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Abstract

In the past few years, demand has kept increasing for higher data rates in wireless networks

due to the increases in the numbers of mobile subscribers and multimedia applications. Femtocell

and free space optics(FSO) networks, which both are important solutions to build next generation

wireless networks, are two networks studied in this dissertation. In this dissertation, we adopt

optimization approaches for network design in both femtocell and FSO networks. The first part

of this dissertation provides an introduction to the background and related research issues of the

femtocell and FSO networks.

In the first two chapters, cell association, handover management and scheduling policies in

two-tier femtocell networks are studied extensively. Cell association problem is to associate users

to either a macro base station(MBS) or a femtocell base station(FBS). The objectives of cell asso-

ciation problem can be: 1) Maximizing total network throughput; 2) Achieving fairness among all

users; 3) Balancing load among all BSs. Cell association and handover algorithms are proposed to

achieve these objectives.

In the following chapters, research is extended to Free space optical (FSO) networking, which

is an attractive energy-efficient technology with applications ranging from high capacity military

communications to “Last-mile” broadband access solutions. Topology control, spatial diversity

techniques and adaptive transmissions in FSO systems are studied to mitigate weather turbulence

which greatly degrades link performance. The problem of building a spanning tree when number

of transceivers on each base station is limited in FSO networks is first studied. Then, the challeng-

ing problem of relay selection and power allocation in cooperative FSO network is investigated.

Last but not the least, the problem of optical power allocation under power budget and eye safety
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constraints is investigated for adaptive WDM transmission to combat the effect of weather tur-

bulence in FSO networks. This research provides new visions for practical solutions to mitigate

weather turbulence in FSO networks.
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Chapter 1

Introduction

1.1 Femtocell networks

1.1.1 History of Femtocell

Demand is ever increasing for higher data rates in wireless networks to keep up with the

remarkable speed-up of fiber-optic networks. The demand for data traffic has surpassed voice

traffic and keeps on growing drastically. According to [1], global mobile data traffic is expected

to grow to 10.8 exabytes (1 exa = 1018) per month by 2016, which is an 18-fold increase over

2011. This increase in data traffic on cellular networks is creating challenges for existing cellular

networks. Moreover, around 90% of the data services and 60% of the voice services will take

place on indoor environments in the near future [2]. How to accommodate needs for data requests

from smartphones, tablets, and laptops and maintain quality of service (QoS) for customers is a

big challenge. Traditional cellular networks are not able to meet this increasing demand for traffic

and the reasons are as follows:

• Costly cell sites

• Limited spectrum availability

• Expensive cell site backhaul

Many techniques have been studied in both academia and industry to reduce the energy con-

sumption of cellular networks and increase the end user satisfaction. Heterogeneous networks can

improve both throughput and energy consumption, due to the fact that macrocell provides better

coverage and in the mean time QoS can be accounted for by smaller-size cells, which are usually

deployed close to the end users. The diffusion of smaller cells into traditional cellular networks
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presents a feasible, energy-efficient and cost-effective solution to cater to high volume of data de-

mand from users, and in the mean time to maintain profitability for operators. Femtocells have

emerged recently as a promising energy-efficient solution to foster growth in wireless data provi-

sioning, especially indoors or at cell edge.

The idea of small cells has been around for nearly 3 decades [3]. In the early 1990s, South-

west Bell and Panasonic developed an indoor femtocell-like solution that re-used the same spec-

trum as the macrocells and used wired backhaul. However, there are many reasons (such as, lack

of ubiquitous IP backhaul) that refrained this solution from economial success at that time. Mod-

ern autonomous and self-adaptive femtocell was introduced to address the mobile data explosion

problem. In addition to the escalating data demands, several technological and societal trends have

made low-cost femtocells viable. Rearch work in femtocell has increased greatly from 2007 till

now. In addition, the European Union has started funding research on femtocells. Hence now

we have seen successful commercial femtocell deployments. As of December 2010, 18 operators

have launched commercial femtocell services, with a total of 30 committed to deployment [4].

According to the Femto Forum, operator deployments grew by 60% in the second quarter of 2011,

including eight of the top ten global mobile operator groups [3].

Femtocells which are also called home base stations are often installed by home users to get

better indoor voice and data coverage. Femtocell base station is typically the size of a residential

gateway or smaller and connect to the service providers network via broadband such as digital

subscriber line (DSL) or cable, and typically supports only a few users.

Femtocell base stations operate on relatively low transmit power (100 mW or even 10 mW)

and provide short range coverage (20 - 30 m), in order to avoid interference with nearby femtocells.

They share the licensed spectrum with the microcell allocated to operators (in the range of 1.9 - 2.6

GHz) and offer data rates from 7.2 - 14.4 Mbps, and with the advances in LTE/SAE, the data rates

will keep increasing, up to 100Mbps [5]. The concept of femtocells is applicable to all standards

including GSM, wideband code-division multiple access (WCDMA), World-Wide Interoperability

2
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Figure 1.1: Femtocell networks

for Microwave Access (WiMAX), and LTE [1]. By the start of 2011, an estimated 2.3 million

femtocells were already deployed globally.

In femtocell networks, there are usually two types of base stations, the macrocell base station

(MBS) and the femtocell base station (FBS, which is also commonly known as Femtocell Access

Points or FAP). From the operators viewpoint, macrocell base station can offload a significant

amount of traffic to femtocell base station so that equipment cost and power consumption can be

greatly diminished. FBS provides a highly effective way to ease the traffic carried by a MBS. From

the customers viewpoint, femtocells can be conveniently deployed as wanted and provide better

service while consuming less power [6].

As shown in Fig. 1.1, A femtocell is usually a small cellular network, with a FBS connected

to MBS via broadband wireline. It is designed to offload MBS traffic and serve the approved users

when they are within the coverage. Due to the reduced distance of wireless transmission, femtocell

is shown to be effective in reducing transmit power [7] and improving signal-to-interference-plus-

noise ratio (SINR), which lead to prolonging battery life of mobile devices and enhancing network

coverage as well as capacity [8].
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1.1.2 Advantage of Femtocell

Femtocells have attracted significant interest from wireless industry. Recently, major wireless

network operators in the United States such as AT&T, Sprint and Verizon, have provided femtocell

service plans. Femtocells provide improved coverage and capacity to mobile users when and where

needed. The advantages of femtocells are summarized as:

• Better coverage and capacity, especially for users at home or at the cell edge;

• Improved macrocell reliability, since macrocell base stations will have more available re-

sources to provide better service for mobile users;

• Reduces the operating and capital expenditure costs; femtocells can be deployed quickly,

unlike traditional macrocellular deployments, which take much longer due to site acquisition,

purchase of radio infrastructure and backhaul, and other similar considerations [1];

• Reduced subscriber turnover [8].

Although the potential of femtocells is highly promising, a broad range of problems across techni-

cal issues, regulatory concerns and economic incentives should be addressed [3]. The challenging

technical issues include synchronization, cell association, mobility and handover, interference mit-

igation, network organization, and quality of service (QoS) provisioning [9].

Femtocell access point is installed at home or at work, and is of small size, which is similar to

Wi-Fi AP. However, there are many differences between femtocells and Wi-Fi which distinguish

them from each other. First, Wi-Fi operates in unlicensed bands, while femtocells operate in costly

(licensed) and limited spectrum bands. Thus femtocells require careful planning compared to Wi-

Fi networks [10]. Second, femtocells capture 100 percent of traffic, whether it is voice or data and

whether it originates from a feature phone, smart phone, or a laptop. This is usually not possible

in the case of Wi-Fi. And when it comes to data rates, femtocells still can not compete with Wi-Fi

which can support data rates as high as 600 Mb/s both downlink and uplink. However, femtocells

have advantages in providing guaranteed QoS using licensed bands, whereas Wi-Fi cannot [1].
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1.1.3 Technical issues in femtocell networks

In femtocell networks, whenever a mobile user comes into the coverage area of a femtocell,

the user equipment (UE) will automatically associate with it if the user equipment (UE) is au-

thorized to use the service. A mobile user subscribed to one or more femtocells would want to

get service from femtocells to benefit from preferential charging or better QoS support than an

overlaying macrocell. The search function may be either autonomous or manual [11]. After UE

is associated with one femtocell, the traffic flows over the air interface to the femtocell and over

the Internet to the operators core network and/or other Internet destinations [1]. There are three

different access control modes in femtocell networks, the open access, the closed access and the

hybrid access mode. Open-access scheme allows all mobile users of an operator to connect; in

this case, femtocell is often deployed directly by an operator to provide coverage in an area where

there is a coverage hole. In closed-access mode, only a specific user group can get service. In the

hybrid access scenario, the femtocell owner may allow access to all user equipment (UE) but with

preferential access to a certain group of UE [11]. Closed access method has been shown to create

high level of interference in the proximities of the FAP and decreased system throughput by 15%,

however, surveys suggest that closed Access mode is subscribers favorite option [12]. On the other

hand, open access scheme provides a better overall network performance in terms of throughput

and utilization but handover increases and user satisfaction decreases.

Introducing femtocell also means introducing interference if no appropriate mitigation strat-

egy is adopted. Coexistence of femtocells and macrocells in orthogonal channels is simple but

results in low spectrum efficiency from a system point of view [6]. Femtocells and macrocells

using the same channel will introduce increased level of interference, especially in closed-access

scenario. However, due to high cost of licensed spectrum, operators may prefer co-channel shared

resource allocation but reusing frequency bands in an uncoordinated random fashion introduces

potentially destructive interference [10]. For example, to get better received signal-to-interference-

plus-noise-ratio (SINR), one femtocell base station may increase transmit power; however, this will

reduce the throughput of many neighboring cells. Thus, one research topic is on optimal resource
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allocation in femtocell networks. With the consideration of interference, the optimal resource al-

location problem may have different objectives, such as maximizing throughput or maximizing

proportional-fairness.

Femtocells are often installed by customers themselves in a plug-and-play manner, similar

to a WiFi access point. Unlike WiFi, femtocells operate mainly in licensed bands. Because of

the randomness in the locations of FBS, interference management is one of the most important

technical challenges in femtocell networks. Fast power control has been adopted before in or-

der to compensate for path loss and fading, and to provide uniform coverage. When femtocells

are added in the networks, power control creates dead zones, which is also called loud neighbor

problem [8]. On the reverse link, nearby macrocell user transmits with high power to macro BS

and causes unacceptable interference to nearby femtocells users. On the forward link, at the cell

edge macrocell users are severely affected by nearby femtocell transmissions [8]. Due to the fact

that centralized interference management is difficult to implement in femtocell networks, there is a

significant amount of research on a variety of interference management schemes, such as adaptive

access scheme, cognitive radio, and dynamic frequency planning in WiMax femtocells.

By the introduction of femtocell, mobile users are now facing more handovers than ever. The

normal handover only occurs when users move from one MBS to another MBS. Now, there are two

more kinds of handovers. One kind of handover occurs between MBS and FBS when UE moves

from outdoors to indoors or vice versa. A certain level of synchronization between FBS and MBS

is required during this kind of handover. Another kind of handover occurs when a user moves from

one FBS to another FBS which is associated with the same cellular service [12]. Handover control

among the femtocells and a macrocell is also one of the major technical challenges in femtocell

networks. Research has been done on handover management considering signal strength, available

wireless resources and access mode.

The security of the transfer of cellular channels and more importantly the timing information

is also still an open problem. Finally, since femtocells are likely to use xDSL, synchronization is
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also a major challenge due to xDSL asymmetric bandwidth and the load on the core Point-to-Point

(PTP) time servers [5].

1.1.4 Major Contributions

Femtocells are recognized as effective in improving network coverage and capacity, and re-

ducing power consumption due to the reduced range of wireless transmissions. Although highly

appealing, a plethora of challenging problems need to be addressed for fully harvesting its poten-

tial.

We investigate the problem of cell association and handover management in femtocell net-

works. We consider an MBS and multiple FBS’s deployed in a femtocell network. The MBS and

FBS’s cooperatively send data to users in the network through downlink transmission. Each user

is allowed to connect to either the MBS or an FBS. Cell association, handover management and

scheduling policies in two-tier femtocell networks are studied extensively. Cell association prob-

lem is to associate users to either a macro base station (MBS) or a femtocell base station(FBS). The

objectives of cell association problem can be: 1) Maximizing total network throughput; 2) Achiev-

ing fairness among all users; 3) Balancing load among all BSs. Cell association and handover

algorithms are proposed to achieve these objectives.

The problem of striking a balance between total network throughput and user fairness in

femtocell networks is investigated in Chapter 2. Two extreme cases for cell association are first

discussed and analyzed, and an algorithm to maximize network capacity while achieving fairness

among users is proposed. Based on this algorithm, a handover algorithm to reduce the number of

unnecessary handovers using Bayesian estimation is further developed. The proposed handover al-

gorithm is demonstrated to outperform a heuristic scheme with considerable gains in the simulation

study.

In Chapter 3, we investigate the problem of cell association and service scheduling in femto-

cell networks. In addition to the general goal of offloading macro base station (MBS) traffic, we

also aim to minimize the latency of service requested by users, while considering both open and
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closed access strategies. We show the cell association problem is NP-hard, and propose several

near-optimal solution algorithms for assigning users to base stations (BS), including a sequential

fixing algorithm, a rounding approximation algorithm, a greedy approximation algorithm, and a

randomized algorithm. For the service scheduling problem, we develop an optimal algorithm to

minimize the average waiting time for the users associated with the same BS. The proposed algo-

rithms are analyzed with respect to performance bounds, approximation ratios, and optimality, and

are evaluated with simulations.

1.2 FSO networks

1.2.1 Introdution to FSO

Free Space Optical (FSO) networks, namely optical wireless networks, are wireless telecom-

munication systems that make use of free space as transmission medium to deliver optical data

signals at high bit rates. FSO are considered as an important alternative to the radio frequency

(RF) systems as the backhaul solution for future data-intensive networks. It can support extremely

high data rate while only requires relatively low operational cost. Due to these advantages along

with others, FSO has drawn great attention from many research institutions. FSO technology does

not require licensed spectrum and thus manifold gain in the mobile data capacity can be achieved

to curtail the impact of the prevailing bandwidth capacity crunch phenomena without imposing

much interference problem in the existing networks. FSO communications has already been used

as a promising broadband wireless access technology to resolve the existing “Last-mile” access

network problems. The congestion and the limitations on bandwidths of the radio spectrum have

inhibited unrestricted growth of traditional RF systems [13]. Drawing increasing attention, free

space optical(FSO) networks are considered as an important alternative to the radio frequency

(RF) systems as the backbone solution for future data-intensive networks. This appeal is primarily

due to their high optical fiber-like data rates, resistance to electromagnetic interference, and secu-

rity among other advantages. Nevertheless, the advantages of free space optics have not yet been

fully exploited.
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There are many advantages of optical communications, including [14]:

• Space optical links can support high date rate transmission. Free space optical links in the

order of 10 Gb/s have been achieved over reasonable distances (1 km).

• It is license-free. FSO operates in the infrared(IR) spectral range of 8001700 nm and does

not require operating license worldwide.

• Optical beams are immune to electromagnetic interference.

• FSO system is easy to deploy and especially in war-torn countries for example, or during

disaster relief, FSO communication systems are highly suited to jump start the establishment

of a core communication infrastructure.

• Due to confined beam and point-to-point transmission properties [14], space optical links

have LPI/LPD (Low Probability of Intercept/Low Probability of Detection).

• Light sources with same specifications can be reused at overlapped deployment area or

rooms in the building since light beams can not penetrate the walls and it is hard to interfere

each other.

FSO and fiber both have the ability to support high-bandwidth transmission but intuitively,

light transmits through free space in FSO systems while light transmit through a confined medium

in fiber. Due to this fundamental difference, light intensity in FSO systems may suffer from scat-

tering, physical obstructions, and scintillation. This is one disadvantage of FSO over fiber. In

other words, laser power attenuation through the atmosphere is variable and difficult to predict.

However, FSO is more cost-effective and flexible in multiple architectures, and FSO is more en-

vironment friendly. FSO operates in the infrared(IR) spectral range of 800-1700 nm and does not

require operating license worldwide. An FSO system can operate in full duplex operation. Each

FSO link head typically includes a transceiver capable of receiving and transmitting in parallel and

at the same time [15].
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FSO can be used for satellite-to-satellite communications, up-and-down links between space

platforms and aircraft, ships, and other ground platforms [16], disaster recovery and emergency

response, among others. FSO is considered as a potential solution for “Last-mile” problem. Nowa-

days, providers can provide broadband applications to the end user through fiber optic networks.

However, financial issues are preventing laying fibers to users and thus instead, users are connected

to the fiber optic networks via other means such as cable, DSL, or satellite [13]. However the cost

per Mbps is high and will remain high at least for the foreseeable future [17]. With the advance

of FSO technology, “Last-mile” problem may be addressed without high cost. FSO represents the

most viable alternative in terms of bandwidth scalability, deployment speed and cost effectiveness.

The exponential growth in the demand for high throughput and low latency applications for mo-

bile users is forcing fundamental changes to cellular network topologies. The most natural way to

embed FSO products within cellular networks is to consider them as point-to-point replacements

of terrestrial links within the core network [14].

In addition to “Last-mile” problem, FSO has been extensively studied in the application of

hybrid RF/FSO system. Due to the complementary nature of radio and FSO communications,

both in capacity and coverage, the combined use for data transmission suggests advantages over a

single media [14]. FSO links are severely attenuated in foggy conditions, whereas microwave RF

frequencies are significantly attenuated by rain. RF can be utilized to facilitate functions such as

acquisition, tracking, control signaling, neighbor discovery, and providing a backup communica-

tion channel. In some proposed systems, RF serves as the backup for FSO networks, while in other

systems, FSO serves as the backup for RF systems. There are many ways to explore the potential

of FSO and ways to incorporate both FSO and RF technologies in wireless networks.

Recently, in order to overcome the limitation of the conventional FSO systems, researchers

have developed new generation FSO technology, which does not require converting the signal

from electrical to optical and vice versa before transmitting or receiving through freespace. Radio

on Free-Space Optics (RoFSO) is the technology that transmission of wireless signals using FSO
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links. In this configuration, the radio signal is emitted directly to free-space and therefore, a pro-

tocol and data rate transparent FSO link is achieved [18]. Signal transmission qualities of various

high frequency band radio services over a RoFSO link are affected by not only a radio channel

environment but also FSO channel condition [19].

RoFSO is analogous to Radio-over-Fiber (RoF) technology, which modulates RF subcarriers

onto an optical carrier for distribution over fiber network at low cost, over long distance and low

attenuation. However, the success of RoF technology depends on availability of installed optical

fiber cables. RoFSO is more flexible and now it is shown by experiments that it is capable of

simultaneously transmitting multiple RF signals representing various wireless services over atmo-

sphere [20].

1.2.2 Technical issues in FSO networks

There are many research opportunities and also challenges in different aspects of FSO net-

works, such as pointing, acquisition and tracking (PAT), weather/environment issue, channel ran-

domness, and topology control [21]. One issue that needs to address before FSO system to see

the life is the eye safety issue. Eye safety requires optical transmitters to comply with the regula-

tions. In the United States, the Food and Drug Administration considers power density of about

100 mW/cm2 at 1550 nm, or 1 mW/cm2 at 780 nm safe to the unaided eye [14].

High-power beams can suppress atmospheric disturbance and make it possible to meet re-

quired data rates further. However, laser sources beyond certain power threshold can be harmful

to human body including eyes. Thus, it is indispensable to make each optical wireless networks

have limitation on laser-emission power. The performance of FSO systems can be degraded by the

safety regulations of the transmit power [13]. Operating low power sources demands the availabil-

ity of sensitive receivers and may incur more interference from environments. Additionally, it is

worthy to learn that indirect modulation/direct detection (IM/DD) is the main mode of detection

in FSO systems but coherent communications have also been proposed as an alternative detection
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mode. Among these, heterodyne detection is a more complicated detection method but has the

ability to overcome the thermal noise effects [22].

Since an FSO transmitter is highly directional, FSO systems are often designed to have a

divergence of a few milliradians or less in order to concentrate the optical energy on a receiver.

Each “optical transceiver” must be simultaneously pointed at the other for communication to take

place. FSO links often need to use Pointing, Acquisition, and Tracking (PAT) subsystems. PAT in

FSO communications is challenging and non-trivial. The pointing mechanism starts with finding

out where potential nodes exist for establishing a link in the three dimensional free space and then

proceeds to the connection procedure. The acquisition mechanism is related to signal modulation

and detection techniques. The tracking mechanism is also induced by the narrow-beam property.

Signal tracking mechanisms have to be under consideration even between stationary transceivers

since FSO links need very high pointing accuracy and misalignment of optical beams effects leads

to reduction of available capacity and increment of outage probability. When node mobility is

getting higher, more delicate hardwares and protocols are needed. If the receiver fails in keeping

the track of current connection, it should be back to the coarse-seeking mechanism.

Atmospheric obstructions (e.g., due to the weather turbulence or flying objects) can degrade

the link performance considerably. As a laser beam passes through a medium containing atoms,

molecules, and particles, its intensity reduces and there are two processes that cause extinction:

absorption, and scattering. Both of these processes remove energy from the forward propagating

beam direction [15]. Random variations in the refractive index of the Earths atmosphere are re-

sponsible for random fluctuations in laser beam irradiance called scintillations. Related turbulence-

induced effects include beam spreading beyond the spreading predicted by diffraction and a con-

tinuous random motion of the beam centroid about the receiver. These effects may result in random

signal losses at the receiver, and thus system bit error rates increase, and in severe weather condi-

tions they may even lead to the complete loss of signal altogether [15]. Temperature fluctuations

in the air will cause refractive-index changes greatly. Huygens-Fresnel principle models the fading

of a wave due to passage through air turbulence. It is typical for deep fades to last about 1-100
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us [16], and when the link is operating at multigigabits per second, the loss of potentially up to 109

consecutive bits may occur, causing devastating effects on the throughput of the network [16]. The

constant presence of turbulence in the atmospheric channel is one of the limiting factor in reliable

FSO communication link performance [15].

1.2.3 Major Contributions

In this dissertation, we propose techniques for improving the reliability of FSO systems to

mitigate the effect of weather turbulence. We adopt optimization skills and graph theory to im-

prove the energy efficiency of FSO systems. Topology control, spatial diversity techniques and

adaptive transmissions have been studied and proved to be effective in maintaining system perfor-

mance. Power allocation schemes are developed in cooperative FSO networks and adaptive FSO

communication systems.

Topology control is an important problem in FSO networks. The problem of building a span-

ning tree when number of transceivers on each base station is limited, in FSO networks, is NP-hard.

What makes the problem even more challenging is to maximize the algebraic connectivity of the

spanning tree. We develop an initially configuring, or bootstrapping, algorithm which produces

a degree constrained spanning tree with high algebraic connectivity and also high average edge

weight, where the edge weight in the graph represents the FSO link reliability. We also develop

a fast reconfiguration algorithm when one or more links fail in the FSO network. Our algorithms

outperform alternative schemes in improving both algebraic connectivity and average edge weight.

The robustness of the resulting topology of FSO networks is significantly improved.

Next, we also consider the challenging problem of relay selection and power allocation. We

investigate the problem of maximizing the FSO network-wide throughput under constraints of a

given power budget and number of FSO transceivers. The problem is formulated as a Mixed Integer

Nonlinear Programming (MINLP) problem, which is NP-hard. We first adopt the reformulation-

linearization technique (RLT) to derive an upper bound for the original MINLP problem. Due to
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the relaxation, the solutions obtained from RLT is infeasible. We propose both centralized and dis-

tributed algorithms using bipartite matching and convex optimization to obtain highly competitive

solutions. The proposed algorithms are shown to outperform the non-cooperative scheme and an

existing relay selection protocol with considerable gains through simulations.

Radio over Free Space Optics (RoFSO) provides a promising enhancement to optical fiber

systems. In an RoFSO system using wavelength-division multiplexing (WDM), it is possible to

concurrently transmit multiple data streams consisting of various wireless services at very high

rate. In this chapter, we develop power allocation schemes for adaptive WDM transmissions to

combat the effect of weather turbulence in FSO networks. The problem of optical power allocation

under power budget and eye safety constraints is investigated for adaptive WDM transmission in

RoFSO networks. Simulation results show that WDM RoFSO can support high data rates even

over long distance or under bad weather conditions with an adequate system design. This work

provides new visions for practical solutions to mitigate weather turbulence in FSO networks.

1.3 Overview of the Dissertation

The dissertation is organized into three parts. The first part is the introduction to femtocell

networks and FSO networks in Chapter 1.

The second part includes two chapters: Chapter 2 and Chapter 3. In Chapter 2, cell association

and handover management policies are discussed and several algorithms are proposed to maximize

system throuput while maintaining certain user fairness. In Chapter 3, cell association policies are

designed with the objectives of minimizing the service latency in femtocell networks.

Research is extended to FSO networking in the third part of this dissertation. Topology con-

trol, spatial diversity techniques and adaptive transmissions in FSO systems are studied to mitigate

weather turbulence in the next chapters.

In Chapter 4, the problem of building a spanning tree when the number of transceivers on

each base station is limited in FSO networks is studied. In Chapter 5, the challenging problem of

relay selection and power allocation in cooperative FSO network is investigated. Both centralized
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and distributed algorithms using bipartite matching and convex optimization to obtain highly com-

petitive solutions are proposed, and are shown to outperform the non-cooperative scheme and an

existing relay selection protocol with considerable gains through simulations. In Chapter 6, power

allocation schemes for adaptive WDM transmissions are developed to combat the effect of weather

turbulence in FSO networks. The problem of optical power allocation under power budget and eye

safety constraints is investigated for adaptive WDM transmission in RoFSO networks.

Chapter 7 concludes past work and introduces the research topics in future studies.
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Chapter 2

Cell Association and Handover Management in Femtocell Networks

2.1 Introduction

Due to the nature of open space used as wireless transmission medium, wireless network ca-

pacity is largely limited by interference. Mobile users at the border of cellular networks require

considerably large transmit power to overcome attenuation, which in return causes interference

to other users and reduces network capacity. To address this issue, femtocells provide an effec-

tive solution by shortening transmission distance and bringing base stations (BS) closer to mobile

users [8].

Femtocells have received considerable interest from both industry and academia. Technical

challenges, regulatory requirements and economic concerns in femtocell networks are comprehen-

sively discussed in [8] and [3]. Since FBS’s are distributedly deployed and are able to spatially

reuse the same spectrum belonging to the MBS, many research efforts were made on interference

mitigation by assigning users to the proper BS. In [23], the disadvantages of open and closed ac-

cess mechanisms were discussed and a hybrid access control scheme was introduced. In [24], a

stochastic geometric model was introduced to derive the success probability for MBS’s and FBS’s

under open and closed access schemes. A learning-based cell selection method for an open access

femtocell network was proposed in [25].

The main objective of handover algorithm is to determine an optimal connection while min-

imizing handover latency and reducing unnecessary handovers. In [26], an efficient handover

algorithm was proposed by considering the optimal combination of received signal strengths from

a serving MBS and a target FBS. In [27], a new handover decision algorithm based on mobility

pattern and location prediction was developed to reduce the number of unnecessary handovers due

to temporary femtocell visitors. Both signal strength and velocity were considered for the proposed
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handover algorithm in [28]. A hybrid access scheme and a femtocell-initiated handover procedure

with adaptive threshold were studied in [29].

In this section, we investigate the problem of cell association and handover management in

femtocell networks. We consider an MBS and multiple FBS’s deployed in a femtocell network.

The MBS and FBS’s cooperatively send data to users in the network through downlink transmis-

sion. Each user is allowed to connect to either the MBS or an FBS. Open access mechanism is

employed since it is shown significantly higher network capacity than closed access system [24].

In open access systems, all users have chance to connect to each FBS. The problem is to decide

the assignment between BS’s and users with the objective of maximizing network throughput and

achieving fairness among users. Besides, when users are in motion, reducing the number of han-

dovers and handover delay is critical for the success of femtocell technology.

We provide an analysis of network downlink capacity for two extreme cases. In case I, each

BS selects the best user and total network capacity is maximized. However, in case II, each user

chooses the best BS to connect and fairness is achieved among users. Then we propose a new cell

association algorithm to find a trade-off between two extreme cases. Based on the cell association

algorithm, we further present a handover algorithm as well an access control algorithm for mobile

users.

The remainder of this chapter is organized as follows. The related work is discussed in Sec-

tion 2.2. We present the system model and analyze two extreme cases in Section 2.3. In Section 2.4,

cell association and handover management algorithms are proposed. The proposed algorithms are

evaluated in Section 2.5. Section 2.6 concludes this chapter.

2.2 Related Work

Femtocells have received considerable interest from both industry and academia. Technical

challenges, regulatory requirements and economic concerns in femtocell networks are comprehen-

sively discussed in [8] and [3]. Since FBS’s are distributedly deployed and are able to spatially

reuse the same spectrum belonging to the MBS, many research efforts were made on interference
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mitigation by assigning users to the proper BS. In [23], the disadvantages of open and closed ac-

cess mechanisms were discussed and a hybrid access control scheme was introduced. In [24], a

stochastic geometric model was introduced to derive the success probability for MBS’s and FBS’s

under open and closed access schemes. A learning-based cell selection method for an open access

femtocell network was proposed in [25].

The main objective of handover algorithm is to determine an optimal connection while min-

imizing handover latency and reducing unnecessary handovers. In [26], an efficient handover

algorithm was proposed by considering the optimal combination of received signal strengths from

a serving MBS and a target FBS. In [30], a new handover decision algorithm based on mobility

pattern and location prediction was developed to reduce the number of unnecessary handovers due

to temporary femtocell visitors. Both signal strength and velocity were considered for the proposed

handover algorithm in [28]. A hybrid access scheme and a femtocell-initiated handover procedure

with adaptive threshold were studied in [29].

2.3 System Model

We consider a femtocell network with an MBS (indexed 0) and M FBS’s (indexed from 1

to M ), which is illustrated in Fig. 2.1. The MBS and M FBS’s are connected to the Internet via

broadband wireline connection, where N mobile users are randomly located inside the macrocell

coverage area. We assume the MBS and M FBS’s are well synchronized and they occupy the same

spectrum at the same time to send data to mobile users. Each BS allocates the whole bandwidth to

users which are associated with it.

Let P0 be the MBS transmit power and h0,k be the channel gain between the MBS and k-th

user. Likewise, Pi and hi,k where i ≥ 1 denote the transmit power of the i-th FBS as well as the

channel gain between the i-th FBS and k-th user. We assume an additional white Gaussian noise

(AWGN) at mobile users with power density σ2. The capacity at the k-th user from its serving
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Figure 2.1: Femtocell networks with one MBS

MBS is given by:

Ck =
B

N0

log2

(

1 +
|h0,k|

2P0

σ2 + I0,k

)

(2.1)

where B is the network bandwidth, N0 is the number of MBS users, and I0,k =
∑M

i=1 |hi,k|
2Pi

is the interference from FBS’s. We assume the bandwidth is equally allocated to all served users.

The capacity at the j-th user from the i-th FBS is given by:

Cj =
B

Ni

log2

(

1 +
|hi,j|

2Pi

σ2 + Ii,j

)

(2.2)

where Ni is the number of users served by the i-th FBS and Ii,j =
∑M

l=0,l 6=i |hl,j|
2Pl is the interfer-

ence from the MBS and other FBS’s.

By combining (2.1) and (2.2), we have the following equation for the capacity at the j-th user

from the i-th BS:

Cj =
B

Ni

log2

(

1 +
|hi,j|

2Pi

σ2 + Ij − |hi,j|2Pi

)

=
B

Ni

log2

(

σ2 + Ij
σ2 + Ij − |hi,j|2Pi

)

=
B

Ni

log2

(

1

1− ηi,j

)

(2.3)
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where Ij =
∑M

i=0 |hi,j|
2Pi is the sum of received power from its serving BS and interference from

other BS’s, and ηi,j = |hi,j|
2Pi/(σ

2 + Ij) is SINR, which is the percentage of desired power in Ij .

Note that Ij does not depend on which BS the user is connected to, and it is a constant for any BS.

2.3.1 Case I: Network Capacity

Initially, our objective is to maximize the total network capacity. By denoting Ui as the set of

users connected to the i-th BS, we have Ni = |Ui|. Then, by using (2.3), the objective function can

be expressed as:

Maximize: Ctot =
M
∑

i=0

B

Ni

∑

j∈Ui

log2

(

1

1− ηi,j

)

. (2.4)

where Ui is the set variable and Ni is the set size. The optimal solution to the problem above is that

each BS chooses one user with the highest SINR to connect. This solution is able to achieve the

highest network throughput by assigning only one best user to each BS. The rest of users are not

allowed to access the network. This solution is unfair and inefficient because only a small portion

of users are served. With this scheme, this system can only accommodate at most M + 1 (the

number of BS’s) users.

2.3.2 Case II: User Fairness

To achieve fairness among users, we divide the bandwidth equally and allocate them to all

users connected to the same BS. Then, a straightforward heuristic solution is proposed that each

user j chooses a BS with the highest SINR to connect. However, this approach may incur the QoS

problems, especially when all users choose the same BS to connect. Each user is assigned with a

very small bandwidth which leads to extremely low capacity for each user. On the other hand, the

users with low SINR from any of BS’s may jeopardize the total network throughput. Obviously,

blocking these users can improve the total network capacity. To guarantee the minimum QoS
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requirements of each user and maximize the total network capacity, only users with SINR above

λ1 are allowed to access network and each BS is able to serve at most Nmax users.

2.4 Proposed Solution

From our previous analysis in case I, we find that the total network capacity is maximized

if each BS chooses only one user with the highest SINR. However, this scheme is not fair for the

other users because they do not have chance to be served. Although the scheme in case II is fair, the

network capacity is very low. Therefore, we want to find a trade-off between network performance

and fairness.

2.4.1 User Classification

Before introducing our scheme, we adopt q thresholds λi’s to divide SINR’s into q+1 levels:

Li,j =























0, ηi,j < λ1

l, λl ≤ ηi,j < λl+1, l ∈ {1, · · · , q − 1}

q, ηi,j ≥ λl+1

(2.5)

According to Li,j , the users are divided into q + 1 groups. Our idea is to group these users and

let users in one group connect to the same BS. Since the SINR values of the users in the same

group are very close, we can replace individual SINR with the average value. Then, the objective

function in (2.4) can be rewritten as:

Ctot =
M
∑

i=0

B

Ni

q
∑

l=0

∑

j∈Ui,l

log2

(

1

1− ηi,j

)

≈
M
∑

i=0

B

q
∑

l=0

Ni,l

Ni

log2

(

1

1− ηi,l

)

(2.6)
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where Ui,l = {j|j ∈ Ui, Li,j = l}, Ni,l = |Ui,l| is the number of users in Ui,l and ηi,l is the average

value of SINR in Ui,l. If we denote CNC and CUC as the total network capacity achieved by case I

and proposed scheme, respectively, we have the following lemma.

Lemma 1. CNC is a upper bound of CUC .

Proof. Although it is obvious that CNC is greater than CUC , we provide detailed mathematic anal-

ysis proof. Due to the fact that arithmetic mean is always equal to or greater than geometric mean

and the equality holds if all numbers are equal, we have the following inequality:

∏

j∈Ui,l

(1− ηi,j) ≤ (1− ηi)
Ni,l (2.7)

By taking inversion and logarithm to the both sides of the inequality above, we have:

∑

j∈Ui,l

log2

(

1

1− ηi,j

)

≥ Ni,l log2

(

1

1− ηi,l

)

(2.8)

Therefore, the lemma holds.

Although CNC is a upper bound of CUC , their values are very close due to the fact that the

SINR values of the users from the same group fall within the same range and are close to each

other. Therefore we can adopt (2.6) as objective function instead of (2.4). Obviously, to maximize

CUC , the number of the users at the q + 1 level Ni,q should be equal to Ni since ηi,l > ηi,l−1 for

any 0 < l ≤ q. Then, we can merge users that do not connect to BS’s into one group and divide

users into three groups with q = 2. In the first group, the SINR’s of these users are too low to

allow them to connect to any of the BS’s. Comparatively, each user in the third group is connected

to one of the BS’s. The rest of users in the second group are candidate that will be admitted to the

BS’s when BS’s have available resource to allocate. Then, we rewrite CUC as:

CUC = max
M
∑

i=0

B log2

(

1

1− ηi,2

)

(2.9)
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Note that CUC only depends on the average SINR of users in the third class.

Until now, we assume all BS’s adopt the same λ to classify the users. By considering the

distribution of users and BS, we denote λi
l as the threshold adopted by BS i to push users onto

different BS’s. To simplify the analysis, we assume λi
1 = λ1 for all BS’s. An algorithm with

objective of finding a trade-off between network capacity and user fairness is presented in table 2.1.

In step 2, the users with all SINRs below the threshold λ1 are removed from user set. From step 4

to step 16, each BS finds its candidate user set according to thresholds λi
2. Then, each user in the

candidate user set can make its candidate BS list accordingly. The user on the candidate user list

is allowed to choose the best BS from its candidate BS list. Once the BS is assigned with Nmax

user, it is removed and not available for the rest of users. In steps 17 − 19, the BS’s adjust its λi
2

according to the number of users that have already been assigned. If the number of assigned users

is small, the threshold λi
2 is reduced with large step-size ∆. Once the execution of algorithm is

completed, the BS with larger λi
2 usually has higher network capacity due to the higher average

SINR.

2.4.2 Handover Algorithm

Previously, we discuss the cell association when all users are not in motion. Now, we consider

user mobility in this section. Since all users may travel from one cell to another, an efficient

handover algorithm is essential to handle this issue. Before presenting our algorithm, we have to

introduce several notations used in the algorithm. First, we denote Ωi as the coverage of the i-th BS,

in which the received power from the i-th BS is dominant among all received power from all BS’s.

πi is denoted as the probability that user is in the coverage of the i-th BS. Since the coverage of

femtocell is very small, the probability of user in the coverage of MBS, π0, is much higher than the

other πi’s (i 6= 0). In addition, we define a conditional probability ǫi = Pr(ηi′,j > ηi,j|Loc(j) ∈ Ωi)

as the probability that SINR from the i′-th BS is greater than that from the i-th BS conditioned on

user j is in the coverage of the i-th BS where Loc(j) is the location of the user j. Then, we collect

SINR information from all BS’s for T times and count the times that SINR from the BS i is less
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Table 2.1: Cell Association Algorithm

1: Initialize ηi,j for all i, j, λi
1, λ

i
2, F , U and ∆

2: Remove users {j|ηi,j < λ1, ∀i} from U
3: While F is not empty and U is not empty

4: Find candidate user set: Vi = {j|j ∈ U , ηi,j ≥ λi
2}

5: If ∪M
i=0Vi is empty

6: The algorithm is terminated

7: End if

8: Find candidate BS set: Wj = {i|i ∈ F , j ∈ Vi, ∀j ∈ ∪
M
i=0Vi}

9: For j ∈ ∪M
i=0Vi

10: Find the i∗ BS: i∗ = argmaxi∈Wj
ηi,j

11: Add user j to Ui∗

12: Remove user j from U
13: If Ni∗ = Nmax

14: Remove the BS i∗ from F and all Wj’s

15: End if

16: End for

17: For i ∈ F
18: Adjust λi

2 = max{λi
2 − |Nmax −Ni|∆, λi

1}
19: End for

20: End while

than those from the other BS’s, denoted by ni. Thus, SINR’s are compared for totally M×T times.

With comparison results of SINR, denoted by Θ, we can adopt Bayesian estimation to estimate the

posterior probability that user j is in the coverage of BS i as:

Qi = Pr(Loc(j) ∈ Ωi|Θ)

=
Pr(Θ|Loc(j) ∈ Ωi)πi

∑M
i=0 Pr(Θ|Loc(j) ∈ Ωi)πi

=
ǫni

i (1− ǫi)
MT−niπi

∑M
i=0 ǫ

ni

i (1− ǫi)MT−niπi

. (2.10)

The proposed handover algorithm is presented in table 2.2. In steps 3 − 4, the connection

between user and BS is terminated because the SINR requirement at user j cannot be satisfied by

BS i. Note that ηi,j is the average SINR over T times. In steps 5 − 12, we compute the posterior
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Table 2.2: Handover Algorithm for User j connecting to BS i
1: While TRUE

2: Collect SINR ηti,j (t = 1, · · · , T ) from all BS’s

3: If ηi,j < λ1

4: Break the connection between i and j
5: Else if ηi,j < λi

2

6: Compute posterior probability Qi

7: Wj = {i|Ni < Nmax and Qi ≥ Γ and ηi,j ≥ λi
2}

8: If Wj is not empty

9: Find the BS i∗ = argmaxi∈Wj
Qi

10: Break the connection with BS i and connect to the BS i∗

11: End if

12: End if

13: End while

Table 2.3: Admission Algorithm for Inactive User j
1: While TRUE

2: Collect SINR ηti,j (t = 1, · · · , T ) from all BS’s

3: Compute posterior probability Qi

4: Wj = {i|Ni < Nmax and Qi ≥ Γ and ηi,j ≥ λi
2}

5: If Wj is not empty

6: Find the BS i∗ = argmaxi∈Wj
Qi

7: Connect to the i∗ BS

8: End if

9: End while

probability Qi and find available BS’s with Qi above a predefined threshold Γ. Among all available

BS’s, user j chooses a best BS to connect.

2.4.3 Admission Algorithm

According to the handover algorithm proposed before, handover procedure does not always

succeed due to low SINR or busy BS. The connect of served users may be dropped. Therefore, the

problem of letting users admitted or readmitted to the femtocell network should be addressed. To

solve this problem, we present an admission algorithm in table 2.3. It is similar to the proposed

handover algorithm expect that the users do not need to break the connect with previous BS.
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Table 2.4: Simulation Parameters for Cell Association Algorithms

Symbol Definition

M = 9 The number of femtocells

B = 10 MHz Total network bandwidth

P0 = 43 dBm Transmit power of the MBS

Pi = 31.5 dBm Transmit power of the i-th FBS

PL0 = 28 + 35 log10(d) Path loss model for MBS

PLi = 38.5 + 20 log10(d) Path loss model for FBS

δ0, δi = 6 dB Shadowing effects for MBS and FBS

Nmax = 10 Maximum number of users per BS

2.5 Performance Evaluation

We evaluate the performance of the proposed cell association and handover algorithms using

MATLAB. In the femtocell network, we randomly and uniformly generate N users in a circle

centered at MBS with radius of 5km and randomly placed M FBS in the area. Each point in the

following figures is the average of 10 simulation runs. The 95% confidence intervals are plotted

for each point. We adopt the similar channel models used in [26].The values of channel gain from

the BS’s can be expressed as:

10 log10
(

|hi,j(t)|
2
)

= −PLi(t)− ui(t)

= −di − ci log10 [di,j(t)]− ui(t)

where di and ci are two constants for path loss model PLi, di,j(t) is the distance from user i to BS

j at time t and ui(t) represents shadowing effect which is normally distributed with mean zero and

variance δi. The simulation parameters are listed in table 2.4. For the proposed cell association

algorithm, we compare it with the two straightforward schemes discussed in Section 2.3:

• Scheme 1 based on maximizing network capacity: each BS chooses the user with the highest

SINR to connect.
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• Scheme 2 based on fairness among users: each user connects to the BS from which it can

receive the highest SINR.

In Fig. 2.2, we examine the impact of the number of users on the total network capacity. We

increase N from 20 to 100 with step-size 20, and plot the total network capacity. We find that

the total network capacity increases with the number of users because the probability that BS’s

choose a user with better SINR to connect becomes higher as the number of users grows larger. As

expected, scheme 1 achieves the highest network capacity, while network capacity in scheme 2 is

the lowest since the users with poor SINR jeopardize the total network performance by occupying

a portion of network bandwidth. The network capacity of the proposed scheme is almost as twice

as scheme 2 when the number of users is close to 100. Although the network capacity of the

proposed scheme is about one half of that of scheme 1, note that the number of served users in the

proposed scheme achieves as Nmax = 10 times as that in scheme 1.
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Figure 2.2: Total network capacity vs. number of users

Then, we adopt Raj Jain’s fairness index to investigate the impact of number of users on

fairness among users. Jain’s equation is given by:

J (C1, C2, · · · , CN) =
(
∑N

j=1Cj)
2

N ×
∑N

j=1 C
2
j

(2.11)
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where Cj is the network throughput for user j. The value of the index ranges from 1/N (worst

case) to 1 (best case). It can be seen from Fig. 2.3 that fairness indexes decrease with the number of

users. Scheme 1 has the lowest fairness index since it only serves at most M + 1 users. However,

scheme 2 obtains the highest fairness index among three schemes because every user in scheme

2 has chance to connect to BS. Although the proposed scheme is not as fair as scheme 2, their

fairness indexes are very close when the number of users is around 20. Next, we evaluate the
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Figure 2.3: Fairness vs. number of users
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Figure 2.4: Average number of handovers vs. number of users

performance of our proposed handover algorithm by applying random walk model to each user.
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Figure 2.5: Average number of handovers vs. Nmax

Both velocity and direction of mobile users are uniformly distributed within [0, 8.3] m/s and [0, 2π],

respectively. Since we do not find any similar schemes in the literature, we compare the proposed

scheme with a heuristic scheme: Once the average SINR ηi,j falls below threshold λi
2, user j will

choose a best available BS to connect.

In Fig. 2.4, we show the impact of number of users on the average number of handovers. We

increase N from 20 to 100 with step-size 20. We find that when the number of users is less than 60,

the average number of handovers in the heuristic scheme grows larger with the number of users. It

is due to the fact that the more users, the more frequently handovers take place. Once the number

of users gets beyond 60, the average number of handovers decreases because the probability of

finding available BS gets smaller. However, the average number of handovers in our proposed

scheme is much lower than the that of heuristic scheme and decreases slowly with the number of

users.

Finally, we examine the impact of maximum allowed number of user per BS on the average

number of handovers in Fig. 2.5. We increase Nmax from 2 to 10 with step-size 2. When Nmax

is below 4, the average number of handovers is close to 0 for both heuristic and proposed scheme

because all BS are busy and users are not allowed to connect to the new BS. Beyond this critical
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point, the average number of handovers in proposed scheme is significantly reduced compared

with heuristic scheme.

2.6 Conclusion

In this chapter, we investigated the problem of cell association and handover management in

femtocell networks consisting of an MBS and multiple FBS’s. We first proposed a cell association

algorithm with the objective of seeking a trade-off point between network capacity and fairness.

Based on this algorithm, we presented a handover algorithm for mobile users. Both cell association

and handover algorithm were evaluated with simulations. The handover algorithm was shown to

outperform a heuristic scheme with considerable gains.
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Chapter 3

Cell load balancing Policies in Femtocell Networks

3.1 Introduction

The capacity of wireless network is significantly constrained by interference due to the broad-

cast nature of wireless communication. Mobile users at the periphery of cellular networks require

considerably high transmit power to compensate channel fading, which in return augments the in-

terference to other users and degrades networks capacity. Femtocells provide an effective solution

to address this problem by reducing wireless transmission distance and bringing base station (BS)

closer to mobile users [8]. A femtocell, as shown in Fig. 3.1, is a relatively small cellular network

with a femtocell base station (FBS) which is usually deployed in places where the signal reception

from macro base station (MBS) is weak due to long distance or obstacles.

Femtocell base stations is typically the size of a residential gateway or smaller and connect

to the service providers network via broadband such as digital subscriber line (DSL) or cable,

and typically supports only a few users. FBS is designed to offload the traffic on MBS and serve

approved users within its coverage. Due to shortened wireless transmission distance, femtocell

is shown very effective in reducing transmit power and boosting signal-to-interference-plus-noise

ratio (SINR), which lead to prolonging the battery life of mobile devices and improving network

coverage as well as network capacity [3].

Femtocells have gained a lot of attention from both academia and industry in the recent past.

Femtocell research has been launched by a huge amount of universities and institutions. Three

largest cellular network operators in United States (AT&T, Sprint and Verizon) have offered com-

mercial femtocell products and service recently. Although the potential of femtocells is highly

attractive and promising, a largely wide range of problems including both technical and economic

issues have not been addressed yet. The study in [3] provides a comprehensive discussion of the
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Figure 3.1: Femtocell Networks

challenging technical issues in femtocell networks which cover synchronization, cell association,

network organization, and quality of service (QoS) provisioning.

Unlike MBS whose placement is planned by operators, FBS’s are randomly placed by users in

most cases. A FBS might locate in where user density is much high and with an inappropriate cell

association strategy, this FBS have to provide service to all users in its coverage which leads to very

high load for this FBS and high service latency for users. Load balancing between neighboring

BS’s or between FBS and MBS should be considered in femtocell networks. Load balancing

problem is more prominent in femtocell networks due to the unreliability of FBS. FBS operation

might be interrupted by users who have physical control of it; FBS may experience power down;

or any other fault happen in FBS. Then all the users in this FBS will recognize the disconnection of

services and will be associated with neighboring BS’s. As shown in Fig. 3.2, FBS 1 breaks down

and thus all its traffic goes to MBS. How to associate these users with neighboring BS’s without

introducing a load burst on one BS is a load balancing problem. Cell association after FBS faulty

during operation can be consider as an on-line load balancing problem.

In this chapter, we investigate the problem of cell association and service scheduling in femto-

cell networks. Our objectives include minimizing the total service time of the BS and minimizing

the average waiting time of the user.
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We consider one MBS with multiple FBS’s and mobile users located in the coverage of the

MBS. Users submit their requests to BS’s for data downloading. We assume that each user is

allowed to connect to either the MBS or a FBS. We further assume that BS’s cannot deal with those

requests simultaneously and they have to send data packet to mobile users one by one. We first

provide a sequential fixing algorithm to address cell association problem. Although it achieves the

best performance, its complexity is very high. To reduce the computational complexity, we propose

approximation algorithms with proven bound. These centralized algorithms need to update the

channel information frequently. We also present a randomized algorithm which allows users to

pick a BS to connect from a reduced list randomly. Once the list is generated by randomized

algorithm, no information exchange is required among users. Besides, we provide an optimal

scheme for service scheduling problem.

The remainder of this chapter is organized as follows. The related work is discussed in Sec-

tion 3.2. We present the system model in Section 3.3. Cell Association problem formulation and

solutions are presented in Section 3.4. The problem of scheduling the service order on the BS to

minimize the average waiting time is discussed in 3.5. The proposed algorithm are evaluated in

Section 3.6. All three proposed algorithms were evaluated in both open and closed access schemes.

Section 3.7 concludes this chapter.
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3.2 Related Work

Femtocells have been acknowledged as an effective solution to next generation wireless com-

munication. [8] and [3] provided a comprehensive discussion of technical issues, regulatory con-

cerns and economic incentives in femtocell networks. Since FBS’s share the same spectrum with

MBS, many research efforts have been made on interference mitigation by assigning users to

proper orthogonal channels [31]. The shortcomings of open, closed and hybrid access mecha-

nisms were discussed in [23]. [24] introduced a stochastic geometric model to derive the success

probability for MBS’s and FBS’s in both open and access scenarios.

In recent years, there are increasing number of papers on cell association or cell selection in

different scenarios. [25] proposed a learning-based cell selection method for an open access fem-

tocell network. The authors in [32] described new paradigms of addressing the problems of cell

association in heterogeneous networks with the help of third-party backhaul connections. Their

simple and lightweight methodologies and algorithms incur very low overhead in signaling. They

focus on femtocell networks with closed subscriber group (CSG) (e.g. each user can only associate

with its own femtocell). [33] formulated a convex optimization problem for cell association and

proposed a dynamic range extension algorithm to maximize the minimum rate of the user on the

downlink of heterogeneous networks. They do not directly optimize the load balancing in Hetero-

geneous Network (HetNet) but rather they focus on the sum rate and min rat. [34] proposed an

offline optimal algorithm for load balancing achieving the network-wide proportional fairness in

multi-cell networks. They consider partial frequency reuse (PFR) jointly with load-balancing in a

multicell network to achieve network-wide proportional fairness. Online practical algorithm was

also proposed and expected throughput is taken as the decision making metric. On-line assign-

ments when users arrive one-by-one was also studied and competitive ratio analysis in [35] show

that any deterministic on-line algorithms can achieve a competitive ratio of log n.

[9] presented a cell association and access control scheme to maximize network capacity

while achieving fairness among users. [36] provided an analytical framework for evaluating
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outage probability and spectral efficiency with flexible cell association in heterogeneous cellu-

lar networks. [37] provided an analysis of downlink SINR distribution in heterogeneous networks

with biased cell association. A theoretical framework for distributed user association and cell load

balancing under spatially heterogeneous traffic distribution was presented in [38]. A distributed

α-optimal algorithm is proposed and it supports different load-balancing objectives, which include

rate-optimal, throughput-optimal, delay-optimal, and load-equalizing, as α get different value.

However, most of femtocell research was focused on offloading MBS traffic and improv-

ing network capacity with FBS’s. In the following sections, we propose several cell association

schemes with the objectives of minimizing the service latency in femtocell networks.

3.3 System Model

We consider a femtocell network with M base stations: one MBS (indexed 1) and M − 1

FBS’s (indexed from 2 to M ). M − 1 FBS’s are connected to the MBS via broadband wired line.

There are N mobile users randomly located within the coverage of the femtocell network. We

assume the MBS and M − 1 FBS’s are well synchronized and they share the same bandwidth.

Each user requests a fixed length data packet from one of the M BS’s.

Let Pm be the transmit power of the m-th BS and Gm,n be the power gain between the BS and

the n-th user. According to Shannon Capacity theorem, the network capacity of user n connected

to BS m is given by

Cm,n = B log2

(

1 +
Gm,nPm

σ2 + Im,n

)

(3.1)
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where B is network bandwidth, σ2 is noise power density, and Im,n is the interference from other

BS’s. It can be obtained by

Im,n =
∑

i/∈m

Gi,nPi = In −Gm,nPm

=
M
∑

i=1

Gi,nPi −Gm,nPm (3.2)

where In is the sum of the interference from all BS’s to the n-th user. It does not depend on which

BS user n is connected to and is a constant for each user. By substitute Ii,j in (3.1) with (3.2), we

have

Cm,n = B log2

(

1 +
Gm,nPm

σ2 + In −Gm,nPm

)

= B log2

(

σ2 + In
σ2 + In −Gm,nPm

)

= B log2

(

1

1− ηm,n

)

(3.3)

where ηm,n is signal to interference plus noise ratio (SINR), the same ratio of the received power

in In.

3.3.1 Service Time

We assume each user requests a fixed length data packet from one of the M BS’s. For simplic-

ity, we further assume all packets have the same length, denoted as L. Then the processing/service

time of BS m for user n is given by

tm,n =
L

Cm,n

. (3.4)

The service time depends on the link capacity Cm,n derived by (3.3). Note that the service time

defined here is actually the delivery time, in which the propagation delay is ignored, to finish the

transmission of the data packet requested by users.
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3.3.2 Femtocell Access Control

The type of access control for femtocells can be classified into two categories: closed access

and open access. Open-access scheme allows all mobile users of an operator to connect; in this

case, femtocell is often deployed directly by an operator to provide coverage in an area where there

is a coverage hole. In closed-access mode, only a specific user group can get service [11]. Closed

access method has been shown to decrease system throughput by 15%, however, surveys suggest

that closed Access mode is users favorite option [12]. These two access modes are both considered

in this chapter.

We denoteAm as the set of users that can be connected to BS m and Bn as the set of BS’s that

user n can be connected to. For open access, we have Am = {1, · · · , N} and Bn = {1, · · · ,M}.

3.4 Cell Association Problem Formulation and Proposed Schemes

As discussed before, we divide the problem into two steps. In the first step, we assign each

user to one of the M BS’s with the objective of minimizing the total service time on each BS. In

the second step, we schedule the service order on the BS to minimize the average waiting time of

users.

The cell association problem can be formulated as a load balancing problem. We are given a

set of N users and a set of M BS’s. Each user n has a service time tm,n if it is connected to BS m.

We can let Cm denote the set of users assigned to BS m. The BS m needs to take a total time of

Tm =
∑

n∈Cm

tm,n, (3.5)

to transmit all packets. We seek to minimize the maximum load on any BS, T = maxm Tm. It

is similar with a load balancing problem. For well-known load balancing problem, the service

time for each user is identical to all BS’s. However, our scheduling problem is more complicated

because its solution depends on not only user n, but also the BS m. This scheduling problem is
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easily seen to be NP-hard by noting that, when all tm,n’s are the same on any BS, the problem

becomes a known NP-hard load balancing problem.

3.4.1 Sequential Fixing Algorithm

To solve the problem above, we first define xm,n as an indicator variable where it is 1 if user

n is connected to BS m and otherwise 0

xm,n =











1, if user n is connected to BS m

0, otherwise.
(3.6)

Then we reformulate the problem as follows:

min T (3.7)

∑

m xm,n = 1 for all users

∑

n tm,nxm,n ≤ T for all BS’s

xm,n ∈ {0, 1} for all n ∈ Am

xm,n = 0 for all n /∈ Am

Let MILP denote the problem defined in (3.7). Note that the MILP problem is not a simple binary

integer linear programming problem due to the variable T . In the MILP problem, all variables

except T are binary variables. Thus, the MILP problem is a mixed integer linear programming

problem, which is usually NP-hard. It gives the same conclusion as we discuss before.

The original MILP is next relaxed to a linear programming (LP) problem, denoted as RLP.

We relax binary variable xm,n’s to real number between 0 and 1, and allow xm,n’s to take fractional
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Table 3.1: Sequential Fixing for Cell Association

1: Initialize N = {1, · · · , N}
2: Relax xm,n to real number

3: While N is not empty

4: Solve the RLP problem

5: Find xm′,n′ that is the closest to integer

xm′,n′ = minn∈Am∩N{xm,n, 1− xm,n}
6: Set xm′,n′ to the closest integer

7: If xm′,n′ is set to 1
8: Set xm,n′ = 0 for all m 6= m′

9: Remove n′ from N
10: Else

11: Remove n′ from Am′

12: End if

13: End while

values. Then, the MILP problem can be converted into RLP as follows:

min T (3.8)

∑

m xm,n = 1 for all users

∑

n tm,nxm,n ≤ T for all BS’s

xm,n ≥ 0 for all n ∈ Am

xm,n = 0 for all n /∈ Am

Since the sum of xm,n’s is already upper bounded by 1 in the first constraint, we remove the

upper bounds of xm,n’s in the third constraint. Obviously, the solution to the RLP problem is a

lower bound of the original MILP problem because it is obtained by expanding the solution space.

Unfortunately, it is usually an infeasible solution to the original MILP problem. Therefore, we

develop a sequential fixing (SF) algorithm [39] to find a feasible solution to the MILP problem

which is presented in table 3.1.

In steps 3−13, we solve the RLP problem iteratively. During each iteration, we find the xm′,n′

which has the minimum value for (xm,n−0) or(1−xm,n) among all fractional xm.n’s and round it up
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or down to the nearest integer. Setting xm′,n′ to 1 means user n′ is connected to BS m′. Therefore,

user n′ cannot be connected to any other BS’s and the rest of xm,n′’s are set to 0. This procedure

repeats until all xm,n’s are fixed. The complexity of SF depends on the specific LP algorithm. With

Karmarkar’s algorithm, the worst-case polynomial bound for solving LP problems is O(nv
3.5Lb)

where nv is the number of variables and Lb is the number of bits of input to the algorithm. Then,

we have the following lemma for the complexity of sequential fixing algorithm.

Lemma 2. The computational complexity of sequential fixing algorithm is O((MN)4.5Lb).

Proof. The number of binary variables in MILP is at most MN , so the number of loops in se-

quential fixing problem is at most MN . In each iteration, the complexities of step 4, 5 and the

rest are O((MN)3.5Lb), O(MN) and O(1), respectively. Besides, in each iteration, the number of

variables is reduced by 1. Therefore, the complexity of sequential fixing algorithm is given by

MN
∑

i=1

O((MN − i+ 1)3.5Lb) =
MN
∑

i=1

O(i3.5Lb) = O((MN)4.5Lb). (3.9)

Therefore, the complexity of sequential fixing algorithm is bounded by O((MN)4.5Lb).

3.4.2 Approximation Algorithm

Although sequential fixing algorithm can solve the MILP problem within polynomial time,

its complexity is still too high even for small femtocell networks. In this section, we propose an

approximation algorithm with low complexity to address the MILP problem. Before we introduce

the approximation algorithm, we first give the lemma below.

Lemma 3. The optimal solution, denoted by T ∗, to the MILP problem is lower bounded by T ∗ ≥

1
M

∑N
n=1 tn where tn = minm∈Bn

tm,n.
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Proof. Given the optimal allocation C∗m for BS m, we have T ∗ = maxm
∑

n∈C∗
m
tm,n. Then we

have

T ∗ ≥ max
m

∑

n∈C∗
m

tn ≥
1

M

M
∑

m=1

∑

n∈C∗
m

tn =
1

M

N
∑

n=1

tn.

The first inequality is due to the definition of tn. The second inequality is due to the fact that the

maximum value is always greater than mean value. The last equality is because all users have to

be connected to one of the BS’s and ∪M
m=1C

∗
m is the set of all users.

Since the maximum total service time is at least the service time of only one user, intuitively

we have the following lemma.

Lemma 4. The optimal solution, denoted by T ∗, to the MILP problem is lower bounded by T ∗ ≥

max tn where tn = minm∈Bn
tm,n.

These lemmas will be used in analyzing the approximation ratio in our algorithms, which are

presented in following subsections.

3.4.3 Rounding Approximation Algorithm

To ensure required SINR for each user, in real femtocell network, not all FBS’s should be in

Bn (Am will be updated according to the change of Bn). Thus, here we use threshold ρ to obtain

the subsets of Am and Bn.

B′
n = Bn ∩ ({m|

tm,n

tn
≤ ρ})

A′
m = {n|m ∈ B′

n} (3.10)

Only limited number of FBS’s should be taken into consideration of any user. After we adopt this

threshold, not only users’ SINR requirements will be satisfied, computational complexity will also

decrease.
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This following relaxed linear programming problem can be solved by any linear programming

solver.

min T (3.11)

∑

m xm,n = 1 for all users

∑

n tm,nxm,n ≤ T for all BS’s

xm,n ≥ 0 for all n ∈ A′
m

xm,n = 0 for all n /∈ A′
m

We denote the solution obtained by solving this RLP program by T . Since x-variables are allowed

to take fractional values, we have T ≤ T ∗.

Without sequentially fixing these fractional values, we adopt a rounding method in [40] to get

a feasible solution for the MILP problem. In this rounding method, a bipartite graph is constructed

according to the solutions of RLP. The bipartite graph is constructed as a undirected bipartite graph

G(A ∪ B, E). In the disjoint set A, each node represents a user n, while the other disjoint set B

consists of BS nodes. We create km = ⌈
∑

n xm,n⌉ nodes in B for BS m and these node are denoted

by {bm,1, bm,2, · · · , bm,k, · · · , bm,km}. The edges are determined in the following way. For BS

m, we sort the users in the order of non-increasing service time tm,n and the users are renamed

{u1, u2, · · · }. Let Xm,uj
=
∑j

i=1 xm,ui
. For each BS, we divide the users associated to it into

km groups G. User uj is included into k-th group (1 ≤ k ≤ km) if k − 1 < Xm,uj
≤ k or

k − 1 ≤ Xm,uj−1
< k. If a user uj are included into two groups, the association x-variables need

to adjust them, such that x′
bm,k,uj

= Xm,uj
− k + 1 and x′

bm,k−1,uj
= xm,uj

− x′
bm,k,uj

. Then we add

edges between BS node bm,k and all the user nodes in k-th group. Till now, the bipartite graph is

all set up and we find a maximal matchingM from each user to nodes in the other partite. This

maximal matchingM indicates a feasible solution for MILP problem: for each edge (n, bm,k) in

M, we associate user n to BS m.
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Let T(bm,k) denote the total service time on node bm,k before matching and T ′
(bm,k) denote the

total service time on node bm,k obtained by this rounding method. We have the following lemma.

Lemma 5. For each node bm,k, where km ≥ k > 1, we have T(bm,k−1) ≥ T ′
(bm,k).

Proof. The first important observation is that the minimum service time in (k − 1)-th group will

be always no less that the maximum service time in k-th group, because we sort the users in non-

increasing service time.

And according the above graph construction, for any k < km, we have
∑

i∈Gk
x′
bm,k,ui

= 1;

for k = km,
∑

i∈Gk
x′
bm,k,ui

≤ 1.

T ′
(bm,k) will be no greater than the maximum service time in k-th group and will thus be no

greater than the minimum service time in (k−1)-th group, which is less than
∑

i∈Gk−1
x′
bm,k−1,ui

tm,ui
.

Since T(bm,k−1) =
∑

i∈Gk−1
x′
bm,k−1,ui

tm,ui
, consequently we have the conclusion that T(bm,k−1) ≥

T ′
(bm,k).

Now we show that the solution produced by this algorithm is at most ρ + 1 greater than the

optimal solution. In other words, this algorithms produces a solution with ρ+ 1-approximation of

optimal solution.

Lemma 6. The approximation algorithm based on linear programming ensures a solution with

ρ+ 1-approximation of optimal solution.

Proof. For each BS m, we create km nodes for it and there are corresponding km groups of user

nodes adjacent to them . Thus the total service time is
∑km

k=1 T
′
(bm,k).

Consider a BS m, according to Lemma 5, for km ≥ k > 1, T(bm,k−1) ≥ T ′
(bm,k). Thus we have

km
∑

k=2

T ′
(bm,k) ≤

km−1
∑

k=1

T(bm,k) ≤
km
∑

k=1

T(bm,k) ≤ T

In the first group, the maximum load will be the maximum service time of users associated to m.

Combining Lemma 4, we have T ′
(bm,1) ≤ ρT ∗. Then, the total service time on any BS computed by

our association algorithm will be
∑km

k=1 T
′
(bm,k) ≤ ρT ∗+T ≤ (ρ+1)T ∗. Our proof is complete.
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Table 3.2: Greedy Approximation Algorithm for Cell Association

1: Initialize Tm = 0 and Cm = φ for all BS’s

2: Set the user set N = {1, · · · , N}
3: While N is not empty

4: Find the BS m′ that has the minimum Tm

m′ = argminm∈(∪n∈NBn) Tm

5: Find the user n′ that has the minimum tm′,n

n′ = argminn∈{Am′∩N} tm′,n

6: Set Cm′ = Cm′ ∪ {n′}
7: Set Tm′ = Tm′ + tm′,n′

8: Set ρm′,n′ =
tm′,n′

tn′

9: Remove n′ from N
10: End while

The complexity to compute a matching is O(V E), where V and E is the number of nodes and

edges, respectively. Since we only need to do matching once and obtain the association relationship

from the matching result, the total computational complexity of this algorithm is O((MN)3.5Lb),

which is better than the sequential fixing algorithm.

3.4.4 Greedy Approximation Algorithm

In this section, we present a low computational complexity approximation algorithm. In this

algorithm, we greedy pick the BS with the minimum load and assign to this BS a user whose

completion time on this BS is small.

The approximation algorithm is presented in table 3.2. We define a parameter ρ to estimation

the distance between optimal solution and the solution to approximation algorithm. In step 4, we

find the candidate BS which is possible for users to connect and has the minimum Tm. Then we

pick the user who has the minimum Tm,n on that BS. Obviously, the computational complexity

of the approximation algorithm is O(MN), which is much lower than that of sequential fixing

algorithm.

Lemma 7. The solution obtained from the approximation algorithm, denoted by T , is upper

bounded by ρ
M

∑N
n=1 tn + ρT ∗ where ρ = max{m,n} ρm,n and tn = minm∈Bn

tm,n.
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Proof. We first consider open access scheme and each user can be connected to any one of the

BS’s. In the l-th iteration, we choose the BS with the minimum Tm in step 4. Thus we have

T l−1
m′ ≤

1

M

M
∑

m=1

T l−1
m =

1

M

M
∑

m=1

∑

n∈Cl−1
m

tm,n

=
1

M

M
∑

m=1

∑

n∈Cl−1
m

ρm,ntn ≤
ρl−1

M

M
∑

m=1

∑

n∈Cl−1
m

tn

where ρl−1 = max{m,n∈Cl−1
m } ρm,n. Note that Cl−1

m is set of users that have been assigned to BS m

in the (l − 1)-th iteration.

In step 5, we pick user n′ and let user n′ connect to BS m′. Since ρl will always be greater

than ρl−1 and according to Lemma 4, we have

T l−1
m′ + tm′,n′ ≤

ρl

M

M
∑

m=1

∑

n∈Cl
m

tn + ρlt′n.

The algorithm stops after N iterations. Since T l+1 = max{T l, T l
m′ + tm′,n′} and T 0 = 0, we draw

the conclusion that

T = TN+1 = max{TN , TN
m′ + tm′,n′}

≤
ρ

M

M
∑

m=1

∑

n∈Cm

tn + ρT ∗ =
ρ

M

N
∑

n=1

tn + ρT ∗.

In the closed access scheme, we can set tm,n to infinity for those BS’s that users cannot be con-

nected to. Therefore, we have the same conclusion.

Combining Lemma 3 and Lemma 7, we make a conclusion regarding the performance of the

approximation algorithm as follows.

Lemma 8. The approximation algorithm in table 3.2 produces a solution with 2ρ-approximation

of optimal solution.
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Proof. The proof is simple and straightforward.

T ∗ ≤ T ≤
ρ

M

N
∑

n=1

tn + ρT ∗ ≤ 2ρT ∗

where T ∗ is optimal solution and T is approximation solution.

From the Lemma 8, we find that ρ is very important to the performance of approximation

algorithm. The smaller the ρ is, the closer optimal and approximation solutions are. In order to

make the approximation solution close to the optimal solution, we only allow users to choose the

BS from a subset, Bn of the original BS set. Then we have the subset B′
n and A′

m as

B′
n = Bn ∩ ({m|

tm,n

tn
≤ Γ} ∪ {1})

A′
m = {n|m ∈ B′

n} (3.12)

where Γ is a predefined threshold and {1} is the index of the MBS. Γ can also be used to satisfy

SINR requirement of users in the femtocell network. The set Am is replaced by A′
m accordingly.

Therefore the approximation solution is between T ∗ and Γ× T ∗.

3.4.5 Randomized Algorithm

The previous two centralized algorithms need to update link status frequently to keep the

channel information on track. In this section, we introduce a randomized algorithm for cell associ-

ation. Each user n chooses a subset of Bn to connect randomly. Once the subsets are determined,

no information exchange is required among users. We assume user n is connected to BS m with

probability pm,n and the expected service time for user n on each BS is identical. We have

pm,ntm,n = Hn ∀m ∈ Bn.
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Since each user has to choose a BS to connect and thus the sum,
∑

m∈Bn
pm,n = 1 for any user n.

Then we have

Hn =
1

∑

m∈Bn
1/tm,n

. (3.13)

The expected load on BS m, denoted by Tm, is

Tm = E[Tm] =
∑

n∈Am

tm,n × pm,n =
∑

n∈Am

Hn. (3.14)

Since users are connected to the BS randomly, our objective becomes to minimize the maximum

value of the expected load Tmax:

min Tmax = minmax
m

Tm. (3.15)

We can see from equation (3.14) that minimizing Tm is equivalent to reducing the number of users

in Am. We divide the randomized algorithm into two phases.

In the first phase, we use threshold Λ to obtain the subsets of Am and Bn.

B′
n = Bn ∩ ({m|tm,n ≤ Λ} ∪ {1})

A′
m = {n|m ∈ B′

n} (3.16)

Note that the subsets A′
m and B′

n are different from those defined in (3.12). Λ is the upper bound

of the service time tm,n. Thus we have all tm,n ≤ Λ for all n and n ∈ A′
m. Then we have the upper
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bounds for Hn, Tm and Tmax which are given by

Hn =
1

∑

m∈B′
n
1/tm,n

≤
1

∑

m∈B′
n
1/Λ

=
Λ

|B′
n|

Tm =
∑

n∈A′
m

Hn ≤
|A′

m|

minn |B′
n|
Λ

Tmax = max
m

Tm ≤
maxm |A

′
m|

minn |B′
n|

Λ (3.17)

where |A′
m| and |B′

n| are the sizes of the subset A′
m and B′

n, respectively.

In the second phase, we would like to further reduce the size of A′
m and B′

n. From equation

(3.13), we can see that Hn′ gets increased when BS m′ is removed from the set B′
n′ and user n′ is

removed from the set A′
m′ simultaneously. The amount of increase, denoted by ∆m′,n′ , is given by

∆m′,n′ (3.18)

=
1

∑

m∈B′
n
1/tm,n − 1/tm′,n′

−
1

∑

m∈B′
n
1/tm,n

=
1/tm′,n′

(
∑

m∈B′
n
1/tm,n − 1/tm′,n′)(

∑

m∈B′
n
1/tm,n)

For those BS’s in the set {m|m ∈ B′
n′ ,m 6= m′}, their Tm’s become larger when BS m′ is removed

from the set B′
n′ and user n′ is removed from the set A′

m′ . On the other hand, Tm′ is reduced by

Hm′,n′ according to the equation (3.14). Our proposed algorithm is described in table 3.3. In step

2, we collect the users which has more than one BS on their BS list B′
n. Then from step 5 to step

18, we find the BS m′ with the largest Tm′ and compute the possible maximum load T
max

m′,n on

BS’s for all users that might be connected to the BS m′ assumed user n is removed from A′′
m′ . In

step 19, we pick the user n′ with the minimum T
max

m′,n value. If the value is less than the original

Tm′ , we remove the BS-user pair {m′, n′} from the sets A′′
m′ and B′′

n′ . Otherwise, the algorithm

is terminated. Therefore, once the algorithm is carried out, the set A′′
m′ and B′′

n′ are the subsets of

A′
m′ and B′

n′ , respectively. Since the complexity of algorithm from step 5 to step 18 is O(MN)

in the worst case, the complexity of whole randomized algorithm is O(M × N2). The maximum
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expected service time can be further bounded by

Tmax ≤
maxm |A

′′
m|

minn |B′′
n|
×max

n
max
m∈B′′

n

tm,n. (3.19)

Table 3.3: Randomized Algorithm for Cell Association

1: Initialize A′′
m = A′

m, B′′
n = B′

n

2: Set the user set N = {n||B′′
n| > 1}

3: Compute Tm according to (3.14)

4: While N is not empty

5: Find the BS m′ with m′ = argmaxm Tm

6: For user n in (A′′
m′ ∩N )

7: Compute ∆m′,n according to (3.18)

8: For m = 1 to M
9: If m = m′

10: Set T
′

m′ = Tm′ −Hn

11: Else if m in {m|m ∈ B′′
n}

12: Set T
′

m = Tm +∆m′,n

13: Else

14: Set T
′

m = Tm

15: End if

16: End for

17: Set T
max

m′,n = maxm T
′

m

18: End for

19: Find user n′ with n′ = argminn T
max

m′,n

20: If Tm′ ≥ T
max

m′,n′

21: Remove m′ from B′′
n′ and n′ from A′′

m′

22: Update all Tm’s

23: If |B′′
n′ | = 1

24: Remove n′ from N
25: End if

26: Else

27: The algorithm is terminated

28: End if

29: End while
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3.5 Service Scheduling

Since we assume the bandwidth B is fully utilized when the packet from one user is being

transmitted, we have to determine the order of users that are served on the same BS. Here we

consider a certain BS which K users are connected to. The service time of each user is denoted by

{t1, · · · , tK}. If we order the users by its index, the average waiting time is given by

Twait =
1

K

K
∑

n=1

n
∑

i=1

ti (3.20)

To minimize the average waiting time, we have the following lemma.

Lemma 9. Given K users with service time from t1 to tK , the average waiting time achieves the

minimum when they are sorted in the increasing order of their service time.

Proof. First we assume the users are sorted according to their service time and the ordered service

time is denoted by t′1, · · · , t
′
K . We further assume there are two ordered users i and j where

1 ≤ i < j ≤ K. Thus we have t′i ≤ t′j . If the positions of i and j are swapped, it is obvious that

the waiting time of users from 1 to i − 1 and from j to K does not change and keeps the same

values. However, the awaiting time for each user from i to j − 1 is increased by t′j − t′i. Therefore

we conclude that the average waiting time is the least when the users are sorted in the increasing

order of the service time.

3.6 Performance Evaluation

In this section, we evaluate the performance of the proposed cell association and service

scheduling algorithms using MATLAB. The point in the presented figures is the average of 10

simulation runs and the 95% confidence intervals are plotted for each point. The channel models

in [26] are adopted in our simulation. The channel gain (in dB) from the BS’s to users can be
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Table 3.4: Simulation Parameters for Cell Load Balancing Algorithms

Paramter Value

The number of BS’s 6
Total network bandwidth 10 MHz

Transmit power of the MBS 43 dBm

Transmit power of the FBS 31.5 dBm

Path loss model for MBS 28 + 35 log10(d)
Path loss model for FBS 38.5 + 20 log10(d)
Shadowing effects 6 dB

Packet length 1 KBytes
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Figure 3.3: Total service time vs. number of users: Open Access

expressed as:

10 log(Gm,n) = −PLm(dm,n)− um (3.21)

where dm,n is the distance from BS m to user n, and um is shadowing effect which is normally

distributed with zero mean and variance δm. The simulation parameters are presented in table 3.4.

We present simulation results for the following two scenarios:

• Open access scheme

• Closed access scheme
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Figure 3.4: Average waiting time vs. number of users: Open Access
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Figure 3.5: Fairness vs. number of users: Open Access
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Table 3.5: Simulation Running Time Open Access (s)

No. of users 30 40 50 60 70 80

Greedy Approx. 0.0244 0.0337 0.0243 0.0300 0.0257 0.0380

Sequential Fixing 16.5317 24.0203 30.8086 48.7127 47.8417 50.6541

Randomized Algorithm 0.0300 0.0479 0.0769 0.1358 0.1321 0.1506

Selfish User Scheme 0.0345 0.0353 0.0346 0.0354 0.0359 0.0258

Rounding Approx. 0.1332 0.1479 0.1597 0.1679 0.1761 0.2129
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Figure 3.6: Total service time vs. number of users: Close Access

For comparison purpose, we also developed and simulated the following selfish scheme and com-

pared it with the proposed schemes. For the selfish scheme, every user only chooses the best BS to

connect.

3.6.1 Case of Open Access

In the first scenario, there are M = 6 BS’s, i.e., one MBS and five FBS’s. The number of

users ranges from 30 to 80 with step size 10. They are randomly located in the coverage of the

MBS. Each user is allowed to be connected to one of the BS’s.

We first examine the impact of the number of users on total service time. We plot the max-

imum total service time for the five algorithms along with the low bound found by relaxing x-

variables to real values in Fig. 3.3. As expected, the more users, the more total service time

on BS’s. Except for the low bound obtained by solving relaxed LP, sequential fixing algorithm
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Figure 3.7: Average waiting time vs. number of users: Close Access
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Figure 3.8: Fairness vs. number of users: Close Access
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achieves less total service time than other schemes. Rounding approximation algorithms has slight

better performance than the greedy approximation algorithm in this respect and these approxima-

tion algorithms achieve less load than both randomized algorithm and selfish scheme. We also

observe that beyond 50 users, all proposed algorithms have less service time than simple selfish

scheme.

In Fig. 3.4, we investigate the impact of the number of users on average waiting time. Intu-

itively, larger the number of users, more is the average waiting time per user. We can see from the

figure that, expect for rounding approximation algorithm, the proposed algorithms outperform the

selfish scheme. The average waiting time obtain by greedy approximation algorithm is very close

to that by sequential fixing algorithm.

Then, we adopt Raj Jain’s fairness index to investigate the impact of number of users on

fairness among users. Jain’s equation is given by [9]:

J (C1, C2, · · · , CN) =
(
∑N

n=1 Cn)
2

N ×
∑N

n=1 C
2
n

(3.22)

where Cn is the network throughput for user n. The value of the index ranges from 1/N (worst

case) to 1 (best case). It can be seen from Fig. 3.5 that fairness indexes decrease with the number of

users. We notice that, selfish scheme and randomized algorithm achieve better fairness than other

three schemes. Thus we can see from Fig. 3.3 and Fig. 3.5 that, from operator’s viewpoint, selfish

scheme and randomized scheme are not preferred since they produce less balanced load on BS’s;

while from users’s viewpoint these two schemes are better due to their fairness.

We list the running time of five schemes in Table. 3.5. It can be seen that the running time in-

crease as the number of users. We also find that the selfish scheme always has the smallest running

time, while sequential fixing requires the largest running time. Although rounding approximation

as seen above achieves less maximum load on BS’s, its running time is greater than the greedy
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Table 3.6: Simulation Running Time Close Access (s)

No. of users 30 40 50 60 70 80

Greedy Approx. 0.0029 0.0043 0.0047 0.0046 0.0069 0.0064

Sequential Fixing 0.8616 1.1296 1.5078 1.8453 2.3058 2.6798

Randomized Algorithm 0.0114 0.0153 0.0210 0.0303 0.0367 0.0492

Selfish User Scheme 0.0014 0.0015 0.0018 0.0018 0.0021 0.0031

Rounding Approx. 0.0287 0.0278 0.0319 0.0339 0.0365 0.0396

approximation scheme. And the greedy approximation algorithm is superior to both sequential fix-

ing algorithm and randomized algorithm in running time. This result also justifies the complexity

analysis for the proposed schemes.

3.6.2 Case of Closed Access

We next investigate the second scenario with closed access scheme. Each BS maintains a user

list and allows the users only on its list to connect. Especially for MBS, its user list contains all

users cannot reject the connection request from any user. We increase the number of users from 30

to 80 with step size 10.

In Fig. 3.6, we investigate the impact of the number of users on total service time. Intuitively,

the total service time increases as the number of users. However, we find that it also depend on the

user list on each FBS. It is because we choose the user set randomly for each BS. Moreover, after

we set the SINR threshold, the user list on each FBS is pretty small and that is why all proposed

algorithms achieve close performance in closed access scenario. The performance of all proposed

algorithms is better than that of selfish scheme.

We next show the impact of the number of the number of users on average waiting time in

Fig. 3.7. It is similar to the open access that, all proposed algorithms are superior to the selfish

scheme, expect for rounding approximation algorithm. Due to the randomness of user lists on

BS’s, the confidential intervals are much larger than those in open access.
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Then we plot the fairness in Fig 3.8. Randomized algorithm, although not better than selfish

scheme, achieve better performance in fairness than other proposed schemes. Rounding approxi-

mation, despite of its good performance in maximum total service time, is not preferable to users

in the respect of average waiting time and user fairness.

Finally, we list the running time of five schemes in Table. 3.6. As expected, the running time

increases as the number of users. Compared with Table. 3.5, closed access scheme requires less

running time than open access scheme, because in open access the user list include more users.

3.7 Conclusion

In this chapter, we investigated the problem of cell association and service scheduling in fem-

tocell networks consisting of one MBS and multiple FBS’s. The first sequential fixing algorithm

achieves the best performance in total service time but it requires relatively high complexity to ad-

dress cell association problem. Then we presented approximation algorithms with low complexity

and proven bounds. We also proposed a new randomized algorithm which requires the least infor-

mation exchange among users. Apart from load balancing problem, we also addressed the service

scheduling problem and provided an optimal solution to it. All proposed algorithms were evalu-

ated in both open and closed access schemes. They were shown to outperform a heuristic selfish

scheme with considerable gains.
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Chapter 4

Weather turbulence mitigation through topology control in FSO Networks

4.1 Introduction

Drawing increasing attention, free space optical networks are considered as an important al-

ternative to the radio frequency (RF) systems as the backbone solution for future data-intensive

networks. This appeal is primarily due to their high optical fiber-like data rates, resistance to elec-

tromagnetic interference, and security among other advantages. There are many research opportu-

nities and also challenges in different aspects of FSO networks, such as pointing, acquisition and

tracking (PAT), weather/environment issue, channel randomness, and topology control [21]. Be-

cause an FSO transmitter is highly directional, the performance of the FSO networks is dependent

on the reliability of a line-of-sight (LOS) path. Atmospheric obstructions (e.g., due to the weather

turbulence or flying objects) can degrade the link performance considerably. The network must,

therefore, be capable of control and reconfiguration of its topology. In topology control, bootstrap-

ping and reconfiguration during operation are two important aspects, both of which are considered

in this chapter. In designing the bootstrapping algorithm for FSO networks, the difficulty lies in the

distributed formation of topology with every node only knowing directly connected neighbor infor-

mation. Moreover, there are only a limited number of transceivers in one base station, which makes

this problem even more challenging; because now the problem becomes Degree Constrained Min-

imum Spanning Tree Problem (DCMST). The DCMST problem can be categorized as Euclidean

Problem and non-Euclidean Problem, e.g., the random table. In Euclidean problems, the edge

weights are said to obey the triangle inequality; but in non-Euclidean problems, the edge weights

do not necessarily obey the triangle inequality [41]. Non-Euclidean problems were found to be far

less tractable than Euclidean problems. The problem of building a spanning tree in FSO network

is a random table problem. Moreover, even in non-weighted graphs, building Degree Constrained
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Spanning Tree (DCST) is still NP-hard. After bootstrapping the FSO network, base stations can

exchange information about their neighbors and hence a centralized algorithm for reconfiguration

can be applied. A centralized algorithm will consume less computation time, which is desirable in

link failure situations. If one or several links fail in FSO networks, the algorithm should reconfigure

the topology quickly to avoid partitioning or degradation.

In this chapter, the objective is to maximize the edge weight and the algebraic connectivity of

spanning tree, which result in higher robustness in topology of FSO networks. Edge weight repre-

sents FSO link reliability. Algebraic connectivity, as defined in spectral graph theory, is the second

smallest eigenvalue of the Laplacian matrix L associated with a graph [42]. It provides a good

measure to determine how well the spanning tree is connected [43]. We develop a topology con-

trol scheme when not only the number of transceivers on each base station is limited but also when

these numbers are different on different base stations. Both of our bootstrapping and reconfiguring

algorithms are shown to generate spanning tree with high average edge weight and algebraic con-

nectivity. In addition, by exploiting the knowledge of topology history, our reconfiguring scheme

requires much less computation time in case of link failure.

The remainder of this chapter is organized as follows. In Section 4.2 we review some related

works on topology control in FSO networks. We formulate the problem using 0-1 integer linear

programming (ILP) in Section 4.3. The topology control algorithms and analysis are presented

in Section 4.4. Our simulation results and performance analysis are presented in Section 4.5.

Section 4.6 concludes this chapter.

4.2 Related Work

Several previous works have focused on topology control in FSO networks. Some papers

consider bootstrapping FSO networks and others propose reconfiguration schemes. In [44], a

bottom-up (BU) algorithm is proposed for bootstrapping FSO networks. BU is a fully distributed

approximation algorithm, which constructs a spanning tree with maximal node degree at most one

larger than that in the optimal solution. In the algorithm proposed in [44], node ID is assigned
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arbitrarily but used as an important factor in determining which neighbor to connect with. Another

problem, as it is also stated in [44] but not solved, is synchronization problem. In [45], authors

propose a hybrid network prototype using free space optical link for data transmission only, and

RF link primarily for control signals as well as serving as a backup for data transmission whenever

FSO link is unavailable. This scheme of dynamic path reconfiguration is shown to have high

performance in terms of reconfiguration time and end-to-end delay. In this chapter, we consider

pure FSO network, which means there is no backup RF systems. A heuristic distributed fragment

selection and merging (FSM) algorithm [42] is presented to solve bootstrapping and reconfiguring

FSO networks. The author formulates the topology creation as building a k-degree constrained

spanning tree which means all the nodes in a graph are subject to the same degree constraint k.

The proposed approach in [42] requires high computational complexity because of calculating

the algebraic connectivity in every round, which makes this algorithm not competitive for fast

reconfiguration. In this chapter, a more general case, that is different degree constraints on every

single node, will be considered. Similar to [42], we also use algebraic connectivity in this chapter

as it provides a useful measure for connectivity of graphs. The authors in [46] propose a centralized

algorithm which aims to design mesh topology with strong connectivity and short diameter with

degree bound. The closest neighbor algorithm proposed in this chapter starts with building a

DCMST using the primal method. In order to construct a DCMST in polynomial time, many

heuristic and exact algorithms have been proposed, such as Primal method, Dual method, simulated

annealing, Lagrangean relaxation and branch and bound method [41]. Several of these algorithms

can effectively provide sub-optimal solutions and generate a spanning tree with minimum weight

sum. However, these algorithms do not work well in bootstrapping FSO networks, since a base

station will only have knowledge of neighboring base station’s information. They also are not good

at reconfiguring the network which requires fast reaction to avoid partitioning or degradation.
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4.3 System Model and Problem Statement

4.3.1 Model Description

We consider network model using FSO technology to have the following characteristics:

• FSO network only consists of base stations equipped with FSO transceivers;

• FSO channel is full duplex;

• FSO transceivers can transmit data over a randomly oriented sector ϕ of degree θ (θ typically

is 2π/9). An edge in topology means a pair of nodes can communicate with each other bi-

directionally;

• FSO transceivers have Pointing, Acquisition, and Tracking (PAT) capabilities;

• FSO base stations can use topology discovery to find their neighborhood, and in the begin-

ning, base stations can adjust their transmitting power, if necessary.

There are several different models for characterizing weather turbulence in FSO network,

such as log-normal distribution for weak-to-moderate turbulence, gamma-gamma distribution for

modeling moderate-to-strong turbulent channels and other models. We adopt the gamma-gamma

model and therefore, focus on topology control under turbulent channel conditions. The gamma-

gamma distribution of channel state h is given as [47]

f (h) =
2(αβ)

α+β

2

h̃Γ (α) Γ (β)

(

h

h̃

)
α+β

2
−1

Kα−β

(

2

√

αβ
h

h̃

)

(4.1)

where Kϕ(·) is the modified Bessel function of the second kind of order ϕ, Γ (·) is the Gamma func-

tion, and α and β are parameters which are related to distance, aperture diameter and atmospheric

conditions. h̃ in this model is a scale parameter, which is related to geometric spread loss and path

attenuation and can be calculated with the knowledge of transceiver parameters and atmospheric

conditions.
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Given a threshold of channel state h0 , link reliability is defined as

L =
∞

∫
h0

2(αβ)
α+β
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h̃Γ (α) Γ (β)
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h̃

)
α+β

2
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h

h̃
)dh

=
αβ

h̃Γ (α) Γ (β)

(

αβ
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2
,α−β

2
,β−α

2

)

(4.2)

Meijer G-function which is a standard built-in function in most of mathematical software pack-

ages [47] can be used to solve this integral.

Link reliability is an important parameter to measure the channel conditions in FSO networks.

Hence, we use it as edge weight in graph. Weight on the edge which is incident on node i and node

j is defined as the link reliability Lij if Lij is larger than a threshold value and zero otherwise;

edges with zero weight should not be included in graph in our problem.

wi,j =











1, ifLij ≥ Lth

0, otherwise

(4.3)

4.3.2 Problem Statement

In this chapter, we address the degree constrained spanning tree problem given a feasibility

undirected graph G = (V , E), where V is the set of V base stations or vertices, and E is the set

of E links or edges between vertices, containing no self-loops or parallel edges. Every edge has

been assigned positive weight defined in (4.3) . In degree constraint vector D(V ∗1) = di, every

entry di indicates the maximum number of edges which is allowed to be incident on node i. We

formulate two separate problems for bootstrapping and reconfiguring FSO networks. With respect

to the bootstrapping problem, we seek a spanning tree T subject to the degree bound which has

maximum algebraic connectivity. For reconfiguring the FSO network when links fail, fast reaction

is more desirable. Hence, we aim to minimize computation time and transceiver movement. The
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problem of finding a spanning tree in bootstrapping an FSO network is formulated as follows

max λ2(L) (4.4)

1 ≤
∑

eij∈δ(v)

xij ≤ dv, ∀v ∈ V

1
T ·X · 1 = 2 (V − 1)

xij ∈ {0, 1}

In the first constraint, δ(v) is the set of edges incident to node v. X is the adjacency matrix

of the spanning tree. If there is a link between node i and j, xij = 1; otherwise, xij = 0. The

problem of reconfiguring an FSO network is slightly different since a spanning tree has already

been formed. Another spanning tree is needed because of link failure in the former spanning tree.

The objective is to minimize the difference between these two trees (or maximize edges that do not

need to move) that is to minimize the transceiver movement. The problem is formulated as

max 1
T · (X1 ⊕X2) · 1 (4.5)

1 ≤
∑

eij∈δ(v)

xij ≤ dv, ∀v ∈ V (4.6)

1
T ·X2 · 1 = 2 (V − 1) (4.7)

X1 ⊕A1 = A1 (4.8)

X2 ⊕A2 = A2 (4.9)

xij ∈ {0, 1} (4.10)

Where, X1 is already given as an adjacency matrix of the old spanning tree and X2 is the ad-

jacency matrix of the new spanning tree. Operator ⊕ in graph theory gives the element-by-

element minimum value in the two matrices. For example, if A = (aij)m∗n, B = (bij)m∗n,

and C = (cij)m∗n = A ⊕ B, then cij =min{aij , bij}. Adjacency matrices of the graph A1 before

the link failure and matrix A2 after the link failure are known. Obviously, edges in spanning tree

belong to set of edges in graph, which are formulated as Eq. (4.9) and (4.10).

63



Constructing a DCMST is proven to be an NP-hard problem for non-Euclidean graphs [41]. If

the degree constraint dv is 2 for all nodes, then the problem reduces to the Hamilton path problem

which is NP-complete [44]. The problem of maximizing algebraic connectivity is also proven to

be NP-hard [48]. Hence, we develop a distributed heuristic algorithm for creating a spanning tree

in the first place, and also design a scheme to reconfigure topology with small operational time.

4.4 Topology Control Algorithm

Bootstrapping and reconfiguring FSO networks are two equally important aspects of topology

control. To satisfy their unique requirements, we address these two problems individually. How-

ever, in designing an algorithm for bootstrapping FSO networks, we keep in mind of making the

reconfiguration easier.

4.4.1 Bootstrapping Algorithm

Bootstrapping algorithm in this chapter include two phases, which are presented in in table 4.1

and 4.2. Before the execution of these algorithms, we assume that each node has already known

its neighbors’ information through topology discovery.

Phase 1: Construct Degree Constrained Spanning Tree

The first phase is to asynchronously construct a degree constrained spanning tree without

violating degree constraint as fast as possible. At the beginning, every node in the tree is sleeping.

Then, the first one node or a few nodes are awakened spontaneously; other nodes are awakened by

their neighbors. Once a node is awake, it first reads neighbor information and forms a group with a

unique identification. Any nodes that are connected are in the same group. After reading neighbor

information, it sorts these neighbors according to their degree constraints. Neighbors with higher

degree constraints are preferred when deciding which link to choose. A node marks neighbor

nodes which are outside its group and need to be connected as “VISIBLE”; especially, when this

node’s degree constraint is satisfied, which means it can be connected with more neighbors, its
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neighbor nodes are marked as “REACHEABLE” and itself is marked as “ACTIVE”. For the links

inside the group, some links are connected in the spanning tree and these links are marked as

“ONTREE”; other links are not in the spanning tree, so they are marked as “INGROUP”. A node

will try to establish a link with its “REACHABLE” node until its degree constraint is no longer

satisfied. But sometimes a group has some “VISIBLE” nodes which are isolated. Hence, we need

to adjust the topology in the group to include these nodes in the graph. “ADJUST” procedure is

similar to “IMPROVEMENT” in [44]. We add an edge, which is not in the tree and the addition

will not violate any degree limits, to the spanning tree, which results in the formation of a cycle,

and then we delete another link in the cycle. Now, the cycle is broken and a new spanning tree is

formed. By repeating this procedure, we can adjust the degree distribution, which might lead to

more “ACTIVE” nodes. When two nodes in different groups establish a link between them, the

group identification should update to a unique ID for the new merged group and a root is selected.

When there is no more visible node for every group or node, which means all nodes are included in

a spanning tree, this DCST algorithm ends with a degree constrained spanning tree. The distributed

algorithm for constructing a DCST is presented in in table 4.1.

Phase 2: Maximize Algebraic Connectivity

The second phase is maximizing the algebraic connectivity of the degree constrained span-

ning tree. This phase only runs in the root node. This heuristic maximum algebraic connectivity

algorithm will generate a final sub-optimal topology and the final result will be distributed to all

nodes in the FSO network. We use the edge exchange algorithm which is presented in table 4.2 to

maximize algebraic connectivity. Reducing edge sets, which is similar to the concept in [44], will

be also useful in the reconfiguration algorithm. Every edge will have a set of edges whose addition

to the tree will lead to forming a cycle with this edge. This set of edges are called “reducing edge”

to this edge, and nodes with reducing edge incident to are named “reducing node”.

In the decision of which reducing edge to choose if multiple potential reducing edges exist,

the motivation for our heuristic is as follows: If an edge is added to a graph G, the algebraic
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Table 4.1: DCST Formulation Algorithm

1: Wait for awakening ;

2: Read neighbor information and Set Group identification;

3: While(there is still visible node for the group)

4: IF(node has no “REACHABLE” neighbor )

5: Mark yourself as “NOTACTIVE”;

6: Else

7: Mark yourself as “ACTIVE”;

8: END

9: Mark links which is in the spanning tree inside the group as “ONTREE”,

and all other potential links inside the group as “INGROUP”;

10: Sort neighbors according to degree limit;

11: WHILE (ACTIVE)

12: Mark neighbors with different group ID as “VISIBLE”,

and mark neighbors as “REACHABLE” if currently degree is smaller than dv;

13: Awaken and connect “REACHABLE” node with largest degree;

14: Mark this link as “ONTREE”;

15: IF(Degree constraint is not satisfied)

16: Mark yourself as “NOTACTIVE”;

17: END

18: END

19: Send root node your status;

20: WHILE(Selected as ROOT)

21: IF (No “ACTIVE” nodes in group)

22: Adjust a “INGROUP” link by adding it

and deleting another link which form a cycle with this link;

23: Change node status accordingly;

24: IF(Still no “ACTIVE” node in group)

25: Randomly delete more “ONTREE” links

and add the same number of potential links to maintain the tree;

26: Change node status accordingly;

27: END

28: END

29: END

30: END
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Table 4.2: Maximum Algebraic Connectivity(MAC) Algorithm

1: WHILE(for every edge in the tree)

2: Find a reducing edge with larger weight to exchange;

3: IF (multiple choices exist)

4: Choose a reducing edge which will give us a branch in which
∑

e∈P (i,i)

1/w(e) for every reducing node is the smallest;

5: Break a tie by choosing an edge with largest wij(vi − vj)
2

6: END

7: END

connectivity λ2 will increase. λ2 is defined as the second smallest eigenvalue of the Laplacian

matrix L and can be written as

λ2 (L) = mina⊥1,a 6=0
< L · a, a >

< a, a >
(4.11)

If v is a normalized eigenvector corresponding to λ2 , for any symmetric matrix Y ,

λ2(L+ Y ) ≤ λ2(L) + Tr(Y vv
T ). (4.12)

If λ2 is isolated, the increase in λ2 can be found as ∂
∂xl

λ2 = vT ∂L
∂xl

v where x is a Boolean vector

to indicate whether an edge belongs to the tree or not [43]. By definition

L =
l=m
∑

l=1

xl · wl · al · a
T

l
(4.13)

where m is the number of edges in current graph, wl is the weight of edge, and al is the edge

vector. The edge vector, for an edge connecting vertices i and j, is defined as ali = 1,alj = −1,and

alx = 0 for other vertices x. Since

∂L

∂xl

= wl · al · a
T

l
(4.14)
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We can find the partial derivative of λ2 with respect to x as ∂λ2

∂x
= wij(vi − vj)

2, which means

wij(vi − vj)
2 gives the first order approximation of increase in λ2. To clarify, node i and j are

incident to edge l and wij is the weight of edge.

The computation of eigenvector for every edge exchange is time consuming which is not

desirable in FSO networks and drives us to find a faster method to choose the reducing edge.

According to Theorem 1 in [49], if bottleneck matrices for two branches satisfy the condition:

M ≪ M̃ , then, algebraic connectivity of two trees with these two branches satisfies λ2 ≥ λ̃2.

Bottleneck matrix for a branch B at a vertex v is a k ∗ k matrix, where k is the number of

vertices in the branch. The entry in position (i, j) is defined as
∑

e∈P (i,j)

1/w(e), where P (i, j) is the

set of edges which are on both the path from i to v and from j to v.

Note that we can always find a branch B which includes the reducing edges and a vertex v

which the branch is at. Smaller bottleneck matrix for the branch B will give us larger algebraic

connectivity.

After careful inspection of the bottleneck matrix, we find that there is even no need to calculate

the whole bottleneck matrix. We only need to compare the
∑

e∈P (i,i)

1/w(e) for every reducing node,

where P (i, i) is the set of edges which are on the path from reducing node i to v. The reason is

that if reducing node is not on the path from another node j, then the entry for node j will remain

the same; otherwise the change of
∑

e∈P (i,j)

1/w(e) will be the same with
∑

e∈P (i,i)

1/w(e). Hence, to

maximize the algebraic connectivity, we need to find out which reducing edge will give us a branch

in which
∑

e∈P (i,i)

1/w(e) for every reducing node is the smallest.

Proposition 1. The complexity of our bootstrapping algorithm is O(V 2 ∗ E).

Proof. In the phase 1, the computational complexity of the DCST formation algorithm is O(V 2 ∗

E). In the phase 2, the complexity of our Maximum Algebraic Connectivity algorithm is O(V 2 ∗

E), because in the first place, finding reducing edges for the edge in tree takesO(V ∗E). If multiple

choices of reducing edges exist, finding the best bottleneck matrix takes O(V 2) and computing

eigenvector takes O(V ). Hence the whole computational complexity is O(V 2 ∗ E).
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Table 4.3: Reconfiguration Algorithm

1: If(a link failure information received)

2: Find a reducing edge with largest weight to exchange;

3: IF (multiple choices exist)

4: Choose a reducing edge which will give us a branch in which
∑

e∈P (i,i)

1/w(e) for every reducing node is the smallest;

5: Break a tie by choosing an edge with largest wij(vi − vj)
2

6: END

7: End

8: IF(multiple link failure information received simultaneously)

9: IF(check if there is node failure)

10: Bootstrapping FSO network;

11: Else

12: Find a reducing edge with largest weight to exchange for every failed edge;

13: End

14: End

4.4.2 Reconfiguration Algorithm

Reconfiguration algorithm only applies when one or more FSO links fail in the system. We

introduce an algorithm with low computational complexity because in best case we can make use

of the knowledge that we get from the bootstrapping process. In bootstrapping algorithm, we have

already found out the set of reducing edges for every edge.

In the case of only one link failure, one backup link is chosen from the set of reducing edges

to replace the failed or degraded link. In the case of two or more link failures, if these links are not

all incident on one failed node, reducing edges are chosen separately to form the spanning tree. In

case of node failure, bootstrapping algorithm is adopted and preferred to construct a reliable new

spanning tree. To decrease the communication time and transceiver movement, this algorithm can

be a centralized algorithm. It can also be used in a distributed fashion but may cost more time. The

algorithm is presented in table 4.3.

Proposition 2. The complexity of our reconfiguration algorithm is O(V 2 ∗ E).
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Proof. It takes O(V 2 ∗ E) to find the reducing edge for every failed link in the graph. Finding

the best bottleneck matrix takes O(V 2) and computing eigenvector takes O(V ) . So the whole

complexity is O(V 2 ∗ E).

But in the best case, with the knowledge from the bootstrapping algorithm, we already know

reducing edges for every edge in the spanning formed by bootstrapping algorithm. Hence, in this

case, just communication of failure information and transceiver movement time is required.

4.5 Performance Evaluation

4.5.1 Simulation Setting

In this section, we present simulation of our algorithms and compare them with alternative

spanning tree construction algorithms in FSO network. We assume that FSO nodes are stationary

and link reliability threshold Lth is set to be 0.9 which is often required for a reliable communica-

tion. We abstract FSO network as a grid which is 100 ∗ 100 and nodes are generated in this grid

randomly. Edge weights are uniformly distributed between 0.9 and 1. Degree constraint on every

node is uniformly distributed between x and y, which are preset before simulation. The simulation

was implemented in C++. We provide a comparison with two alternative algorithms:

• bottom-up algorithm (BU) [44]

• fragment selection and merging algorithm (FSM) [42]

We compare two aspects to measure how these schemes work in FSO network: (i) algebraic con-

nectivity; (ii) average weight of the spanning tree. We generate 100 random graphs and use these

algorithms to obtain a spanning tree from which algebraic connectivity and average link weight

are calculated.
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Figure 4.1: Algebraic connectivity of tree with degree constraint 5

4.5.2 Performance Analysis

The simulation results demonstrate the advantages of our algorithms over other algorithms.

Fig. 1 and Fig. 2 illustrate performance of our algorithm compared with BU and FSM with degree

constraint x = y = 5.

In Fig. 4.1, we plot algebraic connectivity for random networks with size ranging from 20

nodes to 50 nodes. The value of each point is the average of 100 random graphs. We can see that

as the number of nodes increases, the algebraic connectivity decreases, which is consistent with

Corollary 1.1 in [49] which asserts that adding a vertex will decrease algebraic connectivity for the

graph. As we can see from Fig. 4.1, our algorithm produces a spanning tree with higher algebraic

connectivity. It achieves 28.76% normalized improvement of algebraic connectivity over FSM,

and 66.4% normalized improvement over BU.

In Fig. 4.2, we plot average edge weight of resulting trees. The edge weight represents the

reliability of FSO links. Fig. 2 illustrates that our Maximum Algebraic Connectivity (MAC)

algorithm generates more robust spanning trees with higher average link weight. Our algorithm

achieves 1.36% normalized improvement on average link weight over FSM, and 4.14% normalized

improvement over BU.

Fig. 4.3 and Fig. 4.4 illustrate the performance of our algorithm compared with BU and FSM

when x = 2,y = 4, which means degree constraint of each node is between 2 and 4. Nodes and
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Figure 4.2: Average edge weight of tree with degree constraint 5

Figure 4.3: Algebraic connectivity of tree with degree constraint from 2 to 4

Figure 4.4: Average edge weight of tree with degree constraint from 2 to 4
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links are generated in this grid randomly. The simulation results show that our algorithm performs

better than other alternative scheme in FSO network in both aspects: algebraic connectivity and

average link weight. The BU algorithm does not take into account the edge weight which is the

reason why it achieves the lowest average weight; FSM focuses on algebraic connectivity solely.

However, in our algorithm, we consider both individual links’ weight, which is also an important

indicator of quality of FSO networks, and the algebraic connectivity of the robust spanning tree.

4.6 Conclusion

We studied the problem of building robust degree constrained spanning tree for FSO networks.

Initial configuring, also called bootstrapping, and reconfiguration are two crucial parts of topology

control in FSO networks; algorithms for bootstrapping and reconfiguring are both developed. Al-

gebraic connectivity, as defined in spectral graph theory, is the second smallest eigenvalue of the

Laplacian matrix L associated with a graph and is adopted as measure of robustness. The prob-

lem of building a degree constrained spanning tree with maximum algebraic connectivity and edge

weight are formulated as 0-1 ILP problem and is proven to be NP-hard. For this NP-hard problem,

we design fast bootstrapping and reconfiguration algorithms for FSO networks. Our simulation re-

sults show that the algorithms presented in this chapter outperform other alternative algorithms for

building spanning tree in FSO networks in terms of both algebraic connectivity and edge weight.
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Chapter 5

Joint Relay Selection and Power Allocation in Cooperative FSO Networks

5.1 Introduction

Drawing increasing attention, free space optics (FSO) is a cost effective technology with ap-

plications ranging from high capacity military communications to “last-mile” broadband access

solutions. Although FSO links are able to support data intensive communications, a line-of-sight

(LOS) path is required and there are many factors leading to significant link performance degra-

dation. Most common is the adverse atmospheric conditions (e.g., due to the temperature and

pressure changes or flying objects), which can greatly degrade the link performance [21]. Fading-

mitigation techniques have to be employed to maintain FSO system performance.

To this end, topology control in FSO networks has been studied and proved to be effective

in maintaining system performance [50]. On the other hand, spatial diversity techniques, exten-

sively studied in conventional RF communication systems [51], have recently been introduced to

FSO systems. Multiple-input multiple-output (MIMO) FSO system can achieve significant diver-

sity gain in the presence of atmospheric fading by deploying multiple transmit or receiver aper-

tures [52] [53]. Under the circumstance of limited transceivers or antennas, another cost-effective

alternative (compared to MIMO-FSO) is the cooperative diversity technique, which is studied in

this chapter.

Cooperative diversity is considered as an effective means for combating weather turbulence in

FSO networks. Usually FSO networks are usually well planned with perfect LOS paths. However,

under the situations of severe weather or flying objects, an FSO base station may still experience

degraded communication performance. However, if the FSO BS transmits cooperatively through

an FSO BS relay whose surrounding weather is better, the degradation can be greatly mitigated.
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Figure 5.1: Illustration of a cooperative FSO network.

In [54], one-relay cooperative diversity is demonstrated to achieve significant gains over non-

cooperative FSO links that suffer from correlated fading while multi-hop relaying can also be

employed in FSO networks [55].

In this chapter, we consider the decode-and-forward (DF) cooperation strategy with one relay

for FSO links [56]. The cooperative FSO network framework is illustrated in Fig. 5.1, within

which each FSO BS is equipped with two or three transceivers. During operation, the LOS path

might be influenced by severe weather conditions but a cooperative FSO transmission strategy

can mitigate the weather influence and enhance the system performance. We consider one-relay

cooperative FSO communication with intensity modulation and direct detection (IM/DD). In the

proposed cooperative FSO network, a BS can transmit directly to the destination BS, or use another

BS as relay. In the latter case, the source BS first transmits symbols to the relay BS in one time

slot. Then, the source and relay BS’s will simultaneously transmit the symbols to destination BS

in the next time slot.

Unlike the prior work on cooperative FSO networks that focused on physical layer aspects,

we investigate the problem of maximizing the network-wide throughput with consideration of

power budget and cost (i.e., the number of available FSO transceivers) constraints. Specifically, we

formulate the problem of joint relay selection and power allocation as a Mixed Integer Nonlinear

Programming (MINLP) problem. A reformulation linearization technique (RLT) is first presented
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to derive an upper bound for the original MINLP problem. Due to the relaxation, the solution

obtained from RLT is infeasible.

We develop both centralized and distributed algorithms to solve the formulated problem. First,

we design a centralized algorithm for relay selection based on maximum weight matching on a bi-

partite graph. We then show that the remaining power allocation problem is convex and then solve

it using the gradient method in convex optimization. In the case when centralized coordination

is not available, we develop a distributed algorithm that uses only local channel state information

(CSI). The distributed algorithm is based on the the Distributed Extended Gale-Shapley (DiEGS)

algorithm originally designed for solving the stable marriage problem [57]. The performance of the

proposed algorithms are evaluated with simulations and are shown to outperform a non-cooperative

scheme and an existing relay selecting protocol with considerable gains.

The remainder of this chapter is organized as follows. The related work is discussed in Sec-

tion 5.2. We introduce the system model in Section 5.3. We present the problem formulation and

a RLT method to obtain a upper bound in Section 5.4. Both centralized and distributed algorithms

are proposed to address the MINLP problem in Section 5.5. Our simulation studies are presented

and discussed in Section 5.6. Section 5.7 concludes this chapter.

5.2 Related Work

FSO has attracted significant interest both in academia and industry as a promising solution

for high capacity, long distance communications [58]. Weather turbulence strongly affects FSO

communication links. [59] introduced a multipath fading resistant FSO communication system

architecture to combat adverse weather conditions. The influence of turbulence-accentuated inter-

channel crosstalk on wavelength division multiplexing (WDM) FSO system performance has been

discussed in [60].

The cooperative diversity technique has been used in FSO networks in several recent pa-

pers [61] [62] [54]. Relay-assisted FSO communication has been studied in [63–65]. Both se-

rial and parallel relaying coupled with amplify-and-forward and decode-and-forward cooperation
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modes are considered in [63]. The authors adopted multiple-relay communication to shorten the

distance between FSO BS’s and reduce the hop counts, resulting in considerable performance im-

provements. The work in [63] was extended in [64] and the authors further provided an interesting

diversity gain analysis. In [65], the authors propose to select only a single relay in each transmis-

sion slot, to avoid the need for synchronizing multiple relays’ transmissions.

In a recent work [54], a one-relay cooperative diversity scheme was proposed for combating

turbulence-induced fading and cooperative diversity was analyzed for non-coherent FSO commu-

nications. Numerical results demonstrated considerable performance gains over non-cooperative

FSO networks. Abou-Rjeily and Haddad in [62] studied cooperative FSO systems with multiple

relays. An optimal power allocation strategy was proposed to enhance diversity order and mini-

mize error probability. It turned out that the solution was to transmit with the entire power along

the strongest link between the source and destination.

The prior work on optimal relay selection or relay placement in FSO networks focus on max-

imizing the diversity gain, reducing the outage probability, or maximizing the capacity for an

individual BS. In this chapter, we consider the challenging problem of relay selection and power

allocation under power and cost constraints. We aim at maximizing the overall FSO network

capacity. We develop effective algorithms that are based on bipartite matching and convex opti-

mization to compute highly competitive solutions to maximize the throughput of the cooperative

FSO network.

5.3 System Model

Cooperative communication is investigated in this chapter as a fading mitigation method for

FSO networks. When the direct link between source and destination suffers from atmospheric

turbulence, FSO BS’s can use relays to enhance link quality.
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5.3.1 Channel Model

FSO links are highly directional and are prone to degradation caused by weather turbulence.

In this chapter, we consider both effects of path loss and turbulence-induced fading over FSO

links [55]. The optical channel state h is a product of two factors, as

h = hl · hf , (5.1)

where hl denotes the propagation loss and hf represents the impact of atmospheric turbulence. hl

is a function of optical wavelength λ and link length d, as [21]

hl =
ATX · ARX · e

−αd

(λ · d)2
, (5.2)

where ATX and ARX are aperture areas of the transmitter and receiver, respectively. The coeffi-

cient α is a parameter related to wavelength and environment. For hf , we assume the impact of

atmospheric turbulence can be modeled as a log-normal distribution, which is a widely used in

FSO network literature, especially under weak-to-moderate turbulence conditions.

The FSO channel model can be written as

y = h · x+ n, (5.3)

where x and y are the transmitted and received signals, respectively; n is the additive Gaussian

noise. With the non-cooperative strategy, the maximum achievable data rate for a communication

pair is given by the Shannon formula as

ws,d = B log2

(

1 +
|hs,d|

2Ps

σ2

)

, (5.4)

in which hs,d denotes the channel state of the direct link between source and destination. Let Ws,r

denote the maximum achievable capacity between source and destination when one relay is used,
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which can be expressed as

ws,r =
B

2
min

{

log2

(

1 +
|hs,r|

2Ps

σ2

)

,

log2

(

1 +
|hs,d|

2Ps

σ2
+
|hr,d|

2Pr

σ2

)}

, (5.5)

where Ps and Pr represent the source and relay’s transmit power, and hs,r and hr,d are the channel

states of the source-relay link and and the relay-destination link, respectively.

5.3.2 Cooperation Model

We consider a relay-assisted IM/DD FSO communication system with the DF strategy [66].

The transmission takes two time slots. In the first time slot, the source station first transmits

symbols to one relay station, which will detect the information symbols; in the second time slot,

the source and relay will simultaneously transmit the symbols to the destination.

The cooperation model consists of K base stations. Each base station may transmit directly, or

use one relay to assist its transmission. We assume the base stations will not decline a cooperation

request under any circumstance. We have M(M ≤ K) BS’s generating traffic among these base

stations. The set of source base stations is denoted by S and the set of destination base stations is

denoted by D. The cardinalities of S and D are both M . The destination of source Si is denoted

as Di. Usually an FSO BS has a limited number of transceivers, which limits the number of

communication links that a BS can have simultaneously.

For every source-destination pair, we assume at most one relay is assigned. Assuming CSI

is known, every source would like to greedily choose its best relay to maximize its data rate.

However, every BS has a limited number of transceivers and a limited power budget. In this

chapter, we thus focus on the problem of relay selection and transmit power allocation to maximize

the overall capacity of the cooperative FSO network.
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5.4 Problem Formulation and Upper Bound

In this section, the problem formulation of relay selection and power allocation is formed as

an MINLP problem. A RLT method is also introduced so that a upper bound of the problem can

be obtained.

5.4.1 Problem Formulation

First, we define the following variables for relay selection.

Ii,j =











1, if BS i selects BS j as relay

0, otherwise,

for all i, j ∈ {1, · · · ,M}. (5.6)

Note that Ii,i = 1 indicates that BS i transmit directly to its destination without using any relay.

The limited number of transceivers at the BS’s is translated into constraint
∑M

i=1 Ii,j ≤ Tj , for

all j, where Tj is the number of transceivers at BS j. The base stations will use their transceivers

to cooperate with each other and allocate power to each transceiver.

The power budget constraint for each base station is represented as
∑M

j=1 Pi,j ≤ Pi, for all i,

where Pi,j is the power that BS i allocates to assist source j and Pi is the power budget of BS i.

In FSO communications, laser eye safety issues should always been considered. For eye

safety considerations, we enforce a peak power bound for the transmit powers, as Pi,j ≤ Pmax, for

all i, j ∈ S . We assume that during data transmission, the allocated powers do not change in each

time slot.

Given the transceivers and power constraints, the objective is to develop a relay selection

and power allocation scheme for each BS, while the overall network capacity is maximized. The
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problem is formulated as follows.

max
M
∑

i=1

(Ii,iw
i,i
s,d +

K
∑

j=1,j 6=i,j 6=Di

Ii,jw
i,j
s,r) (5.7)

s.t.
M
∑

i=1

Ii,j ≤ Tj, ∀ j ∈ B (5.8)

K
∑

j=1

Ii,j ≤ 1, ∀ i ∈ S (5.9)

M
∑

j=1

Pi,j ≤ Pi, ∀ i ∈ B (5.10)

0 ≤ Pi,j ≤ Pmax, ∀ i ∈ B, j ∈ S (5.11)

Ii,j ∈ {0, 1}, ∀ i ∈ B, j ∈ S, (5.12)

where the capacity achieved by direct communication (i.e., wi
s,d) and the capacity achieved by

using BS j as relay (i.e., wi,j
s,r) can be calculated using (5.4) and (5.5), respectively. Each source

can choose to either transmit directly or use one relay, which is specified in constraint (5.9).

5.4.2 Upper Bound

The formulated problem is an MINLP problem, which is NP-hard in general. We first adopt

the RLT method to relax the MINLP problem to obtain a upper bound [67]. The first step of

relaxation is to allow the binary I-variables to take real values in [0, 1].

The second step is to linearize the logarithmic terms in the objective function. We have wi,i
s,d

as a logarithmic function of Pi,i, as

wi,i
s,d = B log2

(

1 +
|hi,i|

2Pi,i

σ2

)

. (5.13)

We linearize this logarithmic relationship in (5.13) over some tightly bounded interval using

the polyhedral outer approximation [67]. Letting Pi,i be 0 and Pmax, we obtain the lower and upper
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bounds of the term inside the log function, which are denoted as η
i
= 1 and ηi = 1 +

|hi,i|2Pmax

σ2 ,

respectively.

We use the four-point approximation and obtain the following new linear constraints.











wi,i
s,d ≥

log2 ηi−log2 ηi
ηi−η

i

(ηi − η
i
) + log2 ηi

wi,i
s,d ≤

ηi−ηk
ηk ln 2

+ log2 ηk,
(5.14)

where ηk = η
i
+

k(ηi−η
i
)

3
, for k = 0, 1, 2, 3.

Next, we replace the product term Ii,i · w
i,i
s,d with a substitution variable vi. Since Ii,i and

wi,i
s,d are each bounded by their respective lower and upper bounds, we obtain the following RLT

bound-factor product constraints.



































(Ii,i − 0)(wi,i
s,d − log2 ηi) ≥ 0

(Ii,i − 0)(log2 ηi − wi,i
s,d) ≥ 0

(1− Ii,i)(w
i,i
s,d − log2 ηi) ≥ 0

(1− Ii,i)(log2 ηi − wi,i
s,d) ≥ 0.

(5.15)

Similarly, substituting Ii,i · w
i,i
s,d = vi, we obtain four linear constraints for variable vi. We deal

with the terms Ii,j · w
i,j
s,r in the same manner.

The capacity achieved by relaying is more complicated

wi,j
s,r =

B

2
min

{

log2

(

1 +
|hi,j|

2Pi,i

σ2

)

,

log2

(

1 +
|hi,i|

2Pi,i

σ2
+
|hj,i|

2Pj,i

σ2

)}

, (5.16)

82



where hj,i is actually hj,Di
, which represents the channel condition between the relay BS and

destination BS. We then introduce new variables wi,j
s,r,1, wi,j

s,r,2, and ti,j to have











wi,j
s,r,1 =

B
2
log2

(

1 +
|hi,j |2Pi,i

σ2

)

≥ ti,j

wi,j
s,r,2 =

B
2
log2(1 +

|hi,i|2Pi,i

σ2 +
|hj,i|2Pj,i

σ2 ) ≥ ti,j.
(5.17)

Now maximizing wi,j
s,r is equivalent to maximizing ti,j . We then linearize the first logarithmic

relationship using the polyhedral outer approximation. The second logarithmic relationship can be

linearized similarly, but we need to introduce an additional variable

SNRi,j =
|hi,i|

2Pi,i

σ2
+
|hj,i|

2Pj,i

σ2
,

which is bounded.

The logarithmic relationship wi,j
s,r,2 =

B
2
log2(1 + SNRi,j) can be linearized with the polyhe-

dral outer approximation.

Finally, we replace the product term Ii,j · ti,j with a substitution variable vi,j . Since Ii,j and

ti,j are both bounded, we obtain the RLT bound-factor product constraints similar to (5.15).

Now the original MINLP problem is relaxed to a linear programming (LP) problem with the

additional constraints and variables, which can be solved in polynomial time with an LP solver.

Unfortunately, the solution obtained from LP is likely to be infeasible due to the relaxations, but

the solution can be used as an upper bound for the original problem.

5.5 Solution Algorithms

In this section, we develop centralized and distributed relay selection and power control algo-

rithms to solve the formulated problem.
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5.5.1 Centralized Algorithm

The formulated problem is an MINLP problem with binary variables Ii,j’s and real variables

Pi,j’s, which is NP-hard [67]. We develop a centralized algorithm that first determines the relay

selections and then allocates transmit powers to selected relays. The main idea is to fix I-variables

first and then consider optimized power allocation at each relay.

The first phase of the centralized algorithm is to solve the relay selection problem. The relay

selection problem here can be interpreted as a weighted bipartite matching problem, which can

be solved with polynomial-time algorithms such as Hungarian algorithm. First we construct a

bipartite graph as follows: one disjoint set consists of the source BS’s, and the other disjoint set

contains the destination BS’s and the BS’s that have available transceivers to relay traffic for the

sources. We call such a BS a relay BS. The weight of each matching edge is the corresponding

link capacity. Such matching problem can be solved with polynomial-time algorithms, such as

Hungarian algorithm and the Primal Dual algorithm.

The heuristic relay selection algorithm is presented in Algorithm 1, which incorporates max-

imum weight matching. Let Nj be the number of sources that relay j serves. Initially, Nj is set to

be as large as possible to accommodate more sources; however, the power that each source is allo-

cated may be too small to achieve the desired capacity gain in this case. As the algorithm evolves

over time, Nj will be decreased finally to one. If a source i cannot achieve the desired capacity

gain even with one relay that is allocated with all the power budget Pi, it has to transmit directly

to its destination. Actually, for every source i and relay j, we can calculate the minimum relay

power P i,j
min required to achieve more capacity than by the direct transmission, according to (5.4)

and (5.5).

In Line 16 of Algorithm 1, maximum weight matching is executed on the constructed bipartite

graph. The bipartite graph is constructed as a undirected complete bipartite graph G(A ∪ B, E).

As discussed, the disjoint setA consists of all the source nodes, while the other disjoint set B is the

union of the relay nodes and destination nodes. The edge between source node i and destination

node j indicates that node i chooses to transmit directly to node j; the edge between source node
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Algorithm 1: Centralized Relay Selection Algorithm

1 Initialize source S , relayR and destination D ;

2 Remove source {i|hi,j < hi, ∀j} from S and set Ii = 1 ;

3 while S is not empty &&R is not empty do

4 for j ∈ R do

5 Find the minimum power to achieve capacity gain: P j
min = mini∈S P j,i

min ;

6 Get Nj : Nj = min{Nj , Tj , Pmax/P
j
min −

∑

i Ii,j} ;

7 if Nj ≤ 0 ‖ Pmax ≤ P j
min then

8 Remove j fromR ;

9 end

10 end

11 if |R| ≤ 0 then

12 break ;

13 end

14 Calculate wi,j
s,r by setting Pj,i = Pmax/(Nj +

∑

i Ii,j) ;

15 Calculate wi
s,d by setting Pi,i = Pmax/(Ni +

∑

j Ij,i) ;

16 Initial bipartite graph G with set S and setR∪D and capacity assigned as weights;

17 Compute the maximum weight matching ;

18 for i ∈ S do

19 if source i is matched to relay j then

20 Remove source i from S and Set Ii,j = 1 and Tj = Tj − 1 ;

21 end

22 end

23 for j ∈ R do

24 if j is not matching saturated then

25 Set Nj = Nj − 1 ;

26 end

27 end

28 end

29 if |S| ≥ 0 then

30 Set Ii = 1, ∀i ∈ S ;

31 end

i and relay node j indicates that node i choose node j as relay and node j will relay symbols

to the destination. In this graph, there are actually Nj nodes for one relay, as given in Line 6 in

Algorithm 1. The weight of each edge is the capacity achieved by transmitting using the link,

which can be calculated and assigned before the matching computation. During every iteration,

we check if a relay has been assigned to any source or not. If a relay BS j has not been matched

to any source BS’s, we will decrease its service capacity Nj , which is the number of source BS’s
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that this relay serves. By decreasing service capacity, more power is available for candidate source

BS’s.

After the I-variables are determined as in Algorithm 1, the second phase of our centralized

algorithm is to solve the power allocation problem, which can be shown to be a convex problem.

The power allocation problem in the second phase, which is presented as

max
∑

i∈S1

wi,i
s,d +

∑

i∈S2

wi,ri
s,r (5.18)

s.t.

M
∑

j=1

Pi,j ≤ Pi, ∀ i ∈ S (5.19)

0 ≤ Pi,j ≤ Pmax, ∀ i, j ∈ S. (5.20)

The sources are divided into two sets: one set is transmitting directly without using any relays,

denoted by S1; the other set is transmitting using one relay, denoted by S2. For each BS i in S2, its

relay is denoted by ri.

This power allocation problem can be solved by many convex optimization methods, such as

gradient, Interior point, or Newton method.

5.5.2 Distributed Algorithm

The centralized algorithm requires a central controller to gather all channel information and

execute the algorithm. It may not be applicable when there is no such centralized entity. In this sec-

tion, we propose a distributed greedy algorithm, where each base station only use its own channel

gains.

With knowledge of the channel gains, a source will always prefer to transmit through the

channel with the best channel gain. Hence, for source BS i, we create a preference list according

to channel gains hi,j; for relay j BS, we also get a preference list according to channel gains hj,i.

Then we have two sets: one set is the source nodes; the other set is the relay or destination nodes.

Each source node will select one node from the other set given the preference lists. Given these
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preference lists, the problem of determining the I-variables can be treated as a stable marriage

problem and we solve it with the DiEGS algorithm [57]. There are two parts of this algorithm:

one part is called Men-procedure and another part is Women-procedure. Men-procedure will be

executed in each source BS’s and Women-procedure will be executed in each relay and destination

BS’s. DiEGS algorithm will produce a stable matching between two sets of BS’s so that there does

not exist any alternative pair of BS’s in which both of them are better off, given their preference

lists.

In our case, the size of two parts are not equal; but, it is known that, an instance of stable

marriage with sets of unequal size has exactly the same set of stable matchings as the same instance

with the unmatched nodes deleted. Hence, with some modification of the DiEGS algorithm, we

can distributedly solve the relay selection problem in polynomial time.

Now we have to solve the power allocation problem in a distributed manner, which is given

in (5.18)–(5.20). For each BS, we have local variables Pi and Pi,j . For BS i in S2, variable Pj,i is

the power that relay BS allocates to assist its transmission, which is not local. We will introduce

auxiliary variables t⋆i to localize capacity wi,ri
s,r and P ⋆

i to localize power allocation at the relay.

Now the problem becomes

max
∑

i∈S1

wi,i
s,d +

∑

i∈S2

t⋆i (5.21)

s.t.
M
∑

j=1

Pi,j ≤ Pi, ∀ i ∈ B

0 ≤ Pi,j ≤ Pmax, ∀ i ∈ B, j ∈ S

B

2
log2

(

1 +
|hi,ri |

2Pi,i

σ2

)

≥ t⋆i , ∀ i ∈ S2

B

2
log2

(

1 +
|hi,i|

2Pi,i

σ2
+
|hri,i|

2P ⋆
i

σ2

)

≥ t⋆i , ∀ i ∈ S2

tri,i = t⋆i , tj,i = 0, ∀ i ∈ S2, j 6= i, j 6= ri

Pri,i = P ⋆
i , Pj,i = 0, ∀ i ∈ S2, j 6= i, j 6= ri,
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where the subscription of tri,i indicates that the power allocation is determined by relay ri.

We next take a dual decomposition approach to obtain a distributed algorithm for power allo-

cation [68]. Applying the Lagrangian method, we show the original problem can be decomposed

into subproblems with only local variables. For a BS in set S1, we have the local maximization

problem as

max wi,i
s,d + λ1,i(Pi −

∑

j

Pi,j) + (5.22)

~γ1,i
T~ti + ~γ2,i

T ~Pi, ∀ i ∈ S1.

where λ1,i, ~γ1,i, ~γ2,i are all Lagrange multipliers and ~Pi = [Pi,1, Pi,2, · · · , Pi,m]
T is the power allo-

cation vector. In this chapter, we use bold letters to denote vectors and (·)T denotes the transpose

operation of a matrix.

The local dual problem is to minimize g1(λ1,i), which is obtained as the maximum value of

the Lagrangian solved in (5.22) for given λ1,i.

For a BS in set S2, we have the local maximization problem, which is more complicated since

its relay power is decided by the relay BS.

max t⋆i + λ1,i(Pi −
∑

j

Pi,j)+ (5.23)

λ2,i

(

B

2
log2

(

1 +
|hi,ri |

2Pi,i

σ2

)

− t⋆i

)

+

λ3,i

(

B

2
log2(1 +

|hi,i|
2Pi,i

σ2
+
|hri,i|

2P ⋆
i

σ2
)− t⋆i

)

−

γ1,ri,it
⋆
i − γ2,ri,iP

⋆
i + ~γ1,i

T~ti + ~γ2,i
T ~Pi, ∀ i ∈ S2,

where λ1,i, λ2,i, λ3,i, ~γ1,i, ~γ2,i are all Lagrange multipliers. The local dual problem is to minimize

g2(λ2,i, λ3,i) and the dual objective is defined as the maximum value of the Lagrangian over ~Pi and

~ti.
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Algorithm 2: Distributed Relay selection and Power allocation Algorithm

1 Initialize the channel gains and obtain the preference list of source BS’s ;

2 Run the Men- or Women-procedure of DiEGS and determine the I-variables ;

3 Set t = 0, initialize γ1,i,j(0), γ2,i,j(0) to some value ;

4 while termination criterion not met do

5 Each BS solves (5.22) or (5.23) locally and sends solution to related BS’s ;

6 Update prices with the iterate in (5.25) and announce new prices to related BS’s ;

7 Set t← t+ 1 ;

8 end

The master problem is given by

min g(~γ1, ~γ2). (5.24)

The optimal value of (5.22) and (5.23) for given sets of ~γ1 and ~γ2 defines the dual function g(~γ1, ~γ2)

and this master problem can be solved with the following iterative updates:

γ1,i,j(t+ 1) = γ1,i,j(t)− α(tj,i(t)− ti(t)
⋆) (5.25)

γ2,i,j(t+ 1) = γ2,i,j(t)− α(Pj,i(t)− Pi(t)
⋆). (5.26)

Finally, the distributed algorithm for power allocation is as follows. First, initialize γ2,i,j(0), γ2,i,j(0)

to some value; then each BS solves its local maximization problem and sends its solution to the re-

lated BS’s (determined in the step of relay selection); each BS updates its prices γ-value iteratively,

then sends the new prices to other coupled BS’s. The algorithm terminates when convergence is

achieved or when a maximum number of iterations is reached. The distributed relay selection and

power allocation algorithm is presented in Algorithm 2.

5.6 Performance Evaluation

We evaluate the performance of the proposed algorithms using MATLAB simulations. In

the simulations, the FSO BS’s are randomly placed in an area of radius R. We assume enough

transceivers are equipped and FSO BS’s are allowed to communicate with any other BS’s. In one
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Table 5.1: Simulation Parameters for Cooperative FSO Networks

Symbol Definition

λ = 1550 nm Wavelength

Dr = Dt = 0.1 m Rx. and Tx. Aperture Diameter

K = M = 20 Number of FSO BS’s in the area

B = 10 MHz Bandwidth

R = 5 Km Radius of area

Pmax = 2 W Peak power constraint

Pi = 0.5 W , ∀ i Power budget for FSO BS i
Ti = 3, ∀ i Number of transceivers on FSO BS i

Table 5.2: Atmospheric Attenuation Coefficient α
Weather Condition α
Very Clear 0.48 dB/km

Light Fog 13 dB/km

Clear 0.96 dB/km

Dense Fog 73 dB/km

Haze 2.8 dB/km

Deep Fog 309 dB/km

half of this area, there is clear weather; the other half of this area suffers from fog. We calculate

channel gains as in Section 5.3.1. The simulation parameters are listed in Table 5.1 [69]. The at-

mospheric attenuation coefficients are related to weather and the values are listed in Table 5.2 [69].

We also evaluate the upper bound that obtained from RLT method, but the upper bound is too

loose and since the I-variables are taken non-integer value, the solution we get from RLT is not

feasible.

In Fig. 5.2, we evaluate the performance of the two proposed algorithms along with a simple

non-cooperative scheme and examine the impact of the number of FSO BS’s on the total sys-

tem capacity. Our proposed algorithms achieve much greater capacity than direct transmission.

The centralized algorithm has the best performance since it has all the channel information in the

network. The distributed algorithm outperforms the non-cooperative scheme, although achieves

less capacity than the centralized algorithm, due to the fact that the distributed algorithm only

has knowledge of the BS’s local CSI. As the network size increases, the advantage of centralized
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Figure 5.2: Throughput vs. number of FSO BS’s.

algorithm becomes more obvious, but it would be more challenging to obtain up-to-date global

CSI.

Next, we examine the impact of the power budget Pi available at each BS. To fully examine

the impact of the power budget, we set the number of transceivers to five. In Fig. 5.3, we increase

Pi from 0.5 W to 3 W and plot the total network throughput. It can be seen from the figure that

Pi has no impact on the non-cooperative scheme; but as Pi is increased from 0.5 W to 2.5 W, the

throughput of the FSO network increases when both the centralized and distributed algorithms are

used. Due to the limited number of transceivers, the network throughput stops increasing when the

power budget is larger than 2.5 W.

Then, we also examine the impact of the number of FSO transceivers at each BS on the total

system capacity. The number of BS’s is set to be 20. In Fig. 5.4, we find that when the number of

transceivers is greater than six, the average throughput of the three schemes all decrease. This is

because when the number of BS’s that a relay BS serves is too large, the power that the relay BS can

allocate to each BS becomes too small. However, before this critical point, the average throughput

increases with the number of transceivers for the centralized algorithm. It is interesting to see that

the number of transceivers has little impact on the distributed algorithm and the non-cooperative

scheme, indicating that the system have not been fully utilized by these two algorithms.
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Figure 5.3: Throughput vs. power budget.
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Figure 5.4: Throughput vs. number of FSO transceivers.

We also investigate the impact of weather at each BS location on the total system capacity.

The results are plotted in Fig. 5.5. We change the weather condition from very clear to foggy.

As expected, system capacity decreases as weather gets worse. When weather condition is from

very clear to hazy, our algorithms outperform the noncooperative scheme with considerable gains.

However, after the atmospheric attenuation coefficient α becomes larger than about four, as shown

in Fig. 5.5, the system throughput decreases drastically although our algorithms still achieve better

performance. These simulation results show that cooperative schemes can achieve larger through-

put especially when the LOS path is severely affected or not available at all.

92



2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

Atmospheric Attenuation Coefficient

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

 

 

Distributed Algorithm
Centralized Algorithm
Noncooperative

Figure 5.5: Throughput vs. Attenuation Coefficient α.
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Figure 5.6: Throughput vs. number of FSO BS’s.

Finally, we compare the proposed algorithms with an existing scheme in Fig. 5.6. The relaying

protocol in [65], which was called Select Max, selects a relay with the maximum minimum SNR

of the path’s intermediate links, i.e.,

argmin
r
{SNRs,r, SNRr,d}. (5.27)

In this scheme, every source BS uses one relay, and the same power is used for both source BS

and relay BS transmissions. This scheme is a centralized one and thus achieves better performance
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than the proposed distributed algorithm, when the network size becomes large. In the case of

small network sizes, this scheme has almost the same performance as the proposed distributed

algorithm. Under the same scenario when there is centralized control, our proposed centralized

algorithm outperforms Select-Max in all the scenarios studied with considerable gains.

5.7 Conclusion

In this chapter, we investigated the problem of maximizing the FSO system throughput un-

der the constraints of limited power budget and number of FSO transceivers. Two algorithms are

proposed and compared with non-cooperative scheme. Our simulation study showed that the cen-

tralized algorithm achieved the greatest capacity but it required a central controller, while the pro-

posed distributed algorithm can be adopted to achieve better performance than the non-cooperative

scheme if centralized coordination is not available.
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Chapter 6

Optical Power Allocation for Adaptive WDM Transmissions in Free Space Optical Networks

6.1 Introduction

Recently, demand for multimedia service with high quality of service (QoS) requirements

has been drastically increasing. To cater to the increasing demand, optical fibers have been uti-

lized for years to deliver high volume of data. Due to the relatively high cost of deploying optical

fibers, Free Space Optics (FSO) has been developed as a cost-effective wireless access technology

for multi-Gigabit rate communication networks. FSO provides an excellent alternative to optical

fiber systems for last-mile applications [18], ranging from local area network (LAN)-to-LAN con-

nection for enterprise/campus, high capacity military communications, to disaster recovery and

emergency response, among others.

Attracting considerable attention from the research community, FSO has also been studied

for carrying various wireless services, as known as Radio on Free Space Optics (RoFSO). FSO

systems can operate on wavelengths in the 1520–1600 nm range, which makes the development

of wavelength-division multiplexing (WDM) FSO systems feasible. Advanced Dense Wavelength

Division Multiplexing (DWDM) RoFSO systems are emerging to support the simultaneous trans-

mission of multiple wireless signals [18]. Despite of its great potential of supporting data intensive

communications, a line-of-sight (LOS) path is required in any FSO system. Consequently, FSO is

highly susceptible to the atmospheric environment due to the inhomogeneity of air temperature and

pressure, or flying objects [58]. To harvest the high potential of FSO, fading-mitigation techniques

should be employed to mitigate atmospheric turbulence-induced intensity fluctuations.

To this end, topology control [50, 58, 70, 71], load-balancing [72] and spatial diversity tech-

niques [52] have been studied and proved to be effective in maintaining system performance.

Adaptive transmissions have been recently introduced into FSO systems and is emerging as a
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potential solution to mitigate the effect of atmospheric turbulence [73]. In FSO systems, channels

are usually slow-fading and FSO transceivers have full-duplex capabilities. With negligible effect

on data rates, a small portion of the bandwidth can be used for feedback of channel state informa-

tion (CSI). In some hybrid RF/FSO systems, the RF channel can be used for CSI feedback. Thus

reliable CSI could be available in FSO systems, which will be highly useful for designing adaptive

transmission schemes.

In this chapter, we propose optical power allocation schemes for an adaptive WDM RoFSO

system in which variable wavelengths are adopted to mitigate the effect of weather turbulence.

Proposed optical power allocation schemes optimally allocate transmit power to achieve maxi-

mum capacity and enhance the performance of the WDM system. Nowadays, the 1520−1600

nm wavelength band has already been used in FSO systems. Furthermore, the emerging quantum

cascade laser (QCL) technology can offer great flexibility on adjusting an FSO transceiver to op-

erate on the optimal transmit wavelengths [74]. Under a total power constraint, different optical

powers can be allocated to the chosen wavelengths in a WDM RoFSO system, to achieve further

enhanced system performance. We investigate the problem of optical power allocation under the

power budget and eye safety power constraints for adaptive WDM transmission in RoFSO sys-

tems. To achieve capacity gain, we first analyze a conventional FSO system and develop a simple

water-filling based algorithm to derive the optimal power allocation for the chosen wavelengths.

For WDM RoFSO systems, a near-optimal RoFSO power allocation algorithm is developed based

on the reformulation-linearization technique (RLT) [67], which can provide a linear programming

(LP) relaxation of the complex problem. A computationally efficient scheme is also developed

based on an approximation of the channel model. Finally, we investigate the diversity gain in the

WDM FSO system. The performance of the proposed schemes are evaluated with simulations, and

are demonstrated to be highly effective for achieving high system capacity under various scenarios.

The remainder of this chapter is organized as follows. The related work is discussed in Sec-

tion 6.2 and the system model is presented in Section 6.3. The three power allocation schemes are
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developed in Section 6.4 to fully utilize DWDM FSO systems. Simulation studies are presented in

Section 6.5. Section 6.6 concludes this chapter.

6.2 Related Work

Attracting significant interest both in academia and industry, the FSO technology has been

recognized as a promising solution for high capacity, long distance communications. The perfor-

mance of the FSO networks highly depend on the reliability of a line-of-sight (LOS) path since

an FSO transmitter is highly directional. Weather turbulence strongly affects FSO communication

links. Weather effects on the connectivityof FSO networks was studied in [21]. The influence of

turbulence-accentuated interchannel crosstalk on WDM FSO system performance has been dis-

cussed in [60].

Many fading-mitigation techniques have recently been employed to maintain FSO system

performance. [59] introduced a multipath fading resistant FSO communication system architec-

ture to combat adverse weather conditions. Spatial diversity techniques, extensively studied in

conventional RF communication systems [51], can also be applied in FSO systems to improve

system performance. Multiple-input multiple-output (MIMO) FSO system can achieve significant

diversity gain in the presence of atmospheric fading by deploying multiple transmit or receiver

apertures [52] [53]. Cooperative diversity technique [75] [64] is also a cost-effective alternative

to maintain system performance. In a recent work [54], a one-relay cooperative diversity scheme

was proposed for combating turbulence-induced fading and cooperative diversity was analyzed for

non-coherent FSO communications.

Adaptive transmission technology has been introduced into FSO systems to mitigate weather

turbulence. Djordjevic in [76] applied the conventional wireless adaptive modulation and coding

method in an FSO system and further studied adaptive low-density-parity-check (LDPC) coded

modulation to compensate performance degradation when turbulence is strong. Karimi and Uysal

in [73] designed transmission algorithms with consideration of the number of bits carried per chip
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time (BpC) in an FSO link, in which intensity modulation/direct detection (IM/DD) with M-ary

pulse position modulation (M-PPM) was employed.

Several other adaptive schemes have also been proposed and studied. In [74], the authors pro-

posed using variable wavelength to combat the effects of atmospheric interference. Varying wave-

length becomes feasible as the QCL technology becomes more mature. In [77], the authors pro-

posed an adaptive transmission scheme to satisfy the requirements of various wireless services. A

WDM power allocation method considering Optical Modulation Index(OMI) was proposed in their

adaptive RoFSO system design. Authors in [78] studied the potential of multiple-input/multiple-

output channel for combating link fading. However, FSO MIMO system performance is limited by

thermally noise limited receivers and thus Avalanche photodiodes (APDs) [79] were studied and

commonly used in FSO systems.

In this chapter, we propose power allocation schemes for adaptive WDM transmissions to

achieve capacity gain or diversity gain. WDM has been employed in FSO transmission systems

and has been shown to be capable of supporting very high data rate transmission in [80]. RoFSO

technology makes it possible to transmit multiple RF signals using WDM. RoFSO provides a

promising alternative to optical fiber systems. In [20], the authors designed and evaluated an

RoFSO system as an universal platform for the integration of optical fiber and FSO networks.

In [19], optical fading in FSO Channels was statistically analyzed, while [18] provides a compre-

hensive study of RoFSO and the satisfactory results confirmed that the effect of scintillation on

RoFSO performance can be estimated by an analytical model.

In the adaptive WDM RoFSO system we studied, variable number of wavelengths are adopted

to mitigate weather turbulence and optical transmit power are optimally allocated to achieve max-

imum capacity gain. Although turbulence may not change significantly with wavelength in some

weather conditions, considering the huge bandwidth that DWDM RoFSO system can support, it

is still non-trivial to study the problem of utilizing wavelength properly. Moreover, Since QCL

technology can offer great flexibility on adjusting wavelengths, more wavelengths can be utilized
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as FSO systems advance. Alternatively, the multiple wavelengths used in WDM FSO system can

be utilized to achieve robustness of the system.

6.3 System and Channel Model

In this section, we will introduce the channel model and system models.

6.3.1 Channel Model

FSO transceivers are highly directional, but FSO links are prone to degradation due to weather

turbulence. We consider both effects of path loss and turbulence-induced fading over FSO links

[75]. The optical channel state h is modeled as a product of two factors:

h = hlhf , (6.1)

where hl denotes the attenuation and hf represents the atmospheric turbulence. hl is a function of

optical wavelength Λ and link length d, as

hl =
ATXARXe

−αd

(Λd)2
, (6.2)

where ATX and ARX are the aperture areas of transmitter and receiver, respectively. The atmo-

spheric attention coefficient α is give by

α = (3.91/V )(Λ/550)−q, (6.3)

where V is the visibility in kilometers and q is a parameter related to the visibility as [73]

q =











0.585V 1/3, V ≤ 6km

1.3, 6km≤ V ≤ 50km.
(6.4)
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For modeling hf , we assume atmospheric turbulence modeled as a Log-normal distribution

[55]. The Log-normal model is a widely used fading model, especially under weak-to-moderate

turbulence conditions.

The channel model for an FSO link can be written as

y = h · Pt · x+ n, (6.5)

where x and y are transmitted and received signal respectively; n is the additive Gaussian noise;

Pt is the power of the transmitted pulse.

6.3.2 System Model

Radio on Free Space Optics (RoFSO) is a new technology that provides high data rate and

reliable transmission. The RoFSO system using WDM allows simultaneous transmission of mul-

tiple data streams consisting of various wireless services at very high rates. An advanced DWDM

RoFSO system is illustrated in Fig. 6.1 [18].

We assume a WDM FSO system that is capable of operating from the 1520 nm wavelength

band to the 1600 nm wavelength band. Apart from the data-transmitting antenna, we assume

that an atmospheric influence measurement antenna or weather measurement device is equipped

at the FSO BS. Thus, we can estimate atmospheric loss for channels using different wavelengths.

Alternatively, CSI can be obtained by using a small portion of the bandwidth to provide channel

information without affecting data rates. In some hybrid RF/FSO systems, the RF channel can be

used for CSI feedback. Since atmospheric turbulence is a major degrading factor in FSO systems,

we propose power allocation schemes for the adaptive FSO system, in which both wavelength and

transmit power will be adaptively allocated according to channel conditions.
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Figure 6.1: Advanced DWDM RoFSO system.

An important parameter to evaluate the performance of RF-FSO is the carrier to noise ratio

(CNR). The CNR of an RoFSO system using an APD photo detector is given as [18]

CNR =
0.5(OMI ·mPr)

2

RIN · P 2
r + 2em(2+F )Pr + 4KT ·Gf

, (6.6)

where OMI is the optical modulation index, m is the photodiode gain, T is the temperature, K is

the Boltzman’s constant, e is the electrical charge and Gf is the photodiode output conductance. In

the denominator, 4KTGf is thermal noise; 2em(2+F )Pr is optical short noise, and RINP 2
r is the

relative intensity noise from Laser diode(LD). The numerator represents the received signal power.

Pr = rPpd, where r is the photodiode responsivity and Ppd is the received power at the detector and

is given as the product of transmit power and channel gain. Without loss of generality, we assume

all tones are modulated with the same OMI that will not introduce intermodulation distortion.

6.4 Adaptive WDM Transmission

To mitigate the effect of weather turbulence, we adapt wavelength and adjust power allo-

cation to achieve better system performance. First, our proposed FSO system uses wavelength

Λ ∈ [1520, 1600]nm and the available wavelengths are divided into N parts, non-overlapping with

adequate spacing. We assume the FSO channel is slow varying [73]. For each channel with wave-

length Λi, we can estimate its channel state hi or get feedback channel information from feedback

channel. The multiple wavelengths used in FSO system can be utilized to achieve not only the ca-

pacity gain but also the diversity gain, which will be discussed separately in the following sections.
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6.4.1 Capacity Gain

In different weather conditions, it is desirable to choose the wavelengths that have the best

channel conditions. We assume that the WDM FSO system will use at most M different wave-

lengths. Among the N available wavelengths, we will first choose M wavelengths that have the

greatest channel gains. The next step is to allocate transmit powers to different wavelengths such

that the system capacity is maximized.

Conventional FSO System

We first consider conventional modeling of wireless channels under white Gaussian noise.

For the sake of simplicity, we denote channel gain for channel i by

hi =
|hlhf |

2

N0

. (6.7)

According to the estimated channel gains, we choose M wavelengths that can offer the greatest

channel gains from the N available wavelengths.

Let Pi be the optical power allocated to channel i. Due to fixed power budget Pmax for each

FSO base station, we have the following total power constraint

M
∑

i=1

Pi ≤ Pmax. (6.8)

In FSO systems, eye safety problem should be always taken into consideration in the system de-

sign. Thus we have the additional power constraint

0 ≤ Pi ≤ P . (6.9)
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where P is the peak power bound for the transmit powers. Thus, we formulate the following

capacity maximization problem.

max
M
∑

i=1

log(1 + Pihi) (6.10)

s.t.
M
∑

i=1

Pi ≤ Pmax (6.11)

0 ≤ Pi ≤ P , ∀ i. (6.12)

By applying Karush-Kuhn-Tucker(KKT) theorem, we can find that optimal power allocation sat-

isfies











Pi = min{P , [ 1
λ
− 1

hi
]+}

∑M
i=1 Pi = Pmax,

(6.13)

where λ is the Lagrange multiplier. The inverse of λ is often regarded as the water level.

The algorithm to solve the capacity maximization problem is to first sort the channels accord-

ing to their channel gains. We then find the number of channels n, which are allocated with a

nonzero power, as in Steps 2–3. The water volume Hn that is required to fill n channels can be cal-

culated as
∑n

i=1 i(1/hi+1 − 1/hi) and Hn should not be greater than Pmax. Then we can calculate

the water level and allocate power to each selected channel according to (6.13). This procedure is

base on the assumption that a feasible power should also satisfy the eye safety power constraint. If

the allocated power 1
λ
− 1

hi
is greater than P , we need to adjust the water level accordingly. The

detailed water-filling algorithm is presented in Algorithm 3.

DWDM RoFSO System

Next, we develop the model for the RoFSO channels as described in Section 6.3, which is

more suitable for RoFSO using APD photo-detectors. CNR defined in Section 6.3.2 will be an

important parameter to evaluate the RoFSO performance.
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Algorithm 3: Simple Water-Filling Algorithm

1 Sort channels according to channel gains as: h1 ≥ h2 ≥ ... ≥ hM ;

2 Calculate Hn =
∑n

i=1 i(1/hi+1 − 1/hi) ;

3 Find n such that Hn+1 ≥ Pmax ≥ Hn ;

4 Determine Water level: 1
λ = 1

n(Pmax +
∑n

i=1
1
hi
) ;

5 Allocate power to each channel: Pi = [ 1λ −
1
hi
]+, ∀i ;

6 if Pi ≤ P , ∀i then

7 Terminate with the power allocation ;

8 end

9 Set i = 1 ;

10 while Pi > P do

11 Set Pi = P and Pmax = Pmax − P ;

12 Delete channel i in the next power allocation round;

13 i++ ;

14 end

15 Go to Step 2 ;

To simply notation, we denote constant value 0.5(mOMI)2 by a, relative intensity noise level

RIN by b, optical short noise 2em(2+F ) by c, and thermal noise 4KTGf by d. Thus, our adaptive

power allocation problem becomes

max
M
∑

i=1

log

(

1 +
ai(Pihi)

2

bi(Pihi)2 + ciPihi + di

)

(6.14)

s.t.

M
∑

i=1

Pi ≤ Pmax (6.15)

0 ≤ Pi ≤ P , ∀i. (6.16)

If we denote CNR by

γi =
ai(Pihi)

2

bi(Pihi)2 + ciPihi + di
, (6.17)
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the optimization problem, termed Problem OPT-FSO, can be rewritten as

max
M
∑

i=1

log(1 + γi) (6.18)

s.t.

M
∑

i=1

Pi ≤ Pmax (6.19)

0 ≤ Pi ≤ P , ∀i (6.20)

γi =
ai(Pihi)

2

bi(Pihi)2 + ciPihi + di
, ∀i. (6.21)

It is challenging to solve this problem due to its complexity and nonlinear nonconvex properties.

In the following, we adopt the RLT technique to obtain an LP relaxation of Problem OPT-FSO and

derive a feasible near-optimal solution.

The RLT relaxation is as follows. Letting ci = log(1+γi), the objective function
∑M

i=1 ci will

now be linear and new constraints ci = log(1+γi) are introduced.We first linearize the logarithmic

terms in the new constraints using the polyhedral outer approximation as follows.

Letting Pi be 0 and P , we obtain the lower and upper bounds of γi, respectively. We denote

the upper bound of γi by γi. We use the four-point approximation and obtain the following new

linear constraints.











ci ≥
γi·log(1+γi)

γi

ci ≤ log(1 + γk
i ) +

γi−γk
i

1+γk
i

,
(6.22)

where γk
i = k·γi

3
, for k = 0, 1, 2, 3. The first equation in (6.22) is for the segment connecting

the two end points of the logarithm function, and the second equation in (6.22) is for the tangent

lines at the four points on the logarithm function. A four-point approximation for log(1 + γ) is

illustrated in Fig. 6.2. The corresponding convex envelope is formed by four tangent lines and a

chord connecting the two end points.

Problem OPT-FSO now becomes a polynomial programming problem. We next introduce

substitution variables and the corresponding RLT bound-factor product constraints to remove the
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Figure 6.2: Four-point polyhedral outer approximation for log(1 + γ)

quadratic terms and to obtain an LP relaxation. Specifically, constraint (6.21) contains quadratic

terms. We can rewrite (6.21) as

bi(Pihi)
2γi + cihiPiγi + diγi − ai(Pihi)

2 = 0. (6.23)

To remove quadratic terms, we define substitution variables ui = P 2
i , vi = γiPi, and wi = γiui,

for all i. Thus constraint (6.21) becomes

bih
2
iwi + cihivi + diγi − aih

2
iui = 0. (6.24)
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Since Pi is bounded, it can easily show that ui ∈ (0, P
2
). For variables vi, we can obtain the

following RLT bound-factor product constraints.



































(γi − 0)(Pi − 0) ≥ 0

(γi − γi)(Pi − 0) ≥ 0

(γi − 0)(P − Pi) ≥ 0

(γi − γi)(P − Pi) ≥ 0.

(6.25)

Substituting vi = γiPi, we obtain the following four linear constraints for variable vi.



































vi ≥ 0

γiPi − vi ≥ 0

Pγi − vi ≥ 0

Pγi − γiPi − Pγi + vi ≥ 0.

(6.26)

We deal with the variables wi in the same manner and obtain the following four linear constraints

for variable wi.



































wi ≥ 0

γiui − wi ≥ 0

P
2
γi − wi ≥ 0

P
2
γi − γiui − P

2
γi + wi ≥ 0.

(6.27)

Now the original problem is relaxed to an LP problem with the additional constraints and vari-

ables, which can be solved in polynomial time with an LP solver. Note that during the procedure of

reformulation and linearization, we preserve the original power constraints of Problem OPT-FSO,

i.e., (6.19) and (6.20). Hence the optimal transmit power allocation policy obtained for the LP

relaxation is also feasible to the original problem OPT-FSO. The feasibility of the LP solution is

summarized in the following proposition.
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Proposition 3. The optimal transmit power allocation policy to the LP relaxation of Problem

OPT-FSO is a feasible solution to the original problem.

Due to the complexity of the RLT-based method, it may not be suitable when the channels

vary quickly. We also develop a more computational cost-effective scheme in the following.

If we ignore the relative intensity noise and optical short noise, CNR can be approximated by

0.5P 2
r
(mOMI)2

4KTGf
. To simplify notation, denote constant value 0.5(mOMI)2/4KTGf by a. We

obtain the following optimization problem.

max
M
∑

i=1

log
(

1 + ai(Pihi)
2
)

(6.28)

s.t.
M
∑

i=1

Pi ≤ Pmax (6.29)

0 ≤ Pi ≤ P , ∀ i. (6.30)

According to Karush-Kuhn-Tucker(KKT) theorem, if P ⋆ = [P ⋆
1 , P

⋆
2 , · · · , P

⋆
M ] is a local max-

imizer for the above optimization problem, there exists λ ∈ R and λi ∈ R, for i ∈ {1, · · · ,M},

such that



































∂[log(1+ai(P
⋆
i hi)

2)]

∂Pi
− λ− λi = 0, ∀ i

λ
(

∑M
i=1 P

⋆
i − Pmax

)

= 0

λi(P
⋆
i − P ) = 0, ∀i

λ ≥ 0, λi ≥ 0, ∀ i

(6.31)

According to (6.31), if λi > 0, then P ⋆
i = P ; and if λi = 0, we can solve (6.31) to have

P ⋆
i =

1

λ
+

√

1

λ2
−

1

aih2
i

. (6.32)
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Algorithm 4: RoFSO Power Allocation Algorithm

1 Sort channels according to channel gains as: h1 ≥ h2 ≥ ... ≥ hM ;

2 Solve
∑M

i=1 Pi = Pmax numerically according to (6.33) ;

3 Obtain λ and calculate Pi for i ∈ [1,M ] according to (6.32) ;

4 if Pi ≤ P , ∀i then

5 Terminate with the power allocation ;

6 end

7 Set i = 1 ;

8 while Pi > P do

9 Set Pi = P and i++ ;

10 end

11 Go to Step 2 ;

Thus we find that the optimal power allocation satisfies























Pi = min
{

P , 1
λ
+
√

1
λ2 −

1
aih2

i

}

, if λ2 ≤ aih
2
i

Pi = 0, otherwise

∑M
i=1 Pi = Pmax.

(6.33)

Regarding the inverse of λ as some kind of “water level,” we find that the greater the channel

gain, the larger the deviation of the power allocated to this channel from the water level. Usually we

cannot directly solve from (6.33) the optimal power allocation. An iterative algorithms is needed

to obtain an appropriate λ and solve this optimization problem. The detailed algorithm is presented

in Algorithm 4.

6.4.2 Diversity Gain

In addition to multiplexing capacity gain discussed in Section 6.4.1, the multiple wavelengths

used in the WDM FSO system can also be utilized to achieve system robustness. The same symbols

are sent to the receiver by using different wavelength and at the receiver multiple signals will be

coherently combined to obtain diversity gain.

Without loss of generality, we assume CSI are available at both the transmitter and receiver.

A transmit symbol is sent on the i-th wavelength using power Pi. Let the power budget at the FSO
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BS be Pmax and the power allocated to each wavelength is a part of the total power budget. That

is, Pi = wiP , for all i, where
∑M

i=1 wi = 1. We normalized the power vector. The power vector

P = [P1, P2, · · · , PM ] is normalized so that ‖P ‖ = 1. Thus the received signal is given by

y = PHx+ n, (6.34)

where H is the diagonal CSI matrix. We assume different wavelengths adopted in the system are

separated with sufficient guard bands, so that there is no interference between adjacent channels.

It is not difficult to show that, to maximize the received SNR, the entry of the weight vector P

corresponding to the largest entry of vector H should be one and all other entries should be zero.

The corresponding received SNR is then the largest entry of vector H . Thus, the wavelength with

the best channel gain at the time of transmission should be solely selected and used to enhance the

system performance.

Although multiple wavelengths can be utilized to achieve diversity gain or capacity gain, it is

not necessary to use the wavelengths purely for one purpose. For instance, some wavelengths can

be grouped together to transmit the same symbols for diversity gain and the remaining wavelengths

can be used to achieve capacity gain. By studying the tradeoff between the diversity and capacity

gain, we can better utilize multiple wavelengths to improve system performance .

6.5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms with MATLAB sim-

ulations. We calculate channel gains as shown in Section 6.3.1 and CNR are calculated according

to (6.6) for the evaluated schemes. The simulation parameters are the same from prior work and are

listed in Table 6.1 [18] [77]. We investigate the three algorithms introduced in the previous section

for power allocation in WDM RoFSO system. Wavelengths in the band 1520 − 1580nm are as-

sumed in our WDM RoFSO simulations. We adopt a 5nm spacing between adjacent wavelengths

used in the simulations.
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Table 6.1: Simulation Parameters
Dt 15 mm Tx. Aperture Diameter

Dr 0.1 m Rx. Aperture Diameter

B 1 GHz Bandwidth

d 1 Km Distance

Pmax 0.5 W Power budget

P 0.1 W Peak power constraint

OMI 17.5% Optical modulation index

m 5 Photodiode gain

RIN -150 dB/Hz Relatively intensity noise
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Figure 6.3: System capacity vs. the power budget Pmax.
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Figure 6.4: System capacity vs. the weather condition.
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Figure 6.5: System capacity vs. the distance.

In Fig. 6.3, we compare the three algorithms introduced in Section 6.4 and examine the impact

of the power budget on the total system capacity. We increase Pmax from 0.5 to 1 with step-size

0.1 and plot the total capacity. As can be seen in Fig. 6.3, the RoFSO power allocation algorithm

outperforms the other two algorithms with considerable gains. Since the relative intensity noise and

optical short noise are very small in our simulations, the RoFSO power allocation algorithm will

achieve the best near-optimal solution. The RLT algorithm, although consumes much running time,

can only produce an optimal power allocation for the relaxed LP problem. The power allocation

solution obtained from RLT is feasible but achieves the worst performance in terms of capacity

gain due to relaxation. We also find that the total capacity increases along with the power budget

for both the water-filling algorithm and RoFSO power allocation algorithm, albeit not obviously

for the latter. After the power budget becomes even larger, there is much less space for capacity

increment due to the eye safety power constraint.

Next, we examine the effect of weather conditions on the system capacity in Fig. 6.4. The

distance between FSO BS’s is set to 500 m. We change the weather condition from clear to foggy

by changing the atmospheric attention coefficient. The coefficient is 0.48 db/km for clear weather,

2.8 db/km for hazy weather, and 15 db/km for foggy weather [69]. As can be seen from Fig. 6.4,

the system capacity decreases as weather gets worse. We also find that the simple water-filling
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Figure 6.6: System capacity vs. No. of Subcarriers in clear weather.

algorithm which is developed for conventional RF systems is not suitable for the RoFSO system

when weather condition is severe. The capacity achieved by the simple water-filling algorithm

decrease the most as the weather becomes worse. When the weather is foggy, the capacity achieved

by the water-filling algorithm is about 10Gbps.

We also plot the total capacity vs. the distance between the FSO BS’s in Fig. 6.5. As expected,

the total capacity decreases as the distance is increased. When the distance between the FSO

transceivers is relatively small, the difference between the capacities achieved by three algorithms

is also small. But as we increase the distance from 500m to 1Km or even greater, the capacities

achieved by simple water filling algorithm and RLT algorithm drop dramatically. The capacity

obtained by using the RoFSO power allocation algorithm decreases the least and is always greater

than capacities produced by the other two schemes.

Finally, we examine the impact of the number of subcarriers used in adaptive WDM RoFSO

system on the system capacity. In the wavelength bands starting from 1520nm, We adopt a 1nm

spacing between adjacent wavelengths. The simulation results in clear weather is presented in

Fig. 6.6. As we can see in Fig. 6.6, system capacity increase if we adopt more subcarriers in

the adaptive WDM RoFSO system. When there are 15 channels in the system, the difference

between the achieved capacity of the three schemes is not much great. However, as the number
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Figure 6.8: System capacity vs. No. of Subcarriers in foggy weather.

of subcarriers increase, the advantage of the RoFSO power allocation scheme becomes greater.

We also run our simulations in in hazy and foggy weather and presented in Fig. 6.7 and Fig. 6.8,

respectively. In Fig. 6.7, the RoFSO power allocation algorithm achieve greater capacity with more

subcarriers. System capacities increased with the number of subcarriers for all three algorithms.

However, due to the simplified objective function used in the development of the water-filling

algorithm, the water-filling algorithm does not achieve as much capacity as the RLT algorithm

when the number of sub carriers is 35. The RoFSO power allocation algorithm make better use
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of available subcarriers to enhance system capacity and thus provide the greatest capacity. When

weather conditions become worse, the system capacity become much small and the results are

shown in Fig. 6.8. When the weather is foggy, the capacity achieved by the water-filling algorithm

is very small. But the RoFSO power allocation algorithm and the RLT algorithm can maintain

system performance in foggy weather. Also when more subcarriers are utilized in the system,

more system capacity can be achieved by using these two algorithms.

To conclude, the system performance in terms of capacity by using the RoFSO power alloca-

tion algorithm is the best in all situations studied here. These simulation results indicate that with

proper system design, the RoFSO system can support high data rates even over long distance and

under bad weather conditions.

6.6 Conclusions

In this chapter, we investigated the problem of optical power allocation under a power budget

constraint and eye safety power constraint for adaptive WDM transmission to mitigate the effect of

weather turbulence, and solution algorithms are developed. For convectional transmission systems,

a simple water-filling algorithm can be adopted to allocate power to different wavelengths; for

WDM RoFSO systems, a RoFSO power allocation algorithm was demonstrated to achieve the

greatest system capacity. It is capable of supporting high data rates even over long distance or

under bad weather conditions. Utilizing multiple wavelengths in WDM FSO system for diversity

gain was also investigated.
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Chapter 7

Conclusion and Future Work

7.1 Summary

The research in femtocell networks includes two chapters: Chapter 2 and Chapter 3. In Chap-

ter 2, the problem of cell association and handover management in femtocell networks is investi-

gated. Two extreme cases for cell association are first discussed and analyzed, and an algorithm

to maximize network capacity while achieving fairness among users is proposed. Based on this

algorithm, a handover algorithm to reduce the number of unnecessary handovers using Bayesian

estimation is further developed. The proposed handover algorithm is demonstrated to outperform

a heuristic scheme with considerable gains in the simulation study.

In Chapter 3 , cell association policies are designed with the objectives of minimizing the

service latency in femtocell networks. The objective is to offload the traffic from macro base sta-

tion to femtocell base stations and minimize the latency of service requested by users. This cell

association problem is proven to be NP-hard and the optimal solution cannot be obtained in poly-

nomial time. Therefore, three nearly optimal algorithms to address the problem with the objective

of minimizing the total service time on each base station are proposed. The first sequential fixing

algorithm achieves the best performance in total service time. The second approximation algo-

rithm has the lowest computational complexity and proven optimal gaps. The third randomized

algorithm requires the least information exchange among users. An optimal solution for service

scheduling to minimize the average waiting time per user on the same BS is also discussed in the

section. The proposed schemes are shown to outperform a heuristic selfish scheme with significant

gains.
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Research is extended to FSO networking in the third part of this dissertation. Topology con-

trol, spatial diversity techniques and adaptive transmissions in FSO systems are studied to mitigate

weather turbulence in the next chapters.

In Chapter 4, the problem of building a spanning tree when the number of transceivers on each

base station is limited in FSO networks is studied. We develop an initially configuring algorithm

which produces a spanning tree with high algebraic connectivity and average edge weight. We

also develop a fast reconfiguration algorithm when one or more links fail. Our algorithms outper-

form alternative schemes in improving both algebraic connectivity and average edge weight. The

robustness of the resulting topology of FSO networks is significantly improved.

In Chapter 5, the challenging problem of relay selection and power allocation in cooperative

FSO network is investigated.The problem is formulated as a Mixed Integer Nonlinear Program-

ming (MINLP) problem, which is NP-hard. We first adopt the reformulation-linearization tech-

nique (RLT) to derive an upper bound for the original MINLP problem. Due to the relaxation,

the solutions obtained from RLT are infeasible. Both centralized and distributed algorithms using

bipartite matching and convex optimization to obtain highly competitive solutions are proposed,

and are shown to outperform the non-cooperative scheme and an existing relay selection protocol

with considerable gains through simulations.

In Chapter 6, Power allocation schemes for adaptive WDM transmissions are developed to

combat the effect of weather turbulence in FSO networks. The problem of optical power allocation

under power budget and eye safety constraints is investigated for adaptive WDM transmission in

RoFSO networks. Simulation results show that WDM RoFSO can support high data rates even

over long distance or under bad weather conditions with an adequate system design. This work

provides new visions for practical solutions to mitigate weather turbulence in FSO networks.

7.2 Future Work

There are still significant amount of research opportunities in two-tier femtocell networks and

FSO networks. In femtocell networks, handover management may be further explored, especially
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in femtocell networks with Quality-of-Service (QoS) requirements or with different access poli-

cies. Also, service scheduling policies can also be extended to networks with multiple MBS’s and

cells of different sizes.

Femtocells also might be able to play an important part in mobile data offloading. To reduce

the application response time and to save energy for the mobile devices, cyber foraging has been

proposed. In cyber foraging network (CFN), the problem of balancing load among surrogates is

also very important. With the ever-increasing advancement of mobile device technology and their

pervasive usage, large number of powerful applications are expected to run on mobile devices

and they can be offloaded to surrogates, that are powerful non-mobile computers usually in the

geographical vicinity of mobile users. Communication overheads, which include both time and

energy costs, will be further aggravated if mobile devices share the same spectrum to offload tasks.

Dynamic spectrum allocation policies could also be investigated in heterogeneous networks.

As the age of “Big Data” comes, in addition to data offloading solutions, operators have also

been considering a number of optimization approaches to relieve congestion on their networks.

Data offloading through femtocells is effective for a number of reasons. Offloading policies con-

sidering different metrics could be further investigated in femtocell networks.

In additional to current work in femtocell networks, I will also extend my research in Free

Space Optical (FSO) network, which is an energy-efficient alternative to existing wireless technol-

ogy to cater to large data transmission. Due to the highly directionality, FSO links may suffer from

external objects or severe weather conditions. Fading-mitigation techniques have to be employed

to maintain FSO system performance.

One interesting and most promising solution to next generation wireless networks is the hybrid

RF/FSO systems. Due to the complementary nature of radio and FSO communications, both in

capacity and coverage, the combined use for data transmission suggests advantages over a single

media [14]. There are many ways to explore the potential of FSO and ways to incorporate both

technologies in wireless networks. The challenge of implementing hybrid FSO/RF networks is
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the dynamic, autonomous reconfiguration both in hardware and software in order to maximize

communications availability and capacity for tactical operations.

There is also research potential in full-optical wireless communication systems in which op-

tical beam is emitted directly from a fiber termination to free space using an optical antenna. The

need to convert the signal from electrical to optical and back is eliminated which results in a band-

width and protocol transparent communication link much easier to integrate with cabled infras-

tructure. Dense Wavelength Division Multiplexing (DWDM) enables transmitting simultaneously

mutilple data streams consisting of various wireless services. Heterogeneous wireless services

with different QoS requirements may transmit simultaneously and thus there is the scheduling

problem in full-optical networks with the objective of enhancing capacity while maintaining QoS

requirements.
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