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Abstract 

Magnetic bearings offer a number of advantages over conventional rolling element bearings. 

Magnetic bearings provide support for rotating systems through magnetic levitation rather 

than by mechanical contact, nearly eliminating the energy losses attributable to friction in 

standard bearings. Low power consumption is one characteristic of magnetic bearings that has 

encouraged their use in an increasing number of applications. Another is the ability to use the 

bearing itself as an actuator in a controller that can alter the orbit of the rotating system within 

the bearing to reduce or eliminate the detrimental effects of disturbances acting on the system. 

In addition, controller outputs can potentially be used as an indicator of the general health or 

integrity of the system. 

This work details the development of a multi-mode adaptive controller for a magnetic bearing 

system that is capable of suppressing disturbances acting at synchronous and asynchronous 

frequencies and caused by rotating imbalances and base motion. The work was based on an 

existing adaptive controller that formed part of the overall control system for a well sorted and 

well developed magnetically suspended rotor and flywheel. The development of the controller 

made extensive use of system modeling techniques and model-in-the-loop simulations. 

Development also required continual refinement of the system model and on-going 

reconfiguration of the operating environment since the ever increasing complexity of the 

controller often exceeded the real-time capabilities of the processor. 

The modes of the controller, or the methods used by it to determine the frequency of the 

disturbance acting on the system, include discrete Fourier transform, rotor speed and manual 

observation. The adaptive controller was shown to produce excellent disturbance rejection 

and vibration suppression in all of the three modes. The capabilities of the controller operating 

in the first mode were demonstrated with simulated disturbances and in the second and third 
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modes with software simulations, simulated disturbances and physical changes in the balance 

of the rotor and flywheel. 

This work also details the efforts to evaluate the predictive capability of adaptive controller 

gains. The correlation between gain variations and balance state has been demonstrated, but a 

repeatable and unambiguous response of the gains to a synchronous disturbance undetectable 

by other means has not been well established. The sensitivity of the gains to variations in rotor 

speed increases the difficulty of this task. Software simulations of the adaptive controller 

operating in speed mode showed the potential of using the gains as an indicator of a change in 

the balance or health of the system, but actual tests conducted on the magnetic bearing system 

were not as encouraging. 
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Chapter 1 - Introduction and Literature Review 

Magnetic bearings use magnetic levitation rather than mechanical contact to support loads 

such as rotors and shafts, and they provide an alternative to rolling element bearings for many 

applications especially those subject to extreme conditions. Magnetic bearings are generally 

classified as either passive or active. Passive bearings use permanent magnets and often 

electrodynamic effects to provide levitation without any control system [1]. Active magnetic 

bearings use electromagnets or a combination of electro and permanent magnets and an active 

control system, since the bearings are unstable by nature, to provide stable, reliable operation. 

Most of the research conducted on magnetic bearings has been with active systems. In 

addition, nearly all magnetic bearing systems built for and used in commercial applications 

are active. However, passive systems have been and are continuing to be investigated, though 

few passive systems are employed in industrial applications [2], [3]. The magnetic bearing 

system used for the work presented here is an active one, and all discussions that follow will 

be with regard to active systems. 

Magnetic bearings possess a number of characteristics that make them a superior alternative 

to conventional systems in many applications. These characteristics include the ability to 

tolerate high temperatures and to operate at high rotational speeds with very little frictional 

loss and with low power consumption. In fact, the objective of much of the current research 

on active systems is to quantify the extreme capabilities of the bearings. As one example, 

Mekhiche et.al. demonstrated the capability of magnetic bearings to operate at high 

temperatures and speeds [4]. They successfully operated an active system at 600o C and at 

rotor speeds of 50,000 RPM. No other type of bearing can perform adequately under these 

conditions, and this system could extend the use of magnetic bearings to gas turbines and 

aircraft engines of novel design. 

The ultimate load carrying capacity of magnetic bearings has not been precisely determined, 

but theoretical calculations indicate that it is less than that of conventional bearings by a factor 

of four or so. However, an active magnetic bearing system has been built for hydroelectric 
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power generation that supports a rotor with a mass of 50 tons. More typical of the loads 

carried by magnetic bearings are the rotors for turbo machinery used in the petroleum 

industry. These generally have a mass measured in the range of tons [5]. 

Magnetic bearing systems vary greatly in size, and in principle, there appears to be no upper 

limit on bearing size. One system developed for testing high-speed tires has a stator with an 

inside diameter of 6 meters [5]. At the other extreme are the magnetic bearings used in micro 

devices such as guidance systems, medical instruments and miniature motors. Small motors 

have been constructed that use a magnetically suspended rotor with dimensions on the order 

of a few millimeters. One example was built with a stator of 5 mm inside diameter, a rotor of 

1.5 mm outside diameter and an air gap of 0.1 mm [6]. 

An illustration of a simplified active magnetic bearing system appears in Figure 1-1. 

 

Figure 1-1 Active Magnetic Bearing System [5] 

The electromagnets are formed by the poles of the stator, and each pole generates an attractive 

force. The power amplifier supplies current to pairs of electromagnets located on opposite 

sides of the rotor. The microprocessor calculates the output to send to the magnets to properly 

position the rotor. The microprocessor’s calculations are based on the control laws developed 

for the system. Finally, the gap sensors and their associated electronics measure the distance 

(air gap) between the stator and rotor and provide the necessary feedback to the 

microprocessor. 

Stator 

Rotor 
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The unbalance or imbalance shown in the Figure represents the fact that rotating machinery is 

seldom perfectly balanced. Imbalances generate inertial forces if the machine rotates about its 

geometric center, and these forces produce vibration. If the imbalances are large enough, the 

resultant vibration can become destructive especially at the speeds obtainable with magnetic 

bearings. One advantage of active magnetic bearing systems is the ability to incorporate 

vibration suppression and disturbance rejection mechanisms into their controllers. These can 

reduce and even eliminate the effects caused by the imbalance as well as by other disturbing 

forces acting indirectly on the bearings. 

Some of the first attempts at vibration suppression included the application of passive and 

semi active mass balancers to rotating shafts supported by conventional bearings. Inoue et.al. 

describe a rotor containing cylindrical cavities in which small balls are placed. The 

researchers noted that under certain conditions the balls will arrange themselves to 

compensate for the unbalance of the rotor and reduce the dynamic loading on the bearings [7]. 

Similarly, Bovik and Hogfors demonstrated that plane rotors cut with grooves for the free 

movement of damped particles exhibit autobalancing [8]. 

One of the first genuinely active systems that utilized adaptive compensation to minimize the 

vibration in a bearing system was described by Burrows and Sahinkaya [9]. Following this 

influential work, numerous techniques for unbalance compensation and disturbance rejection 

have been developed, tested and successfully implemented. Of these, one of the earliest was 

based on notch filters. Initial work with these proved their ability to suppress disturbances, but 

it was often at the expense of stability since the filters were placed in the feedback path where 

they can affect the dynamic behavior of the bearing system [10], [11]. 

Several approaches were subsequently developed to solve the stability problems associated 

with the use of notch filters. These are broadly classified as adaptive feed forward 

compensation, and interestingly enough, some also use notch filters [11]. Most controllers of 

this type introduce synchronous signals into the control loop to cancel or reduce synchronous 

imbalance forces. Generally, the signal is a sinusoid of the proper phase and amplitude 

necessary to neutralize the disturbance. In addition, the controllers do not alter the closed loop 
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dynamics of the system and therefore, do not produce destabilizing effects [12], [13]. The 

feed forward approaches differ from one another based on the mechanism used to generate the 

compensating signal and the process used to adapt the signal to an imbalance [11]. 

Several researchers have developed controllers designed to account for uncertainties in model 

development and for variations in parameters that describe the plant model. These controllers 

often incorporate disturbance rejection into their designs. One example of earlier work with 

parametric techniques is that of Lum et.al. [14]. They developed a controller that performed 

“on-line” identification of imbalance parameters that were then used to update the controller 

for an active magnetic bearing system resulting in closed loop stability by continuous 

parameter update. 

More recently, Huang and Lin developed a dynamic output feedback controller for a magnetic 

bearing system that included adaptive imbalance compensation derived from a linear-in-the-

parameter imbalance force model [15]. This model provides an estimate of the forces 

generated by rotor eccentricity and mass imbalance. The estimate is based on a linear, 

parametric representation of the centripetal force vector, and adaptive compensator signals are 

generated synchronously. 

Another existing approach to vibration control and disturbance rejection is disturbance 

observer based compensation (DOBC). Grochmal and Lynch wanted to provide precise 

tracking of rotor orbits in a magnetic bearing system by reducing static offset, the deviation of 

the rotor position from its set point, and synchronous vibration [16]. They developed a 

controller based on a hierarchical system that included both velocity and disturbance 

observers. The velocity observer functioned continuously to provide stable positioning while 

the disturbance observer provided rejection only at steady-state operation. Their controller 

integrated the observers with nonlinear state feedback to estimate and suppress the ill effects 

of static offset and synchronous vibration. 

One limitation to disturbance observer based compensation is the requirement in most cases 

that disturbance characteristics or parameters be reasonably well known. If they are not, a 
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disturbance may not be modeled accurately. An adaptive controller based on an inaccurate 

model can lead to poor closed loop performance and instability. One approach to applying 

DOBC to a system with uncertain disturbance parameters was demonstrated by Wen [17]. He 

characterized disturbances as being composed of both known and unknown components and 

then developed a controller based on an “auxiliary” observer that estimated the latter. The 

controller provided good arbitrary disturbance attenuation. 

Much of the earlier research on disturbance rejection and active magnetic bearing systems 

was focused on the identification and suppression of disturbances occurring at synchronous 

(rotor) frequencies. In fact, most of the references cited previously discussed the development 

and testing of controllers that were designed to eliminate the effects of synchronous 

disturbances exclusively. However, more recent work has extended the earlier work often by 

using novel control strategies and more sophisticated plant models to accommodate transient 

disturbances, multiple frequencies and base motion. 

Burrows et.al. in a survey of work done on adaptive control of active magnetic bearings 

presented a unique controller based on open loop adaptive control (OLAC) principles that 

calculated control forces based on displacement measurements of the rotor [18]. The 

measurements were analyzed with a Fourier transform (the capability was built into the 

controller) to determine the amplitude and phase of the control forces. This approach to 

adaptive control did not require the development of a system model or any knowledge of the 

system parameters. One drawback to the controller was the delay in the application of the 

calculated control forces. Since the transform could not be completed during the current 

control cycle, the forces were applied to a following cycle. 

The controller described in [18] was extended by Abulrub et.al. to improve responsiveness to 

a rapid and potentially destructive change in balance conditions [19]. Rapid response is 

critical to ensuring the integrity of rotating machinery if a sudden change in balance occurs. 

These researchers implemented a recursive version of OLAC termed recursive open loop 

adaptive control (ROLAC) that utilizes a recursive Fourier transform to speed up the 
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calculations of control forces. The forces can be determined during the current control cycle 

and applied to it rather than to a subsequent one. 

Fourier coefficients, calculated in real time, have also been used in controllers designed to 

simultaneously suppress multiple disturbances, to improve transient response and to reduce 

the energy consumption of magnetic bearing systems. Cole et.al. developed a closed loop 

form of synchronous vibration control that used parallel loops of recursive Fourier transforms 

to determine the controller effort necessary to suppress multiple disturbances occurring at 

harmonics of the rotational speed [20]. Keogh et.al. used dynamic feedback of Fourier 

coefficients computed from rotor position to optimize the response of a closed loop controller 

to transient disturbances [21]. In addition, Sahinkaya and Hartavi used a recursive Fourier 

coefficient calculation to measure the orbit size of the rotor in a magnetic bearing system. The 

calculated size was compared to the optimal one developed analytically. The orbits were then 

adjusted accordingly to minimize the energy consumed by the system [22]. 

Efforts to develop bearing controllers capable of suppressing disturbances caused by base 

motion are not entirely new. Cole et.al. developed a controller capable of attenuating vibration 

caused by forces directly applied to the rotor as well as those indirectly applied through the 

supporting structure [23]. The controller design was based on the H∞ control theory that made 

possible the development of a controller optimized for more than one input. 

More recent approaches to dealing with base motion disturbances have been developed in 

response to the use of magnetically suspended devices in moving vehicles. The military has 

built an electro-optical sight for target tracking that uses magnetic bearings to improve 

stability. The sight is mounted in a moving vehicle, so base motion response must be 

addressed by the bearing controller. Kang et.al. describe the development of a sliding mode 

controller for the electro-optical sight that is capable of suppressing external disturbances 

even in the presence of system parameter variations [24]. 

A general method for rejecting disturbances that can be applied to a magnetic bearing system 

is discussed by Fuentes and Balas [25]. Their approach is based on a type of adaptive control 
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termed model reference whereby a plant subjected to persistent disturbances is directed to 

track a reference model with no disturbances applied. The frequencies of the disturbances 

must be known, but knowledge of their amplitudes is not required. In addition, the amplitudes 

can vary with time. Fuentes and Balas demonstrated the effectiveness of their approach, when 

applied to a general system, with numerical simulations. Subsequent research efforts by 

Matras and Barber have shown that the methods of [25] are equally as effective at identifying 

and rejecting disturbances acting on a flywheel system supported by active magnetic bearings 

[26], [27], [28]. 
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Chapter 2 - Adaptive Disturbance Rejection Control 

In this Chapter, the control laws developed by [25] to suppress or reject persistent 

disturbances acting on a general system will be briefly discussed. A simple, linear system 

subjected to a disturbance will serve as the basis for the discussion. A state space 

representation of the system will then be developed, and the results of computer simulations 

demonstrating the effectiveness of adaptive disturbance rejection (ADR) control applied to the 

system will be summarized. 

2.1 Control Laws 

A simple linear system with a persistent disturbance can be represented in state space 

according to Equations 2.1 and 2.2. 

��� � ���� � ���� � Γ��
 
(2.1) �� � ���� 
(2.2) 

The state, input and output terms are as expected. The last term in the state equation 

represents the disturbances applied to the system and is composed of a vector disturbance 

function ud and a real valued matrix operator Γp that maps the disturbance onto the system 

state vector.  

The elements of the disturbance function consist of linear combinations of scalar functions 

multiplied by amplitudes and unit vectors. The scalar functions can be constant or sinusoidal, 

or they can be other types of waveforms as long as the phase is known. For example, steady 

state errors and rotating imbalances can be represented by constant and sinusoidal scalar 

functions, respectively. Also, the phase of a sinusoidal disturbance does not have to be known 

if the disturbance is replaced by two sinusoidal ones that are 90o out of phase. 

Given the vector disturbance function ud, a control law can be defined that uses adaptive 

techniques to suppress the effects of disturbances applied to a system. The control law is 
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based on the method developed by [25] and discussed in detail when applied to an active 

magnetic bearing system by [28] and is shown in Equation 2.3. 

�� � 
��� � ���
 
(2.3) 

The adaptive terms Gp and Hp are defined in Equations 2.4 and 2.5. 


�� � ������∆
 
(2.4) ��� � ����
�∆� 
(2.5) 

The adaptive gain Gp is applied to the output of the system yp, and adaptive gain Hp is applied 

to the vector of scalar functions φd, often referred to as the disturbance vector, described 

earlier. Gain Gp is essentially a stabilizing gain that responds to any nonzero output from the 

system. Gain Hp scales the disturbance vector to the amplitudes necessary to cancel the effects 

of the disturbances. Weighting matrices ∆G and ∆H determine how quickly the gains adapt to 

the disturbance. The transpose of vectors in Equations 2.4 and 2.5 is required to satisfy the 

necessary matrix algebra. 

2.2 Simulated System 

The linear state space model defined by Equations 2.1 and 2.2 can be extended to describe a 

rotating system by including displacements in both orthogonal directions X and Y. Only 

translational displacements will be considered, but rotational ones could be as well since ADR 

control rejects each type similarly. The displacements are assumed to be uncoupled, and the 

stiffness K and damping C in both directions are the same. 

The state space representation for this system is given below where variable M represents the 

overall mass of the system: 
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(2.6) 

�� � �1 1 0 0��� 
(2.7) 

The state vector is ordered as follows: 

�� � 	��� 		�! 		��"		�!"#� 	� 		 �� � �� �� �� 
(2.8) 

The control output vector is made up of the system or plant inputs required to suppress the 

disturbance in both the X and Y directions: 

�� � �0 0 ��,� ��,!�� 
(2.9) 

The disturbance applied to the simulated system is a rotating imbalance that represents the 

less than perfect balance that characterizes nearly all rotating systems. The imbalance is 

modeled as a point mass m located at a fixed distance l from the center of rotation. The 

imbalance generates a force with an amplitude F defined by Equation 2.10 where variable ω 

denotes the rotational speed of the system. 

% � &'(" 
(2.10) 

Disturbance function ud includes the disturbance forces acting on the system and is composed 

of two sinusoids with amplitude F and frequency ω as shown below: 

�
 � �0 0 % sin(, % cos(,�� 
(2.11) 

Disturbance vector φd is also formed by sine and cosine functions of the same frequency ω: 
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�
 � �0 0 sin(, cos(,�� 
(2.12) 

The block diagram for the simulated system with adaptive disturbance rejection control is 

shown in Figure 2-1. 

 

Figure 2-1 Plant with ADR Controller 

The reference input is set to zero since no displacement of the system is desired, and the 

disturbance input is composed of the two persistent sinusoids. The controller includes only 

that part necessary for disturbance rejection, and feedback is provided by the measured 

displacements of the plant. 

2.3 Simulation Results 

Using the system model described by Equations 2.3 through 2.12, computer simulations were 

performed to demonstrate the effectiveness of adaptive disturbance rejection control. A 

MATLAB program (See Appendix A for a listing.) was written that determines the model’s 

response to the imbalance disturbance with and without ADR control. The model represents 

an unbalanced rotating system, and the imbalance is the applied disturbance. Therefore, the 

frequency of the disturbance and the rotational speed of the system were the same. 

Plant

Dist 

Gp 

Hp 

φ 
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Parameters that must be specified to the program for each simulation include the mass, natural 

frequency and damping ratio of the system, the frequency and magnitude of the disturbance 

and values of the weighting matrices ∆G and ∆H for the controller. Many of the inputs 

required for the program were based on previous work by Matras et.al. [29]. For example, the 

damping ratios and disturbance forces used for most of the simulations were quite small. 

Damping ratios less than 0.05 and disturbance forces in the vicinity of 0.1 N were generally 

used. However, much larger values of each were also shown to have little effect on the ability 

of the adaptive methods to suppress the disturbances. 

Adaptive gain Gp is typically necessary to provide initial stability [29] and could be expected 

to have little effect on this model. In fact, a number of simulations were run that showed this 

to be the case. Therefore, matrix ∆G was set equal to the identity matrix for each simulation. 

Gain Hp is then primarily responsible for suppression and accordingly, the value of ∆H was 

varied to provide the fastest rejection of the disturbance for each test. In addition, disturbance 

frequencies above, below, and near the natural frequency of the system were tried. 

Characteristic values and results for a representative simulation appear in Figure 2-2. 

 

Figure 2-2 Representative Disturbance Rejection - Case 1 

Mass = 5 kg 

Imbal. Force = 0.04 N 

Nat’l Freq. = 20 Hz 

Dist. Freq. = 10 Hz 

∆H = -28,000 
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For the Case shown in Figure 2-2, displacements in both axis directions are suppressed in 

about two seconds. Note that the sign on the ∆H term must be negative when the disturbance 

frequency is below the natural frequency of the system [27]. 

 

Figure 2-3 Disturbance Rejection - Case 2 

Figure 2-3 (2-4) illustrates the rejection of a disturbance with a frequency just less (more) than 

the natural frequency of the system. For the simulations shown in Figures 2-3 and 2-4, 

displacements caused by disturbances acting near the natural frequency of the system are 

rejected more quickly than they were in Case 1 despite an order increase in their magnitude. 

The imbalance mass was the same for Cases 1 through 3, but the imbalance force was 

different in each Case because the rotational speed was different in each also. Note again, that 

the sign on matrix ∆H must be negative for the results shown in Figure 2-3 and positive for 

those shown Figure 2-4. 

Mass = 5 kg 

Imbal. Force = 0.13 N 

Nat’l Freq. = 20 Hz 

Dist. Freq. = 18 Hz 

∆H = -22,000 
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Figure 2-4 Disturbance Rejection - Case 3 

The next simulation (Figure 2-5.) illustrates the Case for when the disturbance frequency is a 

multiple of the natural frequency of the system. Again, the disturbance is suppressed as 

quickly as it was in the preceding simulations. Here, the imbalance mass was smaller than that 

used previously so that the imbalance force despite the higher frequency would remain within 

the range of the forces from prior simulations. 

 

Figure 2-5 Disturbance Rejection - Case 4 

Mass = 5 kg 

Imbal. Force = 0.19 N 

Nat’l Freq. = 20 Hz 

Dist. Freq. = 22 Hz 

∆H = 22,000 

Mass = 5 kg 

Imbal. Force = 0.06 N 

Nat’l Freq. = 20 Hz 

Dist. Freq. = 40 Hz 

∆H = 80,000 
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Finally, the results shown in Figures 2-6 and 2-7 demonstrate that neither the magnitude of 

the disturbance force nor the amount of damping present in the system affects the ability of 

adaptive methods to suppress disturbances. 

 

Figure 2-6 Disturbance Rejection - Case 5 

For Case 5, the force was increased by one order over the first simulation, yet the time 

required to reject is identical for the two tests (Note that damping and ∆H are the same.). For 

the final case, illustrated in Figure 2-7, a damping ratio of 0.30 was used as compared to a 

value of 0.02 in the first simulation. As can be seen, the times to reject were nearly the same 

regardless of the amount of damping present. However, the value of ∆H had to be adjusted to 

account for the greater damping. 

Mass = 5 kg 

Imbal. Force = 0.40 N 

Nat’l Freq. = 20 Hz 

Dist. Freq. = 10 Hz 

∆H = -28,000 
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Figure 2-7 Disturbance Rejection - Case 6 

It’s also instructive to observe the response of the adaptive gain Hp during disturbance 

rejection. A graph of the gain as a function of time for the first case discussed is shown in 

Figure 2-8 (Graphs of Hp for the other cases are very similar to the graph for this case). 

 

Figure 2-8 Gain Hp - Case 1 

Notice that the gain steadily increases until the disturbance is suppressed at which point the 

gain settles to a nearly constant value. Researchers have investigated whether a change in the 

Mass = 5 kg 

Imbal. Force = 0.04 N 

Nat’l Freq. = 20 Hz 

Dist. Freq. = 10 Hz 

∆H = -40,000 
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slope of or the appearance of a discontinuity in the trace of Hp, once the gain has adapted to a 

disturbance, indicates a change in the balance of a system [26], [27], [28]. If a relationship can 

be established between Hp and a balance state, then a change in the gain could demonstrate a 

change in the balance of a system that could occur as a result of the development of a crack or 

defect. Thus, gain Hp could be used as a predictor of the overall health of a system. 
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Chapter 3 - Existing System 

In this Chapter, an overview of the magnetic bearing system as it existed at the outset of this 

research is presented. The overview includes brief summaries of the bearing and speed-

control hardware, the dSPACE system, the Simulink bearing/speed controller and the 

ControlDesk instrument panels. In addition, summaries are also provided of the significant 

changes and enhancements made to the system as part of this research. Subsequent Chapters 

will discuss these changes in detail. 

3.1 Bearing and Speed-Control Hardware 

The magnetic bearing system was originally designed and developed by the Air Force 

Research Laboratory (AFRL) as part of the Flywheel Attitude Control Energy Transmission 

System (FACETS) program. The AFRL was created in 1997 through the consolidation of 

several laboratories and a research office. The FACETS program included investigation into 

the use of magnetically suspended flywheels for both energy storage in and attitude control of 

space vehicles. At the conclusion of the FACETS program, the entire system was donated to 

Auburn University. 

The magnetic bearing system largely as it was received from the AFRL is shown in Figure 3-

1. (Photo courtesy of R. Jantz [30].) 
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Figure 3-1 Magnetic Bearing System 

The major elements, identified by numbered arrows, are: 

1) proximity system - provides measurements of the displacement of the rotor along the 

bearing axes, 

2) amplifiers - modulate the output of the power supplies to provide the current 

necessary to energize the magnetic bearings, 

3) power supply, 

4) power supply, 

5) sensor - provides the input signal to the mechanical tachometer, 

6) magnetic bearing one - contains four radially disposed electromagnets for supporting 

the free end of the rotor, 

7) flywheel, 
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8) magnetic bearing two - contains four radially disposed electromagnets for supporting 

the motor (turbine) end of the rotor, 

9) sensor - provides the input signal to the electronic tachometer, 

10) air turbine - powers or spins the rotor and flywheel, 

11) air supply line and  

12) flex coupler. 

Further details about the hardware can be found in [30], and a comprehensive discussion of 

the FACETS system including details of its design and construction can be found in [26] and 

[28]. 

Hardware necessary to support the addition of speed control to the original magnetic bearing 

system is pictured in Figure 3-2 (Photo courtesy of [30].) 

 

Figure 3-2 Speed Control Hardware 

and includes the following items identified by the numbered arrows: 

1) electronic tachometer - measures the rotational speed of the rotor, 

3 

2 

4 
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2) stepping motor valve (SMV) - regulates the flow of compressed air to the air turbine, 

3) linear voltage differential transformer (LVDT) - provides measurements of the 

position of the SMV from fully closed to fully open and 

4) project box - provides the electrical connections between the analog-to-digital (A/D) 

converter and the SMV. 

For a complete discussion of the development and implementation of the speed control 

system, refer to [30]. 

Figures 3-1 and 3-2 depict the magnetic bearing system almost exactly as it exists today since 

the hardware with two minor exceptions was not changed for this project. The exceptions 

include careful realignment of the major components and the replacement of the flex coupler 

between the air turbine and bearing two to improve the rotor orbits (See Section 4.1.). 

3.2 dSPACE System 

The interface between the host computer and the bearing/speed-control hardware is provided 

by a system manufactured by dSPACE [31]. Although no changes were made to the dSPACE 

system during this project, summaries of the major hardware and software elements of the 

system follow. 

The dSPACE hardware includes the components listed and briefly described below: 

1) DS1005 processor - executes the control code for the bearing system generated from 

the Simulink bearing/speed controller block diagram, 

2) DS2003 analog-to-digital (A/D) converter - converts analog signals received from the 

hardware (e.g. proximitors and tachometers) to digital for input to the processor, 

3) DS2002/2003 A/D connector panel - provides physical connections for input signals, 

4) DS2103 digital-to-analog (D/A) converter - converts digital signals sent from the 

processor (e.g. control currents and signals) to analog for output to the bearing/speed 

control hardware and 

5) DS2103 D/A connector panel - provides physical connections for output signals. 
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The processor, A/D converter and D/A converter are enclosed in an expansion box that is 

pictured in Figure 3-3. 

 

Figure 3-3 dSPACE Expansion Box 

The A/D and D/A connector panels are shown in Figure 3-4. (Photo courtesy of [30].) 

 

Figure 3-4 A/D and D/A Connector Panels 

The dSPACE software consists of the components listed and briefly described below: 

D/A 

A/D 
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1) Real-Time Workshop - generates C-language programs from Simulink block diagram 

models, compiles the programs and loads the resulting executables on the dSPACE 

processor, 

2) Real-Time Interface - provides the link necessary for connecting Simulink block 

diagrams to dSPACE hardware in block library form and 

3) ControlDesk - provides software for creating layouts and instrument panels used to 

manage and control systems. 

ControlDesk allows Simulink block variables to be displayed and changed through a number 

of different instruments so that systems can be monitored and controlled in real time. 

Variables that can be displayed through ControlDesk instruments include outputs from 

Simulink blocks, while those that can be changed include configuration parameters for 

Simulink blocks and arguments passed to S-functions. Several panels developed with 

ControlDesk are shown in this document (See Figures 4-14, 4-15 and 4-16.). 

3.3 Simulink Bearing/Speed Controller 

The modeling and development of the control system for the magnetic bearings were done by 

[26] using Simulink. This system includes both a proportional-integral-derivative (PID) 

controller for actively managing the bearings and an adaptive-disturbance-rejection (ADR) 

controller for neutralizing the effects of disturbances that can upset the balance of the rotor 

but that cannot be offset by PID control alone. The modeling and development of the PID 

speed control system were done by [30] also using Simulink. The bearing and speed 

controllers were combined into a single system to produce the bearing/speed controller. The 

top-level Simulink block diagram for this is shown in Figure 3-5. 
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Figure 3-5 Bearing/Speed Controller 

The diagram pictured here represents the controller as it appeared at the beginning of this 

research with two exceptions: the rotor speed signals added as inputs to the Adaptive Control 

and Excitation subsystems and the third data store added to support the Discrete Fourier 

Transform (DFT) driven adaptive controller. The colored subsystems or blocks represent 

those that were changed or added over the course of this research. 

In this section, the purpose of each subsystem is briefly described, and the changes made to 

each are briefly summarized. Detailed discussions of the changes to the subsystems are 

provided in the following Chapter. 

Adaptive Control 

The Adaptive Control subsystem calculates the adaptive gains and the controller output 

necessary to suppress the effects of potentially damaging disturbances. The inputs to this 

subsystem are measured rotor position, estimated states (rotor position and speed), any 
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auxiliary inputs applied through the ADC Mux block and the actual speed of the rotor. The 

outputs of this block are the adaptive control signals for the bearings. 

This subsystem was changed so that adaptive control signals are calculated and applied to all 

four axes of the bearing system, and this change was made to extend the research capabilities 

of the system. With adaptive control available on all axes, the predictive capability of the 

adaptive gains regarding moments produced by imbalance forces could also be investigated. 

Safety features were also added to protect the system from damage and to calm the nerves of 

researchers in case of miscalculated or unanticipated controller behavior. These features null 

the contribution of the adaptive gains to the controller output if either or both gains saturate 

and disable the adaptive controller if calculated currents or measured displacements exceed 

thresholds. 

ADC Mux 

Subsystem ADC Mux is the Simulink interface to the dSPACE hardware analog-to-digital 

(A/D) converter. This block collects the inputs to the system and routes them to other 

subsystems for processing. The inputs include eight from the Proximitor probes that measure 

the position of the rotor with respect to the magnetic bearings, eight from the amplifiers that 

provide the current to power the bearings, two from the tachometers that measure the speed of 

the rotor and one from the flow-control valve that indicates the position of the valve from 

fully closed to fully open. No changes were made to this subsystem. 

Bias 

Bias outputs the control voltages applied to the bearings by combining inputs from several 

different sources. The PID and adaptive controllers provide inputs necessary to keep the rotor 

suspended. Other sources include user-specified bias voltages that can be used to shift the 

rotor towards one magnet or the other. Yet another source is the Excitation subsystem. 

Voltages input from this block are used to alter the orbit of the rotor to simulate various types 

of disturbances. No changes were made to this block. 
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DAC Demur 

Subsystem DAC Demux is the Simulink interface to the dSPACE digital-to-analog (D/A) 

converter. Inputs to this subsystem are bearing control voltages output from Bias, a rotor 

status signal from Error, the measured and estimated positions of the rotor with respect to the 

magnets and two control signals for the flow-control valve. These signals determine the 

direction of valve motion (open or close) and the rate of opening or closing. 

There are 10 control voltages output from DAC Demux. Eight are routed to the amplifiers 

shown in Figure 3-1 and converted to the currents required by the magnetic bearings to float 

the rotor. The other two are sent to the project box that provides the interface between the 

connector panel and the flow-control valve. No changes were made to this subsystem. 

Error 

The Error block detects current and position errors and takes precautionary actions to prevent 

damage to the bearing system if thresholds for current or position are exceeded. Typically, the 

actions taken are informational; status messages warn the user of deteriorating conditions. 

However, error states are numerical coded and stored in the Err and ErrADR data storage 

areas shown in Figure 3-5. These codes can be used by other subsystems to alter their 

behavior. 

Inputs to Error are the measured position of the rotor, the currents flowing to the bearings and 

the actual speed of the rotor. Outputs include a signal to reset the integral gain and another 

signal that prior to being neutralized by [30] could be used to deactivate the bearings. This 

signal was disabled to prevent damage to the bearings that can result if deactivation occurs 

while the rotor is spinning. No changes were made to this subsystem. 

Excitation 

The Excitation subsystem as briefly noted in an earlier paragraph provides a means to excite 

the rotor with sinusoidal signals. These are either generated by this block based on user-

specified values for amplitude and frequency or are input to the block via a dynamic signal 
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analyzer. In the latter case, Excitation simply adds the input directly to any signals generated 

within the subsystem to form the output. 

This subsystem was changed to address two problems identified by [28] in his research on the 

predictive capability of adaptive gain Hp. One difficulty was synchronizing the excitation 

frequency output from this block with the actual speed of the rotor. The other was establishing 

the exact time when the excitation was applied by the block. With the changes made to 

Excitation, the frequency of the sinusoidal signals can be updated continuously to exactly 

match the speed of the rotor. The changes also make it possible to capture the complete duty 

cycle of the signals, so the precise moment when the excitation is applied and the precise 

moment when it is removed are both known. 

Phi 

The Phi subsystem computes the disturbance vector required to determine the adaptive gain 

Hp. The input to this block is the actual RPM of the rotor, and the output is the disturbance 

vector. Phi is actually a subsystem within the Adaptive Control block and does not appear in 

the top-level Simulink diagram shown in Figure 3-5. 

This subsystem evolved over the life of the research. The block was originally enhanced so 

that the disturbance vector could be computed on the basis of the actual speed of the rotor and 

multiples of that speed or on the basis of the dominant frequencies calculated by the real-time 

DFT. These methods were in addition to the original one where the frequencies to reject were 

entered manually through ControlDesk. Regardless of the basis, three frequencies were used 

in the construction of the vector. 

However, during development and testing, task overrun errors were encountered that 

destabilized the bearing controller. Thus, this subsystem was streamlined to use just a single 

frequency as just one measure taken to eliminate the overrun errors. (Overrun errors as well as 

all of the steps taken to overcome them are discussed in detail in Chapter 5.) This frequency 

could still be entered manually or it could be based on the speed of the rotor or on the output 

of the DFT. 
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Reducing the disturbance vector to a single frequency did not compromise the usefulness of 

the system significantly. The primary focus of this and similar research is often the 

imbalances that occur at the rotational speed of the system. However, further testing has 

indicated that the refinement and tuning that were done to eliminate task overruns may well 

have created a sufficient time margin that would allow the vector to be expanded beyond a 

single frequency without reintroducing overrun errors. 

PID Controller 

The PID Controller block implements proportional-integral-derivative control on the active 

magnetic bearings. The measured and integrated positions of the rotor and the estimated 

velocity of the rotor are the inputs to the subsystem. The sole output is a control signal. This 

subsystem was constructed so that different controller gains could be applied to each bearing. 

No changes were made to this block. 

Speed Control 

Speed Control is the subsystem that controls the speed of the rotor by implementing 

proportional, derivative and integral control. Inputs to this block are the actual speed of the 

rotor and the position of the flow control valve expressed as a percentage of fully open. 

Outputs from the block are the direction to move the valve (open or close) and the rate at 

which to move it. 

This subsystem provides a number of user-configurable options such as those that determine 

the minimum and maximum opening and closing rates and the maximum sizes of the dead 

bands above and below the set operating speed. In addition, Speed Control supports full 

manual operation of the valve for instances where placing and maintaining the valve at a fixed 

position are needed. No changes were made to this block. 

State Estimator 

Inputs to State Estimator are the rotor position from ADC Mux and the control current to the 

bearings. Other inputs are calibration values, and these are added to the current inputs in this 
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block. Calibration is the procedure that centers the rotor exactly between the magnets and 

calculates any additional currents necessary to do so. This subsystem determines actual rotor 

position and estimates the position and velocity states for input to other subsystems. 

A real-time Discrete Fourier Transform (DFT) was incorporated into this subsystem to 

provide among other things the capability of identifying disturbances that result from base 

motion. Matras [26] demonstrated that the adaptive control laws summarized in Chapter 2 can 

be applied to suppress disturbances produced by base motion. These would more than likely 

occur at unknown frequencies and possibly bear no relation at all to the speed of the rotor. 

One method to determine these frequencies would be to perform a spectral analysis or Fourier 

transform of the rotor's position relative to a bearing axis. 

The DFT was included in this block since the actual position or displacement of the rotor, 

measured in thousandths of an inch, along each bearing axis (the rotor position) is available 

here. Outputs from the DFT can be and were used to drive the Phi subsystem, the block 

responsible for forming the disturbance vector required by the adaptive controller. In addition, 

the DFT provides a direct and nearly immediate measurement of the effectiveness of 

disturbance rejection. 

3.4 ControlDesk Instrument Panels 

The ControlDesk instrument panels used to operate and control the FACETS system are well 

documented and illustrated in [30]. Three additional panels were developed for this project to 

primarily support the configuration and management of the ADR controller. The purpose of 

each additional panel is discussed in the following Chapter, and Figures illustrating each are 

shown in this Chapter as well. 
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Chapter 4 System Enhancements 

Major components of the FACETS system, including the bearing hardware, the Simulink 

bearing/speed controller and the ControlDesk instrument panels, were changed or enhanced 

to: 

• improve the behavior of the rotor, 

• extend the capabilities of the adaptive controller, 

• ensure the safer operation of the system and reduce the potential for damage to it, 

• increase the capacity of the system to serve as a research platform and 

• maintain the consistency of operation through the use of established norms, 

and these changes and enhancements are discussed in detail in this Chapter. 

4.1 Bearing Hardware 

Changes were made to the bearing hardware to improve the orbits of the rotor within each 

bearing. Ideally, the orbits should be small, centered and circular as shown in Figure 4-1 and 

should remain nearly so as the speed of the rotor increases. 

 

Figure 4-1 Ideal Bearing Orbits 

However, as this project progressed, the orbit at the motor or driven end deteriorated, 

becoming large, off-centered and irregularly shaped as shown in Figure 4-2. (Both Figures 
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illustrate the distance, measured in thousandths of an inch (mils), that the rotor is displaced 

along each bearing axis.) 

 

Figure 4-2 Less Than Ideal Bearing Orbits 

In addition, the orbit at the motor end grew alarmingly in size as the rotor speed increased, 

becoming large enough at 5000 RPM to nearly contact the magnets and proximitors. Orbits of 

this size triggered a limit exception resulting in the display of a warning to the user through 

ControlDesk. 

Investigations revealed that the causes of the poor orbits were misalignment between the air 

turbine and the rotor and a flex coupler that could not accommodate the misalignment and that 

also influenced the orbits negatively. Some misalignment, both parallel and angular, will 

nearly always be present between the turbine and the rotor. The turbine is solidly mounted, 

but the rotor orbits within the bearings. Even if the two are perfectly aligned when the rotor is 

suspended but not turning, they will become slightly misaligned as soon as the rotor begins to 

spin. Therefore, the turbine and rotor were carefully aligned first. Then, tests were performed 

with several different types of flex couplers to determine which one would result in the best 

orbits possible. 

The turbine and rotor were aligned (with the flex coupler that was ultimately chosen in place) 

by placing shims under the driving end of the turbine and under the brackets that supported 

the turbine. The shimming was done with the rotor suspended but idle. When finished, the 
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driving end of the turbine was raised 0.002 inch, and the brackets were raised 0.003 inch at 

the driving end and 0.005 inch at the driven end. The shim stock used was non-conductive, 

non-magnetic brass of 0.001 inch thickness. 

Experiments were performed with four different types of flex couplers, including double-loop, 

flexible-spider (the existing one), helical-beam and pinhole-disc, to identify an optimal one. 

The first three are shown in Figure 4-3. 

 

Figure 4-3 Flex Couplers 

In qualitative terms, the coupler must be stiff torsionally to reduce the risk of inducing 

torsional vibrations, stiff axially to control any thrust, however small, that may develop and 

compliant laterally to prevent small misalignments from affecting the bearing orbits. Only the 

pinhole-disc coupler met these requirements; the other three did not. Figure 4-4 shows this 

coupler in place on the FACETS system. 

Flexible 
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Figure 4-4 Pinhole-Disc Flex Coupler 

4.2 Simulink Bearing/Speed Controller 

As noted in the previous Chapter, the four subsystems of the Simulink bearing/speed 

controller that were changed significantly are Adaptive Control, Excitation, Phi and State 

Estimator. The changes made to each are detailed in this Section. In addition, the Simulink 

diagrams for these subsystems before and after the changes were made are shown. The 

diagrams for the subsystems that remained as they were can be found in [27]. 

Adaptive Control 

Modifications were made to the Adaptive Control block to: 

• extend adaptive control to all four axes, 

• null the contribution of each adaptive gain to the controller output if the gain saturates, 

• disable the adaptive controller if current or position limits are exceeded, 

• reduce the composition of the disturbance vector to a single frequency and 

• properly calculate the magnitude of adaptive gain Hp. 

The original Adaptive Control subsystem as developed and refined by [27] is shown if Figure 

4-5. 
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Figure 4-5 Original Adaptive Control Subsystem 

The current Adaptive Control subsystem is pictured in Figure 4-6, and the colored blocks 

identify those that were changed from or added to the original subsystem. 



35 
 

 

Figure 4-6 Current Adaptive Control Subsystem 

The capability of applying adaptive control to all four axes was largely in place on the 

existing system. The gain blocks were already sized such that the outputs from the adaptive 

controller would match those from the other subsystems that acted on all axes. Therefore, it 

was only necessary to identify the matrix elements in each gain block that when set to their 

proper values would enable adaptive control on axes three and four. Also, the blocks 

necessary to reset the integrators to their initial condition, the method used by [27] to disable 

the adaptive gains, had to be similarly modified to accommodate the additional axes. 

The bearing system experienced instability at very low speeds during the initial experiments 

with the predictive capability of the adaptive gains. The instability occurred immediately after 

the adaptive controller was activated and was independent of the mode (manual, DFT or 

speed) used to drive the controller. It appeared that the adaptive gains saturated very quickly, 

and it was thought that rapid saturation may have caused or contributed to the instability. (The 

actual cause of the instability and the steps taken to eliminate it are discussed in Chapter 5.) 
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Thus, the adaptive controller needed to be disabled as quickly as possible if the gains did 

indeed saturate, and S-functions zeroGp and zeroHp were developed to accomplish this. 

S-functions or system functions are one way to greatly extend the capabilities of a Simulink 

model by providing a method for including user-written C programs into a model. Languages 

other than C can be used as well. The programs can be added through a standard Simulink 

block, typically S-Function Builder or S-Function. Both are available in the Simulink/User 

Defined Functions library. 

S-Functions like other blocks in Simulink require that initialization and termination tasks be 

performed at the beginning and end of a simulation. Examples of the former include 

initializing the configuration structure, setting the number and size of input and output ports 

and allocating storage. An example of the latter includes freeing any memory allocated 

specifically for the block. The S-Function Builder block automatically adds the code 

necessary to perform these tasks. The S-Function block does not. 

S-functions zeroGp and zeroHp were written using the S-Function Builder since no special 

tasks exclusive of those provided by the Builder were required to initialize or terminate the 

blocks at the beginning or end of a simulation. In fact, all S-functions developed for this 

project were incorporated into the bearing/speed controller model using the Builder rather 

than the block. If the Builder cannot be used, significantly more effort is required on the part 

of the programmer. 

S-Functions zeroGp and zeroHp work identically. Each monitors the output from an 

integrator’s saturation port. If the integrator saturates, the output from it is nulled and remains 

nulled, even if the integrator becomes unsaturated, until it is reset manually. See Appendix B 

for listings of both programs and detailed comments on the programs’ logic. 

The Adaptive Control subsystem was further modified to support explicit enabling and 

disabling of the adaptive controller through ControlDesk. Previously, the controller was 

enabled or disabled by sending the proper signals to the integrators’ reset ports. Explicit 

enabling/disabling was combined with the limit detect function developed by [27] to maintain 
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the automatic disabling capability of the controller through the Error subsystem. The changes 

to Adaptive Control described in this paragraph were implemented via S-function zeroADR. 

See Appendix B for a listing of this program. 

The last two changes made to the Adaptive Control subsystem were made to accommodate 

the resized disturbance vector and to calculate the magnitude of gain Hp. (Section 3.3 explains 

why this vector was resized to include only a single frequency.) The resized vector entailed 

changes to those blocks that compute Hp to ensure that matrix algebra is performed properly. 

Gain Hp was computed directly (by S-function calcMag) so that it would be available for data 

capture and subsequent analysis. A listing of calcMag appears in Appendix B. 

Program calcMag could have been more easily implemented as an embedded MATLAB 

function, and in fact, it was initially. The program is straight forward, simply calculating the 

square root of the sum of squares. In addition, the program’s computations do not depend on 

those from previous invocations. If they did, an S-function would be needed to provide the 

necessary storage class for the variables used. However, embedded MATLAB functions 

execute much more slowly than S-functions do. The embedded functions are interpreted 

rather than compiled and placed in-line as the S-functions are. Since the real-time constraints 

of the bearing/speed controller were becoming increasingly difficult to satisfy as the 

controller grew in scope and complexity, the execution time of each subsystem and each 

block had to be as fast as possible. Therefore, whenever user-developed programs were 

required, they were added as S-functions rather than embedded MATLAB functions. 

Section 5.2 discusses the profiling of subsystems that was done to help identify ways to 

reduce the execution or run time of each. The results shown in this Section demonstrate the 

significant reduction in the run time of subsystem Adaptive Control when embedded 

MATLAB function calcMag was replaced with an equivalent S-function. 

Excitation 

Modifications were made to the Excitation block to: 



38 
 

• provide the capability to exactly match the frequency of the excitation to the speed of 

the rotor and 

• exactly identify the time when the excitation is applied to and removed from the rotor. 

The original Excitation subsystem is shown if Figure 4-7. 

 

Figure 4-7 Original Excitation Subsystem 

The current Excitation subsystem is pictured in Figure 4-8, and the colored blocks identify 

those that were changed from or added to the original subsystem. 

 

Figure 4-8 Current Excitation Subsystem 
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The original subsystem applied sinusoidal excitations to one or more axes at a single 

frequency. The excitation consisted of both sine and cosine terms, thus simulating a rotating 

imbalance. The frequency was chosen by the user and remained constant unless explicitly 

changed. The amplitudes of the sinusoid signals were also chosen by the user and could be the 

same or different for each axis. 

The capability of Excitation was extended so that the frequency of the applied signals could 

be exactly the same as the speed or frequency of the rotor. Ensuring that the two frequencies 

are the same or nearly so is critical to determining the effectiveness of the adaptive controller. 

[28]. The addition of speed control to the FACETS system helped immeasurably in this regard 

since maintaining a constant rotor speed lessens or eliminates the need to adjust the excitation 

frequency dynamically. However, small variations in rotor speed still occurred regardless of 

how well the speed control functioned, so the ability to match the frequencies of the excitation 

and the rotor speed was still needed. 

Dynamic frequency adjustment was implemented by S-function excFreq shown in Figure 4-4 

(A listing of this function appears in Appendix B.). S-function excFreq can also update the 

frequency of the excitation at a user-specified interval in addition to adjusting it at the speed 

of the simulation. Intervals of any length can be chosen, limited only by the configuration of 

ControlDesk, and the length can be changed at any time. This "adjust and hold" capability 

was added in case instability resulted from adjustments that were made too rapidly. In fact, 

"adjust and hold" was initially developed for another subsystem which did become unstable 

when driven at the simulation frequency. 

Another capability developed for subsystem Excitation permitted the recording of the exact 

time when excitation was both applied to and removed from an axis. Again, [27] had noted 

the importance of this to the determination of the responsiveness of the adaptive gains to 

changes in the imbalance state of the flywheel. S-function excRotor implements this 

capability by monitoring the current and previous states of the subsystem, enabling or 

disabling the excitation accordingly and updating the current status of the excitation through 

an output that is available for data capture. This output can then be plotted as a function of 
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time so that the exact moments of the application and removal can be found. See appendix B 

for a complete listing of this S-function. 

Phi 

Modifications were made to the Phi subsystem so that the disturbance vector could also be 

composed on the basis of: 

• the actual speed of the rotor or 

• the dominant frequencies calculated by a Fourier analysis. 

The original Phi subsystem is shown if Figure 4-9. 

 

Figure 4-9 Original Phi Subsystem 

As can be seen from the Figure, three frequencies rather than one were used to construct the 

disturbance vector to improve the effectiveness of adaptive control when the primary 

frequency to reject was not precisely known or when frequencies that were multiples of the 

rotor speed were to be rejected too [28]. The three frequencies were entered as constant values 

through ControlDesk. 

The Phi subsystem was revised twice from the original, and the first version is pictured in 

Figure 4-10. The colored blocks identify those that were added to the original subsystem. 
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Figure 4-10 Phi Subsystem - Version 1 

The first changes to the Phi subsystem maintained the existing size of the disturbance vector 

(three) but also introduced dynamic composition whereby the frequencies to reject could be 

based on the actual speed of the rotor, either measured directly by the tachometer or 

calculated indirectly via a Fourier transform. With dynamic composition, the actual 

frequencies that appear in the disturbance vector and the desired frequencies to reject are the 

same or nearly so improving the effectiveness and the responsiveness of the adaptive 

controller. As the actual and desired values diverge, the disturbance rejection becomes less 

complete, and the adaptive gains become less predictive (responsive) [28]. 

S-function genFreqs determines the frequencies to reject based on the measured speed of the 

rotor. This speed and others chosen by the user are placed in the disturbance vector. The user-

chosen values can be multiples or fractions of the rotor speed or just about anything related to 

it depending only on the configuration of ControlDesk and the complexity of the S-function. 

In addition, genFreqs can update the disturbance vector at the simulation speed or at longer, 
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user-specified intervals, the "adjust and hold" capability discussed earlier, if instability results 

as a consequence of updates that occur too often. See Appendix B for a listing of function 

genFreqs. 

S-function cmpAmps determines the frequencies to reject based on a Fourier analysis provided 

by S-function DFT that is included in subsystem State Estimator. The frequencies used for the 

disturbance vector are the dominant ones, those with the greatest amplitudes. The frequencies 

are made available to this function through a Data Store, a Simulink block that provides a 

vehicle for exchanging data between subsystems. This S-function updates the frequencies at 

whatever interval is required to calculate the next Fourier transform. This interval depends on 

the sampling frequency and the frequency resolution of the transform. Both parameters can be 

chosen and changed at will by the user through ControlDesk. 

In addition, cmpAmps can be configured to only update the frequencies if ones calculated 

subsequently correspond to amplitudes that exceed a user-defined threshold. This feature was 

added to prevent the immediate reappearance of persistent frequencies following their 

rejection. When the composition of the disturbance vector is dynamic and driven by the 

Fourier analysis, once a persistent disturbance is rejected, its frequency is removed from the 

vector, and the disturbance then reappears only to be rejected again where it once more 

reappears ad infinitum. Establishing an amplitude threshold ensures that a disturbance once 

detected will be rejected until something more dominant unbalances the system. See 

Appendix B for a listing of S-function cmpAmps. 

Following the decision to reduce the disturbance vector to a single frequency (See Section 

3.3), the Phi subsystem had to be changed accordingly. These changes produced the second or 

current version shown in Figure 4-11. The colored blocks are the ones that were added to the 

original subsystem. 
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Figure 4-11 Current Phi Subsystem - Version 2 

Although Version 2 is greatly simplified, it still provides the same functionality as the earlier 

Version. The disturbance vector can still be composed in the same three ways, by providing a 

single frequency manually or by determining it dynamically based on either the speed of the 

rotor or the dominant frequency returned by the Fourier transform. The S-function oneFreq 

chooses the method for composing the vector based on a switch set by the user. This function 

is basically a condensed version of a combination of the S-functions genFreqs and cmpAmps 

described earlier, and it also incorporates all of the switching that was done previously 

through several Simulink blocks. A listing for S-function oneFreq is shown in Appendix B. 

S-function oneFreq provides the "adjust and hold" capability for the rotor-speed driven case 

or mode just as genFreqs did. In addition, amplitude and frequency thresholds can be 

established in the case of the Fourier-driven mode. The purpose of the amplitude threshold is 

the same in both Versions of the subsystem. The ability to establish a frequency threshold was 

a feature added to Version 2. The purpose of the frequency threshold is to prevent a very low 

or zero frequency from being used to compose the disturbance vector. A dominant frequency 

can occur at or near zero Hz if the rotor's orbits are large or off-center. 
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State Estimator 

The State Estimator subsystem was enhanced to include a real-time Discrete Fourier 

Transform (DFT) that extends the capability of the adaptive controller. The DFT provides a 

spectral or frequency analysis of the rotor displacements, allowing the controller to identify 

and reject frequencies that are not known a priori and also provides a useful tool for the 

analysis of experimental data. 

The original State Estimator subsystem is shown in Figure 4-12. 

 

Figure 4-12 Original State Estimator Subsystem 

The current State Estimator subsystem appears in Figure 4-13, and the colored blocks identify 

those that were added to the original subsystem. 
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Figure 4-13 Current State Estimator Subsystem 

The S-function DFT computes the discrete Fourier transform of rotor displacements along one 

axis according to the following equations given in Beckwith et.al.[32]: 

�/ � "0∑ �23Δ,5 cos 6"78/0 908:    ; � 0, 1,⋯ , 0" 

(4.1) �/ � "0∑ �23Δ,5 sin 6"78/0 908:    ; � 1, 2,⋯ , 0" � 1 

(4.2) 

�/ � >�/" � �/"   ; � 0, 1,⋯ , 0" 

(4.3) 

where �/ and �/ represent the Fourier coefficients, �/ represents the Fourier amplitudes, N 

equals the total number of data points and �23Δ,5 equals the magnitude of the 3@A data point 

(displacement). The Fourier frequencies B/ are calculated using the equation: 

B/ � ;ΔB   ; � 0, 1,⋯ , 0" 

(4.4) 

where ΔB is the fundamental cyclic frequency or frequency resolution of the transform. 
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Calculating Fourier transforms in a real-time environment presents serious challenges. The 

FACETS system is a genuine real-time computing or reactive computing system where the 

controller outputs must be available to the bearings within strict time constraints. If they are 

not, bearing instability can and does result. Functions added to the Simulink bearing/speed 

controller must not destabilize the bearings by either executing too slowly or imposing 

"shock" loads either of which could result in the failure to meet real-time constraints. 

Therefore, S-function DFT was written to run efficiently and consistently, requiring a nearly 

constant amount of time to execute during each invocation. 

An examination of the equations used to determine the Fourier coefficients shows that each 

data point is used in the calculation of each coefficient. Since the number of data points to 

collect is known prior to the start of the transform, there is no need to wait until all data are 

collected before beginning the computations of the Fourier coefficients. S-function DFT 

performs all calculations that depend on a data point as that point becomes available. 

Calculating "as you go" ensures that the number of computations made each time the function 

is called is the same, avoiding shocks to the system and making the transform available to 

other subsystems as quickly as possible. 

S-function DFT also uses a simple algorithm to produce an ordered sort of the Fourier 

frequencies, based on the corresponding Fourier amplitudes, that minimizes execution time 

and reduces risks to the real-time requirements of the system. Sorting is not done completely 

during a single execution of the function. Instead, just one data point is sorted and located 

properly during each invocation, but the sort occurs at simulation speed. The simple algorithm 

used and its unique implementation ensure that more sophisticated algorithms are not needed 

to increase the speed of the sort [33]. 

The discrete Fourier transform is configurable through a ControlDesk panel discussed in the 

following Section. The sampling frequency and the frequency resolution are chosen by the 

user and can be changed at any time during a simulation. The S-function recognizes if either 

or both parameters have changed during the computation of a transform, and if they have, the 

function will terminate the current transform and begin the calculation of a new one. In 
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addition, any one of the bearing's four axes can be selected as the basis of the Fourier 

analysis. Appendix B provides a complete listing of S-function DFT. 

4.3 ControlDesk Instrument Panels 

The ControlDesk instrument panels for this project were developed using the conventions for 

appearance and function established by [30]. These conventions ensure that instruments 

appear the same when placed within a frame or on a panel and that instruments are used 

consistently with regard to purpose. The “look and feel” of the panels created for this project 

is the same as it is for those created previously. Users are presented with a graphical interface 

for operating and controlling the rotor that gives no indication that it was developed by more 

than one researcher. 

Each of the new panels, More, DFT/ADR, ADR/Exc and Diag, will be discussed in detail in 

this Section, and each with the exception of Diag will be shown. 

More  

The More panel, pictured in Figure 4-14, was created to ensure that new panels could be 

easily added to the existing system without changing the top-level layout_start panel. 
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Figure 4-14 More Instrument Panel 

This panel is actually a portal that provides access to other panels. Access to a new panel can 

be constructed by simply adding a PushButton instrument to the More panel and dropping the 

new panel’s object onto that button. The return path from the new panel is just as easily 

created using complementary steps. 

Reaching other panels through the portal adds to the time required to navigate the system, but 

the extra time is insignificant as long as the conventions for building panels are followed. If 

they are, the PushButtons required for navigation are placed consistently, ensuring that any 

panel can be accessed from any other using no more than a few mouse clicks. Other methods 

could have been used to move between panels, but they would have quickly cluttered the 

existing panels without providing a consistent, systematic way to add new ones. 
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DFT/ADR  

The DFT/ADR instrument panel was developed to allow the user to configure and operate 

both the discrete Fourier transform and the adaptive controller as well as to observe the 

outputs from the transform and the frequencies of the disturbances to reject. The DFT/ADR 

panel is shown in Figure 4-15. 

 

Figure 4-15 DFT/ADR Instrument Panel 

Values for several parameters must be chosen to properly configure the system to perform a 

Fourier analysis. Although the parameters Sampling Freq, Freq Resolution and Axis are self- 

explanatory, further notes concerning the first two will be beneficial. The size of the 

structures used by S-function DFT to calculate a Fourier transform is based on the extreme 

values allowed for these parameters through ControlDesk. If these values are changed, the S-
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function may not allocate adequate space to accurately compute transforms. A value defined 

in header file mbcntrl_a.h limits the number of data points that can be used to calculate a 

Fourier transform, and this value must be carefully considered before changes to expand the 

range of either parameter are made. See Appendix B for a listing of the header file. 

The Min Amplitude parameter can be used to limit the frequencies output by the DFT function 

to only those that correspond to amplitudes equal to or greater than the parameter's value. This 

value or threshold prevents frequencies other than the most dominant from being used in the 

composition of the disturbance vector. Similarly, the Max Num Freqs parameter can also be 

used to limit the number of frequencies appearing in this vector. Note that with Version 2 of 

the Phi subsystem, neither parameter has any effect on the elements of this vector. 

Notice that the Fourier analysis pictured identifies a single frequency that matches the rotor 

speed exactly. Even in the absence of any other excitation, this frequency will always appear 

in the spectral analysis of any rotating machinery that isn’t perfectly balanced. Although this 

frequency is present, it will not be located exactly at the rotor speed unless the actual speed of 

the rotor is an integer multiple of the frequency resolution [33]. For the case shown in Figure 

4-15, the rotor speed was exactly ten times the resolution. 

Configuration of the adaptive controller begins with the selection of the driving mode or 

method used to determine the frequency or frequencies, depending on the Version of the 

adaptive controller, to reject. The mode, chosen with a radio button, can be Manual, Speed or 

DFT. In Manual mode, the frequencies are simply entered by the user at the lower right of the 

panel. In Speed and DFT modes, the frequencies are determined dynamically, based on either 

the speed of the rotor or the output of the real-time DFT. 

Values for parameters Amp Threshold, Update Int and Phi D Fill must also be chosen. 

Parameter Amp Threshold applies to DFT mode only, while parameters Update Int and Phi D 

Fill  apply to Speed mode only. The purposes of the first two have already been discussed in 

Section 4.2. The remaining one, Phi D Fill , was used to add frequencies to the disturbance 

vector when the adaptive controller was driven by the speed of the rotor. 
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Recall that with the original system, the disturbance vector required three frequencies. When 

the controller is placed in Speed mode, only a single one, the rotor speed, is available to 

compose the vector. Therefore, the other two frequencies had to be calculated or chosen in 

some fashion to complete the vector. The parameter Phi D Fill provided several different 

methods for determining the remaining frequencies. The methods were straight-forward and 

computed the values of the additional frequencies as multiples of the rotor speed, fractions of 

the rotor speed or zero. The former method had been used in prior research of disturbance 

rejection since dominant frequencies occurring at two times and four times the rotor speed 

exist in the frequency spectrum of the FACETS system [28]. The latter method was included 

to support research that focused solely on disturbances that occur at rotor speed. Note again 

that with Version 2 of the Phi subsystem, the Phi D Fill parameter has no effect on the 

composition of the disturbance vector. 

The bottom part of the DFT/ADR panel provides controls for operating and tuning the 

adaptive controller. Many of the instruments that appear here were already in place on 

existing panel Control Parms [30]. They were also placed on panel DFT/ADR so that both 

configuration and operation of the adaptive controller could be done from a single panel. 

Values of several parameters can be chosen to tune the controller and affect its 

responsiveness. Upper and lower saturation limits can be placed on the integrators that 

determine the adaptive gains Gp and Hp to prevent the gains from becoming too great and 

potentially causing instability in the bearings. In addition, values for the weighting matrices 

∆G and ∆H can be chosen to affect how quickly the controller responds to disturbances. 

Note that the calculation of the adaptive gains and the adaptive controller itself are disabled 

by default. The gains will only be calculated if the checkboxes are selected, and the output 

from the controller will only be applied to the bearings if the controller is enabled (turned on). 

In summary, nothing is output from the controller unless it is turned on, and the gains are 

activated. 
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ADR/Exc 

The ADR/Exc panel provides the capability to configure and operate the adaptive controller 

just as the DFT/ADR panel did and also allows the user to enable the internal excitation and to 

choose either a static or dynamic method for selecting the excitation frequency. In addition, 

the values of the adaptive gains applied to each axis, the outputs from the adaptive controller 

and the orbits of the rotor are all displayed. The ADR/Exc panel is shown in Figure 4-16. 

 

Figure 4-16 ADR/Exc Instrument Panel 

This panel locates the controls essential to the safe investigation of adaptive-disturbance- 

rejection techniques onto a single screen. The adaptive gains and the controller outputs can be 

closely monitored and the controller quickly disabled if potentially unstable behavior is 

observed. Similarly, the effects of the excitation can also be closely watched and the 
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excitation instantly disabled if it’s observed to be driving the bearing system towards 

instability. 

Note from Figure 4-16 that the excitation must be enabled here and on existing panel 

Input/Output to be effective. The need to control the excitation from the ADR/Exc panel 

combined with the desire to not change any of the functions provided by existing panels 

required that the excitation be applied this way. Also, note that the frequency of the excitation 

can be static, chosen by the user and remaining constant until explicitly changed, or dynamic, 

following the speed of the rotor exactly or at “adjust and hold” intervals as described in 

Section 4.2. 

Diag 

The Diag panel was constructed so that diagnostic information could be easily output using an 

existing framework. This panel provides a means to display information that is necessary for a 

temporary purpose (e.g. troubleshooting problems or verifying outputs from new blocks) but 

that is not needed on a permanent basis. The Diag panel is not shown since it basically 

consists of the outer frame common to all panels and plotter array instruments. 
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Chapter 5 System Tuning 

The Simulink bearing/speed controller has grown in size and complexity since it was 

originally conceived and built by [27]. Additions and enhancements have been made to the 

model to support the needs of subsequent researchers. During the current work with the 

FACETS system, the cumulative effects of the changes became significant enough to prevent 

the real-time requirements of the system from being met. Although this was not immediately 

apparent, it became so after attempts to resolve bearing stability issues actually led to 

increased instability. Once it was realized that real-time constraints were not being satisfied, 

several steps were taken to reduce the execution time of the controller. Specifically, 

subsystems were streamlined and profiled, fundamental sample sizes were varied and tested 

and tools provided by Simulink were used to produce a useful model that executed rapidly 

enough to ensure stability of the magnetic bearings. 

5.1 Task Overruns 

Section 3.3 briefly introduced the problem with task overrun errors that occurred with the 

bearing/speed controller built with Version 1 of the Phi subsystem. Initial testing with this 

controller began at low speeds, 600 RPM or less, and occasional bearing instability was 

observed with the adaptive controller active. The instability was present regardless of the 

mode used to drive the controller. At first, the adaptive control laws themselves were thought 

to be one possible cause of the instability. Perhaps, they did not apply well at very low speeds 

despite their solid theoretical development [25]. The laws were tested thoroughly using the 

simulated system and MATLAB program discussed in Chapter 2. The tests showed that the 

control laws worked perfectly at all speeds. The controller reacted to and rejected frequencies 

as low as 1 Hz. 

Investigation then focused on the actual calculation of the adaptive gains by the Simulink 

bearing/speed controller. The Simulink model was modified to provide diagnostic information 

at several points along the data paths in the Adaptive Control and Phi subsystems. With these 

modifications in place, the instability became worse, occurring more frequently than before. 
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Collecting information that would hopefully provide insight into the problem was actually 

destabilizing the system further. At this point, the adaptive controller was still suspect. It was 

thought that possibly the calculation of the adaptive gains or the rates at which the gains 

adapted were causing instability. The Simulink model was modified to closely monitor the 

gains and the controller's output and to disable the controller if the potential for instability was 

detected. With these changes, the bearing/speed controller immediately became unstable 

when the adaptive controller was activated with the rotor suspended but not turning. 

Finally, it became obvious that the stability problems steadily worsened as the Simulink 

model grew in size and complexity. It was ultimately concluded and correctly so that the 

dSPACE processor was overloaded. The Simulink bearing/speed controller could not be 

executed in the time allotted for it resulting in task overrun errors and attendant bearing 

instability during operation of the FACETS system. 

When a Simulink model is compiled and loaded by Real-Time Workshop, the resulting 

executable program will be scheduled and run as one or more tasks on the dSPACE processor. 

In the case of the bearing/speed controller, the entire model is run as a single task. This task 

must execute completely from start to finish within the time allocated for it, and this time is 

defined by the fundamental sample size or fixed step size (FSS) of the simulation. If the task 

cannot be completed in a time less than or equal to the FSS, task overrun errors occur, and 

when they do, the results are unpredictable [34]. In the case of the FACETS system, the result 

was bearing instability. 

Overrun errors can be eliminated several different ways including: 

• decreasing the complexity of the model, 

• increasing the efficiency of the model, 

• increasing the fundamental sample size of the simulation and 

• using a faster processor. 
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The first three of the four methods were used to overcome the overrun errors and restore the 

stability of the system without sacrificing functionality. Economic realities prevented the use 

of the last method listed. 

The changes made to the existing subsystems during this research have already been 

discussed in Chapter 4. Note that the subsystems were changed to both enhance the 

capabilities of the FACETS system and to reduce the potential for overrun errors. In 

summary, the changes made to help eliminate errors by decreasing complexity included 

restructuring subsystems to maintain functionality with fewer blocks and reducing data widths 

where possible. Changes made to increase efficiency included reducing the number of 

trigonometric functions, replacing embedded MATLAB functions with S-functions when 

possible and exclusively using S-functions when user-defined functions were needed. 

5.2 Subsystem Profiles 

To demonstrate how significantly the execution time of a subsystem can be affected by the 

steps taken to satisfy both the functional and real-time requirements of the magnetic bearing 

system, stand-alone models of the Adaptive Control subsystem were built and profiled. 

Profiling is a method used to determine the time spent executing each block in a Simulink 

model during a simulation. The Profiler is an excellent tool for evaluating the relative effects 

on the overall execution time of a model caused by adding, changing, deleting and 

reconfiguring blocks. 

The base model used for profiling the Adaptive Control subsystem is shown in Figure 5.1. 
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Figure 5-1 Base Profile Model – Adaptive Control Subsystem 

This model is nearly identical to the actual Adaptive Control subsystem with two exceptions: 

the inputs from the other subsystems necessary for calculating the adaptive gains and 

composing the disturbance vector were simulated rather than input from hardware devices or 

state estimators and the blocks required to compose the disturbance vector were incorporated 

directly into the adaptive controller rather than assembled into a separate subsystem. The 

inputs for the adaptive gains were generated using Random Source blocks executing at 

simulation frequency. The input for the disturbance vector was also created using a random 

source block, but this block ran at 10% of the simulation frequency to closely resemble the 

small, slow fluctuations about a set point that are observed in the speed of the rotor during 

operation. Note that for profiling purposes, the adaptive controller was placed in speed mode. 

The profile results for the base model, Adapt_Cntrl_1E, and for all variations of it are shown 

in Table 5-1. (See Appendix C for samples of profile reports for each model.) 
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Adapt_Cntrl_1E Adapt_Cntrl_1S Adapt_Cntrl_3E Adapt_Cntrl_3S 

Tot Time 
(secs) 

Blk Time 
(%) 

Tot Time 
(secs) 

Blk Time 
(%) 

Tot Time 
(secs) 

Blk Time 
(%) 

Tot Time 
(secs) 

Blk Time 
(%) 

1.33 4.7 1.17 1.3 6.91 56.2 1.33 4.7 

1.33 4.7 1.17 1.3 6.48 56.1 1.27 4.9 

1.33 5.9 1.19 1.3 6.72 55.6 1.30 4.8 

 

Table 5-1 Profile Results - Adaptive Controller 

The base model as its name implies used a single frequency to construct the disturbance 

vector and an embedded MATLAB function to calculate the magnitude of the adaptive gain 

Hp. Note that this model also has just two trigonometric functions and a relatively narrow data 

width. The maximum width is a 4x2 matrix, and it occurs in the Hp calculation path. For this 

model as well as for all others listed in Table 5-1, the duration of the simulation was 60 

seconds, and the simulation period or fundamental sample size was 0.01 second. 

As Table 5-1 shows, the base model required 1.33 seconds to execute (total time or Tot 

Time), and the time spent executing the embedded MATLAB function (block time or Blk 

Time) varied from 4.7 to 5.9% of the total. The total time is not equal to the duration of the 

simulation in any of the results because the models were run entirely within Simulink, and 

when they are, there is no synchronization between the simulation and a real-time or wall 

clock. Simulink simply runs the model as fast as it can, and the number of times the model is 

run is equal to the product of the duration and frequency (1/FSS) of the simulation. Therefore, 

all models were executed exactly the same number of times (6000) during profiling, and all 

times appearing in the Table provide excellent comparative data. 

The second model of the Adaptive Control subsystem profiled, Adapt_Cntrl_1S, was the same 

as the first or base model except that the embedded MATLAB function was replaced with a 
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compiled S-function. The total times for the simulations and the block times for the S-

function are shown in Table 5-1. Note that the substitution of an S-function reduced the total 

times 10 to 12% and the block times from 75 to 80%. The reductions in block times were 

calculated from the actual time spent executing the block rather than from the percentages 

appearing in the Table. 

The third model profiled, Adapt_Cntrl_3E, was similar to the first, but three frequencies were 

used to construct the disturbance vector. This entailed the addition of four trigonometric 

blocks and expanded the maximum data width to 4x6, the size of the matrix required to 

calculate the Hp gains. Again, the profile results for this model are shown in Table 5-1, and as 

can be seen, the total times increased substantially over those recorded for the other models. 

In addition, the time spent executing the embedded MATLAB function represented over 55% 

of the total simulation time. 

The last model profiled, Adapt_Cntrl_3E, differed from the previous in that an S-function was 

substituted for the embedded MATLAB function. The reductions in total simulation times and 

in the time spent calculating the magnitude of the adaptive gains were substantial when 

compared to the results of the previous model and as illustrated by the data in Table 5-1. 

Interestingly, times recorded for the last model and for the first were nearly identical. 

In summary, the steps taken to reduce the execution time of the Adaptive Control subsystem 

were shown by the profile results to be those that do indeed reduce the complexity and 

improve the efficiency of the subsystem. As a result, the execution time of the entire Simulink 

bearing/speed controller model is reduced, and the risks of task overrun errors are lessened. 

A stand-alone model of the State Estimator subsystem was also built and profiled to 

determine how significantly the real-time calculation of Fourier transforms affected the 

execution time of the subsystem. The stand-alone model is shown in Figure 5-2. 
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Figure 5-2 Profile Model – State Estimator Subsystem 

This model is identical to the actual subsystem with the exception of the inputs. The State 

Estimator subsystem receives inputs on rotor position and control currents from other 

subsystems while inputs for the profiled model were simulated, just as they were with the 

profiled model of the Adaptive Control subsystem, with Random Source blocks. In addition, 

to properly test the calculation of the discrete Fourier transforms, three sinusoidal excitations 

of varying frequencies and amplitudes were added to the simulated rotor position inputs. 

The profile results for the stand-alone model are shown in Table 5-2. (See Appendix C for a 

sample profile report.) 

Tot Time 
(secs) 

Blk Time 
(%) 

Smp Freq 
(Hz) 

Freq Res 
(Hz/pt) 

Tot Time 
(secs) 

Blk Time 
(%) 

Smp Freq 
(Hz) 

Freq Res 
(Hz/pt) 

5.27 1.8 0 0 5.38 2.0 100 1 

5.28 2.1 0 0 5.56 6.7 100 0.2 

5.33 2.6 40 1 5.55 6.5 200 1 

5.34 2.9 40 0.6 6.31 18.6 200 0.2 
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5.34 4.4 40 0.2 7.88 33.9 500 0.4 

 

Table 5-2 Profile Results - State Estimator 

All simulations profiled were executed at the same frequency and for the same duration. The 

first two results indicate the time necessary to execute the model without calculating a Fourier 

transform. For the rest of the results, Fourier transforms were computed with the 

combinations of sampling frequency and frequency resolution shown in the Table. Again, the 

times shown are those required to complete the simulation (total time) and those required to 

complete the execution of the DFT S-function block (block time). The latter are given as a 

percentage of the total. 

There is a small amount of overhead required by the DFT S-function when it’s disabled to 

ensure that the function is properly initialized once it is enabled. The time necessary to 

perform this overhead explains why the block times for the first two results shown in Table 5-

2 are nonzero. The results also indicate that transforms requiring 100 or fewer data points 

have little effect on the execution time (total time) of the subsystem. Transforms that require 

200 to 500 points do cause a small but noticeable increase in the total time by about 4% over 

that observed when the DFT is inactive. However, the data also show that when the DFT is 

enabled, the execution time of the subsystem can increase by 30% or more given 

combinations of high sampling frequency and fine frequency resolution. 

In summary, the real-time calculation of a discrete Fourier transform has a negligible effect on 

the performance of the subsystem as long as the sampling frequencies are no greater than 200 

Hz and the frequency resolutions are no less than 1 Hz/pt. 

5.3 Fundamental Sample Sizes 

The fundamental sample size or fixed step size of a simulation has already been defined as the 

maximum amount of time allowed for a Simulink model to execute from start to finish on the 

dSPACE processor. This time was originally set to 0.00015 second by [27] and was not 
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changed by [30], so it was the step size in use at the outset of this project. As the 

bearing/speed controller model evolved, it eventually could not be executed completely in the 

time allocated for it without task overrun errors and the resulting bearing instability. 

Experiments were conducted in parallel with other efforts to eliminate the errors to determine 

if a larger FSS could be used that would still satisfy the bearing’s real-time constraints. 

Finding an optimal sample size can be difficult since it must be large (long) enough to 

accommodate the model but small (short) enough to ensure stability. 

The existing sample size was very small and the resulting simulation frequency was very fast 

(6667 Hz). Given this speed, a good sample size for the first experiment was chosen as twice 

the existing one (0.0003 second). The FACETS system was tested with this over a range of 

speeds beginning with the rotor suspended but stationary and with nearly all of the changes to 

the model described earlier in place. The system performed perfectly with no stability 

problems. 

Next, the FSS was increased to 0.0004 second, and the same tests were conducted as before. 

The system was operated over the range of speeds commonly used, and all facilities of the 

model were exercised. The system was stable over the course of all tests. For the next series 

of tests, the FSS was again increased by 0.0001 second, and here, the upper bound for the 

fixed step size was reached. With the FSS set to 0.0005 second, the FACETS system was just 

barely stable when suspended but stationary. The bearings protested audibly, though not 

loudly, emitting ominous sounds indicating that a step size any larger would lead to 

immediate instability. 

A summary of the tests shows that the system was stable with sample sizes of 0.0003 and 

0.0004 second. The upper limit on the sample size was clearly determined to be 0.0005 

second. A lower limit was not precisely identified given the stressful nature of the testing, but 

an extrapolation of the results suggests that step sizes much less than 0.0003 second are too 

small. Accordingly, the FSS of the simulation was set to 0.0003 second for the duration of the 

project. In addition, several Simulink blocks used in the bearing/speed controller have their 
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sample times set explicitly. For all of these blocks, the sample times were also set to 0.0003 

second. 

By choosing an FSS at the lower end of the stable range, room remains for the FSS to be 

increased if the model grows in scope and/or complexity. However, the FACETS system is 

only stable over a very narrow range of fundamental sample sizes. If changes are made to the 

model, they should only be made after their effect on the overall simulation time of the model 

is known. 

5.4 Model Advisor 

Simulink provides a tool, the Model Advisor, which can be used to check models and 

subsystems for conditions and configuration settings that can result in inefficient simulations 

and poor code generation. The Advisor produces a report that details suboptimal conditions 

and settings and suggests changes to improve the model or subsystem. The individual checks 

performed by the Advisor will not be discussed here. They are simply too numerous and 

many were not relevant to the performance of the bearing/speed controller. For a detailed 

discussion of the checks, consult the online Simulink documentation. 

All of the subsystems in the Simulink model were checked with the Model Advisor, and the 

results showed that all were well constructed and configured. The Advisor found very little 

that could be changed to improve the performance of the controller. However, the tool did 

suggest enabling compiler optimizations that would improve the efficiency of the code 

generated by Real-Time Workshop. These changes were made to the Simulink configuration 

parameters for the bearing/speed controller. 
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Chapter 6 Experimental Results 

The primary objective of the experiments was to determine if the adaptive gain Hp.could be 

used to identify a change in the balance state of a rotating system. The magnetic bearing 

system was subjected to both simulated disturbances and actual changes in balance to 

investigate the behavior of the gain. Variations in the speed of the rotor affected the gain 

significantly, and a relationship between the gain and the balance change could not be 

established. Several methods were considered and tested to determine if synchronizing the 

disturbance frequency (rotor speed) with the reject frequency could eliminate the influence of 

the speed variations on the gain. Computer simulations demonstrated that the methods were 

promising and worth implementing on the actual magnetic bearing system. 

6.1 Simulated Imbalances 

The effectiveness of adaptive control can be demonstrated by applying a sinusoidal 

disturbance to the rotor and observing the change in the rotor displacements along the bearing 

axes when the adaptive controller is activated. Figure 6-1 shows the displacement of the rotor 

along a single axis both before and after adaptive control is applied. 

 

Figure 6-1 Rotor Displacement with Adaptive Control 
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The rotor was spinning at 600 RPM (10 Hz), and it was excited by a sinusoid, generated 

internally by the Simulink subsystem Excitation, with a magnitude of 0.3V and a frequency of 

10 Hz. The excitation simulated a rotating imbalance since the disturbance frequency was the 

same as the rotor speed. The adaptive controller was activated at 7.78 seconds, and the 

excitation was applied at 12.22 seconds and removed at 16.76 seconds. Finally, the adaptive 

controller was deactivated at 18.18 seconds. 

Figure 6-2 illustrates the variation of the adaptive gain Hp with time. 

 

Figure 6-2 Gain Response to Synchronous Excitation (10 Hz) 

The initial response of the gain is attributable to the inherent imbalance in the system. Once 

the gain has adapted to this and the controller has largely rejected the synchronous 

disturbance, the excitation was applied. The gain again responds almost immediately and 

adapts to the application of the sinusoid reducing the rotor displacements significantly. 

The responsiveness of the gain and the effectiveness of the disturbance rejection can be seen 

more clearly when the trace of the rotor displacement, the trace of the gain and the duty cycle 

of the excitation are plotted together as a function of time. These plots are shown in Figure 6-

3. 
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Figure 6-3 System Response to Synchronous Excitation (10 Hz) 

Notice the spikes in rotor displacement that occur immediately after the sinusoid is applied 

and removed, the nearly simultaneous response of the gain Hp to the rapid change in 

displacements and the return of the displacements to their inherent imbalance levels when the 

adaptive controller is turned off. 

The use of internal excitation clearly shows how well the adaptive controller can suppress 

synchronous disturbances. The successful rejection of asynchronous disturbances, such as 

those introduced via base motion, can also be shown using this method. In addition, the 

results presented in this section were obtained with the adaptive controller operating in 

manual mode whereby the frequency of the disturbance to reject was known and entered 

manually through ControlDesk. Similar, nearly identical, results can also be obtained with the 

controller operating in speed or DFT mode. In the former, the disturbance frequency would be 

derived from the actual speed of the rotor, and in the latter, from the dominant frequency 

calculated by the discrete Fourier transform. DFT mode is the only mode that can be used to 

construct the disturbance vector if the disturbance occurs at an unknown, asynchronous 

frequency. 
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6.2 Physical Imbalances 

Adaptive control is only genuinely useful if it can detect and suppress disturbances that occur 

as a result of an actual change in the balance condition of a rotor or flywheel. Researchers 

have tried many different approaches to experimentally changing the balance of a rotating 

system. These range from the simple to the complex. Simpler methods typically involve 

affixing a small weight to a rotating device and then causing the weight to separate from the 

device through some means as described by Shiue et.al. [35]. The more complex methods 

attempt to move a small weight from one location on a rotating system to another often 

through mechanical and/or magnetic means as discussed in [28]. 

A simple method was chosen to change the balance of the system so that disturbance rejection 

could be adequately tested. Conceptually, the method selected was straightforward. A small 

weight (3 grams or less) would be attached to the circumference of the flywheel and then 

dislodged once the rotor was spinning at the desired speed. However, the physical realization 

of the method proved to be a tedious and time consuming task that tested our collective 

imaginations. 

Several different versions of the method were tried. Initially, a small weight was secured to 

the outer surface of the flywheel with a thin strip of paper that was attached to the flywheel 

with an adhesive. Once the machinery was in motion, the paper would be either cut with a 

razor or burned off with a micro torch, releasing the weight. Both the razor and the torch 

worked well at very low speeds, but at speeds above those that could be achieved by turning 

the rotor by hand, neither worked acceptably. The razor proved dangerous, and the micro 

torch was unable to heat the paper sufficiently. 

Next, a weight was attached to the inner circumference of the flywheel with a weak adhesive, 

and the weight was dislodged with compressed air. Again, this version proved successful 

while testing at low speeds, but it was unreliable at speeds above 300 RPM where the 

compressed air could not be uninterruptedly directed at the weight for a long enough time to 

separate it from the flywheel. 
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For the third variation of the method, a weight was affixed to the outer surface of the flywheel 

with an adhesive. Once the rotor was spinning, the weight was struck with a small, rigid bar to 

break the adhesive bond and detach the weight. This version worked perfectly once a suitable 

adhesive was found. Several were tried, and all were too elastic except one: hot melt glue. 

This adhesive, when applied, cures rapidly and becomes brittle. It’s sufficiently strong to keep 

the weight firmly attached to the flywheel at all speeds used during testing, and it breaks 

quickly and cleanly when the weight is struck. This version of the basic method worked very 

well and was used to economically generate all of the experimental results. Figure 6-4 shows 

the flywheel with the imbalance weight attached and the detachment tool. 

 

Figure 6-4 Flywheel with Imbalance Weight 

6.3 Constant Frequency Disturbance 

Several tests were conducted using the method just described to emphatically show the 

responsiveness or predictive capability of adaptive gain Hp when the balance state of the 

flywheel/rotor changed. The results from one test are shown graphically in Figures 6-5, 6-6 

and 6-7. For this test, a 2.9 gram imbalance weight was used; the rotor was turning at 1200 

RPM, and the adaptive controller was operating in manual mode. 

Imbalance weight 

Detachment tool 
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Figure 6-5 Rotor Displacement with Balance Change (2.9 g) 

Figure 6-5 clearly shows the change in displacement along one bearing axis that occurs when 

the balance state changes (i.e. when the weight is separated from the flywheel). 

 

Figure 6-6 Gain Response to Balance Change (2.9 g) 

Figure 6-6 illustrates the response of the adaptive gain to the change in imbalance. Overlaying 

the Figures as shown in Figure 6-7 indicates how quickly the adaptive controller reacts. The 

change in the balance state occurs at 17.35 seconds, and the controller responds at 17.36 



70 
 

seconds. Note that the plot for the adaptive gain has been inverted so that the immediate 

response of the controller to the change in displacement is obvious from the intersection of the 

two graphs. 

 

Figure 6-7 System Response to Balance Change (2.9 g) 

For adaptive gain Hp to be truly useful as a predictor of a change in balance that can occur for 

example when a crack or other defect develops in a rotating device, it must react when the 

balance change does not cause a discernible change in the displacement of the rotor. If Hp 

only responds to measurable changes in displacement, it does not provide any indication of a 

change in balance that isn’t already provided by the displacement measurements. Therefore, 

experiments were conducted to establish whether the variation in the adaptive gain with time 

indicated a state change when the variation of displacement with time did not. The same 

testing procedure was followed as before. However, the magnitude of the force created by the 

rotating imbalance weight had to be chosen such that no observable change in rotor 

displacements occurred when the weight was knocked loose from the flywheel. 

Experiments indicated that an imbalance force of less than 0.6 N would not affect the rotor 

displacements. The imbalance weights used in the experiments were regularly shaped metal 

objects that weighed from 0.2 to 1.0 gram. Although nearly anything could be used to 

unbalance the system, objects less massive than 0.2 gram were either too small or 



71 
 

insufficiently rigid to withstand being struck and dislodged from the flywheel. Since the 

imbalance weight was always located 100 mm from the center of the rotor, rotor speed was 

limited to less than 1700 RPM during testing, otherwise detectable changes in the rotor 

displacements occurred. 

With the basic parameters of imbalance weight, imbalance location and rotor speed 

established, experiments were then conducted to verify the disturbance rejection and 

investigate the predictive capability of adaptive gain Hp. Again, the adaptive controller was 

operating in manual mode. Representative results from these experiments for displacement 

and gain are shown in Figures 6-8 and 6-9. 

 

Figure 6-8 Rotor Displacement with Balance Change (0.5 g) 
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Figure 6-9 Gain Response to Balance Change (0.5 g) 

The Figures show that the disturbance is adequately rejected, but they do not show whether 

Hp is predictive regarding the change in balance. Figure 6-9 is a coarse plot of the magnitude 

of the gain, but a close examination of a greatly magnified gain also gives little indication of a 

relationship between Hp and the balance state. A comparison of Figures 2-8 and 6-9 may 

illustrate why this is so. Figure 2-8 shows that Hp settles to an equilibrium value for the 

modeled system once the disturbance is rejected while Figure 6-9 shows that it does not settle 

during testing on the physical system. The variation in Hp which may either disguise or 

eliminate the predictive character of the gain has been discussed by previous researchers most 

notably [28] and is attributable to the small changes in rotor speed that occur on the test 

system. These changes cause a divergence between the frequency to reject, the frequency used 

to construct the disturbance functions, and the actual frequency of the disturbance, the speed 

of the rotor, resulting in an unsteady gain. Recall that for the modeled system, the two 

frequencies were exactly the same, and once the gain adapted, its value was nearly constant. 

The speed of the rotor is well controlled, and the variations in speed about the set point are 

small, typically ±20 RPM [30]. However, the influence of the change in speed on the adaptive 

gain can be seen in Figure 6-10. In this Figure, rotor speed, normalized by the set point, and 

Hp are plotted. The set point was 900 RPM, and the range of speeds over the test interval was 
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875 to 916 RPM. In addition, the gain was offset by a constant value to help illustrate the 

correlation between the change in speed and the change in the gain. 

 

Figure 6-10 Gain Response to Balance Change (0.5 g) and Rotor Speed Variation 

The Figure demonstrates that Hp tends to follow the speed, only assuming a fairly constant 

value when the speed of the rotor remains nearly constant. 

Results identical to those just discussed were also obtained with the adaptive controller 

operating in DFT mode. Driving the controller with a discrete Fourier transform produced a 

reject frequency identical to one entered manually for the case where the rotor speed is nearly 

constant and the rotor is subjected to synchronous disturbances only. Theoretically, the 

Fourier transform is capable of calculating nearly the exact frequency (rotor speed) of the 

disturbance, so the identical behavior of the controller operating in either mode is not 

necessarily expected. However, the discussion of subsystem profiles in Chapter 5 shows that 

for the actual magnetic bearing system, an upper bound of 1 Hz/pt is placed on the frequency 

resolution of the transform by the simulation. Finer resolutions can greatly increase both the 

time required to complete the simulation and the risk of task overruns. Limiting the resolution 

to 1Hz/pt guarantees that the dominant frequency returned by the transform will always be the 

same for the rotor when its speed varies by no more than ±30 RPM about its set point. 
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Therefore, the controller behaves exactly the same, whether driven by a Fourier transform or 

by a frequency entered manually, when the rotor spins at a nearly constant speed. 

6.4 Varying Frequency Disturbance 

One possible method for stabilizing Hp was to synchronize the frequency used to construct the 

disturbance vector with the actual frequency of the disturbance. In fact, the need to 

synchronize the two frequencies was the reason for the development of the multi-mode 

adaptive controller discussed in Chapter 4. Therefore, several tests were performed to 

determine if good disturbance rejection characteristics could be maintained and if the 

predictive capability of Hp could be established with the adaptive controller operating in both 

speed and DFT modes. 

In speed mode, the controller must be configured to update the frequency to reject at some 

interval as explained in Chapter 4. Testing indicated that the controller was insensitive to the 

interval size with the exception of intervals on the order of the Fundamental Sample Size 

(FSS) of the simulation. These would sometime result in negligible controller outputs and an 

ineffective adaptive controller but would more often result in large and growing outputs and 

an overly aggressive controller. Intervals three of more times greater than the FSS all 

produced similar results, though an interval size of two seconds or more would nullify the 

anticipated benefits of speed mode since larger intervals did not allow the rejection frequency 

to closely track the disturbance frequency. Regardless of the interval chosen, the results from 

the experiments were nearly identical and not as expected. 

A sample of the results for the adaptive gain is shown in Figure 6-11. 
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Figure 6-11 Gain Response to Reject Frequency Updates (1.0 sec) 

Figure 6-11 demonstrates that each time the reject frequency is updated with the current speed 

of the rotor, the value of Hp changes abruptly. Note that the Figure shows two instances of the 

adaptive controller being activated and deactivated. The cause of the abrupt change can be 

inferred by overlaying the update profile on top of the gain curve as shown in Figure 6-12. 

 

Figure 6-12 Gain Response to Reject Freq. Updates (1.0 sec) and Reject Freq. Variation 
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The update profile illustrates the frequency to reject as a function of time. As shown, this 

frequency is simply the rotor speed normalized by the set point, and it is updated at the 

beginning of each interval and maintained for the length of that interval. Note that each time 

the frequency changes, the adaptive gain changes immediately and significantly. Again, the 

gain plotted has been offset by a constant value so that the change in gain can be shown 

intersecting the change in frequency. 

Two possible causes for the behavior of the adaptive gain were errors in the calculation of the 

gain and errors in the application of the control laws. To investigate the former, the output 

from each block of the Phi and Adaptive Control subsystems was closely examined to 

determine if all calculations were being performed correctly. To investigate the latter, the 

literature was again reviewed. 

The gain Hp is found from the integration of Equation 2.5, so different methods of integrating 

this equation were tried, including Backward Euler and Trapezoidal, in place of Forward 

Euler which had always been used previously. In addition, the Discrete Integrator block in the 

Simulink model was replaced with an S-function that implemented a Forward Euler 

integration method using a C program. Regardless of the method used, the values calculated 

for the gain were identical. Also, different sample rates for the integration were tried, each 

one being an integer multiple of the Fundamental Sample Size, and each produced the same 

result. 

Several other modifications were made to the subsystems, and none changed the results. A 

purely continuous system was constructed and added to Adaptive Control to calculate Hp in 

parallel with the discrete system. Each determined the gain identically. The Phi subsystem 

was eliminated and its function incorporated directly into Adaptive Control, and this did not 

change the behavior of the adaptive gain at all. Also, blocks were added to the adaptive 

controller that generated a known profile of the rotor speed to check the accuracy and 

reliability of the outputs from the tachometer. Actual and generated speeds produced the same 

results. Throughout the testing, Simulink was impressively consistent. The values calculated 

for the adaptive gain as well as the gain’s behavior when the reject frequency was updated 
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were always the same regardless of the changes and additions made to the bearing/speed 

controller model. 

Further review of the control laws and further examination of the outputs from the blocks in 

the Simulink model finally identified the cause of the problem (See Figure 6-13.). 

 

Figure 6-13 Angle Variation with Reject Frequency Updates (1.0 sec) 

Figure 6-13 plots the angle used by the disturbance function (Equation 2.11) as a function of 

time for a small part of the results shown in Figures 6-11 and 6-12. The angle is discontinuous 

at the points where the reject frequency is updated. The updates occurred at 21.13 and 22.13 

seconds. Components of the disturbance function based on this angle are also discontinuous 

as is the function itself. The sine component of the function appears in Figure 6-14. 



78 
 

 

Figure 6-14 Sine Component of Disturbance Function with Reject Freq. Updates (1.0 sec) 

As can be seen from this Figure, the discontinuities only occur when the frequency is updated, 

though they do not always occur when the frequency changes. Since the control laws 

implemented by the adaptive controller and summarized in [36] require that the disturbance 

function be continuous, the behavior of Hp when the frequency changes is not surprising. 

6.5 Incrementally Varying Frequency Disturbance - Simulated 

One possible way to satisfy the control laws and provide for dynamic adjustment of the 

frequency to reject would be to change the frequency over an interval of time using many 

small increments rather than changing the frequency all at once during a single sample step. 

In speed mode, the controller samples the speed of the rotor over a pre-selected interval, and 

if the speed changes between successive samples, the frequency to reject is updated by the 

magnitude of the change. If the magnitude could be made very small, almost infinitesimal, a 

continuous disturbance function could be approximated, and the effects of small variations in 

rotor speed on the adaptive gain Hp possibly eliminated. 

To test the feasibility of approximating the disturbance function, a Simulink model was built 

that implemented a refined version of the rotor-speed driven adaptive controller. The model 

appears in Figure 6-15. 
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Figure 6-15 Simulink Model for Approximating a Continuous Function 

This model determines the adaptive gain and the controller output identically to the 

bearing/speed controller operating in speed mode. The updates to the reject frequency are still 

computed by an S-function, in this case S-function updateOmega, but they are computed 

much differently than they are in the current controller. (See Appendix B for a listing of 

updateOmega.) User specified values for the speed measurement interval, speed update 

increment and speed update interval are required to properly configure the model. The speed 

measurement interval is simply the time between one speed measurement and the next just as 

it is in the current rotor-speed driven adaptive controller. The speed update increment is the 

magnitude of the change made to the reject frequency during a sample step and is expressed 

in terms of RPM. The speed update interval is the rate at which updates are applied to the 

reject frequency, and this interval is expressed as an integer multiple of the Fundamental 

Sample Size of the simulation rather than as a time per se. This model also implements a 

manual mode whereby the reject frequency is maintained at a constant value and generates a 

rotor-speed profile that simulates the small variations in speed of the actual rotor about its set 

point. The profile is created by S-function genSpeed, and a listing of the function is given in 

Appendix B. 
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Several simulations were performed to determine if values of the configuration parameters 

could be found that would result in an adaptive gain insensitive to small changes in the reject 

frequency. As long as the gain reacts to these changes, it cannot be determined whether the 

behavior of the gain is predictive of a change in the balance state of the system. 

For all simulations, the Fundamental Sample Size (FSS), the speed measurement interval and 

the speed update interval were held constant, and the respective values for each were 0.001 

second, 1.0 second and four times the FSS. Only the speed update increment was varied since 

it solely affects the continuity of the disturbance function. The other parameters can also 

affect the behavior of the controller but not directly. For example, if the speed measurement 

interval or speed update interval is too large, the controller will tract changes in rotor speed 

poorly whether the speed varies consistently within a range or whether the speed is increasing 

or decreasing steadily. In addition, the same profile for rotor speed was used in all 

simulations. 

Prior to discussing the results of the simulations, Figure 6-16 is shown to illustrate how the 

frequency used to compose the disturbance function is updated incrementally. 

 

 

Figure 6-16 Angle Variation with Incremental Updates 
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For the results shown, the speed update increment was set to 1.0 RPM, and all other 

parameters were set to their aforementioned values. The frequency to reject was decreased 

from 607 RPM to 602 RPM in five equal increments over a period of 0.16 second. Note that 

the product of frequency and time is plotted on the vertical axis rather than frequency. 

In summary, the simulations demonstrated that speed update increments greater than 0.05 

RPM (0.0052 rad/sec) always created discontinuities in the disturbance function, adaptive 

gain and controller outputs. Figures 6-17 and 6-18 plot the latter two for a speed update 

increment of 0.1 RPM. 

 

Figure 6-17 Discontinuous Adaptive Gain with Incremental Updates 
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Figure 6-18 Discontinuous Controller Output with Incremental Updates 

For each Figure, updates to the reject frequency began at seconds 1.0, 2.16, 3.33, 5.37, 6.50 

and 7.70, corresponding to the discontinuities in each Figure. 

Speed update increments of 0.01 RPM or less produced very good results as can be seen in 

Figures 6-19 and 6-20. 

 

Figure 6-19 Continuous Adaptive Gain with Incremental Updates 
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Figure 6-20 Continuous Controller Output with Incremental Updates 

Increments this small created no discernible discontinuities in the graph of Hp with one 

possible exception at the update that began at 6.62 seconds or in the graph of controller 

output. Other updates to the reject frequency began at seconds 1.0 and 3.61. Variations in the 

amplitude of both the adaptive gain and the controller output were seen, but nothing sharp or 

discontinuous was detected. Overall, the results indicated that a continuous disturbance 

function could be approximated and that using the adaptive gain as a predictor of a change in 

the balance state of a system gaining or losing speed was possible. 

Note that encouraging results were obtained when the speed update increment was an order of 

magnitude greater than the sample size of the simulation (0.01 vs. 0.001 second). Reject 

frequency updates of even 3 to 4 RPM require a substantial amount of time to complete when 

increments of this size are used even when the update interval is just four times the FSS. An 

update from 600 to 604 RPM required 0.16 second for the results shown in Figures 6-17 and 

6-18, and the same update consumed 1.60 seconds for the results illustrated in Figures 6-19 

and 6-20. An order of magnitude decrease in the update increment resulted in an order 

increase in the time needed to change the reject frequency. If the time to update the frequency 

becomes too large, the controller will follow the change in rotor speed poorly just as it will if 

the speed measurement and speed update intervals are too large. 
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One possible way to reduce the time required to update the reject frequency would be to 

perform updates at the speed of the simulation. The capability to do this was included in the 

controller operating in speed mode and is also included in the simulated controller shown in 

Figure 6-15. However, testing updates at simulation frequency with the original multi-mode 

controller could cause the controller to drive the rotor dangerously close to the bearings. The 

system did not become unstable, but controller outputs were calculated incorrectly and 

became too large. The simulated controller demonstrated the same behavior when updates 

were applied every sample step. Controller outputs could suddenly increase, though they 

always remained bounded, and then settle at a higher level before increasing again. Best 

results for both the real and simulated controllers were obtained when the reject frequency 

was updated no faster than three times the Fundamental Sample Size of the simulation. 

6.6 Incrementally Varying Frequency Disturbance - Actual 

Given the encouraging results obtained from the simulations, the Adaptive Control subsystem 

of the bearing/speed controller was modified to calculate the adaptive gains and controller 

outputs two ways using the existing path through the controller as well as a second parallel 

path added to the controller that incrementally updates the reject frequency. The blocks added 

to the modified subsystem are shown in Figure 6-21. 

 

Figure 6-21 Modified Adaptive Control for Incremental Updates 

Note that only the outputs calculated from the trusted, established path were applied to the 

bearings and that the rotor displacements used to compute the gains and outputs both ways 
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were the same. This “dual path” approach allowed for an accurate appraisal of the controller’s 

behavior when the reject frequency was updated without exposing the bearings to potential 

damage if the controller behaved differently that it did when simulated. 

The ControlDesk panel ADR/DFT was also modified to accommodate the additional 

parameters needed to properly configure the controller to incrementally update the reject 

frequency. In particular, three instruments were added to the Configure ADR pane, and the 

modified pane is shown in Figure 6-22. 

 

6-22 Modified Pane for Incremental Updates 

Once the Simulink model and ControlDesk panel were changed, experiments were conducted 

to test the modified controller on the magnetic bearing system. The controller was initially 

tested with values for the configuration parameters that worked well in the simulations. 

Specifically, the speed measurement interval, speed update increment and speed update 

interval were chosen as 1.0 second, 0.005 RPM and four times the FSS, respectively. Results 

for this configuration were not as good as they were for the simulated controller. Figure 6-23 

illustrates the adaptive gain calculated with a constant and a varying frequency as well as the 

rotor speed. 
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Figure 6-23 Gain Response to Incremental Updates and Rotor Speed Variation 

The gain for the constant frequency case has been offset by a constant value so that the gains 

can be more easily compared. Also, the rotor speed has been normalized by the set point and 

offset so its relation to the gains can be more easily seen. Note that the varying frequency gain 

adapts more slowly and that it reacts more strongly to changes in rotor speed than does the 

constant frequency gain. Overall, the gains follow similar paths once they adapt if changes in 

rotor speed are small (±5 RPM). Over the interval from 165 to 167 seconds, speed variations 

are small, and the gain curves are similar. 

The deviation in rotor speed from its set point and the frequency used in computing the gain 

for the varying case are shown in Figure 6-24. 
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Figure 6-24 Reject Frequency and Rotor Speed Variations with Incremental Updates 

The reject frequency follows the rotor speed very closely and tracks it nearly perfectly when 

changes in rotor speed are confined to a narrow range as they are from 175 to 209 seconds. 

When the changes are larger, the reject frequency lags the rotor speed. This can be easily seen 

for the interval from 125 to 141 seconds where the rotor speed decreases from 616 to 586 

RPM and then increases to 602 RPM. Part of the lag is a consequence of the small increment 

that is used to update the reject frequency. The small size results in a frequency that is 

changed at a slower rate than the rate at which the rotor gains or loses speed. The difference in 

rates can be seen in the divergence of the slopes of the rotor speed and reject frequency 

curves. This difference is most notable for the interval from 125 to 134 seconds. Part of the 

lag is also caused by the method used to measure rotor speed and the length of the 

measurement interval. Measurement of rotor speed and updates to the reject frequency occur 

sequentially. Therefore, the reject frequency remains constant over the measurement interval. 

This can be seen in the Figure where the slope of the reject frequency curve is zero for a 

duration of one second. If the slope is zero for more than one second, no change in rotor speed 

was detected over the preceding measurement interval. Efforts to reduce or eliminate this lag 

are discussed later. 
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The controller outputs calculated from each of the gains appear in Figure 6-25 (The controller 

was activated at 156 seconds and deactivated at 173 seconds.). 

 

Figure 6-25 Controller Output with Incremental Updates 

The control outputs are more variable and never attain a steady-state value when the reject 

frequency is changing rather than when it is constant. Since the outputs in both cases are 

computed using the same rotor displacements and weighting matrix, the difference in them 

can only be attributed to the incremental changes in frequency that continually occur in the 

composition of the disturbance vector in the one case. 

Further tests were conducted with different configuration parameters to determine if 

improvements in the behavior of the adaptive gain could be found by reducing the lag 

between the reject frequency and rotor speed. The speed measurement interval was decreased 

to the order of the FSS so that frequency updates occurred nearly continuously with fewer 

than ten sample steps between any two. The speed update increment was increased to the 

largest size that worked successfully for the simulated controller so that frequency updates 

were made more rapidly. The speed update interval was also reduced but only by a single 

sample step since simulations and testing on the actual system have shown without exception 

that smaller intervals result in controller instability. In summary, speed measurement intervals 

from 0.0015 to 1.0 second, speed update increments from 0.001 to 0.02 RPM and speed 
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update intervals of three and four times the FSS were tried. No combination of configuration 

parameters improved the possibility of using the adaptive gain as an indicator of a change in 

the balance of the magnetic bearing system. In fact, all combinations produced results very 

similar to those presented in Figures 6-23, 24 and 25. 
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Chapter 7 Conclusions and Future Work 

The adaptive controller for the magnetic bearing system was originally designed to reject 

persistent disturbances acting at synchronous (rotor speed) frequencies. As part of this 

research, the controller was redesigned so that it would also work effectively when rotor 

speed was varying and when disturbances were transient and asynchronous in character. The 

redesign allowed the controller to operate in three different modes, DFT, Speed and Manual, 

the mode indicating the method used to determine the frequency of the disturbance to reject. 

Disturbance rejection was successful when the controller was operated in any of the modes. 

Although experimental results were not presented for the controller operating in DFT mode, 

tests showed that rejection was very good when this mode was used to suppress software 

generated disturbances. Results were mixed when the rotor speed was used to drive the 

controller. If the speed was nearly constant, disturbance suppression was very good. If the 

speed varied, rejection would range from very effective to completely ineffective. The 

controller operated as designed, but changes in rotor speed introduced discontinuities in the 

disturbance functions causing momentary loss of control effort. 

The modeling done to improve the behavior of the controller in Speed mode suggested that 

this mode could be used effectively when rotor speed is changing. Tests show that rejection of 

a single frequency can significantly reduce rotor displacements when rotor speed varies over a 

small range. A controller could be built that incorporates two sub controllers that operate 

alternately with each controller using a constant reject frequency to provide disturbance 

rejection for a system operating over a wide range of speeds. The first sub controller could be 

used until suppression was no longer adequate. It would then be deactivated, and the second 

would be activated and operated until it was no longer effective and so on. Alternating 

between the two would eliminate the problems induced by discontinuities in the disturbance 

functions while maintaining controller effectiveness as rotor speed changes. 

During development of the multi-mode adaptive controller, the increasing complexity of the 

Simulink model eventually overwhelmed the dSPACE system, and the model would not run 
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in real time. Careful refinement of the model and careful reconfiguration of the run-time 

environment resolved problems with simulation speed and processor load and ensured 

potential for future development of the magnetic bearing system. However, changes or 

additions to the model should still only be made with a knowledge of their impact on 

processing time. 

Attempts to establish the predictive capability of the adaptive gain Hp proved inconclusive. 

Previous [28] as well as current research have demonstrated the gain's sensitivity to small 

variations in rotor speed. The reaction of the gain to the change in speed makes it very 

difficult to determine if a change in the gain is caused by a change in the balance of the 

rotating system or in the speed of the system. It was shown that the gain reacts strongly to a 

change in balance that is also observable in the rotor displacements, but it has yet to be shown 

conclusively that the gain reacts reliably and predictably to a change in balance that cannot be 

detected any other way. 

The magnetic bearing system provides opportunities for continuing research with the 

currently implemented adaptive controller and provides a versatile platform that could be used 

to investigate other adaptive strategies discussed in the literature. To establish whether gain 

Hp is truly predictive or not, the speed of the rotor must be controlled very precisely. Methods 

to reduce oscillations in rotor speed about the set point are presented in [30]. Mechanical 

limitations of the flow control valve that may limit precision are also discussed here. Other 

changes to the regulation of the air supply to the turbine in addition to the control of it may be 

needed to nearly eliminate variations in rotor speed. 

A knowledge of the exact time when the balance of the system changes would also benefit the 

investigation of gain variations. The results presented in Chapter 6 for simulated imbalances 

show the exact time when the balance of the rotor changed. Devising a method to physically 

unbalance the rotor and to capture the precise moment when it occurs would be worthwhile. 

Colleagues have suggested that a small electro-mechanical device could be designed and built 

that would mount to the flywheel. The device would retain and then release a known weight 

to unbalance the system. Radio signals would be used to communicate to the device and 
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overall control of it would be through the dSPACE system allowing the exact time of the 

balance change to be recorded. Of course, balance changes seldom occur at predefined 

moments on any system, but knowing exactly when they do occur on a research system would 

be very helpful in identifying an attendant but subtle variation in the adaptive gain curve. 

The need to know how changes to the Simulink bearing/speed controller affect the execution 

time of the model on the dSPACE processor has been emphasized. Profiling was discussed as 

one method of determining the relative impact of a change on processing time. The dSPACE 

system also provides a number of real-time variables that record how heavily each task uses 

the processor and indicate whether a task places the system at risk of overrun errors [31]. 

These variables can be monitored through standard ControlDesk instruments. A ControlDesk 

panel should be created or a pane should be added to an existing panel, following the 

established conventions, to display these variables if any changes are made to the current 

system that could affect processing load. 

Monitoring processor load is one way to more safely operate the FACETS system and avoid 

possible damage to it. An additional way would be to design, build and incorporate retainer 

bearings into the current system. Retainer bearings are often if not always used together with 

magnetic bearings in industrial applications. Retainer bearings are normal rolling element 

bearings that support the rotor when the magnetic bearings are de-energized or if the magnetic 

bearings should fail for some reason [37]. Retainer bearings prevent damage to the rotor and 

magnets by eliminating contact between the two. The small air gap between the rotor and 

bearings on the current system would create challenges in the design of retainers, but any 

research use of the system would proceed much more quickly if possible damage to it was not 

always an immediate consideration. 

Given the development of the multi-mode adaptive controller, the magnetic bearing system 

can now be used to study the effects of disturbances acting at unknown frequencies and 

resulting from base motion. In fact, [26] had suggested investigating the effects of base 

motion on the system as a future task. Other adaptive control methods would also be worth 

investigating as suggested again by [26] especially if the work to include the monitoring of 
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processor use and to incorporate retainer bearings into the system were done to provide 

protection for the system during research into the unknown. 
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Appendix A 

MATLAB Program 

ADR_three.m 

%{ 
James Jantz  
  
Last revision: November 15, 2012  
  
ADR_three - solves the equations of motion for a sp ring-mass-damper system  
and plots displacements; calculates controller inpu ts based on adaptive  
techniques and plots displacements for the same sys tem; plots controller  
inputs.  
%} 
  
function  ADR_three  
  global  useADR;  
  fprintf( '\n==> Rotating System - ADR Analysis <== \n' )  
  
  while  true  % Execute as many analyses as the user desires.  
    close all ;  % Close open figure windows.  
     
    % Define default char. of the sytem.  
    M = 5.0;          % Mass (kg)  
    w_natl = 10.0;    % Natural frequency (Hz)  
    zeta = 0.01;      % Damping ratio  
    w_dist = 20.0;    % Disturbance frequency (Hz)  
    imbal_pct = 0.1;  % Imbalance as a percent of the total mass  
    G = 1.0;          % Constant for gain Gp  
    H = 100.0;        % Constant for gain Hp  
    t_end = 60.0;     % Simulation length (sec)  
  
    fprintf( '\nDefault values for the systems are:\n' )  
    fprintf( '  Mass = %4.1f kg\n' , M)  
    fprintf( '  Natural freq. = %4.1f Hz\n' , w_natl)  
    fprintf( '  Damping ratio = %4.2f\n' , zeta)  
    fprintf( '  Disturb. freq. = %4.1f Hz\n' , w_dist)  
    fprintf( '  Imbalance pct. = %4.2f \n' , imbal_pct)  
    fprintf( '  Gp constant = %4.1f \n' , G)  
    fprintf( '  Hp constant = %4.1f \n' , H)  
    fprintf( '  Simulation len. = %4.1f sec\n' , t_end)  
  
    fprintf( '\nDo you want to use the default values?' )  
    msg = sprintf( '\nPress "Enter" for yes or type "n" for no:  ' );  
    reply = input(msg, 's' );  % Read it as a string.  
  
    if  strcmp(reply, 'n' ) || strcmp(reply, 'N' )  
      msg = sprintf( '\nEnter the mass (kg) of the system [%4.1f]:  ' , M);  



99 
 

      reply = input(msg, 's' );  % Read it as a string.  
      if  ~isempty(reply)        % Use default unless a value is entered.  
        M = sscanf(reply, '%f' , inf);  
      end  
  
      clear msg;  
      msg = sprintf( '\nEnter the nat''l freq. (Hz) of the system [%4.1f ]:  
' , w_natl);  
      reply = input(msg, 's' );  % Read it as a string.  
      if  ~isempty(reply)        % Use default unless a value is entered.  
        w_natl = sscanf(reply, '%f' , inf);  
      end  
             
      clear msg;  
      msg = sprintf( '\nEnter the damping ratio of the system [%4.2f]:  ' , 
zeta);  
      reply = input(msg, 's' );  % Read it as a string.  
      if  ~isempty(reply)        % Use default unless a value is entered.  
        zeta = sscanf(reply, '%f' , inf);  
      end  
  
      clear msg;  
      msg = sprintf( '\nEnter the disturb. freq. (Hz) of the system [%4. 1f]:  
' , ...  
        w_dist);  
      reply = input(msg, 's' );  % Read it as a string.  
      if  ~isempty(reply)        % Use default unless a value is entered.  
        w_dist = sscanf(reply, '%f' , inf);  
      end  
             
      clear msg;  
      msg = sprintf( '\nEnter the imbalance (pct. of mass) of the system  
[%4.2f]:  ' , ...  
        imbal_pct);  
      reply = input(msg, 's' );  % Read it as a string.  
      if  ~isempty(reply)        % Use default unless a value is entered.  
        imbal_pct = sscanf(reply, '%f' , inf);  
      end  
  
      clear msg;  
      msg = sprintf( '\nEnter the constant for gain Gp [%4.1f]:  ' , G);  
      reply = input(msg, 's' );  % Read it as a string.  
      if  ~isempty(reply)        % Use default unless a value is entered.     
        G = sscanf(reply, '%f' , inf);  
      end  
       
      clear msg;  
      msg = sprintf( '\nEnter the constant for gain Hp [%4.1f]:  ' , H);  
      reply = input(msg, 's' );  % Read it as a string.  
      if  ~isempty(reply)        % Use default unless a value is entered.     
        H = sscanf(reply, '%f' , inf);  
      end  
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      clear msg;  
      msg = sprintf( '\nEnter the length (sec) of the simulation [%4.1f] :  
' , t_end);  
      reply = input(msg, 's' );  % Read it as a string.  
      if  ~isempty(reply)        % Use default unless a value is entered.  
        t_end = sscanf(reply, '%f' , inf);  
      end  
    end  
  
    % Change the sign on delta H if the dist. freq. is less than the nat'l  
    % freq.  
    if  (w_dist < w_natl)  
      H = -abs(H);  % In case the user entered a negative value.  
    end  
     
    fprintf( '\nValues used for the simulation are:\n' )  
    fprintf( '  Mass = %4.1f kg\n' , M)  
    fprintf( '  Natural freq. = %4.1f Hz\n' , w_natl)  
    w_natl = w_natl*2*pi;     % Convert to rad/s.  
    fprintf( '  Damping ratio = %4.2f\n' , zeta)  
    fprintf( '  Disturb. freq. = %6.3f Hz\n' , w_dist)  
    w_dist = w_dist*2*pi;     % Convert to rad/s.  
    fprintf( '  Imbalance pct. = %4.2f \n' , imbal_pct)  
    fprintf( '  Gp constant = %4.1f \n' , G)  
    fprintf( '  Hp constant = %4.1f \n' , H)  
    fprintf( '  Simulation len. = %4.1f sec\n' , t_end)  
     
    % Calculate constants.  
    K = M*w_natl^2;     % Spring constant (N/m)  
    Ccr = 2*sqrt(K*M);  % Critical damping coeff. (kg/s)  
    C = zeta*Ccr;       % Damping coeff. (kg/s)  
  
    % Define char. of imbalance.  
    m = imbal_pct/100 * M;  % Mass (kg)  
    r = 10.0;           % Location - distance from center of rotation (mm)  
    F = m*(r/1000)*w_dist^2;  % Force (N)  
    fprintf( '  Imbalance force = %4.3f N\n' , F)  
        
    sys_char = [M K C w_dist F G H];  % Create a pseudo structure.  
  
    % Time interval.  
    t_beg = 0;  
    tspan = [t_beg t_end];  
  
    % Initial conditions.  
    x_i = 0;  % Displacements  
    y_i = 0;  
    xDot_i = 0;  % Velocities  
    yDot_i = 0;  
    % Expand the initial conditions vector.  The last 4  elements are needed  
    % to solve the equations for GpDot and HpDot.   
    i_cond = [x_i y_i xDot_i yDot_i 0 0 0 0];  
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    useADR = false;  
  
    % Calculate displacements without ADR control.  
    [T z] = ode45(@calcDispl,tspan,i_cond,[],sys_ch ar);  
  
    % Graph them.  
    subplot(2,1,1), plot(T,z(:,1)*1000, 'r' )  % x-displacement (mm)  
    title( 'X-Displacement vs. Time' )  
    xlabel( 'Time (sec)' ), ylabel( 'Displacement (mm)' )  
    legend( 'no ADR' , 'location' , 'southeast' )  
    grid on 
    hold on 
  
    subplot(2,1,2), plot(T,z(:,2)*1000, 'r' )  % y-displacement (mm)  
    title( 'Y-Displacement vs. Time' )  
    xlabel( 'Time (sec)' ), ylabel( 'Displacement (mm)' )  
    legend( 'no ADR' , 'location' , 'southeast' )  
    grid on 
    hold on 
  
    fprintf( '\nPress any key to continue and graph displacement s with ADR 
control.\n' )  
    pause  
  
    % Calculate displacements with ADR control.  
    useADR = true;  
    [T z] = ode45(@calcDispl,tspan,i_cond,[],sys_ch ar);  
  
    % Extract values.  These are returned by the solver .  
    x_disp = z(:,1);  
    y_disp = z(:,2);  
    Gpx = z(:,5);  
    Gpy = z(:,6);  
    Hpx = z(:,7);  
    Hpy = z(:,8);  
    s = sin(w_dist*T);  
    c = cos(w_dist*T);  
  
    % Calculate Gp, Hp, Upx and Upy.  
    Gp = zeros(length(T),1);  % Preallocate for a happy MATLAB.  
    Hp = zeros(length(T),1);  
    Upx = zeros(length(T),1);   
    Upy = zeros(length(T),1);  
  
    for  i = 1:length(T)  
      Gp(i) = sqrt(Gpx(i)^2 + Gpy(i)^2);  
      Hp(i) = sqrt(Hpx(i)^2 + Hpy(i)^2);  
      Upx(i) = Gpx(i)*x_disp(i) + Hpx(i)*s(i);  
      Upy(i) = Gpy(i)*y_disp(i) + Hpy(i)*c(i);  
    end  
  
    % Graph displacements with ADR control.  
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    subplot(2,1,1), plot(T,z(:,1)*1000, 'b' )  % x-displacement (mm)  
    title( 'X-Displacement vs. Time' )  
    xlabel( 'Time (sec)' ), ylabel( 'Displacement (mm)' )  
    legend( 'no ADR' , 'ADR' , 'location' , 'southeast' )  
     
    subplot(2,1,2), plot(T,z(:,2)*1000, 'b' )  % y-displacement (mm)  
    title( 'Y-Displacement vs. Time' )  
    xlabel( 'Time (sec)' ), ylabel( 'Displacement (mm)' )  
    legend( 'no ADR' , 'ADR' , 'location' , 'southeast' )  
  
    fprintf( '\nPress any key to continue and plot Upx and Upy.\ n' )  
    pause  
  
    % Plot adaptive gains (Gp and Hp).  
    close all  
    subplot(2,1,1), plot(T,Gp, 'b' )  
    title( 'Gp vs. Time' )  
    xlabel( 'Time (sec)' ), ylabel( 'Gp' )  
    grid on 
  
    subplot(2,1,2), plot(T,Hp, 'b' )  
    title( 'Hp vs. Time' )  
    xlabel( 'Time (sec)' ), ylabel( 'Hp' )  
    grid on 
  
    fprintf( '\nPress any key to clear the figure and continue.\ n' )  
    pause  
     
    % Plot controller inputs (Upx and Upy) to plant.  
    close all  
    subplot(2,1,1), plot(T,Upx, 'b' )  
    title( 'Upx vs. Time' )  
    xlabel( 'Time (sec)' ), ylabel( 'Upx' )  
    grid on 
  
    subplot(2,1,2), plot(T,Upy, 'b' )  
    title( 'Upy vs. Time' )  
    xlabel( 'Time (sec)' ), ylabel( 'Upy' )  
    grid on 
  
    fprintf( '\nPress any key to clear the figure and continue.\ n' )  
    pause  
    close all  
    fprintf( '\nDo you want to perform another analysis?' )  
    msg = sprintf( '\nPress "Enter" for yes or type "n" for no:  ' );  
    choice1 = input(msg, 's' ); % Read the user's response.  
    switch  choice1 % Decide what to do.  
    case  { 'N' , 'NO' , 'n' , 'no' } % Quit this program.  
      break  
    end  
  end  
end  
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function  dz = calcDispl(t,z,sys_char)  
  global  useADR;  
  
  % Assign variables.  
  M = sys_char(1);  
  K = sys_char(2);  
  C = sys_char(3);  
  w_dist = sys_char(4);  
  F = sys_char(5);  
  G = sys_char(6);  
  H = sys_char(7);  
  
  % Basis vectors.  
  s = sin(w_dist*t);  
  c = cos(w_dist*t);  
  
  dz = zeros(8,1);  % Preallocate, emphasizing style here.  
  
  % Equations of motion.  
  dz(1) = z(3);  % dZx1 = Zx2  
  dz(2) = z(4);  % dZy1 = Zy2  
  
  if  ~useADR  
    % Equations of motion 3 and 4.  
    dz(3) = -(K/M * z(1) + C/M * z(3)) + 1/M * F*s;  
    dz(4) = -(K/M * z(2) + C/M * z(4)) + 1/M * F*c;  
  end  
  
  if  useADR  
    % Calculate Gpxdot and Gpydot.  
    dz(5) = -G * (z(1)^2 + z(1)*z(2));  
    dz(6) = -G * (z(2)*z(1) + z(2)^2);  
  
    % Calculate HpxDot and HpyDot.  
    dz(7) = H * (z(1)*s + z(1)*c);  
    dz(8) = H * (z(2)*s + z(2)*c);  
  
    Upx = z(5)*z(1) + z(7)*s;  
    Upy = z(6)*z(2) + z(8)*c;  
  
    dz(3) = -(K/M * z(1) + C/M * z(3)) + (1/M * F*s ) + Upx;  
    dz(4) = -(K/M * z(2) + C/M * z(4)) + (1/M * F*c ) + Upy;  
  end  
end  
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Appendix B 

S-Functions 

mbcntrl_a.h 

/*  
 * Name:    mbcntrl_a.h  
 * Author:  Jimbo  
 * Created: 3/15/13  
 * Revision History:  
 *  
 * Purpose: provides definitions for the S-function s.  
 */  
  
/* M_PI is defined in <math.h>, but the RTW compile r can't seem to find it,  
   so we'll set it up like this. */  
#ifndef M_PI  
  #define M_PI 3.14159265358979323846  
#endif  
#define TWO_PI 2 * M_PI  
  
/* Keep an eye on these. They may well have been de fined elsewhere. If so,  
   surround them with an ifndef construct. */  
#define TRUE 1  
#define FALSE 0  
  
/* The states of the internal excitation subsystem and the ways it can be  
   driven. */  
#define ACTIVE 1  
#define INACTIVE 0  
#define MAN_EXC 1  
#define SPEED_EXC 2  
  
/* The various ways the adaptive controller can be driven. */  
#define MAN_MODE 1  
#define SPEED_MODE 2  
#define DFT_MODE 3  
  
/* The fundamental sample size of the simulation. S ee note in oneFreq.c */  
#define FSS 0.0003  
  
/* Max. sample size used to allocate space. Actual size is computed based  
   on the DFT freq. and freq. resolution set via Co ntrolDesk. */  
#define MAX_DFT_SIZE 2400  
#define MAX_NUM_FREQ 3  
#define FREQ_THRESHOLD 1 * TWO_PI  /* rad/sec */  
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Appendix B 

S-Functions 

zeroGp_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 --- 
 */  
 
#include "simstruc.h"  
#include <math.h>  
#include "mbcntrl_a.h"  
 
#define u_width 1  
#define y_width 1  
 
void zeroGp_Outputs_wrapper( const real_T *u0,  
                         const real_T *u1,  
                         real_T *y0,  
                         real_T *y1, SimStruct *S)  
{  
 
/* This function monitors the output from the integ rator's saturation port.  
   If the integrator saturates, the output from it is nulled and remains  
   nulled, even if the integrator becomes unsaturat ed, until it is reset  
   manually. */  
 
/* Inputs are as follow:  
     u0[0] - Saturation signal.  
     u1[0] - Gp active signal. */  
 
/* Outputs are as follow:  
     y0[0] - Gain multiplier - 0 if the integrator has sat'd, 1 otherwise.  
     y1[0] - Status signal - 0 if the int. has sat' d, 1 if it hasn't, 2 if  
             the gain is inactive. */  
 
int satSig, GpAct;  
static int firstSat = FALSE;  
 
satSig = ( int ) u0[0];  
GpAct = ( int ) u1[0];     
 
if  (GpAct == FALSE)  /* If Gp isn't active, reset the saturation flag, * /  
{  
  firstSat = FALSE;  
  y0[0] = 0;  /* output zero just to be safe, */  
  y1[0] = 2;  /* and set the status port to inactive. */  
  return ;  
}  
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if  (satSig == 0)  /* If the integrator isn't saturated */  
{   
  if  (firstSat == TRUE)  /* but it has been, */  
  {  
    y0[0] = 0;  /* continue to zero its output, */  
    y1[0] = 0;  /* and set the status port to sat. */  
  }  
  else  
  {  
    y0[0] = 1;  /* If it isn't saturated and never has been, integr ate! */  
    y1[0] = 1;  
  }  
  return ;  
}  
 
if  (satSig != 0)  /* If it is saturated */  
{  
  if  (firstSat == FALSE)  /* but it hasn't been */  
  {  
    firstSat = TRUE;  /* set the flag */  
    y0[0] = 0;  /* and zero the output. */  
    y1[0] = 0;  
  }  
  else  
  {  
    y0[0] = 0;  /* If it is saturated and has been, continue to zer o the */  
    y1[0] = 0;  /* output. */  
  }  
  return ;  
}  
}  
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Appendix B 

S-Functions 

zeroHp_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
 
#include "simstruc.h"  
#include <math.h>  
#include "mbcntrl_a.h"  
 
#define u_width 1  
#define y_width 1  
 
void zeroHp_Outputs_wrapper( const real_T *u0,  
                         const real_T *u1,  
                         real_T *y0,  
                         real_T *y1, SimStruct *S)  
{  
 
/* This function monitors the output from the integ rator's saturation port.  
   If the integrator saturates, the output from it is nulled and remains  
   nulled, even if the integrator becomes unsaturat ed, until it is reset  
   manually. */  
 
/* Inputs are as follow:  
     u0[0] - Saturation signal.  
     u1[0] - Hp active signal. */  
 
/* Outputs are as follow:  
     y0[0] - Gain multiplier - 0 if the integrator has sat'd, 1 otherwise.  
     y1[0] - Status signal - 0 if the int. has sat' d, 1 if it hasn't, 2 if  
     the gain is inactive. */  
 
int satSig, HpAct;  
static int firstSat = FALSE;  
 
satSig = ( int ) u0[0];  
HpAct = ( int ) u1[0];  
 
if  (HpAct == FALSE)  /* If Hp isn't active, reset the saturation flag, * /  
{  
  firstSat = FALSE;  
  y0[0] = 0;  /* output zero just to be safe, */  
  y1[0] = 2;  /* and set the status port to inactive. */  
  return ;  
}  
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if  (satSig == 0)  /* If the integrator isn't saturated */  
{   
  if  (firstSat == TRUE)  /* but it has been, */  
  {   
    y0[0] = 0;  /* continue to zero its output, */  
    y1[0] = 0;  /* and set the status port to sat. */  
  }  
  else  
  {  
    y0[0] = 1;  /* If it isn't saturated and never has been, integr ate! */  
    y1[0] = 1;  
  }  
  return ;  
}  
 
if  (satSig != 0)  /* If it is saturated */  
{  
  if  (firstSat == FALSE)  /* but it hasn't been */  
  {  
    firstSat = TRUE;  /* set the flag */  
    y0[0] = 0;  /* and zero the output. */  
    y1[0] = 0;  
  }  
  else  
  {   
    y0[0] = 0;  /* If it is saturated and has been, continue to zer o the */  
    y1[0] = 0;  /* output. */  
  }  
  return ;  
}  
}  
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Appendix B 

S-Functions 

zeroADR_wrapper.c 

/*--- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3. 0 ---   */  
 
#include "simstruc.h"  
#include <math.h>  
#include "mbcntrl_a.h"  
 
#define u_width 1  
#define y_width 1  
 
void zeroADR_Outputs_wrapper( const real_T *u0,  
                          const real_T *u1,  
                          real_T *y0, SimStruct *S)  
{  
 
/* This function controls the output of the adaptiv e controller. If the  
   controller is active (turned on) and no limit er rors have been detected,  
   the controller's output is passed through, other wise it is nulled. */  
 
/* Inputs are as follow:  
     u0[0] - ADR error signal.  
     u1[0] - ADR active switch. */  
 
/* Output is as follows:  
     y0[0] - 0 if a current or position limit has b een exceeded or if the  
             ADR controller is inactive, 1 otherwis e. */  
 
int errSig, ADRAct;  
 
errSig = ( int ) u0[0];  
ADRAct = ( int ) u1[0];     
 
if  (errSig == TRUE)  /* If the error flag is set, output 0. */  
{  
  y0[0] = 0;  
  return ;  
}  
 
if  (ADRAct == TRUE)  /* If the ADR controller is active and there is no */  
  y0[0] = 1;         /* limit error, output 1. */  
else  
  y0[0] = 0;  /* If the ADR controller is inactive, output 0. */  
 
return ;  
} 
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Appendix B 

S-Functions 

calcMag_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
 
#if defined(MATLAB_MEX_FILE)  
#include "tmwtypes.h"  
#include "simstruc_types.h"  
#else  
#include "rtwtypes.h"  
#endif  
 
#include <math.h>  
 
#define u_width 4  
#define y_width 1  
 
void calcMag_Outputs_wrapper( const real_T *u0,  
                          real_T *y0)  
{  
 
/* This function calculates the magnitude of the Hp  gain for each of the  
   four axes. */  
 
/* Inputs are as follow:  
     u0[0-7] - orthogonal components of Hp for all four axes. */  
 
/* Outputs are as follow:  
     y0[0-3] - Hp for all four axes. */  
 
int i;  
double HpMag[4] = {0};  
 
for  (i = 0; i<= 3; i++)  
{  
  HpMag[i] = sqrt( pow(u0[i], 2.0) + pow(u0[i+4], 2.0));  
  y0[i] = HpMag[i];  
}  
 
return ;  
 
}  
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Appendix B 

S-Functions 

excFreq_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
 
#include "simstruc.h"  
#include "mbcntrl_a.h"  
 
#define u_width 1  
#define y_width 1  
 
void  excFreq_Outputs_wrapper( const  real_T *u0,  
                          const  real_T *u1,  
                          const  real_T *u2,  
                          const  real_T *u3,  
                          real_T *y0, SimStruct *S)  
{  
 
/* This function controls the frequency of the exci tation applied to the  
   bearings. The frequency can be a static value, o r it can follow the 
   speed of the rotor. In the latter case, the freq uency can be updated at 
   each simulation step or at a longer interval dep ending on configuration. 
*/   
    
/* The fundamental sample size (FSS) of the simulat ion is used to control 
   the timer for the frequency output, and this val ue is set in header file  
   mbcntrl_a.h. */  
  
/* Enable printing by uncommenting the following #d efine. */  
/* #define ENABLE_PRTG */  
  
/* Inputs are:  
     u0[0] - Excitation mode - 1 manual, 2 speed.  
     u1[0] - Excitation frequency (rad/sec) - manua l mode.  
     u2[0] - Constant-output interval (sec).  
     u3[0] - Speed of the rotor (RPM). */  
  
/* Output is:  
     y0[0] - Excitation frequency (rad/sec). */  
  
int  excMode;  
static  int  newInt = TRUE;  
double  manExcFreq, intT, speed;  
static  double  intTimer, curFreq = 0;  
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excMode = ( int ) u0[0];  /* Fetch values from ControlDesk. */  
manExcFreq = u1[0];     
intT = u2[0];           
speed = u3[0] * 2.0 * M_PI / 60.0;  /* Convert rotor speed to rad/sec. */  
  
/* Ensure that an interval of 0 (i.e. excitation fr eq. follows the rotor 
   speed exactly) is handled properly. */  
if  (excMode == SPEED_MODE && intT <= FSS)   
{  
  y0[0] = speed;  
  newInt = TRUE;  
  return ;  
}  
  
if  (newInt == TRUE)  /* Begin a new interval. */  
{  
  intTimer = intT;  /* Set the interval timer to the interval. */  
  /* Choose the excitation freq. based on the value o f the exc. mode 
     switch. */  
  switch  (excMode)  
  {  
    case  1: curFreq = manExcFreq;  /* Manual Mode. */  
            break ;  
    case  2: curFreq = speed;  /* Speed Mode. */  
            break ;       
    default : curFreq = manExcFreq;  /* In case something gets through  
             break ;                 /* the net. */  
  }  
  newInt = FALSE;  /* Forget this, and you're toast. */  
}  
  
#ifdef ENABLE_PRTG  
  printf( "intTimer = %7.3f \n" , intTimer);  
  printf( "speed = %6.2f ADR mode = %2i \n" , speed, excMode);  
  printf( "Freq = %6.2f \n" , curFreq);  
#endif  
  
y0[0] = curFreq;  /* Output the freq. */  
  
intTimer = intTimer - FSS;  /* Decrement the timer and check. */  
if  (intTimer > 0.0)  
  newInt = FALSE;  
else  
  newInt = TRUE;  
  
return ;  
 
}  
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Appendix B 

S-Functions 

excRotor_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
  
#include "simstruc.h"  
#include "mbcntrl_a.h"  
 
#define u_width 1  
#define y_width 1  
 
void  excRotor_Outputs_wrapper( const  real_T *u0,  
                          real_T *y0,  
                          real_T *y1, SimStruct *S)  
{  
  
/* This function monitors the current and previous states of the  
   Excitation subsystem, enables or disables the ex citation  
   accordingly and outputs the current state of the  subsystem. */  
  
/* Input is:  
     u0[0] - Excitation active signal. */  
  
/* Outputs are:  
     y0[0] - u0[0]  
     y1[0] - Status - TRUE (excitation on) or FALSE  (excitation off) */  
  
static  int  excActive = FALSE, lastState = INACTIVE;  
static  double  taskT;  
  
excActive = ( int ) u0[0];  
  
if  (excActive == FALSE)  /* If the excitation is inactive */  
  if  (lastState == INACTIVE)  /* and has been, */  
    y0[0] = 0;  /* do not excite. */  
  else   /* If the excitation is inactive and hasn't been, * /  
  {  
    y0[0] = 0;  /* stop the excitation, */  
    y1[0] = FALSE;  /* update the status for ControlDesk */  
    lastState = INACTIVE;  /* and change the state. */  
  }  
  
if  (excActive == TRUE)  /* If the excitation is active */  
  if  (lastState == ACTIVE)  /* and has been,*/  
    y0[0] = 1;  /* continue exciting. */  
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  else   /* If the excitation is active and hasn't been, */   
  {  
    y0[0] = 1;  /* excite, */  
    y1[0] = TRUE;  /* update the status for ControlDesk and */  
    lastState = ACTIVE;  /* change the state. */  
  }  
  
return ;  
 
}  
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Appendix B 

S-Functions 

genFreqs_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
  
#include "simstruc.h"  
#include <math.h>  
#include "mbcntrl_a.h"  
 
#define u_width 1  
#define y_width 1  
 
void  genFreqs_Outputs_wrapper( const  real_T *u0,  
                          const  real_T *u1,  
                          const  real_T *u2,  
                          const  real_T *u3,  
                          real_T *y0, SimStruct *S)  
{  
  
/* This function calculates the frequencies to use in the composition of  
   the disturbance vector. The frequencies are base d on the speed of the  
   rotor and always include at least this speed. Ot hers freq's can also be  
   included that are either multiples or fractions of this speed. The  
   freq's are either updated at the simulation spee d or at longer intervals  
   depending on configuration. */  
  
/* The fundamental sample size (FSS) of the simulat ion is used to control  
   the timer for the frequency output, and this val ue is set in header file  
   mbcntrl_a.h. */  
  
/* Enable printing by uncommenting the following #d efine. */  
/* #define ENABLE_PRTG */  
  
/* Inputs are as follow:  
     u0[0] - ADR mode.  
     u1[0] - Disturbance vector fill mode.  
     u2[0] - Constant-output interval (sec).  
     u3[0] - Speed of the rotor (RPM). */   
  
/* Outputs are as follow:  
     y0[0,1,2] - Reject frequencies (rad/sec). */  
  
int  i, ADRMode, PhiDMode;  
static  int  newInt = TRUE;  
double  intT, speed;  
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static  double  intTimer, curFreqs[MAX_NUM_FREQ] = {0};  
  
ADRMode = ( int ) u0[0];  /* Fetch values from ControlDesk. */  
PhiDMode = ( int ) u1[0];  
intT = u2[0];  
speed = u3[0] * 2.0 * M_PI / 60.0;  /* Convert rotor speed to rad/sec. */  
  
/* Ensure that a new interval is established the ne xt time SPEED MODE is  
   selected. */  
if  (ADRMode != SPEED_MODE)   
{    
  newInt = TRUE;  
  return ;  
}  
  
if  (newInt == TRUE)  /* Begin a new interval. */  
{  
  intTimer = intT;  /* Set the interval timer to the interval. */  
  /* Calculate the freq's to reject based on the valu e of the Phi D mode  
     switch. */  
  switch  (PhiDMode)  
  {  
    case  1: curFreqs[0] = 0.5 * speed;  
            curFreqs[1] = speed;  
            curFreqs[2] = 1.5 * speed;  
            break ;  
    case  2: curFreqs[0] = 1.5 * speed;  
            curFreqs[1] = speed;  
            curFreqs[2] = 0.5 * speed;  
            break ;        
    case  3: curFreqs[0] = speed;  
            curFreqs[1] = 2.0 * speed;  
            curFreqs[2] = 3.0 * speed;  
            break ;  
    case  4: curFreqs[0] = 3.0 * speed;  
            curFreqs[1] = 2.0 * speed;  
            curFreqs[2] = speed;  
            break ;  
    case  5: curFreqs[0] = speed;  /* Rotor speed only (RSO) mode. */  
            curFreqs[1] = 0.0;  
            curFreqs[2] = 0.0;  
            break ;  
    default : curFreqs[0] = 0.5 * speed;  /* Set default to case 1. */  
             curFreqs[1] = speed;  
             curFreqs[2] = 1.5 * speed;  
             break ;  
  }  
  newInt = FALSE;  /* Forget this, and you're toast. */  
}  
  
#ifdef ENABLE_PRTG  
  printf( "intTimer = %7.3f \n" , intTimer);  
  printf( "speed = %6.2f PhiDMode = %2i \n" , speed, PhiDMode);  
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  printf( "Freqs = %6.2f %6.2f %6.2f \n" , curFreqs[0], curFreqs[1], 
curFreqs[2]);  
#endif  
  
for  (i = 0; i < MAX_NUM_FREQ; i++)  /* Output the freq's. */  
  y0[i] = curFreqs[i];  
  
intTimer = intTimer - FSS;  /* Decrement the timer and check. */  
if  (intTimer > 0.0)  
  newInt = FALSE;  
else  
  newInt = TRUE;  
  
return ;  
 
}  
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Appendix B 

S-Functions 

cmpAmps_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
 
#include "simstruc.h"  
#include <math.h>  
#include "mbcntrl_a.h"  
 
#define u_width 3  
#define y_width 1  
 
void  cmpAmps_Outputs_wrapper( const  real_T *u0,  
                          const  real_T *u1,  
                          real_T *y0,  
                          const  real_T  *ampThreshold, 
                          const  int_T p_width0, SimStruct *S)  
{  
  
/* This function collects the dominant freq's calcu lated by the DFT for  
   use in composing the disturbance vector. The fre q's used are the current  
   ones if they exceed a threshold value or the pre vious ones if they do  
   not. */  
  
/* Inputs are as follow:  
     u0[0,1,2] - Fourier freq's (rad/sec) correspon ding to the maximum 
                 amplitudes.  
     u0[3,4,5] – The maximum amplitudes (mils).  
     u1[0] - ADR mode. */  
  
/* Parameter is as follows:  
     ampThreshold - See comment below (mils). */  
  
/* Outputs are as follow:  
     y0[0,1,2] - Reject frequencies (rad/sec). */  
  
int  i, ADRMode;  
double  freqs[MAX_NUM_FREQ], ampls[MAX_NUM_FREQ];  
static  double  curFreqs[MAX_NUM_FREQ];  
  
ADRMode = ( int ) u1[0];  
if  (ADRMode == DFT_MODE)  
  for  (i = 0; i < MAX_NUM_FREQ; i++)  
  {  
    freqs[i] = u0[i];  /* Fetch the latest. */  
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    ampls[i] = u0[i + MAX_NUM_FREQ];  
    /* If the latest ampl. exceeds the threshold, outpu t the latest freq.  
       If the latest ampl. is less than or equal to  the threshold, output  
       the current freq. This approach is used to e liminate the on/off  
       rejection of persistent disturb's. Recall, t hat in DFT mode, once a  
       disturbance is rejected, its freq. is remove d from the Phi D vector,  
       and the disturbance then reappears only to b e rejected again ad  
       infinitum. */  
    if  (ampls[i] > *ampThreshold)  
    {   
      y0[i] = freqs[i];  
      curFreqs[i] = freqs[i];  /* Update the current frequency. */  
    }  
    else  
      y0[i] = curFreqs[i];  
  }  
   
return ;  /* Return and burn. */  
 
}  
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Appendix B 

S-Functions 

oneFreq_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
 
#include "simstruc.h"  
#include "mbcntrl_a.h"  
 
#define u_width 1  
#define y_width 1  
 
void  oneFreq_Outputs_wrapper( const  real_T *u0,  
                          const  real_T *u1,  
                          const  real_T *u2,  
                          const  real_T *u3,  
                          const  real_T *u4,  
                          real_T *y0,  
                          const  real_T  *ampThreshold, 
                          const  int_T p_width0, SimStruct *S)  
{  
 
/* This function determines the freq. to use in the  composition of the  
   disturbance vector. This freq. can either be sta tic, entered through  
   ControlDesk, or dynamic, based on either the spe ed of the rotor or the  
   output of the DFT. If the freq. is based on the former, it can be  
   updated at the simulation speed or at longer int ervals depending on  
   configuration. If the freq. is based on the latt er, it will be updated  
   each time a Fourier transform has been completed . */  
  
/* The fundamental sample size (FSS) of the simulat ion is used to control  
   the timer for the frequency output, and this val ue is set in header file  
   mbcntrl_a.h. */   
  
/* Enable printing by uncommenting the following #d efine. */  
/* #define ENABLE_PRTG */  
  
/* Inputs are as follow:  
     u0[0] - ADR mode.  
     u1[0] - Reject frequency (rad/sec) - manual mo de.  
     u2[0] - Constant-output interval (sec).  
     u3[0] - Speed of the rotor (RPM).  
     u4[0,1,2] - Fourier freq's (rad/sec) correspon ding to the maximum  
                 amplitudes.  
     u4[3,4,5] - The maximum amplitudes (mils). */  
  
/* Parameter is as follows:  
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     ampThreshold - See comment below (mils). */  
  
/* Output is as follows:  
     y0[0] - Reject frequency (rad/sec). */  
  
int  i, ADRMode;  
static  int  newInt = TRUE;  
double  manRejFreq, intT, speed,  
       newFreq, newAmpl;  
static  double  intTimer, rejFreq = 0;  
  
ADRMode = ( int ) u0[0];  /* Fetch values from ControlDesk. */  
manRejFreq = u1[0];  
intT = u2[0];           
speed = u3[0] * 2.0 * M_PI / 60.0;  /* Convert rotor speed to rad/sec. */  
  
if  (ADRMode == MAN_MODE)  
{  
  y0[0] = manRejFreq;  /* Output the manual-mode reject freq. */  
  newInt = TRUE;  /* Set things up properly for speed mode. */  
  #ifdef ENABLE_PRTG  
    printf( "ADR mode = %2i Freq. = %6.2f \n" , ADRMode, manRejFreq);  
  #endif  
  return ;  
}  
  
/* In DFT Mode, the frequency to reject must be abo ve a user-defined  
   threshold to prevent the use of a very low frequ ency. (0 Hz or so)  
   dominant component. */   
if  (ADRMode == DFT_MODE)  
{  
  for  (i = 0; i < MAX_NUM_FREQ; i++)  
    if  (u4[i] > FREQ_THRESHOLD)  /* Ignore the components at very low */  
    {                            /* freq's. */                            
      newFreq = u4[i];           /* FREQ_THRESHOLD - units are rad/sec. */  
      newAmpl = u4[i + MAX_NUM_FREQ];  
      break ;  
    }  
  /* Update the freq. to reject only if the ampl. thr eshold has been  
     exceeded. See S-Function cmpAmps for further d etails. */  
  if  (newAmpl > *ampThreshold)   
        rejFreq = newFreq;  
      
  y0[0] = rejFreq;  
  newInt = TRUE;  /* Set things up properly for speed mode. */  
  #ifdef ENABLE_PRTG  
    printf( "ADR mode = %2i Freq. = %6.2f \n" , ADRMode, rejFreq);  
  #endif  
  return ;  
}  
  
if  (ADRMode == SPEED_MODE)  
{  
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  /* Ensure that an interval of 0 (i.e. freq. to reje ct follows the rotor  
     speed exactly) is handled properly. */  
  if  (intT <= FSS)  
  {  
    y0[0] = speed;  
    newInt = TRUE;  
    return ;  
  }  
  if  (newInt == TRUE)  /* Begin a new interval. */  
  {  
    intTimer = intT;  /* Set the interval timer to the interval. */  
    rejFreq = speed;  
    newInt = FALSE;  /* Forget this, and you're toast. */  
  }  
  
  y0[0] = rejFreq;  /* Output the freq. */  
  
  intTimer = intTimer - FSS;  /* Decrement the timer and check. */  
  if  (intTimer > 0)  
    newInt = FALSE;  
  else  
    newInt = TRUE;  
   
  #ifdef ENABLE_PRTG  
    printf( "ADR mode = %2i Speed = %6.2f \n" , ADRMode, speed);  
    printf( "Timer = %7.5f Freq = %6.2f \n" , intTimer, rejFreq);  
  #endif  
  
  return ;  
}  
 
}  
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Appendix B 

S-Functions 

DFT_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
 
#include "simstruc.h"  
#include <math.h>  
#include "mbcntrl_a.h"  
 
#define u_width 4  
#define y_width 1  
 
void  DFT_Outputs_wrapper( const  real_T *u0,  
                          real_T *y0,  
                          real_T *y1,  
                          real_T *y2,  
                          real_T *y3  ,  
                          const  real_T  *DFTFreq, const  int_T  p_width0,  
                          const  real_T  *DFTFreqRes, const  int_T  p_width1,  
                          const  real_T  *minAmp, const  int_T  p_width2,  
                          const  real_T  *numFreq, const  int_T  p_width3,  
                          const  real_T  *actDFT, const  int_T  p_width4,  
                          const  real_T  *axis,  const  int_T p_width5,  
                          SimStruct *S)  
{  
  
/* This function calculates the Discrete Fourier Tr ansform (DFT) from the  
   displacements measured along one axis. The contr ibution of each data  
   point to each Fourier coeff. is calculated as ea ch data point is  
   received to maintain the number of computations per invocation and thus,  
   the load on the dSPACE box at nearly constant le vels. The Fourier ampl's  
   and freq's are calculated and sorted in ascendin g order of amplitude.  
   The ampl's and freq's are output in descending o rder of amplitude.  
*/  
  
/* Set the following to 1 to sort and output at sim ulation speed and keep  
   the DFT humming. Values greater than 1 slow thin gs down a bit. */  
#define DOWN_SAMP_SORT 1   
  
/* Enable printing by uncommenting the following #d efine. */  
/* #define ENABLE_PRTG */  
  
/* Input is as follows:  
     u0[0] - Displacement of one axis (mils). */  
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/* Parameters are as follow:  
     DFTFreq - Sampling frequency (Hz).  
     DFTFreqRes - Frequency resolution (Hz).  
     minAmp - Amplitude threshold (mils) - determin es if a dominant freq.  
              is retained in the output or not.  
     numFreq - Number of freq's from the maximum to  output.  
     actDFT - DFT active flag - 1 if the DFT is act ive, 0 otherwise.  
     axis - Axis for the DFT calculation. */  
       
/* Outputs are as follow:  
     y0[0] - Fourier frequency (Hz).  
     y1[0] - Fourier amplitude (mils).  
     y2[0,1,2] - Fourier freq's corresponding to th e max. amplitudes (Hz).  
     y2[3,4,5] - The max. amplitudes (mils).  
     y3[0] - DFT status (on or off) - used to updat e LED on the control  
             panel. */  
  
int  i, pos;  
static  int  firstCall = TRUE, calcActive = TRUE, sortActive = FALSE,  
           numCalls = 0, numPts = 1, outCntr = 0, a xis_a = 1,  
           downSamp, DFTSize,  
           lastDFTFreq, lastDFTFreqRes;  
real_T ampVal, freqVal, conTerm;  
static  real_T ACoeffs[MAX_DFT_SIZE/2 + 1] = {0},  
              BCoeffs[MAX_DFT_SIZE/2 + 1] = {0},  
              CCoeffs[MAX_DFT_SIZE/2 + 1],  
              FourFreqs[MAX_DFT_SIZE/2 + 1] = {0},  
              sortAmps[MAX_DFT_SIZE/2 + 1] = {0},  
              sortFreqs[MAX_DFT_SIZE/2 + 1] = {0},  
              simFreq;  
time_T fss;  
  
/* If DFT is turned off (the default when animation  begins), set all flags  
   and counters to their initial states, send the p roper signal to the  
   status port, send zero to all other output ports  and set the axis for  
   the DFT calc. */  
if  (( int ) *actDFT == FALSE)  
{  
  calcActive = TRUE;  /* Flags */  
  sortActive = FALSE;  
   
  numCalls = 0;  /* Counters */  
  numPts = 1;  
  outCntr = 0;  
   
  y0[0] = 0;  /* Need comment here. */  
  y1[0] = 0;  
   
  for  (i = 0; i < MAX_NUM_FREQ; i++)  
  {  
    y2[i] = 0;  
    y2[i + MAX_NUM_FREQ] = 0;  
  }  
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  y3[0] = 0;  
   
  axis_a = ( int ) *axis;  /* Axis can only be chosen when the DFT is */  
  return ;                /* inactive. */  
}  
  
/* If DFT is turned on, haul the mail. */  
if  (( int ) *actDFT == TRUE)  
{  
  y3[0] = 1;  /* Update status on control panel. */  
  numCalls++;  /* Records the number of times this routine has bee n called  
                  since the last DFT calculation. U sed to implement down  
                  sampling. */  
  
  if  (firstCall)  /* Calculate only once per simulation. */  
  {  
    fss = ssGetFixedStepSize(S);  /* or just use FSS from mbcntrl_a.h. */  
    simFreq = 1.0 / fss;  /* Hz */  
    firstCall = FALSE;  
  }  
  /* Reset counters if the input parameters have chan ged since the last  
     call. */  
  if  (lastDFTFreq != ( int ) *DFTFreq || lastDFTFreqRes != ( int ) *DFTFreqRes)  
  {  
    numCalls = 0;  
    numPts = 1;  
    outCntr = 0;  
  }  
  downSamp = ( int )(simFreq / *DFTFreq);  
  DFTSize = ( int )(*DFTFreq / *DFTFreqRes);  
   
  /* Fetch the amplitude value from the correct axis.  */  
  switch  (axis_a)  
  {  
    case  1: ampVal = u0[0];  /* from axis 1. */   
            break ;  
    case  2: ampVal = u0[1];  /* from axis 2. */  
            break ;  
    case  3: ampVal = u0[2];  /* from axis 3. */  
            break ;  
    case  4: ampVal = u0[3];  /* from axis 4. */  
            break ;  
    default : ampVal = u0[0];  /* Use axis 1 if something out of bounds */  
             break ;           /* slips through the net. */  
  }  
      
  /* numPts records the number of the point used in t he current calc. It  
     represents the variable "r" in Eqs. 4.14 and 4 .15 in [ ]. I had to  
     place this comment somewhere. */  
    
  /* Calculate the Fourier coeff's - multiply by 2/N later. */  
  if  (calcActive == TRUE)  
  {   
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    y0[0] = 0;  /* Keep the graph cleaner. */  
    y1[0] = 0;  
    if  (numPts == 1 || numCalls == downSamp)  
    {  
      /* Note the automatic type conversion in the follow ing expression. */  
      conTerm = (2.0 * M_PI * numPts) / DFTSize;  
      if  (numPts == 1)  /* Reinitialize the arrays. Otherwise . . . */  
        for  (i = 0; i <= DFTSize/2; i++)  /* i represents var. "n" in */  
        {                                 /* Eqs. 4.14 and 4.15 [ ]. */     
          ACoeffs[i] = 0;  
          BCoeffs[i] = 0;  
        }  
      for  (i = 0; i <= DFTSize/2; i++)  
      {  
        ACoeffs[i] = ampVal * cos(conTerm * i) + ACoeffs[i];  
        BCoeffs[i] = ampVal * sin(conTerm * i) + BCoeffs[i];  
      }  
      numPts++;  /* Increment the number of the point used. */  
      numCalls = 0;  
    }  
  
    /* Finish the calculation of the Fourier coeff's.  Discard the first  
       and last B Coeff's and calculate C Coeff's ( the Fourier ampl's). */  
    if  (numPts == DFTSize + 1)  /* We're one ahead. */  
    {  
      BCoeffs[0] = 0;  
      BCoeffs[DFTSize/2] = 0;  
      FourFreqs[0] = 0;  
      for  (i = 0; i <= DFTSize/2; i++)  
      {  
        ACoeffs[i] = 2.0/DFTSize * ACoeffs[i];  
        BCoeffs[i] = 2.0/DFTSize * BCoeffs[i];  
        CCoeffs[i] = sqrt( pow(ACoeffs[i], 2.0) + pow(BCoeffs[i], 2.0));  
      }  
      /* Calculate Fourier freq's. The first has already been set to 0. */  
      for  (i = 1; i <= DFTSize/2; i++)  
        FourFreqs[i] = i * (*DFTFreqRes);  /* Hz */  
     
      /* Finished the DFT interval.  Set things up for th e output/sort */  
      /* interval. */  
      calcActive = FALSE;  
      sortActive = TRUE;  
      numPts = 1;  
      numCalls = 0;  
    }  
    /* Preserve the input parameters so that we can che ck to see if they've  
       changed since the last invocation. */  
    lastDFTFreq = ( int ) *DFTFreq;  
    lastDFTFreqRes = ( int ) *DFTFreqRes;  
    return ;  
  }  
  
  /* May wish to include some sort of delay here or m ake some sort of */  
  /* contact. */  
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  /* Print, sort and print the values. */  
  if  (sortActive == TRUE)   
  {  
    if  (numPts == 1)  
    {  
      #ifdef ENABLE_PRTG  
        printf( "\nDFT freq = %3i Hz\n" , ( int ) *DFTFreq);  
        printf( "Down samp = %3i \nDFT size = %4i Pts\n\n" , downSamp, 
DFTSize);  
        printf( "   n    Freq(r/s)     Amp \n" );  
      #endif  
      for  (i = 0; i <= DFTSize/2; i++)  /* Reinitialize the arrays. */  
      {  
        sortAmps[i] = 0;  
        sortFreqs[i] = 0;  
      }  
    }  
    /* Sort the Fourier ampl's and freq's in ascending order. The insertion  
       sort described in [ ] is used, and each poin t is sorted vis-a-vis  
       the current ones as it is received. */  
    if  (numPts == 1 || numCalls == DOWN_SAMP_SORT)  
    {   
      freqVal = FourFreqs[outCntr] * 2.0 * M_PI;  /* rad/sec */  
      ampVal = CCoeffs[outCntr++];  
      for  (pos = numPts - 1; pos > 0 && ampVal < sortAmps[po s - 1]; pos--)  
      {  
        sortAmps[pos] = sortAmps[pos - 1];  
        sortFreqs[pos] = sortFreqs[pos - 1];  
      }  
      sortAmps[pos] = ampVal;  
      sortFreqs[pos] = freqVal;  
     
      y0[0] = freqVal;  /* Output the freq. (rad/sec). */  
      y1[0] = ampVal;   /* Ditto the amplitude. */  
      #ifdef ENABLE_PRTG  
        printf( "%4i     %6.3f     %6.3f \n" , numPts - 1, freqVal, ampVal);  
      #endif  
      numPts++;  
      numCalls = 0;  
    }  
   
    /* Finished the output interval.  Print the sorted values in descending  
       order, output the dominant freq's and set th ings up for the next DFT  
       calculation. */  
    if  (numPts == ( int )(DFTSize/2 + 2))  /* Again, we're one ahead. */   
    {  
      #ifdef ENABLE_PRTG  
        printf( "   n    Freq(r/s)     Amp \n" );  
        for  (i = DFTSize/2; i >= 0; i--)  
          printf( "%4i     %6.3f     %6.3f \n" , i, sortFreqs[i], 
sortAmps[i]);  
      #endif  
      /* Set the amplitude to 0 to avoid drawing a long, angled line across  
         the graph. */  
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      y1[0] = 0;  
      /* Output only those ampl's (though no more than th e max. number)  
         greater than or equal to the threshold and  their corresponding  
         freq's, but first write zero to all of the  output ports to keep  
         the panel cleaner. */  
      for  (i = 0; i < MAX_NUM_FREQ; i++)  
      {  
        y2[i] = 0;  
        y2[i + MAX_NUM_FREQ] = 0;  
      }  
      for  (i = 0; i < ( int ) *numFreq; i++)  
        if  (sortAmps[DFTSize/2 - i] >= *minAmp)  
        {   
          y2[i] = sortFreqs[DFTSize/2 - i];  /* Frequency (Hz) */  
          y2[i + MAX_NUM_FREQ] = sortAmps[DFTSize/2  - i]; /* Ampl (mils) */  
        }  
        else  
        {  
          y2[i] = 0;  
          y2[i + MAX_NUM_FREQ] = 0;  
        }  
      #ifdef ENABLE_PRTG  
        printf( "Max. amps      : \n %5.2f \n %5.2f \n %5.2f \n" , y2[3], 
y2[4], y2[5]);  
        printf( "    freqs (r/s): \n %5.2f \n %5.2f \n %5.2f \n" , y2[0], 
y2[1], y2[2]);  
      #endif  
      sortActive = FALSE;  
      calcActive = TRUE;  
      numPts = 1;  
      numCalls = 0;  
      outCntr = 0;  
    }  
    /* Preserve the input parameters as before. */  
    lastDFTFreq = ( int ) *DFTFreq;  
    lastDFTFreqRes = ( int ) *DFTFreqRes;  
    return ;  
  }  
}  
}  
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Appendix B 

S-Functions 

updateOmega_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
  
#include "simstruc.h"  
#include <math.h>  
#include "mbcntrl_a.h"  
  
#define u_width 1  
#define y_width 1  
  
void  updateOmega_Outputs_wrapper( const  real_T *u0,  
                          const  real_T *u1,  
                          const  real_T *u2,  
                          const  real_T *u3,  
                          const  real_T *u4,  
                          const  real_T *u5,  
                          const  real_T *u6,  
                          real_T *y0, SimStruct *S)  
{  
  
/* This function determines the freq. to use in the  composition of the  
   disturb. vector. This freq. can either be consta nt or dynamic, based  
   the speed of the rotor. If it's dynamic, values for the speed  
   measurement interval, speed update increment and  speed update interval  
   must be chosen. */  
  
/* Enable printing by uncommenting the following #d efine. */  
#define ENABLE_PRTG  
  
/* Inputs are as follow:  
     u0[0] - Simulation time (sec).  
     u1[0] - Actual rotor speed (RPM).  
     u2[0] - Speed measurement interval (secs).  
     u3[0] - Speed update increment (RPM).  
     u4[0] - Speed update interval (multiples of FS S).  
     u5[0] - Adaptive controller mode.  
     u6[0] - Manual reject frequency (rad/sec). */  
      
/* Output is as follows:  
     y0[0] - Speed (rad/sec). */  
     
int  currMode;  
static  int  newMeas = TRUE, measAct = FALSE, updateAct = FALSE , incrRPM,  
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           prevMode = MAN_MODE;  
double  simT, manRejFreq;  
static  double  measTimer, begRPM, nextRPM, endRPM, RPMIncr, updat eTimer;  
  
simT = u0[0];  /* Fetch the simulation time, */  
currMode = ( int ) u5[0];  /* controller mode and */   
manRejFreq = u6[0];      /* manual reject frequency. */  
  
/* Ensure that things are initialized properly. */  
if  (prevMode != SPEED_MODE)  /* If the mode was not and is not SPEED, */    
  if  (currMode != SPEED_MODE)  
  {  
      y0[0] = manRejFreq;  /* output the manual-mode reject freq, */  
      prevMode = currMode;  /* preserve the current mode and return. */  
      #ifdef ENABLE_PRTG  
        printf( " Other mode, speed = %6.3f \n" , manRejFreq);  
      #endif  
      return ;  
  }  
  else   /* If the mode was not SPEED but now it is, begin a  measurement */  
  {  
    begRPM = u1[0];  /* interval. */  
    newMeas = TRUE;  
    prevMode = currMode;  
    #ifdef ENABLE_PRTG  
      printf( "\n\n ----- A New Analysis -----\n\n" );  
    #endif  
  }  
else  if  (currMode != SPEED_MODE)  /* If the mode was SPEED and now it is */  
{  
  prevMode = currMode;  /* not, preserve the current mode and return. */  
  return ;  
}  
  
/* If previous and currents modes are SPEED, contin ue onward. */  
if  (newMeas == TRUE)  /* Begin the measurement interval. */  
{  
  measTimer = u2[0];  /* Fetch the meas. interval from ControlDesk. */  
  y0[0] = begRPM * (2*M_PI/60.0);  
  #ifdef ENABLE_PRTG  
    printf( "\n Begin meas. interval, time = %7.3f sec," , simT);  
    printf( " speed = %6.3f \n" , begRPM);  
  #endif  
  nextRPM = begRPM;  /* Preserve it for later use. */  
  newMeas = FALSE;  
  measAct = TRUE;  
  return ;  
}  
  
if  (newMeas == FALSE && measAct == TRUE)   
{  
  y0[0] = begRPM * (2*M_PI/60.0);  
  measTimer = measTimer - FSS;  /* Decrement the timer and check. */  
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  if  (measTimer > 0.0)  /* If the meas. interval hasn't expired, return. */  
    return ;  
                   /* If it has, */  
  endRPM = u1[0];  /* read the current speed. */  
  #ifdef ENABLE_PRTG  
    printf( " End meas. interval, time = %7.3f sec," , simT);  
    printf( " speed = %6.3f \n" , endRPM);  
  #endif  
  if  (begRPM != endRPM)  /* If the speed has changed over the interval, */  
  {   
    #ifdef ENABLE_PRTG  
      printf( " Begin update interval, time = %7.3f sec \n" , simT);  
    #endif  
    RPMIncr = u3[0];  /* fetch the update increment and interval values * /  
    updateTimer = u4[0] * FSS;  /* from ControlDesk. */  
    if  (begRPM < endRPM) /* If the speed has increased, */  
      incrRPM = TRUE;  /* increment. */  
    else  
      incrRPM = FALSE;  /* Otherwise, decrement. */  
    measAct = FALSE;  
    updateAct = TRUE;  
  }  
  else   /* If the meas. interval has expired and the speed hasn't changed, 
*/  
  {  
    newMeas = TRUE;  /* begin a new measurement interval. */  
    return ;  
  }  
}  
  
if  (updateAct == TRUE)  /* Update the reject frequency. */  
{  
  updateTimer = updateTimer - FSS;  /* Decrement the timer and check. */  
  if  (updateTimer > 0.0) /* If the update interval hasn't expired, */  
    return ;              /* return. */  
  /* If it has and the speed is increasing and the la st update is less  
     than the final value, */    
  if  (incrRPM == TRUE && nextRPM < endRPM)   
  {  
    nextRPM = nextRPM + RPMIncr;  /* calculate the next update value. */  
    if  (nextRPM > endRPM)  
      nextRPM = endRPM;  
    y0[0] = nextRPM * (2*M_PI/60.0);  /* Update it in rads/sec. */  
    #ifdef ENABLE_PRTG  
      printf( " End update interval, time = %7.3f sec," , simT);  
      printf( " speed = %6.3f\n" , nextRPM);  
    #endif  
    updateTimer = u4[0] * FSS;  
  }  
  /* If it has and the speed is decreasing and the la st update is more  
     than the final value, */  
  else  if  (incrRPM == FALSE && endRPM < nextRPM)  
  {  
    nextRPM = nextRPM - RPMIncr;  /* calculate the next update value. */  
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    if  (nextRPM < endRPM)  
      nextRPM = endRPM;  
    y0[0] = nextRPM * (2*M_PI/60.0);  /* Update it in rads/sec. */  
    #ifdef ENABLE_PRTG  
      printf( " End update interval, time = %7.3f sec," , simT);  
      printf( " speed = %6.3f\n" , nextRPM);  
    #endif  
    updateTimer = u4[0] * FSS;  
  }  
  else   /* If the update interval has expired and updating is complete, */  
  {  
    begRPM = nextRPM;  
    updateAct = FALSE;  /* begin a new speed measurement interval. */  
    newMeas = TRUE;  
  }  
     
  return ;  
}  
  
}  
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Appendix B 

S-Functions 

genSpeed_wrapper.c 

/*  
 *   --- THIS FILE GENERATED BY S-FUNCTION BUILDER:  3.0 ---  
 */  
   
#if defined(MATLAB_MEX_FILE)  
  #include "tmwtypes.h"  
  #include "simstruc_types.h"  
#else  
  #include "rtwtypes.h"  
#endif  
  
#include <math.h>  
  
#define u_width 1  
#define y_width 1  
  
void  genSpeed_Outputs_wrapper( const  real_T *u0,  
                          real_T *y0)  
{  
  
/* This function generates a profile of the rotor s peed using your basic  
   multiway if. */  
 
/* Input is as follows:  
     u0[0] - Simulation time (sec).  
  
 /* Output is as follows:  
     y0[0] - Rotor speed (RPM). */  
  
double  simT, speed;  
  
simT = u0[0];  /* Fetch the simulation time, */  
  
if  (simT >= 0.0 && simT < 0.9)  /* and generate the speed profile. */  
  speed = 600;  
if  (simT >= 0.9 && simT < 1.9)  
  speed = 604;  
if  (simT >= 1.9 && simT < 2.9)  
  speed = 608;  
if  (simT >= 2.9 && simT < 3.8)  
  speed = 609;  
if  (simT >= 3.8 && simT < 4.9)  
  speed = 609;  
if  (simT >= 4.9 && simT < 5.9)  
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  speed = 612;  
if  (simT >= 5.9 && simT < 6.9)  
  speed = 607;  
if  (simT >= 6.9 && simT < 7.9)  
  speed = 602;  
if  (simT >= 7.9 && simT < 8.9)  
  speed = 599;  
if  (simT >= 8.9 && simT < 9.9)  
  speed = 603;  
if  (simT >= 9.9)  
  speed = 606;  
  
y0[0] = speed;  
  
return ;  
  
}  
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Appendix C 

Profile Reports 

Simulink Model Adapt_Cntrl_1E 
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Appendix C 

Profile Reports 

Simulink Model Adapt_Cntrl_1S 
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Appendix C 

Profile Reports 

Simulink Model Adapt_Cntrl_3E 
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Appendix C 

Profile Reports 

Simulink Model Adapt_Cntrl_3S 

 



139 
 

Appendix C 

Profile Reports 

Simulink Model State_Estimator_prof 

 


