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A navigation system was designed using an extended Kalman filter for an 

autonomous ground vehicle competing in the 2005 DARPA Grand Challenge.  An 

overview of this system is provided, and errors in the navigation solution are explained.  

These errors are attributed to vehicle dynamics unaccounted for in the navigation model. 

Investigation of these errors begins with the development of a nonlinear simulation to 

provide vehicle state information in a controlled environment.  These vehicle states are 

used in various navigation models to show difference in navigation accuracy when lateral 

vehicle dynamics are taken into account.  Accuracy with and without GPS measurements 

is examined.  The study then utilizes experimental data to provide similar results.  Also, 

sources of error stemming from typical velocity sensors are explained. 



 

 v

Finally, a method is proposed to utilize a laser scanner to provide measurements for 

use in the navigation models incorporating lateral vehicle motion.  This method could 

also be used to provide a vehicle controller lateral error from a defined corridor.  The 

method is explained, and experimental results from a simple test bed are shown. 
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1. INTRODUCTION

The popularity of autonomous ground vehicles, or AGVs, is quickly increasing with 

the advent of better and more reliable technology.  There is a large niche for such a 

vehicle, ranging from agricultural machines, to civilian and military transportation, to 

unmanned combat machines, to search and rescue vehicles, and so on.  A critical 

component for these AGVs is a navigation system to provide vehicle and position 

information.  A control system must know an AGV’s precise location, either global or 

local, as well as speed and direction of travel, in order to properly direct the vehicle and 

accomplish the desired objective.  The control system can also utilize some vehicle state 

estimates from a navigation system to maintain vehicle stability as the vehicle encounters 

unfavorable terrain or while operating aggressively.  Obstacle detection algorithms also 

need the navigation information to correctly map perceived obstacles in a vehicle or 

global coordinate frame so the vehicle will successfully and efficiently avoid anything in 

the path of travel. 

In parallel with the autonomous vehicle boom, civilian vehicle control systems are 

expanding their capability to compensate for driver inadequacies and ensure passenger 

safety.  A need currently exists for more vehicle information to improve control 

robustness and reliability.  Currently, there are few methods to accurately and/or cheaply 

measure lateral vehicle motion (Daily, 2004).  In the near future, such control systems 

will rely upon improved navigation technologies to provide information about the 
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vehicle, its movement, and its position.  For instance, a lane keeping control system could 

use the position information to control the vehicle and remain in the lane.  Eventually, 

passenger vehicles might become autonomous on selected roads or highways, which 

would lead to reduced accident rates and driver fatalities.  The foundation for passenger 

vehicle automation is a solid navigation system. 

1.1. OBJECTIVES AND CONTRIBUTIONS 

To meet the stringent requirements of AGV and future passenger vehicle control 

systems, current technologies will need to be refined and hardened, and new methods 

need to be developed to adequately and safely navigate through many environments and 

over varying terrains.  The subsequent chapters of this thesis detail commonly used 

ground vehicle navigation systems, along with frequently used sensors which measure 

basic vehicle motion.  The inadequacies of the navigation systems and sensors are 

investigated, and methods to improve navigational accuracy by expanding current 

systems are proposed.  An improvement in the accuracy of vehicle position and other 

vehicle information is seen by expanding the navigation model. 

In addition, a new method to provide a lateral error using a laser scanner is offered.  

This lateral error measurement could be used in a vehicle controller to enhance path 

following capabilities.  For instance, waypoint following controllers can potentially 

become unstable if the distance between waypoints is too large and the angle of approach 

to the desired waypoint is too large.  Oscillations occur if this scenario is realized, and 
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eventually the system can become destabilized.  A lateral error measurement can be used 

by the controller to effectively damp out any oscillations caused by a large angle of 

approach to the next waypoint.  By altering the navigation model, a lateral velocity 

measurement can be estimated, which could be used in the expanded navigation model 

mentioned above.  Also, a laser scanner can be used to overcome the shortcomings of 

navigation systems in urban environments, as the stable bias of the sensor provides a 

suitable alternative to GPS in some situations.  However, the laser scanner could still be 

augmented with GPS if desired. 

1.2. OUTLINE AND PRIOR ART 

Chapter 2 briefly describes participation in the DARPA hosted Grand Challenge.  To 

compete in this event, a completely autonomous vehicle was built capable of traversing 

rough terrain in a desert environment (Behringer, 2004, 2005; Ozguner, 2004).  A 

navigation system was constructed to provide vehicle and navigation information to 

various system components.  While analyzing the performance of the navigation system, 

it was noticed the dynamics of the vehicle introduced errors in the estimated vehicle state 

information.  Scheding (1999) forewarned that neglecting some vehicle dynamics may 

inject errors into the navigation system, but no analysis of the errors was carried out.  

Fortunately the system as a whole was robust enough to compensate for the small 

inaccuracies.  However, aggressive vehicle operation could have induced larger errors 

that would quickly propagate through the autonomous system creating undesired 
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behavior.  These phenomena were investigated and solutions to improve their robustness 

are suggested in the following chapters. 

To thoroughly investigate navigation errors caused by vehicle dynamics, a vehicle 

simulation was created to replicate the effects in a controlled setting.  Chapter 3 provides 

the derivation of the vehicle model and sensor models used in the simulation.  The model 

is validated by comparing it to experimental data. 

Chapter 4 describes typical navigation systems and proposes an expanded navigation 

architecture which captures some of the vehicle dynamic effects that cause navigation 

error.  The different systems are first analyzed with the simulation to better explain how 

their outputs are corrupted by the vehicle’s dynamics.  The systems are then analyzed 

with experimental data to prove their existence in real world scenarios.  Julier (2003) 

proposed a method which utilized a vehicle model to estimate the error inducing 

dynamics in a navigation algorithm.  This thesis, however, utilizes a direct measurement 

of the dynamics in a kinematic navigation model.  Outputs of common navigation sensors 

can also provide inaccurate measurements under certain conditions.  Their effect on the 

navigation system is assessed in this chapter as well. 

The Grand Challenge also provided knowledge about a variety of sensors for obstacle 

detection.  A method is proposed in Chapter 5 which uses a common obstacle detection 

sensor in a navigation system.  Specifically, a laser scanner is used, but the concept is 

open to other types of environmental sensors, such as cameras, radar, or sonar.  Laser 
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scanners currently serve several purposes on ground vehicles, and their bias is relatively 

stable (Ye, 2002).  Simultaneous localization and mapping (SLAM) is a technique 

combining a laser scanner with GPS and/or INS to map obstacles as the vehicle is 

traveling (Guivant, 2000; Hirokawa, 2004; Talaya, 2004).  This work differs from SLAM 

as it draws information from the environment to estimate a local lateral error.  This 

method could improve navigational robustness in environments that typically stress 

current navigation systems relying on GPS and/or INS measurements, but could also be 

coupled with a variety of sensors to enhance the system.  Hirokawa (2004) demonstrated 

a navigation system utilizing a laser scanner and carrier phase GPS measurements. 
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2. DARPA GRAND CHALLENGE

The Defense Advanced Research Projects Agency (DARPA) hosted an event called 

the Grand Challenge in March of 2004 to spur technological growth in the area of 

unmanned ground vehicles.  The intent of the Grand Challenge was to have teams build 

an autonomous ground vehicle (AGV) to compete in a timed race crossing different 

terrain types and encountering obstacles for a one million dollar prize.  The inaugural 

event did not have the desired outcome.  The furthest distance a competitor achieved was 

7 out of 142 miles.  Most vehicles did not make it out of the starting gate.  Auburn 

University teamed with a limited liability corporation named SciAutonics to enter a 

vehicle dubbed RASCAL (Robust, Autonomous, Sensor Controlled All terrain Land 

vehicle).  More information on this autonomous system can be found in Appendix A. 



 

 

Figure 2.1:  The 2004 Grand Challenge entrants did not perform as hoped. 

DARPA again hosted the Grand Challenge in October of 2005 in hopes experience 

gained in the first event would propel competitors to produce more capable vehicles.  

Knowledge from the first event proved beneficial to teams as five completed the 140 mile 

Grand Challenge course in 2005.  Auburn University again partnered with SciAutonics to 

enter the small AGV as a competitor.  The additional time helped improve the vehicle 

controller over a broad range of speeds and develop a more complex navigation system 

that provided information to the different vehicle subsystems.  Auburn University also 

partnered with Team Terramax and assisted by providing the initial vehicle controller as 

well as vehicle software models.  Figure 2.2 displays Team Terramax crossing the finish 

line demonstrating the 2005 Grand Challenge was a success (Ozguner, 2004). 
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Figure 2.2:  Team Terramax crosses the finish line. 

Vehicle navigation was a critical component of the vehicles in the DARPA Grand 

Challenge.  It provides other systems with state information about the vehicle, such as 

speed, orientation, and position.  Therefore, the navigation solution had to be accurate, as 

well as robust to disturbances that would affect its accuracy.  The Grand Challenge 

courses offered challenges to navigation systems by limiting GPS availability and 

crossing terrain capable of causing vehicle slip.  Errors in the navigation solution can 

quickly propagate throughout all vehicle subsystems causing the vehicle to drive to 

incorrect points and to incorrectly position located obstacles. 

 8



 

 9

2.1. SENSOR SUITE 

The Grand Challenge entry vehicle contained a variety of sensors to determine states 

critical to the vehicle controller such as position, heading, and speed.  A strategy of 

redundancy was employed to provide measurements from some sensors when others 

were not available or in the event of the failure of a particular sensor. 

The cornerstone of vehicle localization was a single antenna Navcom Starfire DGPS 

receiver.  It generated unbiased measurements of position (north and east), velocity 

(north, east, and up), and course at 5 Hz.  With the corrections broadcast by Navcom, this 

GPS receiver is capable of producing position measurements accurate to less than 10 cm.  

However, the output rate of the receiver was too low to adequately control the vehicle. 

An inertial measurement unit (IMU) was used to obtain high update rate 

measurements.  A Rockwell Collins GIC-100 tactical grade 6 degree of freedom IMU 

measured linear accelerations and angular rates at 50 Hz.  These measurements, however, 

were inherently corrupted with biases and noise.  Dead reckoning with the unit provides 

acceptable results for a short period of time if the initial biases are eliminated, but the 

biases are not constant and therefore must be continually estimated and removed from the 

measurement to provide a reliable navigation solution. 



 

 

Figure 2.3:  A Rockwell Collins GIC-100 (left) and Navcom Starfire DGPS receiver (right). 

The ATV’s onboard speedometer was used as an additional speed sensor.  The output 

rate of this sensor was dependent upon vehicle speed, so compensation was needed to 

provide a more consistent measurement to the controller.  The sensor waited until a 

certain number of revolutions of the drive shaft occurred before sending the measurement 

to the computer.  It did not report speeds less than 1.5 m/s either.  Also, the measurement 

was corrupted by wheel slip, which appeared as a sudden, large change in the bias if the 

bias was not modeled as a function of time.  To calibrate the sensor, a scale factor was 

calculated to match the speedometer output to GPS velocity.  This scale factor was not 

constant across all ranges of speed and would corrupt the speed estimate during a GPS 

outage. 

Magnetometers are often used in aerial applications to provide orientation 

information.  They sense the earth’s magnetic field, thus all measurements are referenced 

from magnetic north and not true north.  This difference can easily be calibrated and 

remains fairly constant if the sensor remains in a region near its calibration point. The 

AGV utilized two magnetometers to measure the vehicle’s heading, roll, and pitch 
 10
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angles.  A TCM2 magnetometer provided 16 Hz measurements that contained high noise 

but a slow bias drift rate.  A Microstrain 3DM-GX1 IMU and magnetometer provided 50 

Hz measurements that had very little noise, but the bias drifted quickly (the IMU was not 

used).  Figure 2.4 displays vehicle yaw measurements from the two magnetometers and 

GPS.  The quickly changing bias in the Microstrain magnetometer is immediately 

evident.  The TCM2 magnetometer bias was fairly constant during this run but the noise 

statistics varied.  It was discovered that the magnetometers could help initialize the 

navigation algorithm, but once the vehicle started moving they were of little use because 

the magnitude and drift rate of their biases and changing noise statistics was greater than 

that of the other sensors. 
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Figure 2.4:  Measurements from the magnetometers compared to GPS. 

2.2. NAVIGATION ALGORITHM 

The localization algorithm used was an extended Kalman–Bucy filter (EKF), outlined 

in detail by Stengal (1994).  This method assumes the system can be represented in the 

following form: 
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and the measurement matrix is 

1−
=
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x
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The process noise covariance matrix denoted by Equation 2.4. 

[ ] )(τQwwE T =  2.4 

It is important to realize that Q must be continuous when used with this specific 

algorithm.  The discrete conversion occurs within the Kalman filter, using the process 

noise input matrix, Bw.  

1−
=

∂
∂

kxwB
w
x&  2.5 

The matrix Bw was set to identity to add process noise to all states.  The measurement 

noise covariance matrix is defined in a similar manner as Q. 

[ ] )( k
T tRvvE =  2.6 

The covariance of the estimate error is defined in Equation 2.7. 

( )( )[ ] )(ˆˆ k
T tPxxxxE =−−  2.7 

Note this equation requires information about the actual state, x, which is not available.  

However, the Kalman filter is able to estimate the covariance of the estimate error using 

the A, C, Q, and R matrices. 

The Kalman–Bucy filter algorithm handled the system nonlinearities by continuously 

propagating the system model and discretely propagating the measurement update, as 

shown in the following equations. 
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Kalman filtering is a proven method for blending measurements to eliminate various 

sensor deficiencies while utilizing the strengths of each sensor by statistically weighting 

each measurement.  The EKF combined the bias free, low update GPS measurements 

with the other measurements to produce a bias free, high update navigation solution.  An 

EKF is as accurate and less computationally intensive as some higher order filters if the 

sample rate is high enough (St. Pierre, 2004).  This efficiency was an advantage with the 

algorithm because the state vector already imposed a moderate computational burden by 

containing 16 states.  GPS and inertial measurements were loosely coupled, meaning the 
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inertial errors were corrected with a computed GPS solution.  A tightly coupled system 

was considered, where the raw GPS pseudo-range measurements amend the IMU errors, 

but due to time constraints and the overall satisfaction with the loosely coupled system, it 

was not constructed. 

The geometric relationships between the sensors on board the AGV were easily and 

accurately measured.  Using this information, kinematic relationships between the 

sensors were derived.  These relationships, otherwise known as a kinematic model, made 

up the vector fields listed in Equation 2.1.  A vehicle model could have been used in 

place of the kinematic model, but knowledge of vehicle parameters would have been 

required.  For the AGV, the parameters were either unknown, or had the potential to vary, 

so the kinematic model improved the robustness of the navigation solution by relying 

only on the kinematic relationships between the sensors.   

The kinematic model evolved with the vehicle as new sensors were added.  The first 

model was a simple, four state linear model estimating the vehicle’s velocity, course, 

longitudinal accelerometer bias, and gyro bias.  The second model added states of north 

position and east position, which are described in the Kalman filter with a first order, 

nonlinear differential equation.  The nonlinearities required the use of the EKF mentioned 

above.  The third and fourth models were intended for use during the National 

Qualification Event (NQE) and the Grand Challenge.  Those models used kinematic 

relationship between lateral acceleration, velocity, and yaw rate, to provide an effective 
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measurement of roll, and the GPS up and forward velocity to generate a road grade 

measurement.  Using this effective measurement, states of roll plus lateral accelerometer 

bias, pitch, and road grade became observable (Bevly, 2004).  The fourth model utilized 

roll, pitch, and yaw measurements from the two magnetometers to add redundancy to the 

estimator.  The need of the third model existed because magnetometer problems were 

experienced during the 2004 Grand Challenge due to their sensitivity to nearby metallic 

objects.  However, only the fourth model is presented in this work since it was actually 

used during the events. 

A navigation algorithm with a sixteen state kinematic model was constructed for use 

in the NQE and DARPA Grand Challenge event.  This model estimated velocity, 

longitudinal accelerometer bias, course, yaw rate gyro bias, north and east position, roll, 

pitch, and road grade, as well as IMU and magnetometer biases when GPS was available.  

During a GPS outage or iterations where GPS was not available, the navigation algorithm 

dead reckoned using the IMU, wheel speed sensor, and magnetometers with their 

respective biases removed.  The vehicle controller used the estimated heading and 

velocity states to guide the vehicle along the desired path.  The orientation states of roll, 

pitch, road grade, and heading, were used to transfer the data recorded from the obstacle 

detection sensors from the vehicle frame to a global frame.  The nonlinear differential 

equations for this model are shown in Equation 2.13. 
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These nonlinear equations were continuously propagated in the EKF time update of the 

state estimate.  However, the time propagation of the covariance estimate required a 

linear system matrix.  The linear system matrix used the Jacobian of the nonlinear model, 

which was calculated with Equation 2.2.  The matrix shown below is the linear system 

matrix used in Equation 2.9. 
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Biases were modeled as random walks in the process noise matrix.  These were used 

as tuning parameters for the EKF because they directly influenced the amount of filtering 

on the estimated states.  The other entries in the matrix captured the system noise, which 

was determined by gathering static sensor measurements.  Assuming the sensor noises 

are uncorrelated, the process noise covariance matrix is a diagonal matrix with the 

covariances in Table 2.1.  The time update in the EKF assumes this matrix to be 

continuous.  Therefore the measured, discretized values are multiplied by the sample rate 

(dt) in order to approximate the continuous covariance values. 

 

Table 2.1:  Process Noise Statistics 

2 20.65az dtσ =  2 20.038129r dtσ =  2 110brσ 0−=  2 20.17851 dtφσ =&  

2 110bφσ −= 0  2 20.088147 dtθσ =&  2 810bθσ −=  2 20.000001N dtσ =  

2 20.000001E dtσ =  2 710
gbθσ −=  2 4

1 10bMψσ −=  2 6
1 10bMφσ −=  

2 8
1 10bMθσ −=  2

2 0.01bMψσ =  2
2 0.01bMψσ =  2

2 0.1bMθσ =  

 

The discrete measurement update in the EKF utilized statistically weighted 

measurements from the sensors listed in Section 2.1 to overcome integration errors. Two 

calculations were included in addition to the raw sensor measurements. GPS velocities 

were used to solve for road grade using Equation 2.15. 
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Linear equations of vehicle roll as a function of lateral acceleration were derived using 

knowledge of the vehicle’s dynamics and a basic sensor model.  A basic sensor model 

can be written as a scale factor on the actual state, plus bias (constant and/or moving), 

plus noise. 

wbSFxy ++=  2.16 

Applying this equation to a lateral accelerometer measurement leads to the following 

equation. 

( ) wbVrgVSFa ayMyy ++++= )sin(φ&  2.17 

Under the small angle assumption, the Vy term goes to zero because vehicle sideslip can 

be ignored, and the roll component can be simplified.  The yaw rate measurement, r, will 

have its own inherent scale factor and bias which need to be removed.  Manipulating 

Equation 2.17, applying the small angle approximation, and removing the scale factors 

leads to a measurement of vehicle roll plus lateral accelerometer bias. 

( ) ayryM gbbrVa
g

−−−= )(1φ  2.18 

The measurements for the 16 state EKF are listed in Equation 2.19. 
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The measurement matrix, C, was adjusted accordingly depending upon the availability of 

the different measurements.  The vehicle computing system was run at 50 Hz, but some 

sensors had slower output rates.  For instance, GPS measurements were output at only 5 

Hz.  When a measurement was unavailable, its corresponding value was set to zero.  

States dependent upon an unavailable measurement were unobservable, and the algorithm 

integrated the kinematic model to provide estimates.  The resulting measurement matrix 

when all measurements are available is shown in Equation 2.20. 
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Table 2 displays the values used in the measurement covariance matrix, R.  These values 

were experimentally obtained by calculating the standard deviation of a static data set.  

However, the noise statistics for GPS course and GPS road grade are a function of the 

GPS velocity noises (Bevly, 2004). 
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Table 2.2:  Measurement Noise Statistics 

2 20.05Vσ =  2 20.3VWSσ =  
2

2 V
Vψ

σσ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 2 20.1Nσ =  

2 20.1Eσ =  
2

2
g

V
Vθ

σσ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 2 20.08135
calcθσ =  2 2

1 0.19995Mψσ =  

2 2
1 0.024445Mφσ =  2 2

1 0.036297Mθσ =  2 2
2 0.003Mψσ =  2 2

2 0.003Mφσ =  

2 2
2 0.003Mθσ =  

 

2.3. PERFORMANCE 

The algorithm’s performance was evaluated based on the amount of error during a 

simulated GPS outage.  Two reasons for this evaluation method are as follows: first, 

when enough satellites are in view and the receiver is outputting valid messages, the EKF 

successfully tracks the GPS measurements, and second, a real GPS outage would 

eliminate the truth measurement, degrading the accuracy of the error analysis.  Figure 2.5 

is a plot of GPS and estimated position during a test run.  The circles signify the 

beginning and end of the simulated outage, starting before the first turn and concluding at 

the end of the straight section. 
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Figure 2.5:  EKF position estimate during a simulated outage. 

The error growth which occurs at the onset of the outage can be seen in the above 

figure.  Figure 2.6 is a plot of the navigation error.  Over the 25 second outage, the 

vehicle was traveling 3.2 m/s.  The maximum error for this period of time at this speed 

was slightly less than a meter. 
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Figure 2.6:  Position estimate error during the simulated outage. 

The IMU and speedometer were the sensors whose biases impacted the navigation 

solution the most.  The leading error source during this run was due to the calibration 

error in the speedometer.  The vehicle experienced slight lateral translation, or slipped, as 

it rounded the corner, also introducing a small navigation error.  These two error sources 

are deduced by eliminating other possible error sources.  The tactical grade IMU 

contained mechanical rate gyros with a bias drift rate of less than one degree per square-

root-hour, so the bias error over this period of time is very small.  Therefore, error due to 

IMU bias drift can be assumed to be negligible.  As stated earlier, the magnetometers 

were not much use during a run and were statistically weighted out of the EKF after 
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initialization.  Therefore they did not have much impact on the navigation solution once 

the vehicle was in motion.  To prove the magnetometers were ignored once the vehicle 

was moving, a Kalman filter that did not use magnetometer measurements was compared 

to the algorithm on the AGV.  Figure 2.7 shows the output of the navigation system 

utilizing the magnetometers compared to the system that did not use the information.  

When the vehicle is moving, there is virtually no difference in the estimated heading. 
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bias states were held constant because they were unobservable.  Therefore if the vehicle 

changed speeds during an outage, this bias estimate would be incorrect because the 

calibration error would change proportionally with speed.  The navigation algorithm on 

the AGV without the estimated bias state was compared with another Kalman filter that 

included this bias state.  It was determined there was no benefit to including the bias state 

because the dead reckoning errors resulting from each estimator were similar. 

Another source of navigation error was attributed to vehicle slip.  Vehicle slip can 

disrupt the navigation algorithm even in the presence of GPS.  Longitudinal and lateral 

slip occur on moving ground vehicles.  Longitudinal slip is generated by a difference in 

the vehicle’s velocity and the wheel’s velocity, and lateral slip is created when the 

vehicle translates laterally.  Wheel slip can corrupt the speedometer measurement by 

causing a sudden jump in the estimated bias (if the modeled bias dynamics have a high 

enough bandwidth).  Also, it reports a false speed value to the Kalman filter which can 

directly inject error into the speed and position estimates.  Sideslip also leads to a less 

accurate estimate because GPS and integrated IMU measurements differ.  Evidence of 

sideslip induced error can be seen in Figure 2.6 at 420 seconds when the vehicle enters a 

turn.  Figure 2.8 is a plot of the estimated heading when GPS is available.  At 395 and 

420 seconds, a discrepancy due to sideslip can be seen between estimated heading and 

GPS course. 
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Figure 2.8:  Discrepancy between GPS course and estimated heading. 

The error caused by vehicle slip is seen on multiple estimated states and is influenced 

by the level of filtering in the EKF.  This phenomenon prompted further research on the 

influence of vehicle dynamics on navigation algorithms.  Preliminary work is discussed 

in (Travis, 2005).  Chapter 4 presents a detailed analysis showing how a navigation 

solution is corrupted by vehicle slip. 

2.3.1. NQE 

The NQE was the final qualification event for the Grand Challenge.  Of the 195 initial 

entrants, 43 teams successfully completed a pre-selection qualification and participated at 

the NQE.  After the NQE, the best 23 teams got the opportunity to start the Grand 

 26



 

Challenge.  The main goal of the NQE was to complete four different tracks, each 

approximately 2.5 miles long, while avoiding various obstacles.  The daunting challenge 

to the navigation system was a 200 foot covered tunnel that blocked GPS signals. 

The first NQE run successfully navigated through the tunnel, but failed shortly 

thereafter.  As the vehicle approached an obstacle, it suddenly swerved and made contact 

with a barrier.  Upon examining the data, it was discovered the vehicle accurately dead 

reckoned for two minutes.  Figure 2.9 shows the dead reckoning performance of the 

vehicle. 

Figure 2.9:  Dead reckoning after a 200 foot tunnel at the NQE. 

The tunnel is outlined in white at the right of the figure.  GPS waypoints are denoted 

by dark blue dots.  The corridor the vehicle was required to remain in a given corridor, 

which is shown shaded in light blue.  The EKF output is indicated by red dots.  The EKF 

output remained in the center of the corridor throughout most of the outage.  However, to 

assess the accuracy of the dead reckoned navigation solution, the areas where the vehicle 

avoided obstacles must be examined.  As the vehicle made the left hand turn encircled by 
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a white oval, it successfully avoided an obstacle.  Again, the vehicle avoided an obstacle 

after it made a right turn onto the widened corridor.  Had the navigation solution been 

incorrect, the vehicle would not have successfully avoided these two obstacles. 

The cause of the failure can also be seen in Figure 2.9.  When the GPS unit began 

receiving signals again, it reported an accuracy of 10 centimeters on the first waypoint.  

This information was incorrect as Starfire corrections are not instantaneous.  The reported 

waypoint was actually 10 meters from the EKF position estimate.  The GPS receiver also 

reported pure zeros in its calculation for velocities, which ultimately blew up the EKF.  

The addition of a few simple lines of code ignored these false messages at the expense of 

having to dead reckon for approximately four minutes after an outage. 

All other NQE runs were completed by the vehicle.  Figure 2.10 shows the vehicle 

approaching and traveling through the 200 foot tunnel during the third run at NQE.  

Similar performance is seen as the vehicle remains in the center of the corridor.  The 

yellow dashes represent obstacles. 



 

 

Figure 2.10:  The vehicle approaching and traveling through the tunnel. 

2.3.2. Grand Challenge 

The navigation system was not stressed during the actual Grand Challenge as the 

vehicle was shut down before it encountered any obstacles that would obstruct satellite 

view.  Therefore, it tracked GPS velocity, course, and position for the duration of the 

vehicle’s operation in the event.  Figure 2.11 is a plot of the DARPA Grand Challenge 

course in green and the estimated vehicle position as reported from the navigation system 

in black.  Total distance traveled was approximately 16 miles before a power cable 

disconnected and crashed the obstacle avoidance algorithm. 
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Figure 2.11:  The Grand Challenge course. 

2.4. SUMMARY 

A navigation system for an autonomous AGV was developed utilizing an extended 

Kalman-Bucy filter.  The system also provided vehicle state information to other vehicle 

subsystems.  The vehicle was invited to participate in the DARPA Grand Challenge, 

where it completed 16 miles before a hardware failure occurred.  While analyzing data, 

peculiar navigation errors were noticed when the vehicle completed turns at higher 

speeds.  It was concluded the error sources were the vehicle dynamics, specifically 

vehicle slip. 
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3. VEHICLE SIMULATION

A MATLAB™ vehicle simulation was developed to replicate driving scenarios 

typically producing undesirable sideslip angles to study their influence on navigation 

systems.  A derived vehicle model was used to simulate the vehicle response during input 

maneuvers.  The simulated response was compared with experimental data to validate the 

simulation’s use in this study.  The simulation was then used as a tool to evaluate the 

effect sideslip has on a Kalman filter both when GPS is and is not available.  Parameters 

used in the simulation can be found in Appendix C. 

3.1. VEHICLE MODEL 

A five degree of freedom vehicle model was chosen to simulate various driving 

scenarios.  A nonlinear yaw model was chosen to replicate the dynamics when a vehicle 

experiences large sideslip angles.  Linear roll and pitch models were developed using the 

small angle assumption that the roll and pitch angles would be less than 10 degrees. 

Inputs into the simulation were a velocity profile (V), steer angle profile (δ), and time 

vector.  The GPS velocity, filtered using a forward-backward filter to attenuate noise, and 

steer angle were used as inputs to simulate an experimental run.  The physical dimensions 

of the car such as front and rear track width (tf and tr), distance from the front and rear 

axle to the CG (a and b), and suspension position (sf and sr) were measured.  Front and 

rear spring rates (kf and kr) were also measured.  Inertias (Ix, Iy, and Iz) and CG height 



 

(hCG) were approximated.  Values for the model parameters, as well as details about the 

experimental test bed, are given in Appendix B. 

3.1.1. Yaw Equations of Motion Derivation 

The equations of motion for the yaw model were found by summing forces and 

moments about the CG.  A vehicle schematic about the yaw axis is shown in Figure 3.1. 
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Figure 3.1:  Schematic used to develop the nonlinear yaw model. 

Summing the moments about the CG yields the following equation: 
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Road grade in the longitudinal direction is denoted by θg.  The effects must be accounted 

for when deriving the equations of motion. 
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Figure 3.2:  Schematic of longitudinal road grade. 

Summing forces in the x direction yields Equation 3.2. 
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Lateral road grade, φg, has a similar effect to longitudinal road grade, as shown by Figure 

3.3. 

 

Figure 3.3:  Lateral road grade depiction. 

Equation 3.3 is found by summing forces along the y axis. 
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The acceleration vector consists of a component in line with the vehicle’s direction of 

travel ( ), and a centripetal component ( ).  The vector is translated to the vehicle 

frame for use in the equations of motion. 

Ta v
Na v
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NT aaa vv
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Equation 3.4 can be rewritten to include the variables defined in Figure 3.1. 

VVa
v&vv ×+= ω  3.5 

The velocity vector is split into x and y components. 
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Velocity in the z axis is assumed to be zero for this study.  The time derivative of 

Equation 3.6 yields the acceleration component in the vehicle’s direction of travel. 
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The centripetal acceleration due to rotation about the z axis, or yaw rate, is translated to 

the vehicle frame using the following equation. 
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vvv

+−=×  3.8 

Combining the acceleration components yields the vehicle’s longitudinal acceleration. 
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Lateral acceleration in the y direction is found in the same manner. 
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Substituting the x acceleration equation into Equations 3.2 yields: 
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and substituting the y acceleration given in Equation 3.10 into Equation 3.3 yields: 
 34
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The total drive force is assumed to be split equally among the rear tires as seen in 

Equation 3.13. 

xBRxBLx FFF +=  3.13 

The following equations are found by solving for yaw acceleration, sideslip rate, and 

total drive force at the rear axle using Equations 3.1, 3.11, and 3.12. 
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Sideslip Rate 
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Drive Force 

)sin()(     

...  )sin()sin()()cos((

δ

θβββ

yFRyFL

gx

FF

grVVmF

++
⎥⎦
⎤

⎢⎣
⎡ −−−= &

v&v

 3.16 

In the vehicle simulation, the yaw acceleration and sideslip rate were numerically 

integrated to obtain yaw rate, heading, and sideslip.  Once the drive force (Fx) was 

calculated, it was divided up among the four wheels.  A positive drive force represented 

acceleration, and the total force was split between the two rear wheels (Fx_OR, Fx_IR).  A 
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negative drive force indicated braking and was split with a 60:40 ratio between the front 

(Fx_OF, Fx_IF) and rear axles as shown in Equation 3.17. 
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3.1.2. Roll and Pitch Equation of Motion Derivation 

Pitch (θ) and roll (φ) were approximated as linear, second order systems centered at 

the CG.  Equations 3.18 and 3.19 were numerically integrated to obtain pitch and roll.  

These equations are valid only at small roll and pitch angles.   

Pitch 
CGpy hxmKI &&&&& =++ θθθ 7.0  3.18 

Roll 
CGrx hymKI &&&&& =++ φφφ 7.0  3.19 

When the vehicle’s front and rear axle spring stiffness (kf, kr) are known, the vehicle’s 

pitch stiffness Kp is defined by Dixon (1996) as the following: 

rfp kbkaK 22 22 +=  3.20 

Similarly, the roll stiffness Kr is shown in Equation 3.21, where sf and sr are the distances 

between the left and right springs on the front and rear. 

)(2
1 22

rrffr skskK +=  3.21 

Knowledge of the roll and pitch angles provides a more accurate dynamic calculation 

of the normal loads at each corner of the vehicle.  In a static state, the normal loads are 

simply a function of the vehicle’s weight, wheel base, and track width.  However, weight 

is transferred to and from the corners of the vehicle when the vehicle moves.  Therefore 

 36



 

the normal loading becomes a function of not only the static normal load, but also 

includes effects from roll, pitch, and acceleration. 

3.2. TIRE MODEL 

A Dugoff tire model was used to simulate the nonlinear tire behavior.  This specific 

model was chosen for its ability to approximate the tire curve with inputs of lateral and 

longitudinal tire stiffness (Cα and Cs) and peak friction coefficient (µ).  This model also 

has the ability to couple longitudinal and lateral tire slip.  As longitudinal tire slip 

increases, the amount of available lateral force decreases (Olson, 2003).  The Dugoff tire 

model is shown in the following equations.  Longitudinal tire slip is denoted by s, and 

lateral tire slip is denoted by α. 
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Using f, the lateral and longitudinal tire force is solved given a normal load and slip angle 

or percentage.  Lateral tire force is given by Equation 3.23. 

f
s

CFy −
−=

1
)tan(αα  3.23 

Longitudinal force is provided using Equation 3.24. 

f
s
sCF s

x −
=

1
 3.24 

Tire peak force is a function of normal load.  Under static conditions on a level 

surface, the normal load at a front and rear tire is given by Equation 3.25. 
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However, dynamic conditions and road grade induce weight transfer due to roll and pitch.  

The body orientation angles described in Section 3.1.2 were used to calculate the normal 

load at each wheel.  Lateral weight transfer was assumed to be caused by lateral 

acceleration and roll angle.  It was calculated at the front and rear axles. 
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Longitudinal weight transfer was simulated only with longitudinal acceleration under the 

assumption the pitch angles remain small.  This study focused on maneuvers that excited 

the lateral vehicle dynamics; therefore this assumption is safe because no maneuvers 

creating significant pitch angles were input into the simulation. 

L
xmh

F CG
ZP

&&
=∆  3.27 

Distributing the weight transfer effects among the four tires yields Equation 3.28. 
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Figure 3.4 displays a lateral tire curve generated by the Dugoff model with varying 

normal loads.  No longitudinal slip was included in this curve. 
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Figure 3.4:  Dugoff tire curve with varying normal loads. 

 

The tire cornering stiffness, Cα, was experimentally determined by operating the 

vehicle at high speeds around corners of the track owned by Auburn University’s 

National Center for Asphalt Technology (NCAT).  Figure 3.5 and Figure 3.6 show the 

linear region of the tire curve for a front and rear tire.  Front and rear tire cornering 

stiffness was estimated to be approximately 800 N/deg and 1300 N/deg per tire, 

respectively.  The peak friction coefficient, µ, served as a tuning parameter for the 

simulation, and was selected to be 0.84 for the front and 0.81 for the rear. 
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Figure 3.5: Front tire curve. 

 

Figure 3.6: Rear tire curve. 
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The tire curves were generated utilizing a sideslip measurement from a two antenna 

GPS receiver.  The method used to measure sideslip is given in Appendix B.  Once the 

sideslip measurement was taken, a longitudinal and lateral velocity at the CG could be 

moved to the individual tires using Equation 3.29. 

CGTCGT RrVV /

vvv
×+=  3.29 

Once the lateral and longitudinal tire velocities were known, the tire slip angle (α) was 

calculated. 
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Lateral tire force was calculated using Equations 3.1 and 3.3. 
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3.3. SENSOR MODELS 

Expressions for clean measured accelerations (without noise or biases) were found by 

taking the time derivative of the velocity vector at the CG and adding the centripetal 

acceleration effects due to rotation about each axis.  The acceleration measurement in the 

z axis consists solely of centripetal acceleration and gravity components since the car is 

restricted to operate on a level surface. 

Longitudinal Acceleration Measurement 
)sin()sin()()cos( gx grVVa θθβββ +++−= &

v&v  3.32 

Lateral Acceleration Measurement 
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Vertical Acceleration Measurement 
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v
&

v
 3.34 

Inertial sensors were simulated by adding Gaussian noise, a constant bias, and a 

walking bias to the raw measurement, as shown in Equation 3.35. 

Sensor Model 
λλλλλ wbcm +++=  3.35 

The variable λm denotes actual sensor output, λ is the true acceleration or turning rate, cλ 

is the constant turn on bias, bλ is the walking bias modeled with a Markov process given 

by Equation 3.36, and wλ is Gaussian noise. 

Markov Process 
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Inputs to the Markov process are the sensor sampling rate (∆t), Markov time constant (τλ), 

bias standard deviation (σλ), and Gaussian noise (ν).  Values used for the time constant 

and standard deviation for each sensor are listed in Table 3.1 (Gebre-Egziabher, 2004). 
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Table 3.1:  Sensor Characteristics Used in the Sensor Model

 Sensor Noise 

(wλ) 

Turn On Bias 

(cλ) 

Bias Time 

Constant (τλ) 

Bias Variation 

(σλ) 

Automotive Grade 

Rate Gyro 
~N[0,1] >0.6 m/s2 300 sec 180 º/hr 

Automotive Grade 

Accelerometer 
~N[0,1] >0.3 deg/s 100 sec 1.2x10-3 g 

 

3.4. MODEL VALIDATION 

The model was first compared to actual data to validate its use as a tool to investigate 

how sideslip corrupts a navigation solution.  The simulated data was compared with 

steady state maneuvers and transient maneuvers to confirm the model’s accuracy.  

Experimental maneuvers were performed with the Infiniti G35, which is described in 

detail in Appendix B.  The simulation assumed the vehicle was on level terrain because 

of its inability to compensate for varying road grade.  Also, an assumption of no 

longitudinal slip was made.  Because of this assumption, the vehicle was put in neutral 

before starting the maneuver. Figure 3.7 displays the measured and simulated roll data 

during two abrupt lane change maneuvers.  The discrepancy seen in Figure 3.7 is due to 

the ±2° of road crown as the vehicle moves from one lane to the other.   
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Figure 3.7:  Comparison of simulated and measured roll angle. 

Figure 3.8 shows the simulated yaw rate and the actual vehicle yaw rate, while Figure 

3.9 is the measured sideslip generated during this maneuver with the simulated sideslip.  

The small disagreements in these states are primarily due to the assumption of zero road 

grade and zero longitudinal slip.  The experimental run traversed from the far right lane 

to right side of the left lane in this maneuver.  Therefore the vehicle experienced 

approximately 2° to 0° of lateral road grade.  The ±2° of crown on the road impacts 

sideslip significantly.  A similar maneuver starting in the far left lane showed similar 

error for negative sideslip angles, but the positive sideslip angles were matched correctly  
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Figure 3.8:  Simulated yaw rate compared with measured yaw rate. 
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Figure 3.9:  Measured and simulated sideslip. 
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3.5. SUMMARY 

A MATLAB™ simulation was written which included a nonlinear vehicle model to 

simulate the dynamics of the vehicle during various maneuvers.  The model included 

vehicle’s yaw, roll, and pitch dynamics, lateral and longitudinal effects, and a nonlinear 

Dugoff tire model.  There is good correlation between the simulated and actual 

measurements, therefore it can be concluded the model sufficiently captures the vehicle’s 

dynamics and can be used to examine the effect of sideslip on a navigation solution. 
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4. ANALYSIS OF VEHICLE DYNAMICS ON NAVIGATION

 The demand for accurate and reliable navigation for ground vehicles is proliferating 

as passenger vehicle control systems become more complex and as the market for 

autonomous capability continues to grow.  In addition to vehicle state information, a 

reliance on a navigation solution will be required as vehicle stability control systems 

increase their intelligence beyond the current versions of Electronic Stability Control 

(ESC), Vehicle Dynamic Control (VDC) and so forth.  Future intelligent and safety 

vehicle systems may use this information to provide better lane keeping capability, higher 

accuracy vehicle tracking, or enhanced driver assistance systems.  Also, control of 

AGV’s requires precise navigation information.  The need for reliable navigation 

information will increase as passenger vehicles continue to acquire AGV-like 

capabilities.  An increase in the precision of the navigation solution can directly lead to 

better and more robust vehicle controllers. 

Vehicle dynamicists often use models to provide detailed vehicle state information to 

the driver or a control system.  These models are often intricate, requiring parameters that 

are hard or expensive to measure, and can be excessively complicated for navigational 

purposes (Venhovens, 1999).  Navigation specialists sometimes use a simplified vehicle 

model based on kinematic relationships.  However, these models sometimes neglect key 

states such as lateral velocity present in the actual dynamics of the ground vehicle 

operating at normal speeds (Dissanayake, 2001; Godha, 2005).  A tradeoff exists to 



 

 48

account for the critical states sometimes neglected by navigation models while keeping 

the model complexity to a minimum.  This tradeoff is fundamental to the next generation 

of automobile control systems and AGV navigation (He, 2002; Daily, 2004).  Vehicle 

model parameters are often hard to obtain or change frequently.  For instance, tire 

parameters are often unknown, and the owner might change values for the mass, inertias, 

and CG location by loading the vehicle.  Therefore, a relatively simple kinematic model 

capturing similar states as a vehicle model will be more robust to those model changes 

common to the everyday passenger vehicle. 

The focus of this chapter is to show how vehicle slip induces errors in a navigation 

solution unless accounted for both when GPS is available and when dead reckoning 

through a GPS outage.  Many scenarios exist where non-negligible amounts of slip are 

generated.  A vehicle traveling on low friction surfaces will quickly break the assumption 

of no slip.  Active control systems that steer the vehicle away from an impending 

accident will generate large amounts of vehicle slip in order to maximize the force at the 

ground to quickly alter the vehicle’s path and minimize the chance of a collision.  

Similarly, an AGV suddenly maneuvering to avoid an obstacle can generate noticeable 

vehicle slip.  The vehicle slip generated in both of these scenarios can produce navigation 

errors.  A vehicle equipped with a lane keeping system traveling on an icy road might 

experience difficulties because the navigation solution and map database do not agree due 

to these navigation errors. 

The main contribution of this section is to show lateral vehicle slip can corrupt 

navigation solutions from a Kalman filter by introducing discrepancies between measured 

states and integrated inputs, and therefore must be taken into account for systems 
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requiring precise vehicle navigation information.  Previous work has explained the 

importance of lateral vehicle slip in navigation through the use of vehicle models 

(Scheding, 1999; Julier, 2003); however the work in this thesis utilizes a kinematic 

navigation model to explain the consequences of neglecting slip (Travis, 2005).  The 

contribution of this chapter requires a measurement of vehicle heading, which was 

obtained using a two antenna GPS receiver.  Slip is calculated from raw measurements 

rather than estimated with a vehicle model.  While a multiple antenna GPS system on a 

passenger vehicle might seem like a distant concept, many vehicles today already come 

equipped with a single antenna system.  The cost of adding a second antenna would arise 

at the chipset level of the GPS board, which could be an inexpensive addition (Alban, 

2004).  Many commercial systems which provide improved positioning accuracy through 

differential corrections, known as DGPS, are currently available such as WAAS (Wide 

Area Augmentation System), Coast Guard corrections, Starfire, Omnistar, etc.  In 

addition, systems developed by the Federal Highway Administration (FHWA) such as 

NDGPS and HA-NDGPS seek to provide high accuracy navigation for transportation 

purposes (Cook, 2000; Arnold, 2001; FHWA, 2005). 

To investigate the affect of vehicle slip on navigation solutions, the vehicle 

simulation outlined in Chapter 3 was developed to demonstrate the corruption by slip in a 

controlled environment.  Data was also collected on a test vehicle to for further validation 

of how the navigation accuracy can be degraded under scenarios where slip is produced.  

Three navigation models were utilized to present the solution accuracy when slip was and 

was not accounted for.  Simulated and experimental data were analyzed when navigating 

with and without GPS. 
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4.1. GENERATION OF VEHICLE SLIP 

An explanation of how sideslip occurs is necessary to understand the errors that can 

potentially arise in a navigation solution.  The tire is the vehicle’s interface with the road 

which transfers all drive forces to the ground and generating the required lateral forces to 

turn the vehicle.  Using the explanation presented in (Milliken, 1995), as the tire rolls, 

parts of the tread either adhere to the road or slide.  When a force from the vehicle is 

applied to the tire/road interface, the static coefficient of friction is exceeded in local 

areas on the tread.  Areas where the friction coefficient is surpassed begin to slide, which 

generates a force to push the vehicle.  The generated force is approximated as linear, 

proportional to slip until the tire saturates.  When saturation occurs, the force remains 

constant as no more lateral or longitudinal force can be applied to direct the vehicle.  The 

linear increase and saturation can be seen in the tire curve below. 
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Figure 4.1:  Lateral tire curve saturating on different surfaces. 

The effective stiffness of the tire is used to characterize the tire, and is denoted by a 

cornering stiffness (Cα) and tractive stiffness (Cs).  These parameters and the peak tire 

force are functions of numerous factors such as terrain, normal force, toe, camber, road 

conditions, materials, etc, and are rarely known exactly due to the highly complex 

relationship between these functions.  Approximations with look up tables or empirical 

models, such as Pacjeka’s Magic Model or the Dugoff Tire Model (Figure 3.4), are often 

used to sufficiently characterize the tire (Pacejka, 1987; Dugoff, 1970).  Ultimately, the 

vehicle control forces in the linear region are a function of the tire stiffness and lateral 

and/or longitudinal slip (α and s, respectively), shown by Equation 4.1. 

αα ⋅=
⋅=

CF
sCF

y

sx  4.1 

 51



 

In the above equation, s is the slip due to the difference in wheel speed and vehicle speed, 

and α is the slip due to the difference in the tire pointing direction and the direction of 

travel (Gillespie, 1992).  Wheel slip can be calculated using a wheel encoder and a sensor 

to measure vehicle velocity, such as GPS, radar, or optical sensor.  Definitions of 

longitudinal and lateral tire slip are provided in Equation 4.2. 
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The lateral slip at each tire can be translated to the vehicle’s center of gravity (CG) to 

obtain overall vehicle slip, more commonly known as vehicle sideslip (β).  Sideslip is an 

angle defined as the difference between the vehicle’s course (ν) and its heading (ψ).  This 

difference can be seen in the figure below, which is typically referred to as a “bicycle 

schematic.” 
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Figure 4.2:  Bicycle schematic showing slip angles. 

Vehicle heading is the direction the vehicle is pointed, while course is the direction of the 

vector created by the vehicle’s direction of travel.  Both of these angles are referenced 

clockwise from North.  In practice, this angle is measured or estimated at the CG, then 

can be translated to other locations on the vehicle for analysis or to extract further 

information.  In Figure 4.2, the slip angle at the CG was translated to each end of the 

vehicle to provide the tire slip angles. 

Model based Kalman filters have proven to be effective tools to estimate vehicle 

states but often require significant knowledge about the vehicle (Anderson, 2004).  

Kinematic relationships between sensors on a vehicle are often used to define state 

equations in a Kalman filter because they require less model knowledge and are not 

affected by to changes in the model, such as vehicle mass or tire parameters.  However, 

these kinematic models sometimes depict the car as if it were on rails by assuming zero 
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lateral velocity, or by assuming a proportional relationship between steer angle and yaw 

rate.  These assumptions are valid at low speeds for passenger vehicles as the car is 

generating minute slip angles and the lateral velocity is virtually zero.  The assumptions 

break down at higher speeds as lateral velocities are generated that invalidate the 

kinematic model, as will be shown in this chapter.  When this occurs a degradation of the 

performance of navigation or control systems may be observed.  For these assumptions, 

speed also must be considered relative to the vehicle parameters, or the terrain on which 

the vehicle is operating.  A small All Terrain Vehicle (ATV) with soft tires maneuvering 

at 20 m/s on pavement could generate the same slip angles as a sports coupe with 

performance tires traveling 35 m/s.  Similarly, a car turning on dry pavement at 10 m/s 

would generate very small slip angles, while the same car traveling at the same speed 

would generate significantly larger slip angles if it were on a low friction surface such as 

ice. 

4.2. NAVIGATION CORRUPTION BY SIDESLIP 

A simple but common estimator utilizes a single antenna GPS receiver and an IMU to 

track vehicle position, orientation, and speed.  The GPS receiver measures the vehicle’s 

course, speed, and position, while the IMU measures the vehicle’s yaw rate and 

longitudinal acceleration.  The Kalman filter compares the integrated yaw rate gyro with 

the course measurement, and the integrated accelerometer to the speed measurement, to 

estimate the vehicle’s speed, orientation, longitudinal accelerometer bias, and yaw rate 

gyro bias.  The yaw rate gyro provides a measurement of the time derivative of heading, 

r=ψ&  4.3 
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and course is the combination of heading and sideslip.  

βψν +=  4.4 

Typically a heading measurement is unavailable, so the course measurement is 

substituted.  Under straight or low speed driving, the integrated yaw rate, or heading, and 

course measurements should be similar.  
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Similarly, small sideslip angles fulfill the small angle approximation, so vehicle speed 

can be approximated with an integrated longitudinal accelerometer.  However, vehicle 

speed gains a lateral component when sideslip is non-zero. 
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Maneuvers producing sideslip, such as an emergency lane change, introduce a 

discrepancy in the yaw rate gyro bias estimate because heading from an integrated yaw 

rate gyro is compared to GPS course in the innovation in the EKF (Equation 2.11).  

However, GPS course is measuring the angle of the velocity vector (heading plus 

sideslip), and the heading is measuring the angle the vehicle is pointing.  Further 

complications arise because the longitudinal accelerometer in the IMU is measuring a 

centripetal acceleration neglected in the models, and GPS velocity is measuring both 

longitudinal and lateral velocity.  These neglected terms can lead to significant state 

estimate errors if a vehicle is generating even small sideslip angles.  As will be seen in 

the ensuing subsections, kinematic relationships that account for sideslip should be 
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included in the state equations in the Kalman filter in order to produce a more accurate 

navigation solution. 

Three navigation models were utilized to examine the solution accuracy when vehicle 

sideslip is ignored and when it is taken into account.  All algorithms use the EKF given 

by Equations 2.8 to 2.12.  Noise statistics for the process covariance matrix (Q) were 

determined by calculating the standard deviation of experimental static sensor data.  

Since the data consisted of discrete samples, it required conversion to the time domain by 

a multiplication factor of the sample rate so it could be used in the EKF (Stengal, 1994).  

The statistics for the measurement covariance matrix (R) were taken from data sheets 

from the GPS receivers used.  Biases were modeled as a random walk, and their 

respective entries in the Q matrix were used to tune the EKF. 

4.2.1. Typical Navigation Model 

The most common states critical to a vehicle controller are speed and orientation.  

Additionally, accurate position is required for autonomous operation and future stability 

and control routines.  A typical, computationally inexpensive navigation model on 

ground vehicles provides states of speed, orientation about the z axis, position, and sensor 

biases using inputs of longitudinal acceleration and yaw rate.  Equation 4.7 displays a six 

state kinematic navigation model including the listed states. 
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The A matrix used in Equation 2.8 is computed as the Jacobian of this vector field 

with respect to the states evaluated at the previous time step.  Note the simplified 

kinematic coupling of the vehicle states.  The velocity estimate is assumed to be in the 

longitudinal direction of the vehicle, while the heading estimate lumps heading and 

course into one state.  Measurements for this system consist of GPS velocity, course, and 

position.  The measurement matrix is a 4x6 matrix of zeros unless a GPS message is 

received.  The four entries linked to the respective states change to a value of 1 (Equation 

4.8).   
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 4.8 

It is important to note the system is unobservable when GPS is not available, and 

estimates are calculated by dead reckoning with the IMU. 

4.2.2. Modified Navigation Model 

A modified version of the model listed above estimates vehicle roll using a roll rate 

gyro and lateral accelerometer using methods defined by (Bevly, 2004).  These sensors 

are common on some current passenger vehicles.  An estimate of vehicle roll can be 

useful in stability control systems to provide additional vehicle information.  It has been 

shown that vehicle roll angle is a function of CG location, not just height, and therefore 
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lateral acceleration is not always a sufficient indicator of vehicle instability (Whitehead, 

2004; Travis, 2004).  Inputs are longitudinal acceleration, yaw rate, and roll rate, 

resulting in the state equations for this system are listed below in Equation 4.9. 
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Using an additional kinematic relationship, a vehicle roll measurement can be 

obtained by subtracting the centripetal acceleration from the lateral accelerometer 

measurement as show in Equation 4.10. 

( ))ˆ(1
ryM brVa

g
−−=φ  4.10 

Any lateral accelerometer bias will appear in this calculation; therefore the estimate is 

actually a combination of roll angle and lateral accelerometer bias.  Bevly also proposed 

a method to separate the states by applying a low pass filter to the estimate to obtain the 

bias and applying a high pass filter to obtain the change in roll angle. 

The measurement matrix is a 5x8 matrix of zeros.  When a GPS message is received, 

the following matrix entries change (Equation 4.11). 
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4.2.3. Expanded Navigation Model 

A navigation algorithm was derived to compensate for vehicle slip using kinematic 

relationships that are sometimes disregarded.  Inputs are from sensors common to most 

current passenger vehicles: longitudinal acceleration, lateral acceleration, yaw rate, and 

roll rate.  The vector field containing these kinematic equations is shown in Equation 

4.12. 
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The obvious difference between this modified model and the previously presented 

models is the velocity estimate is now broken up into longitudinal and lateral 

components, and additional centripetal acceleration terms are included.  The main 

assumption of this model is there is no vertical velocity.  This assumption is valid for this 

study because the vehicle was constrained to a level surface in simulation and in 

experimental tests.  However, in scenarios where vertical velocities will be encountered 



 

(hills, banked turns, etc), more centripetal acceleration effects will appear in these 

equations and should be included in the navigation model to improve the estimation 

accuracy.  GPS can provide the necessary measurements of vertical velocity, and pitch 

with a three antenna system, to make the navigation model observable. 

Measurements for this system are longitudinal and lateral velocity, heading (not 

course), roll, and position.  Currently, many of these measurements are not available on 

passenger vehicles but are readily accessible on many AGV platforms.  However, 

obtaining these measurements on a highway vehicle is not a distant concept as GPS 

technology continues to become more prevalent in automotive systems.  Sideslip has 

been effectively measured using a yaw rate gyro and GPS, which is currently on many 

vehicles (Bevly, 2000).  This study obtained a sideslip calculation from a two antenna 

GPS receiver.  If sideslip is known, the GPS velocity measurement can be separated into 

longitudinal and lateral components for use in the state equations given in Equation 4.12.  

Discussion on how sideslip was obtained for this research is provided in Appendix B.  

Using the listed measurements, the C matrix is a 6x10 matrix of zeros unless a GPS 

measurement is received.  In that instance, the measurement matrix is as follows: 

Heading) (GPS ,1)5,3(
Speed) Lateral (GPS ,1)3,2(

 Speed) alLongitudin (GPS ,1)1,1(

=
=
=

C
C
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East) (GPS 1)10,6(
North) (GPS ,1)9,5(
Roll) (GPS ,1)7,4(

=
=
=

C
C
C

 4.13 

Also, an effective sideslip estimate can be calculated using Vx and Vy as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

y

V
V1tanβ  4.14 
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The process and measurement covariance matrices for the three models shared 

variances on common states.  Also, the parameters did not change when using the models 

with simulated or experimental data, since the sensor simulation was tuned to match the 

actual sensors on the test bed.  The values are listed in the tables below. 

 

Table 4.1:  Process Noise Variances for Sideslip Corruption Investigation 

dtax
22 2.0=σ  42 1 −= ebaxσ  dtay

22 5.0=σ  42 1 −= ebayσ  

dtr
22 05.0=σ  62 1 −= ebrσ  dt22 0107.0=φσ  62 1 −= ebφσ  

62 1 −= eNσ 62 1 −= eEσ  

 

Table 4.2:  Measurement Noise Variances for Sideslip Corruption Investigation 

22 5.0=Vσ  
2

2 ⎟
⎠
⎞

⎜
⎝
⎛= V

Vσσν  22 00174.0=ψσ  22 00698.0=φσ  

22 03.0=Mφσ  22 1.0=Nσ  22 1.0=Eσ   

 

4.2.4. Simulation Results of Sideslip Corruption 

A step lane change maneuver was input into the simulation discussed in Chapter 3 to 

excite the yaw dynamics.  In the following plots, the numbers one, two, and three refer to 

the typical navigation model, modified model, and expanded model, respectively, listed 

in Section 4.2.1 to 4.2.3.  The output of models 1 and 2 are often similar because of the 

similarity of their kinematic models (both neglect sideslip). 
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As seen in Figure 4.3, the heading estimates from models 1 and 2 lose accuracy when 

slip is generated.  The estimate follows the heading measurement from the integrated yaw 

gyro until a GPS course measurement is received.  The residual between the estimate and 

measurement becomes large because the model does not account for sideslip.  This error 

is then multiplied by the EKF gain, and added to the time update to minimize the error 

between the estimate and the course measurement.  This process occurs in Equation 2.11.  

Another casualty of this phenomenon is the yaw gyro bias estimate.  Figure 4.4 shows 

error due to sideslip being injected in the yaw gyro bias estimate.  However, when 

sideslip is taken into account by model 3, the severity of inaccuracies in the gyro bias 

estimate is reduced up to 1.5 deg/s for this maneuver.  Additionally, the heading estimate 

correctly follows the true vehicle heading. 
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Figure 4.3:  Heading estimates of the different navigation models from simulated data. 
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Figure 4.4:  Yaw gyro bias estimates from simulated data. 

Comparable evidence is seen in the velocity and accelerometer bias estimates.  When 

lateral velocity is near zero, the three models produce similar estimates.  When slip is 

introduced, the longitudinal estimate using models 1 and 2 diverge from the estimates 

using 3. This is due to the fact that models 1 and 2 neglect the centripetal acceleration 

caused by lateral velocity and yaw rate.  Figure 4.5 shows the error in the velocity 

estimate caused by the models that neglect centripetal acceleration.  Figure 4.6 displays 

the inaccuracy in the longitudinal accelerometer bias estimate. 
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Figure 4.5:  Jump in velocity estimate due to neglected terms. 
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Figure 4.6:  Corrupted longitudinal accelerometer bias estimate. 
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Although roll is not directly influence by sideslip, knowledge of this state is useful to 

vehicle controllers and could be used in algorithms to calculate other vehicle states.  

Figure 4.7 displays the roll estimate from models 2 and 3.  The estimate from model 2 

contains the lateral accelerometer bias from the measurement.  However, model 3 

correctly captures the roll angle with the use of the dual antenna GPS system.  Note that a 

third antenna could be added to estimate pitch in a similar fashion.  
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Figure 4.7:  Roll estimates from the different navigation models. 

Although the sideslip effects initially appear small, the loss of GPS during this period 

would devastate the estimate accuracy.  There are two primary sources of error in models 

1 and 2 during a GPS outage.  Without GPS, the estimator integrates yaw rate to obtain a 

course measurement.  However, this estimate is actually heading.  Since the position 

estimates are a function of vehicle velocity and course, error will be introduced by using 

heading in lieu of course.  Additionally, if the outage occurs while the vehicle is slipping, 
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the yaw gyro bias estimate will be incorrect and lead to a large position error.  Model 3 

overcomes the shortcomings of models 1 and 2 by continuing to estimate longitudinal 

and lateral velocity, which provides an effective sideslip estimate.  The heading estimate 

from the integrated yaw gyro is added to the sideslip estimate, and used to estimate north 

and east position more accurately.  Models 1 and 2 use only heading to estimate north 

and east position, which is incorrect when sideslip is present because north and east 

position are dependent upon direction of travel (course).  Also, Figure 4.8 displays 

position error during both circumstances.  The total error was calculated from the norm of 

east and north error as shown below, where True denotes the true value of the state and 

Est denotes the estimated value of the state. 

22 )()( EstTrueEstTrueposition EENNe −+−=  4.15 

Using the same set of data as Figure 4.3 through Figure 4.7, a GPS outage was simulated 

before the maneuver was executed at 31 seconds (dashed line) and at 32.4 seconds when 

the vehicle was generating sideslip (dotted line).  The models neglecting sideslip effects 

produced substantially larger errors when the outage occurred during the maneuver.  

Their accuracy was also poorer than model 3 when the outage occurred before the 

maneuver because vehicle heading, not course, was used to estimate north and east 

position when slip was generated. 
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Figure 4.8:  Position error during an outage. 

Model 3 also displays some ability to predict sideslip during a GPS outage for a short 

period of time by integrating the lateral and longitudinal accelerometers.  The model used 

the sideslip measurement from the dual antenna GPS receiver to estimate lateral and 

longitudinal velocity and correct inertial errors.  This sideslip estimate would be of use to 

stability control systems in many vehicles.  Figure 4.9 shows the sideslip estimate during 

the GPS outage using model 3.  The growing error in the above figure was due to the bias 

drift in the accelerometers. 
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Figure 4.9:  Estimated sideslip during an outage. 

4.2.5. Experimental Results of Sideslip Corruption 

Slip was generated experimentally to show the estimator accuracy using the various 

navigation models.  An emergency lane change maneuver was executed on a straight 

section of the aforementioned test track.  As in Section 0, models 1 and 2 refer to the 

typical and modified model, and model 3 refers to the expanded model.  It should be 

noted the process noise statistics in Q can change during an experimental run as different 

levels of vibration are experienced throughout the vehicle.  This matrix was initially set 

and not revisited.  In simulation, this is sufficient because the process noise is constant.  

However in the real world, errors can be produced due to a change in the process noise 

model.  These changes are hard to detect, therefore the process noise matrix is often left 

constant which leads to a sub-optimal filter. 
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Figure 4.10 shows the decrease in heading accuracy with GPS during the maneuver 

using models 1 and 2.  Conversely, the estimator using model 3 correctly tracks the 

vehicle heading.  This is similar to the simulation results shown in Figure 4.3.  Notice the 

increase in the level of noise caused by an incorrect yaw gyro bias estimate from models 

1 and 2.  The Kalman filter could be tuned to decrease the severity of heading error by 

adjusting the appropriate bias parameters in the process noise covariance matrix.  

However, this might lead to an inability to accurately track the sensor bias, which would 

impact the dead reckoning solution. 
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Figure 4.10:  Heading estimates of the navigation models with experimental data. 

A GPS outage was artificially simulated at 118 seconds in Figure 4.11.  During this 

period of time, sideslip was generated.  Therefore this section of data was chosen to 

display the errors generated by the assumption of zero lateral velocity.  The position error 

was calculated using Equation 4.15.  Estimates from experimental data display similar 
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results as the estimates from the simulated data.  Position error grows during the outage, 

but the model incorporating slip experiences a smaller error growth rate. 
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Figure 4.11:  Position error during an artificial GPS outage. 

Figure 4.12 provides insight as to a difference exists between the navigation models.  

When GPS is removed at 118 seconds, the yaw gyro bias is incorrectly estimated using 

models 1 and 2, which leads to an incorrect heading estimate.  Model 3 captures the 

motion of the vehicle and provides a more accurate heading estimate for a short period of 

time during the outage. 
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Figure 4.12:  Heading estimates during a GPS outage. 

4.3. NAVIGATION CORRUPTION BY LONGITUDINAL SLIP 

Wheel speed sensors are perhaps the most common velocity sensor on ground 

vehicles.  Their low cost, small size and ease of use are beneficial to manufacturers, and 

they are proven navigation instruments (Hay, 2005).  However, an inherent flaw with a 

wheel speed sensor is that it measures wheel speed, not vehicle speed.  When longitudinal 

slip is generated, these two measurements can drastically differ.  Longitudinal wheel slip 

is defined by the speed difference between the vehicle and the tire, and is given by 

Equation 4.16. 

Vehicle

VehicleTire

V
VV

s
−

=  4.16 

Large engine torques can yield a high wheel speed measurement that differs from the 

vehicle’s speed over ground.  Similarly, a hard braking maneuver could lock up a tire.  
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The slip is dependent upon tire characteristics, as explained in Section 4.1 and with 

Equation 4.1.  The wheel speed sensor would then report zero velocity, but the vehicle 

might be traveling with a high rate of speed.  Terrain only magnifies the difference 

between wheel speed and vehicle speed.  A small slip percentage is typically generated 

by the drive torque at the tire.  On ice, the same drive torque could produce a 

considerable percentage of wheel slip.  In order to mitigate the effect of wheel slip, the 

wheel speed sensor is often placed on an un-driven wheel. 

To effectively use a wheel speed measurement for navigation, it must be translated 

from the tire to the vehicle’s center of gravity.  If a wheel speed sensor on a front tire is 

used, an additional translation from the tire frame to the vehicle frame must be 

completed.  As a vehicle turns, a velocity difference between inner and outer tires is 

introduced.  Also, if sideslip is present, the wheel speed sensors on the tires cannot 

capture the lateral velocity.  Figure 4.13 shows a front left tire at a given steer angle (δ), 

along with distances to the CG. 



 

 

Figure 4.13:  Tire coordinate frame. 

Using Equation 4.17 the wheel velocity can be moved to the CG with knowledge of the 

yaw rate. 
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First, the wheel velocity should be separated into x and y components and translated to 

the vehicle coordinate frame. 
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Simplifying Equation 4.18 yields the complete velocity translation from the front left tire 

to the vehicle’s CG. 
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Following a similar procedure, the velocity at any tire can be moved to the CG.  Equation 

4.20 shows the transformation from the front right tire. 
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In most circumstances rear tires do not require a tire-to-vehicle frame transformation.  

Therefore a lateral wheel velocity has no influence on the longitudinal vehicle velocity.  

Therefore, the velocity from the back left tire to the CG is as follows: 
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Finally, the transformation from the rear right tire to the CG is calculated. 
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4.3.1. Navigation Model with Wheel Speed 

The navigation system is simplified in this section by estimating states only 

pertaining to vehicle velocity.  Therefore, the system nonlinearities induced by the 

position estimate are eliminated and a simpler, discrete linear Kalman filter (LKF) is 

used.  The guaranteed optimality provided by a linear Kalman filter is a welcomed 

benefit. 

The LKF is similar in design to the EKF but the equations are slightly different 

because there are no nonlinear approximations.  For more information, see Gelb (1974).  

The equations for an LKF are listed below. 

State Estimate Extrapolation 
1111 ˆˆ −−

+
−−

− += kkkkk uBxAx  4.23 

Covariance Estimate Extrapolation 
1111 −−

+
−−

− += k
T
kkkk QAPAP  4.24 
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Gain Calculation 
( ) 1−−− += k

T
kkk

T
kkk RCPCCPL  4.25 

State Update 
( )−−+ −+= kkkkkk xCyLxx ˆˆˆ  4.26 

Covariance Update 
( ) 1−−+ += kk

T
kkk CRCPP  4.27 

Another simplification in this section is the use of a rear wheel speed measurement, 

as opposed to a front wheel speed measurement.  This eliminates the lateral wheel 

velocity contribution to the longitudinal vehicle velocity.  Also, tests are run in a manner 

to minimize sideslip so the lateral components can be neglected.  After these 

simplifications, the velocity transformation from the left rear tire to the vehicle’s CG is 

given by Equation 4.28. 

rtVV r
xBLBLCG 2/ +=

v
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The navigation model to estimate longitudinal vehicle speed and longitudinal 

accelerometer bias is given in Equation 4.29. 
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The sole input is longitudinal acceleration.  This leads to the continuous state transition 

matrix, Ac, and continuous input matrix, Bc, below. 
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Measurements of GPS velocity and wheel speed translated to the CG yield the 

measurement vector and measurement matrix given by Equation 4.31. 

 75



 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

01
01

     ,
/

c
BLCG

GPS C
V
V

y  4.31 

Note that the continuous system matrices must be discretized before used in the LKF. 

The addition of GPS velocity allows a wheel speed bias estimate to be observable.  

Addition of a third state is required to estimate wheel speed bias in the above system. 
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The state matrices when estimating a wheel speed bias are defined as follows: 
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Note the same input and measurements are used for both models. 

4.3.2. Navigation Model with Wheel Speed and Radar 

Doppler radar is a common speed sensor which can be utilized on ground vehicles.  It 

is helpful on some terrains because it is insensitive to wheel slip.  The radar bias however 

may be sensitive to changes in the sensor’s pointing angle and can be terrain dependent.  

Therefore a bias associated with the radar should be estimated to provide an accurate 

velocity estimate. 

The navigation model used is similar to the model estimating wheel slip, with an 

additional state to estimate the Doppler radar bias. 
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The measurement vector is altered by the addition of the Doppler radar velocity 

measurement.  It is listed with the measurement matrix in Equation 4.35. 
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4.3.3. Experimental Results of Longitudinal Slip Corruption 

The Infiniti G35 was driven in a straight line on a gravel surface to show wheel slip in 

the longitudinal direction can be devastating to the accuracy of the navigation solution 

when using a wheel speed sensor to provide a redundant measurement of velocity.  

Figure 4.14 displays the corrupted navigation solution when wheel slip is not accounted 

for in the estimator while GPS is available.  At 4.5 seconds there is a 1 m/s error in the 

velocity estimate due to wheel slip.  Recall that wheel slip is related to applied drive force 

at the wheel, and therefore related to acceleration. 
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Figure 4.14:  Velocity estimate corrupted by wheel slip. 

Estimating the wheel speed bias effectively lessens the velocity estimate error when 

GPS is available, as shown by Figure 4.15.  The longitudinal slip is captured in the bias 

estimate if the bias is modeled with high enough dynamics, along with any radial 

displacements caused by flexing of the sidewall as the tire is loaded during operation. 
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Figure 4.15:  Estimate with wheel speed bias removed. 

When GPS is lost the bias estimate becomes unobservable and remains constant.  

Figure 4.16 shows the same data given in Figure 4.14.  In this figure, a GPS outage is 

simulated at t=4 seconds.  The effect of the bias remaining constant can be seen. 
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Figure 4.16:  Estimated wheel speed bias before and during a GPS outage. 

Because the wheel speed bias is unobservable when GPS measurements are unavailable, 

any changes in the bias cannot be compensated.  The dead reckoned navigation solution 

is corrupted by changes in slip or wheel radius during a GPS outage.  Figure 4.17 shows 

the error in the velocity estimate is proportional to the constant bias offset. 

 80



 

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

Time (s)

V
el

oc
ity

 (m
/s

)

Wheel Speed
GPS
Estimate

 

Figure 4.17:  Velocity estimate using wheel speed and bias estimate during an outage. 

The Doppler radar velocity measurement was used to correct the inadequacies of the 

wheel speed measurement using the estimator model described in Equations 4.34 and 

4.35.  Figure 4.18 shows the same data with a velocity estimate using wheel speed and 

radar measurements.  It initially appears the radar measurement is the solution to 

accurately measuring ground vehicle speed.  The corruption due to longitudinal wheel 

slip is subdued resulting in a higher precision velocity estimate.  However, the radar bias 

soon degrades the estimate as well, which is seen below.  
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Figure 4.18:  Estimated vehicle velocity with Doppler radar. 

The radar bias is not constant enough for it to be considered an ideal measurement.  The 

speed measurement is a function of the sensor’s distance and angle relative to the ground.  

Therefore, the Doppler radar output is affected when the vehicle rolls or pitches due to 

acceleration or road grade because the distance and angle of the unit changes relative to 

the ground.  Surface conditions also impact the Doppler radar output because the height 

and texture of different terrains alter the reflectivity of the microwave signal.  Figure 4.19 

is a plot showing the radar bias on different terrain. 
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Figure 4.19:  Doppler radar bias on different terrain. 

4.4. SUMMARY 

A demonstration of navigational accuracy was performed utilizing a nonlinear vehicle 

simulation to provide a controlled environment and experimental data to emulate an 

actual scenario.  The accuracy of the navigation estimates was improved with and without 

GPS by accounting for the lateral velocity generated when a vehicle turns.  The model 

developed to include sideslip effects tracked the vehicle’s velocity and heading more 

accurately than traditional models that typically neglect the lateral dynamics.  The model 

also better compensated the inherent sensor biases which directly lead to a dead 

reckoning solution with less error.  

In the longitudinal direction, scenarios were presented that expose the shortcomings 

of typical dead reckoning sensors.  A wheel speed sensor can aid in estimating velocity 
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when the wheel slip is taken into account, and can handle GPS outages well if slip 

remains constant.  When slip varies, the bias estimate becomes corrupted and increases 

the position error.  Similarly, a Doppler radar can provide adequate ground speed 

measurements during a GPS outage unless the terrain on which the vehicle is traveling 

changes.  The radar speed bias is a function of terrain, and is not observable during an 

outage. 
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5. INS AIDING WITH A LIDAR

Autonomous capability and vehicle control systems require reliable and robust 

navigation solutions in multiple environments.  GPS has become an effective tool but is 

not suitable for all environments.  Satellites are not always in direct view of the GPS 

receiver, which is hindering the development of reliable AGVs.  Environmental 

constraints can either completely block the signal, or degrade the signal to the point 

where it is of no use.  Jamming can cause similar issues in combat environments, where 

the opposition can cheaply and effectively knock out the GPS signals or broadcast 

incorrect messages. If the GPS signal is suddenly lost, jammed, or known to be incorrect, 

some critical system states become unobservable without additional sensors.  In these 

circumstances, the navigation solution generally relies on integrating noisy, biased IMU 

measurements, affecting navigation accuracy and control capabilities. 

Laser scanners are quickly making their presence known in the navigation field and 

are proven to have a variety of uses (Lei, 2005).  In this chapter, a light detection and 

ranging device (Lidar) is used in conjunction with data from a MEMS based IMU to 

formulate a suitable navigation solution (Travis, 2005).  Lidar is has been used as a 

navigation tool on both aerial (Campbell, 2003) and ground vehicles (Hirokawa, 2004; 

Talaya, 2004).  Specifically, this chapter examines the operation of a ground vehicle in an 

indoor corridor environment.  The use of a Lidar compensates the lack of GPS by 

providing the following measurements of critical vehicle states: heading, velocity, and 



 

lateral error (Hirokawa, 2004).  This type of navigation could be extended to many 

environments, such as an urban canyon, forest, indoor corridor, or in jammed 

environments. 

5.1. TEST APPARATUS 

5.1.1. Experimental Setup 

A cart was outfitted with an IMU and Lidar.  The cart had four independent wheels 

that were free to rotate about the x and z axes of a vehicle coordinate frame (x being 

forward, z being down).  It was manually pushed down a corridor at different velocities 

while data was logged from the IMU and Lidar.  The absence of an engine or motor to 

translate the cart reduced the amount of vibration that the sensitive IMU would measure.  

The majority of the noise stemmed from a fan on a power supply and irregularities along 

the ground where the cart was rolled.  Data from each run was passed through a Kalman 

filter, post process, to develop estimates of velocity, heading, and lateral error. 

5.1.2. IMU 

The IMU used in this analysis was a Crossbow IMU400CC-100, capable of providing 

3 axis acceleration and angular velocity measurements.  The IMU utilizes MEMS based 

accelerometers and rate gyroscopes, which have inherent walking biases and scale factor 

errors.  The Crossbow output was recorded at 100Hz.  Two scenarios are covered in this 

chapter and require two different input matrices. The first input set contains longitudinal 

acceleration and yaw rate as given in Equation 5.1, 

⎥
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and the second input set adds lateral acceleration as shown in Equation 5.2. 
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5.1.3. Lidar 

Lidar is used to “visually” access the environment and extract information, to update 

the IMU data.  The SICK LMS 221 Lidar projects infrared laser pulses into the local 

environment and records their “time of flight” and reflected intensity at 180 scanning 

points over the range 0° to 180° at a rate of 13.32 milliseconds per scan.  The scanning 

points and the associated distances give a 2D image of the environment in a polar 

coordinate position and distance at each time step (θk, dθk ). Using these measurements, a 

local heading, velocity, and lateral position from a defined line, ylat, are found.  The 

measurement vector is as follows: 
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The Lidar’s heading estimate ψm is found as a function of the center of the hallway.  A 

hallway’s center can be estimated by halving the distance between the corners of the 

hallway.  Each corner in a hallway has the unique distinction of an edge.  This is due to 

the fact the change in distance for a given set of data points (θ, dθ ) and (θ +δθ, dθ +δθ) 

located at a corner is large, as shown in Figure 5.1.  These corners are determined as 

spikes in the derivative of the scanned points. 
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Figure 5.1:  Corner detection with a Lidar. 

Once the center of the hallway is determined, the ψm estimate is determined as the angle 

between the 90° centerline of the Lidar and the center of the hallway as seen in Figure 

5.2.  Additionally, the lateral position of the Lidar is found as a distance from the 

hallway’s center.  Two distances id ,θ are determined at θ = ±60° angles from the center 

of the hallway.  These distances are used to determine the lateral distance from the Lidar 

to the edge of the wall ylat,i. 
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Figure 5.2:  Calculating lateral offset. 

All of the Lidar’s data was run through a 10 point moving average filter to minimize 

the effect of any spikes occurring in the measurement from the detection of a false 

obstacle.  The tests were run in a fairly controlled environment with smooth corridors, 

minus occasional doorways and small, miscellaneous objects.  Other types of corridors, 

such as rows of trees lining a road, will be less consistent and generate more data spikes.  

The moving average filter aids in smoothing out the corridors and provides the Kalman 

filter a more discernible measurement. 

5.2. NAVIGATION MODELS 

To thoroughly investigate the capabilities of utilizing Lidar for vehicle navigation, 

two kinematic models were derived.  The first mathematical analysis assumes zero 

vehicle sideslip, so the discrepancy between vehicle heading and course is due only to 

error and not to a lateral velocity.  The following five states are estimated in the first 
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scenario: velocity, longitudinal accelerometer bias, heading, yaw gyro bias, and lateral 

error.  Inputs to the system from the IMU are stated in u1 of Equation 5.1 and 

measurements are provided by the Lidar as shown in Equation 5.3.  Note that the  

component for lateral error, , is a lateral velocity in the environmental coordinate 

frame, not the vehicle coordinate frame. There is zero lateral velocity in the vehicle 

coordinate system due to the zero sideslip assumption.  Therefore, the state derivative 

vector is defined by the following: 
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The Jacobian of this model yields the A matrix used in Equation 2.8. 
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The measurement matrix corresponding to the measurements presented in Equation 5.3 is 

as follows: 
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In some instances, the sideslip can be used as an analysis tool or as a focal point of 

control and merits further investigation.  Therefore, a second kinematic model was 
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developed that acknowledges that the vehicle can translate laterally within its own 

coordinate frame, creating an additional lateral acceleration component.  This model uses 

the same measurements from the Lidar but couples them with the inputs from u2 in 

Equation 5.2.  For this scenario, the sixth estimated state is lateral velocity in the vehicle 

frame, as shown below. 
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The continuous state matrix is the Jacobian of the nonlinear state derivative vector. 
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Equation 5.9 displays the measurement matrix when all measurements are available. 
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Input variances were obtained by recording static data, and were then placed along 

the diagonal of the process covariance matrix (Q).  Biases are assumed to be constant in 

the system model, but they were modeled in the process covariance matrix to prevent the 

Kalman filter gains from going to zero.  If this were to happen, the bias states would 



 

remain constant when they change in reality.  The first scenario used a process 

covariance matrix of the form shown in Equation 5.10. 
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The process noise covariance matrix for the second scenario adds a variance for the 

lateral velocity state and is shown below. 
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The process noise and measurement noise statistics between the two models were 

shared.  The values used are listed in the tables below. 

 

Table 5.1:  Process Variance Values for Lidar/INS Aiding 

dtax
22 032.0=σ  42 1 −= ebaxσ  dtr

22 0029.0=σ  

62 1 −= ebrσ  dtdtylat
222 1.0  ,01.0  ,0=σ  dtay

22 0534.0=σ  

 

Table 5.2:  Measurement Variance Values for Lidar/INS Aiding 

22 028.0=Vσ  22 001.0=ψσ  22
1 02.0=ylatσ  
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Total lateral movement is a function of Vx, Vy, and ψ.  In the first scenario neglecting 

sideslip, the standard deviation in the lateral error is already accounted for in the σax and 

σr terms in the Q matrix.  In theory, σylat, should be set to zero to refrain from injecting 

unnecessary process noise into the system.  This parameter, σylat, essentially can become a 

tuning knob to attempt to estimate unmodeled disturbances.  The process noise on the 

lateral error state is non-Gaussian because of unmodeled dynamics, which technically 

makes the Kalman filter sub-optimal.  However, but the effects are minimal in many 

situations including the one investigated in this chapter.  In the second scenario, σax and 

σr again account for some of the process noise in ylat, but there is additional process noise 

due to the lateral acceleration measurement incorporated into the system.  As it turns out, 

accounting for the process noise when estimating Vy automatically injects the process 

noise into the lateral error state.  Because , the disturbances modeled with 

σ

)ˆ,ˆ(ˆ yxlat VVfy =

ay are included in the lateral error estimate through the lateral velocity estimate.  

Therefore the process noise on the lateral error state, σylat, may remain zero.  Together, 

these statistics form the continuous process covariance matrix for both scenarios. 

Measurement noise statistics were calculated by averaging multiple static data sets 

taken along the testing path.  For the Lidar, noise is sufficiently estimated by examining a 

static, or stationary, set of data at the beginning, middle, and end of the hall.  For a more 

thorough examination of the noise, techniques in detection and estimation could be used 

to determine more appropriate noise characteristics (Adams, 2000). 

The lateral accelerometer measurement was assumed to be unbiased for the second 

scenario.  The mean of the lateral acceleration data was removed before input into the 
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Kalman filter.  With a measurement of lateral distance to the corridor in the vehicle frame 

(shown in Figure 5.3), lateral velocity and lateral accelerometer bias is observable. 

ydr, 0°

ydl, 0°

ylat1ylat2

θ1°θ2°

 

Figure 5.3:  Lateral distance measurement. 

This lateral distance measurement could be incorporated into the proposed algorithm 

from Section 4.2.3 to more accurately navigate with or without GPS.  To do so, the 

following model must be incorporated: 
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The Jacobian of this model is given in Equation 5.13. 
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The measurement vector and measurement matrix are defined as follows: 
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This lateral distance measurement was not available at the time of this study.  However, 

the proposed method could be used to determine vehicle lateral velocity and sideslip if 

the proper measurements are provided.  Typically a Lidar can offer this measurement if 

set up to do so. 

5.3. EXPERIMENTAL RESULTS 

5.3.1. Scenario 1 – Five State Estimator 

As stated earlier, scenario one investigates the use of Lidar in vehicle navigation 

when the vehicle’s lateral velocity component is assumed to be zero.  As shown in Figure 

5.4 and Figure 5.5, the Kalman filter algorithm using the Lidar measurements accurately 

estimates velocity and heading states. 
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Figure 5.4:  Velocity estimate using a Lidar. 
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Figure 5.5:  Heading estimate using a Lidar. 
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The heading estimate in Figure 5.5 captures the high dynamics as measured by the IMU 

during short durations, but follows the Lidar measurement long term to remove the effect 

caused by biases in the system. 

Lateral error in Figure 5.6 quickly tracks an initial offset of 0.25 meters, but is slow to 

respond to other lateral changes.  This is due to over filtering because the lateral error 

covariance was set to zero.  Subsequent results will show the level of filtering can be 

adjusted to improve the estimate by changing the lateral error covariance value or by 

including the lateral vehicle dynamics. 
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Figure 5.6:  Lateral error estimated using an IMU and Lidar. 

Figure 5.7 and Figure 5.8 show the longitudinal accelerometer bias and yaw rate gyro 

bias, respectively.  As seen in the figures, the biases are estimated accurately as they 

jump to an initial offset then vary appropriately to capture the slow bias drift. 
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Figure 5.7:  Estimated longitudinal accelerometer bias. 
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Figure 5.8  Estimate of the yaw rate gyro bias. 
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To investigate the slow tracking of the lateral error estimation, the σylat “knob” was 

tweaked to account for unmodeled disturbances or dynamics in the system.  Discrete 

values of 0.01 and 0.1 meters were inserted into the process covariance matrix.  This 

value has minimal affect on the velocity, heading, and bias estimates, but it has an 

obvious affect on the lateral error estimate.  Figure 5.9 and Figure 5.10 show the lateral 

position estimates with the low and high process noise values.  As σylat increases, the 

estimate converges on the Lidar measurement and provides less filtering. 
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Figure 5.9:  Lateral error estimate assuming no lateral velocity and σylat=0.01. 
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Figure 5.10:  Lateral error estimate assuming no lateral velocity and σylat=0.1. 

5.3.2. Scenario 2 – Six State Estimator 

The second scenario investigated the effectiveness of navigation with Lidar when a 

lateral acceleration measurement is available.  Often this measurement is corrupted by 

process noise or vehicle dynamics, such as vibration or roll, or there are no suitable 

measurements to make the system observable.  The test bed did not contain many of these 

additional sources of error so the lateral accelerometer recorded fairly clean data.  There 

was no lateral velocity sensor on board which made lateral velocity and lateral 

accelerometer bias unobservable.  Bias was removed post process and assumed constant.  

This is a safe assumption because of the short duration of each test.  The additional input 

has minimal affect on the velocity and heading states, shown in Figure 5.11 and Figure 

5.12.  However the lateral error estimate, shown in Figure 5.13, is significantly improved 

with the use of a lateral accelerometer. 
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Figure 5.11:  Velocity estimated with second navigation model. 
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Figure 5.12:  Scenario 2 heading estimate. 
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Figure 5.13:  Lateral error estimate using lateral acceleration input. 

5.4. SUMMARY 

A method using a Lidar to detect the edges of a defined corridor and process the 

information in a Kalman filter to produce a navigation solution was proposed.  The idea 

is not limited to only a laser scanner and can be used with any environmental sensor 

capable of providing distance and angle measurements to an object.  One navigation 

model was developed to estimate lateral error, while another was developed to estimate 

lateral error and lateral vehicle velocity using a lateral accelerometer input.  The level of 

filtering was adjusted by tuning covariance parameters.  It was shown the use of a lateral 

accelerometer improved the estimate without requiring any modeling of unknown 

disturbances. 
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6. CONCLUSION

6.1. SUMMARY 

This thesis has shown the importance of including sideslip in a kinematic navigation 

model when concerned with high accuracy navigation.  Sideslip induces estimate errors 

in states critical to vehicle controllers, such as heading and velocity.  Degradation in the 

position estimate was observed as well.  Future vehicle control systems will require more 

a precise navigation solution to operate correctly, therefore sideslip must be accounted 

for when navigating.  Work presented in this thesis also examined the use of a laser 

scanner with an IMU to provide the vehicle with a lateral path error and lateral velocity 

estimate.  The lateral error and lateral could be utilized by ground vehicle control systems 

to achieve better performance.  The lateral velocity estimate could also be integrated into 

a navigation system to reduce navigation errors due to sideslip. 

The DARPA Grand Challenge provided the opportunity to develop a navigation 

system for an autonomous vehicle. An estimation algorithm was written using an 

extended Kalman-Bucy filter to provide an accurate navigation solution with and without 

GPS, as well as vehicle state information, to the various vehicle subsystems.  The 

algorithm performed well while the vehicle was in competition, surviving GPS outages 

lasting four minutes at the National Qualification Event.  A hardware failure halted the 

vehicle in the Grand Challenge before meeting any obstacles that would stress the 

navigation system.  However, the system performed exactly as designed during the event. 
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While testing the navigation system for the AGV, it was noticed that position error 

grew when the vehicle took corners at high speeds.  The soft tires of the AGV permitted 

tire slip as the vehicle accelerated laterally.  It was hypothesized the vehicle dynamics 

were corrupting the navigation solution, due to the fact that vehicle sideslip creates a 

discrepancy within the Kalman filter between the integrated yaw rate gyro input and the 

GPS course measurement.  When sideslip exists, these two angles are not equal.  It was 

concluded this phenomenon warranted further investigation. 

To examine the navigation accuracy in the presence of sideslip, a five degree of 

freedom, nonlinear vehicle model was derived to determine vehicle state information 

with inputs of steer angle and velocity.  The vehicle model was implemented in a 

MATLAB™ simulation so the response of various driving maneuvers could be studied in 

a controlled environment.  The simulation output was validated by comparing it to 

experimental data collected on an Infiniti G35. 

Once the simulation’s validity was confirmed, its output, along with experimental 

data, was used to show the errors stemming from vehicle sideslip by comparing typical 

navigation models with a model that accounted for the lateral vehicle dynamics.  

Kinematic navigation models were used to estimate vehicle states important to control 

systems.  No vehicle model parameter knowledge was necessary to develop reliable 

navigation solutions.  Sideslip was found with the use of a dual antenna GPS receiver, 

which only required simple geometric information about the vehicle to translate the slip 

angle to different points on the vehicle.  The two antenna system also provided a roll 

measurement to estimate the roll dynamics.  Roll is a critical component of the expanded 

model as it leads to a more accurate and robust lateral velocity estimate. 
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Effects from longitudinal slip were also studied.  Wheel speed sensors can be used to 

provide a redundant velocity measurement to improve dead reckoning accuracy.  

However, in the presence of wheel slip the performance of the system with wheel speed 

sensors was shown to degrade.  Doppler radar was used to complement the wheel speed 

measurement, but it was shown the radar measurement bias, although not susceptible to 

wheel slip, can be terrain dependent.  It was shown in scenarios where terrain remains 

fairly constant a Doppler radar can provide an accurate velocity measurement during a 

GPS outage. 

Although the effects of dead reckoning errors can be reduced, they are not removed.  

Therefore, a navigation system incorporating a laser scanner was developed investigate 

its performance in a GPS denied environment.  A Lidar/INS solution was shown to 

provide accurate state estimates for vehicle navigation within a defined corridor.  The 

reliable measurements and statistical properties of the Lidar form a suitable companion 

for an IMU, similar to GPS, when using a Kalman filter to calculate a solution.  Inertial 

errors due to integration of noise and bias are removed, while providing high update rate 

estimates of the dynamic vehicle states.  A proposed method of tuning the performance of 

the Kalman filter has been offered by means of varying a process noise statistic on lateral 

velocity to account for unmodeled dynamics and/or disturbances to the system.  It was 

shown how a lateral velocity estimate could be extracted to calculate sideslip, and for use 

in the proposed navigation model incorporating the lateral vehicle dynamics.  A 

significance of this research is it does not rely on GPS, and therefore could be used in 

urban environments, in situations where GPS signal is jammed, or in other GPS denied 

environments. 
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6.2. FUTURE WORK 

6.2.1. Autonomous Navigation System Development 

As the autonomous vehicle market continues to expand, there will be a push to 

navigate cheaply, reliably, and robustly.  To fulfill these demands, a tightly coupled 

approach should be investigated, possibly using a cascaded approach.  Tightly coupled 

navigation algorithms are less vulnerable to signal loss, and still maintain limited 

navigation capability when fewer than four satellites are visible to the GPS antenna.  As 

AGVs begin operating in more environments, this approach can provide significant 

advantages, as not all environments are favorable to GPS.  Cascading the navigation 

model breaks up large matrices into multiple smaller ones.  The computation expense is 

decreased exponentially, which means the algorithms could run on slower, cheaper 

machines. 

6.2.2. Navigation Corruption by Vehicle Dynamics 

This study presented analysis of the errors arising from longitudinal and lateral 

vehicle slip.  Throughout this thesis, the total vehicle slip was kept decoupled.  Therefore 

it was sliding purely longitudinally or laterally, not both.  Future work should analyze the 

potential error when longitudinal and lateral slip occur simultaneously.  For instance, a 

vehicle on ice could be translating sideways with the tires locked up. 

Vehicle pitch dynamics should be included in the navigation model to study the 

improvement in estimated states.  This thesis showed the improvement of including a 

centripetal acceleration term which was a function of the vehicle’s yaw rate.  However, 

there are still centripetal accelerations due to roll and pitch rate that were not accounted 

for.  Although the yaw rate is commonly much higher than the roll or pitch rate (therefore 
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its centripetal acceleration term is larger), some accuracy should be gained by adding the 

other effects.  The addition of a third GPS antenna would provide the necessary means to 

make vehicle pitch observable in a navigation system. 

6.2.3. Lidar/INS Navigation 

This preliminary study of Lidar as a navigation aid has provided a foundation for 

more extensive research. The next step is to try similar tests in different environments. 

Ideally, defined corridors should consist of road edges, but other objects along the side of 

the road may suffice.  A SLAM based approach might be used to localize the obstacles 

and define a corridor, especially if the objects are widely spaced.  The use other 

environmental sensors should be investigated as well.  Auto manufacturers are beginning 

to include vision systems and laser scanners in vehicles.  The presented research could be 

expanded to function on an automobile, where the estimates are used in a navigation 

system, stability system, or lane keeping control system. 
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APPENDICES 



 

APPENDIX A:  DARPA GRAND CHALLENGE VEHICLE

A small All Terrain Vehicle (ATV) platform, shown in Figure A.1, was chosen for 

the entry vehicle due to its size, agility, and ruggedness (Behringer, et al, 2004; 2005).  

The Prowler by ATV Corp. is a Yamaha Grizzly 660 modified for military use that is 

equipped with a 660cc Yamaha engine, enhanced suspension, full roll cage, run-flat tires, 

and cargo rack.  This combination of power, ruggedness, and space proved to be an 

excellent foundation for an off road autonomous vehicle.  The large payload capacity and 

heavy duty suspension can handle the multitude of motors, sensors, and computers that 

were mounted on the cargo rack and in the roll cage.  The suspension and high ground 

clearance allow the vehicle to traverse difficult terrain with relative ease. 

 

Figure A.1:  RASCAL at the starting gate during the 2005 DGC. 
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Modifications were made to the ATV, dubbed RASCAL (Robust Autonomous Sensor 

Controlled All terrain Land vehicle), for automation. A servo motor was installed in the 

engine bay and attached to the steering system to actuate the front wheels.  The motor 

output, 6.5 ft-lbs of torque, was fed into a 14:1 gearbox, placing a total of 90 ft-lbs of 

torque on the steering rack.  Throttle, brake, and gear were controlled with smaller 

servos. 

  

Figure A.2:  Steering motor (left); throttle and brake servos (right). 

All of the servos were directed by microcontrollers, which communicated with a 

computer via serial ports.  An emergency stop mechanism with ultimate authority over 

the microcontrollers was wired in series to both the vehicle’s power and the brake and 

throttle servos to provide the ability to stop and kill the vehicle in the event of a software 

or hardware failure.  Two 15 gallon gas tanks were added to the side of the ATV and 

gave RASCAL more than enough fuel to finish the course.  Two AC generators provided 

additional power needed to operate the electronics on board.  An enclosure mounted in 

the rear contained the delicate hardware. 
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The autonomous system was designed to have a modular architecture, depicted in 

Figure A.3, so a failure from one module would not impede the operation of other 

modules.  At the core are the necessary modules required for autonomous operation: the 

vehicle control and the GPS/INS navigation module.  The other modules are “optional 

add-ons” required for entry into the Grand Challenge. They provide information about 

the environment and about objects in it, which may need to be avoided in case they are on 

the path trajectory. These modules are considered “optional” because a disconnection or 

failure for whatever reason will not impede the vehicle’s operation completely.  The core 

vehicle control will still continue to operate, using solely GPS and inertial input for 

computing the control output. 

 

Figure A.3  Flow of information on RASCAL. 

One of the key tasks for RASCAL was to remain in a pre-defined corridor while 

choosing the fastest and/or easiest path through the corridor and successfully avoiding 

any obstacles within the corridor.  Obstacle detection was realized with four Lidars and a 

stereo vision system custom built by ARC seibersdorf (Kolger, et al, 2006).  Two of the 
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LIDARs scanned vertically to detected negative obstacles such as holes or ditches.  One 

Lidar was mounted so that the scan plane was parallel to the ground to detect long range 

obstacles, and one was mounted so that the scan plane intersected the ground 

approximately five meters in front of the vehicle to detect obstacles near the vehicle.  

Each sensor data set was processed by an algorithm specialized to that sensor/orientation 

and then passed off for planning. 

 

Figure A.4:  Obstacle detection sensors on RASCAL. 

Initially, most of the core technical members on this team were engineers at Rockwell 

Scientific (RSC), and the team received a large portion of its funding from RSC.  

However, in order to complement the existing expertise, SciAutonics sought other 

participants to join the team.  A very significant partner was Auburn University, who 
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joined the SciAutonics team in November 2003, contributing to the vehicle control and 

navigation aspects of the system.  ATV Corporation contributed by donating the vehicle 

platform and a second test vehicle, as well as providing continual technical support 

throughout the project. 



 

APPENDIX B:  TEST VEHICLE

B.1. TEST BED 

Infiniti G35 sedan was used as a test vehicle to gather experimental data for the 

research in this thesis.  The car was loaned to the GPS and Vehicle Dynamics Lab at 

Auburn University.  It is equipped with a data logging system that reads a multitude of 

sensors, including the vehicle’s onboard sensors over the Control Area Network (CAN). 

 

Figure B.1:  Infiniti G35 with data logging console.  

A Navcom Starfire™ DGPS receiver was utilized for its sub 10 centimeter position 

accuracy measurements at 5 Hz, and was used as a truth measurement when analyzing 

the algorithms with experimental data.  A dual antenna Novatel Beeline™ GPS receiver 

was used to measure vehicle heading and roll at 5 Hz, as well as provide standard, non-

differential GPS measurements of velocity, course, and position.  The GPS antennas are 
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shown mounted on the roof of the G35 in Figure B.2 on the right.  A Crossbow 

IMU400CC automotive grade MEMS IMU measured accelerations and angular rates at 

32 Hz.  The IMU is shown mounted in the center console in the left figure below.  The 

hand wheel angle was taken from the CAN and translated to a steering angle at the tire 

using a 16.1:1 steering ratio, also at 32 Hz.   

  

Figure B.2:  The Crossbow IMU (left); Starfire and Beeline (right). 

Figure B.3 shows the data logging computer with the power distribution hardware, all 

mounted in the trunk.  All power was provided by the vehicle and cleaned using DC-DC 

converters with 12VDC and 5VDC outputs.  A 12VDC-ATX power supply was installed 

in the computer, which ran Windows XP.  Communication to and from sensors was 

carried out with RS232 serial ports and a DAQ (data acquisition) card. 
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Figure B.3:  The G35 data logging computer and power distribution center.  

The sedan was driven on a 1.7 mile oval test track with 8 degree banked turns, which 

was operated by Auburn University’s National Center for Asphalt Technology (NCAT).  

The straight sections are crowned 2 degrees in each lane.  Experiments consisted of 

various maneuvers, including emergency lane changes, slaloms, and high speed 

cornering.  The onboard vehicle dynamic control (VDC) was turned off, and the 

maneuvers were performed at speeds ranging from 5 to 45 m/s. 

B.2. SIDESLIP CALCULATION 

The heading and course measurements were used to calculate vehicle sideslip.  Most 

receivers use a carrier phase differencing technique to calculate velocity and course, 

which injects an inherent half sample lag in the calculation.  It is critical to synchronize 

all GPS measurements with respect to time, as any offset will calculate a false slip.  The 

algorithm to compute slip was written so it could be implemented in real time. 

The heading and course measurements are output on two separate GPS messages.  

The heading measurement is time stamped with time into the week in GPS time.  Course 
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and velocity measurements are time stamped with UTC time.  GPS time was converted 

into time of day, and then converted to UTC time by accounting for the number of leap 

seconds since January 6, 1980.  At the date of this thesis, the difference between GPS and 

UTC time was 14 seconds.  The velocity and course measurements were then shifted by a 

half sample to remove the delay induced by computation.  A linear interpolation between 

two consecutive measurements computes a value at time t that corresponds with the 

position based heading measurement recorded at time t.  Sideslip can then be calculated 

by taking the difference between the two measurements. 

Equation B.1 shows how sideslip was used to convert the velocity vector in to lateral 

and longitudinal velocity at the antenna. 
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The vehicle yaw rate was used in Equation B.2 to translate the velocities at the antenna to 

the CG. 
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APPENDIX C:  VEHICLE SIMULATION PARAMETERS

m = 1528.15 kg 

W = 149991.18 N 

Ix = 535 kg·m2

Iy = 2222 kg·m2

Iz = 2400 kg·m2

L = 2.8499 m 

a = 1.3679 m 

b = 1.4819 m 

hcg = 0.6 m 

tf = 1.5011 m 

tr = 1.5062 m 

sf = 1.2009 m 

sr = 1.2049 m 

Kp = 28165.70 N·m/rad 

bp = 7850 N·m·s/rad 

Kr = 17985.76 N·m/rad 

br = 3850 N·m·s/rad 

CαFL = 45837 N/rad 

CαFR = 45837 N/rad 

CαBL = 76394 N/rad 

CαBL = 76394 N/rad 

µf = 0.84 

µr = 0.81 
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