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Abstract

Magnetic bearings offer a number of advantages owsventional rolling element bearings.
Magnetic bearings provide support for rotating eyst through magnetic levitation rather
than by mechanical contact, nearly eliminating ¢éimergy losses attributable to friction in
standard bearings. Low power consumption is oneacheristic of magnetic bearings that has
encouraged their use in an increasing number dicappns. Another is the ability to use the
bearing itself as an actuator in a controller taat alter the orbit of the rotating system within
the bearing to reduce or eliminate the detrimegiffeicts of disturbances acting on the system.
In addition, controller outputs can potentially leed as an indicator of the general health or

integrity of the system.

This work details the development of a multi-modeyztive controller for a magnetic bearing
system that is capable of suppressing disturbaactsg at synchronous and asynchronous
frequencies and caused by rotating imbalances asd motion. The work was based on an
existing adaptive controller that formed part o thverall control system for a well sorted and
well developed magnetically suspended rotor anatBel. The development of the controller
made extensive use of system modeling techniquels naodel-in-the-loop simulations.
Development also required continual refinement bé tsystem model and on-going
reconfiguration of the operating environment sitike ever increasing complexity of the

controller often exceeded the real-time capabdlibéthe processor.

The modes of the controller, or the methods usedt by determine the frequency of the
disturbance acting on the system, include disdfet&ier transform, rotor speed and manual
observation. The adaptive controller was shown radyce excellent disturbance rejection
and vibration suppression in all of the three modée capabilities of the controller operating
in the first mode were demonstrated with simulateturbances and in the second and third



modes with software simulations, simulated distndes and physical changes in the balance

of the rotor and flywheel.

This work also details the efforts to evaluate pinedictive capability of adaptive controller
gains. The correlation between gain variations laaddnce state has been demonstrated, but a
repeatable and unambiguous response of the gaemsyochronous disturbance undetectable
by other means has not been well established. dimg&tavity of the gains to variations in rotor
speed increases the difficulty of this task. Sofevaimulations of the adaptive controller
operating in speed mode showed the potential ogusie gains as an indicator of a change in
the balance or health of the system, but actutd tamducted on the magnetic bearing system

were not as encouraging.
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Chapter 1 - Introduction and Literature Review

Magnetic bearings use magnetic levitation rathantmechanical contact to support loads
such as rotors and shafts, and they provide amattee to rolling element bearings for many
applications especially those subject to extrenreditions. Magnetic bearings are generally
classified as either passive or active. Passiveingsause permanent magnets and often
electrodynamic effects to provide levitation witlh@mny control system [1]. Active magnetic
bearings use electromagnets or a combination ofreland permanent magnets and an active

control system, since the bearings are unstableahye, to provide stable, reliable operation.

Most of the research conducted on magnetic bearags been with active systems. In
addition, nearly all magnetic bearing systems koiltand used in commercial applications
are active. However, passive systems have beearantbntinuing to be investigated, though
few passive systems are employed in industrialiegpdns [2], [3]. The magnetic bearing
system used for the work presented here is aneaotie, and all discussions that follow will

be with regard to active systems.

Magnetic bearings possess a number of charactsrigtat make them a superior alternative
to conventional systems in many applications. Thas&racteristics include the ability to
tolerate high temperatures and to operate at lotdtional speeds with very little frictional
loss and with low power consumption. In fact, thigeative of much of the current research
on active systems is to quantify the extreme cdipiabi of the bearings. As one example,
Mekhiche et.al. demonstrated the capability of nedign bearings to operate at high
temperatures and speeds [4]. They successfullyatggbian active system at 600 and at
rotor speeds of 50,000 RPM. No other type of bgadan perform adequately under these
conditions, and this system could extend the usmadnetic bearings to gas turbines and
aircraft engines of novel design.

The ultimate load carrying capacity of magneticrbiegs has not been precisely determined,
but theoretical calculations indicate that it isde¢han that of conventional bearings by a factor

of four or so. However, an active magnetic beagggtem has been built for hydroelectric



power generation that supports a rotor with a nwsSO tons. More typical of the loads
carried by magnetic bearings are the rotors fobdumachinery used in the petroleum

industry. These generally have a mass measurée irahge of tons [5].

Magnetic bearing systems vary greatly in size, iangrinciple, there appears to be no upper
limit on bearing size. One system developed fotirtgshigh-speed tires has a stator with an
inside diameter of 6 meters [5]. At the other exieeare the magnetic bearings used in micro
devices such as guidance systems, medical insttsnagidl miniature motors. Small motors
have been constructed that use a magnetically sdsgeotor with dimensions on the order
of a few millimeters. One example was built witktator of 5 mm inside diameter, a rotor of

1.5 mm outside diameter and an air gap of 0.1 njm [6

An illustration of a simplified active magnetic v system appears in Figure 1-1.

Gap s
Sensors

Stator

Micro-
Processor
Control

Rotor

Power Amplifier

Figure 1-1 Active Magnetic Bearing System [5]

The electromagnets are formed by the poles oftdters and each pole generates an attractive
force. The power amplifier supplies current to paif electromagnets located on opposite
sides of the rotor. The microprocessor calculdtesoutput to send to the magnets to properly
position the rotor. The microprocessor’s calculagiare based on the control laws developed
for the system. Finally, the gap sensors and @msociated electronics measure the distance
(air gap) between the stator and rotor and provide necessary feedback to the

MiCroprocessor.



The unbalance or imbalance shown in the Figureesgmts the fact that rotating machinery is
seldom perfectly balanced. Imbalances generatdahtorces if the machine rotates about its
geometric center, and these forces produce viloralidhe imbalances are large enough, the
resultant vibration can become destructive espgaatlthe speeds obtainable with magnetic
bearings. One advantage of active magnetic beaystems is the ability to incorporate

vibration suppression and disturbance rejectionhaeisms into their controllers. These can
reduce and even eliminate the effects caused byrthalance as well as by other disturbing

forces acting indirectly on the bearings.

Some of the first attempts at vibration suppressimmtuded the application of passive and
semi active mass balancers to rotating shafts stggpby conventional bearings. Inoue et.al.
describe a rotor containing cylindrical cavities which small balls are placed. The
researchers noted that under certain conditions thks will arrange themselves to
compensate for the unbalance of the rotor and eetheedynamic loading on the bearings [7].
Similarly, Bovik and Hogfors demonstrated that glaotors cut with grooves for the free

movement of damped particles exhibit autobalanf8hg

One of the first genuinely active systems thaiagtd adaptive compensation to minimize the
vibration in a bearing system was described by ®&usrand Sahinkaya [9]. Following this

influential work, numerous techniques for unbalanompensation and disturbance rejection
have been developed, tested and successfully ingpledh. Of these, one of the earliest was
based on notch filters. Initial work with these yed their ability to suppress disturbances, but
it was often at the expense of stability sincefiltiers were placed in the feedback path where

they can affect the dynamic behavior of the beasygjem [10], [11].

Several approaches were subsequently developedve the stability problems associated
with the use of notch filters. These are broadlgssified as adaptive feed forward
compensation, and interestingly enough, some asmotch filters [11]. Most controllers of

this type introduce synchronous signals into thetrod loop to cancel or reduce synchronous
imbalance forces. Generally, the signal is a simusd the proper phase and amplitude
necessary to neutralize the disturbance. In additlee controllers do not alter the closed loop



dynamics of the system and therefore, do not p@diestabilizing effects [12], [13]. The
feed forward approaches differ from one anotheethas the mechanism used to generate the

compensating signal and the process used to dtaptgnal to an imbalance [11].

Several researchers have developed controllergrigsbito account for uncertainties in model
development and for variations in parameters tkeatidbe the plant model. These controllers
often incorporate disturbance rejection into tlgsigns. One example of earlier work with
parametric techniques is that of Lum et.al. [14}e¥ developed a controller that performed
“on-line” identification of imbalance parameterattwere then used to update the controller
for an active magnetic bearing system resultingclimsed loop stability by continuous

parameter update.

More recently, Huang and Lin developed a dynamipuatufeedback controller for a magnetic
bearing system that included adaptive imbalancepemsation derived from a linear-in-the-
parameter imbalance force model [15]. This modalvijples an estimate of the forces
generated by rotor eccentricity and mass imbalaite estimate is based on a linear,
parametric representation of the centripetal feeeor, and adaptive compensator signals are

generated synchronously.

Another existing approach to vibration control adidturbance rejection is disturbance
observer based compensation (DOBC). Grochmal antth.ywanted to provide precise
tracking of rotor orbits in a magnetic bearing systby reducing static offset, the deviation of
the rotor position from its set point, and synclumas vibration [16]. They developed a
controller based on a hierarchical system thatuohell both velocity and disturbance
observers. The velocity observer functioned comtirsly to provide stable positioning while
the disturbance observer provided rejection onlgtatdy-state operation. Their controller
integrated the observers with nonlinear state faekllbo estimate and suppress the ill effects

of static offset and synchronous vibration.

One limitation to disturbance observer based comsguen is the requirement in most cases

that disturbance characteristics or parametersehsonably well known. If they are not, a



disturbance may not be modeled accurately. An adagontroller based on an inaccurate
model can lead to poor closed loop performanceiasi@bility. One approach to applying

DOBC to a system with uncertain disturbance parammetas demonstrated by Wen [17]. He
characterized disturbances as being composed bfkmatwn and unknown components and
then developed a controller based on an “auxilialy$erver that estimated the latter. The

controller provided good arbitrary disturbance ratt&ion.

Much of the earlier research on disturbance rejacéind active magnetic bearing systems
was focused on the identification and suppressiogisturbances occurring at synchronous
(rotor) frequencies. In fact, most of the referenciéed previously discussed the development
and testing of controllers that were designed timniehte the effects of synchronous

disturbances exclusively. However, more recent wag extended the earlier work often by
using novel control strategies and more sophigiccalant models to accommodate transient

disturbances, multiple frequencies and base motion.

Burrows et.al. in a survey of work done on adapteatrol of active magnetic bearings
presented a unique controller based on open loaptae control (OLAC) principles that
calculated control forces based on displacementsurements of the rotor [18]. The
measurements were analyzed with a Fourier transiohe capability was built into the
controller) to determine the amplitude and phasedhef control forces. This approach to
adaptive control did not require the developmena gfystem model or any knowledge of the
system parameters. One drawback to the controléex thve delay in the application of the
calculated control forces. Since the transform d¢owbt be completed during the current

control cycle, the forces were applied to a follogvcycle.

The controller described in [18] was extended bylAlb et.al. to improve responsiveness to
a rapid and potentially destructive change in badanonditions [19]. Rapid response is
critical to ensuring the integrity of rotating mawéry if a sudden change in balance occurs.
These researchers implemented a recursive versiddLAC termed recursive open loop

adaptive control (ROLAC) that utilizes a recursit@urier transform to speed up the



calculations of control forces. The forces can btenined during the current control cycle

and applied to it rather than to a subsequent one.

Fourier coefficients, calculated in real time, halso been used in controllers designed to
simultaneously suppress multiple disturbancesmpraove transient response and to reduce
the energy consumption of magnetic bearing syst&ote et.al. developed a closed loop
form of synchronous vibration control that usedafial loops of recursive Fourier transforms
to determine the controller effort necessary topseigs multiple disturbances occurring at
harmonics of the rotational speed [20]. Keogh etusled dynamic feedback of Fourier
coefficients computed from rotor position to optzithe response of a closed loop controller
to transient disturbances [21]. In addition, Sahy& and Hartavi used a recursive Fourier
coefficient calculation to measure the orbit siz¢he rotor in a magnetic bearing system. The
calculated size was compared to the optimal oneldped analytically. The orbits were then

adjusted accordingly to minimize the energy conglifnethe system [22].

Efforts to develop bearing controllers capable wpmessing disturbances caused by base
motion are not entirely new. Cole et.al. developexntroller capable of attenuating vibration
caused by forces directly applied to the rotor &l as those indirectly applied through the
supporting structure [23]. The controller desigrsveased on thié,, control theory that made

possible the development of a controller optimifmgdnore than one input.

More recent approaches to dealing with base malisturbances have been developed in
response to the use of magnetically suspendedaeuicmoving vehicles. The military has

built an electro-optical sight for target trackirigat uses magnetic bearings to improve
stability. The sight is mounted in a moving vehick® base motion response must be
addressed by the bearing controller. Kang et.acrlge the development of a sliding mode
controller for the electro-optical sight that ispaeale of suppressing external disturbances

even in the presence of system parameter variaigis

A general method for rejecting disturbances thatlma applied to a magnetic bearing system

is discussed by Fuentes and Balas [25]. Their &gbres based on a type of adaptive control



termed model reference whereby a plant subjectgaetsistent disturbances is directed to
track a reference model with no disturbances appligne frequencies of the disturbances
must be known, but knowledge of their amplitudesdsrequired. In addition, the amplitudes
can vary with time. Fuentes and Balas demonstitaeeffectiveness of their approach, when
applied to a general system, with numerical sintagt Subsequent research efforts by
Matras and Barber have shown that the methods5dfdi2 equally as effective at identifying

and rejecting disturbances acting on a flywheelesyssupported by active magnetic bearings
[26], [27], [28].



Chapter 2 - Adaptive Disturbance Rg ection Control

In this Chapter, the control laws developed by [28] suppress or reject persistent
disturbances acting on a general system will beflgrdiscussed. A simple, linear system
subjected to a disturbance will serve as the bé&sisthe discussion. A state space
representation of the system will then be develpped the results of computer simulations
demonstrating the effectiveness of adaptive disiueb rejection (ADR) control applied to the

system will be summarized.
2.1 Control Laws

A simple linear system with a persistent disturleam@an be represented in state space

according to Equations 2.1 and 2.2.

Xp = Apxp + Byuy, + Tuy -
2.1

Yo = Cpxp
(2.2)
The state, input and output terms are as expedibd. last term in the state equation
represents the disturbances applied to the systehrisacomposed of a vector disturbance
function ug and a real valued matrix operafdy that maps the disturbance onto the system

State vector.

The elements of the disturbance function considingar combinations of scalar functions

multiplied by amplitudes and unit vectors. The acéilinctions can be constant or sinusoidal,
or they can be other types of waveforms as lonth@agphase is known. For example, steady
state errors and rotating imbalances can be rapessdy constant and sinusoidal scalar
functions, respectively. Also, the phase of a 9 disturbance does not have to be known

if the disturbance is replaced by two sinusoidaothat are $0out of phase.

Given the vector disturbance functiog, a control law can be defined that uses adaptive

techniques to suppress the effects of disturbaapetied to a system. The control law is



based on the method developed by [25] and discussdétail when applied to an active

magnetic bearing system by [28] and is shown inaiqa 2.3.

Up = Gpyp + Hyq

(2.3)
The adaptive term§, andH, are defined in Equations 2.4 and 2.5.
- T
Gy, = —YpYp AG
(2.4)
H, = —y,@LAH
(2.5)

The adaptive gaifs, is applied to the output of the systggmand adaptive gaiH, is applied

to the vector of scalar functionsg, often referred to as the disturbance vector, roest
earlier. GainGy, is essentially a stabilizing gain that respondartg nonzero output from the
system. GairH,, scales the disturbance vector to the amplitudesssary to cancel the effects
of the disturbances. Weighting matrie€s andAH determine how quickly the gains adapt to
the disturbance. The transpose of vectors in EgostR.4 and 2.5 is required to satisfy the

necessary matrix algebra.
2.2 Simulated System

The linear state space model defined by Equatioh&2d 2.2 can be extended to describe a
rotating system by including displacements in botthogonal directions X and Y. Only
translational displacements will be considered,rbtational ones could be as well since ADR
control rejects each type similarly. The displacetaeare assumed to be uncoupled, and the
stiffnessK and damping in both directions are the same.

The state space representation for this systenves dpelow where variablel represents the

overall mass of the system:



0 0 1 0 0 0 0 O 00 0 0
. 0 0 0 1 0 0 0 O 00 0 0
Z=l_k/m o —-c/Mm o |[ZT|o 0o 1 o/ F|o 0o 1/M o |Ha
0 —K/M 0 —-C/M 0 0 0 1 00 0 1/M
(2.6)
yp=[1 1 0 O]Zp
(2.7)
The state vector is ordered as follows:
T . T
Zp = [le Zy1 Zyx2 Zyz] = [x y X y]
(2.8)

The control output vector is made up of the systerplant inputs required to suppress the
disturbance in both the X and Y directions:

u, = [0 0 upy upyy]”
(2.9)

The disturbance applied to the simulated systemn rigtating imbalance that represents the
less than perfect balance that characterizes nedirlyotating systems. The imbalance is
modeled as a point mass located at a fixed distandefrom the center of rotation. The
imbalance generates a force with an amplitadiefined by Equation 2.10 where variahle

denotes the rotational speed of the system.

F = mlw?
(2.10)

Disturbance functionyy includes the disturbance forces acting on theegysind is composed

of two sinusoids with amplitude and frequencw as shown below:

ug =[0 0 Fsinwt F coswt]”
2.11)

Disturbance vectapy is also formed by sine and cosine functions ofsmme frequency:
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©q =10 0 sinwt coswt]”
2.12)

The block diagram for the simulated system withpgiga disturbance rejection control is

shown in Figure 2-1.

Dist

() Plant

=l

Figure 2-1 Plant with ADR Controller

The reference input is set to zero since no digphent of the system is desired, and the
disturbance input is composed of the two persistemisoids. The controller includes only
that part necessary for disturbance rejection, fmadiback is provided by the measured

displacements of the plant.
2.3 Simulation Results

Using the system model described by Equationsi2@igh 2.12, computer simulations were
performed to demonstrate the effectiveness of adaptisturbance rejection control. A

MATLAB program (See Appendix A for a listing.) wagitten that determines the model’'s

response to the imbalance disturbance with andowitADR control. The model represents
an unbalanced rotating system, and the imbalantieeisipplied disturbance. Therefore, the
frequency of the disturbance and the rotationa¢dje the system were the same.
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Parameters that must be specified to the programaith simulation include the mass, natural
frequency and damping ratio of the system, theuegy and magnitude of the disturbance
and values of the weighting matrica&s and AH for the controller. Many of the inputs
required for the program were based on previouk\wgrMatras et.al. [29]. For example, the
damping ratios and disturbance forces used for rabshe simulations were quite small.
Damping ratios less than 0.05 and disturbance $oircehe vicinity of 0.1 N were generally
used. However, much larger values of each wereshisan to have little effect on the ability
of the adaptive methods to suppress the disturisance

Adaptive gainG, is typically necessary to provide initial stalyil[29] and could be expected
to have little effect on this model. In fact, a riaem of simulations were run that showed this
to be the case. Therefore, mattifé was set equal to the identity matrix for each $ation.
GainH, is then primarily responsible for suppression andordingly, the value odH was
varied to provide the fastest rejection of theudisance for each test. In addition, disturbance

frequencies above, below, and near the naturaliémcy of the system were tried.

Characteristic values and results for a represgataimulation appear in Figure 2-2.

Mass = 5 kg E i = | | X_Disgplacm;mm Tle :

Imbal. Force = 0.04 N _g D.Z -. 1o .. ‘ Il“ Hll . “H ““ IH . “l(““

Nat'l Freg. = 20 Hz 2 [}

e e =201 o] Il i |

AH = -28,000 Yo o5 1 s 2 Timg.'gec) T
T T e
0t i

0 D.i5 1I 1.i5 2 Timf.i(iec) 3 3.;5 5 45 &

Figure 2-2 Representative Disturbance RejectioaseCl
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For the Case shown in Figure 2-2, displacementsoth axis directions are suppressed in
about two seconds. Note that the sign on/tHeterm must be negative when the disturbance

frequency is below the natural frequency of theesypg27].

#-Displacerent vs. Tirne

0.0z ) ; ; ; ! ; : ! ;
Mass = 5 kg T é 5 § ! 5 é 5 : :
E’ DD‘] S A e e L T o i o Ko Y S ) Ao T i e b o i e i A
Imbal. Force = 0.13 N = RN
2 1l ||n|||||l|||JL|||||||||Ill||||||||hl||||||||J IIERN
Nat'| Freq. = 20 Hz £ o |l' il ||"||||”'||"'|||“'||'”|||"'||“'||||'”||"l'l| |”||I'l‘l'lllllll‘llllllll'l
_ EB ekt e Bl L AR R na ADR
Dist. Freq. = 18 Hz g : 5 5 ; : ; . | ——»DR
AH =-22,000 0028 1 15 2 28 3 38 4 45 &
Time (sec)
Y-Displacement vs. Time
0oz — ¢ ¢ ¢ § ¢ ©§ § &
= : : § ; : : ; § :
é DD'] b o i e T T S e e s s i s s e R R
5 1 I| l“ |||I||I||| |JI||||J||||H||H||||I||||I|l||“|.||||l|||“||||J|| il
5 ||'I|||"| ‘”|||”|||”’|I“"Il"”I'"'IIl” ||"||”IIIIII"l'IIII‘Il'l|I|i|l‘ll|I|I|l|]‘ﬂ
—% e R, e s e idadipa i b s iati spid ) na ADR
& 5 § § ] : 5 - | ——aADR
00z i 1 1 1 I i 1
o 05 1 15 2 25 3 35 4 45 5

Tire [sec)

Figure 2-3 Disturbance Rejection - Case 2

Figure 2-3 (2-4) illustrates the rejection of atdibance with a frequency just less (more) than
the natural frequency of the system. For the sitraria shown in Figures 2-3 and 2-4,

displacements caused by disturbances acting neandtural frequency of the system are
rejected more quickly than they were in Case 1 itkesim order increase in their magnitude.
The imbalance mass was the same for Cases 1 thidublt the imbalance force was

different in each Case because the rotational spesdlifferent in each also. Note again, that
the sign on matrixAH must be negative for the results shown in FiguBdhd positive for

those shown Figure 2-4.
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#-Displacement vs. Time

0.02 ) ! : ! ! ; : ! !
MaSS - 5 kg ,g X i : ¢ . i : ; :
£ ook
Imbal. Force = 0.19 N E o L I| ||||||||||||I. "'.'||”||||H“|'. .'||||||||H“|'|"' |'|'”|||||“|"|'| "-. ’
Nat' Freq. = 20 Hz ||| A |||||||||uuu'mnn|
= o0t no ADR
Dist. Freq. = 22 Hz 8 : ; : : : . | ——aADR
AH = 22,000 T 1' 15 2' 25 3 35 4 45 5
Tirme {sec)
f-Displacement vs. Time
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= : : : : | : ; ]
< il I ||
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Tirme (sec)

Figure 2-4 Disturbance Rejection - Case 3

The next simulation (Figure 2-5.) illustrates thas€ for when the disturbance frequency is a
multiple of the natural frequency of the system.aig the disturbance is suppressed as
quickly as it was in the preceding simulations. éj¢he imbalance mass was smaller than that
used previously so that the imbalance force despadigher frequency would remain within

the range of the forces from prior simulations.

T ¥-Displacement vs. Time
1 T T T T T T T T T
Mass = 5 kg = : ; § : ; : : : :
5 05 Hblwe - R AR Ee L R ........ A PR -
Imbal. Force = 0.06 N E ' i ' - ' i '
= 0 | i
Nat'l Freq. = 20 Hz 3 . ; : ; _ ;
. ;Q-D.S IEALLET PR RS RS ......... Fespmy Lo e ho ADR
Dist. Freq. = 40 Hz = : ; : : : Z i | ——anDR
) 1 1 | i I 1 1
AH = 80,000 0 05 1 138 2 25 3 34 4 4.5 5
Time [sec)
w1ot Y¥-Displacement vs. Time
=
£
=
=i}
&
=1}
(]
A8
p=5
o
& : — ADR
10 i 1 1 i 1 i 1 T T
0s 1 15 2 25 3 35 4 4.5 5

Time (sec)

Figure 2-5 Disturbance Rejection - Case 4

14



Finally, the results shown in Figures 2-6 and 2efdnstrate that neither the magnitude of
the disturbance force nor the amount of dampingerein the system affects the ability of

adaptive methods to suppress disturbances.

#-Displacement vs. Time

Mass = 5 kg ] T T T YW

Imbal. Force = 0.40 N g D'DDZ_ l“”|H““”l“““““““

Nat'l Freq. = 20 Hz 5

Dist.FreZ.=10Hz g 'H'“”“”[”l””””””””

AH = -28,000 O s 15 2Tlm82(5880)3 36 4 45 &
T
.r|qum(mu(IHHHHIHIHIIHHHH|1

Tirne (sec)

Figure 2-6 Disturbance Rejection - Case 5

For Case 5, the force was increased by one order e first simulation, yet the time
required to reject is identical for the two test®ie that damping andH are the same.). For
the final case, illustrated in Figure 2-7, a dargpiatio of 0.30 was used as compared to a
value of 0.02 in the first simulation. As can bersethe times to reject were nearly the same
regardless of the amount of damping present. Hokyéve value oiAH had to be adjusted to

account for the greater damping.
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Figure 2-7 Disturbance Rejection - Case 6

It's also instructive to observe the response @& #uaptive gairH, during disturbance
rejection. A graph of the gain as a function ofdifor the first case discussed is shown in

Figure 2-8 (Graphs dfi, for the other cases are very similar to the gfaplhis case).

0.0z

Hp vs. Time
T T T

i OO U R - SO SRR - O . SO - O ............... ]
0.008 _ ........ ......... ........ ........ ......... ........ ........ .........
2 0006)- - ........ ........ e ........ ......... ......... e ........
0004 k[ L ........ ........ ......... ........ R ......... ........ ....... A
oooz2 ........ ......... ........ ........ ........ ........ ....... _
5 51 5 a H 10

Time (gec)

Figure 2-8 GaiH, - Case 1

Notice that the gain steadily increases until trtudbance is suppressed at which point the

gain settles to a nearly constant value. Researdtere investigated whether a change in the
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slope of or the appearance of a discontinuity enttace oH,, once the gain has adapted to a
disturbance, indicates a change in the balancesg$t@m [26], [27], [28]. If a relationship can
be established betweéty and a balance state, then a change in the gald demonstrate a
change in the balance of a system that could casarresult of the development of a crack or

defect. Thus, gaihl, could be used as a predictor of the overall hezflthsystem.
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Chapter 3 - Existing System

In this Chapter, an overview of the magnetic bepaystem as it existed at the outset of this
research is presented. The overview includes miehmaries of the bearing and speed-
control hardware, the dSPACE system, the Simuligarimg/speed controller and the
ControlDesk instrument panels. In addition, sumesa@re also provided of the significant
changes and enhancements made to the system ad past research. Subsequent Chapters

will discuss these changes in detail.
3.1 Bearing and Speed-Control Hardware

The magnetic bearing system was originally desigaad developed by the Air Force
Research Laboratory (AFRL) as part of the Flywh&gikude Control Energy Transmission
System (FACETS) program. The AFRL was created i@718rough the consolidation of
several laboratories and a research office. The FR&program included investigation into
the use of magnetically suspended flywheels foh leotergy storage in and attitude control of
space vehicles. At the conclusion of the FACETSym, the entire system was donated to

Auburn University.

The magnetic bearing system largely as it was vedeirom the AFRL is shown in Figure 3-
1. (Photo courtesy of R. Jantz [30].)
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Figure 3-1 Magnetic Bearing System

The major elements, identified by numbered arrases,

1)
2)
3)
4)
5)

6)

7

proximity system - provides measurements of thpldcement of the rotor along the
bearing axes,

amplifiers - modulate the output of the power sigmplto provide the current
necessary to energize the magnetic bearings,

power supply,

power supply,

sensor - provides the input signal to the mecharmcaometer,

magnetic bearing one - contains four radially dssggbelectromagnets for supporting
the free end of the rotor,

flywheel,
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8) magnetic bearing two - contains four radially disga electromagnets for supporting
the motor (turbine) end of the rotor,

9) sensor - provides the input signal to the electrtethometer,

10) air turbine - powers or spins the rotor and flywhee

11) air supply line and

12) flex coupler.

Further details about the hardware can be fourq@0h and a comprehensive discussion of
the FACETS system including details of its desigd aonstruction can be found in [26] and
[28].

Hardware necessary to support the addition of speattol to the original magnetic bearing

system is pictured in Figure 3-2 (Photo courtes|B06f.)

Figure 3-2 Speed Control Hardware

and includes the following items identified by tiembered arrows:

1) electronic tachometer - measures the rotationadpéthe rotor,
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2) stepping motor valve (SMV) - regulates the floncompressed air to the air turbine,

3) linear voltage differential transformer (LVDT) - quides measurements of the
position of the SMV from fully closed to fully opemd

4) project box - provides the electrical connectioesMeen the analog-to-digital (A/D)

converter and the SMV.

For a complete discussion of the development anpleimentation of the speed control

system, refer to [30].

Figures 3-1 and 3-2 depict the magnetic bearingesysimost exactly as it exists today since
the hardware with two minor exceptions was not gednfor this project. The exceptions
include careful realignment of the major componemtd the replacement of the flex coupler

between the air turbine and bearing two to impribxerotor orbits (See Section 4.1.).
3.2 dSPACE System

The interface between the host computer and thenggspeed-control hardware is provided
by a system manufactured by dSPACE [31]. Althougltimanges were made to the dSPACE
system during this project, summaries of the magndware and software elements of the

system follow.
The dSPACE hardware includes the components letedoriefly described below:

1) DS1005 processor - executes the control code ®mbé#aring system generated from
the Simulink bearing/speed controller block diagram

2) DS2003 analog-to-digital (A/D) converter - convatslog signals received from the
hardware (e.g. proximitors and tachometers) taalifpr input to the processor,

3) DS2002/2003 A/D connector panel - provides physioainections for input signals,

4) DS2103 digital-to-analog (D/A) converter - convedsgital signals sent from the
processor (e.g. control currents and signals) &ognfor output to the bearing/speed
control hardware and

5) DS2103 D/A connector panel - provides physical emtions for output signals.
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The processor, A/D converter and D/A converter erelosed in an expansion box that is

pictured in Figure 3-3.

Figure 3-3 dSPACE Expansion Box

The A/D and D/A connector panels are shown in Fed##4. (Photo courtesy of [30].)

Figure 3-4 A/D and D/A Connector Panels

The dSPACE software consists of the componentdliahd briefly described below:
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1) Real-Time Workshop - generates C-language progfeons Simulink block diagram
models, compiles the programs and loads the raguéikecutables on the dSPACE
processor,

2) Real-Time Interface - provides the link necessany donnecting Simulink block
diagrams to dSPACE hardware in block library forma a

3) ControlDesk - provides software for creating lagoand instrument panels used to

manage and control systems.

ControlDesk allows Simulink block variables to bepliayed and changed through a number
of different instruments so that systems can be itoi@d and controlled in real time.

Variables that can be displayed through ControlDestruments include outputs from

Simulink blocks, while those that can be changedunte configuration parameters for

Simulink blocks and arguments passed to S-functi®esveral panels developed with
ControlDesk are shown in this document (See Figdg4, 4-15 and 4-16.).

3.3 Simulink Bearing/Speed Controller

The modeling and development of the control sydtanthe magnetic bearings were done by
[26] using Simulink. This system includes both apmrtional-integral-derivative (PID)
controller for actively managing the bearings amdaaaptive-disturbance-rejection (ADR)
controller for neutralizing the effects of distunoas that can upset the balance of the rotor
but that cannot be offset by PID control alone. Tinedeling and development of the PID
speed control system were done by [30] also usimgulék. The bearing and speed
controllers were combined into a single systemrtmlpce the bearing/speed controller. The

top-level Simulink block diagram for this is shownFigure 3-5.
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This is the code for a controller that includes adaptive disturbance rejection and AMFs MADR control with tach used for freq,
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Figure 3-5 Bearing/Speed Controller

The diagram pictured here represents the contralieit appeared at the beginning of this
research with two exceptions: the rotor speed Sgmdded as inputs to telaptive Control
and Excitation subsystems and the third data store added to dutipo Discrete Fourier
Transform (DFT) driven adaptive controller. The areld subsystems or blocks represent

those that were changed or added over the coutbésatsearch.

In this section, the purpose of each subsystemie$lypdescribed, and the changes made to
each are briefly summarized. Detailed discussionshe changes to the subsystems are

provided in the following Chapter.

Adaptive Control

The Adaptive Controlsubsystem calculates the adaptive gains and th&oter output
necessary to suppress the effects of potentialigaging disturbances. The inputs to this

subsystem are measured rotor position, estimatessirotor position and speed), any
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auxiliary inputs applied through th&®DC Muxblock and the actual speed of the rotor. The

outputs of this block are the adaptive control algrior the bearings.

This subsystem was changed so that adaptive caitnadls are calculated and applied to all
four axes of the bearing system, and this changenaade to extend the research capabilities
of the system. With adaptive control available dlnaaes, the predictive capability of the

adaptive gains regarding moments produced by imbal#orces could also be investigated.

Safety features were also added to protect thesyfom damage and to calm the nerves of
researchers in case of miscalculated or unantepedntroller behavior. These features null
the contribution of the adaptive gains to the calfér output if either or both gains saturate
and disable the adaptive controller if calculatedrents or measured displacements exceed

thresholds.
ADC Mux

SubsystemADC Muxis the Simulink interface to the dSPACE hardwaral@gto-digital
(A/D) converter. This block collects the inputs tiee system and routes them to other
subsystems for processing. The inputs include drght the Proximitor probes that measure
the position of the rotor with respect to the maigneearings, eight from the amplifiers that
provide the current to power the bearings, two ftbmtachometers that measure the speed of
the rotor and one from the flow-control valve tladicates the position of the valve from

fully closed to fully open. No changes were madthts subsystem.
Bias

Bias outputs the control voltages applied to the bearipg combining inputs from several
different sources. The PID and adaptive controlpeavide inputs necessary to keep the rotor
suspended. Other sources include user-specifiesi imbiages that can be used to shift the
rotor towards one magnet or the other. Yet anoswmrce is theExcitation subsystem.
Voltages input from this block are used to alter dinbit of the rotor to simulate various types

of disturbances. No changes were made to this block
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DAC Demur

SubsystemDAC Demuxis the Simulink interface to the dSPACE digitalaimalog (D/A)
converter. Inputs to this subsystem are bearindrabroltages output fronBias a rotor
status signal fronkrror, the measured and estimated positions of the vatbrrespect to the
magnets and two control signals for the flow-contralve. These signals determine the

direction of valve motion (open or close) and the rof opening or closing.

There are 10 control voltages output fradAC Demux Eight are routed to the amplifiers
shown in Figure 3-1 and converted to the curreadqsiired by the magnetic bearings to float
the rotor. The other two are sent to the project that provides the interface between the

connector panel and the flow-control valve. No gemwere made to this subsystem.
Error

TheError block detects current and position errors andggecautionary actions to prevent
damage to the bearing system if thresholds forectiror position are exceeded. Typically, the
actions taken are informational; status messages W& user of deteriorating conditions.
However, error states are numerical coded and cstorehe Err and ErrADR data storage

areas shown in Figure 3-5. These codes can be mgeasther subsystems to alter their

behavior.

Inputs toError are the measured position of the rotor, the ctsrifowing to the bearings and

the actual speed of the rotor. Outputs includegaadito reset the integral gain and another
signal that prior to being neutralized by [30] ablle used to deactivate the bearings. This
signal was disabled to prevent damage to the lgsatimat can result if deactivation occurs

while the rotor is spinning. No changes were madéis subsystem.
Excitation

The Excitation subsystem as briefly noted in an earlier paragmpkides a means to excite
the rotor with sinusoidal signals. These are eitpemerated by this block based on user-

specified values for amplitude and frequency oriapait to the block via a dynamic signal
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analyzer. In the latter cagexcitationsimply adds the input directly to any signals gatex

within the subsystem to form the output.

This subsystem was changed to address two proltensfied by [28] in his research on the

predictive capability of adaptive gaid,. One difficulty was synchronizing the excitation
frequency output from this block with the actuatésg of the rotor. The other was establishing
the exact time when the excitation was applied ley block. With the changes made to
Excitation the frequency of the sinusoidal signals can beatgd continuously to exactly

match the speed of the rotor. The changes also makssible to capture the complete duty
cycle of the signals, so the precise moment whenetttitation is applied and the precise

moment when it is removed are both known.

Phi

The Phi subsystem computes the disturbance vector reqtoréeétermine the adaptive gain
Hp. The input to this block is the actual RPM of tiséor, and the output is the disturbance
vector.Phi is actually a subsystem within tielaptive Controblock and does not appear in

the top-level Simulink diagram shown in Figure 3-5.

This subsystem evolved over the life of the redeaftie block was originally enhanced so

that the disturbance vector could be computed erbésis of the actual speed of the rotor and
multiples of that speed or on the basis of the dami frequencies calculated by the real-time
DFT. These methods were in addition to the origored where the frequencies to reject were
entered manually through ControlDesk. Regardlegh®ibasis, three frequencies were used

in the construction of the vector.

However, during development and testing, task owererrors were encountered that
destabilized the bearing controller. Thus, thissygbem was streamlined to use just a single
frequency as just one measure taken to eliminatevkrrun errors. (Overrun errors as well as
all of the steps taken to overcome them are digcussdetail in Chapter 5.) This frequency
could still be entered manually or it could be lohea the speed of the rotor or on the output
of the DFT.
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Reducing the disturbance vector to a single frequetid not compromise the usefulness of
the system significantly. The primary focus of thasd similar research is often the
imbalances that occur at the rotational speed efsystem. However, further testing has
indicated that the refinement and tuning that wayee to eliminate task overruns may well
have created a sufficient time margin that wouldvalthe vector to be expanded beyond a

single frequency without reintroducing overrun esro
PID Controller

The PID Controller block implements proportional-integral-derivativentrol on the active

magnetic bearings. The measured and integratedigmssiof the rotor and the estimated
velocity of the rotor are the inputs to the subsystThe sole output is a control signal. This
subsystem was constructed so that different cdetrghins could be applied to each bearing.

No changes were made to this block.

Speed Control

Speed Controlis the subsystem that controls the speed of ther roy implementing

proportional, derivative and integral control. Itgdo this block are the actual speed of the
rotor and the position of the flow control valvepesssed as a percentage of fully open.
Outputs from the block are the direction to move #alve (open or close) and the rate at

which to move it.

This subsystem provides a number of user-confidaraptions such as those that determine
the minimum and maximum opening and closing rates tae maximum sizes of the dead
bands above and below the set operating speeddditicm, Speed Controkupports full

manual operation of the valve for instances whéaeipg and maintaining the valve at a fixed

position are needed. No changes were made toltak.b

State Estimator

Inputs toState Estimatoare the rotor position froADC Muxand the control current to the

bearings. Other inputs are calibration values, taede are added to the current inputs in this
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block. Calibration is the procedure that centews ithtor exactly between the magnets and
calculates any additional currents necessary teodd his subsystem determines actual rotor

position and estimates the position and velocayest for input to other subsystems.

A real-time Discrete Fourier Transform (DFT) wasarmporated into this subsystem to
provide among other things the capability of idigitig disturbances that result from base
motion. Matras [26] demonstrated that the adaptorgrol laws summarized in Chapter 2 can
be applied to suppress disturbances produced keyrhation. These would more than likely
occur at unknown frequencies and possibly bearetadion at all to the speed of the rotor.
One method to determine these frequencies woutd perform a spectral analysis or Fourier

transform of the rotor's position relative to atmegaxis.

The DFT was included in this block since the actpasition or displacement of the rotor,
measured in thousandths of an inch, along eachnigeaxis (the rotor position) is available
here. Outputs from the DFT can be and were usadrit@ the Phi subsystem, the block
responsible for forming the disturbance vector nexguby the adaptive controller. In addition,
the DFT provides a direct and nearly immediate mmessent of the effectiveness of
disturbance rejection.

3.4 ControlDesk Instrument Panels

The ControlDesk instrument panels used to operadecantrol the FACETS system are well
documented and illustrated in [30]. Three additiggamels were developed for this project to
primarily support the configuration and managenwnie ADR controller. The purpose of
each additional panel is discussed in the follow@tgapter, and Figures illustrating each are

shown in this Chapter as well.
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Chapter 4 System Enhancements

Major components of the FACETS system, including bearing hardware, the Simulink
bearing/speed controller and the ControlDesk imsémt panels, were changed or enhanced

to:

* improve the behavior of the rotor,

» extend the capabilities of the adaptive controller,

» ensure the safer operation of the system and rdtlegeotential for damage to it,
* increase the capacity of the system to serve asearch platform and

* maintain the consistency of operation through the af established norms,
and these changes and enhancements are discuskadilimn this Chapter.
4.1 Bearing Hardware

Changes were made to the bearing hardware to irapiteer orbits of the rotor within each
bearing. Ideally, the orbits should be small, cesdteand circular as shown in Figure 4-1 and

should remain nearly so as the speed of the rotoeases.
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Figure 4-1 Ideal Bearing Orbits

However, as this project progressed, the orbithat motor or driven end deteriorated,

becoming large, off-centered and irregularly shapedshown in Figure 4-2. (Both Figures
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illustrate the distance, measured in thousandthenahch (mils), that the rotor is displaced

along each bearing axis.)
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Figure 4-2 Less Than Ideal Bearing Orbits

In addition, the orbit at the motor end grew alargty in size as the rotor speed increased,
becoming large enough at 5000 RPM to nearly conitectnagnets and proximitors. Orbits of
this size triggered a limit exception resultingtle display of a warning to the user through

ControlDesk.

Investigations revealed that the causes of the pdats were misalignment between the air
turbine and the rotor and a flex coupler that cowddaccommodate the misalignment and that
also influenced the orbits negatively. Some misaignt, both parallel and angular, will

nearly always be present between the turbine amddtor. The turbine is solidly mounted,

but the rotor orbits within the bearings. Everné two are perfectly aligned when the rotor is
suspended but not turning, they will become slightlsaligned as soon as the rotor begins to
spin. Therefore, the turbine and rotor were cahgfaligned first. Then, tests were performed
with several different types of flex couplers tadaetenine which one would result in the best

orbits possible.

The turbine and rotor were aligned (with the flexipler that was ultimately chosen in place)
by placing shims under the driving end of the tmeband under the brackets that supported
the turbine. The shimming was done with the rotspended but idle. When finished, the
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driving end of the turbine was raised 0.002 inalg ¢he brackets were raised 0.003 inch at
the driving end and 0.005 inch at the driven erfie $him stock used was non-conductive,

non-magnetic brass of 0.001 inch thickness.

Experiments were performed with four different tyyé flex couplers, including double-loop,
flexible-spider (the existing one), helical-beand gnnhole-disc, to identify an optimal one.

The first three are shown in Figure 4-3.

Flexible Helical Double
Spider Beam Loop

m_c};’m i

Figure 4-3 Flex Couplers

In qualitative terms, the coupler must be stiffstonally to reduce the risk of inducing
torsional vibrations, stiff axially to control artlirust, however small, that may develop and
compliant laterally to prevent small misalignmeifntsn affecting the bearing orbits. Only the
pinhole-disc coupler met these requirements; therothree did not. Figure 4-4 shows this

coupler in place on the FACETS system.
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Figure 4-4 Pinhole-Disc Flex Coupler

4.2 Simulink Bearing/Speed Controller

As noted in the previous Chapter, the four subsyst®f the Simulink bearing/speed
controller that were changed significantly akdaptive Contragl Excitation Phi and State
Estimator The changes made to each are detailed in thiso8etn addition, the Simulink
diagrams for these subsystems before and afterchiheges were made are shown. The
diagrams for the subsystems that remained as teey @an be found in [27].

Adaptive Control

Modifications were made to thdaptive Controblock to:

extend adaptive control to all four axes,

* null the contribution of each adaptive gain to ¢betroller output if the gain saturates,
» disable the adaptive controller if current or positlimits are exceeded,

* reduce the composition of the disturbance vectarsmgle frequency and

« properly calculate the magnitude of adaptive ¢din

The originalAdaptive Controkubsystem as developed and refined by [27] is shibxigure
4-5.
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Figure 4-5 OriginaAdaptive ControSubsystem

The currentAdaptive Controlsubsystem is pictured in Figure 4-6,

and the ealdnlocks
identify those that were changed from or addedhéoatriginal subsystem.
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The capability of applying adaptive control to &lur axes was largely in place on the
existing system. The gain blocks were already sgeth that the outputs from the adaptive
controller would match those from the other submyst that acted on all axes. Therefore, it
was only necessary to identify the matrix elemémtesach gain block that when set to their
proper values would enable adaptive control on akese and four. Also, the blocks
necessary to reset the integrators to their intadition, the method used by [27] to disable
the adaptive gains, had to be similarly modifie@¢commodate the additional axes.

The bearing system experienced instability at Vevy speeds during the initial experiments
with the predictive capability of the adaptive gaifihe instability occurred immediately after
the adaptive controller was activated and was ieddent of the mode (manual, DFT or
speed) used to drive the controller. It appearatltthe adaptive gains saturated very quickly,
and it was thought that rapid saturation may haesed or contributed to the instability. (The

actual cause of the instability and the steps tdkegliminate it are discussed in Chapter 5.)
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Thus, the adaptive controller needed to be disabteduickly as possible if the gains did

indeed saturate, and S-functimeoGpandzeroHpwere developed to accomplish this.

S-functions or system functions are one way totyrextend the capabilities of a Simulink
model by providing a method for including user-vant C programs into a model. Languages
other than C can be used as well. The programdeaadded through a standard Simulink
block, typically S-Function Builder or S-FunctioBoth are available in the Simulink/User

Defined Functions library.

S-Functions like other blocks in Simulink requibat initialization and termination tasks be
performed at the beginning and end of a simulatiBramples of the former include
initializing the configuration structure, settingetnumber and size of input and output ports
and allocating storage. An example of the latterludes freeing any memory allocated
specifically for the block. The S-Function Build&tock automatically adds the code

necessary to perform these tasks. The S-Functawk loloes not.

S-functionszeroGpand zeroHpwere written using the S-Function Builder sincespecial

tasks exclusive of those provided by the Builderemequired to initialize or terminate the
blocks at the beginning or end of a simulationfdot, all S-functions developed for this
project were incorporated into the bearing/speetatrotber model using the Builder rather
than the block. If the Builder cannot be used, ificgmtly more effort is required on the part

of the programmer.

S-Functions zeroGp and zeroHp work identically. Each monitors the output from an
integrator’s saturation port. If the integratorusates, the output from it is nulled and remains
nulled, even if the integrator becomes unsaturatet, it is reset manually. See Appendix B

for listings of both programs and detailed comme@mishe programs’ logic.

The Adaptive Controlsubsystem was further modified to support explemabling and
disabling of the adaptive controller through Colidesk. Previously, the controller was
enabled or disabled by sending the proper sigralthé integrators’ reset ports. Explicit

enabling/disabling was combined with the limit @¢teinction developed by [27] to maintain
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the automatic disabling capability of the controtlerough theError subsystem. The changes
to Adaptive Controldescribed in this paragraph were implemented viangtion zeroADR

See Appendix B for a listing of this program.

The last two changes made to théaptive Controlsubsystem were made to accommodate
the resized disturbance vector and to calculatenthgnitude of gail,. (Section 3.3 explains
why this vector was resized to include only a snigequency.) The resized vector entailed
changes to those blocks that compidgo ensure that matrix algebra is performed properly
GainH, was computed directly (by S-functicalcMag so that it would be available for data

capture and subsequent analysis. A listingadéMagappears in Appendix B.

ProgramcalcMag could have been more easily implemented as an duoeldeMATLAB
function, and in fact, it was initially. The prognais straight forward, simply calculating the
square root of the sum of squares. In additionptiegram’s computations do not depend on
those from previous invocations. If they did, afuBetion would be needed to provide the
necessary storage class for the variables used.etowembedded MATLAB functions
execute much more slowly than S-functions do. Thwexlded functions are interpreted
rather than compiled and placed in-line as therfstfans are. Since the real-time constraints
of the bearing/speed controller were becoming emirggly difficult to satisfy as the
controller grew in scope and complexity, the exiecutime of each subsystem and each
block had to be as fast as possible. Therefore,nedexr user-developed programs were
required, they were added as S-functions rather ¢habedded MATLAB functions.

Section 5.2 discusses the profiling of subsystelmag tvas done to help identify ways to
reduce the execution or run time of each. The tesllown in this Section demonstrate the
significant reduction in the run time of subsystékdaptive Controlwhen embedded
MATLAB function calcMagwas replaced with an equivalent S-function.

Excitation

Modifications were made to thexcitationblock to:
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» provide the capability to exactly match the frequyeaf the excitation to the speed of

the rotor and

» exactly identify the time when the excitation ipk@d to and removed from the rotor.

The originalExcitationsubsystem is shown if Figure 4-7.
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Figure 4-7 OriginaExcitationSubsystem

The currentExcitation subsystem is pictured in Figure 4-8, and the ealdslocks identify

those that were changed from or added to the @ligubsystem.
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The original subsystem applied sinusoidal excitetido one or more axes at a single
frequency. The excitation consisted of both siné ewsine terms, thus simulating a rotating
imbalance. The frequency was chosen by the useremdined constant unless explicitly
changed. The amplitudes of the sinusoid signale &kso chosen by the user and could be the

same or different for each axis.

The capability ofExcitationwas extended so that the frequency of the apgiguokls could

be exactly the same as the speed or frequencyeabtbr. Ensuring that the two frequencies
are the same or nearly so is critical to deterngirtive effectiveness of the adaptive controller.
[28]. The addition of speed control to the FACETStem helped immeasurably in this regard
since maintaining a constant rotor speed lesseabmates the need to adjust the excitation
frequency dynamically. However, small variationsrator speed still occurred regardless of
how well the speed control functioned, so the gbib match the frequencies of the excitation

and the rotor speed was still needed.

Dynamic frequency adjustment was implemented byrgtfonexcFregshown in Figure 4-4
(A listing of this function appears in Appendix B3-functionexcFreqcan also update the
frequency of the excitation at a user-specifie@érval in addition to adjusting it at the speed
of the simulation. Intervals of any length can besen, limited only by the configuration of
ControlDesk, and the length can be changed at iamg. fThis "adjust and hold" capability
was added in case instability resulted from adjesiis that were made too rapidly. In fact,
"adjust and hold" was initially developed for amatisubsystem which did become unstable

when driven at the simulation frequency.

Another capability developed for subsysté&xcitation permitted the recording of the exact
time when excitation was both applied to and rerddvem an axis. Again, [27] had noted
the importance of this to the determination of teeponsiveness of the adaptive gains to
changes in the imbalance state of the flywheelurigtion excRotor implements this
capability by monitoring the current and previouates of the subsystem, enabling or
disabling the excitation accordingly and updatihg turrent status of the excitation through
an output that is available for data capture. Tutput can then be plotted as a function of
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time so that the exact moments of the applicatiwh r@moval can be found. See appendix B

for a complete listing of this S-function.

Phi

Modifications were made to thehi subsystem so that the disturbance vector coutn lzds

composed on the basis of:

» the actual speed of the rotor or

» the dominant frequencies calculated by a Fouriatyars.

The originalPhi subsystem is shown if Figure 4-9.
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Figure 4-9 OriginaPhi Subsystem

As can be seen from the Figure, three frequeneaid®rr than one were used to construct the
disturbance vector to improve the effectivenessadéptive control when the primary
frequency to reject was not precisely known or wfrequencies that were multiples of the
rotor speed were to be rejected too [28]. The thespiencies were entered as constant values

through ControlDesk.

The Phi subsystem was revised twice from the aaigiand the first version is pictured in
Figure 4-10. The colored blocks identify those tvate added to the original subsystem.
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The first changes to thehi subsystem maintained the existing size of theudbsince vector
(three) but also introduced dynamic composition niehg the frequencies to reject could be
based on the actual speed of the rotor, either unedsdirectly by the tachometer or
calculated indirectly via a Fourier transform. Witlynamic composition, the actual
frequencies that appear in the disturbance vectdrtlae desired frequencies to reject are the
same or nearly so improving the effectiveness dral responsiveness of the adaptive
controller. As the actual and desired values dieethe disturbance rejection becomes less
complete, and the adaptive gains become less fiked{cesponsive) [28].

S-functiongenFreqsdetermines the frequencies to reject based om#esured speed of the
rotor. This speed and others chosen by the usgilared in the disturbance vector. The user-
chosen values can be multiples or fractions ofrt¢iver speed or just about anything related to
it depending only on the configuration of ControfiReand the complexity of the S-function.

In addition,genFreqscan update the disturbance vector at the simulap®ed or at longer,
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user-specified intervals, the "adjust and hold"atalty discussed earlier, if instability results
as a consequence of updates that occur too ofemn ASpendix B for a listing of function

genFreqgs

S-functioncmpAmpsletermines the frequencies to reject based oruadf@nalysis provided
by S-functionDFT that is included in subsysteBtate EstimatorThe frequencies used for the
disturbance vector are the dominant ones, thodethé greatest amplitudes. The frequencies
are made available to this function through a C#tiare, a Simulink block that provides a
vehicle for exchanging data between subsystems $Hunction updates the frequencies at
whatever interval is required to calculate the riedrier transform. This interval depends on
the sampling frequency and the frequency resolufdhe transform. Both parameters can be

chosen and changed at will by the user through Gl sk.

In addition,cmpAmpscan be configured to only update the frequendiemes calculated
subsequently correspond to amplitudes that exceestiadefined threshold. This feature was
added to prevent the immediate reappearance oifsfants frequencies following their
rejection. When the composition of the disturbaneetor is dynamic and driven by the
Fourier analysis, once a persistent disturbancejésted, its frequency is removed from the
vector, and the disturbance then reappears onlyetoejected again where it once more
reappearad infinitum Establishing an amplitude threshold ensures dhdisturbance once
detected will be rejected until something more dwnt unbalances the system. See

Appendix B for a listing of S-functioompAmps

Following the decision to reduce the disturbancetareto a single frequency (See Section
3.3), thePhi subsystem had to be changed accordingly. Thesgebaroduced the second or
current version shown in Figure 4-11. The colorkxtks are the ones that were added to the

original subsystem.
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Although Version 2 is greatly simplified, it stprovides the same functionality as the earlier
Version. The disturbance vector can still be coregda the same three ways, by providing a
single frequency manually or by determining it dyneally based on either the speed of the
rotor or the dominant frequency returned by theriéouransform. The S-functioaneFreq
chooses the method for composing the vector basedswitch set by the user. This function
is basically a condensed version of a combinatiothe S-functionggenFreqgsandcmpAmps
described earlier, and it also incorporates allthed switching that was done previously
through several Simulink blocks. A listing for SafttiononeFreqis shown in Appendix B.

S-functiononeFreqgprovides the "adjust and hold" capability for tla¢or-speed driven case
or mode just aggenFregsdid. In addition, amplitude and frequency thredsokan be
established in the case of the Fourier-driven matie. purpose of the amplitude threshold is
the same in both Versions of the subsystem. THayaloi establish a frequency threshold was
a feature added to Version 2. The purpose of #guigncy threshold is to prevent a very low
or zero frequency from being used to compose thidiance vector. A dominant frequency

can occur at or near zero Hz if the rotor's orditslarge or off-center.
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State Estimator

The State Estimatorsubsystem was enhanced to include a real-timeré&ecFourier

Transform (DFT) that extends the capability of #daptive controller. The DFT provides a
spectral or frequency analysis of the rotor disphaents, allowing the controller to identify
and reject frequencies that are not knaavipriori and also provides a useful tool for the

analysis of experimental data.

The originalState Estimatosubsystem is shown in Figure 4-12.
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Figure 4-12 OriginaState EstimatoSubsystem

The currentState Estimatosubsystem appears in Figure 4-13, and the coldosds identify

those that were added to the original subsystem.
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The S-functiorDFT computes the discrete Fourier transform of rotgpldcements along one

axis according to the following equations giverBeckwith et.al.[32]:

2 2 N
ATL = NZTA‘I=1y(rAt) Ccos (%) n= 0; 1;.";;

4.1)
2 (2 N
B, = ;Z’T\’:ly(rAt) sin (%) n=12-",2-1
4.2)
€= JA2 + B2 n=0,1, 1%
(4.3)

whereA,, andB,, represent the Fourier coefficient§, represents the Fourier amplitudais,
equals the total number of data points suidAt) equals the magnitude of th&* data point

(displacement). The Fourier frequencfgsare calculated using the equation:

fu=nAf n=0,1,-,2
(4.4)

whereAf is the fundamental cyclic frequency or frequeresotution of the transform.
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Calculating Fourier transforms in a real-time eanment presents serious challenges. The
FACETS system is a genuine real-time computingeactive computing system where the
controller outputs must be available to the bearwghin strict time constraints. If they are
not, bearing instability can and does result. Fonst added to the Simulink bearing/speed
controller must not destabilize the bearings byezitexecuting too slowly or imposing
"shock" loads either of which could result in th&ldre to meet real-time constraints.
Therefore, S-functioFT was written to run efficiently and consistentlgquiring a nearly

constant amount of time to execute during eachdation.

An examination of the equations used to deternieeRourier coefficients shows that each
data point is used in the calculation of each ¢oefit. Since the number of data points to
collect is known prior to the start of the transfioithere is no need to wait until all data are
collected before beginning the computations of Huarier coefficients. S-functioFT
performs all calculations that depend on a datatpas that point becomes available.
Calculating "as you go" ensures that the numbeoaiputations made each time the function
is called is the same, avoiding shocks to the systad making the transform available to
other subsystems as quickly as possible.

S-function DFT also uses a simple algorithm to produce an ordewet of the Fourier
frequencies, based on the corresponding Fouriefitaigigps, that minimizes execution time
and reduces risks to the real-time requiremente@fBystem. Sorting is not done completely
during a single execution of the function. Instepdt one data point is sorted and located
properly during each invocation, but the sort osatrsimulation speed. The simple algorithm
used and its unique implementation ensure that maphisticated algorithms are not needed

to increase the speed of the sort [33].

The discrete Fourier transform is configurable tigto a ControlDesk panel discussed in the
following Section. The sampling frequency and thregféiency resolution are chosen by the
user and can be changed at any time during a diwnuld he S-function recognizes if either
or both parameters have changed during the computat a transform, and if they have, the

function will terminate the current transform andglm the calculation of a new one. In
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addition, any one of the bearing's four axes carsdlected as the basis of the Fourier

analysis. Appendix B provides a complete listingsefunctionDFT.
4.3 ControlDesk Instrument Panels

The ControlDesk instrument panels for this projgete developed using the conventions for
appearance and function established by [30]. Tloeswentions ensure that instruments
appear the same when placed within a frame or parel and that instruments are used
consistently with regard to purpose. The “look &el” of the panels created for this project
is the same as it is for those created previoldders are presented with a graphical interface
for operating and controlling the rotor that givesindication that it was developed by more

than one researcher.

Each of the new panel§jore, DFT/ADR ADR/ExcandDiag, will be discussed in detail in
this Section, and each with the exceptio®afg will be shown.

More

The More panel, pictured in Figure 4-14, was created tauenshat new panels could be

easily added to the existing system without chamgjne top-levelayout_startpanel.
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Figure 4-14More Instrument Panel

This panel is actually a portal that provides asdesother panels. Access to a new panel can
be constructed by simply adding a PushButton instmnt to theMore panel and dropping the
new panel’'s object onto that button. The returrhgabm the new panel is just as easily
created using complementary steps.

Reaching other panels through the portal addsediine required to navigate the system, but
the extra time is insignificant as long as the @mions for building panels are followed. If
they are, the PushButtons required for navigatienmaced consistently, ensuring that any
panel can be accessed from any other using no thanea few mouse clicks. Other methods
could have been used to move between panels, butwibuld have quickly cluttered the

existing panels without providing a consistentteystic way to add new ones.
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DFT/ADR

The DFT/ADR instrument panel was developed to allow the useronfigure and operate
both the discrete Fourier transform and the adaptiontroller as well as to observe the
outputs from the transform and the frequencieshefdisturbances to reject. TB&T/ADR

panel is shown in Figure 4-15.
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Figure 4-15DFT/ADRInstrument Panel

Values for several parameters must be chosen fwefyoconfigure the system to perform a
Fourier analysis. Although the paramet8empling FregFreq ResolutiorandAxis are self-
explanatory, further notes concerning the first twdl be beneficial. The size of the
structures used by S-functi@FT to calculate a Fourier transform is based on ttieeme

values allowed for these parameters through Cdxesk. If these values are changed, the S-
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function may not allocate adequate space to aalyrabmpute transforms. A value defined
in header filembcntrl_a.hlimits the number of data points that can be usedalculate a
Fourier transform, and this value must be carefatiysidered before changes to expand the
range of either parameter are made. See Appentbx 8listing of the header file.

TheMin Amplitudeparameter can be used to limit the frequencigsunity theDFT function

to only those that correspond to amplitudes equal greater than the parameter's value. This
value or threshold prevents frequencies other tharmost dominant from being used in the
composition of the disturbance vector. Similarlye Max Num Freggarameter can also be
used to limit the number of frequencies appeannthis vector. Note that with Version 2 of

thePhi subsystem, neither parameter has any effect oel¢ineents of this vector.

Notice that the Fourier analysis pictured idensifee single frequency that matches the rotor
speed exactly. Even in the absence of any othetagina, this frequency will always appear
in the spectral analysis of any rotating machirtegt isn’'t perfectly balanced. Although this
frequency is present, it will not be located exaati the rotor speed unless the actual speed of
the rotor is an integer multiple of the frequenegalution [33]. For the case shown in Figure
4-15, the rotor speed was exactly ten times thaugen.

Configuration of the adaptive controller beginshwihe selection of the driving mode or
method used to determine the frequency or freqeenadepending on the Version of the
adaptive controller, to reject. The mode, chosah wiradio button, can bdanual Speedor
DFT. In Manualmode, the frequencies are simply entered by theatshe lower right of the
panel. InNSpeecandDFT modes, the frequencies are determined dynamidadlsed on either

the speed of the rotor or the output of the reaktDFT.

Values for parameterdmp ThresholdUpdate Intand Phi D Fill must also be chosen.
ParameteAmpThresholdapplies toDFT mode only, while parametetdpdate IntandPhi D

Fill apply toSpeednode only. The purposes of the first two haveaalyebeen discussed in
Section 4.2. The remaining orehi D Fill, was used to add frequencies to the disturbance

vector when the adaptive controller was drivent®ygpeed of the rotor.
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Recall that with the original system, the distudm~ector required three frequencies. When
the controller is placed i®peedmode, only a single one, the rotor speed, is abkslto
compose the vector. Therefore, the other two freges had to be calculated or chosen in
some fashion to complete the vector. The parantterD Fill provided several different
methods for determining the remaining frequencidse methods were straight-forward and
computed the values of the additional frequencgemaltiples of the rotor speed, fractions of
the rotor speed or zero. The former method had beed in prior research of disturbance
rejection since dominant frequencies occurringwat times and four times the rotor speed
exist in the frequency spectrum of the FACETS sysf28]. The latter method was included
to support research that focused solely on dishadsthat occur at rotor speed. Note again
that with Version 2 of thd’hi subsystem, th&hi D Fill parameter has no effect on the
composition of the disturbance vector.

The bottom part of the DFT/ADR panel provides colstrfor operating and tuning the
adaptive controller. Many of the instruments thppear here were already in place on
existing panelControl Parms[30]. They were also placed on pal#T/ADR so that both
configuration and operation of the adaptive coitgrotould be done from a single panel.
Values of several parameters can be chosen to thee controller and affect its
responsiveness. Upper and lower saturation liméis be placed on the integrators that
determine the adaptive gai® andHp to prevent the gains from becoming too great and
potentially causing instability in the bearings.dddition, values for the weighting matrices

AG andAH can be chosen to affect how quickly the contralsponds to disturbances.

Note that the calculation of the adaptive gains #medadaptive controller itself are disabled
by default. The gains will only be calculated ietbheckboxes are selected, and the output
from the controller will only be applied to the biegs if the controller is enabled (turned on).
In summary, nothing is output from the controllerass it is turned on, and the gains are

activated.
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ADR/Exc

The ADR/Excpanel provides the capability to configure andrafeethe adaptive controller
just as thdFT/ADRpanel did and also allows the user to enablentegrnal excitation and to
choose either a static or dynamic method for sieig@che excitation frequency. In addition,

the values of the adaptive gains applied to ead) the outputs from the adaptive controller

and the orbits of the rotor are all displayed. AER/Excpanel is shown in Figure 4-16.

RETURN

Limits - Gp Limits - Hp YWeight Gains
USat [ +2o |2l USat [ +20 | Beta -ﬂ
©.0n =) =] m hd “0n Freg
o @ o = e o {ris)
F.. 3 « off Lsat [ 20 | Lsat [ =o =l Dg £ LS S :
] X - : o I
; Update Int (5880
Lt Sl gy Wi Sa @y ok Db - @R s
Az 4
15 N —— 10 -
| 10 = : :
i i : Fers, i
i E i
& as & Al
10 ;
Gl & B & 2 % 65 10
] 10 05 10 15 20 25 ] 10 05 10 15 20 25
] Time (secs) | [ | Titne (secs) Axis 3
] BT e 30
= o2p
]
&
e g s e e e e e
g
1005 10 15 20 25 n 005 10 15 20 25 | ] 1005 10 15 20 25 10 05 10 15 20 25
| Titme (secs) | | Time (secs) | | Time (secs] Time (zecs)

===~~~

This panel locates the controls essential to the Bevestigation of adaptive-disturbance-
rejection techniques onto a single screen. Thetagagains and the controller outputs can be
closely monitored and the controller quickly disablif potentially unstable behavior is

observed. Similarly, the effects of the excitatioan also be closely watched and the

Figure 4-16ADR/ExclInstrument Panel
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excitation instantly disabled if it's observed te hiriving the bearing system towards

instability.

Note from Figure 4-16 that the excitation must belded here and on existing panel
Input/Outputto be effective. The need to control the excitatioom the ADR/Exc panel
combined with the desire to not change any of thections provided by existing panels
required that the excitation be applied this walgoAnote that the frequency of the excitation
can be static, chosen by the user and remainingtaoinuntil explicitly changed, or dynamic,
following the speed of the rotor exactly or at ‘@tj and hold” intervals as described in
Section 4.2.

Diag

TheDiag panel was constructed so that diagnostic infoilmnatould be easily output using an
existing framework. This panel provides a meardigplay information that is necessary for a
temporary purpose (e.g. troubleshooting problemeeaifying outputs from new blocks) but

that is not needed on a permanent basis. Diag panel is not shown since it basically

consists of the outer frame common to all panets@otter array instruments.
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Chapter 5 System Tuning

The Simulink bearing/speed controller has grownsire and complexity since it was
originally conceived and built by [27]. Additionsé enhancements have been made to the
model to support the needs of subsequent researcbBering the current work with the
FACETS system, the cumulative effects of the charmggeame significant enough to prevent
the real-time requirements of the system from bemgg. Although this was not immediately
apparent, it became so after attempts to resohairge stability issues actually led to
increased instability. Once it was realized thal-tene constraints were not being satisfied,
several steps were taken to reduce the executioe ®©f the controller. Specifically,
subsystems were streamlined and profiled, fundasheainple sizes were varied and tested
and tools provided by Simulink were used to prodaagseful model that executed rapidly
enough to ensure stability of the magnetic bearings

5.1 Task Overruns

Section 3.3 briefly introduced the problem withktasserrun errors that occurred with the
bearing/speed controller built with Version 1 oé #hi subsystem. Initial testing with this
controller began at low speeds, 600 RPM or lesd, @tasional bearing instability was
observed with the adaptive controller active. Thstability was present regardless of the
mode used to drive the controller. At first, thaptive control laws themselves were thought
to be one possible cause of the instability. Peshéqey did not apply well at very low speeds
despite their solid theoretical development [25jeTaws were tested thoroughly using the
simulated system and MATLAB program discussed imiér 2. The tests showed that the
control laws worked perfectly at all speeds. Thetaler reacted to and rejected frequencies

as low as 1 Hz.

Investigation then focused on the actual calcutatd the adaptive gains by the Simulink
bearing/speed controller. The Simulink model waglifieed to provide diagnostic information
at several points along the data paths inAtiaptive ControandPhi subsystems. With these

modifications in place, the instability became vegreccurring more frequently than before.
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Collecting information that would hopefully providesight into the problem was actually
destabilizing the system further. At this poink tdaptive controller was still suspect. It was
thought that possibly the calculation of the adapwains or the rates at which the gains
adapted were causing instability. The Simulink nioglas modified to closely monitor the
gains and the controller's output and to disaldectintroller if the potential for instability was
detected. With these changes, the bearing/speetioten immediately became unstable

when the adaptive controller was activated withrtiter suspended but not turning.

Finally, it became obvious that the stability perbk steadily worsened as the Simulink
model grew in size and complexity. It was ultimgtebncluded and correctly so that the
dSPACE processor was overloaded. The Simulink bg@peed controller could not be

executed in the time allotted for it resulting @sk overrun errors and attendant bearing

instability during operation of the FACETS system.

When a Simulink model is compiled and loaded by |R&ae Workshop, the resulting
executable program will be scheduled and run asoon@ore tasks on the dSPACE processor.
In the case of the bearing/speed controller, theeemodel is run as a single task. This task
must execute completely from start to finish witlie time allocated for it, and this time is
defined by the fundamental sample size or fixeg stee (FSS) of the simulation. If the task
cannot be completed in a time less than or equiieéd-SS, task overrun errors occur, and
when they do, the results are unpredictable [3d{hé case of the FACETS system, the result

was bearing instability.
Overrun errors can be eliminated several diffeveays including:

» decreasing the complexity of the model,
* increasing the efficiency of the model,
* increasing the fundamental sample size of the sitimul and

* using a faster processor.
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The first three of the four methods were used terocayme the overrun errors and restore the
stability of the system without sacrificing funatality. Economic realities prevented the use

of the last method listed.

The changes made to the existing subsystems duhisgresearch have already been
discussed in Chapter 4. Note that the subsystente wianged to both enhance the
capabilities of the FACETS system and to reduce gbeential for overrun errors. In

summary, the changes made to help eliminate ebgrslecreasing complexity included
restructuring subsystems to maintain functionaliih fewer blocks and reducing data widths
where possible. Changes made to increase efficiémciyded reducing the number of
trigonometric functions, replacing embedded MATLA®BNnctions with S-functions when

possible and exclusively using S-functions when-deéined functions were needed.
5.2 Subsystem Profiles

To demonstrate how significantly the execution tiofiea subsystem can be affected by the
steps taken to satisfy both the functional and-tiea requirements of the magnetic bearing
system, stand-alone models of tAeaptive Controlsubsystem were built and profiled.
Profiling is a method used to determine the timensgxecuting each block in a Simulink
model during a simulation. The Profiler is an elard tool for evaluating the relative effects
on the overall execution time of a model caused aolgling, changing, deleting and

reconfiguring blocks.

The base model used for profiling tAdaptive Controsubsystem is shown in Figure 5.1.
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Figure 5-1 Base Profile Model — Adaptive ControbSystem

This model is nearly identical to the actéalaptive Controkubsystem with two exceptions:
the inputs from the other subsystems necessarycdtnulating the adaptive gains and
composing the disturbance vector were simulatdterahan input from hardware devices or
state estimators and the blocks required to comph@sdisturbance vector were incorporated
directly into the adaptive controller rather thassembled into a separate subsystem. The
inputs for the adaptive gains were generated uBlagdom Source blocks executing at
simulation frequency. The input for the disturbaneetor was also created using a random
source block, but this block ran at 10% of the dation frequency to closely resemble the
small, slow fluctuations about a set point that @loserved in the speed of the rotor during

operation. Note that for profiling purposes, thagd/e controller was placed in speed mode.

The profile results for the base model, Adapt_Citd, and for all variations of it are shown
in Table 5-1. (See Appendix C for samples of peofdports for each model.)
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Adapt_Cntrl_1E Adapt_Cntrl_1S Adapt_Cntrl_3E Adapntrl_3S
TotTime | Blk Time | TotTime | Blk Time | TotTime | Blk Time | Tot Time | Blk Time
(secs) (%) (secs) (%) (secs) (%) (secs) (%)
1.33 4.7 1.17 1.3 6.91 56.2 1.33 4.7
1.33 4.7 1.17 1.3 6.48 56.1 1.27 4.9
1.33 5.9 1.19 1.3 6.72 55.6 1.30 4.8

Table 5-1 Profile Results - Adaptive Controller

The base model as its name implies used a singtpuéncy to construct the disturbance
vector and an embedded MATLAB function to calculdite magnitude of the adaptive gain
Hp. Note that this model also has just two trigonarmétinctions and a relatively narrow data
width. The maximum width is a 4x2 matrix, and icacs in theH, calculation path. For this

model as well as for all others listed in Table,5e duration of the simulation was 60

seconds, and the simulation period or fundameatapte size was 0.01 second.

As Table 5-1 shows, the base model required 1.88nsks to execute (total time or Tot
Time), and the time spent executing the embedded M8 function (block time or Blk
Time) varied from 4.7 to 5.9% of the total. Thealdime is not equal to the duration of the
simulation in any of the results because the modelse run entirely within Simulink, and
when they are, there is no synchronization betwbensimulation and a real-time or wall
clock. Simulink simply runs the model as fast asam, and the number of times the model is
run is equal to the product of the duration andudency (1/FSS) of the simulation. Therefore,
all models were executed exactly the same numbémefs (6000) during profiling, and all

times appearing in the Table provide excellent canajive data.

The second model of thedaptive Controbubsystem profiled, Adapt_Cntrl_1S, was the same

as the first or base model except that the embeltleOLAB function was replaced with a
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compiled S-function. The total times for the sintidas and the block times for the S-
function are shown in Table 5-1. Note that the stli®on of an S-function reduced the total
times 10 to 12% and the block times from 75 to 80%e reductions in block times were
calculated from the actual time spent executingbtoek rather than from the percentages

appearing in the Table.

The third model profiled, Adapt_Cntrl_3E, was sianito the first, but three frequencies were
used to construct the disturbance vector. Thisiledtahe addition of four trigonometric
blocks and expanded the maximum data width to 4x€,size of the matrix required to
calculate théd, gains. Again, the profile results for this moded ahown in Table 5-1, and as
can be seen, the total times increased substgniiedlr those recorded for the other models.
In addition, the time spent executing the embedd@d LAB function represented over 55%

of the total simulation time.

The last model profiled, Adapt_Cntrl_3E, differedrh the previous in that an S-function was
substituted for the embedded MATLAB function. Tleductions in total simulation times and
in the time spent calculating the magnitude of #aaptive gains were substantial when
compared to the results of the previous model andl@strated by the data in Table 5-1.

Interestingly, times recorded for the last model for the first were nearly identical.

In summary, the steps taken to reduce the exectitiran of theAdaptive Controlsubsystem
were shown by the profile results to be those tlatindeed reduce the complexity and
improve the efficiency of the subsystem. As a rieghié execution time of the entire Simulink

bearing/speed controller model is reduced, andisks of task overrun errors are lessened.

A stand-alone model of th&tate Estimatorsubsystem was also built and profiled to
determine how significantly the real-time calcuatiof Fourier transforms affected the
execution time of the subsystem. The stand-alongefis shown in Figure 5-2.
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This model is identical to the actual subsystenhiite exception of the inputs. Tlsate
Estimator subsystem receives inputs on rotor position andtrob currents from other
subsystems while inputs for the profiled model wsiraulated, just as they were with the
profiled model of theAdaptive Controlkubsystem, with Random Source blocks. In addition,

to properly test the calculation of the discreteifier transforms, three sinusoidal excitations

Figure 5-2 Profile Model — State Estimator Subsyste

of varying frequencies and amplitudes were addetdsimulated rotor position inputs.

The profile results for the stand-alone model d&@as in Table 5-2. (See Appendix C for a

sample profile report.)

Tot Time | Blk Time | Smp Freq| FreqRes| TotTime | Blk Time | Smp Freq| Freq Res
(secs) (%) (Hz) (Hz/pt) (secs) (%) (Hz) (Hz/pt)
5.27 1.8 0 0 5.38 2.0 100 1
5.28 21 0 0 5.56 6.7 100 0.2
5.33 2.6 40 1 5.55 6.5 200 1
5.34 2.9 40 0.6 6.31 18.6 200 0.2
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5.34 4.4 40 0.2 7.88 33.9 500 0.4

Table 5-2 Profile Results - State Estimator

All simulations profiled were executed at the sdneguency and for the same duration. The
first two results indicate the time necessary tecete the model without calculating a Fourier
transform. For the rest of the results, Fourierndfarms were computed with the
combinations of sampling frequency and frequenegltdion shown in the Table. Again, the
times shown are those required to complete thelatron (total time) and those required to
complete the execution of the DFT S-function bldblock time). The latter are given as a

percentage of the total.

There is a small amount of overhead required bylXtR& S-function when it’s disabled to
ensure that the function is properly initializedcenit is enabled. The time necessary to
perform this overhead explains why the block tifegghe first two results shown in Table 5-
2 are nonzero. The results also indicate that toams requiring 100 or fewer data points
have little effect on the execution time (total é)vof the subsystem. Transforms that require
200 to 500 points do cause a small but noticeatuleease in the total time by about 4% over
that observed when the DFT is inactive. Howeveg, dhta also show that when the DFT is
enabled, the execution time of the subsystem camease by 30% or more given

combinations of high sampling frequency and firegjfrency resolution.

In summary, the real-time calculation of a discteterier transform has a negligible effect on
the performance of the subsystem as long as thpls@nirequencies are no greater than 200

Hz and the frequency resolutions are no less thdn/fit.
5.3 Fundamental Sample Sizes

The fundamental sample size or fixed step sizesifnallation has already been defined as the
maximum amount of time allowed for a Simulink motekexecute from start to finish on the

dSPACE processor. This time was originally set 100015 second by [27] and was not
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changed by [30], so it was the step size in usdéhat outset of this project. As the
bearing/speed controller model evolved, it evemyuzaduld not be executed completely in the
time allocated for it without task overrun erroradathe resulting bearing instability.
Experiments were conducted in parallel with otHéares to eliminate the errors to determine
if a larger FSS could be used that would still $gtithe bearing’s real-time constraints.
Finding an optimal sample size can be difficultceint must be large (long) enough to

accommodate the model but small (short) enoughngare stability.

The existing sample size was very small and theltreg simulation frequency was very fast
(6667 Hz). Given this speed, a good sample sizéhfirst experiment was chosen as twice
the existing one (0.0003 second). The FACETS systas tested with this over a range of
speeds beginning with the rotor suspended bubstaty and with nearly all of the changes to
the model described earlier in place. The systemiopeed perfectly with no stability

problems.

Next, the FSS was increased to 0.0004 second,hensiaime tests were conducted as before.
The system was operated over the range of speedsi\aoly used, and all facilities of the
model were exercised. The system was stable oeecdbrse of all tests. For the next series
of tests, the FSS was again increased by 0.00aindeand here, the upper bound for the
fixed step size was reached. With the FSS setO@08. second, the FACETS system was just
barely stable when suspended but stationary. Tlaeings protested audibly, though not
loudly, emitting ominous sounds indicating that tepssize any larger would lead to

immediate instability.

A summary of the tests shows that the system wasdeswith sample sizes of 0.0003 and
0.0004 second. The upper limit on the sample sias wlearly determined to be 0.0005
second. A lower limit was not precisely identifigiven the stressful nature of the testing, but
an extrapolation of the results suggests that sitegs much less than 0.0003 second are too
small. Accordingly, the FSS of the simulation waste 0.0003 second for the duration of the

project. In addition, several Simulink blocks usedhe bearing/speed controller have their
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sample times set explicitly. For all of these bkcthe sample times were also set to 0.0003

second.

By choosing an FSS at the lower end of the stadobge, room remains for the FSS to be
increased if the model grows in scope and/or coxifyleHowever, the FACETS system is
only stable over a very narrow range of fundamesaahple sizes. If changes are made to the
model, they should only be made after their eftecthe overall simulation time of the model

is known.
5.4 Model Advisor

Simulink provides a tool, the Model Advisor, whidan be used to check models and
subsystems for conditions and configuration sedtithgit can result in inefficient simulations
and poor code generation. The Advisor producegartrehat details suboptimal conditions
and settings and suggests changes to improve thelmosubsystem. The individual checks
performed by the Advisor will not be discussed hérkey are simply too numerous and
many were not relevant to the performance of tharibg/speed controller. For a detailed

discussion of the checks, consult the online Simkuliocumentation.

All of the subsystems in the Simulink model weredted with the Model Advisor, and the
results showed that all were well constructed amufigured. The Advisor found very little
that could be changed to improve the performanctefcontroller. However, the tool did
suggest enabling compiler optimizations that wourdgprove the efficiency of the code
generated by Real-Time Workshop. These changes wade to the Simulink configuration

parameters for the bearing/speed controller.
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Chapter 6 Experimental Results

The primary objective of the experiments was teedeine if the adaptive gaidp.could be
used to identify a change in the balance state witating system. The magnetic bearing
system was subjected to both simulated disturbamares actual changes in balance to
investigate the behavior of the gain. Variationsthe speed of the rotor affected the gain
significantly, and a relationship between the gamd the balance change could not be
established. Several methods were considered atedtéo determine if synchronizing the
disturbance frequency (rotor speed) with the rejeciuency could eliminate the influence of
the speed variations on the gain. Computer sintrlatdemonstrated that the methods were

promising and worth implementing on the actual nedigrbearing system.
6.1 Simulated Imbalances

The effectiveness of adaptive control can be detnatesl by applying a sinusoidal
disturbance to the rotor and observing the changled rotor displacements along the bearing
axes when the adaptive controller is activatedufeig-1 shows the displacement of the rotor

along a single axis both before and after adajivdrol is applied.

Displacement vs. Time

Displacernent (mils)

L 1 1 L L 1 1 L L
0 2 4 B g 10 12 14 16 18 20
Time (secs)

Figure 6-1 Rotor Displacement with Adaptive Control

64



The rotor was spinning at 600 RPM (10 Hz), and disvexcited by a sinusoid, generated
internally by the Simulink subsystelfxcitation with a magnitude of 0.3V and a frequency of
10 Hz. The excitation simulated a rotating imbataemce the disturbance frequency was the
same as the rotor speed. The adaptive controller acéivated at 7.78 seconds, and the
excitation was applied at 12.22 seconds and rematvd®.76 seconds. Finally, the adaptive

controller was deactivated at 18.18 seconds.

Figure 6-2 illustrates the variation of the adap@ainH, with time.

Hp vs. Time

Hp

0B B

04r -

02r bl

1] 2 4 B 8 10 12 14 16 18 20
Tirme (secs)

Figure 6-2 Gain Response to Synchronous Excit4fiorHz)

The initial response of the gain is attributabldhe inherent imbalance in the system. Once
the gain has adapted to this and the controller lhagely rejected the synchronous
disturbance, the excitation was applied. The gaaimaresponds almost immediately and

adapts to the application of the sinusoid redutiegrotor displacements significantly.

The responsiveness of the gain and the effectigeokthe disturbance rejection can be seen
more clearly when the trace of the rotor displacetimihe trace of the gain and the duty cycle
of the excitation are plotted together as a fumctbtime. These plots are shown in Figure 6-
3.
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Figure 6-3 System Response to Synchronous Exaitélio Hz)

Notice the spikes in rotor displacement that odounediately after the sinusoid is applied
and removed, the nearly simultaneous response efgtin H, to the rapid change in
displacements and the return of the displacementseir inherent imbalance levels when the
adaptive controller is turned off.

The use of internal excitation clearly shows howlilee adaptive controller can suppress
synchronous disturbances. The successful rejedioasynchronous disturbances, such as
those introduced via base motion, can also be shasumy this method. In addition, the

results presented in this section were obtainedh whe adaptive controller operating in

manual mode whereby the frequency of the distudbdncreject was known and entered

manually through ControlDesk. Similar, nearly ideat, results can also be obtained with the
controller operating in speed or DFT mode. In threner, the disturbance frequency would be
derived from the actual speed of the rotor, andha latter, from the dominant frequency

calculated by the discrete Fourier transform. DFGdenis the only mode that can be used to
construct the disturbance vector if the disturbanceurs at an unknown, asynchronous
frequency.

66



6.2 Physical Imbalances

Adaptive control is only genuinely useful if it cdetect and suppress disturbances that occur
as a result of an actual change in the balanceitommaebf a rotor or flywheel. Researchers
have tried many different approaches to experinlignthanging the balance of a rotating
system. These range from the simple to the com@@éxpler methods typically involve
affixing a small weight to a rotating device aneéritcausing the weight to separate from the
device through some means as described by Shiale [85]. The more complex methods
attempt to move a small weight from one location amotating system to another often

through mechanical and/or magnetic means as desdusg$28].

A simple method was chosen to change the balantteeafystem so that disturbance rejection
could be adequately tested. Conceptually, the ndetletected was straightforward. A small
weight (3 grams or less) would be attached to thmumference of the flywheel and then
dislodged once the rotor was spinning at the deésipeed. However, the physical realization
of the method proved to be a tedious and time coimsy task that tested our collective

imaginations.

Several different versions of the method were triadially, a small weight was secured to
the outer surface of the flywheel with a thin stoijppaper that was attached to the flywheel
with an adhesive. Once the machinery was in motio&,paper would be either cut with a
razor or burned off with a micro torch, releasiihg weight. Both the razor and the torch
worked well at very low speeds, but at speeds alioase that could be achieved by turning
the rotor by hand, neither worked acceptably. Témor proved dangerous, and the micro

torch was unable to heat the paper sufficiently.

Next, a weight was attached to the inner circunmiegeof the flywheel with a weak adhesive,
and the weight was dislodged with compressed agaidy this version proved successful
while testing at low speeds, but it was unreliabtespeeds above 300 RPM where the
compressed air could not be uninterruptedly dicketiethe weight for a long enough time to

separate it from the flywheel.
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For the third variation of the method, a weight \aéfsxed to the outer surface of the flywheel
with an adhesive. Once the rotor was spinningwibight was struck with a small, rigid bar to
break the adhesive bond and detach the weight.vEgson worked perfectly once a suitable
adhesive was found. Several were tried, and aleweo elastic except one: hot melt glue.
This adhesive, when applied, cures rapidly and toesobrittle. It's sufficiently strong to keep
the weight firmly attached to the flywheel at gleeds used during testing, and it breaks
quickly and cleanly when the weight is struck. Tiéssion of the basic method worked very
well and was used to economically generate alhefexperimental results. Figure 6-4 shows
the flywheel with the imbalance weight attached ereddetachment tool.

Figure 6-4 Flywheel with Imbalance Weight
6.3 Constant Frequency Disturbance

Several tests were conducted using the methoddestribed to emphatically show the
responsiveness or predictive capability of adapgae H, when the balance state of the
flywheel/rotor changed. The results from one testshown graphically in Figures 6-5, 6-6
and 6-7. For this test, a 2.9 gram imbalance weigig used; the rotor was turning at 1200

RPM, and the adaptive controller was operating amoal mode.
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Figure 6-5 Rotor Displacement with Balance Charzge §)

Figure 6-5 clearly shows the change in displacerakmtg one bearing axis that occurs when

the balance state changes (i.e. when the weigpiarated from the flywheel).

07s
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Hp vs. Time
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Figure 6-6 Gain Response to Balance Change (2.9 g)

Figure 6-6 illustrates the response of the adagaie to the change in imbalance. Overlaying
the Figures as shown in Figure 6-7 indicates howkijuthe adaptive controller reacts. The

change in the balance state occurs at 17.35 secandsthe controller responds at 17.36

15 16 17 18 19
Time (secs)
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seconds. Note that the plot for the adaptive gais been inverted so that the immediate

response of the controller to the change in digstent is obvious from the intersection of the
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Figure 6-7 System Response to Balance Change)2.9 g

For adaptive gaii, to be truly useful as a predictor of a changeaitace that can occur for
example when a crack or other defect develops notating device, it must react when the
balance change does not cause a discernible chiartge displacement of the rotor. H,
only responds to measurable changes in displacemeloes not provide any indication of a
change in balance that isn't already provided leydisplacement measurements. Therefore,
experiments were conducted to establish whethevdhation in the adaptive gain with time
indicated a state change when the variation oflaligment with time did not. The same
testing procedure was followed as before. Howether magnitude of the force created by the
rotating imbalance weight had to be chosen such tiwa observable change in rotor

displacements occurred when the weight was knoldasE from the flywheel.

Experiments indicated that an imbalance force s$ ldlnan 0.6 N would not affect the rotor
displacements. The imbalance weights used in tipererents were regularly shaped metal
objects that weighed from 0.2 to 1.0 gram. Althougtarly anything could be used to

unbalance the system, objects less massive thang@@ were either too small or
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insufficiently rigid to withstand being struck arttislodged from the flywheel. Since the
imbalance weight was always located 100 mm fromctwger of the rotor, rotor speed was
limited to less than 1700 RPM during testing, othise detectable changes in the rotor

displacements occurred.

With the basic parameters of imbalance weight, lari@e location and rotor speed
established, experiments were then conducted tdfyvéne disturbance rejection and
investigate the predictive capability of adaptivangH,. Again, the adaptive controller was
operating in manual mode. Representative resubt® flhese experiments for displacement

and gain are shown in Figures 6-8 and 6-9.

Displacement vs. Time
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Figure 6-8 Rotor Displacement with Balance Charigg §)
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Hp vs. Time
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Figure 6-9 Gain Response to Balance Change (0.5 g)

The Figures show that the disturbance is adequatgtgted, but they do not show whether
Hp is predictive regarding the change in balanceurféi@-9 is a coarse plot of the magnitude
of the gain, but a close examination of a greathgnified gain also gives little indication of a
relationship betweeil, and the balance state. A comparison of Figuresa®d 6-9 may
illustrate why this is so. Figure 2-8 shows tlh§t settles to an equilibrium value for the
modeled system once the disturbance is rejecteld Wwigure 6-9 shows that it does not settle
during testing on the physical system. The vammtio H, which may either disguise or
eliminate the predictive character of the gain lb@sn discussed by previous researchers most
notably [28] and is attributable to the small chesign rotor speed that occur on the test
system. These changes cause a divergence betveegaghency to reject, the frequency used
to construct the disturbance functions, and thaadtequency of the disturbance, the speed
of the rotor, resulting in an unsteady gain. Retiadlt for the modeled system, the two

frequencies were exactly the same, and once timeagiaipted, its value was nearly constant.

The speed of the rotor is well controlled, and ¥heations in speed about the set point are
small, typically £20 RPM [30]. However, the influemof the change in speed on the adaptive
gain can be seen in Figure 6-10. In this Figurgrrepeed, normalized by the set point, and

Hp are plotted. The set point was 900 RPM, and thgaa®f speeds over the test interval was
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875 to 916 RPM. In addition, the gain was offsetabgonstant value to help illustrate the

correlation between the change in speed and thegeha the gain.
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Figure 6-10 Gain Response to Balance Change ((aBdyRotor Speed Variation

The Figure demonstrates thdg tends to follow the speed, only assuming a fasdpstant
value when the speed of the rotor remains neargtent.

Results identical to those just discussed were alsained with the adaptive controller
operating in DFT mode. Driving the controller wehdiscrete Fourier transform produced a
reject frequency identical to one entered manualifthe case where the rotor speed is nearly
constant and the rotor is subjected to synchrordisgirbances only. Theoretically, the
Fourier transform is capable of calculating nedhlg exact frequency (rotor speed) of the
disturbance, so the identical behavior of the adler operating in either mode is not
necessarily expected. However, the discussion lodysiem profiles in Chapter 5 shows that
for the actual magnetic bearing system, an uppenth@f 1 Hz/pt is placed on the frequency
resolution of the transform by the simulation. Finesolutions can greatly increase both the
time required to complete the simulation and tekk af task overruns. Limiting the resolution
to 1Hz/pt guarantees that the dominant frequentcyrred by the transform will always be the
same for the rotor when its speed varies by no nloae +30 RPM about its set point.
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Therefore, the controller behaves exactly the savhether driven by a Fourier transform or

by a frequency entered manually, when the rotarssat a nearly constant speed.
6.4 Varying Frequency Disturbance

One possible method for stabilizikfy was to synchronize the frequency used to constinect
disturbance vector with the actual frequency of thisturbance. In fact, the need to
synchronize the two frequencies was the reasonthferdevelopment of the multi-mode
adaptive controller discussed in Chapter 4. Theeefceveral tests were performed to
determine if good disturbance rejection charadiesscould be maintained and if the
predictive capability oH, could be established with the adaptive contrafegrating in both
speed and DFT modes.

In speed mode, the controller must be configuredpdate the frequency to reject at some
interval as explained in Chapter 4. Testing inéidahat the controller was insensitive to the
interval size with the exception of intervals ore tbrder of the Fundamental Sample Size
(FSS) of the simulation. These would sometime taauhegligible controller outputs and an

ineffective adaptive controller but would more ofteesult in large and growing outputs and
an overly aggressive controller. Intervals threenwdre times greater than the FSS all
produced similar results, though an interval sizéwm seconds or more would nullify the

anticipated benefits of speed mode since largervats did not allow the rejection frequency
to closely track the disturbance frequency. Regaslbf the interval chosen, the results from

the experiments were nearly identical and not asebed.

A sample of the results for the adaptive gain @aghin Figure 6-11.
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Hp vs. Time
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Figure 6-11 Gain Response to Reject Frequency @pdat0 sec)

Figure 6-11 demonstrates that each time the rigguency is updated with the current speed
of the rotor, the value dfl, changes abruptly. Note that the Figure shows hstances of the
adaptive controller being activated and deactivaldee cause of the abrupt change can be
inferred by overlaying the update profile on toghe# gain curve as shown in Figure 6-12.
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Figure 6-12 Gain Response to Reject Freq. Updatésséc) and Reject Freq. Variation
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The update profile illustrates the frequency tacejas a function of time. As shown, this
frequency is simply the rotor speed normalized ly $et point, and it is updated at the
beginning of each interval and maintained for #magth of that interval. Note that each time
the frequency changes, the adaptive gain change®dmately and significantly. Again, the

gain plotted has been offset by a constant valuéhabthe change in gain can be shown

intersecting the change in frequency.

Two possible causes for the behavior of the adamain were errors in the calculation of the
gain and errors in the application of the contem/id. To investigate the former, the output
from each block of thé’hi and Adaptive Controlsubsystems was closely examined to
determine if all calculations were being perfornmmmrectly. To investigate the latter, the

literature was again reviewed.

The gainH, is found from the integration of Equation 2.5,different methods of integrating
this equation were tried, including Backward Euderd Trapezoidal, in place of Forward
Euler which had always been used previously. Intawh] the Discrete Integrator block in the
Simulink model was replaced with an S-function thaiplemented a Forward Euler
integration method using a C program. Regardlegsheoimethod used, the values calculated
for the gain were identical. Also, different sampdg¢es for the integration were tried, each
one being an integer multiple of the Fundamentah@a Size, and each produced the same

result.

Several other modifications were made to the subsys and none changed the results. A
purely continuous system was constructed and ati@daptive Controlto calculateH, in
parallel with the discrete system. Each determitedgain identically. Thé&hi subsystem
was eliminated and its function incorporated disectto Adaptive Contrgland this did not
change the behavior of the adaptive gain at alkoAblocks were added to the adaptive
controller that generated a known profile of théorospeed to check the accuracy and
reliability of the outputs from the tachometer. Aatand generated speeds produced the same
results. Throughout the testing, Simulink was inspreely consistent. The values calculated
for the adaptive gain as well as the gain’s belrawioen the reject frequency was updated
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were always the same regardless of the changesdditions made to the bearing/speed

controller model.

Further review of the control laws and further exaation of the outputs from the blocks in
the Simulink model finally identified the causetbé problem (See Figure 6-13.).

Rotor Speed x Time vs. Time
T T

Rotor Speed x Time (rad

i i I i 1 i i 1 i
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Figure 6-13 Angle Variation with Reject Frequengyddtes (1.0 sec)

Figure 6-13 plots the angle used by the disturbdmeetion (Equation 2.11) as a function of

time for a small part of the results shown in Fegu6-11 and 6-12. The angle is discontinuous
at the points where the reject frequency is updakbd updates occurred at 21.13 and 22.13
seconds. Components of the disturbance functioadban this angle are also discontinuous

as is the function itself. The sine component effimction appears in Figure 6-14.
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Figure 6-14 Sine Component of Disturbance Funatitth Reject Freq. Updates (1.0 sec)

As can be seen from this Figure, the discontinsiidiely occur when the frequency is updated,
though they do not always occur when the frequecicgnges. Since the control laws
implemented by the adaptive controller and sumredrin [36] require that the disturbance

function be continuous, the behaviorttf when the frequency changes is not surprising.
6.5 Incrementally Varying Frequency Disturbancéem8ated

One possible way to satisfy the control laws anavigie for dynamic adjustment of the
frequency to reject would be to change the frequener an interval of time using many
small increments rather than changing the frequaticgt once during a single sample step.
In speed mode, the controller samples the speéukeafotor over a pre-selected interval, and
if the speed changes between successive sampéefietfuency to reject is updated by the
magnitude of the change. If the magnitude couldnee very small, almost infinitesimal, a
continuous disturbance function could be approx@asaand the effects of small variations in

rotor speed on the adaptive gélppossibly eliminated.

To test the feasibility of approximating the digtance function, a Simulink model was built
that implemented a refined version of the rotoreshdriven adaptive controller. The model
appears in Figure 6-15.
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Figure 6-15 Simulink Model for Approximating a Contous Function

This model determines the adaptive gain and thetrater output identically to the
bearing/speed controller operating in speed mobe.updates to the reject frequency are still
computed by an S-function, in this case S-functigiateOmegabut they are computed
much differently than they are in the current colter. (See Appendix B for a listing of
updateOmega User specified values for the speed measurenmeatval, speed update
increment and speed update interval are requirguidperly configure the model. The speed
measurement interval is simply the time betweenspeed measurement and the next just as
it is in the current rotor-speed driven adaptivatoaler. The speed update increment is the
magnitude of the change made to the reject frequdnang a sample step and is expressed
in terms of RPM. The speed update interval is #te at which updates are applied to the
reject frequency, and this interval is expressearasnteger multiple of the Fundamental
Sample Size of the simulation rather than as a fwerese. This model also implements a
manual mode whereby the reject frequency is maiathat a constant value and generates a
rotor-speed profile that simulates the small varret in speed of the actual rotor about its set
point. The profile is created by S-functigenSpeedand a listing of the function is given in

Appendix B.
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Several simulations were performed to determinealties of the configuration parameters
could be found that would result in an adaptivengasensitive to small changes in the reject
frequency. As long as the gain reacts to thesegdsant cannot be determined whether the
behavior of the gain is predictive of a changehim lbalance state of the system.

For all simulations, the Fundamental Sample Si&S{i-the speed measurement interval and
the speed update interval were held constant, la@despective values for each were 0.001
second, 1.0 second and four times the FSS. Onlggbed update increment was varied since
it solely affects the continuity of the disturbanieenction. The other parameters can also
affect the behavior of the controller but not dinecFor example, if the speed measurement
interval or speed update interval is too large,dbetroller will tract changes in rotor speed

poorly whether the speed varies consistently withrange or whether the speed is increasing
or decreasing steadily. In addition, the same |arofor rotor speed was used in all

simulations.

Prior to discussing the results of the simulatidfigure 6-16 is shown to illustrate how the

frequency used to compose the disturbance fundiapdated incrementally.
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Figure 6-16 Angle Variation with Incremental Update
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For the results shown, the speed update incremast set to 1.0 RPM, and all other

parameters were set to their aforementioned vallies.frequency to reject was decreased
from 607 RPM to 602 RPM in five equal incrementgroa period of 0.16 second. Note that
the product of frequency and time is plotted onvibeical axis rather than frequency.

In summary, the simulations demonstrated that spgethte increments greater than 0.05
RPM (0.0052 rad/sec) always created discontinuitiethe disturbance function, adaptive
gain and controller outputs. Figures 6-17 and & the latter two for a speed update
increment of 0.1 RPM.
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Figure 6-17 Discontinuous Adaptive Gain with Incesrtal Updates
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Controller Qutput vs. Time
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Figure 6-18 Discontinuous Controller Output witltnemental Updates

For each Figure, updates to the reject frequenggarat seconds 1.0, 2.16, 3.33, 5.37, 6.50
and 7.70, corresponding to the discontinuitiesaicheFigure.

Speed update increments of 0.01 RPM or less produersy good results as can be seen in
Figures 6-19 and 6-20.
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Figure 6-19 Continuous Adaptive Gain with Increna¢ttpdates
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Figure 6-20 Continuous Controller Output with Inoental Updates

Increments this small created no discernible dioaities in the graph oH, with one
possible exception at the update that began at $e6@nds or in the graph of controller
output. Other updates to the reject frequency begaeconds 1.0 and 3.61. Variations in the
amplitude of both the adaptive gain and the colarautput were seen, but nothing sharp or
discontinuous was detecte@verall, the results indicated that a continuoustudbance
function could be approximated and that using thegpéve gain as a predictor of a change in

the balance state of a system gaining or losing&peas possible.

Note that encouraging results were obtained wherspleed update increment was an order of
magnitude greater than the sample size of the aimual (0.01 vs. 0.001 second). Reject
frequency updates of even 3 to 4 RPM require atanbal amount of time to complete when
increments of this size are used even when thetepairval is just four times the FSS. An
update from 600 to 604 RPM required 0.16 secondheresults shown in Figures 6-17 and
6-18, and the same update consumed 1.60 secontisefoesults illustrated in Figures 6-19
and 6-20. An order of magnitude decrease in theatgpithcrement resulted in an order
increase in the time needed to change the rejeguiéncy. If the time to update the frequency
becomes too large, the controller will follow theaage in rotor speed poorly just as it will if

the speed measurement and speed update interedtsodarge.
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One possible way to reduce the time required toatgpdhe reject frequency would be to
perform updates at the speed of the simulation. CEpability to do this was included in the
controller operating in speed mode and is alsaugted in the simulated controller shown in
Figure 6-15. However, testing updates at simulatiequency with the original multi-mode
controller could cause the controller to drive theor dangerously close to the bearings. The
system did not become unstable, but controller wstpvere calculated incorrectly and
became too large. The simulated controller dematestrthe same behavior when updates
were applied every sample step. Controller outmaisld suddenly increase, though they
always remained bounded, and then settle at a higlrel before increasing again. Best
results for both the real and simulated controligese obtained when the reject frequency

was updated no faster than three times the Fundahtemple Size of the simulation.
6.6 Incrementally Varying Frequency Disturbancectual

Given the encouraging results obtained from thautions, theAdaptive Controkubsystem

of the bearing/speed controller was modified tculalte the adaptive gains and controller
outputs two ways using the existing path through cbntroller as well as a second parallel
path added to the controller that incrementallyaipsd the reject frequency. The blocks added

to the modified subsystem are shown in Figure 6-21.
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Figure 6-21 ModifiedAdaptive Controfor Incremental Updates

Note that only the outputs calculated from thet&dsestablished path were applied to the

bearings and that the rotor displacements use@rnwuate the gains and outputs both ways
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were the same. This “dual path” approach allowedfoaccurate appraisal of the controller's
behavior when the reject frequency was updatedowitlexposing the bearings to potential

damage if the controller behaved differently thatid when simulated.

The ControlDesk paneADR/DFT was also modified to accommodate the additional
parameters needed to properly configure the cdetréd incrementally update the reject
frequency. In particular, three instruments werdeaidto theConfigure ADR pane, and the

modified pane is shown in Figure 6-22.
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6-22 Modified Pane for Incremental Updates

Once the Simulink model and ControlDesk panel veli@nged, experiments were conducted
to test the modified controller on the magneticrimgasystem. The controller was initially
tested with values for the configuration parametiia worked well in the simulations.
Specifically, the speed measurement interval, spgathte increment and speed update
interval were chosen as 1.0 second, 0.005 RPM aundtimes the FSS, respectively. Results
for this configuration were not as good as theyenfer the simulated controller. Figure 6-23
illustrates the adaptive gain calculated with astant and a varying frequency as well as the
rotor speed.
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Figure 6-23 Gain Response to Incremental UpdatéfRator Speed Variation

The gain for the constant frequency case has béget by a constant value so that the gains
can be more easily compared. Also, the rotor spesdeen normalized by the set point and
offset so its relation to the gains can be mordyessen. Note that the varying frequency gain
adapts more slowly and that it reacts more strotglghanges in rotor speed than does the
constant frequency gain. Overall, the gains folkmilar paths once they adapt if changes in
rotor speed are small (5 RPM). Over the intervaif 165 to 167 seconds, speed variations

are small, and the gain curves are similar.

The deviation in rotor speed from its set point #mel frequency used in computing the gain

for the varying case are shown in Figure 6-24.
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Figure 6-24 Reject Frequency and Rotor Speed Vamsivith Incremental Updates

The reject frequency follows the rotor speed vdogely and tracks it nearly perfectly when
changes in rotor speed are confined to a narrogeras they are from 175 to 209 seconds.
When the changes are larger, the reject frequeagsy/the rotor speed. This can be easily seen
for the interval from 125 to 141 seconds where rtiter speed decreases from 616 to 586
RPM and then increases to 602 RPM. Part of théslagconsequence of the small increment
that is used to update the reject frequency. Thallssize results in a frequency that is
changed at a slower rate than the rate at whichotioe gains or loses speed. The difference in
rates can be seen in the divergence of the slopdéseorotor speed and reject frequency
curves. This difference is most notable for thenval from 125 to 134 seconds. Part of the
lag is also caused by the method used to measuoe speed and the length of the
measurement interval. Measurement of rotor speddipdates to the reject frequency occur
sequentially. Therefore, the reject frequency remaonstant over the measurement interval.
This can be seen in the Figure where the slopdefréject frequency curve is zero for a
duration of one second. If the slope is zero forertban one second, no change in rotor speed
was detected over the preceding measurement iht&ffarts to reduce or eliminate this lag
are discussed later.
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The controller outputs calculated from each ofghms appear in Figure 6-25 (The controller

was activated at 156 seconds and deactivated atelctdds.).
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Figure 6-25 Controller Output with Incremental Upata

The control outputs are more variable and neveirad steady-state value when the reject
frequency is changing rather than when it is carist8ince the outputs in both cases are
computed using the same rotor displacements anghtirey matrix, the difference in them
can only be attributed to the incremental changefseiquency that continually occur in the

composition of the disturbance vector in the orseca

Further tests were conducted with different configion parameters to determine if
improvements in the behavior of the adaptive ganldt be found by reducing the lag
between the reject frequency and rotor speed. peedsmeasurement interval was decreased
to the order of the FSS so that frequency updatesrced nearly continuously with fewer
than ten sample steps between any two. The spegateumpncrement was increased to the
largest size that worked successfully for the sated controller so that frequency updates
were made more rapidly. The speed update interaal also reduced but only by a single
sample step since simulations and testing on thebsystem have shown without exception
that smaller intervals result in controller instapi In summary, speed measurement intervals
from 0.0015 to 1.0 second, speed update increnfemts 0.001 to 0.02 RPM and speed

88



update intervals of three and four times the FS&weed. No combination of configuration
parameters improved the possibility of using thapdide gain as an indicator of a change in
the balance of the magnetic bearing system. In &ctombinations produced results very

similar to those presented in Figures 6-23, 242nd
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Chapter 7 Conclusionsand Future Work

The adaptive controller for the magnetic bearingteay was originally designed to reject
persistent disturbances acting at synchronous r(rep@ed) frequencies. As part of this
research, the controller was redesigned so thattuld also work effectively when rotor

speed was varying and when disturbances were @&r@n@nd asynchronous in character. The
redesign allowed the controller to operate in thd#kerent modes, DFT, Speed and Manual,

the mode indicating the method used to determiadrdguency of the disturbance to reject.

Disturbance rejection was successful when the obbetrwas operated in any of the modes.
Although experimental results were not presentedHte controller operating in DFT mode,

tests showed that rejection was very good whenriode was used to suppress software
generated disturbances. Results were mixed whemnotioe speed was used to drive the
controller. If the speed was nearly constant, distoce suppression was very good. If the
speed varied, rejection would range from very éiffecto completely ineffective. The

controller operated as designed, but changes or sgeed introduced discontinuities in the

disturbance functions causing momentary loss ofrobaffort.

The modeling done to improve the behavior of thetrmtler in Speed mode suggested that
this mode could be used effectively when rotor dgsehanging. Tests show that rejection of
a single frequency can significantly reduce roispthcements when rotor speed varies over a
small range. A controller could be built that ingorates two sub controllers that operate
alternately with each controller using a constagjeat frequency to provide disturbance
rejection for a system operating over a wide rasfggpeeds. The first sub controller could be
used until suppression was no longer adequateoutdithen be deactivated, and the second
would be activated and operated until it was nogérneffective and so on. Alternating
between the two would eliminate the problems indugg discontinuities in the disturbance

functions while maintaining controller effectivesess rotor speed changes.

During development of the multi-mode adaptive colfér, the increasing complexity of the

Simulink model eventually overwhelmed the dSPACEtay, and the model would not run
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in real time. Careful refinement of the model aratetul reconfiguration of the run-time
environment resolved problems with simulation spesdl processor load and ensured
potential for future development of the magnetiarb®y system. However, changes or
additions to the model should still only be made¢hwa knowledge of their impact on

processing time.

Attempts to establish the predictive capabilitytiodé adaptive gaitd, proved inconclusive.
Previous [28] as well as current research have detraied the gain's sensitivity to small
variations in rotor speed. The reaction of the dgairthe change in speed makes it very
difficult to determine if a change in the gain isused by a change in the balance of the
rotating system or in the speed of the system.ak shown that the gain reacts strongly to a
change in balance that is also observable in ttug displacements, but it has yet to be shown
conclusively that the gain reacts reliably and mtadbly to a change in balance that cannot be

detected any other way.

The magnetic bearing system provides opportunif@s continuing research with the
currently implemented adaptive controller and pdesia versatile platform that could be used
to investigate other adaptive strategies discugsehe literature. To establish whether gain
Hp is truly predictive or not, the speed of the ratarst be controlled very precisely. Methods
to reduce oscillations in rotor speed about theps@tt are presented in [30]. Mechanical
limitations of the flow control valve that may litiprecision are also discussed here. Other
changes to the regulation of the air supply tottibkine in addition to the control of it may be

needed to nearly eliminate variations in rotor spee

A knowledge of the exact time when the balancénefdystem changes would also benefit the
investigation of gain variations. The results présd in Chapter 6 for simulated imbalances
show the exact time when the balance of the rdtanged. Devising a method to physically
unbalance the rotor and to capture the precise mbwleen it occurs would be worthwhile.

Colleagues have suggested that a small electroanex device could be designed and built
that would mount to the flywheel. The device wotdthin and then release a known weight
to unbalance the system. Radio signals would bd tsecommunicate to the device and
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overall control of it would be through the dSPAC¥tem allowing the exact time of the
balance change to be recorded. Of course, balanaeges seldom occur at predefined
moments on any system, but knowing exactly whewy tleeoccur on a research system would
be very helpful in identifying an attendant but gelvariation in the adaptive gain curve.

The need to know how changes to the Simulink bgspeed controller affect the execution
time of the model on the dSPACE processor has begihasized. Profiling was discussed as
one method of determining the relative impact ehange on processing time. The dSPACE
system also provides a number of real-time varg@abtat record how heavily each task uses
the processor and indicate whether a task placesybtem at risk of overrun errors [31].
These variables can be monitored through standandr@Desk instruments. A ControlDesk
panel should be created or a pane should be addenh texisting panel, following the
established conventions, to display these varialflesly changes are made to the current

system that could affect processing load.

Monitoring processor load is one way to more safglgrate the FACETS system and avoid
possible damage to it. An additional way would belésign, build and incorporate retainer
bearings into the current system. Retainer beamng®ften if not always used together with
magnetic bearings in industrial applications. Retaibearings are normal rolling element
bearings that support the rotor when the magnetcibgs are de-energized or if the magnetic
bearings should fail for some reason [37]. Retabearings prevent damage to the rotor and
magnets by eliminating contact between the two. 3imall air gap between the rotor and

bearings on the current system would create clgdlenn the design of retainers, but any
research use of the system would proceed much quickly if possible damage to it was not

always an immediate consideration.

Given the development of the multi-mode adaptivet@dler, the magnetic bearing system
can now be used to study the effects of disturbarading at unknown frequencies and
resulting from base motion. In fact, [26] had swglgd investigating the effects of base
motion on the system as a future task. Other agapontrol methods would also be worth

investigating as suggested again by [26] especiallye work to include the monitoring of
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processor use and to incorporate retainer beaiimgsthe system were done to provide

protection for the system during research intouthienown.
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Appendix A

MATLAB Program

ADR_three.m

%{
James Jantz
Last revision: November 15, 2012
ADR_three - solves the equations of motion for a sp ring-mass-damper system
and plots displacements; calculates controller inpu ts based on adaptive
techniques and plots displacements for the same sys tem; plots controller
inputs.
%}
function  ADR_three

global useADR,;

fprintf( \n==> Rotating System - ADR Analysis <==\n' )
while true % Execute as many analyses as the user desires.
close all ; % Close open figure windows.
% Define default char. of the sytem.

M =5.0; % Mass (kg)

w_natl = 10.0; % Natural frequency (Hz)

zeta = 0.01; % Damping ratio

w_dist = 20.0; % Disturbance frequency (Hz)

imbal_pct = 0.1; % Imbalance as a percent of the total mass

G =1.0; % Constant for gain Gp

H = 100.0; % Constant for gain Hp

t end = 60.0; % Simulation length (sec)

fprintf( "\nDefault values for the systems are:\n' )

fprintf( ' Mass = %4.1f kg\n' , M)

fprintf( " Natural freq. = %4.1f Hz\n' , W_natl)

fprintf( ' Damping ratio = %4.2f\n’ , Zeta)

fprintf( ' Disturb. freq. = %4.1f Hz\n' , W_dist)

fprintf( " Imbalance pct. = %4.2f \n' , imbal_pct)

fprintf( ' Gp constant = %4.1f \n' , G)

fprintf( ' Hp constant = %4.1f \n’' , H)

fprintf( " Simulation len. = %4.1f sec\n' , t_end)

fprintf( \nDo you want to use the default values?' )

msg = sprintf( \nPress "Enter" for yes or type "n" for no: ' );

reply = input(msg, 's' ), % Read it as a string.

if strcmp(reply, n" ) || strcemp(reply, ‘N )
msg = sprintf( \nEnter the mass (kg) of the system [%4.1f]: ' , M);
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reply = input(msg, 's' ), % Read it as a string.

if ~isempty(reply) % Use default unless a value is entered.
M = sscanf(reply, "%f" , inf);
end
clear msg;
msg = sprintf( \nEnter the nat"l freq. (Hz) of the system [%4.1f
', w_natl);
reply = input(msg, 's' ), % Read it as a string.
if ~isempty(reply) % Use default unless a value is entered.
w_natl = sscanf(reply, '%f", inf);
end
clear msg;
msg = sprintf( \nEnter the damping ratio of the system [%4.2f]:
zeta);
reply = input(msg, 's' ), % Read it as a string.
if ~isempty(reply) % Use default unless a value is entered.
zeta = sscanf(reply, '%f", inf);
end
clear msg;
msg = sprintf( \nEnter the disturb. freq. (Hz) of the system [%4.
w_dist);
reply = input(msg, 's' ) % Read it as a string.
if ~isempty(reply) % Use default unless a value is entered.
w_dist = sscanf(reply, '%f", inf);
end
clear msg;
msg = sprintf( \nEnter the imbalance (pct. of mass) of the system
[%4.2f]:
imbal_pct);
reply = input(msg, 's' ) % Read it as a string.
if ~isempty(reply) % Use default unless a value is entered.
imbal_pct = sscanf(reply, "%f" , inf);
end
clear msg;
msg = sprintf( \nEnter the constant for gain Gp [%4.1f]: '
reply = input(msg, 's' ) % Read it as a string.
if ~isempty(reply) % Use default unless a value is entered.
G = sscanf(reply, "%f" , inf);
end
clear msg;
msg = sprintf( \nEnter the constant for gain Hp [%4.1f]: '
reply = input(msg, 's' ) % Read it as a string.
if ~isempty(reply) % Use default unless a value is entered.
H = sscanf(reply, "%f" , inf);
end

99

1f]:

, G);

, H);



clear msg;

msg = sprintf( \nEnter the length (sec) of the simulation [%4.1f]
', t_end);
reply = input(msg, 's' ) % Read it as a string.
if ~isempty(reply) % Use default unless a value is entered.
t_end = sscanf(reply, "%f" , inf);
end
end
% Change the sign on delta H if the dist. freq. is less than the nat'l
% freq.
if (w_dist <w_natl)
H = -abs(H); % In case the user entered a negative value.
end
fprintf( \nValues used for the simulation are:\n' )
fprintf( ' Mass = %4.1f kg\n' , M)
fprintf( " Natural freq. = %4.1f Hz\n' , W_natl)
w_natl = w_natl*2*pi; % Convert to rad/s.
fprintf( ' Damping ratio = %4.2f\n’ , Zeta)
fprintf( ' Disturb. freq. = %6.3f Hz\n' , W_dist)
w_dist = w_dist*2*pi; % Convert to rad/s.
fprintf( " Imbalance pct. = %4.2f \n' , imbal_pct)
fprintf( ' Gp constant = %4.1f \n' , G)
fprintf( ' Hp constant = %4.1f \n’' , H)
fprintf( ' Simulation len. = %4.1f sec\n' , t_end)

% Calculate constants.

K = M*w_natl"2; % Spring constant (N/m)
Ccr = 2*sgrt(K*M); % Critical damping coeff. (kg/s)
C = zeta*Ccr; % Damping coeff. (kg/s)
% Define char. of imbalance.
m = imbal_pct/100 * M; % Mass (kg)
r=10.0; % Location - distance from center of rotation (mm)
F = m*(r/1000)*w_dist"2; % Force (N)
fprintf( " Imbalance force = %4.3f N\n'  F)
sys_char=[M K C w_dist F G HJ; % Create a pseudo structure.

% Time interval.
t beg =0;
tspan = [t_begt _end];

% Initial conditions.

X_i=0; % Displacements
y_i=0;
xDot_i=0; % Velocities
yDot_i = 0;
% Expand the initial conditions vector. The last 4 elements are needed

% to solve the equations for GpDot and HpDot.
i_cond = [x_iy_ixDot_i yDot_i 0 0 0 0];
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useADR = false;

% Calculate displacements without ADR control.

[T z] = oded5(@calcDispl,tspan,i_cond,[],sys_ch ar);
% Graph them.

subplot(2,1,1), plot(T,z(:,1)*1000, " ) % x-displacement (mm)

title( 'X-Displacement vs. Time'

xlabel( ‘"Time (sec)’ ), ylabel( '‘Displacement (mm)' )

legend( 'no ADR' , 'location’ , 'southeast' )

grid on

hold on

subplot(2,1,2), plot(T,z(:,2)*1000, ™ ) % y-displacement (mm)

title( 'Y-Displacement vs. Time' )

xlabel( ‘"Time (sec)’ ), ylabel( '‘Displacement (mm)' )

legend( 'no ADR' , 'location’ , 'southeast' )

grid on

hold on

fprintf( \nPress any key to continue and graph displacement s with ADR
control.\n' )

pause

% Calculate displacements with ADR control.
useADR = true;
[T z] = oded5(@calcDispl,tspan,i_cond,[],sys_ch ar);

% Extract values. These are returned by the solver

x_disp = z(:,1);

y_disp = z(:,2);

Gpx = z(;,5);

Gpy = z(:,6);

Hpx = z(:,7);

Hpy = z(:,8);

s = sin(w_dist*T);

¢ = cos(w_dist*T);

% Calculate Gp, Hp, Upx and Upy.
Gp = zeros(length(T),1); % Preallocate for a happy MATLAB.
Hp = zeros(length(T),1);
Upx = zeros(length(T),1);
Upy = zeros(length(T),1);

for i= 1l:length(T)
Gp(i) = sqrt(Gpx(i)*2 + Gpy(i)"2);
Hp(i) = sqrt(Hpx()"2 + Hpy(i)*2);
Upx(i) = Gpx(i)*x_disp(i) + Hpx(i)*s(i);

Upy(i) = Gpy(i)*y_disp(i) + Hpy(i)*c(i);
end

% Graph displacements with ADR control.
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subplot(2,1,1), plot(T,z(:,1)*1000, ‘" ) % x-displacement (mm)

title( 'X-Displacement vs. Time' )

xlabel( ‘Time (sec)’ ), ylabel( 'Displacement (mm)' )

legend( 'no ADR' , 'ADR' , 'location’ , 'southeast’ )

subplot(2,1,2), plot(T,z(:,2)*1000, ') % y-displacement (mm)
title( 'Y-Displacement vs. Time' )

xlabel( "Time (sec)' ), ylabel( 'Displacement (mm)' )

legend( 'no ADR' , 'ADR' , 'location’ , 'southeast' )

fprintf( \nPress any key to continue and plot Upx and Upy.\ n')
pause

% Plot adaptive gains (Gp and Hp).

close all

subplot(2,1,1), plot(T,Gp, b )

title( 'Gp vs. Time' )

xlabel( ‘Time (sec)’ ), ylabel( '‘Gp' )
grid on

subplot(2,1,2), plot(T,Hp, b )

title( 'Hp vs. Time' )

xlabel( "Time (sec)' ), ylabel( 'Hp' )
grid on

fprintf( \nPress any key to clear the figure and continue.\ n')
pause

% Plot controller inputs (Upx and Upy) to plant.

close all

subplot(2,1,1), plot(T,Upx, b )

title( 'Upx vs. Time' )

xlabel( "Time (sec)' ), ylabel( 'Upx' )

grid on

subplot(2,1,2), plot(T,Upy, b )

title( 'Upy vs. Time' )

xlabel( "Time (sec)’ ), ylabel( ‘Upy' )

grid on

fprintf( \nPress any key to clear the figure and continue.\ n')
pause

close all

fprintf( \nDo you want to perform another analysis?' )
msg = sprintf( \nPress "Enter" for yes or type "n" for no: '

choicel = input(msg, 'sS' ); % Read the user's response.

switch choicel % Decide what to do.
case { 'N', 'NO', '"n" , 'mo'" } % Quitthis program.
break
end
end
end
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function  dz = calcDispl(t,z,sys_char)
global useADR,;

% Assign variables.
M = sys_char(1);
K = sys_char(2);
C =sys_char(3);
w_dist = sys_char(4);
F = sys_char(b);
G = sys_char(6);
H = sys_char(7);

% Basis vectors.
s = sin(w_dist*t);
¢ = cos(w_dist*t);

dz = zeros(8,1); % Preallocate, emphasizing style here.

% Equations of motion.

dz(1) = z(3); % dZx1 = Zx2
dz(2) = z(4); % dzZyl = Zy2
if ~useADR

% Equations of motion 3 and 4.
dz(3) = -(K/M * z(1) + C/M * z(3)) + 1/M * F*s;
dz(4) = -(KIM * 2(2) + CIM * z(4)) + 1/M * F*c;
end

if useADR

% Calculate Gpxdot and Gpydot.
dz(5) = -G * (z(1)"2 + z(1)*z(2));
dz(6) = -G * (z(2)*z(1) + z(2)"2);

% Calculate HpxDot and HpyDot.
dz(7) = H * (z(1)*s + z(1)*c);
dz(8) = H * (z(2)*s + z(2)*c);

Upx = z(5)*z(1) + z(7)*s;
Upy = 2(6)*z(2) + z(8)*c;

dz(3) = -(K/IM * z(1) + C/M * z(3)) + (1/M * F*s ) + Upx;
dz(4) = -(KIM * z(2) + C/IM * z(4)) + (LIM * F*c ) + Upy;
end

end
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Appendix B
S-Functions

mbcntrl_a.h

/7\-

* Name: mbcentrl_a.h

* Author: Jimbo

* Created: 3/15/13

* Revision History:

*

* Purpose: provides definitions for the S-function S.
*/

/* M_Pl is defined in <math.h>, but the RTW compile r can't seem to find it,
so we'll set it up like this. */

#ifndef M_PI
#define M_PI 3.14159265358979323846

#endif

#define TWO_PI12*M_PI

/* Keep an eye on these. They may well have been de fined elsewhere. If so,
surround them with an ifndef construct. */

#define TRUE 1

#define FALSE O

[* The states of the internal excitation subsystem and the ways it can be
driven. */

#define ACTIVE 1

#define INACTIVE O

#define MAN_EXC 1

#define SPEED_EXC 2

/* The various ways the adaptive controller can be driven. */
#define MAN_MODE 1

#define SPEED_MODE 2

#define DFT_MODE 3

/* The fundamental sample size of the simulation. S ee note in oneFreq.c */
#define FSS 0.0003

/* Max. sample size used to allocate space. Actual size is computed based
on the DFT freq. and freq. resolution set via Co ntrolDesk. */

#define MAX_DFT_SIZE 2400

#define MAX_NUM_FREQ 3

#define FREQ_THRESHOLD 1 * TWO_PI [* rad/sec */
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Appendix B
S-Functions

zeroGp_wrapper.c

/*

* -~ THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#include "simstruc.h"

#include <math.h>

#include "mbcntrl_a.h"

#define u_width 1
#define y_width 1

void zeroGp_Qut puts_w apper (const real T *uO,

const real T *ul,
real_T *yO,
real_T *yl, SimStruct *S)

{

/* This function monitors the output from the integ rator's saturation port.
If the integrator saturates, the output from it is nulled and remains
nulled, even if the integrator becomes unsaturat ed, until it is reset
manually. */

/* Inputs are as follow:
u0[0] - Saturation signal.
ul[0] - Gp active signal. */

/* Outputs are as follow:
y0[0] - Gain multiplier - O if the integrator has sat'd, 1 otherwise.
y1[0] - Status signal - O if the int. has sat' d, 1if it hasn't, 2 if
the gain is inactive. */

int  satSig, GpAct;
static int firstSat = FALSE;

satSig=( int ) u0Q[0];
GpAct=( int ) ul[o];

if (GpAct == FALSE) /* If Gp isn't active, reset the saturation flag, *
firstSat = FALSE;
y0[0] = O; /* output zero just to be safe, */
y1[0] = 2; /* and set the status port to inactive. */
return ;
}
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if (satSig ==0) [* If the integrator isn't saturated */

if  (firstSat == TRUE) /* but it has been, */
{
yO[0] = O; [* continue to zero its output, */
y1[0] = 0; /* and set the status port to sat. */
}
else
yo[0] = 1, [* If it isn't saturated and never has been, integr
y1[0] = 1,
return
}
if (satSig !=0) /* If it is saturated */
if  (firstSat == FALSE) /* but it hasn't been */
firstSat = TRUE; /* set the flag */
y0[0] = O; /* and zero the output. */
y1[0] = 0;
}
else
y0[0] = O; /* If it is saturated and has been, continue to zer
y1[0] = O; [* output. */
return
}
}
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Appendix B
S-Functions

zeroHp_wrapper.c

/*

* --- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#include "simstruc.h"

#include <math.h>

#include "mbcntrl_a.h”

#define u_width 1
#define y_width 1

void zeroHp_Qut puts_w apper (const real T *uO,

const real T *ul,
real_T *yO,
real_T *yl, SimStruct *S)

{

/* This function monitors the output from the integ rator's saturation port.
If the integrator saturates, the output from it is nulled and remains
nulled, even if the integrator becomes unsaturat ed, until it is reset
manually. */

/* Inputs are as follow:
u0[0] - Saturation signal.
ul[0] - Hp active signal. */

/* Outputs are as follow:
yO[0] - Gain multiplier - O if the integrator has sat'd, 1 otherwise.
y1[0] - Status signal - O if the int. has sat' d, 1if it hasn't, 2 if
the gain is inactive. */

int  satSig, HpAct;

static int firstSat = FALSE;
satSig=( int ) uO[0];
HpAct=( int ) ul[0];
if (HpAct == FALSE) /* If Hp isn't active, reset the saturation flag, *
firstSat = FALSE;
y0[0] = 0; [* output zero just to be safe, */
y1[0] = 2; [* and set the status port to inactive. */
return ;
}

107



if (satSig ==0) [* If the integrator isn't saturated */

if  (firstSat == TRUE) /* but it has been, */
{
yO[0] = O; [* continue to zero its output, */
y1[0] = 0; /* and set the status port to sat. */
}
else
yo[0] = 1, [* If it isn't saturated and never has been, integr
y1[0] = 1,
return
}
if (satSig !=0) /* If it is saturated */
if  (firstSat == FALSE) /* but it hasn't been */
firstSat = TRUE; /* set the flag */
y0[0] = O; /* and zero the output. */
y1[0] = 0;
}
else
y0[0] = O; /* If it is saturated and has been, continue to zer
y1[0] = O; [* output. */
return
}
}
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Appendix B
S-Functions

zeroADR_wrapper.c

[*--- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3. 0-- *

#include "simstruc.h"
#include <math.h>
#include "mbcntrl_a.h”

#define u_width 1
#define y_width 1

void zer oADR _Qut puts_wr apper (const real T *u0,
const real T *ul,
real_T *y0, SimStruct *S)

{

/* This function controls the output of the adaptiv e controller. If the
controller is active (turned on) and no limit er rors have been detected,
the controller's output is passed through, other wise it is nulled. */

/* Inputs are as follow:
u0[0] - ADR error signal.
ul[0] - ADR active switch. */

/* Output is as follows:
yO[0] - 0 if a current or position limit has b een exceeded or if the
ADR controller is inactive, 1 otherwis e *

int errSig, ADRAct;

errSig = ( int ) uo[0];
ADRAct = ( int ) ul[0];

if (errSig == TRUE) /* If the error flag is set, output 0. */
{
yo[0] = O;
return = ;
}
if (ADRAct == TRUE) /* If the ADR controller is active and there is no
y0[0] = 1; /* limit error, output 1. */
else
y0[0] = O; /* If the ADR controller is inactive, output 0. */
return ;
}
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Appendix B
S-Functions

calcMag_wrapper.c

/*

* --—- THIS FILE GENERATED BY S-FUNCTION BUILDER:

*/

#if defined(MATLAB_MEX_FILE)
#include "tmwtypes.h"

#include "simstruc_types.h"
#else

#include "rtwtypes.h"

#endif

#include <math.h>

#define u_width 4
#define y_width 1

void cal cMag_Qut put s_wr apper ( const real T *u0,
real_T *y0)
{

/* This function calculates the magnitude of the Hp
four axes. */

/* Inputs are as follow:
u0[0-7] - orthogonal components of Hp for all

/* Outputs are as follow:
y0[0-3] - Hp for all four axes. */

int i
double HpMag[4] = {0};

for (i=0;i<=3;i++)

{
HpMag][i] = sqrt ( powmuO[i], 2.0) + pow(uO[i+4], 2.0));

}yO[i] = HpMag([i[;

return ;

}
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Appendix B
S-Functions

excFreq_wrapper.c

/*
* --—- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#include "simstruc.h”
#include "mbcntrl_a.h”

#define u_width 1
#define y_width 1

void excFreq_OQut puts_wrapper (const real T *u0,
const real T *ul,
const real T *u2,
const real_T *u3,
real_T *y0, SimStruct *S)

{
/* This function controls the frequency of the exci tation applied to the
bearings. The frequency can be a static value, o r it can follow the
speed of the rotor. In the latter case, the freq uency can be updated at
each simulation step or at a longer interval dep ending on configuration.
*/
/* The fundamental sample size (FSS) of the simulat ion is used to control
the timer for the frequency output, and this val ue is set in header file

mbcntrl_a.h. */

/* Enable printing by uncommenting the following #d efine. */
/* #define ENABLE_PRTG */

/* Inputs are:
u0[0] - Excitation mode - 1 manual, 2 speed.
ul[0] - Excitation frequency (rad/sec) - manua [ mode.
u2[0] - Constant-output interval (sec).
u3[0] - Speed of the rotor (RPM). */

/* Output is:
y0[0] - Excitation frequency (rad/sec). */

int excMode;

static int newlnt = TRUE;

double manExcFreq, intT, speed;
static double intTimer, curFreq = 0;
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excMode = (int ) u0[0]; /* Fetch values from ControlDesk. */
manExcFreq = ul[0];

intT = u2[0];
speed = u3[0] * 2.0 * M_PI/ 60.0; /* Convert rotor speed to rad/sec. */
/* Ensure that an interval of O (i.e. excitation fr eq. follows the rotor

speed exactly) is handled properly. */
if (excMode == SPEED_MODE && intT <= FSS)

y0[0] = speed,;

newlint = TRUE;
return ;
}
if (newint == TRUE) /* Begin a new interval. */
{
intTimer = intT; [* Set the interval timer to the interval. */
/* Choose the excitation freq. based on the value o f the exc. mode
switch. */
switch  (excMode)
{
case 1: curFreq = manExcFreq; /* Manual Mode. */
break ;
case 2: curFreq = speed; [* Speed Mode. */
break ;
default : curFreq = manExcFreq; /* In case something gets through
break ; /* the net. */
newint = FALSE,; [* Forget this, and you're toast. */
}
#ifdef ENABLE_PRTG
printf("intTimer = %7.3f \n" , intTimer);
printf ("speed = %6.2f ADR mode = %2i \n" , Speed, excMode);
printf("Freq= %6.2f\n" , curFreq);
#endif
yO[O] = curFreq; /* Output the freq. */
intTimer = intTimer - FSS; /* Decrement the timer and check. */

if (intTimer > 0.0)
newlnt = FALSE;
else
newint = TRUE;

return ;

}
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Appendix B
S-Functions

excRotor_wrapper.c

/*
* --—- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#include "simstruc.h”
#include "mbcntrl_a.h”

#define u_width 1
#define y_width 1

void excRot or _Qut puts_w apper (const real T *uO,
real_T *yO,
real_T *yl1, SimStruct *S)

{

/* This function monitors the current and previous states of the
Excitation subsystem, enables or disables the ex citation
accordingly and outputs the current state of the subsystem. */

/* Input is:

u0[0] - Excitation active signal. */
/* Outputs are:
y0[0] - uO[0]
y1[0] - Status - TRUE (excitation on) or FALSE (excitation off) */

static int excActive = FALSE, lastState = INACTIVE;
static double taskT;

excActive = ( int ) uo[0];

if (excActive == FALSE) /* If the excitation is inactive */
if (lastState == INACTIVE) /* and has been, */
yO[0] = O; [* do not excite. */
else  /*If the excitation is inactive and hasn't been, * /
{
yO[0] = 0; /* stop the excitation, */
y1[0] = FALSE; /* update the status for ControlDesk */
lastState = INACTIVE; [* and change the state. */
}
if (excActive == TRUE) [* If the excitation is active */
if (lastState == ACTIVE) /* and has been,*/
yo[0] = 1; /* continue exciting. */
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else /* If the excitation is active and hasn't been, */

{
y0[0] = 1; /* excite, */
y1[0] = TRUE; [* update the status for ControlDesk and */
lastState = ACTIVE; /* change the state. */
}
return ;
}

114



Appendix B
S-Functions

genFreqs_wrapper.c

/*

* --—- THIS FILE GENERATED BY S-FUNCTION BUILDER:

*/

#include "simstruc.h"
#include <math.h>
#include "mbcntrl_a.h"

#define u_width 1
#define y_width 1

void genFreqgs_Qut puts_wrapper (const real_T *uO,
const real T *ul,
const real_T *u2,
const real_T *u3,

real_T *y0, SimStruct *S)
{

/* This function calculates the frequencies to use
the disturbance vector. The frequencies are base
rotor and always include at least this speed. Ot
included that are either multiples or fractions
freq's are either updated at the simulation spee
depending on configuration. */

/* The fundamental sample size (FSS) of the simulat
the timer for the frequency output, and this val
mbcntrl_a.h. */

/* Enable printing by uncommenting the following #d
[* #define ENABLE_PRTG */

/* Inputs are as follow:
u0[0] - ADR mode.
ul[0] - Disturbance vector fill mode.
u2[0] - Constant-output interval (sec).
u3[0] - Speed of the rotor (RPM). */

/* Outputs are as follow:
y0[0,1,2] - Reject frequencies (rad/sec). */

int i, ADRMode, PhiDMode;
static int newint = TRUE;
double intT, speed,;

115

3.0 -

in the composition of
d on the speed of the
hers freq's can also be
of this speed. The

d or at longer intervals

ion is used to control
ue is set in header file

efine. */



static double intTimer, curFreqs[MAX_NUM_FREQ] = {0};

ADRMode = ( int ) uO[0]; /* Fetch values from ControlDesk. */

PhiDMode = ( int ) ul[O];

intT = u2[0];

speed = u3[0] * 2.0 * M_PI/60.0; /* Convert rotor speed to rad/sec. */

/* Ensure that a new interval is established the ne xt time SPEED MODE is
selected. */

if (ADRMode !|= SPEED_MODE)

newint = TRUE;
return
}

if (newlnt == TRUE) /* Begin a new interval. */
{
intTimer = intT; /* Set the interval timer to the interval. */
/* Calculate the freq's to reject based on the valu e of the Phi D mode
switch. */
switch (PhiDMode)
{
case 1: curFreqgs[0] = 0.5 * speed;
curFreqs[1] = speed;
curFreqs[2] = 1.5 * speed,;
break ;
case 2: curFreqgs[0] = 1.5 * speed;
curFreqs[1] = speed,;
curFreqs[2] = 0.5 * speed;
break ;
case 3: curFreqgs[0] = speed;
curFreqgs[1] = 2.0 * speed,;
curFreqgs[2] = 3.0 * speed,;
break ;
case 4: curFregs[0] = 3.0 * speed;
curFregs[1] = 2.0 * speed,;
curFreqs[2] = speed,;
break ;
case 5: curFreqgs|[0] = speed; /* Rotor speed only (RSO) mode. */
curFregs[1] = 0.0;
curFregs[2] = 0.0;
break ;
default : curFreqs[0] = 0.5 * speed; /* Set default to case 1. */
curFreqs[1] = speed;
curFregs[2] = 1.5 * speed;

break ;
newlint = FALSE; /* Forget this, and you're toast. */
}
#ifdef ENABLE_PRTG
printf ("intTimer = %7.3f\n" , intTimer);
printf ("speed = %6.2f PhiDMode = %2i \n" , speed, PhiDMode);
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printf ("Freqgs = %6.2f %6.2f %6.2f \n" , curFregs[0], curFreqgs[1],
curFreqs[2]);
#endif

for (i=0;i<MAX_NUM_FREQ; i++) /* Output the freq's. */
yO[i] = curFreqsJi];
intTimer = intTimer - FSS; /* Decrement the timer and check. */
if (intTimer > 0.0)
newlnt = FALSE;

else
newint = TRUE;

return ;

}
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Appendix B
S-Functions

cmpAmps_wrapper.c

/*
* --—- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#include "simstruc.h"
#include <math.h>
#include "mbcntrl_a.h"

#define u_width 3
#define y_width 1

void cnpAnmps_CQut put s_wr apper (const real T *u0,
const real T *ul,

real_T *y0,
const real T *ampThreshold,
const int_T p_width0O, SimStruct *S)

{

/* This function collects the dominant freq's calcu lated by the DFT for
use in composing the disturbance vector. The fre g's used are the current
ones if they exceed a threshold value or the pre vious ones if they do
not. */

/* Inputs are as follow:
u0[0,1,2] - Fourier freq's (rad/sec) correspon ding to the maximum
amplitudes.
u0[3,4,5] — The maximum amplitudes (mils).
ul[0] - ADR mode. */

/* Parameter is as follows:
ampThreshold - See comment below (mils). */

/* Outputs are as follow:
y0[0,1,2] - Reject frequencies (rad/sec). */

int i, ADRMode;

double freqs[MAX_NUM_FREQ], ampIs[MAX_NUM_FREQ];
static double curFregs[MAX_NUM_FREQ];

ADRMode = ( int ) ul[O0];
if (ADRMode == DFT_MODE)
for (i=0;i < MAX_NUM_FREQ; i++)

freqs[i] = uO[il; [* Fetch the latest. */
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ampls[i] = u0[i + MAX_NUM_FREQ];

/* If the latest ampl. exceeds the threshold, outpu
If the latest ampl. is less than or equal to
the current freq. This approach is used to e
rejection of persistent disturb's. Recall, t
disturbance is rejected, its freq. is remove
and the disturbance then reappears only to b
infinitum. */

if (ampls[i] > *ampThreshold)

yO[i] = fregsli];

t the latest freq.
the threshold, output
liminate the on/off
hat in DFT mode, once a
d from the Phi D vector,
e rejected again ad

curFregsli] = freqslil; /* Update the current frequency. */

}

else
yO[i] = curFreqs]i];

return ; /* Return and burn. */

}
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Appendix B
S-Functions

oneFreq_wrapper.c

/*
* --- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#include "simstruc.h"
#include "mbcntrl_a.h"

#define u_width 1
#define y_width 1

void oneFreq_OQut puts_wrapper (const real T *u0,

const real T *ul,

const real T *u2,

const real_T *u3,

const real_T *u4,

real_T *y0,

const real_T *ampThreshold,
const int_T p_width0O, SimStruct *S)

{

/* This function determines the freq. to use in the

composition of the

disturbance vector. This freq. can either be sta
ControlDesk, or dynamic, based on either the spe
output of the DFT. If the freq. is based on the
updated at the simulation speed or at longer int
configuration. If the freq. is based on the latt

each time a Fourier transform has been completed

/* The fundamental sample size (FSS) of the simulat

the timer for the frequency output, and this val
mbcntrl_a.h. */

/* Enable printing by uncommenting the following #d
* #define ENABLE_PRTG */

/* Inputs are as follow:

u0[0] - ADR mode.

ul[0] - Reject frequency (rad/sec) - manual mo

u2[0] - Constant-output interval (sec).

u3[0] - Speed of the rotor (RPM).

u4[0,1,2] - Fourier freq's (rad/sec) correspon
amplitudes.

u4[3,4,5] - The maximum amplitudes (mils). */

/* Parameter is as follows:
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ampThreshold - See comment below (mils). */

/* Output is as follows:
y0[0] - Reject frequency (rad/sec). */

int i, ADRMode;

static int newlint = TRUE;

double manRejFreq, intT, speed,
newFreq, newAmpl;

static double intTimer, rejFreq = 0;

ADRMode = ( int ) u0[O0]; [* Fetch values from ControlDesk. */
manRejFreq = ul[0];
intT = u2[0];
speed = u3[0] * 2.0 * M_PI/60.0; /* Convert rotor speed to rad/sec. */
if (ADRMode == MAN_MODE)
{
yO[0] = manRejFreq; /* Output the manual-mode reject freq. */
newint = TRUE; [* Set things up properly for speed mode. */
#ifdef ENABLE_PRTG
printf ("ADR mode = %2i Freq. = %6.2f \n" , ADRMode, manRejFreq);
#endif
return ;
}
/* In DFT Mode, the frequency to reject must be abo ve a user-defined
threshold to prevent the use of a very low frequ ency. (0 Hz or so)

dominant component. */
if (ADRMode == DFT_MODE)
{
for (i=0;i<MAX_NUM_FREQ; i++)
if (u4[i] > FREQ_THRESHOLD) [* Ignore the components at very low */

/* freq's. */
newFreq = ud4i]; /* FREQ_THRESHOLD - units are rad/sec. */
newAmpl = u4[i + MAX_NUM_FREQ];
break ;
}
/* Update the freq. to reject only if the ampl. thr eshold has been
exceeded. See S-Function cmpAmps for further d etails. */
if (newAmpl > *ampThreshold)
rejFreq = newFreq;
yO[O] = rejFreq;
newint = TRUE; [* Set things up properly for speed mode. */
#ifdef ENABLE_PRTG
printf ("ADR mode = %2i Freq. = %6.2f \n" , ADRMode, rejFreq);
#endif
return ;
}
if (ADRMode == SPEED_MODE)
{
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/* Ensure that an interval of O (i.e. freq. to reje ct follows the rotor
speed exactly) is handled properly. */
if (intT <= FSS)

y0[0] = speed,;

newint = TRUE;
return ;
if (newint == TRUE) /* Begin a new interval. */
{
intTimer = intT; /* Set the interval timer to the interval. */
rejFreq = speed;
newint = FALSE,; [* Forget this, and you're toast. */
}
yO[O] = rejFreq; /* Output the freq. */
intTimer = intTimer - FSS; /* Decrement the timer and check. */

if (intTimer > 0)
newint = FALSE;

else
newint = TRUE;
#ifdef ENABLE_PRTG
printf ("ADR mode = %2i Speed = %6.2f \n" , ADRMode, speed);
printf("Timer=%7.5f Freq = %6.2f \n" , intTimer, rejFreq);
#endif
return ;

122



Appendix B
S-Functions

DFT_wrapper.c

/*
* --—- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#include "simstruc.h"

#include <math.h>
#include "mbcntrl_a.h”

#define u_width 4
#define y_width 1

void DFT_Qut puts_wr apper (const real T *uO,

real_T *y0,

real T *yl,

real_T *y2,

real_T *y3 ,
const real T *DFTFreq, const int T p_widthO,
const real T *DFTFregRes, const int T p_widthl,
const real T *minAmp, const int T p_width2,
const real T *numFreq, const int_ T p_width3,
const real T *actDFT, const int_ T p_width4,
const real T *axis, const int_T p_width5,

SimStruct *S)

{

/* This function calculates the Discrete Fourier Tr ansform (DFT) from the
displacements measured along one axis. The contr ibution of each data
point to each Fourier coeff. is calculated as ea ch data point is
received to maintain the number of computations per invocation and thus,
the load on the dSPACE box at nearly constant le vels. The Fourier ampl's
and freq's are calculated and sorted in ascendin g order of amplitude.
The ampl's and freq's are output in descending o rder of amplitude.

*/

/* Set the following to 1 to sort and output at sim ulation speed and keep
the DFT humming. Values greater than 1 slow thin gs down a bit. */

#define DOWN_SAMP_SORT 1

/* Enable printing by uncommenting the following #d efine. */

[* #define ENABLE_PRTG */

/* Input is as follows:
u0[0] - Displacement of one axis (mils). */
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[* Parameters are as follow:

DFTFreq - Sampling frequency (Hz).
DFTFregRes - Frequency resolution (Hz).
minAmp - Amplitude threshold (mils) - determin

is retained in the output or not.
numFreq - Number of freq's from the maximum to
actDFT - DFT active flag - 1 if the DFT is act
axis - Axis for the DFT calculation. */

/* Outputs are as follow:
yO[O] - Fourier frequency (Hz).
y1[0] - Fourier amplitude (mils).
y2[0,1,2] - Fourier freq's corresponding to th
y2[3,4,5] - The max. amplitudes (mils).
y3[0] - DFT status (on or off) - used to updat
panel. */

int i, pos;
static int firstCall = TRUE, calcActive = TRUE, sortActive =
numcCalls = 0, numPts = 1, outCntr =0, a
downSamp, DFTSize,
lastDFTFreq, lastDFTFregRes;
real_T ampVal, freqVval, conTerm;
static  real_T ACoeffsf]MAX_DFT_SIZE/2 + 1] = {0},
BCoeffsf]MAX_DFT_SIZE/2 + 1] = {0},
CCoeffs[MAX_DFT_SIZE/2 + 1],
FourFreqs[MAX_DFT_SIZE/2 + 1] = {0},
sortAmps[MAX_DFT_SIZE/2 + 1] = {0},
sortFreqs[MAX_DFT_SIZE/2 + 1] = {0},
simFreq;
time_T fss;

/* If DFT is turned off (the default when animation
and counters to their initial states, send the p
status port, send zero to all other output ports
the DFT calc. */

if (( int )*actDFT == FALSE)

calcActive = TRUE; /* Flags */
sortActive = FALSE;
numCalls = 0; /* Counters */
numPts = 1;
outCntr = 0;
y0[0] = O; /* Need comment here. */
y1[0] = O;

for (i=0;i<MAX_NUM_FREQ; i++)
{

y2[i] = 0;

y2[i + MAX_NUM_FREQ] =0;
}
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y3[0] = 0;

axis_a = ( int ) *axis; /* Axis can only be chosen when the DFT is */
return ; /* inactive. */
}

/* If DFT is turned on, haul the mail. */
if (( int )*actDFT == TRUE)

y3[0] = 1; /* Update status on control panel. */
numcCalls++; /* Records the number of times this routine has bee n called
since the last DFT calculation. U sed to implement down
sampling. */
if (firstCall) /* Calculate only once per simulation. */
{
fss = ssCet Fi xedSt epSi ze(S); [* or just use FSS from mbentrl_a.h. */
simFreq = 1.0/ fss; [*Hz */
firstCall = FALSE;
}
/* Reset counters if the input parameters have chan ged since the last
call. */
if (lastDFTFreq !=( int ) *DFTFreq || lastDFTFregRes != ( int ) *DFTFregRes)
numcCalls = 0;
numPts = 1;
outCntr = 0;

downSamp =( int )(simFreq/*DFTFreq);
DFTSize = ( int )(*DFTFreq / *DFTFregRes);

/* Fetch the amplitude value from the correct axis. */
switch (axis_a)
{
case 1: ampVal = u0[0]; [* from axis 1. */
break ;
case 2:ampVal = u0[1]; /* from axis 2. */
break ;
case 3:ampVal = u0[2]; [* from axis 3. */
break ;
case 4:ampVal = u0[3]; /* from axis 4. */
break ;
default :ampVal = u0[0]; /* Use axis 1 if something out of bounds */
break ; [* slips through the net. */
}
/* numPts records the number of the point used in t he current calc. It
represents the variable "r" in Egs. 4.14 and 4 A5in[]. I had to

place this comment somewhere. */
/* Calculate the Fourier coeff's - multiply by 2/N later. */

if (calcActive == TRUE)
{
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y0[0] = O; /* Keep the graph cleaner. */
y1[0] = O;
if (numPts ==1 || numCalls == downSamp)

/* Note the automatic type conversion in the follow ing expression. */
conTerm = (2.0 * M_PI * numPts) / DFTSize;
if (numPts ==1) /* Reinitialize the arrays. Otherwise . . . */
for (i =0;i<=DFTSize/2; i++) [* i represents var. "n" in */
{ /*EQgs. 4.14 and 4.15[]. */
ACoeffs[i] = 0;
BCoeffs[i] = 0;

}
for (i =0;i<=DFTSize/2; i++)
ACoeffs[i] = ampVal * cos(conTerm * i) + ACoeffs]i;
BCoeffs[i] = ampVal * si n(conTerm * i) + BCoeffs]i];
}
numPts++; /* Increment the number of the point used. */
numcCalls = 0;
}
/* Finish the calculation of the Fourier coeff's. Discard the first
and last B Coeff's and calculate C Coeff's ( the Fourier ampl's). */
if (numPts == DFTSize + 1) /* We're one ahead. */

BCoeffs[0] = 0;
BCoeffs[DFTSize/2] = 0;
FourFreqs[0] = 0;

for (i =0;i<=DFTSize/2; i++)

ACoeffs[i] = 2.0/DFTSize * ACoeffg]i];
BCoeffs[i] = 2.0/DFTSize * BCoeffg]i];

CCoeffs[i] = sqgrt ( powmACoeffs[i], 2.0) + pow(BCoeffs]i], 2.0));
[* Calculate Fourier freg's. The first has already been set to 0. */
for (i=1;i<=DFTSize/2; i++)

FourFreqs[i] = i * (*DFTFregRes); [*Hz */
/* Finished the DFT interval. Set things up for th e output/sort */

/* interval. */
calcActive = FALSE;
sortActive = TRUE;

numpPts = 1;
numcCalls = 0;
}
/* Preserve the input parameters so that we can che ck to see if they've
changed since the last invocation. */
lastDFTFreq = ( int ) *DFTFreq;
lastDFTFregRes = ( int ) *DFTFregRes;
return ;
/* May wish to include some sort of delay here or m ake some sort of */

[* contact. */
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/* Print, sort and print the values. */
if (sortActive == TRUE)

{
if (numPts == 1)
{
#ifdef ENABLE_PRTG
printf ("\nDFT freq = %3i Hz\n" , (_int ) *DFTFreq);
printf ("Down samp = %3i \nDFT size = %4i Pts\n\n" , downSamp,
DFTSize);
printf(" n Freq(r/s) Amp\n" );
#endif
for (i=0;i<=DFTSize/2; i++) /* Reinitialize the arrays. */
{
sortAmpsJi] = 0;
sortFreqs][i] = 0;
}
/* Sort the Fourier ampl's and freq's in ascending order. The insertion
sort described in [ ] is used, and each poin t is sorted vis-a-vis

the current ones as it is received. */
if (numPts == 1 || numCalls == DOWN_SAMP_SORT)

freqVal = FourFreqgs[outCntr] * 2.0 * M_PI; [* rad/sec */
ampVal = CCoeffs[outCntr++];

for (pos = numPts - 1; pos > 0 && ampVal < sortAmps[po s - 1]; pos--)
{

sortAmps[pos] = sortAmps[pos - 1];
sortFregs[pos] = sortFreqs[pos - 1];
}
sortAmps[pos] = ampVal;
sortFregs[pos] = fregVal;

y0[0] = freqVal; /* Output the freq. (rad/sec). */
y1[0] = ampVal; /* Ditto the amplitude. */
#ifdef ENABLE_PRTG
printf("%4 %6.3f %6.3f\n" , humPts - 1, freqVal, ampVal);
#endif
numPts++,
numcCalls = 0;
}

/* Finished the output interval. Print the sorted values in descending
order, output the dominant freq's and set th ings up for the next DFT
calculation. */

if (numPts == int )(DFTSize/2 + 2)) [* Again, we're one ahead. */

#ifdef ENABLE_PRTG
printf(" n Freq(r/s) Amp\n" );
for (i=DFTSize/2;i>=0;i--)
printf("%4 %6.3f %6.3f\n" , 1, sortFreqsli],
sortAmpsi]);
#endif
/* Set the amplitude to O to avoid drawing a long, angled line across

the graph. */
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y1[0] = O;
/* Output only those ampl's (though no more than th
greater than or equal to the threshold and
freq's, but first write zero to all of the
the panel cleaner. */
for (i=0;i<MAX_NUM_FREQ; i++)
{

y2[i] = 0;
y2[i + MAX_NUM_FREQ] = 0;
}

e max. number)
their corresponding
output ports to keep

for (i=0;i<( int ) *numFreq; i++)
if (sortAmps[DFTSize/2 - i] >= *minAmp)
{
y2[i] = sortFreqs[DFTSize/2 - i]; /* Frequency (Hz) */
y2[i + MAX_NUM_FREQ)] = sortAmps[DFTSize/2 -iJ; /* Ampl (mils) */

}

{
y2[i] = 0;
y2[i + MAX_NUM_FREQ] = 0;

else

#ifdef ENABLE_PRTG
printf("Max.amps :\n %5.2f \n %5.2f \n %5.2f \n" , Y2[3],

y2[4], y2[5]);
printf (" freqgs (r/s): \n %5.2f \n %5.2f \n %5.2f \n" , ¥2[0],
y2[1], y2[2]);
#endif

sortActive = FALSE;

calcActive = TRUE;

numPts = 1,

numCalls = 0;

outCntr = 0;

/* Preserve the input parameters as before. */

lastDFTFreq = ( int ) *DFTFreq;
lastDFTFregRes = ( int ) *DFTFregRes;
return ;
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Appendix B
S-Functions

updateOmega_wrapper.c

/*
* --—- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#include "simstruc.h"
#include <math.h>
#include "mbcntrl_a.h"

#define u_width 1
#define y_width 1

void updat eOmega_Qut put s_wr apper (const real_T *uO,
const real T *ul,
const real T *u2,
const real_T *u3,
const real_T *u4,
const real_T *u5,
const real_T *u6,
real_T *y0, SimStruct *S)

{

/* This function determines the freq. to use in the composition of the
disturb. vector. This freqg. can either be consta nt or dynamic, based
the speed of the rotor. If it's dynamic, values for the speed
measurement interval, speed update increment and speed update interval

must be chosen. */

/* Enable printing by uncommenting the following #d efine. */
#define ENABLE_PRTG

/* Inputs are as follow:
u0[0] - Simulation time (sec).
ul[0] - Actual rotor speed (RPM).
u2[0] - Speed measurement interval (secs).
u3[0] - Speed update increment (RPM).
u4[0] - Speed update interval (multiples of FS S).
u5[0] - Adaptive controller mode.
u6[0] - Manual reject frequency (rad/sec). */

/* Output is as follows:
y0[0] - Speed (rad/sec). */

int currMode;
static int newMeas = TRUE, measAct = FALSE, updateAct = FALSE , iIncrRPM,

129



prevMode = MAN_MODE;
double simT, manRejFreq;
static double measTimer, begRPM, nextRPM, endRPM, RPMIncr, updat eTimer;

simT = u0[0]; /* Fetch the simulation time, */
currMode = (int ) u5[0]; [* controller mode and */
manRejFreq = u6[0]; /* manual reject frequency. */

/* Ensure that things are initialized properly. */
if (prevMode != SPEED_MODE) [* If the mode was not and is not SPEED, */
if (currMode != SPEED_MODE)

{
yO[0] = manRejFreq; [* output the manual-mode reject freq, */
prevMode = currMode; [* preserve the current mode and return. */
#ifdef ENABLE_PRTG
printf (" Other mode, speed = %6.3f \n" , manRejFreq);
#endif
return ;
else  /* If the mode was not SPEED but now it is, begin a measurement */
{
begRPM = ul[0]; [* interval. */

newMeas = TRUE;
prevMode = currMode;
#ifdef ENABLE_PRTG
printf("\n\n ----- A New Analysis ----- \n\n" );
#endif

}
else if (currMode != SPEED_MODE) [* If the mode was SPEED and now it is */
{

prevMode = currMode; /* not, preserve the current mode and return. */
return ;
}
/* If previous and currents modes are SPEED, contin ue onward. */
if (newMeas == TRUE) /* Begin the measurement interval. */
{
measTimer = u2[0]; /* Fetch the meas. interval from ControlDesk. */

y0[0] = begRPM * (2*M_P1/60.0);
#ifdef ENABLE_PRTG

printf("\n Begin meas. interval, time = %7.3f sec,” , SImT);
printf("speed=%6.3f\n" , begRPM);
#endif
nextRPM = begRPM; /* Preserve it for later use. */

newMeas = FALSE;
measAct = TRUE;
return ;
}

if (newMeas == FALSE && measAct == TRUE)

{
y0[0] = begRPM * (2*M_P1/60.0);
measTimer = measTimer - FSS; /* Decrement the timer and check. */
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if (measTimer > 0.0) /* If the meas. interval hasn't expired, return. */

return ;
[* If it has, */
endRPM = ul][0]; /* read the current speed. */
#ifdef ENABLE_PRTG
printf (" End meas. interval, time = %7.3f sec," , SimT);
printf("speed=%6.3f\n" , endRPM);
#endif

if (begRPM != endRPM) [* If the speed has changed over the interval, */

#ifdef ENABLE_PRTG

printf (" Begin update interval, time = %7.3f sec \n" , SimT);
#endif
RPMiIncr = u3[0]; [* fetch the update increment and interval values *
updateTimer = u4[0] * FSS; /* from ControlDesk. */
if (begRPM < endRPM) /*If the speed has increased, */
incrRPM = TRUE; /* increment. */
else
incrRPM = FALSE; /* Otherwise, decrement. */

measAct = FALSE;
updateAct = TRUE;

else  /*If the meas. interval has expired and the speed hasn't changed,
*/
{
newMeas = TRUE; /* begin a new measurement interval. */
return ;
}
}
if (updateAct == TRUE) [* Update the reject frequency. */
updateTimer = updateTimer - FSS; /* Decrement the timer and check. */
if (updateTimer > 0.0) /* If the update interval hasn't expired, */
return ; [* return. */
/* If it has and the speed is increasing and the la st update is less

than the final value, */
if (incrRPM == TRUE && nextRPM < endRPM)
{
nextRPM = nextRPM + RPMiIncr; [* calculate the next update value. */
if (nextRPM > endRPM)
nextRPM = endRPM,;

y0[0] = nextRPM * (2*M_P1/60.0); /* Update it in rads/sec. */
#ifdef ENABLE_PRTG
printf (" End update interval, time = %7.3f sec," , SImT);
printf("speed=%6.3f\n" , NextRPM);
#endif

updateTimer = u4[0] * FSS;

/* If it has and the speed is decreasing and the la st update is more
than the final value, */

else if (incrRPM == FALSE && endRPM < nextRPM)

nextRPM = nextRPM - RPMIncr; /* calculate the next update value. */
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if (nextRPM < endRPM)
nextRPM = endRPM;

yO[0] = nextRPM * (2*M_P1/60.0); [* Update it in rads/sec. */
#ifdef ENABLE_PRTG
print f (" End update interval, time = %7.3f sec," , SimT);
printf("speed=%6.3\n" , NextRPM);
#endif
updateTimer = u4[0] * FSS;
else  /*If the update interval has expired and updating is complete, */
begRPM = nextRPM;
updateAct = FALSE; /* begin a new speed measurement interval. */
newMeas = TRUE;
}
return ;
}
}
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Appendix B
S-Functions

genSpeed_wrapper.c

/*
* --—- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---
*/

#if defined(MATLAB_MEX_FILE)
#include "tmwtypes.h"
#include "simstruc_types.h"

#else
#include "rtwtypes.h"

#endif

#include <math.h>

#define u_width 1
#define y_width 1

void genSpeed_Qut put s_wrapper (const real_T *uO,
real_T *y0)
{

/* This function generates a profile of the rotor s peed using your basic
multiway if. */

/* Input is as follows:
u0[0] - Simulation time (sec).

[* Output is as follows:
y0[0] - Rotor speed (RPM). */

double simT, speed;
simT = u0[0]; /* Fetch the simulation time, */

if (simT >=0.0 && simT < 0.9) /* and generate the speed profile. */
speed = 600;

if (simT >=0.9 && simT < 1.9)
speed = 604;

if (simT >=1.9 && simT < 2.9)
speed = 608;

if (simT >=2.9 && simT < 3.8)
speed = 609;

if (simT >= 3.8 && simT < 4.9)
speed = 609;

if (simT >=4.9 && simT <5.9)
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speed = 612;

if (simT >=5.9 && simT < 6.9)
speed = 607;

if (simT >=6.9 && simT < 7.9)
speed = 602;

if (simT >=7.9 && simT < 8.9)
speed = 599;

if (simT >=8.9 && simT < 9.9)
speed = 603;

if (simT >=9.9)
speed = 606;

y0[0] = speed;
return

}
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Appendix C

Profile Reports

Simulink Model Adapt_Cntrl_1E

Simulink Profile Report: Summary

Report generated 11-Jun-2013 13:56:08

Total recorded time: 133s
Number of Block Methods: 61
Number of Internal Methods: 7
Number of Nonvirtual Subsystem Methods: 2
Clock precision: 0.00000003 s
Clock Speed: 3000 Mhz
Function List

" Location (must use MATLAB Web
Name Time Calls |Time/call Self time Browser to view)
sim 132812500 [100.0% | 1|1.3281250000000 |0.00000000| 0.0% [Adapt Cntrl 1E
[ModelExecute 123437500 | 92.9% | 1]1.2343750000000 [0.07812500 | 5.9% Adapt Cntrl 1E
MajorOutputs 1.14062500 | 85.9% | 6302(0.0001809941288 [0.01562500 | 1.2% [Adapt Cntrl 1E
Adapt_Cntrl 1E (Output) 1.12500000 | 84.7% | 6302 [0.0001785147572 (057812500 |43 5% Adapt Cntrl 1E
ModelInitialize 0.09375000| 7.1%|  1|0.09375000000000.09375000 | 7.1% [Adapt Cntrl 1E
Adapt Cntrl 1E/Embedded Adapt Cntrl 1E/Embedded
D FaneTlon [Oetmit) 0.06250000| 4.7% | 6001 |0.0000104149308 001562500 | 1.2% ook Chrs L8/
[Adapt cntrl 1E/Embedded

Adapt Cntrl 1E/Embedded

MATLAB Punction/ SPunction |0.04687500| 35%| 6001 0000007811981 |0.04687500| 35% Gebi CHLEl tB/Emb_dded
Toutputy
Adapt_Cntrl 1E/Suml (Output) [0.03125000| 24% | 6001|0.0000052074654 0.03125000| 24% Adapt Cntrl 1E/Suml
Adapt_Cntrl 1E/D2 (Output) |0.03125000| 24% | 6001(0.0000052074654 0.03125000 | 24% Adapt Cntrl 1E/D2
EASpE, Cntr] 1E/Cont Out 0.03125000| 24% | 6001 |0.0000052074654 |0.03125000| 24% Adapt Cntrl 1E/Cont Out
(Outgut)
Adapt Cntrl 1E/Sum (Output) |0.03125000| 2.4%]| 6001|0.0000052074654 0.03125000| 24% Adapt Cntrl 1E/Sum
Adapt Cntrl 1E/S-Function Adapt Cntrl 1E/S-Function
R 0.03125000|  2.4%| 6001 0.0000052074654 |0.03125000 | 2.4% Eob e
MajorUpdate 0.01562500| 1.2% | 6302|0.0000024793716 0.01562500 | 12% [Adapt Cntrl 1E
Adapt_Cntrl 1E/beta (Output) |0.01562500| 12%| 6001|0.0000026037327 |0.01662500| 12% |Adapt Cntrl 1E/beta
’(‘g:‘t’;us‘)‘"l LE/Productls 0.01562500| 1.2%| 6001|0.0000026037327 |0.01562500 | 1.2% [Adapt Cntrl 1E/Productio
Adapt Cntrl 1E/Ks2 (Output) |0.01562500| 12%| 6001|0.0000026037327 0.01562500| 12% Adapt Cntrl 1E/Ks2
Adapt_Cntrl 1E/D3 (Output) |0.01562500| 12% | 6001(0.0000026037327 |0.01662500| 12% Adapt Cntrl 1E/D3
Adapt Cntrl 1E/rad//sec 0.01562500| 1.2%| 6001|0.0000026037327 |0.01562500| 1.2% [Adapt Cntrl 1E/rad//sec
(Output)
Adapt Cntrl 1E/Hp (Output) |0.01562500| 1.2%| 6001|0.0000026037327 0.01662500| 1.2% [Adapt Cntrl 1E/Hp
Adapt _Cntrl 1E/Gp (Output) |0.01562500| 1.2%]| 6001|0.0000026037327 0.01662500| 1.2% [Adapt Cntrl 1E/Gp
’(‘g:‘;;“‘é’)‘"l LE/Broductd 0.01562500| 1.2%| 6001|0.0000026037327 |0.01562500| 1.2% [Adapt Cntrl 1E/Product9
Adapt_Cntrl 1E/Sum2 (Output) |0.01562500| 12% 6001|0.0000026037327 |0.01562500| 12% Adapt Cntrl 1E/Sumz
AdapE Cntrl 1%/ Products 0.01562500| 1.2%| 6001|0.0000026037327 |0.01562500| 1.2% [Adapt Cntrl 1E/Products
(Outgut)
Adapt Cntrl 1E/Trig tric - Adapt Cntrl 1E/Trigonometric
e 0.01562500 | 1.2%| 6001 0.0000026037327 |0.01562500 | 1.2% Fnbr CL
Adapt Cntrl 1E/Rate Adapt Cntrl 1E/Rate
Fravaltion Toutpat) 0.01862500| 1.2% | 6302|0.0000024793716|0.01662600 | 12% pombe Chiil 1E/Rate
Adapt_Cntrl 1B/Matrix 1-NoIm |, niseos09| 129 6001(0.0000026037327 [0.01562500| 1.2% Adapt Cntrl 1E/Matrix 1-Norm
(Output)
Adapt Cntrl 1E/Integrator2 |, .iseo500| 12% 6001(0.0000026037327 |0.01562500 | 1.2% Adapt Cntrl 1E/Integrator2
(Output)
Adapt Cotrl. 1R/9rcdudty 0.01562500 | 1.2% | 6001(0.0000026037327 |0.01562500 | 1.2% [Adapt Cntrl 1E/Product?
(OUCEHC)
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Appendix C

Profile Reports

Simulink Model Adapt_Cntrl_1S

Simulink Profile Report: Summary

Report generated 11-Jun-2013 14:14:29

Total recorded time: 117 s

Number of Block Methods: 60

Number of Internal Methods: 7

Number of Nonvirtual Subsystem Methods: 1

Clock precision: 0.00000003 s

Clock Speed: 3000 Mhz

Function List

Name Time calls |Time/call Self time [Location (must use MATLAB Web

Browser to view)

sim 1.17187500(1000% | 1 |1.1718750000000 [0.00000000 | 0.0% |Adapt Cntrl 18

ModelExecute 110937500 947% |  1|1.1093750000000 |0.03125000 | 2.7% |Adapt Cntrl 18

MajorOutputs 1.00000000| 85.3% | 6302 [0.0001586797842 [0.03125000 | 2.7% [Adapt Cntrl 18

Adapt Cntrl 1S (Output) 0.96875000 | 82.7% | 6302 (0.0001537210409 |0.29687500 |25.3% [Adapt Cntrl 18

MajorUpdate 007812500 6.7% | 6302(0.00001239685810.03125000 | 2.7% [Adapt Cntrl 1S

Adapt _Cntrl 15/Math 0.06250000| 5.3% | 12002 |0.0000052074654 |0.06250000 | 5.3% A92RE Cntrl 16/Math

Functionl (Output) Functionl

ModelInitialize 006250000 53%  1|0.0625000000000 |0.06250000| 53% [Adapt Cntrl 1S

Adapt Cntrl 1S/Hp (Output) |0.04687500 4.0% 6001(0.0000078111981|0.04687500 | 4.0% [Adapt Cntrl 15/Hp

|Rdapt Cntrl 18/GpAct 0.04687500| 4.0%| 6001|0.0000078111981 |0.04687500 | 4.0% |Adapt Cntrl 1S/GpAct

(Output)

Adapt Cntrl 15/Integratorl |;oqy55000| 27%| 6001(0.0000052074654 |0.03125000| 2.7% Adapt Cntrl 1S/Integratorl

(Update)

Adapt Cnerl 13/Cont Out 0.03125000| 2.7%| 6001|0.0000052074654 |0.03125000 | 2.7% Adapt Cntrl 18/Cont Out

(Output)

Adapt Cntrl 1S/S-Function Adgpt Cntrl 1S/S-Function

gl S punction fontoat) 003125000 27%| 6001|0.0000052074654 |0.03125000 2.7%]Bu11der3

Adapt Cntrl 1S/Trigonometric Adapt Cntrl 1S/Trigonometric

Functlonl (Oatout) 0.03125000| 2.7%| 6001 0.0000052074654 |0.03125000 | 2.7% FrmrTop————d oo

Adapt Cntrl 15/S-Function |, 03155000| 27%| 6001 (0.0000052074654 0.03125000| 2.7% LO2PE_Cntrl 18/S-Function

Builder (OutEt) Builder

Adapt Cntrl 1S/Ksl (Output) |0.03125000 27% 6001 |0.0000052074654 [0.03125000 | 2.7% [Adapt Cntrl 18/Ksl

Adapt Cntrl 15/x inl 0.03125000| 2.7% | 6001|0.0000052074654 0.03125000 | 2.7% |Adapt Cntrl 18/x inl

(Output)

Adapt Cntrl 1S/Matrix Adapt Cntrl 1S/Matrix

e o 0.03125000| 2.7%| 6001 |0.0000052074654 |0.03125000 | 2.7% Ty

Adapt Cntrl 15/Integrator2 |;,iscr500| 1.3%| 6001(0.0000026037327 0.01562500 | 1.3% Adapt Cntrl 1S/Integrator2

(Update)

Adapt Cntrl 1S/S-Function Adapt_Cntrl 1S/S-Function

S Funcrion fontoat) 0.01562500| 1.3% | 6001|0.0000026037327 0.01562500 | 1.3% G- oo——r

AASpE CAtrl 318/Products 0.01562500| 1.3%| 6001|0.0000026037327 [0.01562500 | 1.3% |Adapt Cntrl 1S/Product3

(Output)

Adapt Cntrl 1S/beta (Output) |0.01562500 1.3%| 6001|0.0000026037327 [0.01562500 1.3% |Adapt Cntrl 1S/beta

Adapt_Cntrl 15/Product 0.01562500| 1.3%| 6001|0.0000026037327 [0.01562500 | 1.3% |Adapt Cntrl 1S/Product

(Output)

Adapt Cntrl 15/Ks2 (Output) |0.01562500| 1.3%  6001|0.0000026037327 [0.01562500 | 1.3% Adapt Cntrl 1S/Ks2

Adapt Cntrl 15/D4 (Output) |0.01562500| 1.3%  6001|0.0000026037327 [0.01562500 | 13% Adapt Cntrl 15/D4

Adapt Cntrl 1S/D2 (Output) |0.01562500| 1.3% 6001|0.0000026037327 |0.01562500| 1.3% |Adapt Cntrl 1S/D2

Adapt_Cntrl 1S/Cl (Output) |0.01562500| 1.3% 6001 (0.0000026037327 [0.01562500 | 1.3% [Adapt Cntrl 15/C1

Adapt_Cntrl 1S/Gp (Output) |0.01562500| 13% 6001 (0.0000026037327 [0.01562500 | 1.3% [Adapt Cntrl 18/Gp

Adapt Cntrl 1S/ADRActi :
2P, rl 15/ADRActive 0.01562500| 1.3%| 6001|0.0000026037327 [0.01562500 | 1.3% |Adapt Cntrl 1S/ADRActive

(Output)
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Appendix C

Profile Reports

Simulink Model Adapt_Cntrl_3E

Simulink Profile Report: Summary

Report generated 11-Jun-2013 15:13:09

Total recorded time: 6.72s
Number of Block Methods: 65
Number of Internal Methods: 7
Number of Nonvirtual Subsystem Methods: 2
Clock precision: 0.00000003 s
Clock Speed: 3000 Mhz
Function List

) X . Location (must use MATLAB Web
Name Time Calls Time/call Self time Browser'ovi@w)
sim 671875000 [1000% |  1|6.7187500000000 0.00000000| 0.0% |Adapt Cntrl 3E
ModelExecute 659375000 | 98.1%|  1|6.5937500000000 0.17187500 | 2.6% Adapt Cntrl 3E
MajorOutputs 639062500 | 95.1% | 6302 0.0010140629959 0.03125000| 0.5% |Adapt Cntrl 3E
Adapt Cntrl 3E (Output) 635937500 | 94.7% | 6302 0.0010091042526 1.23437500 | 18.4% |Adapt Cntrl 3E
Adapt Cntrl 3E/Embedded Adapt Cntrl 3E/Embedded
TS Forotion (Outout) 373437500 | 55.6%| 6001 (0.0006222921180(0.03125000 | 0.5% frmess Fmerron
Adapt Cntrl 3E/Embedded
MATLAB Function/ SFumction |3.70312500 55.1%| 6001 |0.0006170846526 |3.70312500 |55.1% Aaapt Cntrl 3E/Embedded

MATLAB Function/ SFunction

(Output)
Adapt Cntrl 3E/Rate Adapt Cntrl 3E/Rate
TroeeTricr Toutont) 0.12500000| 1.9% | 6302 |0.0000198349730 |0.12500000 | 1.9% romi—rrreoml =S
Adapt _Catrl_3B/Products 0.12500000| 1.9% | 6001 |0.0000208298617 |0.12500000| 1.9% |Adapt _Cntrl 3E/Producté
(Output)
ModelInitialize 0.10937500| 16% 1(0.1093750000000 |0.10937500 | 1.6% [Adapt_Cntrl 3E
Adapt Cntrl 3E/Trigonometric |;nq75000| 149 6001(0.0000156223963 0.09375000| 1.4% Loabt Cntrl 3E/Trigonometric
Function3 (Output) Function3
—%“(g;;“g‘“l SE/RrodicEs 0.09375000| 1.4% 6001|0.0000156223963 |0.09375000| 1.4% |Adapt Cntrl 3E/Product2
Adapt_Cntrl 3E/Hp (Output) |0.06250000| 0.9% | 6001 0.0000104149308 [0.06250000 0.9% |Adapt Cntrl 3E/Hp
Adapt_Cntrl 3E/Matrix 1-Norm|,,coco000| 0.9%| 6001(0.0000104148308 0.06250000| 0.9% Adapt Cntrl 3E/Matrix 1-Norm
(Output)
Adapt Cntrl 3E/Logical Adapt Cntrl 3E/Logical
Operetor (ontput) 0.06250000| 0.9%| 6001 |0.0000104149308 |0.06250000 | 0.9% F——m—0
Adapt Cntrl 3E/Integratorl
o fate) 0.03125000| 0.5% | 6001 0.0000052074654 0.03125000 | 0.5% Adapt Cntrl 3E/Integratorl
MajorUpdate 003125000 05% | 6302 0.0000049587433 [0.00000000| 0.0% |Adapt Cntrl 3E
?g:z:u:’)“ﬂ 3B/Product12 0.03125000| 0.5%| 6001 0.0000052074654 0.03125000| 0.5% Adapt Cntrl 3E/Productl2
Adapt Cntrl 3E/Productl0
Toutput) 0.03125000| 0.5% | 6001 0.0000052074654 0.03125000| 0.5% Adapt_Cntrl 3E/Productl0
A(g:l:;u?)‘tﬂ 2E/Productl 0.03125000| 0.5% 6001 |0.0000052074654 |0.03125000 | 0.5% |Adapt Cntrl 3E/Productl
‘(‘g:lt’:u:’)‘"l 3E/rad//sec 0.03125000| 0.5%| 6001 |0.0000052074654 [0.03125000 | 0.5% |Adapt Cntrl 3E/rad//sec
Adapt_Cntrl 3E/Hpl (Output) (003125000 0.5% | 6001(0.0000052074654 0.03125000| 0.5% [Adapt Cntrl 3E/Hpl
Adapt_Cntrl 3E/Gp (Output) |0.03125000| 0.5% | 6001(0.0000052074654 0.03125000| 0.5% [Adapt Cntrl 3E/Gp
Adapt Cntrl 3E/Cont Out 0.03125000| 0.5% | 6001 |0.0000052074654 0.03125000| 0.5% |Adapt Cntrl 3E/Cont Out
(Output)
Adapt Cntrl 3E/S-Function Adapt Cntrl 3E/S-Function
Balrdezs (Oatoat) 0.03125000| 0.5% | 6001 |0.0000052074654 0.03125000| 0.5% Trroa=rs
Adapt Cntrl 3E/ADRActive 003125000/ 05%| 6001 0.0000052074654 |0.03125000| 0.5% Adapt Cntrl 3E/ADRActive
(Output)
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Appendix C
Profile Reports

Simulink Model Adapt_Cntrl_3S

Simulink Profile Report: Summary

Report generated 11-Jun-2013 15:31:54

Total recorded time: 130s
Number of Block Methods: 64
Number of Internal Methods: 7
Number of Nonvirtual Subsystem Methods: 1
Clock precision: 0.00000003 s
Clock Speed: 3000 Mhz

Function List

[Location (must use MATLAB Web

Name Time calls | Time/call Self time Erowsat io view)
sim 1.29687500 [100.0% 1[1.2968750000000 |0.00000000 | 0.0% [Adapt_Cntrl 3s
ModelExecute 125000000 96.4% |  1|1.2500000000000[0.01562500 | 1.2% [Adapt Cntrl 3S
MajorOutputs 115625000 89.2% | 6302 [0.0001834735005(0.01562500 | 1.2% [Adapt_Cntrl 3§
|Adapt_cntrl 3s (Output) 114062500 | 88.0% | 6302 [0.0001809941288 |0.4687500036.1% [Adapt_Cntrl 3S
MajorUpdate 0.07812500| 6.0% | 6302(0.0000123968581(0.04687500 | 3.6% [Adapt Cntrl 3S

Adapt Cntrl 3S/S-Function Adapt Cntrl 3S/S-Function

0.06250000| 4.8% | 6001 0.0000104149308 0.06250000| 4.8%

Builder2 (Output) Builder2
Adapt_Cntrl 35/S-Function |, gica7600| 36% | 6001(0.0000078111981|0.04687500 | 3.6% RoaRt Cntrl 35/5-Function
Builder (Output) Builder

ModelInitialize 0.04687500| 3.6%

0.0468750000000 |0.04687500 | 3.6% Adapt Cntrl 38

Adapt Cntrl 3S/Productl2
(Output)

0.03125000 | 2.4% | 6001 |0.0000052074654 (0.03125000| 2.4% [Adapt_Cntrl 3S/Productl2

Adapt_Cntrl 3S/D4 (Output) 0.03125000 | 2.4% | 6001|0.0000052074654 |0.03125000 | 2.4% |Adapt_Cntrl 3S/D4

Adapt_Cntrl 3S/Trigonometric
Function4

Adapt Cntrl 3S/Trigonometric

Functiond (Output) 0.03125000| 2.4% | 6001 |0.0000052074654 |0.03125000| 2.4%

Adapt Cntrl 3S/Product2
(Output)

0.03125000 | 2.4% | 6001 (0.0000052074654 (0.03125000| 2.4% |Adapt Cntrl 3S/Product2

Adapt Cntrl 35/Matrix 1-No¥m|; 3155000 24% | 6001(0.0000052074654 |0.03125000| 2.4% [Adapt_Cntrl 35/Matrix 1-Norm

(Output)

Mdapt Cntrl 35/Hphot 0.03125000| 2.4% | 6001|0.0000052074654 |0.03125000 | 2.4% |Adapt Cntrl 3S/HpAct
(Output)

Adapt Cntrl 3S/Logical
Operator (Output)

Adapt Cntrl 3S/Logical
Operator

0.03125000| 2.4% | 6001 0.0000052074654 |0.03125000| 2.4%

Adapt Cntrl 3S/Integrator2
(Update)

0.01562500 | 1.2% | 6001 (0.0000026037327 (0.01562500| 1.2% |[Adapt Cntrl 3S/Integrator2

Adapt Cntrl 3S/Integratorl

(Update) 0.01562500| 1.2% | 6001 (0.0000026037327 [0.01562500 | 1.2% |Adapt Cntrl 3S/Integratorl

Adapt Cntrl 3S/Suml (Output) |0.01562500| 1.2% | 6001 0.0000026037327 0.01562500| 1.2% |Adapt Cntrl 3S/Suml

?g:t;u?)‘trl — 0.01562500| 1.2% | 6001 |0.0000026037327 [0.01562500| 1.2% |Adapt Cntrl 3S/Product

Adapt_Cntrl 3S/Ks2 (Output) [0.01562500| 1.2%| 6001 0.0000026037327 0.01562500 | 1.2% |Adapt Cntrl 3S/Ks2

Adapt Cntrl 3S/D3 (Output) 0.01562500| 1.2% | 6001 |0.0000026037327 |0.01562500 | 1.2% Adapt Cntrl 3S5/D3

Adapt Cntrl 3S/D2 (Output) 0.01562500| 1.2% | 6001 |0.0000026037327 |0.01562500 | 1.2% Adapt Cntrl 3S/D2

Adapt_Cntrl 3S/x in (Output) |0.01562500| 1.2%| 6001 0.0000026037327 0.01562500| 1.2% |Adapt Cntrl 3S/x in

Adapt Cntrl 3S/S-Function Adapt_Cntrl 3S/S-Function
Builder3 (Output) 0.01562500| 1.2% | 6001 0.0000026037327 |0.01562500| 1.2% Builder3

Adapt Cntrl 3S/ADRActive

0.01562500| 1.2% | 6001 [0.0000026037327 (0.01562500 | 1.2% [Adapt Cntrl 3S/ADRActive
(Output)

Adapt _Cntrl 35/Products 0.01562500| 1.2% | 6001|0.0000026037327 0.01562500| 1.2% Adapt Cntrl 3S/Product5
(Output)

0.01562500| 1.2% 12002 0.0000013018664 |0.01562500
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Appendix C

Profile Reports

Simulink Model State_Estimator_prof

Simulink Profile Report: Summary

Report generated 11-Jun-2013 19.04:36

Total recorded time: 538s

Number of Block Methods: 28

Number of Internal Methods: 6

Number of Nonvirtual Subsystem Methods: 2

Clock precision: 0.00000003 s

Clock Speed: 3000 Mhz

Function List

Name Time Calls Time/call Self time Location (must use MATLAB Web Browser to view)
sim 5.37500000 [100.0% 1/5.3750000000000 (0. 0.0% |State Estimator prof
ModelExecute 5.35937500 | 99.7% 15.3593750000000 |0.18750000 | 3.5% |State Estimator prof
|lla]oroutgutl 3.92187500 | 73.0% (60001 |0. 0. 12% [state Estimator prof

|stata Estimator prof (output) 3.85937500 | 71.8% |60001|0.0000643218446 |1.76562500 |32.8% |State Estimator prof

Major te 1.25000000 | 23.3% (60001 [0.0000208329861 |0.12500000 | 2.3% |State Estimator prof

State Estimator prof (Update) 1.12500000 | 20.9% (60001 |0.0000187496875 |0.45312500 | 8.4% state Estimator prof
?“::;;“"““J’"” Sine Navel o 4.9% 60001 [0.0000044270095 | 0.26562500 | 4.9% |State Estimator prof/sine Wavel
State Estimator prof/sine Wave

(Update) 0.17187500| 3.2% (60001 |0.0000028645356 |0.17187500 | 3.2% [State Estimator prof/sSine Wave
State Estimator prof/Calibration 0.17187500| 3.2% |60001 |0.0000028645356 [0.17187500 | 3.2% |State Estimator prof/calibration
(output)

State Estimator prof/x inl (output) |0.17187500| 3.2% 60001 0. 0.17187500 | 32% |State Estimator prof/x ini
State Estimator prof/suml (output) 0.14062500 | 2.6% |60001 |0.0000023437109 |0.14062500 | 2.6% [State Estimator prof/sumi

State Estimator prof/x in2 (output) |0.14062500| 2.6% (60001 0.0000023437109 0.14062500| 2.6% |State Estimator prof/x in2
State Estimator prof/Display

Toutput) 0.14062500 | 2.6% |60001 |0.0000023437109 |0.14062500 | 2.6% [State Estimator prof/Display
—uﬁr—?;;::t:;““‘“ rof/Integrator 0.12500000| 2.3% [60001 (0.0000020832986 [0.12500000 | 2.3% |State Estimator prof/Integrator
State Estimator prof/sine Wave2

(Update) 0. 2.0% (60001 [0.0000018228863 [0.10937500 | 2.0% [State Estimator prof/sSine Wave2
State Estimator prof/L (output) 0.10937500| 2.0% (60001 |0.0000018228863 |0.10937500 | 2.0% |State Estimator prof/L

State Estimator prof/s-Function state Estimator prof/s-Function
Builder (output) 0.10937500| 2.0% (60001 |0.0000018228863 |0.10937500 | 2.0% Builder

State Estimator prof/sine Wave2

Toutput) 0.10937500| 2.0% (60001 |0.0000018228863 |0.10937500 | 2.0% [State Estimator prof/gine Wave2
State Estimator prof/Integrator

{output) 0.09375000| 1.7% 60001 [0.0000015624740 |0.09375000 | 1.7% |[State Estimator prof/Integrator
State Estimator prof/Axialcolocation

(output)_ 0.09375000| 1.7% |60001 [0.0000015624740 [0.09375000 | 1.7% [State Estimator prof/Axialcolocation
eace Sjtimator prof/sine wavel 0.09375000| 1.7% [60001 |0.00000156247400.09375000 | 1.7% [State Estimator prof/sine wWavel
State Estimator prof/A-LC (output) 0.07812500| 1.5% (60001 |0.0000013020616 |0.07812500 | 1.5% [state Estimator prof/A-LC

State Estimator prof/mm (Output) 0.07812500| 1.5% (60001 |0.0000013020616 [0.07812500 | 1.5% |State Estimator prof/mm

State Estimator prof/c' (output) 0.06250000 | 1.2% |60001 {0.0000010416493 |0.06250000 | 1.2% [State Estimator prof/c'

State Estimator prof/Gainl (output) |0.06250000| 1.2% (60001 0.0000010416493 0.06250000 | 1.2% |State Estimator prof/Gaini
State Estimator prof/1 stroke Ks

(output) 0.06250000| 1.2% |60001 |0.0000010416493 |0. 12% |State Estimator prof/1 stroke Ks
State Estimator prof/sum (output) 0.06250000| 1.2% |60001 (0.0000010416493 |0.06250000 | 1.2% |State Estimator prof/sum

State Estimator prof/sum3 (output) 0.06250000| 1.2% 60001 [0.0000010416493 |0.06250000 | 1.2% [State Estimator prof/sum3

State Estimator prof/c'l (output) 0.04687500| 0.9% (60001 |0.0000007812370 |0.04687500 | 0.9% |State Estimator prof/c'i

State Estimator prof/B (Output) 0.04687500| 0.9% 60001 0.0000007812370 |0.04687500 | 0.9% |state Estimator prof/B

State Estimator prof/Average

{output) 0.04687500 | 0.9% (60001 |0.0000007812370 |0.04687500 | 0.9% [State Estimator prof/Average
State Estimator prof/sine Wave

(Cutput) 0.04687500| 0.9% (60001 |0.0000007812370 |0.04687500 | 0.9% [State Estimator prof/sSine Wave
State Estimator prof/Gain2 (output) |0.03125000| 0.6% 60001 |0.0000005208247 |0.03125000| 0.6% |[State Estimator prof/Gain2
State Estimator prof/sum2 (output) 0.03125000 | 0.6% |60001 |0.0000005208247 |0.03125000 | 0.6% [State Estimator prof/sum2
ModelInitialize 0.01562500| 0.3% 1(0.0156250000000 |0.01562500 | 0.3% |state Estimator prof
|ModelTerminate 0.00000000| 0.0% 10.0000000000000 |0. 0.0% [State Estimator prof
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