 + a6 + a7 skip down to Special Case 3

section. Otherwise continue below.

4. Subtract (0i, 2, 06−i, 2, 2).

5. If necessary, rearrange the terms to ensure that the parts are in a nondecreasing

sequence.

6. Repeat steps 3-5 until you obtain (0, 0, 0, 0, 0, 2, , , ) or (1, 1, 1, 1, 1, 1, 1, , ). If at

any point K = (0, 0, 0, 0, 2, 2, 2, 2, 2) or K = (0, 0, 0, 0, 2, 2, 2, 2, 6) look it up.

7. If 7a9 = 3n skip down to the Special Case 1 section.

If 7a9 = 3n− 2 skip down to the Special Case 2 section.

If a7 = a8 and a9 = a1 + a2 + a3 + a4 + a5 + a6 + a7 skip down to Special Case 3

section. Otherwise continue below.

8. Subtract (06, 2, 2, 2).
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9. If necessary, rearrange the terms to ensure that the parts are in a nondecreasing

sequence.

10. Repeat until you obtain (1, 1, 1, 1, 1, 1, 1, , ).

11. The even matchings of type (0, 0, 0, 0, 0, 2, , , ) and (1, 1, 1, 1, 1, 1, 1, , ) are listed

below.

Let us consider the four necessary conditions during steps 2-5 of the algorithm.

1. p = 9 is not affected.

2. If (a1, a2, a3, a4, a5, a6, a7, a8, a9) satisfies a9 ≤ a1 +a2 +a3 +a4 +a5 +a6 +a7, then

(a1− 2, a2, a3, a4, a5, a6, a7, a8− 2, a9− 2) satisfies a9− 2 ≤ a1− 2 + a2 + a3 + a4 +

a5 + a6 + a7. We are, however, rearranging the terms to ensure a nondecreasing

sequence. Let us consider the following cases:

Case 1: If after such rearranging a9 − 2 is not the largest, but the second

largest part, then a7 = a9. So we started with (a1, a2, a3, a4, a5, a6, a9, a9, a9)

and now have (a1 − 2, a2, a3, a4, a5, a6, a9 − 2, a9 − 2, a9). By Properties 2 and

4 (a1 − 2, a2, a3, a4, a5, a6, a9 − 2, a9 − 2, a9) is in S2 as long as 4 ≤ a1 + . . . + a6

and 18 − 2a9 ≤ 3(a1 + . . . + a6). Let us consider the cases when 4 > a1 + . . . +

a6 or 18 − 2a9 > 3(a1 + . . . + a6). We could have (0, 0, 0, 0, 0, 0, a9, a9, a9) or

(0, 0, 0, 0, 0, 2, a9, a9, a9). Each one of those is discussed and shown to be in S2.

Case 2: If after rearranging a9 − 2 is not the largest or second largest part, then

a6 = a9. So we started with (a1, a2, a3, a4, a5, a9, a9, a9, a9) and now have (a1 −

2, a2, a3, a4, a5, a9 − 2, a9 − 2, a9, a9). By Properties 2 and 4 (a1, a2, a3, a4, a5, a9 −

2, a9−2, a9, a9) is in S2 as long as 6−a9 ≤ a1+. . .+a5 and 18−5a9 ≤ 3(a1+. . .+a5).
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Let us consider the cases when 6−a9 > a1 + . . .+a5 or 18−5a9 > 3(a1 + . . .+a5).

We could have (0, 0, 0, 0, 0, 2, 2, 2, 2), (0, 0, 0, 0, 0, 4, 4, 4, 4) or (0, 0, 0, 0, 2, 2, 2, 2, 2).

Each one of those is in S2.

Case 3: If after rearranging a9 − 2 is the largest, but a8 − 2 is not the sec-

ond largest part, then a7 = a8. So we started with (a1, a2, a3, a4, a5, a6, a8, a8, a9)

and now have (a1 − 2, a2, a3, a4, a5, a6, a8 − 2, a8, a9 − 2). By Property 2, (a1 −

2, a2, a3, a4, a5, a6, a8− 2, a8, a9− 2) is in S2 as long as a9 6= a1 + . . .+ a7. The case

when a9 = a1 + . . . + a7 and a7 = a8 is discussed below as Special Case 3.

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, a2, a3, a4, a5, a6, a7, a8, a9) satisfies 4a9 < 3(a1 + . . . + a8) − 2, then (a1 −

2, a2, a3, a4, a5, a6, a7, a8 − 2, a9 − 2) satisfies 4(a9 − 2) ≤ 3(a1 + . . . + a8 − 4). If

7a9 = 3n we refer to Special Case 1. If 7a9 = 3n − 2 we refer to Special Case 2.

Problems arising from rearranging the terms are discussed under Property 2.

Therefore, each time we repeat steps 2-5 we obtain an element of S2. Notice that the

above holds for the remaining steps of the algorithm. So it is sufficient to give even

matchings of type (0, 0, 0, 0, 0, 2, , , ) and (1, 1, 1, 1, 1, 1, 1, , ) and consider the special

cases mentioned above.

Let us consider the Special Case 1.

We need to find even matchings for (a1, . . . , a9) satisfying the four necessary conditions

and 4a9 = 3(a1 + . . . + a8). Let us refer to these as matching type SP1 ⊆ S2. Say we

need K = (a1, a2, . . . , a8,
3(a1+...+a8)

4 ) ∈ SP1. We will build it by induction.
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We consider parts of odd size first. We start by subtracting P = (16, 3, 3, 9) to obtain

K ′ = (a1− 1, . . . , a6− 1, a7− 3, a8− 3, 3(a1+...+a8)
4 − 9). Since 3(a1+...+a8)

4 ≤ a1 + . . . + a7

in K we have 3(a1+...+a8)
4 − 9 ≤ a1 + . . . + a7− 9 in K ′. Also, 4(3(a1+...+a8)

4 − 9) = 3(a1 +

. . .+ a8− 12). Therefore K ′ is in S2. However, if rearranging is necessary and we obtain

K ′′ = (a1−1, . . . , a5−1, a7−3, a8−3, a6−1, 3(a1+...+a8)
4 −9) instead of K ′, we must have

a6−1 = a8−3+2 or a6 = a8. Hence we started with (a1, . . . , a5, a8, a8, a8,
3(a1+...+a8)

4 ). In

this case instead of subtracting P = (16, 3, 3, 9), we subtract Q = (15, 5, 5, 5, 15) to obtain

K ′ = (a1−1, . . . , a5−1, a8−5, a8−5, a8−5, 3(a1+...+a8)
4 −15). Notice that 4(3(a1+...+a8)

4 −

15) = 3(a1 + . . .+a8−20) and 3(a1+...+a8)
4 −15 ≤ a1 + . . .+a7−15 in K ′ and so K ′ ∈ S2.

However, if rearranging is necessary and results in K ′′ = (a1 − 1, . . . , a4 − 1, a8 − 5, a8 −

5, a8− 5, a5− 1, 3(a1+...+a8)
4 − 15) we must have a5− 1 = a8− 5+ 2 or a5 = a8− 2. So we

started with K = (a1, . . . , a4, a8−2, a8, a8, a8,
3(a1+...+a8)

4 ). Notice that by Property 2, we

have 3(a1+...+a4+4a8−2)
4 ≤ a1 + . . .+a4 +3a8−2, which implies 2 ≤ a1 + . . .+a4. However,

we know that since ai ≥ 1 for all i, 4 ≤ a1 + . . . + a4. Therefore, 3(a1+...+a4+4a8−2)
4 ≤

a1 + . . . + a4 + 3a8 − 4. In this case we go back to subtracting P = (16, 3, 3, 9) to obtain

K ′ = (a1 − 1, . . . , a4 − 1, a8 − 3, a8 − 1, a8 − 3, a8 − 3, 3(a1+...+a8)
4 − 9) which would be

rearranged to K ′′ = (a1−1, . . . , a4−1, a8−3, a8−3, a8−3, a8−1, 3(a1+...+a8)
4 −9). Notice

that 3(a1+...+a8)
4 −9 ≤ a1 + . . .+a4 +3a8−13 and 4(3(a1+...+a8)

4 −9) = 3(a1 + . . .+a8−12)

and K ′′ ∈ S2. Because a4 ≤ a8 it is not possible for the rearranging to result in

(a1 − 1, a2 − 1, a3 − 2, a8 − 3, a8 − 3, a8 − 3, a8 − 1, a4 − 1, 3(a1+...+a8)
4 − 9). One more

rearranging issue needs to be addressed. Is it possible for a8 − 3 ≥ 3(a1+...+a8)
4 − 9 + 2

or a8 − 5 ≥ 3(a1+...+a8)
4 − 15 + 2? It is sufficient to show that a8 < 3(a1+...+a8)

4 − 8. If

a8 = 3(a1+...+a8)
4 − 8 we have K = (a1, . . . , a7, 3(a1 + . . . + a7)− 32, 3(a1 + . . . + a7)− 24)
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and by Property 2, this implies 3(a1 + . . .+a7)−24 ≤ a1 + . . .+a7. So a1 + . . .+a7 ≤ 12,

and this is only possible if K = (16, 3, 3, 9) which is given below. This shows that when

we complete this step, we obtain an element of SP1.

For parts of even size we start by subtracting (04, 24, 6) to obtain K ′ = (a1, . . . , a4, a5−

2, . . . , a8 − 2, 3(a1+...+a8)
4 − 6). As long as no rearranging is necessary K ′ is in SP1. If

rearranging is necessary, we started with K = (a1, a2, a3, a8, . . . , a8,
3(a1+...+a8)

4 ) and now

have K ′′ = (a1, a2, a3, a8 − 2, . . . , a8 − 2, a8,
3(a1+...+a8)

4 − 6). This is in SP1 as long as

−16 ≤ a1 + a2 + a3 + a8 which is always true for elements of S2.

This concludes the induction argument, since each time we perform the above we

obtain a smaller element of SP1. This concludes Special Case 1.

Let us consider the Special Case 2.

We need to find even matchings for (a1, . . . , a9) satisfying the four necessary conditions

and 4a9 = 3(a1 + . . . + a8) − 2. Let us refer to these as matching type SP2 ⊆ S2. Say

we need K = (a1, a2, . . . , a8,
3(a1+...+a8)−2

4 ) ∈ SP2. We will build it by reducing the

matching to an element of SP1 which is considered above.

We start with parts of odd size. First, subtract P = (17, 3, 7) to obtain K ′ =

(a1−1, . . . , a6−1, a7−1, a8−3, 3(a1+...+a8)−2
4 −7). Since 3(a1+...+a8)−2

4 ≤ a1 + . . .+a7 in

K we have 3(a1+...+a8)−2
4 −7 ≤ a1 + . . .+a7−7 in K ′. Also, 4(3(a1+...+a8)−2

4 −7) = 3(a1 +

. . .+a8−10) which takes us back to Special Case 1. However, if rearranging is necessary

and we obtain K ′′ = (a1 − 1, a2 − 2, . . . , a5 − 1, a6 − 1, a8 − 3, a7 − 1, 3(a1+...+a8)−2
4 − 7)

instead of K ′, we must have a7 − 1 = a8 − 3 + 1 or a7 = a8. Hence we started with

(a1, . . . , a5, a6, a8, a8,
3(a1+...+a8)−2

4 ). In this case instead of subtracting P = (17, 3, 7),

we subtract Q = (15, 3, 5, 5, 13) to obtain K ′ = (a1 − 1, . . . , a5 − 1, a6 − 3, a8 − 5, a8 −
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5, 3(a1+...+a8)−2
4 − 13). Notice that 4(3(a1+...+a8)−2

4 − 13) = 3(a1 + . . . + a8 − 18) and

3(a1+...+a8)−2
4 − 13 ≤ a1 + . . . + a7 − 13 in K ′ taking us to Special Case 1. However, if

rearranging is necessary and results in K ′′ = (a1−1, . . . , a4−1, a5−1, a8−5, a8−5, a6−

3, 3(a1+...+a8)−2
4 − 13) we must have a6 − 3 = a8 − 5 + 2 or a6 = a8. So we started with

K = (a1, . . . , a4, a5, a8, a8, a8,
3(a1+...+a8)−2

4 ). In this case we subtract M = (15, 7, 7, 7, 19)

instead of P or Q. This gives K ′ = (a1−1, . . . , a5−1, a8−7, a8−7, a8−7, 3(a1+...+a8)−2
4 −

19) which is back in Special Case 1. If rearranging is necessary, we have a5 = a8 − 4

and K ′′ = (a1 − 1, . . . , a8 − 7, a8 − 7, a8 − 7, a8 − 5, 3(a1+...+a8)−2
4 − 19) which came from

K = (a1, . . . , a4, a8 − 4, a8, a8, a8,
3(a1+...+a8)−2

4 ). Notice that by Property 2, we have

3(a1+...+a4+4a8−4)
4 ≤ a1 + . . . + a4 + 3a8 − 4, which implies 2 ≤ a1 + . . . + a4. However,

we know that since ai ≥ 1 for all i, 4 ≤ a1 + . . . + a4. Therefore, 3(a1+...+a4+4a8−4)
4 ≤

a1+. . .+a4+3a8−6. In this case we go back to subtracting P = (17, 3, 7) to obtain K ′ =

(a1−1, . . . , a4−1, a8−5, a8−1, a8−1, a8−3, 3(a1+...+a8)−2
4 −7) which would be rearranged

to K ′′ = (a1 − 1, . . . , a4 − 1, a8 − 5, a8 − 3, a8 − 1, a8 − 1, 3(a1+...+a8)−2
4 − 7). Notice that

3(a1+...+a8)
4 −7 ≤ a1+. . .+a4+3a8−11 and 4(3(a1+...+a8)−2

4 −7) = 3(a1+. . .+a8−10) and

K ′′ ∈ S2 and under Special Case 1. Because a4 ≤ a8 it is not possible for the rearranging

to result in (a1 − 1, a2 − 1, a3 − 2, a8 − 5, a8 − 3, a8 − 1, a8 − 1, a4 − 1, 3(a1+...+a8)−2
4 −

7). One more rearranging issue needs to be addressed. Is it possible for a8 − 3 ≥
3(a1+...+a8)−2

4 − 7 + 2, a8− 5 ≥ 3(a1+...+a8)−2
4 − 13 + 2 or a8− 7 ≥ 3(a1+...+a8)−2

4 − 17 + 2?

It is sufficient to show that a8 < 3(a1+...+a8)−2
4 − 8. If a8 = 3(a1+...+a8)−2

4 − 8 we have

K = (a1, . . . , a7, 3(a1+ . . .+a7)−34, 3(a1+ . . .+a7)−26) and by Property 2, this implies

3(a1 + . . . + a7) − 26 ≤ a1 + . . . + a7. So a1 + . . . + a7 ≤ 13, and this is only possible

if K = (17, 3, 7) which is given below or K = (14, 33, 5, 13) = (17, 3, 7) + (04, 24, 6) or
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K = (13, 35, 13) = (17, 3, 7) + (03, 24, 0, 6). This shows that when we complete this step,

we obtain an element of SP1. And we continue with the second step in Special Case 1.

For parts of even size we start by subtracting (05, 23, 4) to obtain K ′ = (a1, . . . , a5, a6−

2, a7 − 2, a8 − 2, 3(a1+...+a8)−2
4 − 4). As long as no rearranging is necessary K ′ is in SP1.

If rearranging is necessary, we started with K = (a1, a2, a3, a4, a8, . . . , a8,
3(a1+...+a8)−2

4 )

and now have K ′′ = (a1, a2, a3, a4, a8 − 2, a8 − 2, a8 − 2, a8,
3(a1+...+a8)−2

4 − 4). This K ′′

is in SP1 as long as −12 ≤ a1 + . . . + a4 which is always true. This concludes Special

Case 2.

Now let us consider Special Case 3.

If a7 = a8 and a9 = a1 + . . .+a7 we have types of the form (a1, a2, a3, a4, a5, a6, a9−(a1 +

. . . + a6), a9 − (a1 + . . . + a6), a9). We will construct an even matching of such type as

follows: a1/2 copies of (2, 0, 0, 0, 0, 0, 2, 2, 4), a2/2 copies of (0, 2, 0, 0, 0, 0, 2, 2, 4), . . . , a6/2

copies of (0, 0, 0, 0, 0, 2, 2, 2, 4) and a9− 2(a1 + . . . + a6)/2 copies of (0, 0, 0, 0, 0, 0, 2, 2, 2).

Notice that by Property 4 a9 ≥ 2(a1 + . . . + a6). This concludes Special Case 3.

The following are even matchings of type (0, 0, 0, 0, 0, 2, , , ) and (1, 1, 1, 1, 1, 1, 1, , ).

(0, 0, 0, 0, 0, 0, 2, 2, 2): from Lemma 2.4

By Property 2, an even matching of type (0, 0, 0, 0, 0, 0, a7, a8, a9) exists if a9 ≤ a7. Hence

we must have (0, 0, 0, 0, 0, 0, a9, a9, a9).

(0, 0, 0, 0, 0, 0, a9, a9, a9) from a9/2 copies of (0, 0, 0, 0, 0, 0, 2, 2, 2)

(0, 0, 0, 0, 0, 2, 2, 2, 2): from Lemma 2.4

(0, 0, 0, 0, 0, 2, 2, 2, 4): from Lemma 2.4

(0, 0, 0, 0, 2, 2, 2, 2, 2): from Lemma 2.4

By Property 2, an even matching of type (0, 0, 0, 0, 0, 2, a7, a8, a9) exists if a7 ≥ a9 − 2.
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(0, 0, 0, 0, 0, 2, a9, a9, a9) from (0, 0, 0, 0, 0, 2, 2, 2, 2) and

(a9 − 2)/2 copies of (0, 0, 0, 0, 0, 0, 2, 2, 2)

(0, 0, 0, 0, 0, 2, a9 − 2, a9, a9) from (0, 0, 0, 0, 0, 2, 0, 2, 2) and

(a9 − 2)/2 copies of (0, 0, 0, 0, 0, 0, 2, 2, 2)

Since a9 ≥ 2, a9 − 2 ≥ 0.

(0, 0, 0, 0, 0, 2, a9 − 2, a9 − 2, a9) from (0, 0, 0, 0, 0, 2, 2, 2, 4) and

(a9 − 4)/2 copies of (0, 0, 0, 0, 0, 0, 2, 2, 2)

Since a9 − 2 ≥ 2, a9 − 4 ≥ 0.

(0, 0, 0, 0, 2, 2, 2, 2, 6):

M1: {{5, 9}, {5′, 6′}, {6, 9′}, {7, 9′′′}, {7′, 9′′}, {8, 94}, {8′, 95}}

M2: {{5, 94}, {5′, 95}, {6, 9′′′}, {6′, 9′′}, {7, 9′}, {7′, 8′}, {8, 9}}

M3: {{5, 9}, {5′, 9′′′}, {6, 9′}, {6′, 9′′}, {7, 8}, {7′, 95}, {8′, 94}}

M4: {{5, 6}, {5′, 9′′′}, {6′, 9′′}, {7, 9′}, {7′, 95}, {8, 9}, {8′, 94}}

M5: {{6, 94}, {6′, 95}, {7, 9′′}, {7′, 9′′′}, {8, 9}, {8′, 9′}}

M6: {{5, 9}, {5′, 9′}, {7, 9′′′}, {7′, 9′′}, {8, 94}, {8′, 95}}

M7: {{5, 94}, {5′, 95}, {6, 9′′′}, {6′, 9′′}, {8, 9}, {8′, 9′}}

M8: {{5, 9}, {5′, 9′}, {6, 94}, {6′, 95}, {7, 9′′}, {7′, 9′′′}}

M9: {{5, 6}, {5′, 6′}, {7, 8}, {7′, 8′}}

(0, 0, 0, 0, 0, 4, 4, 4, 4)= 2 copies of (0, 0, 0, 0, 0, 2, 2, 2, 2)

(1, 1, 1, 1, 1, 1, 1, 1, 1): given in Section 2.2.1

(1, 1, 1, 1, 1, 1, 1, 1, 3):

M1: {{2, 9′′}, {3, 9′}, {4, 5}, {6, 8}, {7, 9}}

M2: {{1, 9′′}, {3, 7}, {4, 5}, {6, 9′}, {8, 9}}
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M3: {{1, 9′′}, {2, 8}, {4, 6}, {5, 9}, {7, 9′}}

M4: {{1, 6}, {2, 9′′}, {3, 9′}, {5, 9}, {7, 8}}

M5: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 6}, {7, 8}}

M6: {{1, 2}, {3, 4}, {5, 9′′}, {7, 9′}, {8, 9}}

M7: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 5}, {6, 8}}

M8: {{1, 2}, {3, 4}, {5, 9′′}, {6, 9′}, {7, 9}}

M9: {{1, 6}, {2, 8}, {3, 7}, {4, 5}}

(1, 1, 1, 1, 1, 1, 1, 1, 5):

M1: {{2, 9′′′}, {3, 4}, {5, 9′}, {6, 94}, {7, 9′′}, {8, 9}}

M2: {{1, 94}, {3, 9′}, {4, 9′′′}, {5, 9′′}, {6, 8}, {7, 9}}

M3: {{1, 2}, {4, 9′′′}, {5, 9′}, {6, 94}, {7, 9}, {8, 9′′}}

M4: {{1, 94}, {2, 9′′′}, {3, 9′}, {5, 6}, {7, 9′′}, {8, 9}}

M5: {{1, 2}, {3, 94}, {4, 9′′′}, {6, 9′}, {7, 9}, {8, 9′′}}

M6: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {5, 94}, {7, 8}}

M7: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {5, 94}, {6, 8}}

M8: {{1, 2}, {3, 94}, {4, 9′′′}, {5, 9′′}, {6, 9′}, {7, 9}}

M9: {{1, 2}, {3, 4}, {5, 6}, {7, 8}}

(1, 1, 1, 1, 1, 1, 1, 3, 3):

M1: {{2, 8′}, {3, 9′′}, {4, 9′}, {5, 8}, {6, 8′′}, {7, 9}}

M2: {{1, 8′′}, {3, 8}, {4, 8′}, {5, 9′′}, {6, 9′}, {7, 9}}

M3: {{1, 8′′}, {2, 8′}, {4, 9′′}, {5, 8}, {6, 9′}, {7, 9}}

M4: {{1, 9}, {2, 9′}, {3, 9′′}, {5, 8′}, {6, 8′′}, {7, 8}}

M5: {{1, 8′′}, {2, 8′}, {3, 8}, {4, 9′′}, {6, 9′}, {7, 9}}
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M6: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 8′′}, {5, 8′}, {7, 8}}

M7: {{1, 9}, {2, 8′}, {3, 9′′}, {4, 8′′}, {5, 8}, {6, 9′}}

M8: {{1, 9}, {2, 3}, {4, 9′}, {5, 9′′}, {6, 7}}

M9: {{1, 8′′}, {2, 3}, {4, 8′}, {5, 8}, {6, 7}}

(1, 1, 1, 1, 1, 1, 1, 3, 5):

M1: {{2, 94}, {3, 9′}, {4, 8′′}, {5, 9′′}, {6, 8}, {7, 9}, {8′, 9′′′}}

M2: {{1, 8′′}, {3, 94}, {4, 9′′′}, {5, 9′}, {6, 9′′}, {7, 8′}, {8, 9}}

M3: {{1, 9}, {2, 8}, {4, 8′}, {5, 9′}, {6, 9′′}, {7, 9′′′}, {8′′, 94}}

M4: {{1, 94}, {2, 9′′′}, {3, 8′′}, {5, 8′}, {6, 9′′}, {7, 9′}, {8, 9}}

M5: {{1, 9}, {2, 8}, {3, 9′}, {4, 8′}, {6, 9′′}, {7, 9′′′}, {8′′, 94}}

M6: {{1, 94}, {2, 9′′′}, {3, 8′′}, {4, 9′′}, {5, 8′}, {7, 9′}, {8, 9}}

M7: {{1, 8′′}, {2, 94}, {3, 5}, {4, 9′′}, {6, 9′}, {8, 9}, {8′, 9′′′}}

M8: {{1, 2}, {3, 94}, {4, 9′′′}, {5, 9′′}, {6, 9′}, {7, 9}}

M9: {{1, 2}, {3, 5}, {4, 8′′}, {6, 8}, {7, 8′}}

(1, 1, 1, 1, 1, 1, 1, 3, 7):

M1: {{2, 95}, {3, 96}, {4, 8}, {5, 9′′}, {6, 9′}, {7, 9}, {8′, 9′′′}, {8′′, 94}}

M2: {{1, 96}, {3, 7}, {4, 95}, {5, 94}, {6, 9′′′}, {8, 9}, {8′, 9′}, {8′′, 9′′}}

M3: {{1, 96}, {2, 95}, {4, 9′′′}, {5, 6}, {7, 9}, {8, 9′}, {8′, 9′′}, {8′′, 94}}

M4: {{1, 96}, {2, 95}, {3, 94}, {5, 9′′}, {6, 9′}, {7, 8′}, {8, 9}, {8′′, 9′′′}}

M5: {{1, 96}, {2, 95}, {3, 7}, {4, 94}, {6, 9′}, {8, 9}, {8′, 9′′}, {8′′, 9′′′}}

M6: {{1, 96}, {2, 95}, {3, 8′′}, {4, 94}, {5, 9′′}, {7, 9}, {8, 9′}, {8′, 9′′′}}

M7: {{1, 2}, {3, 96}, {4, 95}, {5, 94}, {6, 9′′′}, {8, 9}, {8′, 9′}, {8′′, 9′′}}

M8: {{1, 96}, {2, 95}, {3, 94}, {4, 9′′′}, {5, 9′′}, {6, 9′}, {7, 9}}
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M9: {{1, 2}, {3, 8′′}, {4, 8}, {5, 6}, {7, 8′}}

(1, 1, 1, 1, 1, 1, 1, 5, 5):

M1: {{2, 9}, {3, 8′}, {4, 8′′′}, {5, 9′′}, {6, 7}, {8, 9′}, {8′′, 9′′′}, {84, 94}}

M2: {{1, 9}, {3, 8′′}, {4, 8′′′}, {5, 9′′}, {6, 9′′′}, {7, 8′}, {8, 9′}, {84, 94}}

M3: {{1, 8}, {2, 9}, {4, 9′′′}, {5, 8′′}, {6, 9′}, {7, 8′}, {8′′′, 9′′}, {84, 94}}

M4: {{1, 2}, {3, 8′}, {5, 8′′}, {6, 9′′′}, {7, 9}, {8, 9′}, {8′′′, 9′′}, {84, 94}}

M5: {{1, 2}, {3, 4}, {6, 7}, {8, 9}, {8′, 9′}, {8′′, 9′′}, {8′′′, 9′′′}, {84, 94}}

M6: {{1, 9}, {2, 8′}, {3, 94}, {4, 84}, {5, 9′′}, {7, 8′′′}, {8, 9′}, {8′′, 9′′′}}

M7: {{1, 2}, {3, 4}, {5, 6}, {8, 9}, {8′, 9′}, {8′′, 9′′}, {8′′′, 9′′′}, {84, 94}}

M8: {{1, 2}, {3, 94}, {4, 9′′′}, {5, 9′′}, {6, 9′}, {7, 9}}

M9: {{1, 8}, {2, 8′}, {3, 8′′}, {4, 84}, {5, 6}, {7, 8′′′}}

(1, 1, 1, 1, 1, 1, 1, 5, 7):

M1: {{2, 9}, {3, 8′}, {4, 8′′′}, {5, 9′′}, {6, 9′′′}, {7, 96}, {8, 9′}, {8′′, 95}, {84, 94}}

M2: {{1, 96}, {3, 95}, {4, 8′′′}, {5, 9′′}, {6, 9′′′}, {7, 8′}, {8, 9′}, {8′′, 9}, {84, 94}}

M3: {{1, 8}, {2, 9}, {4, 9′′′}, {5, 96}, {6, 9′}, {7, 8′}, {8′′, 95}, {8′′′, 9′′}, {84, 94}}

M4: {{1, 9′′′}, {2, 6}, {3, 95}, {5, 9′′}, {7, 8′′′}, {8, 9′}, {8′, 96}, {8′′, 9}, {84, 94}}

M5: {{1, 2}, {3, 4}, {6, 95}, {7, 96}, {8, 9}, {8′, 9′}, {8′′, 9′′}, {8′′′, 9′′′}, {84, 94}}

M6: {{1, 9′′′}, {2, 95}, {3, 94}, {4, 84}, {5, 8′′}, {7, 9}, {8, 9′}, {8′, 96}, {8′′′, 9′′}}

M7: {{1, 2}, {3, 4}, {5, 96}, {6, 95}, {8, 9}, {8′, 9′}, {8′′, 9′′}, {8′′′, 9′′′}, {84, 94}}

M8: {{1, 96}, {2, 95}, {3, 94}, {4, 9′′′}, {5, 9′′}, {6, 9′}, {7, 9}}

M9: {{1, 8}, {2, 6}, {3, 8′}, {4, 84}, {5, 8′′}, {7, 8′′′}}

(1, 1, 1, 1, 1, 1, 1, 7, 7):

M1: {{2, 96}, {3, 4}, {5, 6}, {7, 86}, {8, 9}, {8′, 9′}, {8′′, 9′′}, {8′′′, 9′′′}, {84, 94}, {85, 95}}
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M2: {{1, 9}, {3, 84}, {4, 9′′′}, {5, 8′′}, {6, 95}, {7, 8}, {8′, 9′}, {8′′′, 9′′}, {85, 94}, {86, 96}}

M3: {{1, 2}, {4, 96}, {5, 6}, {7, 86}, {8, 9}, {8′, 9′}, {8′′, 9′′′}, {8′′′, 9′′}, {84, 94}, {85, 95}}

M4: {{1, 9}, {2, 96}, {3, 86}, {5, 6}, {7, 8}, {8′, 9′}, {8′′, 9′′′}, {8′′′, 9′′}, {84, 95}, {85, 94}}

M5: {{1, 86}, {2, 9′}, {3, 9′′}, {4, 8′′′}, {6, 8′}, {7, 96}, {8, 9}, {8′′, 9′′′}, {84, 94}, {85, 95}}

M6: {{1, 9}, {2, 85}, {3, 86}, {4, 96}, {5, 94}, {7, 8}, {8′, 9′}, {8′′, 9′′′}, {8′′′, 9′′}, {84, 95}}

M7: {{1, 2}, {3, 4}, {5, 6}, {8, 9}, {8′, 9′}, {8′′, 9′′}, {8′′′, 9′′′}, {84, 94}, {85, 95}, {86, 96}}

M8: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {5, 94}, {6, 95}, {7, 96}}

M9: {{1, 86}, {2, 85}, {3, 84}, {4, 8′′′}, {5, 8′′}, {6, 8′}, {7, 8}}

(1, 1, 1, 1, 1, 1, 3, 3, 9):

M1: {{2, 98}, {3, 4}, {5, 96}, {6, 95}, {7, 94}, {7′, 9′′}, {7′′, 97}, {8, 9}, {8′, 9′}, {8′′, 9′′′}}

M2: {{1, 9′}, {3, 9′′′}, {4, 9′′}, {5, 6}, {7, 95}, {7′, 94}, {7′′, 97}, {8, 9}, {8′, 96}, {8′′, 98}}

M3: {{1, 9′}, {2, 98}, {4, 9′′}, {5, 96}, {6, 95}, {7, 94}, {7′, 8′}, {7′′, 97}, {8, 9}, {8′′, 9′′′}}

M4: {{1, 98}, {2, 97}, {3, 96}, {5, 94}, {6, 9′′′}, {7, 95}, {7′, 9′′}, {7′′, 8′′}, {8, 9}, {8′, 9′}}

M5: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {6, 95}, {7, 8}, {7′, 94}, {7′′, 97}, {8′, 96}, {8′′, 98}}

M6: {{1, 2}, {3, 9′′′}, {4, 95}, {5, 94}, {7, 9}, {7′, 9′}, {7′′, 9′′}, {8, 98}, {8′, 97}, {8′′, 96}}

M7: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {5, 94}, {6, 95}, {8, 98}, {8′, 97}, {8′′, 96}}

M8: {{1, 98}, {2, 97}, {3, 96}, {4, 95}, {5, 94}, {6, 9′′′}, {7, 9}, {7′, 9′}, {7′′, 9′′}}

M9: {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {7′, 8′}, {7′′, 8′′}}

(1, 1, 1, 1, 1, 3, 5, 5, 13):

M1: {{2, 912}, {3, 6′′}, {4, 6′}, {5, 94}, {6, 9}, {7, 96}, {7′, 9′′}, {7′′, 9′′′}, {7′′′, 910}, {74, 911},

{8, 9′}, {8′, 97}, {8′′, 98}, {8′′′, 99}, {84, 95}}

M2: {{1, 98}, {3, 97}, {4, 96}, {5, 6}, {6′, 8′}, {6′′, 94}, {7, 99}, {7′, 9′′}, {7′′, 910}, {7′′′, 911},

{74, 912}, {8, 9}, {8′′, 9′}, {8′′′, 9′′′}, {84, 95}}
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M3: {{1, 98}, {2, 912}, {4, 99}, {5, 95}, {6, 9}, {6′, 8′}, {6′′, 94}, {7, 96}, {7′, 9′′}, {7′′, 8′′},

{7′′′, 910}, {74, 911}, {8, 9′}, {8′′′, 9′′′}, {84, 97}}

M4: {{1, 912}, {2, 911}, {3, 910}, {5, 98}, {6, 94}, {6′, 95}, {6′′, 96}, {7, 99}, {7′, 9′′}, {7′′, 9′′′},

{7′′′, 8′′′}, {74, 84}, {8, 9}, {8′, 97}, {8′′, 9′}}

M5: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {6, 94}, {6′, 95}, {6′′, 96}, {7, 8}, {7′, 8′}, {7′′, 910},

{7′′′, 911}, {74, 912}, {8′′, 98}, {8′′′, 99}, {84, 97}}

M6: {{1, 2}, {3, 97}, {4, 96}, {5, 95}, {7, 9}, {7′, 9′}, {7′′, 9′′}, {7′′′, 9′′′}, {74, 94}, {8, 98},

{8′, 99}, {8′′, 910}, {8′′′, 911}, {84, 912}}

M7: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {5, 94}, {6, 95}, {6′, 96}, {6′′, 97}, {8, 98}, {8′, 99},

{8′′, 910}, {8′′′, 911}, {84, 912}}

M8: {{1, 912}, {2, 911}, {3, 910}, {4, 99}, {5, 98}, {6, 95}, {6′, 96}, {6′′, 97}, {7, 9}, {7′, 9′},

{7′′, 9′′}, {7′′′, 9′′′}, {74, 94}}

M9: {{1, 2}, {3, 6′′}, {4, 6′}, {5, 6}, {7, 8}, {7′, 8′}, {7′′, 8′′}, {7′′′, 8′′′}, {74, 84}}

(1, 1, 1, 1, 1, 5, 5, 5, 15):

M1: {{2, 6′′′}, {3, 97}, {4, 96}, {5, 94}, {6, 914}, {6′, 9′}, {6′′, 9′′}, {64, 912}, {7, 8}, {7′, 910},

{7′′, 913}, {7′′′, 95}, {74, 911}, {8′, 9}, {8′′, 98}, {8′′′, 9′′′}, {84, 99}}

M2: {{1, 99}, {3, 6′′}, {4, 6′}, {5, 95}, {6, 9}, {6′′′, 96}, {64, 97}, {7, 9′′}, {7′, 9′′′}, {7′′, 912},

{7′′′, 913}, {74, 914}, {8, 9′}, {8′, 911}, {8′′, 98}, {8′′′, 910}, {84, 94}}

M3: {{1, 64}, {2, 98}, {4, 911}, {5, 6}, {6′, 97}, {6′′, 96}, {6′′′, 95}, {7, 9′′}, {7′, 9′′′}, {7′′, 912},

{7′′′, 913}, {74, 914}, {8, 9′}, {8′, 9}, {8′′, 94}, {8′′′, 910}, {84, 99}}

M4: {{1, 914}, {2, 913}, {3, 912}, {5, 910}, {6, 9}, {6′, 9′}, {6′′, 9′′}, {6′′′, 96}, {64, 97}, {7, 99},

{7′, 8′}, {7′′, 8′′}, {7′′′, 95}, {74, 911}, {8, 98}, {8′′′, 9′′′}, {84, 94}}

M5: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {6, 914}, {6′, 97}, {6′′, 96}, {6′′′, 95}, {64, 912}, {7, 99},
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{7′, 910}, {7′′, 913}, {7′′′, 8′′′}, {74, 84}, {8, 98}, {8′, 911}, {8′′, 94}}

M6: {{1, 99}, {2, 98}, {3, 97}, {4, 96}, {5, 95}, {7, 9}, {7′, 9′}, {7′′, 9′′}, {7′′′, 9′′′}, {74, 94},

{8, 910}, {8′, 911}, {8′′, 912}, {8′′′, 913}, {84, 914}}

M7: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {5, 94}, {6, 95}, {6′, 96}, {6′′, 97}, {6′′′, 98}, {64, 99},

{8, 910}, {8′, 911}, {8′′, 912}, {8′′′, 913}, {84, 914}}

M8: {{1, 914}, {2, 913}, {3, 912}, {4, 911}, {5, 910}, {6, 95}, {6′, 96}, {6′′, 97}, {6′′′, 98},

{64, 99}, {7, 9}, {7′, 9′}, {7′′, 9′′}, {7′′′, 9′′′}, {74, 94}}

M9: {{1, 64}, {2, 6′′′}, {3, 6′′}, {4, 6′}, {5, 6}, {7, 8}, {7′, 8′}, {7′′, 8′′}, {7′′′, 8′′′}, {74, 84}}

(1, 1, 1, 1, 1, 7, 7, 7, 19) :

M1: {{2, 66}, {3, 7}, {4, 98}, {5, 97}, {6, 9′}, {6′, 915}, {6′′, 9′′}, {6′′′, 84}, {64, 910}, {65, 911},

{7′, 9}, {7′′, 914}, {7′′′, 917}, {74, 94}, {75, 95}, {76, 96}, {8, 912}, {8′, 913}, {8′′, 99}, {8′′′, 916},

{85, 9′′′}, {86, 918}}

M2: {{1, 86}, {3, 99}, {4, 7′′}, {5, 8′′′}, {6, 97}, {6′, 915}, {6′′, 9′′}, {6′′′, 916}, {64, 910}, {65, 911},

{66, 914}, {7, 912}, {7′, 9}, {7′′′, 98}, {74, 94}, {75, 95}, {76, 96}, {8, 9′}, {8′, 913}, {8′′, 918},

{84, 917}, {85, 9′′′}}

M3: {{1, 911}, {2, 910}, {4, 915}, {5, 94}, {6, 9′}, {6′, 98}, {6′′, 74}, {6′′′, 916}, {64, 7′′′}, {65, 75},

{66, 914}, {7, 9}, {7′, 97}, {7′′, 9′′}, {76, 96}, {8, 912}, {8′, 913}, {8′′, 99}, {8′′′, 9′′′}, {84, 917},

{85, 95}, {86, 918}}

M4: {{1, 918}, {2, 917}, {3, 916}, {5, 914}, {6, 8′}, {6′, 8′′}, {6′′, 99}, {6′′′, 910}, {64, 911},

{65, 912}, {66, 913}, {7, 9}, {7′, 97}, {7′′, 9′′}, {7′′′, 98}, {74, 94}, {75, 84}, {76, 96}, {8, 9′},

{8′′′, 9′′′}, {85, 95}, {86, 915}}

M5: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {6, 95}, {6′, 96}, {6′′, 97}, {6′′′, 98}, {64, 99}, {65, 910},

{66, 911}, {7, 912}, {7′, 8}, {7′′, 914}, {7′′′, 917}, {74, 94}, {75, 84}, {76, 85}, {8′, 913}, {8′′, 918},
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{8′′′, 916}, {86, 915}}

M6: {{1, 911}, {2, 910}, {3, 99}, {4, 98}, {5, 97}, {7, 9}, {7′, 9′}, {7′′, 9′′}, {7′′′, 9′′′}, {74, 94},

{75, 95}, {76, 96}, {8, 912}, {8′, 913}, {8′′, 914}, {8′′′, 915}, {84, 916}, {85, 917}, {86, 918}}

M7: {{1, 9}, {2, 9′}, {3, 9′′}, {4, 9′′′}, {5, 94}, {6, 95}, {6′, 96}, {6′′, 97}, {6′′′, 98}, {64, 99},

{65, 910}, {66, 911}, {8, 912}, {8′, 913}, {8′′, 914}, {8′′′, 915}, {84, 916}, {85, 917}, {86, 918}}

M8: {{1, 918}, {2, 917}, {3, 916}, {4, 915}, {5, 914}, {6, 97}, {6′, 98}, {6′′, 99}, {6′′′, 910},

{64, 911}, {65, 912}, {66, 913}, {7, 9}, {7′, 9′}, {7′′, 9′′}, {7′′′, 9′′′}, {74, 94}, {75, 95}, {76, 96}}

M9: {{1, 86}, {2, 66}, {3, 7}, {4, 7′′}, {5, 8′′′}, {6, 8′}, {6′, 8′′}, {6′′, 74}, {6′′′, 84}, {64, 7′′′},

{65, 75}, {7′′, 8}, {76, 85}}

Hence we have even matchings of type (a1, . . . , a9).

2.2.5 p ≡ 1 (mod 4) parts of any size

In this Section we will give a general construction of even matchings of type

(a1, . . . , a4h+1) for any positive integer h ≥ 3. Since p ≡ 1 (mod 4) we can have all parts

of even size or all parts of odd size. We will need “building blocks” similar to the ones

used before.

(04h−2, 2, 2, 2): from Lemma 2.4

(04h−3, 2, 2, 2, 2): from Lemma 2.4

Notice that when p = 4h + 1 condition 4 becomes 2hap ≤ (2h− 1)(a1 + . . . + ap−1)

and condition 2 remains ap ≤ a1 + . . . + ap−2. We can construct an even matching of

type (0, 0, a3, . . . , ap) inductively. We start with the even matching (a3, . . . , ap) (as long

as it exists) and apply Lemma 2.4.

To find an even matching of type (a1, . . . , a4h+1) we use the following algorithm.
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1. Check if the four necessary conditions are satisfied. If not, the matching does

not exist. If a1 = . . . = ap−4 = 0, ap−3 = 2 or a1 = . . . = ap−2 = 1 or K =

(04h−4, 2, 2, 2, 2, 2) or K = (04h−4, 2, 2, 2, 2, 6) look up the matching in list provided.

Otherwise continue below.

2. If 2hap = (2h− 1)(a1 + . . .+ap−1)− 2c for 0 ≤ c ≤ 2h− 3 skip down to the Special

Case (c + 1) section.

If ap−2 = ap−1 and ap = a1 + . . .+ap−2 skip down to Special Case (2h−1) section.

Otherwise continue below.

3. Subtract (2, 04h−2, 2, 2) to obtain (a1 − 2, a2, . . . , ap−1 − 2, ap − 2).

4. If necessary, rearrange the terms to ensure a nondecreasing sequence.

5. Repeat steps 2-4 until you obtain (0, 4h) or (1, 4h).

6. If 2hap = (2h− 1)(a1 + . . .+ap−1)− 2c for 0 ≤ c ≤ 2h− 3 skip down to the Special

Case (c + 1) section.

If ap−2 = ap−1 and ap = a1 + . . .+ap−2 skip down to Special Case (2h−1) section.

Otherwise continue below.

7. For 4h− 3 ≥ j ≥ 1 repeat the following steps.

8. Subtract (04h−2−j , 2, 0j , 2, 2).

9. If necessary, rearrange the terms to ensure the sequence is nondecreasing.

10. Repeat until you obtain (04h−1−j , j+2) or (14h−1−j , j+2).

11. Stop when you obtain (04h−3, 2, , , ) or (14h−1, , ).
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12. The even matchings of type (04h−3, 2, , , ) and (14h−1, , ) will need to be given.

Let us consider the four necessary conditions during steps 2-5 of the algorithm.

1. p = 4h + 1 is not affected.

2. If (a1, . . . , ap) satisfies ap ≤ a1 + . . . + ap−2, then (a1 − 2, a2, . . . , ap−1 − 2, ap − 2)

satisfies ap − 2 ≤ a1 − 2 + a2 + . . . + ap−2. We are, however, rearranging the terms

to ensure a nondecreasing sequence. Let us consider the following cases:

Case 1: If after such rearranging ap − 2 is not the largest, but the second largest

part, then ap−2 = ap. So we started with (a1, . . . , ap−3, ap, ap, ap) and now have

(a1 − 2, a2, . . . , ap−3, ap − 2, ap − 2, ap). By Properties 2 and 4 this is in S2 as long

as 4 ≤ a1 + . . . + ap−3 and 12h − 6 − (2h − 2)ap ≤ (2h − 1)(a1 + . . . + ap−3),

which is equivalent to a1 + . . .+ap−3 ≥ 6− 2h−2
2h−1ap. Let us consider the cases when

4 > a1+. . .+ap−3 or a1+. . .+ap−3 < 6− 2h−2
2h−1ap. We could have (04h−2, ap, ap, ap),

(04h−3, 2, ap, ap, ap) or (04h−4, 2, 2, 2, 2, 2). Each one of those is in S2.

Case 2: If after rearranging ap − 2 is not the largest or second largest part,

then ap−3 = ap. So we started with (a1, . . . , ap−4, ap, ap, ap, ap) and now have

(a1 − 2, a2, . . . , ap−4, ap − 2, ap − 2, ap, ap). By Properties 2 and 4 this is in S2 as

long as 6− ap ≤ a1 + . . . + ap−4 and 6− 4h−3
2h−1ap ≤ a1 + . . . + ap−4. Let us consider

the cases when 6− ap > a1 + . . . + ap−4 or 6− 4h−3
2h−1ap > a1 + . . . + ap−4. We could

have (04h−3, 2, 2, 2, 2), (04h−3, 4, 4, 4, 4) or (04h−4, 2, 2, 2, 2, 2). Each one of those is

in S2.

Case 3: If after rearranging ap − 2 is the largest, but ap−1 − 2 is not the second

largest part, then ap−2 = ap−1. So we started with (a1, . . . , ap−3, ap−1, ap−1, ap)

and now have (a1 − 2, a2, . . . , ap−3, ap−1 − 2, ap−1, ap − 2). By Property 2, this is
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in S2 as long as ap 6= a1 + . . . + ap−2. The case when ap = a1 + . . . + ap−2 and

ap−2 = ap−1 is discussed below as Special Case (2h− 1).

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, . . . , ap) satisfies 2hap ≤ (2h − 1)(a1 + . . . + ap−1) − 4(h − 1), then (a1 −

2, a2, . . . , ap−2, ap−1− 2, ap− 2) satisfies 2h(ap− 2) ≤ (2h− 1)(a1 + . . . + ap−1− 4).

Each Special Case (c + 1) section covers the instances when 2hap = (2h− 1)(a1 +

. . . + ap−1) − 2c for 0 ≤ c ≤ 2h − 3. Problems arising from rearranging the terms

are discussed under condition 2.

Therefore, each time we repeat steps 2-5 we obtain an element of S2. Notice that

the above holds for the remaining steps of the algorithm. So it is sufficient to give

even matchings of type (04h−3, 2, , , ) and (14h−1, , ) and consider the special cases

mentioned above.

Let us consider the Special Case (c + 1) for 0 ≤ c ≤ 2h− 3.

We need to find even matchings for (a1, . . . , ap) satisfying the four necessary condi-

tions and 2hap = (2h− 1)(a1 + . . . + ap−1)− 2c. Let us refer to these as matching type

SP (c + 1) ⊆ S2. Say we need K = (a1, a2, . . . , ap−1,
(2h−1)(a1+...+ap−1)−2c

2h ) ∈ SP (c + 1).

We will build it by induction.

We consider parts of odd size first. If h − c ≥ 0, we start by subtracting P 1 =

(13h+c, 3h−c, 6h − 3 − 2c) to obtain K ′ = (a1 − 1, . . . , a3h+c − 1, a3h+c+1 − 3, . . . , a4h −

3,
(2h−1)(a1+...+ap−1)−2c

2h − (6h − 3 − 2c)). Since necessary conditions 2 and 4 were sat-

isfied in K, they are still satisfied in K ′. Also, K ′ ∈ SP1. However, if rearranging is

necessary and we obtain K ′′ = (a1− 1, . . . , a3h+c+1− 3, a3h+c+2− 3, . . . , a4h− 3, a3h+c−
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1,
(2h−1)(a1+...+ap−1)−2c

2h −(6h−3−2c)) instead of K ′, we must have a3h+c−1 = a4h−3+2

or a3h+c = a4h. Hence we started with

K = (a1, . . . , a3h+c−1, a4h, . . . , a4h,
(2h−1)(a1+...+ap−1)−2c

2h ). In this case instead of sub-

tracting P 1 = (13h+c, 3h−c, 6h−3−2c), we subtract P 2 = (1h+c, 33h−c, 10h−5−2c) to ob-

tain K ′ = (a1−1, . . . , ah+c−1, ah+c+1−3, . . . , a4h−3,
(2h−1)(a1+...+ap−1)−2c

2h −(10h−5−2c)).

Notice that as long as no rearranging is necessary, K ′ ∈ SP1. We will also subtract P 2

if h − c < 0, which means we start with ap > 6h − 3 − 2c. However, if rearranging is

necessary and results in K ′′ = (a1 − 1, . . . , ah+c−1 − 1, ah+c+1 − 3, . . . , a4h − 3, ah+c −

1,
(2h−1)(a1+...+ap−1)−2c

2h − (10h − 5 − 2c)) we must have ah+c = a4h. So we started with

K = (a1, . . . , ah+c−1, a4h, . . . , a4h,
(2h−1)(a1+...+ap−1)−2c

2h ). In this case we subtract P 3 =

(1h+c, 32h−c, 7h, 14h−7−2c) instead of P 1 or P 2. We then get K ′ = (a1−1, . . . , ah+c−1−

1, a4h− 1, a4h− 3, . . . , a4h− 3, a4h− 7, . . . , a4h− 7,
(2h−1)(a1+...+ap−1)−2c

2h − (14h− 7− 2c))

which is rearranged to K ′′ = (a1−1, . . . , ah+c−1−1, a4h−3, . . . , a4h−3, a4h−7, . . . , a4h−

7, a4h − 1,
(2h−1)(a1+...+ap−1)−2c

2h − (14h− 7− 2c)). Satisfying the conditions 2 and 4, this

K ′′ is always in SP1. This shows that when we complete this step, we obtain an element

of SP1.

For parts of even size we start by subtracting (02h+c, 22h−c, 4h − 2 − 2c) to ob-

tain K ′ = (a1, . . . , a2h+c, a2h+c+1 − 2, . . . , a4h − 2,
(2h−1)(a1+...+ap−1)−2c

2h − (4h− 2− 2c)).

As long as no rearranging is necessary K ′ is in SP1. If rearranging is necessary,

we started with K = (a1, . . . , a2h+c−1, a4h, . . . , a4h,
(2h−1)(a1+...+ap−1)−2c

2h ) and now have

K ′′ = (a1, . . . , a2h+c−1, a4h − 2, . . . , a4h − 2, a4h,
(2h−1)(a1+...+ap−1)−2c

2h − (4h − 2 − 2c)).

This is in SP1 as long as (c − 1)a4h − 8h2 + 8h + 4ch ≤ a1 + . . . + a2h+c−1 which is

equivalent to a4h−2 ≤ a4h+1
2h−1 when c = 2h−3 (worst case scenario). By Property 2, this
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inequality is always true for elements of S2. Notice that no matter what SP (c + 1) we

start with, after the first subtraction, we will continue the induction process with SP1

or c = 0.

By induction, this concludes Special Case (c+1). We take any element of SP (c+1)

and subtract to get a smaller element of SP1.

Now let us consider Special Case (2h− 1).

If ap−2 = ap−1 and ap = a1 + . . . + ap−2 we have types of the form (a1, a2, . . . , ap−3, ap−

(a1 + . . . + ap−3), ap − (a1 + . . . + ap−3), ap). We will construct an even matching of

such type as follows: aj/2 copies of (0j−1, 2, 04h−2−j , 2, 2, 4) for each 1 ≤ j ≤ 4h − 2,

and ap − 2(a1 + . . . + ap−3)/2 copies of (04h−2, 2, 2, 2). Notice that by Property 4 ap ≥

2(a1 + . . . + ap−3). This concludes Special Case (2h− 1).

The following are even matchings of type (04h−3, 2, , , ) and (14h−1, , ) and other

matchings used in the above construction.

(04h−2, 2, 2, 2): from Lemma 2.4

By Property 2, an even matching of type (04h−2, ap−2, ap−1, ap) exists if ap ≤ ap−2. Hence

we must have (04h−2, ap, ap, ap).

(04h−2, ap, ap, ap) from ap/2 copies of (04h−2, 2, 2, 2)

(04h−3, 2, 2, 2, 2): from Lemma 2.4

(04h−3, 2, 2, 2, 4): from Lemma 2.4

By Property 2, an even matching of type (04h−3, 2, ap−2, ap−1, ap) exists if ap−2 ≥ ap−2.

(04h−3, 2, ap, ap, ap) from (04h−3, 2, 2, 2, 2) and (ap − 2)/2 copies of (04h−2, 2, 2, 2)

(04h−3, 2, ap − 2, ap, ap) from (04h−3, 2, 0, 2, 2) and (ap − 2)/2 copies of (04h−2, 2, 2, 2)

Since ap ≥ 2, ap − 2 ≥ 0.
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(04h−3, 2, ap − 2, ap − 2, ap) from (04h−3, 2, 2, 2, 4) and (ap − 4)/2 copies of (04h−2, 2, 2, 2)

Since ap − 2 ≥ 2, ap − 4 ≥ 0.

(04h−4, 2, 2, 2, 2, 2): from Lemma 2.4

(04h−4, 2, 2, 2, 2, 6): from Lemma 2.4

(02h, 22h, 4h− 2): Needed; not yet found.

The remaining (02h+c, 22h−c, 4h− 2− 2c) for 0 < c ≤ 2h− 3 are obtained from Lemma

2.4

(14h+1): given in Section 2.2.1

For h ≥ c, (13h+c, 3h−c, 6h− 3− 2c): Needed; not yet found.

(1h+c, 33h−c, 10h− 5− 2c): Needed; not yet found.

(1h+c, 32h−c, 7h, 14h− 7− 2c): Needed; not yet found.

In the following families of matchings we use i, j odd.

For 3 ≤ i ≤ 4h− 3, (14h, i): Needed; not yet found.

For 3 ≤ i ≤ 4h− 1 and 3 ≤ j ≤ i, (14h−1, j, i): Needed; not yet found.

Hence we have even matchings of type (a1, . . . , a4h+1).

2.2.6 p ≡ 3 (mod 4) parts of any size

In this Section we will give a general construction of even matchings of type

(a1, . . . , a4h+3) for any positive integer h ≥ 2. Since p ≡ 3 (mod 4) we can only have all

parts of even size. We will use “building blocks” similar to the ones above.

(04h, 2, 2, 2): from Lemma 2.4

(04h−1, 2, 2, 2, 2): from Lemma 2.4
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Notice that when p = 4h + 3 condition 4 becomes (2h + 1)ap ≤ 2h(a1 + . . . + ap−1)

and condition 2 remains ap ≤ a1 + . . .+ap−2. We can still construct an even matching of

type (0, 0, a3, . . . , ap) inductively. We start with the even matching (a3, . . . , ap) (as long

as it exists) and apply Lemma 2.4.

To find an even matching of type (a1, . . . , a4h+3) we use the following algorithm.

1. Check if the four necessary conditions are satisfied. If not, the matching does

not exist. If a1 = . . . = ap−4 = 0, ap−3 = 2 or K = (04h−2, 2, 2, 2, 2, 2) or K =

(04h−2, 2, 2, 2, 2, 6) look up the matching in list provided. Otherwise continue below.

2. If (2h + 1)ap = 2h(a1 + . . . + ap−1) − 2c, for 0 ≤ c ≤ 2h − 2, skip down to the

Special Case (c + 1) section.

If ap−2 = ap−1 and ap = a1 + . . . + ap−2 skip down to Special Case (2h) section.

Otherwise continue below.

3. Subtract (2, 04h, 2, 2) to obtain (a1 − 2, a2, . . . , ap−1 − 2, ap − 2).

4. If necessary, rearrange the terms to ensure a nondecreasing sequence.

5. Repeat steps 2-4 until you obtain (0, 4h+2).

6. If (2h+1)ap = 2h(a1 + . . .+ap−1)− 2c for 0 ≤ c ≤ 2h− 2 skip down to the Special

Case (c + 1) section.

If ap−2 = ap−1 and ap = a1 + . . . + ap−2 skip down to Special Case (2h) section.

Otherwise continue below.

7. For 4h− 1 ≥ j ≥ 1 repeat the following steps.

8. Subtract (04h−j , 2, 0j , 2, 2).
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9. If necessary, rearrange the terms to ensure the sequence is nondecreasing.

10. Repeat until you obtain (04h+1−j , j+2).

11. Stop when you obtain (04h−1, 2, , , ).

12. The even matchings of type (04h−1, 2, , , ) will need to be given.

Let us consider the four necessary conditions during steps 2-5 of the algorithm.

1. p = 4h + 3 is not affected.

2. If (a1, . . . , ap) satisfies ap ≤ a1 + . . . + ap−2, then (a1 − 2, a2, . . . , ap−1 − 2, ap − 2)

satisfies ap − 2 ≤ a1 − 2 + a2 + . . . + ap−2. We are, however, rearranging the terms

to ensure a nondecreasing sequence. Let us consider the following cases:

Case 1: If after such rearranging ap − 2 is not the largest, but the second largest

part, then ap−2 = ap. So we started with (a1, . . . , ap−3, ap, ap, ap) and now have

(a1 − 2, a2, . . . , ap−3, ap − 2, ap − 2, ap). By Properties 2 and 4 this is in S2 as long

as 4 ≤ a1 + . . . + ap−3 and a1 + . . . + ap−3 ≥ 6 − 2h−1
2h ap. Let us consider the

cases when 4 > a1 + . . . + ap−3 or a1 + . . . + ap−3 < 6 − 2h−1
2h ap. We could have

(04h, ap, ap, ap), (04h−1, 2, ap, ap, ap) or (04h−2, 2, 2, 2, 2, 2). Each one of those is in

S2.

Case 2: If after rearranging ap − 2 is not the largest or second largest part,

then ap−3 = ap. So we started with (a1, . . . , ap−4, ap, ap, ap, ap) and now have

(a1 − 2, a2, . . . , ap−4, ap − 2, ap − 2, ap, ap). By Properties 2 and 4 this is in S2 as

long as 6− ap ≤ a1 + . . . + ap−4 and 6− 4h−1
2h ap ≤ a1 + . . . + ap−4. Let us consider

the cases when 6− ap > a1 + . . . + ap−4 or 6− 4h−1
2h ap > a1 + . . . + ap−4. We could

have (04h−1, 2, 2, 2, 2), (04h−1, 4, 4, 4, 4) or (04h−2, 2, 2, 2, 2, 2). Each one of those is
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in S2.

Case 3: If after rearranging ap − 2 is the largest, but ap−1 − 2 is not the second

largest part, then ap−2 = ap−1. So we started with (a1, . . . , ap−3, ap−1, ap−1, ap)

and now have (a1 − 2, a2, . . . , ap−3, ap−1 − 2, ap−1, ap − 2). By Property 2, this is

in S2 as long as ap 6= a1 + . . . + ap−2. The case when ap = a1 + . . . + ap−2 and

ap−2 = ap−1 is discussed below as Special Case (2h).

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, . . . , ap) satisfies (2h + 1)ap ≤ 2h(a1 + . . . + ap−1) − 2(2h − 1), then (a1 −

2, a2, . . . , ap−2, ap−1− 2, ap− 2) satisfies (2h + 1)(ap− 2) ≤ 2h(a1 + . . . + ap−1− 4).

Each Special Case (c + 1) section covers the instances when (2h + 1)ap = 2h(a1 +

. . . + ap−1) − 2c for 0 ≤ c ≤ 2h − 2. Problems arising from rearranging the terms

are discussed under condition 2.

Therefore, each time we repeat steps 2-5 we obtain an element of S2. Notice that the

above holds for the remaining steps of the algorithm. So it is sufficient to give even

matchings of type (04h−1, 2, , , ) and consider the special cases mentioned above.

Let us consider the Special Case (c + 1).

As with p = 1 (mod 4) we define the set SP (c + 1) as the set of all matching types

satisfying the four necessary conditions and (2h + 1)ap = 2h(a1 + . . . + ap−1) − 2c. We

construct an even matching of type K = (a1, . . . , a4h+3) ∈ SP (c + 1) by induction. We

start by subtracting (02h+c+1, 22h−c+1, 4h−2c) to obtain K ′ = (a1, . . . , a2h+c+1, a2h+c+2−

2, . . . , a4h+2 − 2,
(2h)(a1+...+ap−1)−2c

2h+1 − (4h− 2c)). As long as no rearranging is necessary

K ′ is in SP1. If rearranging is necessary, we started with
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K = (a1, . . . , a2h+c, a4h+2, . . . , a4h+2,
(2h)(a1+...+ap−1)−2c

2h+1 ) and now have

K ′′ = (a1, . . . , a2h+c, a4h+2−2, . . . , a4h+2−2, a4h+2,
(2h)(a1+...+ap−1)−2c

2h+1 − (4h−2c)). This

is always in SP1. Notice that no matter what SP (c + 1) we start with, after the first

subtraction, we will continue the induction process with SP1 (i.e. c = 0). This concludes

the inductive argument, since each time we repeat this process we obtain a smaller

element of SP1. Thus Special Case (c + 1) is solved.

Now let us consider Special Case (2h).

If ap−2 = ap−1 and ap = a1 + . . . + ap−2 we have types of the form (a1, a2, . . . , ap−3, ap−

(a1 + . . . + ap−3), ap − (a1 + . . . + ap−3), ap). We will construct an even matching of

such type as follows: aj/2 copies of (0j−1, 2, 04h−j , 2, 2, 4) for each 1 ≤ j ≤ 4h, and

ap − 2(a1 + . . . + ap−3)/2 copies of (04h, 2, 2, 2). This concludes Special Case (2h).

The following are even matchings of type (04h−1, 2, , , ) and other matchings used

above.

(04h, 2, 2, 2): from Lemma 2.4

By Property 2, an even matching of type (04h, ap−2, ap−1, ap) exists if ap ≤ ap−2. Hence

we must have (04h, ap, ap, ap).

(04h, ap, ap, ap) from ap/2 copies of (04h, 2, 2, 2)

(04h−1, 2, 2, 2, 2): from Lemma 2.4

(04h−1, 2, 2, 2, 4): from Lemma 2.4

By Property 2, an even matching of type (04h−1, 2, ap−2, ap−1, ap) exists if ap−2 ≥ ap−2.

(04h−1, 2, ap, ap, ap) from (04h−1, 2, 2, 2, 2) and (ap − 2)/2 copies of (04h, 2, 2, 2)

(04h−1, 2, ap − 2, ap, ap) from (04h−1, 2, 0, 2, 2) and (ap − 2)/2 copies of (04h, 2, 2, 2)

Since ap ≥ 2, ap − 2 ≥ 0.
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(04h−1, 2, ap − 2, ap − 2, ap) from (04h−1, 2, 2, 2, 4) and (ap − 4)/2 copies of (04h, 2, 2, 2)

Since ap − 2 ≥ 2, ap − 4 ≥ 0.

(04h−2, 2, 2, 2, 2, 2): from Lemma 2.4

(04h−2, 2, 2, 2, 2, 6): from Lemma 2.4 For c ≥ 1 we have (02h+c+1, 22h−c+1, 4h− 2c) from

Lemma 2.4

(02h+1, 22h+1, 4h): Needed; not yet found.

Therefore we have even matchings for p = 3 (mod 4). Once the missing matchings

are found, this proves the sufficiency of the necessary conditions listed in Section 2.1.
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Chapter 3

Existence of k-divisible-Matchings

The results in Chapter 2 can be extended by considering the following definition.

Definition 3.1 Let a1, a2, . . . , ap be non-negative integers, and let Ai denote the vertex

partite set of size ai, for 1 ≤ i ≤ p. Then for the graph K(a1, a2, . . . , ap), the ordered set

M = (M1,M2, . . . , Mp) is a k-divisible-matching of type (a1, a2, . . . , ap) if

1. for each i, 1 ≤ i ≤ p, the set Mi is a perfect matching in the graph

K(a1, a2, . . . , ap)\Ai, and

2. for each edge e of K(a1, a2, . . . , ap), the number of matchings Mi containing e is

divisible by k.

We will refer to this as the divisibility condition.

Previously we considered each edge appearing an even number of times. Notice that

even matchings are 2-divisible-matchings. Let us define the set

Sk = {(a1, . . . , ap)| a k-divisible-matching on the graph K(a1, . . . , ap) exists}.

3.1 Necessary conditions

In this Section we present necessary conditions for the existence of k-divisible-

matchings of type (a1, a2, . . . , ap). We assume a1 ≤ a2 ≤ . . . ≤ ap and define n =
∑p

i=1 ai.

These necessary conditions are as follows:

1. p ≡ 1 (mod k),
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2. 2ap + ap−1 ≤ n,

3. If k is even: either all ai are even or all ai are odd and p ≡ 1 (mod 2k).

If k is odd: either all ai are even or all ai are odd and p is odd.

4. (2p− k − 2)ap ≤ (p− k − 1)n.

Notice that condition 4 implies p > k + 1.

Let us verify the above conditions.

1. Each vertex (element of Ai) will be used in p−1 edges, and the number of edges that

vertex is in must be divisible by k, equivalently p−1
k must be an integer. Therefore

p ≡ 1 (mod k).

2. For every i, n− ai− 2ap ≥ 0, since we must have enough vertices in each n− ai to

“match” the vertices of the largest part. Since a1 ≤ a2 ≤ . . . ≤ ap, it is sufficient

that n− ap−1 − 2ap ≥ 0, i.e. 2ap + ap−1 ≤ n.

3. Since each Mi is to be a perfect matching, (
∑p

i=1 ai) − ai must be even for all i;

hence all ai have same parity. The “divisibility” condition requires
∑p

i=1
n−ai

2 = (p−1)n
2 to be divisible by k. Therefore either all ai are even, or if k

is even, all ai are odd and p ≡ 1 (mod 2k) and if k is odd, all ai are odd and p is

odd.

4. None of the edges in Mp use vertices in Ap. Therefore there must be enough edges

in M1 ∪M2 ∪ . . .∪Mp−1 not intersecting Ap to satisfy the “divisibility” condition.

So,

(k − 1)
n− ap

2
≤

p−1∑

i=1

n− ai − 2ap

2
=

(p− 2)n− (2p− 3)ap

2
,
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which implies

(2p− k − 2)ap ≤ (p− k − 1)n

5. From the above we have p− k − 1 > 0, i.e. p > k + 1.

It would be very useful to have an analogue of Lemma 2.1 and Lemma 2.2 for k-divisible-

matchings.

Lemma 3.2 If M = (M1,M2, . . . , Mp) is a k-divisible-matching of type (a1, a2, . . . , ap)

and N = (N1, N2, . . . , Np) is a k-divisible-matching of type (b1, b2, . . . , bp), on disjoint

vertex sets, then

M ∪N = (M1 ∪N1,M2 ∪N2, . . . , Mp ∪Np) is a k-divisible-matching of type

(a1 + b1, a2 + b2, . . . , ap + bp).

Proof: Since the number of times each edge appears in M and N is a multiple of k this

is a k-divisible-matching. ¤

Lemma 3.3 If M = (M1,M2, . . . , Mp) is a k-divisible-matching of type (a1, a2, . . . , ap)

and N = (N1, N2, . . . , Nq) is a k-divisible-matching of type (a1, b2, . . . , bq), then there

exists a k-divisible-matching for K(a1, a2, . . . , ap, b2, b3, . . . , bq) of type

(a1, a2, . . . , ap, b2, b3, . . . , bq).

Proof: This proof is very similar to the proof for even matchings. The k-divisible-

matching of type (a1, a2, . . . , ap, b2, b3, . . . , bq) on K(a1, a2, . . . , ap, b2, b3, . . . , bq) is given

by

(M1, M2, . . . ,Mp, N2, N3, . . . , N q):

M1 = M1 ∪N1;
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Mi = Mi ∪N1, 2 ≤ i ≤ p;

Ni = Ni ∪M1, 2 ≤ i ≤ q.

This uses the matchings M1, . . . , Mp and N1, . . . , Nq once, M1 an additional q− 1 times,

and N1 an additional p − 1 times. Since p, q ≡ 1 (mod k) the above is a k-divisible-

matching. ¤

The following are generalizations of Lemmas 2.4 and 2.5.

Lemma 3.4 If a1, . . . , ap are even and (a1, . . . , ap) is an element of Sk, then (0kn, a1, . . . , ap)

is also an element of Sk for any integer n.

Proof: Let (M1, . . . ,Mp) be a k-divisible-matching of type (a1, . . . , ap). Let N be any

perfect matching on K(a1, . . . , ap). By Lemma 2.3, N exists. We construct a k-divisible-

matching of K(0kn, a1, . . . , ap) as follows.

Mi = N for 1 ≤ i ≤ kn

Mj+kn = Mj for 1 ≤ j ≤ p

Clearly this is a k-divisible-matching. ¤

Lemma 3.5 If a1, . . . , ap, b2, . . . , bq are all even and (a1, . . . , ap), (0, b2, . . . , bq) are both

elements of Sk, then (b2, . . . , bq, a1, . . . , ap) is also an element of Sk.

Proof: Let (M1, . . . ,Mp) be a k-divisible-matching of type (a1, . . . , ap) and (N1, . . . , Nq)

be a k-divisible-matchings of type (0, b2, . . . , bq). Let R be any perfect matching on

K(a1, . . . , ap). By Lemma 2.3, R exists.

We construct a k-divisible-matching of K(b2, . . . , bq, a1, . . . , ap) as follows.

Mi = Ni+1 ∪R for 1 ≤ i ≤ q − 1

Mj+q−1 = N1 ∪Mj for 1 ≤ j ≤ p

Since p−1 and q−1 are both divisible by k this is a k-divisible-matching. ¤
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3.2 3-divisible-matchings

Let us consider k = 3-divisible-matchings. By condition 1, p ≡ 1 (mod 3). We will

first consider p = 7 and p = 10. Notice that when p = 10 all parts ai must be of even

size.

3.2.1 Any number of parts of the same size

Let us consider 3-divisible-matchings with all parts of the same size. It is sufficient

to consider (17) = (1, 1, 1, 1, 1, 1, 1), (27) = (2, 2, 2, 2, 2, 2, 2) and

(210) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2). We can then use Lemma 3.2, as follows:

If a is odd: (a7) = (17) + a−1
2 copies of (27).

If a is even: (a7) = a
2 copies of (27).

(a10) = a
2 copies of (210).

Also, to construct any 3-divisible matching (ap) we use Lemma 3.3.

(17) = (1, 1, 1, 1, 1, 1, 1):

For 2 ≤ i ≤ 8:

Mi−1: {{i, i + 1}, {i + 2, i + 3}, {i + 4, i + 5}|i ∈ Z7}

(27) = (2, 2, 2, 2, 2, 2, 2):

M1: {{2, 3}, {4, 5}, {6, 7}, {2′, 3′}, {4′, 5′}, {6′, 7′}}

M2: {{1, 7}, {3, 4}, {5, 6}, {1′, 7′}, {3′, 4′}, {5′, 6′}}

M3: {{1, 2}, {4, 5}, {6, 7}, {1′, 2′}, {4′, 5′}, {6′, 7′}}

M4: {{1, 7}, {2, 3}, {5, 6}, {1′, 7′}, {2′, 3′}, {5′, 6′}}

M5: {{1, 2}, {3, 4}, {6, 7}, {1′, 2′}, {3′, 4′}, {6′, 7′}}

M6: {{1, 7}, {2, 3}, {4, 5}, {1′, 7′}, {2′, 3′}, {4′, 5′}}
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M7: {{1, 2}, {3, 4}, {5, 6}, {1′, 2′}, {3′, 4′}, {5′, 6′}}

(210) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2):

M1: {{2, 3}, {2′, 4}, {3′, 4′}, {5, 6}, {5′, 7}, {6′, 7′}, {8′, 10}, {8, 9}, {9′, 10′}}

M2: {{3, 4}, {3′, 5}, {4′, 5′}, {6, 7}, {6′, 8}, {7′, 8′}, {9′, 1}, {9, 10}, {1′, 10′}}

M3: {{4, 5}, {4′, 6}, {5′, 6′}, {7, 8}, {7′, 9}, {8′, 9′}, {10′, 2}, {1, 10}, {1′, 2′}}

M4: {{5, 6}, {5′, 7}, {6′, 7′}, {8, 9}, {8′, 10}, {9′, 10′}, {1′, 3}, {1, 2}, {2′, 3′}}

M5: {{6, 7}, {6′, 8}, {7′, 8′}, {9, 10}, {9′, 1}, {1′, 10′}, {2′, 4}, {2, 3}, {3′, 4′}}

M6: {{7, 8}, {7′, 9}, {8′, 9′}, {1, 10}, {10′, 2}, {1′, 2′}, {3′, 5}, {3, 4}, {4′, 5′}}

M7: {{8, 9}, {8′, 10}, {9′, 10′}, {1, 2}, {1′, 3}, {2′, 3′}, {4′, 6}, {4, 5}, {5′, 6′}}

M8: {{9, 10}, {9′, 1}, {10′, 1′}, {2, 3}, {2′, 4}, {3′, 4′}, {5′, 7}, {5, 6}, {6′, 7′}}

M9: {{1, 10}, {10′, 2}, {1′, 2′}, {3, 4}, {3′, 5}, {4′, 5′}, {6′, 8}, {6, 7}, {7′, 8′}}

M10: {{1, 2}, {1′, 3}, {2′, 3′}, {4, 5}, {4′, 6}, {5′, 6′}, {7′, 9}, {7, 8}, {8′, 9′}}

3.2.2 Seven parts of any size

In this Section we will give 3-divisible-matchings of type K = (a1, . . . , a7). Since

p = 7 ≡ 1 (mod 6) we can have all parts of even size or all parts of odd size. We will use

a similar algorithm as for even matchings to construct a 3-divisible-matching (a1, . . . , a7)

from (0, 0, 0, 2, , , ) or (1, 1, 1, 1, 1, , ).

1. Check if the four necessary conditions are satisfied. If not, the matching does not

exist. If a1 = a2 = a3 = 0 and a4 = 0, 2, a1 = . . . = a5 = 1 or K = (0, 0, 2, 2, 2, 2, 2)

look up the matching in the list provided. Otherwise continue below.

2. For 0 ≤ i ≤ 3 repeat the following steps.

3. Subtract (0i, 2, 04−i, 2, 2).
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4. If necessary, rearrange the terms to ensure that the parts form a nondecreasing

sequence.

5. Repeat steps 3-4 until you obtain (0, 0, 0, 2, , , ) or (1, 1, 1, 1, , , ). If at any point

K = (0, 0, 2, 2, 2, 2, 2) look it up.

6. The 3-divisible-matchings of type (0, 0, 0, 2, , , ) are listed below.

7. Subtract (0, 0, 0, 0, 2, 2, 2).

8. If necessary, rearrange the terms to ensure that the parts form a nondecreasing

sequence.

9. Repeat until you obtain (1, 1, 1, 1, 1, , ).

10. The 3-divisible-matchings of type (1, 1, 1, 1, 1, , ) are listed below.

Let us consider the four necessary conditions during the first part of the “subtracting

process.” Notice that for k = 3 and p = 7 condition 4 becomes 3a7 ≤ n.

1. p = 7 is not affected.

2. If (a1, . . . , a7) satisfies 2a7+a6 ≤ a1+. . .+a7, then (a1−2, a2, a3, a4, a5, a6−2, a7−2)

satisfies 2(a7 − 2) + (a6 − 2) ≤ (a1 − 2) + a2 + a3 + a4 + a5 + (a6 − 2) + (a7 − 2).

We are, however, rearranging the terms to ensure a nondecreasing sequence. Let

us consider the following cases:

Case 1: If after such rearranging a7 − 2 is not the largest, but the second largest

part, then a5 = a7. So we started with (a1, a2, a3, a4, a7, a7, a7) and now have

(a1 − 2, a2, a3, a4, a7 − 2, a7 − 2, a7). By Properties 2 and 4, (a1 − 2, a2, a3, a4, a7 −
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2, a7 − 2, a7) is in S3 as long as 6 ≤ a1 + . . . + a4. Let us consider the case

when a1 + . . . + a4 < 6. We could have (0, 0, 0, 0, a7, a7, a7), (0, 0, 0, 2, a7, a7, a7),

(0, 0, 0, 4, a7, a7, a7), (0, 0, 2, 2, a7, a7, a7) or (1, 1, 1, 1, a7, a7, a7). Each one of those

is discussed and shown to be in S3.

Case 2: If after rearranging a7 − 2 is not the largest or second largest part,

then a4 = . . . = a7. So we started with (a1, a2, a3, a7, a7, a7, a7) and now have

(a1 − 2, a2, a3, a7 − 2, a7 − 2, a7, a7). By Properties 2 and 4, (a1 − 2, a2, a3, a7 −

2, a7 − 2, a7, a7) is in S3 as long as 6 ≤ a1 + a2 + a3 + a7. Let us consider the

case when 6 > a1 + a2 + a3 + a7. We could have (0, 0, 0, 2, 2, 2, 2), (0, 0, 0, 4, 4, 4, 4),

(0, 0, 2, 2, 2, 2, 2) or (1, 1, 1, 1, 1, 1, 1). Each one of those is covered by Case 1.

Case 3: If after rearranging a7−2 is the largest, but a6−2 is not the second largest

part, then a5 = a6. So we started with (a1, a2, a3, a4, a6, a6, a7) and now have

(a1−2, a2, a3, a4, a6−2, a6, a7−2). By Property 2, (a1−2, a2, a3, a4, a6−2, a6, a7−2)

is in S3 as long as a7 6= a1+a2+a3+a4+a5. When a7 = a1+. . .+a5 and a5 = a6 we

have types of the form (a1, a2, a3, a4, a7−(a1 + . . .+a4), a7−(a1 + . . .+a4), a7). By

Property 4, this implies a1 + . . .+a4 ≤ 0. Hence we must have (0, 0, 0, 0, a6, a6, a7)

and a7 ≤ a6 ≤ a7. Types (0, 0, 0, 0, a7, a7, a7) are discussed below as valid.

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, . . . , a7) satisfies 3a7 ≤ (a1+ . . .+a7), then (a1−2, a2, a3, a4, a5, a6−2, a7−2)

satisfies 3(a7 − 2) ≤ ((a1 − 2) + a2 + a3 + a4 + a5 + (a6 − 2) + (a7 − 2)). Problems

arising from rearranging of the terms are discussed under Property 2.
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This is also true for the remaining parts of the algorithm. Therefore, each time we

subtract we obtain an element of S3. When we reach (1, 1, 1, 1, 1, , ) or (0, 0, 0, 2, , , )

all four conditions are satisfied.

Here are some “building blocks” we will use throughout this Section.

(0, 0, 0, 0, 2, 2, 2):

M1: {{5, 6}, {5′, 7}, {6′, 7′}}

M2: {{5, 7′}, {5′, 6′}, {6, 7}}

M3: {{5, 6}, {5′, 7}, {6′, 7′}}

M4: {{5, 7′}, {5′, 6′}, {6, 7}}

M5: {{6, 7}, {6′, 7′}}

M6: {{5, 7′}, {5′, 7}}

M7: {{5, 6}, {5′, 6′}}

(0, 0, 0, 2, 2, 2, 2):

M1: {{4, 7}, {4′, 6}, {5′, 6′}, {5, 7′}}

M2: {{4, 5}, {4′, 5′}, {6, 7}, {6′, 7′}}

M3: {{4, 5}, {4′, 5′}, {6, 7}, {6′, 7′}}

M4: {{5, 7′}, {5′, 6′}, {6, 7}}

M5: {{4, 7}, {4′, 6}, {6′, 7′}}

M6: {{4, 7}, {4′, 5′}, {5, 7′}}

M7: {{4, 5}, {4′, 6}, {5′, 6′}}

(0, 0, 0, 0, 0, 0, 0, 2, 2, 2):

M1: {{8, 10}, {9, 10′}, {8′, 9′}}

M2: {{8, 9′}, {8′, 10′}, {9, 10}}
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M3: {{8, 9′}, {9, 10′}, {8′, 10}}

M4: {{8, 9′}, {8′, 10′}, {9, 10}}

M5: {{8, 9}, {8′, 10}, {9′, 10′}}

M6: {{8, 9}, {8′, 10}, {9′, 10′}}

M7: {{8, 10}, {8′, 9′}, {9, 10′}}

M8: {{9, 10}, {9′, 10′}}

M9: {{8, 10}, {8′, 10′}}

M10: {{8, 9}, {8′, 9′}}

Following is a list of 3-divisible-matchings of type (1, 1, 1, 1, 1, , ).

(1, 1, 1, 1, 1, 1, 1) given in Section 3.2.1

(1, 1, 1, 1, 1, 1, 3) :

M1: {{2, 7′}, {3, 4}, {5, 7′′}, {6, 7}}

M2: {{1, 7}, {3, 7′′}, {4, 7′}, {5, 6}}

M3: {{1, 2}, {4, 7′}, {5, 7′′}, {6, 7}}

M4: {{1, 7}, {2, 7′}, {3, 7′′}, {5, 6}}

M5: {{1, 2}, {3, 7′′}, {4, 7′}, {6, 7}}

M6: {{1, 7}, {2, 7′}, {3, 4}, {5, 7′′}}

M7: {{1, 2}, {3, 4}, {5, 6}}

(1, 1, 1, 1, 1, 3, 3) :

M1: {{2, 7′}, {3, 6′′}, {4, 7′′}, {5, 6}, {6′, 7}}

M2: {{1, 6′′}, {3, 7}, {4, 6′}, {5, 7′}, {6, 7′′}}

M3: {{1, 6′′}, {2, 7′}, {4, 7′′}, {5, 6}, {6′, 7}}

M4: {{1, 2}, {3, 6′′}, {5, 7′}, {6′, 7}, {6, 7′′}}
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M5: {{1, 6′′}, {2, 7′}, {3, 7}, {4, 6′}, {6, 7′′}}

M6: {{1, 2}, {3, 7}, {4, 7′′}, {5, 7′}}

M7: {{1, 2}, {3, 6′′}, {4, 6′}, {5, 6}}

(1, 1, 1, 1, 1, 5, 5) :

M1: {{2, 6′}, {3, 7′′}, {4, 6′′′}, {5, 7}, {6, 7′}, {6′′, 7′′′}, {64, 74}}

M2: {{1, 74}, {3, 7′′}, {4, 6′′′}, {5, 64}, {6, 7′}, {6′, 7}, {6′′, 7′′′}}

M3: {{1, 6}, {2, 6′}, {4, 7′}, {5, 7}, {6′′, 7′′′}, {6′′′, 7′′}, {64, 74}}

M4: {{1, 74}, {2, 7′′′}, {3, 6′′}, {5, 64}, {6, 7′}, {6′, 7}, {6′′′, 7′′}}

M5: {{1, 6}, {2, 7′′′}, {3, 6′′}, {4, 7′}, {6′, 7}, {6′′′, 7′′}, {64, 74}}

M6: {{1, 74}, {2, 7′′′}, {3, 7′′}, {4, 7′}, {5, 7}}

M7: {{1, 6}, {2, 6′}, {3, 6′′}, {4, 6′′′}, {5, 64}}

Following is a list of 3-divisible-matchings of types (0, 0, 0, 2, , , ) as well as

(0, 0, 2, 2, 2, 2, 2).

(0, 0, 2, 2, 2, 2, 2):

M1: {{3, 4}, {3′, 7}, {4′, 5′}, {5, 6}, {6′, 7′}}

M2: {{3, 7′}, {3′, 4′}, {4, 5}, {5′, 6′}, {6, 7}}

M3: {{4, 5}, {4′, 5′}, {6′, 7′}, {6, 7}}

M4: {{3, 7′}, {3′, 7}, {5′, 6′}, {5, 6}}

M5: {{3, 4}, {3′, 4′}, {6′, 7′}, {6, 7}}

M6: {{3, 7′}, {3′, 7}, {4′, 5′}, {4, 5}}

M7: {{3, 4}, {3′, 4′}, {5′, 6′}, {5, 6}}

(0, 0, 0, 0, 2, 2, 2) given above

(0, 0, 0, 0, a7, a7, a7)=a7
2 copies of (0, 0, 0, 0, 2, 2, 2)
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By Property 2, a 3-divisible-matching of type (0, 0, 0, 2, a5, a6, a7) exists if a5 ≥ a7 − 2.

(0, 0, 0, 2, a7, a7, a7) from (0, 0, 0, 2, 2, 2, 2) and (a7 − 2)/2 copies of (0, 0, 0, 0, 2, 2, 2)

(0, 0, 0, 2, a7 − 2, a7, a7) from (0, 0, 0, 2, 0, 2, 2) and (a7 − 2)/2 copies of (0, 0, 0, 0, 2, 2, 2)

This gives the 3-divisible-matchings of type (a1, . . . , a7).

3.2.3 Ten parts of any size

Let us now consider 3-divisible-matchings of type

K = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) where a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6 ≤ a7 ≤ a8 ≤

a9 ≤ a10. Since p = 10 is even, all parts must be of even size. Similar to the case of

seven parts, to find a 3-divisible-matching of type (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) we

use the following algorithm.

1. Check if the four necessary conditions are satisfied. If not, the matching does

not exist. If a1 = a2 = a3 = a4 = a5 = a6 = 0 and a7 = 0, 2 or K =

(0, 0, 0, 0, 0, 2, 2, 2, 2, 2) look up the matching in list provided. Otherwise continue

below.

2. For 0 ≤ i ≤ 6 repeat the following.

3. If 5a10 = 2n skip down to the Special Case 1 section. If a8 = a9 and a10 =

a1 + a2 + a3 + . . . + a8 skip down to Special Case 2 section. Otherwise continue

below.

4. Subtract (0i, 2, 07−i, 2, 2).

5. If necessary, rearrange the terms to ensure that the parts are in a nondecreasing

sequence.

55



6. Repeat steps 3-5 until you obtain (0i+1, 9−i) for 0 ≤ i ≤ 5 and (06, 2, 3) for i = 6

. If at any point K = (0, 0, 0, 0, 0, 2, 2, 2, 2, 2) look it up.

7. Stop when you reach (06, 2, , , ). The 3-divisible-matchings of type (06, 2, , , )

are listed below.

Let us consider the four necessary conditions during steps 4-6 of the algorithm.

1. p = 10 is not affected.

2. If (a1, a2, . . . , a10) satisfies 2a10 + a9 ≤ a1 + . . . + a10, then

(a1 − 2, a2, . . . , a9 − 2, a10 − 2) satisfies

2(a10 − 2) + (a9 − 2) ≤ (a1 − 2) + a2 + . . . + a8 + (a9 − 2) + (a10 − 2).

We are, however, rearranging the terms to ensure a nondecreasing sequence. Let

us consider the following cases:

Case 1: If after such rearranging a10 − 2 is not the largest, but the second

largest part, then a8 = a10. So we started with (a1, a2, . . . , a7, a10, a10, a10) and

now have (a1 − 2, a2, . . . , a7, a10 − 2, a10 − 2, a10). By Properties 2 and 4 (a1 −

2, a2, . . . , a7, a10−2, a10−2, a10) is in S3 as long as 4 ≤ a1 + . . .+a7 and 12−a10 ≤

2(a1 + . . . + a7). Let us consider the case when a1 + . . . + a7 < 4. We could have

(0, 0, 0, 0, 0, 0, 0, a10, a10, a10) or (0, 0, 0, 0, 0, 0, 2, a10, a10, a10). Each one of those is

discussed and shown to be in S3 below. Let us consider the case when 12− a10 >

2(a1 + · · ·+a7). We could have (0, 0, 0, 0, 0, 0, 0, 2, 2, 2), (0, 0, 0, 0, 0, 0, 0, 4, 4, 4), . . .,

(0, 0, 0, 0, 0, 0, 0, 10, 10, 10), (0, 0, 0, 0, 0, 0, 2, 2, 2, 2), (0, 0, 0, 0, 0, 0, 2, 4, 4, 4),

(0, 0, 0, 0, 0, 0, 2, 6, 6, 6) or (0, 0, 0, 0, 0, 2, 2, 2, 2, 2). Each one of those is shown to be

in S3.
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Case 2: If after rearranging a10 − 2 is not the largest or second largest part, then

a7 = a8 = a10. So we started with (a1, . . . , a6, a10, a10, a10, a10) and now have

(a1 − 2, a2, . . . , a10 − 2, a10 − 2, a10, a10). By Properties 2 and 4

(a1 − 2, a2, . . . , a10 − 2, a10 − 2, a10, a10) is in S3 as long as 6− a10 ≤ a1 + . . . + a6

and 12 − 3a10 ≤ 2(a1 + . . . + a6). Let us consider the case when 6 − a10 >

a1 + . . .+a6 or 12−3a10 > 2(a1 + . . .+a6). We could have (0, 0, 0, 0, 0, 0, 2, 2, 2, 2),

(0, 0, 0, 0, 0, 0, 4, 4, 4, 4) or (0, 0, 0, 0, 0, 2, 2, 2, 2, 2). Each one of those is in S3.

Case 3: If after rearranging a10 − 2 is the largest, but a9 − 2 is not the second

largest part, then a8 = a9. So we started with (a1, a2, . . . , a7, a9, a9, a10) and now

have (a1 − 2, a2, . . . , a7, a9 − 2, a9, a10 − 2).

By Property 2, (a1 − 2, a2, . . . , a7, a9 − 2, a9, a10 − 2) is in S3 as long as a10 6=

a1 + . . . + a7 + a9. The case when a10 = a1 + . . . + a7 + a9 and a8 = a9 is discussed

below as Special Case 2.

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, a2, . . . , a10) satisfies 5a10 < 2(a1+. . .+a10), then (a1−2, a2, . . . , a9−2, a10−2)

satisfies 5(a10 − 2) ≤ 2((a1 − 2) + a2 + . . . + (a9 − 2) + (a10 − 2)). If 5a10 = 2n

we refer to Special Case 1. Problems arising from rearranging of the terms are

discussed under Property 2.

Therefore, each time we repeat steps 2-6 we obtain an element of S3. Notice that the

above holds for remaining steps of the algorithm. So it is sufficient to give 3-divisible-

matchings of type (0, 0, 0, 0, 0, 0, 2, , , ) and consider the special cases mentioned above.
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Let us consider the Special Case 1.

We need to find 3-divisible-matchings for (a1, . . . , a10) satisfying the four necessary con-

ditions and 3a10 = 2(a1 + . . . + a9). Let us refer to these as matching type SP 31 ⊆ S3.

Say we need K = (a1, a2, . . . , a9,
2(a1+...+a9)

3 ) ∈ SP 31. We will build it by induction.

We start by subtracting (0, 0, 0, 0, 0, 0, 2, 2, 2, 4) to obtain K ′ = (a1, . . . , a6, a7 −

2, a8−2, a9−2, 2(a1+...+a9)
3 −4). As long as no rearranging is necessary K ′ is in SP 31. If

rearranging is necessary, we started with K = (a1, . . . , a5, a9, . . . , a9,
2(a1+...+a9)

3 ) and now

have K ′′ = (a1, . . . , a5, a9 − 2, a9 − 2, a9 − 2, a9,
2(a1+...+a9)

3 − 4). This is in SP 31 as long

as 6 ≤ a1 + . . .+a5 +a9. The only time 6 > a1 + . . .+a5 +a9 is for K = (06, 23, 4) which

is given. We need to consider if it is possible for a9 > 2(a1+...+a9)
3 − 4. This is equivalent

to 8 ≤ a1 + . . . + a8 which is true for all elements of SP 31 except K = (06, 23, 4). By

induction, this concludes Special Case 1. We take any element of SP 31 and subtract to

get a smaller element of SP 31.

Now let us consider Special Case 2.

If a8 = a9 and a10 = a1 + . . . + a7 + a9 we have types of the form

(a1, a2, . . . , a7, a10 − (a1 + . . . + a7), a10 − (a1 + . . . + a7), a10). We will construct a 3-

divisible-matching of such type as follows: a1/2 copies of (2, 0, 0, 0, 0, 0, 0, 2, 2, 4), a2/2

copies of (0, 2, 0, 0, 0, 0, 0, 2, 2, 4), . . ., a7/2 copies of (0, 0, 0, 0, 0, 0, 2, 2, 2, 4) and

(a10 − 2(a1 + . . . + a7))/2 copies of (0, 0, 0, 0, 0, 0, 0, 2, 2, 2). Notice that by Property 4

a10 ≥ 2(a1 + . . . + a7). This concludes Special Case 2.

The following are 3-divisible-matchings of type (0, 0, 0, 0, 0, 0, 2, , , ) and

(0, 0, 0, 0, 0, 2, 2, 2, 2, 2).

(0, 0, 0, 0, 0, 2, 2, 2, 2, 2):
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M1: {{6, 7}, {8, 9}, {6′, 10}, {7′, 8′}, {9′, 10′}}

M2: {{6, 10′}, {6′, 7′}, {7, 8}, {8′, 9′}, {9, 10}}

M3: {{6, 7}, {6′, 8}, {7′, 8′}, {9, 10}, {9′, 10′}}

M4: {{6, 7}, {6′, 8}, {7′, 8′}, {9, 10}, {9′, 10′}}

M5: {{6, 7}, {6′, 8}, {7′, 8′}, {9, 10}, {9′, 10′}}

M6: {{7, 8}, {7′, 8′}, {9, 10}, {9′, 10′}}

M7: {{6, 10′}, {6′, 10}, {8, 9}, {8′, 9′}}

M8: {{6, 7}, {6′, 7′}, {9, 10}, {9′, 10′}}

M9: {{6, 10′}, {6′, 10}, {7, 8}, {7′, 8′}}

M10: {{6, 7}, {6′, 7′}, {8, 9}, {8′, 9′}}

(0, 0, 0, 0, 0, 0, 0, 2, 2, 2) was given in Section 3.2.2

By Property 2, a 3-divisible-matching of type (0, 0, 0, 0, 0, 0, 0, a8, a9, a10) exists if a10 ≤

a8. Hence we must have (0, 0, 0, 0, 0, 0, 0, a10, a10, a10).

(0, 0, 0, 0, 0, 0, 0, a10, a10, a10) from a10/2 copies of (0, 0, 0, 0, 0, 0, 0, 2, 2, 2)

(0, 0, 0, 0, 0, 0, 2, 2, 2, 2):

M1: {{8, 9}, {7, 9′}, {8′, 10}, {7′, 10′}}

M2: {{7, 8}, {9′, 10′}, {9, 10}, {7′, 8′}}

M3: {{7, 10}, {7′, 9}, {8, 10′}, {8′, 9′}}

M4: {{7, 9′}, {7′, 10′}, {8, 9}, {8′, 10}}

M5: {{7, 8}, {7′, 8′}, {9′, 10′}, {9, 10}}

M6: {{7, 10}, {7′, 9}, {8′, 9′}, {8, 10′}}

M7: {{8, 9}, {8′, 10}, {9′, 10′}}

M8: {{7, 9′}, {9, 10}, {7′, 10′}}
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M9: {{7, 10}, {8, 10′}, {7′, 8′}}

M10: {{7, 8}, {7′, 9}, {8′, 9′}}

(0, 0, 0, 0, 0, 0, 2, 2, 2, 4):

M1: {{8, 10′′}, {7, 10′′′}, {8′, 9′}, {7′, 10′}, {9, 10}}

M2: {{7, 8}, {9, 10′}, {9′, 10}, {7′, 10′′}, {8′, 10′′′}}

M3: {{7, 10}, {7′, 9}, {8, 10′′}, {8′, 10′′′}, {9′, 10′}}

M4: {{7, 10′′′}, {7′, 10′}, {8, 10′′}, {8′, 9′}, {9, 10}}

M5: {{7, 8}, {9, 10′}, {9′, 10}, {7′, 10′′}, {8′, 10′′′}}

M6: {{7, 10}, {7′, 9}, {8, 10′′}, {8′, 10′′′}, {9′, 10′}}

M7: {{8, 10′′}, {8′, 10′′′}, {9′, 10′}, {9, 10}}

M8: {{7, 10′′′}, {9′, 10}, {7′, 10′′}, {9, 10′}}

M9: {{7, 10}, {8, 10′′}, {7′, 10′}, {8′, 10′′′}}

M10: {{7, 8}, {7′, 9}, {8′, 9′}}

By Property 2, a 3-divisible-matching of type (0, 0, 0, 0, 0, 0, 2, a8, a9, a10) exists if a8 ≥

a10 − 2.

(0, 0, 0, 0, 0, 0, 2, a10, a10, a10) from (0, 0, 0, 0, 0, 0, 2, 2, 2, 2) and (a10 − 2)/2 copies of

(0, 0, 0, 0, 0, 0, 0, 2, 2, 2)

(0, 0, 0, 0, 0, 0, 2, a10 − 2, a10, a10) from (0, 0, 0, 0, 0, 0, 2, 0, 2, 2) and (a10 − 2)/2 copies of

(0, 0, 0, 0, 0, 0, 0, 2, 2, 2)

Clearly a10 − 2 ≥ 0 since a10 ≥ 2.

(0, 0, 0, 0, 0, 0, 2, a10 − 2, a10 − 2, a10) from (0, 0, 0, 0, 0, 0, 2, 2, 2, 4) and (a10 − 4)/2 copies

of (0, 0, 0, 0, 0, 0, 0, 2, 2, 2)

Similarly, a10 − 4 ≥ 0 since a10 − 2 ≥ 2.
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Hence we have 3-divisible-matchings of type (a1, . . . , a10).

3.2.4 p ≡ 1 (mod 6) parts of any size

In this Section we will give a general construction of 3-divisible-matchings of type

(a1, . . . , a6h+1) for any positive integer h ≥ 2. Since p ≡ 1 (mod 6) we can have all parts

of even size or all parts of odd size. We will need “building blocks” similar to the ones

used before.

(06h−2, 2, 2, 2): from Lemma 3.4

(06h−3, 2, 2, 2, 2): from Lemma 3.4

Notice that when p = 6h + 1 condition 4 becomes 2hap ≤ (2h− 1)(a1 + . . . + ap−1)

and condition 2 remains ap ≤ a1 + . . .+ap−2. We can construct a 3-divisible-matching of

type (0, 0, 0, a4, . . . , ap) inductively. We start with the 3-divisible-matching (a4, . . . , ap)

(as long as it exists) and apply Lemma 3.4.

To find a 3-divisible-matching of type (a1, . . . , a6h+1) we use the following algorithm.

1. Check if the four necessary conditions are satisfied. If not, the matching does

not exist. If a1 = . . . = ap−4 = 0, ap−3 = 2 or a1 = . . . = ap−2 = 1 or K =

(06h−4, 2, 2, 2, 2, 2) or K = (06h−4, 2, 2, 2, 2, 6) look up the matching in list provided.

Otherwise continue below.

2. If 2hap = (2h− 1)(a1 + . . .+ap−1)− 2c for 0 ≤ c ≤ 2h− 3 skip down to the Special

Case (c + 1) section.

If ap−2 = ap−1 and ap = a1 + . . .+ap−2 skip down to Special Case (2h−1) section.

Otherwise continue below.

3. Subtract (2, 06h−2, 2, 2) to obtain (a1 − 2, a2, . . . , ap−1 − 2, ap − 2).
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4. If necessary, rearrange the terms to ensure a nondecreasing sequence.

5. Repeat steps 2-4 until you obtain (0, 6h) or (1, 6h).

6. If 2hap = (2h− 1)(a1 + . . .+ap−1)− 2c for 0 ≤ c ≤ 2h− 3 skip down to the Special

Case (c + 1) section.

If ap−2 = ap−1 and ap = a1 + . . .+ap−2 skip down to Special Case (2h−1) section.

Otherwise continue below.

7. For 6h− 3 ≥ j ≥ 1 repeat the following steps.

8. Subtract (06h−2−j , 2, 0j , 2, 2).

9. If necessary, rearrange the terms to ensure the sequence is nondecreasing.

10. Stop when you obtain (06h−3, 2, , , ) or (16h−1, , ).

11. The 3-divisible-matchings of type (06h−3, 2, , , ) and (16h−1, , ) will need to be

given.

Let us consider the four necessary conditions during steps 2-5 of the algorithm.

1. p = 6h + 1 is not affected.

2. If (a1, . . . , ap) satisfies ap ≤ a1 + . . . + ap−2, then (a1 − 2, a2, . . . , ap−1 − 2, ap − 2)

satisfies ap − 2 ≤ a1 − 2 + a2 + . . . + ap−2. We are, however, rearranging the terms

to ensure a nondecreasing sequence. Let us consider the following cases:

Case 1: If after such rearranging ap − 2 is not the largest, but the second largest

part, then ap−2 = ap. So we started with (a1, . . . , ap−3, ap, ap, ap) and now have

(a1 − 2, a2, . . . , ap−3, ap − 2, ap − 2, ap). By Properties 2 and 4, this is in S3 as
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long as 4 ≤ a1 + . . . + ap−3 and 12h− 6− (2h− 2)ap ≤ (2h− 1)(a1 + . . . + ap−3),

which is equivalent to a1 + . . .+ap−3 ≥ 6− 2h−2
2h−1ap. Let us consider the cases when

4 > a1+. . .+ap−3 or a1+. . .+ap−3 < 6− 2h−2
2h−1ap. We could have (06h−2, ap, ap, ap),

(06h−3, 2, ap, ap, ap) or (06h−4, 2, 2, 2, 2, 2). Each one of those is in S3.

Case 2: If after rearranging ap − 2 is not the largest or second largest part,

then ap−3 = ap. So we started with (a1, . . . , ap−4, ap, ap, ap, ap) and now have

(a1 − 2, a2, . . . , ap−4, ap − 2, ap − 2, ap, ap). By Properties 2 and 4, this is in S3 as

long as 6− ap ≤ a1 + . . . + ap−4 and 6− 4h−3
2h−1ap ≤ a1 + . . . + ap−4. Let us consider

the cases when 6− ap > a1 + . . . + ap−4 or 6− 4h−3
2h−1ap > a1 + . . . + ap−4. We could

have (06h−3, 2, 2, 2, 2), (06h−3, 4, 4, 4, 4) or (06h−4, 2, 2, 2, 2, 2). Each one of those is

in S3.

Case 3: If after rearranging ap − 2 is the largest, but ap−1 − 2 is not the second

largest part, then ap−2 = ap−1. So we started with (a1, . . . , ap−3, ap−1, ap−1, ap)

and now have (a1 − 2, a2, . . . , ap−3, ap−1 − 2, ap−1, ap − 2). By Property 2, this is

in S3 as long as ap 6= a1 + . . . + ap−2. The case when ap = a1 + . . . + ap−2 and

ap−2 = ap−1 is discussed below as Special Case (2h− 1).

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, . . . , ap) satisfies 2hap ≤ (2h − 1)(a1 + . . . + ap−1) − 4(h − 1), then (a1 −

2, a2, . . . , ap−2, ap−1− 2, ap− 2) satisfies 2h(ap− 2) ≤ (2h− 1)(a1 + . . . + ap−1− 4).

Each Special Case (c + 1) section covers the instances when 2hap = (2h− 1)(a1 +

. . . + ap−1) − 2c for 0 ≤ c ≤ 2h − 3. Problems arising from rearranging the terms

are discussed under condition 2.
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Therefore, each time we repeat steps 2-5 we obtain an element of S3. Notice that

the above holds for the remaining steps of the algorithm. So it is sufficient to give 3-

divisible-matchings of type (06h−3, 2, , , ) and (16h−1, , ) and consider the special cases

mentioned above.

Let us consider the Special Case (c + 1) for 0 ≤ c ≤ 2h− 3.

We need to find 3-divisible-matchings for (a1, . . . , ap) satisfying the four necessary

conditions and 2hap = (2h−1)(a1+. . .+ap−1)−2c. Let us refer to these as matching type

SP 3(c+1) ⊆ S3. Say we need K = (a1, a2, . . . , ap−1,
(2h−1)(a1+...+ap−1)−2c

2h ) ∈ SP 3(c+1).

We will build it by induction.

We consider parts of odd size first. We start by subtracting R1 = (14h+c, 32h−c, 10h−

5−2c) to obtain K ′ = (a1−1, . . . , a4h+c−1, a4h+c+1−3, . . . , a6h−3,
(2h−1)(a1+...+ap−1)−2c

2h −

(10h−5−2c)). Since necessary conditions 2 and 4 were satisfied in K, they are still sat-

isfied in K ′. Also, K ′ ∈ SP 31. However, if rearranging is necessary and we obtain K ′′ =

(a1−1, . . . , a4h+c+1−3, a4h+c+2−3, . . . , a6h−3, a4h+c−1,
(2h−1)(a1+...+ap−1)−2c

2h −(10h−5−

2c)) instead of K ′, we must have a4h+c−1 = a6h−3+2 or a4h+c = a6h. Hence we started

with K = (a1, . . . , a4h+c−1, a6h, . . . , a6h,
(2h−1)(a1+...+ap−1)−2c

2h ). In this case instead of

subtracting R1 = (14h+c, 32h−c, 10h−5−2c), we subtract R2 = (12h+c, 34h−c, 14h−7−2c)

to obtain K ′ = (a1 − 1, . . . , a2h+c − 1, a2h+c+1 − 3, . . . , a6h − 3,
(2h−1)(a1+...+ap−1)−2c

2h −

(14h − 7 − 2c)). Notice that as long as no rearranging is necessary, K ′ ∈ SP 31. How-

ever, if rearranging is necessary and results in K ′′ = (a1 − 1, . . . , a2h+c−1 − 1, a2h+c+1 −

3, . . . , a6h−3, a2h+c−1,
(2h−1)(a1+...+ap−1)−2c

2h − (14h−7−2c)) we must have a2h+c = a6h.

So we started with K = (a1, . . . , a2h+c−1, a6h, . . . , a6h,
(2h−1)(a1+...+ap−1)−2c

2h ) and now

64



have K ′′ = (a1 − 1, . . . , a2h+c−1 − 1, a6h − 3, . . . , a6h − 3, a6h,
(2h−1)(a1+...+ap−1)−2c

2h ). Sat-

isfying the conditions 2 and 4, this K ′′ is always in SP 31. This shows that when we

complete this step, we obtain an element of SP k1.

For parts of even size we start by subtracting (04h+c, 22h−c, 4h − 2 − 2c) to ob-

tain K ′ = (a1, . . . , a4h+c, a4h+c+1 − 2, . . . , a6h − 2,
(2h−1)(a1+...+ap−1)−2c

2h − (4h− 2− 2c)).

As long as no rearranging is necessary K ′ is in SP 31. If rearranging is necessary,

we started with K = (a1, . . . , a4h+c−1, a6h, . . . , a6h,
(2h−1)(a1+...+ap−1)−2c

2h ) and now have

K ′′ = (a1, . . . , a4h+c−1, a6h − 2, . . . , a6h − 2, a6h,
(2h−1)(a1+...+ap−1)−2c

2h − (4h − 2 − 2c)).

This is in SP 31. Notice that no matter what SP 3(c + 1) we start with, after the first

subtraction, we will continue the induction process with SP 31 (i.e. c = 0).

By induction, this concludes Special Case (c+1). We take any element of SP 3(c+1)

and subtract to get a smaller element of SP 31.

Now let us consider Special Case (2h− 1).

If ap−2 = ap−1 and ap = a1 + . . . + ap−2 we have types of the form (a1, a2, . . . , ap−3, ap−

(a1 + . . . + ap−3), ap − (a1 + . . . + ap−3), ap). We will construct a 3-divisible-matching

of such type as follows: aj/2 copies of (0j−1, 2, 06h−2−j , 2, 2, 4) for each 1 ≤ j ≤ 6h− 2,

and ap − 2(a1 + . . . + ap−3)/2 copies of (06h−2, 2, 2, 2). Notice that by Property 4, ap ≥

2(a1 + . . . + ap−3). This concludes Special Case (2h− 1).

The following are 3-divisible-matchings of type (06h−3, 2, , , ) and (16h−1, , ) and

other matchings used in the above construction.

(06h−2, 2, 2, 2): from Lemma 3.4

By Property 2, a 3-divisible-matching of type (06h−2, ap−2, ap−1, ap) exists if ap ≤ ap−2.

Hence we must have (06h−2, ap, ap, ap).
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(06h−2, ap, ap, ap) from ap/2 copies of (06h−2, 2, 2, 2)

(06h−3, 2, 2, 2, 2): from Lemma 3.4

(06h−3, 2, 2, 2, 4): from Lemma 3.4

By Property 2, a 3-divisible-matching of type (06h−3, 2, ap−2, ap−1, ap) exists if ap−2 ≥

ap − 2.

(06h−3, 2, ap, ap, ap) from (06h−3, 2, 2, 2, 2) and (ap − 2)/2 copies of (06h−2, 2, 2, 2)

(06h−3, 2, ap − 2, ap, ap) from (06h−3, 2, 0, 2, 2) and (ap − 2)/2 copies of (06h−2, 2, 2, 2)

Since ap ≥ 2, ap − 2 ≥ 0.

(06h−3, 2, ap − 2, ap − 2, ap) from (06h−3, 2, 2, 2, 4) and (ap − 4)/2 copies of (06h−2, 2, 2, 2)

Since ap − 2 ≥ 2, ap − 4 ≥ 0.

(06h−4, 2, 2, 2, 2, 2): from Lemma 3.4

(06h−4, 2, 2, 2, 2, 6): from Lemma 3.4

(04h, 22h, 4h− 2): Needed; not yet found.

The remaining (04h+c, 22h−c, 4h− 2− 2c) for 0 < c ≤ 2h− 3 are obtained from Lemma

3.4

(16h+1): given in Section 3.2.1

(14h+c, 32h−c, 10h− 5− 2c): Needed; not yet found.

(12h+c, 34h−c, 7h, 14h− 7− 2c): Needed; not yet found.

In the following families of matchings we use i, j odd.

For 3 ≤ i ≤ 6h− 3, (16h, i): Needed; not yet found.

For 3 ≤ i ≤ 6h− 1 and 3 ≤ j ≤ i, (16h−1, j, i): Needed; not yet found.

Once the above missing matchings are found, we will have 3-divisible-matchings of

type (a1, . . . , a6h+1).
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3.2.5 p ≡ 4 (mod 6) parts of any size

In this Section we will give a general construction of 3-divisible-matchings of type

(a1, . . . , a6h+4) for any positive integer h ≥ 2. Since p ≡ 4 (mod 6) we can only have all

parts of even size. We will use “building blocks” similar to the ones above.

(06h+1, 2, 2, 2): from Lemma 3.4

(06h, 2, 2, 2, 2): from Lemma 3.4

Notice that when p = 6h+4 condition 4 becomes (2h+1)ap ≤ 2h(a1+. . .+ap−1) and

condition 2 remains ap ≤ a1 + . . .+ap−2. We can still construct a 3-divisible-matching of

type (0, 0, 0, a3, . . . , ap) inductively. We start with the 3-divisible-matching (a3, . . . , ap)

(as long as it exists) and apply Lemma 3.4.

To find a 3-divisible-matching of type (a1, . . . , a6h+4) we use the following algorithm.

1. Check if the four necessary conditions are satisfied. If not, the matching does

not exist. If a1 = . . . = ap−4 = 0, ap−3 = 2 or K = (06h−1, 2, 2, 2, 2, 2) or K =

(06h−1, 2, 2, 2, 2, 6) look up the matching in list provided. Otherwise continue below.

2. If (2h + 1)ap = 2h(a1 + . . . + ap−1) − 2c, for 0 ≤ c ≤ 2h − 2, skip down to the

Special Case (c + 1) section.

If ap−2 = ap−1 and ap = a1 + . . . + ap−2 skip down to Special Case (2h) section.

Otherwise continue below.

3. Subtract (2, 06h+1, 2, 2) to obtain (a1 − 2, a2, . . . , ap−1 − 2, ap − 2).

4. If necessary, rearrange the terms to ensure a nondecreasing sequence.

5. Repeat steps 2-4 until you obtain (0, 6h+3).
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6. If (2h+1)ap = 2h(a1 + . . .+ap−1)− 2c for 0 ≤ c ≤ 2h− 2 skip down to the Special

Case (c + 1) section.

If ap−2 = ap−1 and ap = a1 + . . . + ap−2 skip down to Special Case (2h) section.

Otherwise continue below.

7. For 6h ≥ j ≥ 1 repeat the following steps.

8. Subtract (06h+1−j , 2, 0j , 2, 2).

9. If necessary, rearrange the terms to ensure the sequence is nondecreasing.

10. Stop when you obtain (06h, 2, , , ).

11. The 3-divisible-matchings of type (06h, 2, , , ) will need to be given.

Let us consider the four necessary conditions during steps 2-5 of the algorithm.

1. p = 6h + 4 is not affected.

2. If (a1, . . . , ap) satisfies ap ≤ a1 + . . . + ap−2, then (a1 − 2, a2, . . . , ap−1 − 2, ap − 2)

satisfies ap − 2 ≤ a1 − 2 + a2 + . . . + ap−2. We are, however, rearranging the terms

to ensure a nondecreasing sequence. Let us consider the following cases:

Case 1: If after such rearranging ap − 2 is not the largest, but the second largest

part, then ap−2 = ap. So we started with (a1, . . . , ap−3, ap, ap, ap) and now have

(a1− 2, a2, . . . , ap−3, ap− 2, ap− 2, ap). By Properties 2 and 4, this is in S3 as long

as 4 ≤ a1 + . . . + ap−3 and a1 + . . . + ap−3 ≥ 6 − 2h−1
2h ap. Let us consider the

cases when 4 > a1 + . . . + ap−3 or a1 + . . . + ap−3 < 6 − 2h−1
2h ap. We could have

(06h+1, ap, ap, ap), (06h, 2, ap, ap, ap) or (06h−1, 2, 2, 2, 2, 2). Each one of those is in

S3.
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Case 2: If after rearranging ap − 2 is not the largest or second largest part,

then ap−3 = ap. So we started with (a1, . . . , ap−4, ap, ap, ap, ap) and now have

(a1 − 2, a2, . . . , ap−4, ap − 2, ap − 2, ap, ap). By Properties 2 and 4, this is in S3 as

long as 6− ap ≤ a1 + . . . + ap−4 and 6− 4h−1
2h ap ≤ a1 + . . . + ap−4. Let us consider

the cases when 6− ap > a1 + . . . + ap−4 or 6− 4h−1
2h ap > a1 + . . . + ap−4. We could

have (06h, 2, 2, 2, 2), (06h, 4, 4, 4, 4) or (06h, 2, 2, 2, 2, 2). Each one of those is in S3.

Case 3: If after rearranging ap − 2 is the largest, but ap−1 − 2 is not the second

largest part, then ap−2 = ap−1. So we started with (a1, . . . , ap−3, ap−1, ap−1, ap)

and now have (a1 − 2, a2, . . . , ap−3, ap−1 − 2, ap−1, ap − 2). By Property 2, this is

in S3 as long as ap 6= a1 + . . . + ap−2. The case when ap = a1 + . . . + ap−2 and

ap−2 = ap−1 is discussed below as Special Case (2h).

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, . . . , ap) satisfies (2h + 1)ap ≤ 2h(a1 + . . . + ap−1) − 2(2h − 1), then (a1 −

2, a2, . . . , ap−2, ap−1− 2, ap− 2) satisfies (2h + 1)(ap− 2) ≤ 2h(a1 + . . . + ap−1− 4).

Each Special Case (c + 1) section covers the instances when (2h + 1)ap = 2h(a1 +

. . . + ap−1) − 2c for 0 ≤ c ≤ 2h − 2. Problems arising from rearranging the terms

are discussed under condition 2.

Therefore, each time we repeat steps 2-5 we obtain an element of S3. Notice that the

above holds for the remaining steps of the algorithm. So it is sufficient to give 3-divisible-

matchings of type (06h, 2, , , ) and consider the special cases mentioned above.

Let us consider the Special Case (c + 1).
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As with p = 1 (mod 6) we define the set SP 3(c + 1) as the set of all matching types

satisfying the four necessary conditions and (2h+1)ap = 2h(a1+. . .+ap−1)−2c. We con-

struct a 3-divisible-matching of type K = (a1, . . . , a6h+4) ∈ SP 3(c + 1) by induction. We

start by subtracting (04h+c+2, 22h−c+1, 4h−2c) to obtain K ′ = (a1, . . . , a4h+c+2, a4h+c+3−

2, . . . , a6h+3 − 2,
(2h)(a1+...+ap−1)−2c

2h+1 − (4h− 2c)). As long as no rearranging is necessary

K ′ is in SP 31. If rearranging is necessary, we started with

K = (a1, . . . , a4h+c+1, a6h+3, . . . , a6h+3,
(2h)(a1+...+ap−1)−2c

2h+1 ) and now have

K ′′ = (a1, . . . , a4h+c+1, a6h+3 − 2, . . . , a6h+3 − 2, a6h+3,
(2h)(a1+...+ap−1)−2c

2h+1 − (4h − 2c)).

This is always in SP 31. Notice that no matter what SP 3(c + 1) we start with, after the

first subtraction, we will continue the induction process with SP 31 (i.e. c = 0). This

concludes the inductive argument, since each time we repeat this process we obtain a

smaller element of SP 31. Thus Special Case (c + 1) is solved.

Now let us consider Special Case (2h).

If ap−2 = ap−1 and ap = a1 + . . . + ap−2 we have types of the form (a1, a2, . . . , ap−3, ap−

(a1 + . . . + ap−3), ap − (a1 + . . . + ap−3), ap). We will construct a 3-divisible-matching of

such type as follows: aj/2 copies of (0j−1, 2, 06h+1−j , 2, 2, 4) for each 1 ≤ j ≤ 6h+1, and

ap − 2(a1 + . . . + ap−3)/2 copies of (06h+1, 2, 2, 2). This concludes Special Case (2h).

The following are 3-divisible-matchings of type (06h, 2, , , ) and other matchings

used above.

(06h+1, 2, 2, 2): from Lemma 3.4

By Property 2, a 3-divisible-matching of type (06h+1, ap−2, ap−1, ap) exists if ap ≤ ap−2.

Hence we must have (06h+1, ap, ap, ap).

(06h+1, ap, ap, ap) from ap/2 copies of (06h+1, 2, 2, 2)
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(06h, 2, 2, 2, 2): from Lemma 3.4

(06h, 2, 2, 2, 4): from Lemma 3.4

By Property 2, a 3-divisible-matching of type (06h, 2, ap−2, ap−1, ap) exists if ap−2 ≥

ap − 2.

(06h, 2, ap, ap, ap) from (06h, 2, 2, 2, 2) and (ap − 2)/2 copies of (06h+1, 2, 2, 2)

(06h, 2, ap − 2, ap, ap) from (06h, 2, 0, 2, 2) and (ap − 2)/2 copies of (06h+1, 2, 2, 2)

Since ap ≥ 2, ap − 2 ≥ 0.

(06h, 2, ap − 2, ap − 2, ap) from (06h, 2, 2, 2, 4) and (ap − 4)/2 copies of (06h+1, 2, 2, 2)

Since ap − 2 ≥ 2, ap − 4 ≥ 0.

(06h−1, 2, 2, 2, 2, 2): from Lemma 3.4

(06h−1, 2, 2, 2, 2, 6): from Lemma 3.4 For c ≥ 1 we have (04h+c+2, 22h−c+1, 4h− 2c) from

Lemma 3.4

(04h+2, 22h+1, 4h): Needed; not yet found.

Therefore we have 3-divisible-matchings for p = 4 (mod 6). Once the missing

matchings are found, this will prove the sufficiency of the necessary conditions listed in

Section 3.1.

3.3 k-divisible-matchings

When p ≡ 1 (mod 2k), say p = 2kh + 1, Property 4 is 2khap ≤ (2kh − k)(a1 +

. . . + ap−1) and when p ≡ (1 + k) (mod 2k), say p = 2kh + k + 1, it is (2kh + k)ap ≤

(2kh)(a1 + . . . + ap−1).

71



3.3.1 Any number of parts of the same size

For the case of same sized parts we need to construct k-divisible-matchings of types

(12k+1), (22k+1) and (23k+1). Following are those matchings.

(12k+1):

M1: {{2, 3}, {4, 5}, . . . , {2k, 2k + 1}}

For 1 ≤ i ≤ k:

M2i: {{2i + 1, 2i + 2}, {2i + 3, 2i + 4}, . . . , {2k + 1, 1}, . . . , {2i− 2, 2i− 1}}

For 1 ≤ i ≤ k − 1:

M2i+1: {{2i + 2, 2i + 3}, {2i + 4, 2i + 5}, . . . , {2k, 2k + 1}, . . . , {2i− 1, 2i}}

And finally,

M2k+1: {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}

(22k+1):

M1: {{2, 3}, {4, 5}, . . . , {2k, 2k + 1} {2′, 3′}, {4′, 5′}, . . . , {(2k)′, (2k + 1)′}}

For 1 ≤ i ≤ k:

M2i: {{2i + 1, 2i + 2}, {2i + 3, 2i + 4}, . . . , {2k + 1, 1}, . . . , {2i− 2, 2i− 1},

{(2i + 1)′, (2i + 2)′}, {(2i + 3)′, (2i + 4)′}, . . . , {(2k + 1)′, 1′}, . . . , {(2i− 2)′, (2i− 1)′}}

For 1 ≤ i ≤ k − 1:

M2i+1: {{2i + 2, 2i + 3}, {2i + 4, 2i + 5}, . . . , {2k, 2k + 1}, {1, 2}, . . . , {2i− 1, 2i},

{(2i+2)′, (2i+3)′}, {(2i+4)′, (2i+5)′}, . . . , {(2k)′, (2k+1)′}, {1′, 2′}, . . . , {(2i−1)′, (2i)′}}

And finally,

M2k+1: {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}, {1′, 2′}, {3′, 4′}, . . . , {(2k − 1)′, (2k)′}}

It is clear that each edge shows up k times. Take an edge (a, a+1) or (a′, (a+1)′) it will

only show up in Mi for all odd i or all even i. It will also not show up in Ma or Ma+1.
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(23k+1):

M1: {{2, 3}, {2′, 4}, {3′, 4′}, . . . , {3k − 1, 3k}, {(3k − 1)′, 3k + 1}, {(3k)′, (3k + 1)′}}

M2: {{3, 4}, {3′, 5}, {4′, 5′}, . . . , {3k, 3k + 1}, {(3k)′, 1}, {(3k + 1)′, 1′}}

M3: {{4, 5}, {4′, 6}, {5′, 6′}, . . . , {3k + 1, 1}, {(3k + 1)′, 2}, {1′, 2′}}

For 2 ≤ i ≤ k:

M3i−1: {{3i, 3i + 1}, {(3i)′, 3i + 2}, {(3i + 1)′, (3i + 2)′}, . . . , {3k, 3k + 1}, {(3k)′, 1},

{(3k + 1)′, 1′}, {2, 3}, {2′, 4}, {3′, 4′}, . . . , {3i− 4, 3i− 3}, {(3i− 4)′, 3i− 2},

{(3i− 3)′, (3i− 2)′}}

For 2 ≤ i ≤ k:

M3i: {{3i + 1, 3i + 2}, {(3i + 1)′, 3i + 3}, {(3i + 2)′, (3i + 3)′}, . . . , {3k + 1, 1},

{(3k + 1)′, 2}, {1′, 2′}, {3, 4}, {3′, 5}, {4′, 5′}, . . . , {3i− 3, 3i− 2}, {(3i− 3)′, 3i− 1},

{(3i− 2)′, (3i− 1)′}}

For 1 ≤ i ≤ k − 1:

M3i+1: {{3i + 2, 3i + 3}, {(3i + 2)′, 3i + 4}, {(3i + 3)′, (3i + 4)′}, . . . , {3k − 1, 3k},

{(3k − 1)′, 3k + 1}, {(3k)′, (3k + 1)′}, {1, 2}, {1′, 3}, {2′, 3′}, . . . , {3i− 2, 3i− 1},

{(3i− 2)′, 3i}, {(3i− 1)′, (3i)′}}

And finally,

M3k+1: {{1, 2}, {1′, 3}, {2′, 3′}, . . . , {3k − 2, 3k − 1} {(3k − 2)′, 3k}, {(3k − 1)′, (3k)′}}

Each edge appears 3k+1−1
3 = k times. Hence it is a k-divisible-matching.
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3.3.2 2k + 1 parts of any size

In this Section we will give k-divisible-matchings of type K = (a1, a2, . . . , a2k+1). We

can have all parts of even size or all parts of odd size. We will use a similar algorithm as for

even matchings to construct a k-divisible-matching from (02k−3, 2, , , ) or (12k−1, , ).

1. Check if the four necessary conditions are satisfied. If not, the matching does

not exist. If a1 = . . . = a2k−3 = 0, and a2k−2 = 0, 2, a1 = . . . = a2k−2 = 1 or

K = (02k−4, 2, 2, 2, 2, 2) look up the matching in list provided. Otherwise continue

below.

2. For 0 ≤ i ≤ 2k − 3 repeat the following steps.

3. Subtract (0i, 2, 02k−2−i, 2, 2) and rearrange terms when necessary until you obtain

(02k−3, 2, , , ) or (12k−1, , , ). Look the appropriate ones up in list provided.

If at any point K = (02k−4, 2, 2, 2, 2, 2) look it up.

4. Subtract (02k−2, 2, 2, 2) and rearrange terms when necessary until you obtain (12k−1, , ).

Look it up.

Let us consider the four necessary conditions during the first part of the “subtracting

process.” Notice that for p = 2k + 1 condition 4 becomes 3a2k+1 ≤ n.

1. p = 2k + 1 is not affected.

2. If (a1, a2, . . . , a2k+1) satisfies 2a2k+1 + a2k ≤ a1 + . . . + a2k + a2k+1, then

(a1−2, a2, . . . , a2k−2, a2k+1−2) satisfies 2(a2k+1−2)+(a2k−2) ≤ (a1−2)+a2 +

. . . + (a2k − 2) + (a2k+1 − 2). We are, however, rearranging the terms to ensure a

nondecreasing sequence. Let us consider the following cases:
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Case 1: If after such rearranging a2k+1−2 is not the largest, but the second largest

part, then a2k−1 = a2k+1. So we started with (a1, a2, . . . , a2k+1, a2k+1, a2k+1)

and now have (a1 − 2, a2, . . . , a2k+1 − 2, a2k+1 − 2, a2k+1). By Properties 2 and

4 (a1− 2, a2, . . . , a2k+1− 2, a2k+1− 2, a2k+1) is in Sk as long as 6 ≤ a1 + a2 + . . . +

a2k−2. Let us consider the case when a1 + a2 + . . . + a2k−2 < 6. We could have

(02k−2, a2k+1, a2k+1, a2k+1), (02k−3, 2, a2k+1, a2k+1, a2k+1),

(02k−3, 4, a2k+1, a2k+1, a2k+1), or (02k−4, 2, 2, a2k+1, a2k+1, a2k+1). Each one of those

is discussed and shown to be in Sk below.

Case 2: If after rearranging a2k+1−2 is not the largest or second largest part, then

a2k−2 = a2k−1 = a2k+1. So we started with (a1, a2, . . . , a2k+1, a2k+1, a2k+1, a2k+1)

and now have (a1−2, a2, . . . , a2k+1−2, a2k+1−2, a2k+1, a2k+1). By Properties 2 and

4 (a1−2, a2, . . . , a2k+1−2, a2k+1−2, a2k+1, a2k+1) is in Sk as long as 6 ≤ a1 +a2 +

. . .+a2k−3 +a2k+1. Let us consider the case when 6 > a1 +a2 + . . .+a2k−3 +a2k+1.

We could have (02k−3, 2, 2, 2, 2), (02k−3, 4, 4, 4, 4), or (02k−4, 2, 2, 2, 2, 2). Each one

of those is covered by Case 1.

Case 3: If after rearranging a2k+1 − 2 is the largest, but a2k − 2 is not the second

largest part, then a2k−1 = a2k. So we started with (a1, a2, . . . , a2k−2, a2k, a2k, a2k+1)

and now have (a1 − 2, a2, . . . , a2k−2, a2k − 2, a2k, a2k+1 − 2). By Property 2,

(a1 − 2, a2, . . . , a2k−2, a2k − 2, a2k, a2k+1 − 2) is in Sk as long as a2k+1 6= a1 + a2 +

. . . + a2k−2 + a2k. When a2k+1 = a1 + a2 + . . . + a2k−2 + a2k and a2k−1 = a2k we

have types of the form

(a1, a2, . . . , a2k−2, a2k+1 − (a1 + . . . + a2k−2), a2k+1 − (a1 + . . . + a2k−2), a2k+1).

By Property 4 this implies a1 + a2 + . . . + a2k−2 ≤ 0. Hence we must have
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(02k−2, a2k, a2k, a2k+1) and by Property 2, a2k+1 ≤ a2k ≤ a2k+1. Types

(02k−2, a2k+1, a2k+1, a2k+1) are discussed below as valid.

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, a2, . . . , a2k, a2k+1) satisfies 3a2k+1 ≤ (a1 + a2 + . . . + a2k+1), then (a1 −

2, a2, . . . , a2k−2, a2k+1−2) satisfies 3(a2k+1−2) ≤ ((a1−2)+a2 + . . .+(a2k−2)+

(a2k+1 − 2)). Problems arising from rearranging of the terms are discussed under

Property 2.

This is also true for the remaining parts of the algorithm. Therefore, each time we

subtract we obtain an element of Sk.

We will need the following “building blocks.”

(02k−2, 2, 2, 2):

For 1 ≤ i ≤ k − 1:

M2i−1: {{2k − 1, 2k}, {(2k − 1)′, 2k + 1}, {(2k)′, (2k + 1)′}}

M2i: {{2k − 1, (2k + 1)′}, {(2k − 1)′, (2k)′}, {2k, 2k + 1}}

And finally,

M2k−1: {{2k, 2k + 1}, {(2k)′, (2k + 1)′}}

M2k: {{2k − 1, (2k + 1)′}, {(2k − 1)′, 2k + 1}}

M2k+1: {{2k − 1, 2k}, {(2k − 1)′, (2k)′}}

(02k−3, 2, 2, 2, 2):

For 1 ≤ i ≤ k − 1:

M2i−1: {{2k − 2, 2k − 1}, {(2k − 2)′, (2k − 1)′}, {2k, 2k + 1}, {(2k)′, (2k + 1)′}}

For 1 ≤ i ≤ k − 2:
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M2i: {{2k − 2, 2k + 1}, {(2k − 2)′, 2k}, {(2k − 1)′, (2k)′}, {2k − 1, (2k + 1)′}}

M2k−2: {{2k − 1, (2k + 1)′}, {(2k − 1)′, (2k)′}, {2k, 2k + 1}}

M2k−1: {{2k − 2, 2k + 1}, {(2k − 2)′, 2k}, {(2k)′, (2k + 1)′}}

M2k: {{2k − 2, 2k + 1}, {(2k − 2)′, (2k − 1)′}, {2k − 1, (2k + 1)′}}

M2k+1: {{2k − 2, 2k − 1}, {(2k − 2)′, 2k}, {(2k − 1)′, (2k)′}}

(03k−2, 2, 2, 2):

For 1 ≤ i ≤ k − 1:

M3i−2: {{3k − 1, 3k}, {(3k − 1)′, 3k + 1}, {(3k)′, (3k + 1)′}}

M3i−1: {{3k − 1, 3k + 1}, {(3k − 1)′, (3k)′}, {3k, (3k + 1)′}}

M3i: {{3k − 1, (3k)′}, {(3k − 1)′, (3k + 1)′}, {3k, 3k + 1}}

M3k−2: {{3k − 1, (3k)′}, {(3k − 1)′, 3k + 1}, {3k, (3k + 1)′}}

M3k−1: {{3k, 3k + 1}, {(3k)′, (3k + 1)′}}

M3k: {{3k − 1, 3k + 1}, {(3k − 1)′, (3k + 1)′}}

M3k+1: {{3k − 1, 3k}, {(3k − 1)′, (3k)′}}

Following is a list of k-divisible-matchings of type (12k−1, , ).

(12k+1) given in Section 3.3.1

(12k, 3), k ≥ 3:

M1: {{2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, 7}, . . . , {2k, 2k + 1}}

M2: {{1, 2k + 1}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, . . . , {2k − 1, 2k}}

M3: {{1, 2}, {4, (2k + 1)′}, {5, (2k + 1)′′}, {6, 7}, . . . , {2k, 2k + 1}}

M4: {{1, 2k + 1}, {2, (2k + 1)′}, {3, (2k + 1)′′}, {5, 6}, . . . , {2k − 1, 2k}}

M5: {{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {6, 7}, . . . , {2k, 2k + 1}}

M6: {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {7, 8}, . . . , {2k − 1, 2k}}
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M7: {{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, {8, 9}, . . . , {2k, 2k + 1}}

M8: {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, 7}, {9, 10}, . . . , {2k − 1, 2k}}

For 4 ≤ j ≤ k

M2j−1: {{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, . . . , {2j − 3, 2j − 2}, {2j, 2j + 1}, . . . ,

{2k, 2k + 1}}

For 4 ≤ j ≤ k − 1

M2j : {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, 7}, . . . , {2j − 2, 2j − 1},

{2j + 1, 2j + 2}, . . . , {2k − 1, 2k}}

And finally,

M2k: {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, 7}, . . . , {2k − 2, 2k − 1}}

M2k+1: {{1, 2}, {3, 4}, {5, 6}, . . . , {2k − 1, 2k}}

(12k, 5), k ≥ 5:

M1: {{2, (2k+1)′}, {3, 4}, {5, (2k+1)′′}, {6, (2k+1)′′′}, {7, 8}, {9, (2k+1)4}, {10, 11}, . . . ,

{2k, 2k + 1}}

M2: {{1, 2k+1}, {3, (2k+1)′′}, {4, (2k+1)′}, {5, 6}, {7, (2k+1)4}, {8, (2k+1)′′′}, {9, 10}, . . . ,

{2k − 1, 2k}}

M3: {{1, 2}, {4, (2k+1)′}, {5, (2k+1)′′}, {6, (2k+1)′′′}, {7, 8}, {9, (2k+1)4}, {10, 11}, . . . ,

{2k, 2k + 1}}

M4: {{1, 2k+1}, {2, (2k+1)′}, {3, (2k+1)′′}, {5, 6}, {7, (2k+1)4}, {8, (2k+1)′′′}, {9, 10}, . . . ,

{2k − 1, 2k}}

M5: {{1, 2}, {3, (2k+1)′′}, {4, (2k+1)′}, {6, (2k+1)′′′}, {7, 8}, {9, (2k+1)4}, {10, 11}, . . . ,

{2k, 2k + 1}}

M6: {{1, 2k+1}, {2, (2k+1)′}, {3, 4}, {5, (2k+1)′′}, {7, (2k+1)4}, {8, (2k+1)′′′}, {9, 10}, . . . ,
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{2k − 1, 2k}}

M7: {{1, 2}, {3, (2k+1)′′}, {4, (2k+1)′}, {5, 6}, {8, (2k+1)′′′}, {9, (2k+1)4}, {10, 11}, . . . ,

{2k, 2k + 1}}

M8: {{1, 2k+1}, {2, (2k+1)′}, {3, 4}, {5, (2k+1)′′}, {6, (2k+1)′′′}, {7, (2k+1)4}, {9, 10}, . . . ,

{2k − 1, 2k}}

M9: {{1, 2}, {3, (2k+1)′′}, {4, (2k+1)′}, {5, 6}, {7, (2k+1)4}, {8, (2k+1)′′′}, {10, 11}, . . . ,

{2k, 2k + 1}}

M10: {{1, 2k+1}, {2, (2k+1)′}, {3, 4}, {5, (2k+1)′′}, {6, (2k+1)′′′}, {7, 8}, {9, (2k+1)4},

{11, 12}, . . . , {2k − 1, 2k}}

For 6 ≤ j ≤ k

M2j−1:

{{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, {7, (2k + 1)4}, {8, (2k + 1)′′′}, {9, 10}, . . . ,

{2j − 3, 2j − 2}, {2j, 2j + 1}, . . . , {2k, 2k + 1}}

For 6 ≤ j ≤ k − 1

M2j :

{{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, (2k + 1)′′′}, {7, 8}, {9, (2k + 1)4},

{10, 11}, . . . , {2j − 2, 2j − 1}, {2j + 1, 2j + 2}, . . . , {2k − 1, 2k}}

And finally,

M2k:

{{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, (2k + 1)′′′}, {7, 8}, {9, (2k + 1)4},

{10, 11}, . . . , {2k − 2, 2k − 1}}

M2k+1:

{{1, 2}, {3, 4}, {5, 6}, . . . , {2k − 1, 2k}}

79



(12k, i), 3 ≤ i ≤ 2dk
2e − 1:

M1: {{2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, . . . , {2i− 4, (2k + 1)i−2}, {2i− 3, 2i− 2},

{2i− 1, (2k + 1)i−1}, {2i, 2i + 1}, . . . , {2k, 2k + 1}}

M2: {{1, 2k + 1}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, . . . , {2i− 3, (2k + 1)i−1},

{2i− 2, (2k + 1)i−2}, {2i− 1, 2i}, {2i + 1, 2i + 2}, . . . , {2k − 1, 2k}}

M3: {{1, 2}, {4, (2k + 1)′}, {5, (2k + 1)′′}, {6, (2k + 1)′′′}, {7, 8}, {9, (2k + 1)4}, . . . ,

{2i− 4, (2k + 1)i−2}, {2i− 3, 2i− 2}, {2i− 1, (2k + 1)i−1}, {2i, 2i + 1}, . . . , {2k, 2k + 1}}

M4: {{1, 2k + 1}, {2, (2k + 1)′}, {3, (2k + 1)′′}, {5, 6}, . . . , {2i− 3, (2k + 1)i−1},

{2i− 2, (2k + 1)i−2}, {2i− 1, 2i}, {2i + 1, 2i + 2}, . . . , {2k − 1, 2k}}

M5: {{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {6, (2k + 1)′′′}, {7, 8}, {9, (2k + 1)4}, . . . ,

{2i− 4, (2k + 1)i−2}, {2i− 3, 2i− 2}, {2i− 1, (2k + 1)i−1}, {2i, 2i + 1}, . . . , {2k, 2k + 1}}

M6: {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, . . . , {2i− 3, (2k + 1)i−1},

{2i− 2, (2k + 1)i−2}, {2i− 1, 2i}, {2i + 1, 2i + 2}, . . . , {2k − 1, 2k}}

M7: {{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, {8, (2k + 1)′′′}, {9, (2k + 1)4}, . . . ,

{2i− 4, (2k + 1)i−2}, {2i− 3, 2i− 2}, {2i− 1, (2k + 1)i−1}, {2i, 2i + 1}, . . . , {2k, 2k + 1}}

M8: {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, (2k + 1)′′′}, {7, (2k + 1)4},

{9, 10}, . . . , {2i− 3, (2k + 1)i−1}, {2i− 2, (2k + 1)i−2}, {2i− 1, 2i}, {2i + 1, 2i + 2}, . . . ,

{2k − 1, 2k}}

For 6 ≤ i ≤ k − 1:

M2i−3: {{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, {7, (2k + 1)4}, {8, (2k + 1)′′′}, . . . ,

{2i−5, 2i−4}, {2i−2, (2k +1)i−2}, {2i−1, (2k +1)i−1}, {2i, 2i+1}, {2i+2, 2i+3}, . . . ,

{2k, 2k + 1}}

M2i−2: {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, (2k + 1)′′′}, {7, 8},
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{9, (2k + 1)4}, . . . , {2i− 4, (2k + 1)i−2}, {2i− 3, (2k + 1)i−1}, {2i− 1, 2i},

{2i + 1, 2i + 2}, . . . , {2k − 1, 2k}}

M2i−1: {{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, {7, (2k + 1)4}, {8, (2k + 1)′′′}, . . . ,

{2i−5, 2i−4}, {2i−3, (2k +1)i−1}, {2i−2, (2k +1)i−2}, {2i, 2i+1}, {2i+2, 2i+3}, . . . ,

{2k, 2k + 1}}

M2i: {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, (2k + 1)′′′}, {7, 8},

{9, (2k + 1)4}, . . . , {2i− 4, (2k + 1)i−2}, {2i− 3, 2i− 2}, {2i− 1, (2k + 1)i−1},

{2i + 1, 2i + 2}, . . . , {2k − 1, 2k}}

M2i+1: {{1, 2}, {3, (2k + 1)′′}, {4, (2k + 1)′}, {5, 6}, {7, (2k + 1)4}, {8, (2k + 1)′′′}, . . . ,

{2i−5, 2i−4}, {2i−3, (2k +1)i−1}, {2i−2, (2k +1)i−2}, {2i−1, 2i}, {2i+2, 2i+3}, . . . ,

{2k, 2k + 1}}

M2i+2: {{1, 2k + 1}, {2, (2k + 1)′}, {3, 4}, {5, (2k + 1)′′}, {6, (2k + 1)′′′}, {7, 8},

{9, (2k + 1)4}, . . . , {2i− 4, (2k + 1)i−2}, {2i− 3, 2i− 2}, {2i− 1, (2k + 1)i−1}, {2i, 2i + 1},

{2i + 3, 2i + 4}, . . . , {2k − 1, 2k}}

And finally,

M2k+1: {{1, 2}, {3, 4}, {5, 6}, . . . , {2k − 1, 2k}}

(12k−1, 3, 3) :

M1: {{2, (2k + 1)′}, {3, (2k)′′}, {4, (2k + 1)′′}, {5, 6}, . . . , {2k − 1, 2k}, {(2k)′, 2k + 1}}

M2: {{1, (2k)′′}, {3, 2k + 1}, {4, (2k)′}, {5, (2k + 1)′}, {6, 7}, . . . , {2k − 2, 2k − 1},

{2k, (2k + 1)′′}}

M3: {{1, (2k)′′}, {2, (2k + 1)′}, {4, (2k + 1)′′}, {5, 6}, . . . , {2k − 1, 2k}, {(2k)′, 2k + 1}}

M4: {{1, 2}, {3, (2k)′′}, {5, (2k + 1)′}, {6, 7}, . . . , {2k − 2, 2k − 1}, {2k, (2k + 1)′′},

{(2k)′, 2k + 1}}
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M5: {{1, (2k)′′}, {2, (2k + 1)′}, {3, 2k + 1}, {4, (2k)′}, {6, 7}, . . . , {2k, (2k + 1)′′}}

M6: {{1, 2}, {3, (2k)′′}, {4, (2k+1)′′}, {5, (2k+1)′}, {7, 8}, . . . , {2k−1, 2k}, {(2k)′, 2k+1}}

For 4 ≤ j ≤ k:

M2j−1: {{1, (2k)′′}, {2, (2k + 1)′}, {3, 2k + 1}, {4, (2k)′}, {5, 6}, . . . , {2j − 3, 2j − 2},

{2j, 2j + 1}, . . . , {2k, (2k + 1)′′}}

For 4 ≤ j ≤ k − 1:

M2j : {{1, 2}, {3, (2k)′′}, {4, (2k + 1)′′}, {5, (2k + 1)′}, {6, 7}, . . . , {2j − 2, 2j − 1},

{2j + 1, 2j + 2}, . . . , {2k − 1, 2k}, {(2k)′, 2k + 1}}

And finally,

M2k: {{1, 2}, {3, 2k + 1}, {4, (2k + 1)′′}, {5, (2k + 1)′}, {6, 7}, . . . , {2k − 2, 2k − 1}}

M2k+1: {{1, 2}, {3, (2k)′′}, {4, (2k)′}, {5, 6}, . . . , {2k − 1, 2k}}

The following matchings are needed and are yet unfound.

(12k−1, 3, i), for 5 ≤ i ≤ 2bk
2c+ 1

(12k−1, 5, i), for 5 ≤ i ≤ 2dk
2e+ 1

(12k−1, 7, i), for 7 ≤ i ≤ 2bk
2c+ 3

In general,

(12k−1, d, i), d ≤ i ≤ 2bk
2c+ d−1

2 if d ≡ 3 (mod4)

(12k−1, d, i), d ≤ i ≤ 2dk
2e+ d−3

2 if d ≡ 1 (mod4)

Following is a list of k-divisible-matchings of types (02k−3, 2, , , ) as well as

(02k−4, 2, 2, 2, 2, 2).

(02k−4, 2, 2, 2, 2, 2):

For 1 ≤ i ≤ k − 2:

M2i−1: {{2k−3, 2k+1}, {(2k−3)′, (2k−2)′}, {2k−2, (2k−1)′}, {2k−1, 2k}, {(2k)′, (2k+
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1)′}}

M2i: {{2k−3, 2k−2}, {(2k−3)′, (2k+1)′}, {(2k−2)′, 2k−1}, {(2k−1)′, (2k)′}, {2k, 2k+1}}

Finally,

M2k−3: {{2k − 2, (2k − 1)′}, {(2k − 2)′, 2k − 1}, {2k, 2k + 1}, {(2k)′, (2k + 1)′}}

M2k−2: {{2k − 3, 2k + 1}, {(2k − 3)′, (2k + 1)′}, {(2k − 1)′, (2k)′}, {2k − 1, 2k}}

M2k−1: {{2k − 3, 2k − 2}, {(2k − 3)′, (2k − 2)′}, {2k, 2k + 1}, {(2k)′, (2k + 1)′}}

M2k: {{2k − 3, 2k + 1}, {(2k − 3)′, (2k + 1)′}, {(2k − 2)′, 2k − 1}, {2k − 2, (2k − 1)′}}

M2k+1: {{2k − 3, 2k − 2}, {(2k − 3)′, (2k − 2)′}, {2k − 1, 2k}, {(2k − 1)′, (2k)′}}

(02k−2, 2, 2, 2) given in Section 3.3.2

(02k−2, d, d, d)=d
2 copies of (02k−2, 2, 2, 2)

(02k−3, 2, 2, 2, 2) given in Section 3.3.2

(02k−3, 2, d, d, d) from (02k−3, 2, 2, 2, 2) and (d− 2)/2 copies of (02k−2, 2, 2, 2)

(02k−3, 2, d, d + 2, d + 2) from (02k−3, 2, 0, 2, 2) and d/2 copies of (02k−2, 2, 2, 2)

This gives the k-divisible-matchings with 2k + 1 parts.

3.3.3 3k + 1 parts of any size

In this Section we will give k-divisible-matchings of type K = (a1, a2, . . . , a3k+1).

We can only have all parts of even size. We will use a similar algorithm as above to

construct a k-divisible-matching from (03k−3, 2, , , ).

1. Check if the four necessary conditions are satisfied. If not, the matching does not

exist. If a1 = . . . = a3k−3 = 0, a3k−2 = 0, 2 or K = (03k−4, 2, 2, 2, 2, 2) look up the

matching in list provided. Otherwise continue below.
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2. If 5a3k+1 = 2n skip down to the Special Case 1 section. If a3k−1 = a3k and

a3k+1 = a1 + a2 + a3 + . . . + a3k−1 skip down to Special Case 2 section. Otherwise

continue below.

3. For 0 ≤ i ≤ 3k−3 subtract (0i, 2, 03k−2−i, 2, 2) and rearrange terms when necessary

until you obtain (03k−3, 2, , , ). Look those up in the list provided.

If at any point K = (03k−4, 2, 2, 2, 2, 2) look it up.

Let us consider the four necessary conditions during the first part of the “subtracting

process.” Notice that for p = 3k + 1 condition 4 becomes 5a3k+1 ≤ 2n.

1. p = 3k + 1 is not affected.

2. If (a1, a2, . . . , a3k+1) satisfies 2a3k+1 + a3k ≤ a1 + . . . + a3k + a3k+1, then

(a1 − 2, a2, . . . , a3k − 2, a3k+1 − 2) satisfies

2(a3k+1 − 2) + (a3k − 2) ≤ (a1 − 2) + a2 + . . . + (a3k − 2) + (a3k+1 − 2). We

are, however, rearranging the terms to ensure a nondecreasing sequence. Let us

consider the following cases:

Case 1: If after such rearranging a3k+1−2 is not the largest, but the second largest

part, then a3k−1 = a3k+1. So we started with (a1, a2, . . . , a3k+1, a3k+1, a3k+1) and

now have (a1 − 2, a2, . . . , a3k+1 − 2, a3k+1 − 2, a3k+1). By Properties 2 and 4 (a1 −

2, a2, . . . , a3k+1 − 2, a3k+1 − 2, a3k+1) is in Sk as long as 4 ≤ a1 + a2 + . . . + a3k−2

and 12 − a3k+1 ≤ 2(a1 + a2 + . . . + a3k−2). Let us consider the cases when a1 +

a2 + . . . + a3k−2 < 4 or

2(a1 + a2 + . . . + a3k−2) < 12− a3k+1. We could have (03k−2, a3k+1, a3k+1, a3k+1),

(03k−3, 2, a3k+1, a3k+1, a3k+1) or (03k−4, 2, 2, 2, 2, 2). Each one of those is discussed
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and shown to be in Sk below.

Case 2: If after rearranging a3k+1−2 is not the largest or second largest part, then

a3k−2 = a3k−1 = a3k+1. So we started with (a1, a2, . . . , a3k+1, a3k+1, a3k+1, a3k+1)

and now have (a1−2, a2, . . . , a3k+1−2, a3k+1−2, a3k+1, a3k+1). By Properties 2 and

4 (a1 − 2, a2, . . . , a3k+1 − 2, a3k+1 − 2, a3k+1, a3k+1) is in Sk as long as 6− a3k+1 ≤

a1 + a2 + . . . + a3k−3 and

12− 3a3k+1 ≤ 2(a1 + a2 + . . . + a3k−3). Let us consider the case when

6 − a3k+1 > a1 + a2 + . . . + a3k−3 or 12 − 3a3k+1 > 2(a1 + a2 + . . . + a3k−3). We

could have (03k−3, 2, 2, 2, 2), (03k−3, 4, 4, 4, 4), or (03k−4, 2, 2, 2, 2, 2). Each one of

those is discussed below.

Case 3: If after rearranging a3k+1 − 2 is the largest, but a3k − 2 is not the second

largest part, then a3k−1 = a3k. So we started with (a1, a2, . . . , a3k−2, a3k, a3k, a3k+1)

and now have (a1 − 2, a2, . . . , a3k−2, a3k − 2, a3k, a3k+1 − 2). By Property 2,

(a1 − 2, a2, . . . , a3k−2, a3k − 2, a3k, a3k+1 − 2) is in Sk as long as a3k+1 6= a1 + a2 +

. . .+a3k−2+a3k. The case when a3k−1 = a3k and a3k+1 = a1+a2+ . . .+a3k−2+a3k

is discussed below as Special Case 2.

3. Since we are subtracting zeroes and twos, the parity of the parts is not affected.

Neither is the number of parts.

4. If (a1, a2, . . . , a3k, a3k+1) satisfies 5a3k+1 < 2(a1 + a2 + . . . + a3k+1), then

(a1 − 2, a2, . . . , a3k − 2, a3k+1 − 2) satisfies

5(a3k+1 − 2) ≤ 2((a1 − 2) + a2 + . . . + (a3k − 2) + (a3k+1 − 2)). The case when

5a3k+1 = 2n is discussed below as Special Case 1.
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This is also true for the remaining parts of the algorithm. Therefore, each time we

subtract we obtain an element of Sk.

Let us consider the Special Case 1.

We need to find even matchings for (a1, . . . , a3k+1) satisfying the four necessary condi-

tions and 3a3k+1 = 2(a1 + . . . + a3k). Let us refer to these as matching type SP k1 ⊆ Sk.

Say we need K = (a1, a2, . . . , a3k,
2(a1+...+a3k)

3 ) ∈ SP k1. We will build it by induction.

We start by subtracting (03k−3, 2, 2, 2, 4) to obtain K ′ = (a1, . . . , a3k−3, a3k−2 −

2, a3k−1−2, a3k−2, 2(a1+...+a3k)
3 −4). As long as no rearranging is necessary K ′ is in SP k1.

If rearranging is necessary, we started with K = (a1, . . . , a3k−4, a3k, . . . , a3k,
2(a1+...+a3k)

3 )

and now have K ′′ = (a1, . . . , a3k−4, a3k − 2, a3k − 2, a3k − 2, a3k,
2(a1+...+a3k)

3 − 4). This is

in SP k1 as long as 6 ≤ a1 + . . . + a3k−4 + a3k. The only time 6 > a1 + . . . + a3k−4 + a3k

is for K = (03k−3, 23, 4) which is given. We need to consider if it is possible for a3k >

2(a1+...+a3k)
3 − 4. This is equivalent to 8 ≤ a1 + . . . + a3k−1 which is true for all elements

of SP k1 except K = (03k−3, 23, 4). By induction, this concludes Special Case 1. We take

any element of SP k1 and subtract to get a smaller element of SP k1.

Now let us consider Special Case 2.

If a3k−1 = a3k and a3k+1 = a1 + . . . + a3k−2 + a3k we have types of the form

(a1, a2, . . . , a3k−2, a3k+1 − (a1 + . . . + a3k−2), a3k+1 − (a1 + . . . + a3k−2), a3k+1). We will

construct a k-divisible-matching of such type as follows: a1/2 copies of (2, 03k−3, 2, 2, 4),

a2/2 copies of (0, 2, 03k−4, 2, 2, 4), . . ., a3k−2/2 copies of (03k−3, 2, 2, 2, 4) and

(a3k+1 − 2(a1 + . . . + a3k−2))/2 copies of (03k−2, 2, 2, 2). Notice that by Property 4

a3k+1 ≥ 2(a1 + . . . + a3k−2). This concludes Special Case 2.
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Following is a list of k-divisible-matchings of types (03k−3, 2, , , ) as well as

(03k−4, 2, 2, 2, 2, 2).

(03k−4, 2, 2, 2, 2, 2):

For 1 ≤ i ≤ k − 2:

M2i−1:

{{3k−3, 3k−2}, {(3k−3)′, 3k +1}, {(3k−2)′, (3k−1)′}, {3k−1, 3k}, {(3k)′, (3k +1)′}}

M2i:

{{3k−3, (3k +1)′}, {(3k−3)′, (3k−2)′}, {3k−2, 3k−1}, {(3k−1)′, (3k)′}, {3k, 3k +1}}

For k − 1 ≤ i ≤ 2k − 2:

Mk−2+i:

{{3k−3, 3k−2}, {(3k−3)′, 3k−1}, {(3k−2)′, (3k−1)′}, {(3k)′, (3k +1)′}, {3k, 3k +1}}

And finally,

M3k−3:

{{3k − 2, 3k − 1}, {(3k − 2)′, (3k − 1)′}, {(3k)′, (3k + 1)′}, {3k, 3k + 1}}

M3k−2:

{{3k − 3, (3k + 1)′}, {(3k − 3)′, 3k + 1}, {(3k − 1)′, (3k)′}, {3k − 1, 3k}}

M3k−1:

{{3k − 3, 3k − 2}, {(3k − 3)′, (3k − 2)′}, {3k, 3k + 1}, {(3k)′, (3k + 1)′}}

M3k:

{{3k − 3, (3k + 1)′}, {(3k − 3)′, 3k + 1}, {(3k − 2)′, (3k − 1)′}, {3k − 2, 3k − 1}}

M3k+1:

{{3k − 3, 3k − 2}, {(3k − 3)′, (3k − 2)′}, {3k − 1, 3k}, {(3k − 1)′, (3k)′}}

(03k−2, 2, 2, 2) given in Section 3.3.1
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By Property 2, a k-divisible-matching of type (03k−2, a3k−1, a3k, a3k+1) exists if

a3k+1 ≤ a3k−1 ≤ a3k+1.

(03k−2, a3k+1, a3k+1, a3k+1)=
a3k+1

2 copies of (03k−2, 2, 2, 2)

(03k−3, 2, 2, 2, 2):

For 1 ≤ i ≤ k − 1:

M3i−2: {{3k − 2, (3k)′}, {(3k − 2)′, (3k + 1)′}, {3k − 1, 3k}, {(3k − 1)′, 3k + 1}}

M3i−1: {{3k − 2, 3k − 1}, {(3k − 2)′, (3k − 1)′}, {3k, 3k + 1}, {(3k)′, (3k + 1)′}}

M3i: {{3k − 2, 3k + 1}, {(3k − 2)′, 3k}, {3k − 1, (3k + 1)′}, {(3k − 1)′, (3k)′}}

Finally,

M3k−2: {{3k − 1, 3k}, {(3k − 1)′, 3k + 1}, {(3k)′, (3k + 1)′}}

M3k−1: {{3k − 2, (3k)′}, {(3k − 2)′, (3k + 1)′}, {3k, 3k + 1}}

M3k: {{3k − 2, 3k + 1}, {(3k − 2)′, (3k − 1)′}, {3k − 1, (3k + 1)′}}

M3k+1: {{3k − 2, 3k − 1}, {(3k − 2)′, 3k}, {(3k − n1)′, (3k)′}}

(03k−3, 2, 2, 2, 4):

For 1 ≤ i ≤ k − 1:

M3i−2:

{{3k−2, (3k+1)′′′}, {(3k−2)′, (3k+1)′}, {3k−1, (3k+1)′′}, {(3k−1)′, (3k)′}, {3k, 3k+1}}

M3i−1:

{{3k−2, 3k−1}, {(3k−2)′, (3k+1)′′}, {(3k−1)′, (3k+1)′′′}, {(3k)′, 3k+1}, {3k, (3k+1)′}}

M3i:

{{3k−2, 3k+1}, {(3k−2)′, 3k}, {3k−1, (3k+1)′′}, {(3k−1)′, (3k+1)′′′}, {(3k)′, (3k+1)′}}

Finally,

M3k−2:
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{{3k − 1, (3k + 1)′′}, {(3k − 1)′, (3k + 1)′′′}, {(3k)′, (3k + 1)′}, {3k, 3k + 1}}

M3k−1:

{{3k − 2, (3k + 1)′′′}, {(3k − 2)′, (3k + 1)′′}, {3k, (3k + 1)′}, {(3k)′, 3k + 1}}

M3k:

{{3k − 2, 3k + 1}, {(3k − 2)′, (3k + 1)′}, {(3k − 1)′, (3k + 1)′′′}, {3k − 1, (3k + 1)′′}}

M3k+1:

{{3k − 2, 3k − 1}, {(3k − 2)′, 3k}, {(3k − 1)′, (3k)′}}

By Property 2, a k-divisible-matching of the type (03k−3, 2, a3k−1, a3k, a3k+1)

exists if a3k+1 ≤ a3k−1 + 2.

(03k−3, 2, a3k−1, a3k−1, a3k−1) from (03k−3, 2, 2, 2, 2) and (a3k−1 − 2)/2 copies of

(03k−2, 2, 2, 2)

(03k−3, 2, a3k−1, a3k−1, a3k−1 + 2) from (03k−3, 2, 2, 2, 4) and (a3k−1 − 2)/2 copies of

(03k−2, 2, 2, 2)

(03k−3, 2, a3k−1, a3k−1 + 2, a3k−1 + 2) from (03k−3, 2, 0, 2, 2) and a3k−1/2 copies of

(03k−2, 2, 2, 2)

This gives the k-divisible-matchings with 3k+1 parts. It is left for future research to

consider the generalization of k-divisible-matchings with p = 2kh+1 and p = 2kh+k+1

for h ≥ 2.
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