

Advancements and Implementation of Polynomial-Based Learning Machines
for Data Processing and System Modeling

by

Michael Sylvester Pukish III

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 4, 2014

Keywords: Artificial neural networks, computational intelligence, machine learning,

universal approximation

Copyright 2014 by Michael Sylvester Pukish III

Approved by

Bogdan Wilamowski, Chair, Professor of Electrical and Computer Engineering
Fa Foster Dai, Co-chair, Professor of Electrical and Computer Engineering

Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering
Vitaly J. Vodyanoy, Professor of Physiology

N. Hari Narayanan, Professor of Computer Science and Software Engineering

ii

Abstract

 At the present time, the need in all disciplines for efficient and powerful

algorithms for the handling of large and complex datasets is certainly at its highest.

Extremely large multi-dimensional datasets are commonplace in archival

climatology and weather prediction, image processing, biology, genetics, industrial

electronics, financial analysis and forecasting, telecommunications, cyber security,

and throughout the social sciences. In addition to the size and high dimensionality

of the data, agile real-time systems are needed to process such information for

interpolation and extrapolation implementations applied toward control systems,

data streaming and filtering, and simulation and modeling.

 In the interest of analysis and manipulation of the “big data” associated with

such disciplines and tasks, certain techniques have come and gone over time,

leading to a current subset of prevalent Computational Intelligence (CI) techniques.

Throughout the fields of computer science and electrical engineering, these

particular techniques have risen to their present popularity largely due to their

existing familiarity and positive track record among researchers and engineers.

Such techniques include fuzzy systems, Artificial Neural Networks (ANN), Radial

Basis Function (RBF) networks, Support Vector Machines (SVM), Gaussian

Processes (GP), and Evolutionary Computation (EC) (of which Genetic Algorithms

(GA) are a predominant subset). Specific variants of some of these methods include

Support Vector Regression (SVR) and a currently popular subset of RBF-based

neural networks known as Extreme Learning Machines (ELM). Both of those

variants and some of the more general techniques will be highlighted further in this

work.

 Historically, Polynomial-Based Learning Machines (PLM) had been used for

the same classes of problems mentioned thus far. However, unwieldy kernel

functions (in the form of large, high-order polynomials) and relatively limited

iii

computer speed and capacity had limited the use of PLMs to comparatively small

problems with low dimensionality and simple functional relationships among inputs

and outputs. Thus, polynomial-based solutions within CI have, for the most part,

drifted out of vogue for at least two decades.

 This work attempts to reinvigorate the interest and viability of PLMs for use

throughout all applications of CI by introducing enhancements for their

implementation. It will be shown that once certain algorithms are applied to the

generation, “training”, and functional operation of PLMs, PLMs compete on par with

the predominant methods currently in use, and in many cases perform with

superior efficiency, compute time, and accuracy. Functional enhancements will be

explained, and seven variants of a new generation of PLMs will be compared

alongside the predominant CI techniques, through experimentation with a variety of

problem types ranging from real-time industrial applications to approximation of

benchmark “big data” sets.

iv

Acknowledgements

 I am and always will remain thankful to the institution of Auburn University,

and to the people therein, particularly in the Department of Electrical and Computer

Engineering, and in the Samuel Ginn College of Engineering in general. I would

firstly like to thank the members of my Dissertation Committee for their patience,

guidance, and expertise in making this research and opportunity possible.

Foremost, I would like to thank my Chair, Professor Bogdan Wilamowski, for his

persistent dedication to mentoring myself and all students who are either formally

in his group, or who merely come to knock on his door. Professor Wilamowski is

known for his unmatchable persistence in encouraging, instructively coercing,

tirelessly and always effectively teaching, and relentlessly doing at least as much

work as his students, night or day, whether he is presently local or traveling

continents away. I would also like to specifically thank my Co-chair, Professor

Foster Dai, for providing support, kind and patient guidance, and invaluable project

opportunities continuing from the first days of my graduate studies in August, 2009.

I would lastly like to thank my fellow colleagues and graduate students who I have

had the pleasure of knowing and working alongside. All have helped me at some

point, with knowledge in our field and most importantly with camaraderie,

friendship, and humor. These fellow students include but are not limited to (in

alphabetical order) Tim Brown, Joseph Cali, Parameshwaran Gnanachchelvi,

Stephan Henning, Zachary Hubbard, Philip Reiner, Jordan Richardson, Christopher

Wilson, and Xing Wu. I would also like to thank all colleagues of the Foster Dai

research group.

v

Table of Contents

Abstract .. ii

Acknowledgements ... iv

List of Tables ..x

List of Figures ... xii

List of Abbreviations .. xvi

Chapter 1 Background of Polynomial Networks .. 1

 Introduction .. 1

 1.2 Existing Polynomial Networks .. 3

 1.2.1 Development of the Group Method of Data Handling (GMDH) 3

 1.2.2 Evolution of the GMDH Model .. 9

 1.2.3 Divergence from the GMDH Model ...11

 1.2.4 Functional Link Networks – Complete Polynomials ..13

 1.2.5 Summary of the State of the Art for Polynomial Systems16

Chapter 2 Implementation of Competing Methods ...17

 2.1 The Single-Layer Feed-Forward Neural Network (SLFN)17

 2.1.1 Competitive Considerations of Neural Networks ...19

 2.2 The Takagi-Sugeno-Kang Fuzzy System ..20

 2.2.1 Development of a Novel Data-Driven N-Dimensional TSK Fuzzy

System ..23

vi

 2.2.1.1 Fast Recursive N-dimensional Interpolation ...24

 2.2.1.2 Completion of an N-dimensional TSK Fuzzy Engine27

 2.2.2 Radial Basis Function Learning Machines ..28

 2.2.2.1 Review of RBF Networks ...28

 2.2.2.2 The Extreme Learning Machine RBF Variants ..30

 2.2.2.3 Support Vector Regression with RBF Kernels ..31

Chapter 3 Computational Strategies to Improve Polynomial Network
 Performance ..33

 3.1 Efficient Generation of Monomial Polynomial Terms ..33

 3.2 Statistical Smoothing and Pruning of Monomial Coefficients36

 3.2.1 A Training Strategy to Stabilize and Isolate Noise-Responsive
Coefficients ...37

 3.2.2 Forward-Computed Statistical Methods – Overview38

 3.2.3 Forward-Computed Statistical Methods – Iterative Numerical Detail40

 3.3 Exploration of Enhanced Regression Techniques ...43

 3.3.1 An Iterative Generalized Least Squares Regression Technique44

 3.3.2 An Iterative Ridge Regression Technique ..47

 3.3.2.1 Ridge Regression – Theory ...49

 3.3.2.2 Ridge Regression – Implementation ...51

 3.3.3 Iterative Regression Hybrids Using OLS, GLS, and Ridge Methods53

 3.3.3.1 The GLS + Ridge Regression Minimum-Variance Hybrid54

 3.3.3.2 The GLS + Ridge Regression Full Optimization Hybrid55

 3.4 Automated N-Dimensional Radial Clustering ...56

Chapter 4 Proposed Polynomial-Based Learning Machines: Seven Variants within
Three Species ...59

vii

 4.1 PolyNet Species – The Initial Next-Generation Polynomial Learning
 Machine ..59

 4.2 The PolyStat Species – Utilizing Statistical Pruning of Monomial Terms60

 4.3 The PolyPaP Species – A Probe-and-Prune Methodology62

 4.4 Summary of Polynomial-Based Learning Machine Variants66

Chapter 5 Experimental Results ...67

 5.1 Test Methodology ...67

 5.2 Experiments with Industrial Electronics Problems ..68

 5.2.1 Voltage Control for a Czuk DC-DC Converter ..68

 5.2.2 3-D Reverse Kinematics Control ..69

 5.2.3 Results for Two Industrial Electronics Problems ...71

 5.2.3.1 Training and Validation Times for IE Problems ...71

 5.2.3.2 Training and Validation Accuracy for IE Problems74

 5.2.3.3 Tabulation of IE Dataset Results ..77

 5.3 Experiments with Real-World Repository Datasets ...79

 5.3.1 Training and Testing Times for Real-World Datasets81

 5.3.2 Training and Validation Accuracy for Real-World Datasets83

 5.3.3 Tabulation of Real-World Dataset Results...86

Chapter 6 Conclusions and Future Work ..90

 6.1 Evaluation of PLM Variants and Competing Methods with an Original
 Figure of Merit Scheme ..90

 6.2 Summary Statement ..94

 6.3 Future Work ...94

 6.3.1 Improved Coefficient Term Analysis and Pruning ...95

viii

 6.3.2 Process Pipelining ...96

 6.3.3 Development of a Universal Polynomial Spline Learning Machine96

 6.3.4 Using Video Card GPUs for Machine Learning Computation97

Reference Pages ..98

References ...99

Appendices .. 107

 7.1 Appendix A – Exploration of Chebychev Transform Methods 107

 7.1.1 Background, and Two Chebychev Transform Implementations 107

 7.1.2 Chebychev Techniques – Experimental Results ... 110

 7.2 Appendix B – MATLAB Code: Unique Polynomial Term Generation 114

 7.3 Appendix C – MATLAB Code: Statistical Processing of Monomial Term
 Weights .. 114

 7.4 Appendix D – MATLAB Code: Iterative GLS Regression 118

 7.4 1 1-D 3rd-order Test – GLS_1D.m excerpts .. 118

 7.4.2 General GLS Code for Multiple Dimension Data Regression –
 GLS_reg.m excerpts .. 120

 7.5 Appendix E – MATLAB Code: Iterative Ridge Regression 122

 7.5.1 Computation of an Initial Minimum-variance λ – OLSridge_reg.m
 Excerpt .. 122

 7.5.2 Iterative λ Optimization Process – OLSridge_reg.m excerpt 122

 7.6 Appendix F – MATLAB Code: Hybrid Regression Techniques Including
 RR .. 123

 7.6.1 Iterative GLS + RR Minimum-Variance Regression –
 GLSminvar_reg.m excerpts ... 123

 7.6.2 Iterative GLS + RR Full Optimization Regression – GLSridge_reg.m
 Excerpts .. 124

ix

 7.7 Appendix G – MATLAB Code: Two Types of PLM Implementations 126

 7.7.1 The PolyNet Variant – PolyNet.m excerpts .. 126

 7.7.2 The PolyPaP Variants – PlyPaPGLSR.m excerpts ... 127

 7.8 Appendix H – MATLAB Code: An N-Dimensional Data-Driven TSK Fuzzy
 System .. 129

 7.8.1 Efficient Recursive Interpolation – recurinter.m excerpts 129

 7.8 2 The TSK Fuzzy System Engine ... 131

 7.9 Appendix I – MATLAB code: Fast, Forward-Computing N-Dimensional Radial
 Clustering ... 134

 7.10 Appendix J – Selected Publications by This Author ... 136

x

List of Tables

Table I Total Number of Product Terms per Polynomial Order and Number of

Inputs ... 5

Table II Number of Monomial Terms per Dimensions and Inputs 6

Table III The Poly-Gen Algorithm for Generation of Unique Monomial Terms.......... 34

Table IV Example of the Recursive Poly-Gen Function for a 3-input, order-2 Case . 35

Table V Computational Steps for Statistical Processing of Monomial Term Weights
 ... 39

Table VI Feature Set of Polynomial-Based Learning Variants .. 66

TABLE VII Algorithm Efficiencies: Processing Times and Network Size IE Problem . 77

TABLE VIII Algorithm Accuracy: Average Training and Testing RMSEs per IE
Problem .. 79

Table IX Benchmark Datasets: Specifications for 70/30 k-fold Testing 80

Table X Optimal Parameter Settings per Dataset for SVR and PLM Variants.............. 80

Table XI Average Processing Times and Network Size per Datasets 1-3 86

Table XII Average Processing Times and Network Size per Datasets 4-5 86

Table XIII Average Processing Times and Network Size per Datasets 6-7 87

Table XIV Average Training and Testing RMSEs per Datasets 1-4 89

Table XV Average Training and Testing RMSEs per Datasets 5-7 89

Table XVI FOMRT : Real-Time Figure of Merit of Each Algorithm per Dataset 92

xi

Table XVII FOMOL: Offline Figure of Merit of Each Algorithm per Dataset 93

Table XVIII Overall Real-time and Offline FOMs for All Algorithms Tested 94

Table XIX Results for Chebychev Transform Testing, no noise case (RED=worst,
GREEN=best) ... 113

Table XX Results for Chebychev Transform Testing, 5% training noise (RED=worst,
GREEN=best) ... 114

xii

List of Figures

Figure 1 Diagram of a generalized functional link network ... 2

Figure 2 GMDH network for the solution of a 3-input, 3rd (or 4th) order function 7

Figure 3 2-input, 2nd-order computational node of the original GMDH architecture . 8

Figure 4 The Banfer and Nelles local model network [35]: The outputs ŷi of the local
polynomial networks (LMi) are weighted with their associated
domain function values (Φi) and superposed. ... 12

Figure 5 Polynomial network of degree 2 for 3 input variables 15

Figure 6 A 4-input, 5-neuron SLP with 4 neurons in the hidden node 18

Figure 7 Typical Iterative ANN Training: “hot spot” issue .. 20

Figure 8 Example of a Trapezoidal Fuzzy Membership Function Operation 22

Figure 9 TSK Product Encoding Output: Comparison of membership functions 22

Figure 10 Comparison of TSK and ANN (node-based) Output Quality 23

Figure 11 (a) View of random generated peaks() values, (b) Overlay with
interpolated values ... 26

Figure 12 (a) Original function, 1000 data points, (b) 5x5 grid, (c) 10x10 grid, (d)
20x20 grid .. 27

Figure 13 A typical RBF network containing H neurons and D inputs 29

Figure 14 3-input 3rd-order case: Unique monomial terms on sliding diagonal 34

Figure 15 Stabilization of final normalized coefficient means as training proceeds 41

Figure 16 Tracking monomial term coefficient variation over successive training
iterations .. 42

Figure 17 1-D, 3rd-order case of bad data, 40% outlaying trend 47

Figure 18 Iterative GLS performance vs. OLS: (a) GLS (red) beats OLS (blue), (b)
Stabilization of GLS MSE of the transform errors 47

xiii

Figure 19 Curve-fitting of points with polynomials of increasingly higher order 48

Figure 20 Ridge Regression [83]: The variance-bias tradeoff, and performance vs.
OLS .. 50

Figure 21 Ridge regression teaser: (PolyRidge) vs. OLS regression (PolyNet) 53

Figure 22 Iterative Ridge Regression: Both λ (Left) and training RMSE (Right)
shrink monotonically towards optimal values during processing 53

Figure 23 Effect of GLS-RR minimum-variance method: minimal difference in
training and validation RMSE curves .. 55

Figure 24 Fast, forward radial clustering of the Matlab peaks() function: (a) 7
cluster centers, top view, (b) 7 cluster centers, 3-D view, (c) 110
cluster centers, top view, (d) 110 cluster centers, 3-D view 58

Figure 25 Flowchart for the PolyNet PLM variant ... 60

Figure 26 Flowchart for the PolyStat family of PLM variants ... 62

Figure 27 Flowchart for the Probe phase of the PolyPaP family of PLM variants..... 65

Figure 28 Flowchart for the Solve/Prune phase of the PolyPaP family of PLM
variants ... 65

Figure 29 A Czuk up-down DC-DC converter circuit .. 69

Figure 30 The Czuk DCDC Converter: Non-linear transient responses, 0 to 30ms . 69

Figure 31 Czuk Converter: non-linear steady state relationships between load
conductance and duty-cycle vs. output voltage... 70

Figure 32 3-D reverse-kinematics: Resultant arm tip distribution in free-space of
randomly generated angle positions ... 70

Figure 33 (a) Reverse-kinematics problem: input angles are mapped to Cartesian
coordinates (x, y, z), (b) x-position vs. two input angles 71

Figure 34 Total training times for all algorithms up to 200 nodes: DC-DC problem 72

Figure 35 Total training times for all algorithms up to 400 nodes: 3-D Kinematics
problem ... 73

Figure 36 Validation times per network size vs. nodes for all algorithms: DC-DC
problem ... 74

xiv

Figure 37 Validation times per network size vs. nodes for all algorithms: 3-D
kinematics problem.. 74

Figure 38 Training error for all algorithms up to 200 nodes: DC-DC problem 75

Figure 39 Validation error for all algorithms up to 200 nodes: DC-DC problem 76

Figure 40 Training error for all algorithms up to 400 nodes: Kinematics problem 76

Figure 41 Validation error for all algorithms up to 400 nodes: Kinematics problem
 .. 77

Figure 42 Total training times for all algorithms up to 600 nodes: Boston Housing81

Figure 43 Total training times for all algorithms up to 400 nodes: Machine CPU 82

Figure 44 Validation times per network size vs. nodes for all algorithms: Boston
Housing ... 82

Figure 45 Validation times per network size vs. nodes for all algorithms: Machine
CPU .. 83

Figure 46 Training error for all algorithms up to 600 nodes: Boston Housing 84

Figure 47 Validation error for all algorithms up to 600 nodes: Boston Housing 84

Figure 48 Training error for all algorithms up to 400 nodes: Machine CPU 85

Figure 49 Validation error for all algorithms up to 400 nodes: Machine CPU............ 85

Figure 50 Runge’s phenomenon and refit with Chebychev nodes [94] 107

Figure 51 Polynomial Network, Chebychev Transform Method 1 – Training:
encoding of input vectors, plus regeneration of desired outputs,
Validation: straightforward processing with encoded weights and
terms .. 109

Figure 52 Polynomial Network, Chebychev Transform Method 2 – Training:
encoding of input vectors, Validation: Chebychev encoding of inputs
and processing with encoded weights and terms 110

Figure 53 Validation for the Chebychev Transform Experiments, 9409 points
(97x97) .. 111

Figure 54 9x9 training point grid: (left) standard spacing captures function, (right)
Chebychev spacing fails to sample function at critical points 111

xv

Figure 55 Training and Validation RMSE Curves (81 training points): (a) no
Chebychev spacing, (b) Method 1, (c) Method 2 112

xvi

List of Abbreviations

ABFC Adaptive Basis Function Construction

AICC Corrected Akaike Information Criterion

ANN Artificial Neural Network

BLUE Best Linear Unbiased Estimator

CHSP Complete Homogeneous set of Symmetric Polynomials

CI Computational Intelligence

CI-ELM Convex Incremental Extreme Learning Machine

CPU Central Processing Unit

DC-DC Direct-Current to Direct Current Converter

EBP Error Back-Propagation

EC Evolutionary Computation

EI-ELM Enhanced Incremental Extreme Learning Machine

ELM Extreme Learning Machine

FGLS Feasible Generalized Least Squares

FLN Functional Link Network

FOM Figure of Merit

FPNN Fuzzy Polynomial Neural Network

FS Fuzzy System

GA Genetic Algorithm

xvii

gFPNN Genetically Optimized Fuzzy Polynomial Neural Network

GLS Generalized Least Squares

GLS-RR Generalized Least Squares – Ridge Regression (regression hybrid)

GMDH Group Method of Data Handling

GP Gaussian Process

GPU Graphics Processing Unit

IE Industrial Electronics

I-ELM Incremental Extreme Learning Machine

LIBSVM Support Vector Machine Library

LM Levenberg-Marquardt (algorithm)

LUT Look-Up Table

ML Machine Learning

MSE Mean-Squared Error

NBN Neuron-By-Neuron (neural network training algorithm)

OLS Ordinary Least Squares

PANN Polynomial Artificial Neural Network

PLM Polynomial-based Learning Machine

RAM Random-Access Memory

RBF Radial Basis Function

RMSE Root-Mean-Squared Error

RR Ridge Regression

SLP Single-Layer Perceptron

SOPN Self-Organizing Polynomial Network

xviii

STD Standard Deviation

SVD Singular Value Decomposition

SVM Support Vector Machine

SVR Support Vector Regression

TSK Takagi-Sugeno-Kang (algorithm)

UA Universal Approximation

1

Chapter 1

Background of Polynomial Networks

1.1 Introduction

 The field of Computational Intelligence (CI) currently includes several

prominent areas: Artificial Neural Networks (ANN), Fuzzy Systems (FS), Radial

Basis Function (RBF) networks, Support Vector Regression (SVR), Gaussian Process

(GP) methods, and evolutionary computation (EC) techniques. A major interest in

these areas is in their ability to approximate non-linear functions with relative

efficiency, computational speed, and accuracy. As a result of these characteristics, CI

systems are most prominently used as control systems across such varied areas

from motor actuation and control [1]–[4], to power systems [5]–[8], an on to an

array of complex problem solving such as fault detection [9]–[11] and even water

quality prediction [12].

 Along the road to this current array of choices, conceptually and

architecturally simple ideas have been introduced in previous decades in the form of

Functional Link Networks (FLN). These networks, explored by researchers such as

Pao [13], feature a single-layer architecture of an unlimited number of non-linear

function-generating nodes, and a single summation output node. Single-layer

network methods such as RBF, SVR, etc., with different node functions for each

node, are actually subsets of FLN. In terms of the application of such a network to

Machine Learning (ML), such a network can train a set of multi-dimensional input

patterns to an equal number of desired output patterns using an appropriate single-

layer method, such as linear regression [14]. Figure 1 shows such a general FLN

with multi-dimensional inputs, Xm, and a potentially unlimited number of non-

linear sub-function generators, Fn, which can theoretically approximate a complex

non-linear function, Z. Note that multiple outputs, Z, could be approximated with

2

the inclusion of multiple parallel output summation stages. Each would be trained

separately to the same patterns fed to the same or subset of same inputs, Xm, as

necessary to produce multi-dimensional outputs.

X1

X2

w
0

+1

Z∑
F 1

F 2

Fn

Xm

.

.

.

 (X
1

F
1

, X
2

, … , X)
m

.

.

.

 (X 1F 2

, X 2
, … , X

)
m

 (X 1
F n

, X 2
, …
 , X

)m

w
1

w
2

w
m

Figure 1 Diagram of a generalized functional link network

Of course, the important questions to ask are:

 What types of non-linear functions lend themselves to overall good

performance as part of a universally approximating FLN?

 How can such functions be efficiently generated?

 The goal of this work is to address these questions and to present promising

results obtained with a novel implementation of polynomial artificial neural

networks. Herein, a new algorithm for implementing a single-layer polynomial

network is introduced that can be rapidly generated and trained to approximate

multi-dimensional non-linear functions of significant complexity. Novel applications

of existing improvements to polynomial networks are also introduced which greatly

increase the accuracy of the polynomial network such that comparison with other

universal approximating (UA) algorithms is either comparable or superior for

certain performance parameters.

3

1.2 Existing Polynomial Networks

1.2.1 Development of the Group Method of Data Handling (GMDH)

 CI methods and other similar algorithms generally propose a single type or

family of related functions as computational units to be replicated within particular

network architecture. The replication of computational units lends advantages in

both software and hardware implementation of such networks in terms of reuse,

scalability, etc. If we think of tasks such as function approximation (interpolation),

function prediction (extrapolation), etc., as being variants of curve fitting, one can

see that the choice of computational unit will determine, to a large extent, the ability

and efficiency of a network to properly represent non-linearities. Many choices

exist in the literature for these computational units.

 Ivakhnenko first proposed a formal implementation of a polynomial–based

computational engine in 1971 [15]. The potential of polynomial-based networks to

approximate highly complex nonlinear functions is apparent with the examination

of the Taylor Series expansion in a single dimension (in this case) [16]:

 𝑓(𝑥) = ∑
𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 (1)

 = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓(2)(𝑎)

2!
(𝑥 − 𝑎)2 +⋯

(2)

Many familiar nonlinear functions are adequately approximated with the Taylor

Series [16]:

 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+. . . 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

 √1 + 𝑥 = 1 +
1

2
𝑥 −

1

8
𝑥2 +

1

16
𝑥3 −

5

128
𝑥4 +⋯ 𝑓𝑜𝑟|𝑥| ≤ 1

 sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
− ⋯ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 (3)

 cosh𝑥 = 1 +
𝑥2

2!
+
𝑥4

4!
+ ⋯ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

 tanh 𝑥 = 𝑥 −
1

3
𝑥3 +

2

15
𝑥5 −

17

315
𝑥7 +⋯ 𝑓𝑜𝑟 |𝑥| <

𝜋

2

4

For the one-dimensional cases in (3), all approximations are simply polynomials

with monomial terms of unique degree, each with a scalar coefficient. This is the

case for multi-dimensional non-linear function approximations as well.

 The difficulty in using polynomials as basis functions for learning networks,

recognized by Ivakhnenko and many others, lies in the questions of how to

efficiently generate such polynomial product terms (monomials) of the correct

exponential degree or order, as well as how to solve for the coefficients of these

terms. The first problem to recognize is the potential impact of the sheer number of

monomials on computer memory. To illustrate the memory problem, let us first

consider a three-dimensional (three-input) case for which both a second and third

order solution are assumed. For three variables, x, y, and z, the full second-order

polynomial captures all monomial terms of degree-2 and lower, and is yielded by

the expansion of (𝑥 + 𝑦 + 𝑧 + 1)2. Similarly, the third-order expression is given by

(𝑥 + 𝑦 + 𝑧 + 1)3. Typically in code or in hardware, barring any special algorithm, all

product terms are generated straightforwardly by applying the multiplications

indicated by the exponent. Equation (4) explicitly shows the product operations

generated by such a straightforward approach for the three-input, second-order

case:

(𝑥 + 𝑦 + 𝑧 + 1)2 = 𝑥2 + 𝑥𝑦 + 𝑥𝑧 + 𝑥 + 𝑥𝑦 + 𝑦2 + 𝑦𝑧 + 𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑧2 +
 𝑧 + 𝑥 + 𝑦 + 𝑧 + 1, 16 product terms

(4)

After combining terms and rearranging, the three-input second-order polynomial

becomes:

(𝑥 + 𝑦 + 𝑧 + 1)2 = 𝑥2 + 𝑦2 + 𝑧2 + 2𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 + 2𝑥 + 2𝑦 +

 2𝑧 + 1, 10 unique terms
(5)

Note that for the three-input, third-order case, the number of product operations

begins to dramatically increase, yielding 64 such terms (not shown). Combining and

rearranging to obtain only unique unrepeated terms, and omitting coefficients:

(𝑥 + 𝑦 + 𝑧 + 1)3 → 𝑥3 + 𝑦3 + 𝑧3 + 𝑥2𝑦 + 𝑥2𝑧 + 𝑥𝑦2 + 𝑦2𝑧 + 𝑥𝑧2 + 𝑦𝑧2 +
 𝑥𝑦𝑧 + 𝑥2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑥 + 𝑦 + 𝑧 + 1,

 20 unique terms

(6)

5

Without any reduction of duplicates, the total number of monomial product terms

created by a simple multiplicative algorithm as depicted by (4) is given by:

 (𝑘 + 1)𝑜

 𝑤ℎ𝑒𝑟𝑒 (7)
 𝑜 ≡ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

 𝑘 ≡ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠/𝑖𝑛𝑝𝑢𝑡𝑠

Table I illustrates how the number of resultant multiplicative terms can quickly

overwhelm computer memory as both the maximum polynomial order and the

number of input dimensions increase.

Table I

Total Number of Product Terms per Polynomial Order and Number of Inputs

The number of unique terms in a complete polynomial of a particular max and lower

order, such as that of (5) and (6), is given by:

 # 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 =
(𝑜 + 𝑘)!

𝑜! 𝑘!

(8)

For computational and storage efficiency, it is essential to avoid accumulation of

unnecessary terms during the generation process. Table II shows the results of this

expansion for multiple combinations of max order and number of inputs, but with

duplicate terms removed.

6

Table II
Number of Monomial Terms per Dimensions and Inputs

 In recognition of the difficulty of the problem of the generation of polynomial

terms of a particular maximum order, Ivakhnenko and colleagues developed the

Group Method of Data Handling (GMDH) [15] which remains the foundational

method of polynomial term generation among researchers to this day. The idea is to

create a single node function, in the original case a two-input second-order

polynomial, which when cascaded in a multi-layer architecture, produces

permutations of monomial product terms which comprise an estimation of higher

order terms necessary to approximate various functions. The single node function

specified by Ivakhnenko is a second-order polynomial transform expressed as:

 𝑌 = 𝐴2(𝑋) = 𝑎0 + 𝑎1𝑥1

2 + 𝑎2𝑥2
2 + 𝑎3𝑥1 + 𝑎4𝑥2 + 𝑎5 (9)

Note that each node requires the solution of six coefficients. A GMDH

representation of a polynomial network which would be necessary to approximate

the three-input, third-order polynomial expressed in (6) is shown in Figure 2.

7

Figure 2 GMDH network for the solution of a 3-input, 3rd (or 4th) order function

Each A2 node in Figure 2 must create the six input product terms and solve for the

six associated coefficients, usually by linear regression, in order to produce an

intermediate polynomial value (Y0, Z0, etc.). Figure 3 details the computational

function of each GMDH node.

 Though the GMDH network simplifies some of the required process by

avoiding the explicit specification and generation of each polynomial term, several

drawbacks become apparent. Network “training” necessary for solving for an

optimized set of input and desired output relations, cannot be straightforward.

Methods such as one-step linear regression, though used for each A2 node, are not

adequate for multi-layer feedforward networks. As will be discussed, due to the

inherent multi-layered architecture, many complex algorithms are necessary to

grow and prune GMDH networks, and to iteratively train optimal final sets of

network coefficients in order to obtain reasonable results. Following the

computation through the cascaded architecture, it becomes apparent that many

redundant monomial terms are created through inner products, and many excess

coefficients are created as well. Examining the intermediate polynomial terms of

only the first layer of Figure 2 yields (term coefficients ignored):

8

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑇𝑒𝑟𝑚𝑠:
 𝑥3 + 𝑦3 + 𝑧3 + 𝑥2𝑦 + 𝑥2𝑧 + 𝑥𝑦2 + 𝑦2𝑧 + 𝑥𝑧2 + 𝑦𝑧2 + 𝑥𝑦𝑧 + 𝑥2 +
 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑥 + 𝑦 + 𝑧 + 𝐶

𝑌0 → 𝑥2 + 𝑦2 + 𝑥𝑦 + 𝑥 + 𝑦 + 𝑐0

(10)

𝑌1 → 𝑥2 + 𝑧2 + 𝑥𝑧 + 𝑥 + 𝑧 + 𝑐1, 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑡𝑒𝑟𝑚𝑠: 𝑥

2, 𝑥, 𝑐1

 𝑌2 → 𝑦2 + 𝑧2 + 𝑦𝑧 + 𝑦 + 𝑧 + 𝑐2, 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑡𝑒𝑟𝑚𝑠: 𝑦
2, 𝑧2, 𝑦, 𝑧, 𝑐2

After the processing of the first layer, eight non-unique terms are created, and the

network has not yet produced the required third-order terms. Though the second

layer of the GMDH network produces the necessary third-order terms, many excess

or unnecessary terms are represented by the generated outputs:

𝑍0 → 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑒𝑟𝑚𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑: 𝑥3, 𝑦3, 𝑧3, 𝑥2𝑦, 𝑥2𝑧, 𝑥𝑦2, 𝑦2𝑧, 𝑥𝑧2,
 𝑦𝑧2, 𝑥𝑦𝑧
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑐𝑒𝑠𝑠 𝑡𝑒𝑟𝑚𝑠: 23

(11)

The original three-input, third-order polynomial expression contains 20 terms and

their coefficients. In contrast, the necessary GMDH solution, built with second-

order, two-input nodes, ultimately requires 24 coefficients, and generates combined

product terms which comprise the equivalent of 31 excess terms beyond those

required in (6).

Figure 3 2-input, 2nd-order computational node of the original GMDH architecture

9

1.2.2 Evolution of the GMDH Model

 Since the introduction of the GMDH method, various polynomial network

implementations have competed successfully against the predominant perceptron-

based feedforward networks. Stinchcombe and White proved that general

nonlinear functions in the hidden layer, and not necessarily sigmoid functions, are

adequate for the function of universal approximation [17]. Chen and Manry then

verified that in fact, polynomial basis functions can be used to model multi-layer

perceptron networks with good results as long as the degree of the model was

sufficient to represent the training data [18]. They note most importantly that

polynomial basis functions are more easily implemented in hardware than explicit

sigmoid activation functions. That said, it should be noted that many hardware

applications of neural networks utilize sufficient approximations of sigmoidal

functions such as the Elliott function [19]. Though these improve the speed and

ease of some computation, many implementations include both exponentials and

division operations, potentially leading to solutions that are more complex than

polynomial sum and product operations in some cases.

 Almost all existing polynomial networks have been implemented with some

variation on the GMDH model. Yang and Huang [20] added a third-order basis

function to the GMDH model in addition to the second-order basis function. An

elaborate algorithm was implemented, the Self-Organizing Polynomial Network

(SOPN), which generates multiple cascading network layers which instantiate either

the second or third-order node function, and which solves for intermediate values at

each layer using standard Ordinary Least Squares (OLS) regression. Though OLS

applied at each layer is computationally efficient compared to more elaborate

training schemes, the confinement of the computation domain to within the

boundary of each layer leads to arbitrary network construction which is potentially

inefficient during validation operations.

 Oh and Pedrycz [21] also add the option of third-order node activation

functions, and similar to Yang and Huang, utilize OLS regression to develop

intermediate solutions at each layer boundary. Their text goes further in analyzing

10

several drawbacks to GMDH. Chiefly, they note that pruning algorithms are

mandatory to avoid networks which suffer from over-fitting to particular solutions.

Additionally, they note that for deploying GMDH against low-dimensional datasets,

the problem of over-fitted solutions becomes acute.

 Jekabsons and Lavendels [22] confirm the same issues for GMDH applied to

low-dimensional problems, and highlight the susceptibility of GMDH to local minima

problems, similar to those found with use of ANNs. They produce data showing that

for the second-order node function, problems of dimensionality less than or equal to

four are likely to produce non-optimal results compared with other methods. They

also point out the acute variance deficiencies of GMDH networks when deployed

against noisy data sets, especially evident during k-fold testing methods. In a later

publication [23], Jekabsons introduces the Adaptive Basis Function Construction

(ABFC), a hill-climbing technique [24] which tries to grow a single-layer polynomial

network by adding monomial terms one at a time. Per each new term, outputs for

the entire network are computed via OLS regression and evaluated against desired

output values by the Akaike Information Criterion (Corrected) (AICC) [25].

However, Jekabsons indicates several drawbacks to the method: Solution sets are

susceptible to local minima and maxima errors. Due to the inherent and unknown

correlation of monomials of a particular polynomial, the addition or extraction of

single monomials at a time often results in under-damped or over-damped system

responses as higher order terms are added. Such results do not present

immediately with the ordered addition or extraction of terms. Jekabsons

compensates with arbitrarily adding 2 or more terms at a time, but eventually

confirms that this does not definitively overcome this issue. Computationally costly

methods are employed, such as building several networks in parallel in response to

the same training data, then averaging the final model based on AICC evaluations.

 Nikolav and Iba developed yet another multi-layer GMDH variant which adds

whole layers to the network, evaluates RMSE at the addition of each layer, then uses

complex Genetic Algorithm (GA) techniques to prune apparently detrimental

network connections [26]. While movement beyond standard linear regression

techniques promises to more accurately groom the network for better

11

generalization performance during validation, repeated terms are still inferred in

the network due to the cascaded GMDH model. Additionally, the computational

complexity for high-dimensional data is prohibitive with GA methods since in

general, all variants of the system must be fully computed before genetic selection

can take effect.

 Fuzzy Polynomial Neural Networks (FPNN) are a purported self-organizing

neural network family theorized in earlier literature by Oh et al. [26–28]. This

family uses a fuzzy front-end to gate node inputs in the first GMDH layer, thereby

promising better function localization in the network performance. The original

FPNNs required the designer to iteratively adjust certain fuzzy parameters, and to

manually provide many of the GMDH network attributes. Still based on the GMDH

model, an upgraded variant was offered in 2006 – the Genetically optimized FPNN

(gFPNN) [30]. This variant uses GA techniques to select what is hoped to be an

optimized GMDH network architecture. However, the resultant system architecture

is extremely complex, and still requires offline specification of many design

parameters (fuzzy membership functions, input assignments per node, total number

of nodes retained after each generation, max width and depth of the GMDH network,

etc.) based on analysis of the training data. The authors warn that the gFPNN is as

yet prone to generalization errors if the proper design parameters are not specified.

Furthermore, the final gFPNN system proposed is only tested with a single one-

dimensional case (chaotic Mackey-Glass time series [31]) with only modest results

compared to earlier FPNN variants, and is not compared to common benchmark

problems alongside other well-known methods. Roh and Pedrycz revisit the gFPNN

in a later work [32] whereby Information Granulation (IG) techniques [33] and C-

means clustering [34] are used to automate some of the required analysis of the

training data. An even more structurally complex system results that still requires

tuning by the designer, though performs apparently well for three cases presented.

1.2.3 Divergence from the GMDH Model

 Banfer and Nelles [35] depart from the GMDH model and propose a single-

layer network structure which partitions the input and output space of a target

12

dataset into localized polynomial networks that are optimized to solve each

resultant segment of the full solution. The outputs of each localized network are

then superposed to afford the complete network solution. Figure 4 shows the

diagram of their particular system:

Figure 4 The Banfer and Nelles local model network [35]: The outputs ŷi of the local
polynomial networks (LMi) are weighted with their associated domain function

values (Φi) and superposed.

In this system, the outputs of localized polynomial transfer functions are essentially

gated according to the current input domain by “validity functions” (Φi), and all

resultant outputs ŷi are finally added to yield a complete network solution. The

authors assume that the “validity function” centers and standard deviations are

given per the dataset under processing. This is akin to manually specifying

membership functions in a fuzzy system, and therefore requires complex offline

analysis of data, especially in multi-dimensional cases. Then per each local

component, a stepwise technique is employed to grow that component’s polynomial

function by one increasing order at a time. An unspecified stepwise regression

technique is used to compare output errors, and to subsequently add higher-order

monomials to the current local network, or to split the local network into another

which spans the same domain. The algorithm is tested on only one 9-input case, and

comparisons are made only against one earlier variant proposed by the same

13

authors [36]. As previously noted by Jekabsons et al., Banfer and Nelles corroborate

the inability to locate optimal solutions by evaluating the growth of polynomial

functions by one term at a time. They acknowledge that local models can still

generate excess terms which deteriorate the composite network’s generalization

ability.

1.2.4 Functional Link Networks – Complete Polynomials

 For all CI methods, selection of the computational node functions is

important, followed by the determination of network weights by “training”, or by

more direct computation if possible (such as by various forms of linear or non-linear

regression). In the case of polynomial networks, the node functions are the

individual monomial terms expressed as products of input variables and without

coefficients. If one considers that for the realm of machine learning, such

coefficients could be discovered via an appropriate training method, then it is easily

seen that a FLN adapted with polynomial basis functions in the hidden layer

achieves a simple polynomial network. This is viable, provided there is a way to

generate all necessary polynomial terms in an efficient way. The coefficients of the

composite polynomial expressed by the network become the trainable weights.

Following from (5) and (6), all monomials are expressed from the degree of the

maximum exponent downward to ‘1’ as the constant term of degree-0. For the same

inputs x, y, and z, the Complete Homogeneous set of Symmetric Polynomials (CHSP)

[37], ℎ𝑘(𝑥, 𝑦, 𝑧), consists of the unique products without coefficients of the

expression, (𝑥 + 𝑦 + 𝑧)𝑘, where k is the degree of the polynomial. For example, the

full result for k = 2 would be:

 ℎ2(𝑥, 𝑦, 𝑧) = 𝑥
2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 (12)

Note that the degree of every product term is 2. The function in (12) can be

expressed formally as:

 ℎ2(𝑋1, 𝑋2, 𝑋3) = ∑ 𝑋𝑗𝑋𝑘
1≤𝑗≤𝑘≤3

 (13)

14

Similarly, the third-order expression, ℎ3 , for a three-input CHSP would be expressed

as:

 ℎ3(𝑋1, 𝑋2, 𝑋3) = ∑ 𝑋𝑗𝑋𝑘𝑋𝑙
1≤𝑗≤𝑘≤𝑙≤3

 (14)

 The general form of (14) for any number of input variables and for any

degree, k, is:

 ℎ𝑘(𝑋1, 𝑋2, … , 𝑋𝑛) = ∑ 𝑋𝑖1𝑋𝑖2 …𝑋𝑖𝑘
1≤𝑖1≤𝑖2≤⋯≤𝑖𝑘≤𝑛

 (15)

An identity for the zero-order CHSP is introduced:

 ℎ0(𝑋1, 𝑋2, … , 𝑋𝑛) = 1 (16)

For present purposes, we would like to define the definitive set of all homogeneous

symmetric polynomial terms using the concepts of (15) and (16) above. For this

definitive set, the sum of all monomial terms of degree k and lower is expressed:

𝐾𝑘 = ℎ𝑘(𝑋1, 𝑋2, … , 𝑋𝑛) + ℎ𝑘−1(𝑋1, 𝑋2, … , 𝑋𝑛) + ⋯

+ ℎ0(𝑋1, 𝑋2, … , 𝑋𝑛),𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 0
(17)

For variables x, y, and z, and for maximum polynomial degree of 2, the complete set

of CHSPs of descending order can be defined as K2:

 𝐾2(𝑥, 𝑦, 𝑧) = ℎ2(𝑥, 𝑦, 𝑧) + ℎ1(𝑥, 𝑦, 𝑧) + ℎ0(𝑥, 𝑦, 𝑧) (18)
 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑥 + 𝑦 + 𝑧 + 1

For comparison, for a two-input case, and for maximum polynomial degree of 3:

 𝐾3(𝑥, 𝑦) = ℎ3(𝑥, 𝑦) + ℎ2(𝑥, 𝑦) + ℎ1(𝑥, 𝑦) + ℎ0(𝑥, 𝑦) (19)

= 𝑥3 + 𝑦3 + 𝑥2𝑦 + 𝑦2𝑥 + 𝑥2 + 𝑦2 + 𝑥𝑦 + 𝑥 + 𝑦 + 1

Equation (18) introduces the function, K2 , which expresses the sum of all monomial

terms of degrees 2 and lower for the given input variables. Thus, for any degree of a

polynomial, a function exists to construct all degree product terms of a polynomial

for a max degree and lower. For clarification, equation (19) expresses the same

function for two input variables of max degree 3. The network diagram of Figure 5

shows the polynomial neural network necessary to realize the 3-input, degree-2

function of (18).

15

x

y

w
0

+1

Z∑

(Π)
2

z

.

.

.

(Π)
2

(Π)
2

(Π)

(Π)

(Π)

w z
1

w y
2

w x
3

w yz
4

w xz
5

w xy
6

w z7
2

w y8 2

w x9 2

Figure 5 Polynomial network of degree 2 for 3 input variables

It is noted at this point that such a single-layer network can be trained in one matrix

operation with techniques such as linear regression [14], where the following

quantities of (20) and single ordinary least squares (OLS) matrix operation of (21)

correspond to Figure 5:

X̂ = [

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
… … …
𝑥𝑛𝑝 𝑦𝑛𝑝 𝑧𝑛𝑝

], 𝑃̂ =

[

1 𝑥1 𝑦1 𝑧1 𝑥1𝑦1 … 𝑧1

2

1 𝑥2 𝑦2 𝑧2 𝑥2𝑦2 … 𝑧2
2

1 … … … … … …
1 𝑥𝑛𝑝 𝑦𝑛𝑝 𝑧𝑛𝑝 𝑥𝑛𝑝𝑦𝑛𝑝 … 𝑧𝑛𝑝

2]

 𝑊̂ =

[

𝑤0
𝑤1
𝑤2
…
𝑤𝑁]

, 𝑌 ̂ = [

𝑜1
𝑜2
…
𝑜𝑛𝑝

] (20)

 𝑤ℎ𝑒𝑟𝑒 𝑛𝑝 ≡ # 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
 𝑁 ≡ # 𝑜𝑓 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑒𝑟𝑚𝑠

 𝑊̂ = (𝑃̂𝑇𝑃̂)
−1
𝑃̂𝑇𝑌̂ (21)

16

1.2.5 Summary of the State of the Art for Polynomial Systems

 At this point, it is noted that polynomial-based CI systems do appear in the

literature, but are neither predominant nor significant in comparison with the use

and performance of other methods. Key drawbacks exhibited by all such

polynomial-based methods reviewed include:

 Deficient term generation and storage – No known systems make use of

algorithms for direct generation of only the monomials necessary to produce

polynomials of arbitrarily high order. Additionally, all systems studied

compute and store all terms, including excess terms. This leads to computer

memory limitations for problems of high dimensionality and/or large

numbers of training patterns.

 Generalization error – Excess monomials are generated either directly or

equivalently, leading to significant validation or testing bias that is not

foreshadowed by performance during training.

 Network complexity – Methods which avoid explicit and economical

generation of unique terms lead to complex network connectivity, which in

turn necessitates complex training and pruning algorithms to improve

generalization results.

 Training deficiencies – Some methods reviewed either rely too heavily on

standard OLS regression, which does not necessarily optimize polynomial

term coefficients for validation performance. Other methods are extremely

complex in response to inefficient multi-layer network structure, and require

initial data analysis and hands-on determination of run-time parameters.

The goals of this work aim to address these drawbacks, and to develop a family of

polynomial-based learning systems which not only improve the state of the art, but

which compete strongly with other popular CI methodologies.

17

Chapter 2

Implementation of Competing Methods

 The PLM variants introduced later in this work were tested against several

methods prominently in-use throughout CI. A basic introduction to each of these

methods is included in this Chapter. The proposed PLM variants are ideal for

operating offline upon highly non-linear multi-dimensional data, and in real-time,

within highly non-linear applications requiring computational solutions within

reliable run times. This quality is shared among several prominent CI algorithms

which have been selected for competition against the PLMs including Artificial

Neural Networks, Fuzzy Systems, and Radial Basis Function systems such as the

Extreme Learning Machine variants, and Support Vector Regression with RBF

kernels.

2.1 The Single-Layer Feed-Forward Neural Network (SLFN)

 Artificial neural networks (ANN) are commonly applied to various problems

in industrial fields, such as motor actuation and control [38], [39], fault detection

and prediction [11], and robotics [40]–[42]. They are capable of providing models

for highly nonlinear and noisy data that are difficult to process with classical

parametric techniques. Three choices common with ANN design are network

architecture (size and topology), activation (node) function, and training.

 Though there are many different kinds of ANN architectures, Single Layer

Perceptrons (SLP) are neural network SLFNs which are both simplest to train, and

are historically the most thoroughly investigated in comparative studies with other

CI methods. One practical reason for the prominence of SLPs in research is the lack

of a well-known training algorithm which is both accurate and efficient, and can also

train bridged architectures. Variants of the Levenberg-Marquardt (LM) [43]

18

algorithm (supplied in the MATLAB Neural Network Toolbox [44]) and its

derivatives are widespread, however it cannot handle bridged networks. For these

reasons, a SLP is chosen for comparisons in this study. An example of a SLP is

pictured in Figure 6.

x1

x2

x3

x4

+1+1

Figure 6 A 4-input, 5-neuron SLP with 4 neurons in the hidden node

 The most traditional implementation of an artificial neuron as a

computational node is with either a unipolar or bipolar sigmoidal “soft” activation

function based on the hyperbolic tanh function. The unipolar case is as follows:

𝑓(𝑛𝑒𝑡) =
tanh(𝑔𝑎𝑖𝑛 × 𝑛𝑒𝑡) + 1

2

𝑤ℎ𝑒𝑟𝑒: 𝑛𝑒𝑡 =∑𝑤𝑛𝑖𝑥𝑛𝑖

𝐾𝑛

𝑖=0

 (22)
 𝑖 ≡ 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛
 𝑛 ≡ 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛

 𝐾𝑛 ≡ 𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛

 The training algorithm used in the comparative studies herein is the Neuron-

By-Neuron (NBN) algorithm, an LM derivative developed by Wilamowski et al. [45]–

[47]. This training algorithm has been shown to possess many advantages over

other known LM variants, including efficient matrix computation, reduced memory

usage, and superior convergence accuracy [46]. NBN employs an enhanced second-

order gradient method to optimize network solutions. Regression is employed

similar to the PLMs, however instead of directly solving for network weights, an

19

updating factor is iteratively computed for an initially randomly generated set of

network weights. All LM variants, including NBN, update network weights

according to the following equation [48]:

 Δ𝒘 = (𝑱𝑻𝑱 + 𝜇𝑰)−1𝑱𝑻𝒆 (23)

where w is the weight vector, I is the identity matrix, and μ is the combination

coefficient. The Jacobian matrix, J, with dimensions (P × M) × N, and the error

vector, e, with dimensions (P × M) × 1, are defined as:

 𝑱 =

[

𝜕𝑒11
𝜕𝑤1

𝜕𝑒11
𝜕𝑤2

…
𝜕𝑒11
𝜕𝑤𝑁

𝜕𝑒12
𝜕𝑤1

𝜕𝑒12
𝜕𝑤2

…
𝜕𝑒12
𝜕𝑤𝑁… … … …

𝜕𝑒1𝑀
𝜕𝑤1

𝜕𝑒1𝑀
𝜕𝑤2

…
𝜕𝑒1𝑀
𝜕𝑤𝑁… … … …

𝜕𝑒𝑃1
𝜕𝑤1

𝜕𝑒𝑃1
𝜕𝑤2

…
𝜕𝑒𝑃1
𝜕𝑤𝑁… … … …

𝜕𝑒𝑃𝑀
𝜕𝑤1

𝜕𝑒𝑃𝑀
𝜕𝑤2

…
𝜕𝑒𝑃𝑀
𝜕𝑤𝑁]

 𝒆 =

[

𝑒11
𝑒12
…
𝑒1𝑀
…
𝑒𝑃1
…
𝑒𝑃𝑀]

 (24)

where P is the number of training patterns, M is the number of outputs, and N is the

number of weighted connections. Elements in the error vector, e, are calculated by:

𝑒𝑝𝑚 = 𝑑𝑝𝑚 − 𝑜𝑝𝑚 (25)

where dpm and opm are the desired and actual output respectively, at network output

m, when training pattern p.

2.1.1 Competitive Considerations of Neural Networks

 Neural networks, along with other node-based computational systems, are

generally capable of finding better solutions than other methods. However, the

performance of neural networks relies heavily on the training algorithm involved.

Because LM derivatives, and earlier first-order training methods such as Error Back-

20

Propagation (EBP) and its derivatives [49]–[51], all rely on randomized production

of network weights at various stages, ANNs are particularly susceptible to

converging to local minima and maxima as first or second order gradients are

computed. Also, due to the flat tail of the tanh() function extending out to +/-

infinity, many computer and hardware learning implementations have trouble when

function inputs that are too far out on the margins result in stagnant error

computations that encounter the digital quantization limit of the host processor.

This is known as the flat-spot problem [52]. Thus, multiple iterative trials are

necessary to generate a family of solutions, which must then be searched for the

best solution. An example of this can be seen in Figure 7. In summary, ANNs offer

good probability of convergence to some solution, but never guarantee convergence

to an optimal solution.

Figure 7 Typical Iterative ANN Training: “hot spot” issue

2.2 The Takagi-Sugeno-Kang Fuzzy System

 Fuzzy systems are at least as popular as neural networks for solving similar

types of approximation and prediction problems. Traditionally, fuzzy systems do

not require training with sample data. However, particularly in those cases they

require hands-on front-end development by the designer in order to approach

21

acceptable solutions [53]. Two foundational designs predominate for fuzzy systems

– The Mamdani inference [54], and the Takagi-Sugeno-Kang (TSK) inference [55].

For the comparative studies in this work, the TSK approach has been selected for its

architectural simplicity and since it tends to yield more accurate output mapping

than the Mamdani model for the same problems with equal input resolution [56].

 In applying fuzzy systems to dataset problems, each input dimension must be

evaluated in order to properly select the resolution and/or precise location of

sample points, which are then translated to in-situ Look-Up Tables (LUT) for real-

time deployment. Care must be taken for designs that intend to handle high

dimensionality, since the fuzzy output table storage increases by O(nD), where D is

the number of input dimensions. The development of the input data translators,

called membership functions, is often done by the designer without explicit or

complete data available. For data of high dimensionality, the design and resolution

of the membership functions can become highly subjective [57]. One such example

of fuzzification of an input temperature variable converted to a scaled subjective

value is seen in Figure 8. The underlying basis for the output value is certainly

numeric and amounts to transformation of input quantities to a sum of weighted

neighboring factors included in the membership function. The specific type of

membership function pictured in Figure 8 is the trapezoidal. The slope of the sides

of the trapezoid is maps directly to weighting factors which will be applied to

interpolate an input value that lies between stored breakpoints on the input axis.

Other membership functions include Gaussian and triangular. Triangular

membership functions have been shown to give better output resolution than other

methods for the same input resolution. For this reason, triangular functions will be

used in this study. A comparison of different membership function outputs for the

same function at the same output resolution is seen in Figure 9.

 Following the fuzzy design process, the resulting architecture is sufficiently

simple, essentially an input-to-output LUT, such that fuzzy systems are often

preferred over other methods for hardware implementation. The validation times

for real-time fuzzy systems are extremely reliable, further lending value to use of

these systems in clock-based designs, since equivalent computations are done for

22

each input-to-output operation. It should be noted that the validation times for

fuzzy systems are not necessarily minimal compared to other methods. Propagation

delay in hardware systems merely becomes an address spin, followed by

multiplicative interpolation of a finite number of values extracted from the fuzzy

table LUT.

Figure 8 Example of a Trapezoidal Fuzzy Membership Function Operation

Figure 9 TSK Product Encoding Output: Comparison of membership functions

23

 In general, node-based computation systems such as PLMs, ANNs, etc.,

provide smoother, more accurate non-linear mapping of functions than fuzzy

systems [58]. Though output accuracy can be increased by increasing the resolution

and of breakpoints in the membership functions, this could lead to stability

problems known as “hunting” [59] in feedback applications of fuzzy systems. An

example of a TSK system output to that of an ANN for the same problem is shown in

Figure 10.

Figure 10 Comparison of TSK and ANN (node-based) Output Quality

2.2.1 Development of a Novel Data-Driven N-Dimensional TSK Fuzzy System

 For proper comparison with PLMs and with the other algorithms studied, an

N-dimensional TSK fuzzy system was developed. Instead of manual design of

membership functions, a recursive algorithm was developed to compute regularly-

spaced interpolation values for the fuzzy output table, given any random

distribution of n-dimensional training data over the input range. Since all dataset

inputs and outputs are normalized (see Section 5.1 Test Methodology) in keeping

with current testing standards in the field of CI, the job of automatically generating

optimized interpolated values is made easier. Following generation of the fuzzy

output table, the TSK product method is coded to forward-compute n-dimensional

output values from stored output tables.

24

2.2.1.1 Fast Recursive N-dimensional Interpolation

 An original, efficient recursive algorithm was developed which accepts

randomized multi-dimensional data points as input, as well as a set of target

interpolation points (regularized or arbitrary), and returns the target points

populated with optimized interpolation values. The algorithm is used for the

purpose of generating the required fuzzy output table; however its uses could be

extended to any process which requires regularization of multidimensional data, or

merely interpolation at specific arbitrary points. The MATLAB code for this

algorithm is included in Section 7.8.1 of Appendix H.

 A summary of the operation of this process follows.

Starting with the complete set of training data as input, and with a complete

set of arbitrary interpolation target points:

1. Initialization Stage: Per each target interpolation point vector, the

algorithm begins in interior-point mode. A 1-D span is set which will be

used along each dimension at a time. This strategy is aided as all input

vector values are standardized, that is, they are scaled to the range [-1:1].

Stage 2 is called recursively. If Stage 2 returns with less than the

minimum candidate points, the 1-D search span is increased. If the 1-D

search span exceeds a maximum value, the fore-aft requirement cannot

be met; the target point is on an edge, so the radius is reset to a minimum

value and the mode becomes boundary point mode, and Stage 2 is called

recursively. If Stage 2 returns with candidate points, Stage 3 is called and

the current target vector receives an output interpolation value. If there

are more target vectors, Stage 2 is called with that vector. If not,

algorithm returns the complete set of interpolated target points.

2. Candidate Search Stage: Given the full training data point set and a single

interpolation target coordinate, the algorithm searches along one

dimension at a time. In the interior point mode, the algorithm searches

along one dimension for at least one point fore, and one aft of the target

point. If this condition cannot be met after searching, the output subset is

25

set to NULL as a signal to Stage 1, and the level returns to Stage 1. In the

boundary point mode, the fore-aft requirement is not enforced. If the last

dimension has not yet been processed, and if the subset of candidate

points is non-empty, the search dimension is incremented, and the

subset, current mode, current radius, and current target point is sent

recursively to another call to Stage 2. If the last dimension has been

searched, the final subset of candidate points is returned.

3. Value Interpolation: For a valid set of candidate points, the output

interpolation value is computed without a square root operation

according to the following sequence and returned to Stage 1:

Given: 𝐼 = (𝑥1, 𝑥2, … 𝑥𝐷) ≡ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

𝑌̂ = [

𝑦11 𝑦21 … 𝑦𝐷1
𝑦12 𝑦22 … 𝑦𝐷2
… … … …
𝑦1𝑁 𝑦2𝑁 … 𝑦𝐷𝑁

] ≡ 𝑠𝑢𝑏𝑠𝑒𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

 (26)

 𝑍̂ = [

𝑧1
𝑧2
…
𝑧𝑁

] ≡ 𝑠𝑢𝑏𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

 𝑤ℎ𝑒𝑟𝑒 𝐷 ≡ # 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
 𝑁 ≡ # 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑅̂ =

[

∑(𝐼𝑖 − 𝑌̂𝑖1)

2
𝐷

𝑖=1

∑(𝐼𝑖 − 𝑌̂𝑖2)
2

𝐷

𝑖=1 …

∑(𝐼𝑖 − 𝑌̂𝑖𝑁)
2

𝐷

𝑖=1]

≡ 𝑟𝑜𝑤 𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

(27)

 𝑆𝑆𝑄 =∑𝑅̂𝑖

𝑁

𝑖=1

≡ 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑅̂ (28)

 𝑂𝑢𝑡𝑝𝑢𝑡 =
𝑅̂𝑇𝑍̂

𝑆𝑆𝑄 × (𝑁 − 1)
≡ 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 (29)

26

 To demonstrate the effectiveness of the interpolator, the highly non-linear

MATLAB peaks() function is used to generate 1000 randomly distributed points

over a 3-D space. The proposed function is used to interpolate regularized (in this

case) target points for potential population of an output fuzzy table. The

randomized points and 25 (5 breakpoints along each dimension) interpolated point

locations are seen in Figure 11. Figure 12 demonstrates a comparison as the

original function is interpolated with increasing resolution as the interpolated point

density increases from 5 to 20 breakpoints along each dimension.

Figure 11 (a) View of random generated peaks() values, (b) Overlay with
interpolated values

27

Figure 12 (a) Original function, 1000 data points, (b) 5x5 grid, (c) 10x10 grid,
(d) 20x20 grid

2.2.1.2 Completion of an N-dimensional TSK Fuzzy Engine

 The TSK fuzzy system implemented for this study proceeds with forward-

computed product encoding, which addresses points to output within the fuzzy

output table created from the interpolation software, and which builds the required

weighted product terms using the common formula:

𝑂𝑢𝑡𝑝𝑢𝑡 =

∑ 𝑤𝑘𝑧𝑘
2𝑁
𝑘=1

∑ 𝑤𝑘
2𝑁
𝑘=1

(30)

 𝑤ℎ𝑒𝑟𝑒 𝑁 ≡ # 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑤 ≡ 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑎𝑙𝑢𝑒

 𝑧 ≡ 𝑓𝑢𝑧𝑧𝑦 𝑡𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

28

For all cases, the denominator of (30) reduces to 1 and may be ignored. The

weighting factors, wk, are all inverse-proportional in distance from the target point

to the fore and aft fuzzy table terms along each dimension, and sum to 1 in each

case.

 Original software was created to complete the implementation of an N-

dimensional fuzzy engine for comparison studies. The system receives input

training datasets and maximum tolerance values, and subsequently uses the

methods described previously to generate TSK solutions of increasingly higher

resolution by specifying an equal number of regularly distributed fuzzy table

breakpoints along each dimension. Each solution evaluates training and validation

error and runtime results, and reports these values to other coordinating software.

The associated MATLAB code for the TSK fuzzy engine can be viewed in Section

7.8.2 of Appendix H.

2.2.2 Radial Basis Function Learning Machines

 Currently in the literature, much attention is garnered by SLFNs constructed

with Radial Basis Function (RBF) nodes in the hidden layer. Architecturally, RBF

systems resemble both PLMs and ANNs. However, just as training paradigms

identify ANNs from other learning machines, specific RBF methods diverge from

other CI methods largely but not solely based on computational differences in the

training phase. The most prominent RBF-based algorithms at the time of this

writing will be compared in this study.

2.2.2.1 Review of RBF Networks

 Figure 13 represents a typical RBF network structure. In reference to the

Figure:

 p is the index from 1 to P, where P is the total number of input patterns.

 H is the total number of hidden-layer RBF nodes.

 d is the index from 1 to D, where D is the number of dimensions in the input.

 Input patterns, x, of dimension, D, are described as 𝑥𝑝 = [𝑥𝑝,1, 𝑥𝑝,2, … , 𝑥𝑝,𝐷].

29

 βh are the multiplicative weighting factors per RBF node output.

 op are the network outputs per input pattern.

Figure 13 A typical RBF network containing H neurons and D inputs

 A RBF SLFN, like the PLM, is comprised of a single hidden layer of H

computational nodes, an output summing node, and D input ports. Each of the H

nodes contains a kernel function, gn(x), which again similar to the PLM, are

parametrically nonidentical to the kernel functions of other nodes in the same

network. For all RBF variants in this work, the node kernel functions will be defined

as Gaussian functions of the form:

𝑔𝑛 = exp(−

||𝑥𝑝 − 𝑐𝑛||
2

𝜎𝑛2
)

(31)

 𝑤ℎ𝑒𝑟𝑒: 𝑐𝑛 ≡ 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑅𝐵𝐹 𝑢𝑛𝑖𝑡
 𝜎𝑛 ≡ 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑅𝐵𝐹 𝑢𝑛𝑖𝑡

 || ̇|| ≡ 𝑡ℎ𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑁𝑜𝑟𝑚 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

The output summing function per input pattern then becomes:

 𝑜𝑝 = 𝑓(𝑥𝑝) = ∑𝛽𝑛𝑔𝑛(𝑥𝑝)

𝐻

𝑛=1

 (32)

30

From (31) and (32), it is seen that per a particular RBF network architecture, three

parameters can be adjusted for the purpose of RBF network optimization. The three

parameters are the weights, centers, and radii given by βn, cn, and σn, respectively.

Any training method (LM, regression, etc.) can be chosen in any combination for this

optimization task.

2.2.2.2 The Extreme Learning Machine RBF Variants

 Huang et al. originally developed the Extreme Learning Machine (ELM)

algorithm in [60]. The authors propose a RBF system which seeks to optimize

network weights and biases after first randomizing the initial sets of those

quantities. Final output weights are then solved for using a matrix pseudo-inversion

technique. ELM was expanded by Huang et al. into an incrementally constructive

algorithm (I-ELM) in [61]. Following this, two additional algorithms were

introduced by the same authors in further attempts to improve upon I-ELM. The

Convex Incremental Extreme Learning Machine (CI-ELM) and Enhanced random-

search-based Incremental Extreme Learning Machine (EI-ELM) are introduced in

[62] and [63] respectively. All of these algorithms are deployed in comparative

publications using Gaussian RBF artificial neurons as the kernel function as in (31).

 For all ELM variants, new nodes are added incrementally with randomly

generated centers and radii. CI-ELM uses an equation to minimize in-process

training error by adjusting all of the output weights in the existing network each

time a new neuron is added. In the case of EI-ELM, a parameter, k, is introduced

which specifies the number of new randomized nodes added for each training

epoch. As a final sequence of each such epoch, errors are computed for each of the k

added neurons, and the one with minimum resultant error is selected and added to

the network. Following the indices established in Section 2.2.2.1, the general

algorithm for the I-ELM is shown below as a basis for all the ELM variants. The

algorithm is extracted directly from Huang et al. [61]:

31

 Given a training set {(𝑥𝑝, 𝑦𝑝) | 𝑥𝑝 𝜖 ℜ
𝐷 , 𝑦𝑝 𝜖 ℜ, 𝑝 = [1. . 𝑃]}, an activation

function g(x) (31), a maximum node number H, and an expected learning accuracy ε:

1. Initialize: Let the number of nodes, n=0, and residual error, E = y.

2. Learning: While(n < H) and (RMSE > ε)

a. n++

b. Assign random center cn and a width σn within an acceptable range for

the new hidden node.

c. Based on the random activation function and the error, calculate the

output weight βn for the node:

 𝛽𝑛 =
∑ 𝑒𝑝𝑔𝑛(𝑥𝑝)
𝑃
𝑝=1

∑ 𝑔𝑛(𝑥𝑝)
2𝑃

𝑝=1

 (33)

d. Calculate the residual error after adding the new hidden node:

 𝐸 = 𝐸 − 𝛽𝑛 ∗ 𝑔𝑛(𝑥) (34)

𝑤ℎ𝑒𝑟𝑒 𝑥 𝑎𝑛𝑑 𝐸 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙
𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑎𝑛𝑑 𝑒𝑟𝑟𝑜𝑟𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ
𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦

End while loop

3. Output is calculated using equation (32).

 This algorithm will yield a network with a single hidden layer of RBF nodes

connected with weighting terms, β, to a summing output node. It was proven by

Huang et al. that this network is ideal as a universal approximator. The algorithm

allows for fast training times and in the case of I-ELM, there is only one calculation

to make per iteration. The computation of β in matrix form can be done efficiently

in most environments. However, the drawback to all ELM variants is that only one

of the three RBF neuron parameters is optimized. The ELM variants have been

previously implemented in MATLAB code by this research group and documented

elsewhere.

2.2.2.3 Support Vector Regression with RBF Kernels

 Support Vector Regression (SVR) is a complex method of machine learning

that retains selected training patterns for in-situ processing in addition to

32

incorporating a variety of network architectures and computational kernels. The

theory was initially introduced by Vapnik [64], and most mature implementations

are informed by Smola and Scholkopf [65]. SVR systems with RBF kernels have

been cited in many recent comparative works, including those of Huang et al., and

are therefore included among the methods studied in this work. When

implemented correctly, they achieve excellent training and validation error

compared to other methods. Though accuracy is often superior to most other

methodologies, SVR requires offline optimization of runtime parameters by the

designer. Essentially, a superior result is always possible but not guaranteed. SVR

is described extensively in the included references, and is therefore not detailed in

this work.

 The SVR with RBF kernel networks tested in this study were implemented

with the widely-used LIBSVM C/C++ code library by Chang and Lin [66], and were

compiled for the Microsoft Windows 7 operating system. For consistency, the SVR

libraries were executed within a MATLAB wrapper environment, also widely-used,

and developed by Weston et al. as part of the Spider machine learning environment

[67].

33

Chapter 3

Computational Strategies to Improve Polynomial Network Performance

 This Chapter features new methods applied to a single-layer model of a

polynomial network. Several strategies have been studied, and theory and

implementation of each relevant strategy will be described herein. In the course of

research, many methods were explored. Only those methods which appear to

provide significant advantage, in light of the drawbacks to current schemes

highlighted at the end of the previous Chapter, will be discussed. One method was

extensively explored but did not make the final cut for affording effective

improvement. The results of that study can be examined in Appendix A –

Exploration of Chebychev Transform Methods.

3.1 Efficient Generation of Monomial Polynomial Terms

 For the proposed polynomial networks, it is first and foremost desirable to

generate the individual monomial terms in such a way as to avoid unnecessary

scalar multipliers and repeated terms. We also want to be able to adapt the general

case for theoretically unlimited multi-dimensional input data and monomial term

order. An analogous observation is pictured for the 3-input, 3rd-order case of

Figure 14. In this case, the necessary 3rd and lower-order terms are unique if only

the upper diagonal of the initial 2-D multiplication matrix are used, followed by the

terms encompassed by the downward-sliding diagonal for the multiplication of the

initial 2-D plane by each dimension. The same principle can be extended for

additional dimensions/inputs, and for higher orders. The best algorithm will

generate the intended terms directly without extra or repeated terms.

34

Figure 14 3-input 3rd-order case: Unique monomial terms on sliding diagonal

 As pictured in Figure 14, we can conceive of arranging the 1st order terms of

each input variable into an array, Â, with a leading 1 as first term, such as

Â = [1,x,y,z]. The indices for the elements of Â from left to right would be (1, 2, 3, 4).

An algorithm is introduced in Table III which, per given input array and max

polynomial order, generates sets of indices representing the position of elements of

Â as product terms comprising all monomial terms of the intended polynomial.

Table III

The Poly-Gen Algorithm for Generation of Unique Monomial Terms

indices = POLY-GEN(Â,maxord)

1 nd  length of Â

2 Nmax  ∅

3 for I  1 to maxord

4 Nmax  {Nmax, nd}

5 indices = Find-Idx(Nmax) // recursion

6 return indices

indices = FIND-IDX(Nmax)

1 len  length of Nmax

2 if len = 1

3 then indices = [1:Nmax(0)]T

4 return indices

5 idx  FIND-IDX(Nmax[1: len – 1)]) // recursion

6 [rows, cols]  size of idx

7 indices  ∅

8 for row  1 to rows

35

9 for j  idx[row,cols] to len

10 new  {idx[row,1:cols], j}

11 indices  append new to last row of indices

12 return indices

Two advantages to this algorithm are:

 Per each max order, no terms are repeated.

 No products are yet formed. Only the indices of the ordered input variables

are generated and stored for later operation.

Table IV displays an example of recursive polynomial factor index generation for

a 3-input, max-order-2 case where the indices correspond to the array: [1,x,y,z]. The

MATLAB code which generates the polynomial term indices is included in 7.2

Appendix B – MATLAB Code: Unique Polynomial Term Generation.

Table IV
Example of the Recursive Poly-Gen Function for a 3-input, order-2 Case

Phase I

(advance across)

 1  2  1

Nmax len idx Nmax len idx Nmax len idx

[4 4] 2 -- [4] 1

[

1
2
3
4

]

[4 4] 2

[

1
2
3
4

]

Phase II

(advance down)

new indices new indices new indices

idx_row=1 j=1 idx_row=2 j=2 idx_row=3 j=3
[1 1] [1 1] [2 2]

[

1 1
1 2
1 3
1 4
2 2]

 [3 3]

[

1 1
1 2
1 3
1 4
2 2
2 3
2 4
3 3]

36

idx_row=1 j=2 idx_row=2 j=3 idx_row=3 j=4
[1 2] [

1 1
1 2

] [2 3]

[

1 1
1 2
1 3
1 4
2 2
2 3]

 [3 4]

[

1 1
1 2
1 3
1 4
2 2
2 3
2 4
3 3
3 4]

idx_row=1 j=3 idx_row=2 j=4 idx_row=4 j=4 terms
[1 3]

[
1 1
1 2
1 3

]
 [2 4]

[

1 1
1 2
1 3
1 4
2 2
2 3
2 4]

[4 4]

[

1 1
1 2
1 3
1 4
2 2
2 3
2 4
3 3
3 4
4 4]

1
x
y
z
x2
xy
xz
y2
yz
z2

idx_row=1 j=4
[1 4]

[

1 1
1 2
1 3
1 4

]

3.2 Statistical Smoothing and Pruning of Monomial Coefficients

 As previously discussed, most methods in the literature which attempt to

improve network performance, apart from enhanced regression methods, focus on

heuristic approaches which rely on direct relationships either between the training

patterns and output training error computations, or between the inclusion or

exclusion of polynomial terms and similar output error computations. In all such

cases studied, the evaluation of a particular monomial term is done following from

and independently of some regression computation. In this section, an iterative

strategy is introduced which uses incremental statistical computations to both

stabilize monomial coefficients in the face of noisy and or spurious training data,

and to eliminate one or more monomial terms based on the variation of their

coefficients, borne out during iterative network training techniques.

37

3.2.1 A Training Strategy to Stabilize and Isolate Noise-Responsive Coefficients

 In most real-world applications, noise is present in the training data and

must be dealt with to achieve reasonable network performance, regardless of the

method. Additionally, systems which optimize to training data usually perform

significantly worse in response to new data during validation. This is commonly

known as generalization error [68]. For polynomial-based and other node-based

supervised learning methods using standard linear (or other) regression

techniques, training data are often evaluated and streamlined via clustering,

filtering, or other schemes as part of an additional front-end process. Then the

surviving training vectors are put through to the regression technique at hand.

Instead of using front-end schemes which attempt to deal with the training data

directly, the strategy discussed herein iteratively runs randomly-selected subsets of

the training data through the regression engine, and computes increasingly stable

mean coefficient values. At the same time, incremental standard deviation (STD)

computations are performed which are later used to flag noise-responsive

coefficients for removal from the final network.

 Following once again from the OLS regression equation of (21), it is noted

that the full set of initial training vectors, X̂, can be iteratively broken into randomly

selected subsets, and fed through the regression process (OLS in this case), yielding

multiple corresponding polynomial equations, P̂k, and solution weight sets, Ŵk:

𝑊̂0 = (𝑃̂0
𝑇
𝑃̂0)

−1

𝑃̂0
𝑇
𝑌̂, 𝑊̂1 = (𝑃̂1

𝑇
𝑃̂1)

−1

𝑃̂1
𝑇
𝑌̂, … , 𝑊̂𝐾 =

(𝑃̂𝐾
𝑇
𝑃̂𝐾)

−1

𝑃̂𝐾
𝑇
𝑌̂

𝑤ℎ𝑒𝑟𝑒𝐾 ≡ 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝

(35)

It is expected that during the training process, Ŵk will vary during successive

regression computations due to the alternate absence or presence of critical

patterns in the training subsets, as well as due to noise among what would ideally be

equivalent training patterns. A running mean can be numerically computed for each

weight as processing continues, which essentially promises to approach a more

stable average value for that particular weight:

38

 𝑊̂̅𝐾 =

[

(𝑤01 + 𝑤02 +⋯+𝑤0𝐾)/𝐾

(𝑤11 + 𝑤12 +⋯+𝑤1𝐾)/𝐾
…

(𝑤𝑁1 + 𝑤𝑁2 +⋯+𝑤𝑁𝐾)/𝐾]

= [

𝑤̅0
𝑤̅1
…
𝑤̅𝑁

] (36)

 Simultaneous to the weight stabilization, a set of more involved

computations can be employed to track the average magnitude of the variation of

each coefficient from iteration to iteration. At the completion of such an iterative

training process, this criterion can be used to make decisions about which

monomials may be over-responsive to both noise in critical inputs and more

generally, to the presence of erroneous training patterns. The following section will

detail the computation steps but in general, we seek an expression to evaluate the

magnitude of the perturbation of the network monomial weights in response to

iterative processing of random subsets of the training data. A typical standard

deviation expression for such a process is defined:

 𝑆𝑇𝐷𝐸𝑉𝑊̂𝐾
= [

𝜎𝑤0𝐾
𝜎𝑤1𝐾
…

𝜎𝑤𝑁𝐾

] (37)

Once these values are known per monomial weight, computational decisions can be

made to excise either the “noisiest” monomial term, or “noisiest” terms above a

designated threshold, based on the relative magnitude of these values. It is

proposed that such a method, focusing on the response of network terms to training

data, is potentially more efficient and accurate than the many complex and arbitrary

filtering and clustering methods proposed as front-end processors of the training

data themselves.

3.2.2 Forward-Computed Statistical Methods – Overview

 This section formalizes the statistical computation included in some of the

polynomial-based algorithm variants in this study. These numerical methods are

designed to forward-compute current key values per each training iteration, thereby

39

reducing memory and processing overhead possible with the large matrices

involved. The associated computations discussed herein are used for:

 smoothing monomial weights towards more stable average values

 flagging “noisy” or otherwise susceptible monomial terms

 tracking stopping criteria for the iterative processes involved

The essential MATLAB code implementation of all such statistical processes is
included in 7.3 Appendix C – MATLAB Code: Statistical Processing of
Monomial Term

Weights. A summary of the computational steps follows in Table V:

Table V

Computational Steps for Statistical Processing of Monomial Term Weights

Computational Step
(iterative)

Code
Variable

Uses
Equation

Purpose

Stabilize
Values

Evaluate
Term
Noise

Stopping
Criteria

Collect/compute monomial
weights

wwtemp (OLS, etc.) X X X

Compute running means of
weights

wwmeans (38) X X X

Compute normalized weights
per current maximum

absolute
wwscaled (39) X X

Compute running means of
normalized weights

wwscmeans (40) X X

Compute sum of iteration Δ ∀
wwscmeans (1st order)

scmeansn_1 (41) X X

Compute iteration Δ ∀
scmeansnn_1 (2nd order)

scmeanslope (42) X

Compute running stdev of
means of normalized weights

wwscstds (43) X

Option 1: STOP, remove “noisiest” term, REPEAT

Option 2: CONTINUE, compute threshold criteria, remove terms, REPEAT

Computational Step
(post-iterative)

Compute mean of final
wwscstds

meanstd (44) X

Compute stdev of final
wwscstds

stdstd (45) X

Compute threshold of term
removal

maxscstd (46) X

40

3.2.3 Forward-Computed Statistical Methods – Iterative Numerical Detail

 For the iterative training process described, wherein randomly selected

subsets of the training data are successively processed, the following computations

are performed. For all equations in this section, subscripts for an individual

member of Ŵ, such as w0, will be omitted as in, w, to simplify readability.

 Initial values for monomial term weights, Ŵ0, are computed as in (35) per the

particular regression method associated with the current polynomial network

variant in use. A straightforward running mean is computed per monomial term

weight. Such formulae can be found in numerous sources, such as in Press et al.’s

Numerical Recipes series [69]:

 𝑤̅𝑘 =
(𝑘 − 1)𝑤̅𝑘−1 + 𝑤𝑘

𝑘
, 𝑤ℎ𝑒𝑟𝑒: 𝑤 𝜖 𝑊̂

 𝑘 ≡ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (38)
 𝑤̅ ≡ 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡

 The maximum absolute value of each weight is updated at each iteration and

is used to forward-compute a normalized version of that weight. Herein, a “dot” will

be used to designate a normalized value. Thus, normalized weights become:

 𝑤̇𝑘 =
𝑤𝑘

𝑚𝑎𝑥𝑎𝑏𝑠(𝑤)
, 𝑎𝑛𝑑 𝑊̂̇𝑘 ≡ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (39)

 The running means of the normalized weights are now computed as in (38):

 𝑤̅̇ =
(𝑘 − 1)𝑤̅̇𝑘−1 + 𝑤̇𝑘

𝑘
 (40)

 The sum of the absolute values of the slopes, w ̇̅ k – w ̇̅ k-1, is forward computed

as an incremental measure of the quiescence of the entire set of normalized means

in the course of the iteration process. This is similar to a 1st-order gradient:

𝑆𝑘 =∑|𝑤̅̇𝑖𝑘 − 𝑤̅̇𝑖𝑘−1|, 𝑤ℎ𝑒𝑟𝑒 𝑁

𝑁

𝑖=1

≡ # 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

(41)

41

 The tracking of the sequential change in the running scaled means is further

smoothed by averaging, similar to (38) and (40). The effect of this is similar to a 2nd-

order gradient:

 𝑆𝑘̅ =
𝑆𝑘̅−1 + 𝑆𝑘

𝑘
 (42)

The current value of S̅k is evaluated against an arbitrary maximum value set at run

time, and in this way, (41) and (42) are used solely as stopping criteria for the

iterative training algorithm.

 The plot of Figure 15 shows how the mean values of term coefficients

stabilize as regression iterations proceed successively on randomized subsets of the

training data. Each subset contains approximately 75% of the original training set.

Each data point marks the average of the absolute value of the sum of the change of

the coefficient means from one iteration to the next as computed by (42):

Figure 15 Stabilization of final normalized coefficient means as training proceeds

For this particular case, a threshold arbitrarily set at 10-2 would cause the algorithm

to stop at 25 iterations or fewer for all cases plotted.

 Computation continues to measure the relatively stability of monomial

weights in a current network. As mentioned thus far, running means have been

normalized earlier in the process. This is necessary to avoid a biased numerical

42

decision that would tend to penalize a larger magnitude optimized monomial term

coefficient versus a smaller optimized term coefficient. Per monomial term, the

running standard deviation of the normalized means of the iterative weight values is

computed following a numerical formula adapted from an original algorithm by

Donald Knuth [70], but taking advantage of quantities that have already been

normalized, thus insuring a uniform range of output values in the range [0:1] for all

monomial weights. For an individual weight in Ŵ, the formula is:

 𝑆𝑇𝐷𝑤𝑘 = 𝜎𝑤̅̇𝑘 = √(
𝜎𝑤̅̇𝑘−1
2

𝑘
+ (𝑤̅̇𝑘 − 𝑤̅̇𝑘−1)2) × (𝑘 − 1) (43)

The formula has been tested alongside the non-incremental MATLAB std() function,

and it is accurate to less than 1×10-14 absolute error on a 64-bit processor running

64-bit MATLAB. The output of the function in (43) was observed as in Figure 16. In

the plot shown, each column of data points represents normalized standard

deviations computed for the full set of monomial term weights active during a

particular training epoch.

Figure 16 Tracking monomial term coefficient variation over successive training
iterations

43

As training subset iterations proceed, one can see that values are indeed

normalized, and that “noisy” terms can easily be identified at the end of a training

epoch.

 At this point, two options arise in the statistical processing:

 Option 1 – The most noise-responsive monomial term can be extracted

from the set, and training can continue with remaining terms applied to

additional epochs.

 Option 2 – Threshold criteria can be computed at the end of an iterative

epoch, and multiple monomial terms can be excised, after which

remaining terms continue through to the next epoch.

In the case of Option 2, two more computations remain. Once the iterative subset

training completes, a simple mean of all final STDs computed by (43) can be

computed:

𝑆𝑇𝐷̅̅ ̅̅ ̅̅

𝑊̂𝐾
= 𝜎𝑊̅̇𝐾

= (𝜎𝑤̅̇0𝐾
+ 𝜎𝑤̅̇1𝐾

+⋯+ 𝜎𝑤̅̇𝑁𝐾
)/𝑁

𝑤ℎ𝑒𝑟𝑒 𝑁 ≡ # 𝑜𝑓 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑒𝑟𝑚𝑠
(44)

Additionally, a simple (non-iterative) STD of all elements of STDWK can be computed:

 𝑆𝑇𝐷𝑆𝑇𝐷𝑊̂𝐾
= 𝜎𝜎

𝑊̅̅̅̇𝐾
= 𝑆𝑇𝐷 (𝜎𝑤̅̇0𝐾

, 𝜎𝑤̅̇1𝑘
, … , 𝜎𝑤̅̇𝑁𝐾

) (45)

A parameter, stdscale, can be arbitrarily set at run-time, and with the quantities

computed in (44) and (45), monomial terms can be evaluated by their respective

STDwK from (43), relative to those of other terms as depicted in Figure 16. The final

threshold criterion for inclusion/exclusion is expressed as:

 𝑚𝑎𝑥𝑆𝑇𝐷 = 𝑆𝑇𝐷̅̅ ̅̅ ̅̅
𝑊̂𝐾

+ (𝑠𝑡𝑑𝑠𝑐𝑎𝑙𝑒 × 𝑆𝑇𝐷𝑆𝑇𝐷𝑊̂𝐾
) (46)

 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒: 𝑆𝑇𝐷𝑤𝐾 > 𝑚𝑎𝑥𝑆𝑇𝐷

3.3 Exploration of Enhanced Regression Techniques

 As previously mentioned, the predominant method used in the literature to

solve single-layer polynomial networks, or single-layer segments of those networks,

is standard OLS, as depicted in (21). Several enhanced regression techniques were

44

explored, and two in particular were found to display significant improvement in

network accuracy under certain conditions. Generalized Least Squares (GLS) and

Ridge Regression (RR) are discussed in this section. Finally, hybrid

implementations of both techniques were explored, and successful variations are

discussed as well.

3.3.1 An Iterative Generalized Least Squares Regression Technique

 In the world of supervised learning techniques in CI, a primary goal is finding

and employing training methods which circumvent “bad data” or more specifically,

noisy data and extreme “outliers” in the training data. Bad data are a significant

problem especially for single-layer polynomial networks solved via OLS, since

polynomial networks are already extremely susceptible to over-fitting solutions. As

mentioned previously, most existing methods attempt to pre-process the training

data with unsupervised culling techniques such as clustering, hidden-Markov chain

analysis [44] [45], or other filtering techniques. Herein, an iterative regression

technique using the Generalized Least Squares (GLS) method is implemented.

 In the field of statistics, the Gauss-Markov theorem [73] states that the Best

Linear Unbiased Estimator (BLUE) of the coefficients of a linear regression model is

given by the OLS estimator but only under certain conditions. Applied to machine

learning, “best” indicates that the variance between training and validation output

results is minimized. The conditions are that errors among the different input

dimensions must have expectation zero (zero bias about a true mean), must be

uncorrelated from dimension to dimension, and must be “homoscedastic” (equal

variance among each input dimension) [74]. Matrix algebra and geometric proofs of

the theorem are offered by Borghers [75] and Ruud [76] respectively.

 Consider at this point, the real-world dataset, “Abalone”, available from the

UC Irvine Machine Learning Repository [77]. This dataset attempts to predict the

age of abalone from physical measurements. The equal variance restriction for

using OLS as a BLUE applies to the errors present in the different input dimensions

or “attributes”. Two such attributes for the Abalone dataset are “viscera weight

after bleeding”, given in grams, and sex of the animal, tabulated as “male, female, or

45

infant [indeterminate]”. It is highly unlikely that errors acquired in the collection

and tabulation of those separate attributes have equal variance, though those errors

may indeed be uncorrelated. Additionally, the condition that the expectation of

attribute errors be zero (perfectly uniform around the correct mean value) is also

unlikely for such varied attributes tabulated in real-world conditions. Hence, there

is reason to search for regression techniques other than OLS which promise better

results for multi-dimensional real-world datasets.

 GLS regression, discovered by Aitken [78] and described in detail by Kuan

[79], promises several key advantages including handling of correlated errors, and

handling of “heteroscedastic” data; Errors along different dimensions of training

data can have different variance and non-zero expectation (non-uniform error bias).

Keeping in mind the OLS regression equation of (21), the basic GLS matrix equation

is introduced:

𝑊̂𝐺𝐿𝑆 = (𝑃̂𝑇Ω̂𝐺𝐿𝑆𝑃̂)

−1
𝑃̂𝑇Ω̂𝐺𝐿𝑆𝑌̂

𝑤ℎ𝑒𝑟𝑒 Ω̂𝐺𝐿𝑆 ≡ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑟𝑟𝑜𝑟𝑠

(47)

Kuan notes that for ΩGLS, “The covariance structure of the errors must [usually] be

known up to a multiplicative constant.” However, Kuan purports a two-step

method: Compute initial error components in Ω using OLS, compute the initial

Feasible Generalized Least Squares (FGLS) estimator, ŴFGLS0, and then use an

iterative method to apply GLS and successively recompute errors to update Ω.

Following Kuan’s procedure:

Compute initial errors:

𝑊̂𝑂𝐿𝑆 = (𝑃̂
𝑇𝑃̂)

−1
𝑃̂𝑇𝑌̂ , 𝜇̂𝑂𝐿𝑆 = 𝑌̂ − 𝑃̂𝑊̂𝑂𝐿𝑆

(48)

Construct initial OLS covariance matrix:

Ω̂𝑂𝐿𝑆 = 𝑑𝑖𝑎𝑔 (μ𝑂𝐿𝑆1
2 , 𝜇𝑂𝐿𝑆2

2 , … , 𝜇𝑂𝐿𝑆𝑛𝑝
2) ,

𝑤ℎ𝑒𝑟𝑒 𝑛𝑝 ≡ # 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

(49)

Compute initial FGLS estimator:

𝑊̂𝐹𝐺𝐿𝑆0 = (𝑃̂
𝑇Ω̂𝑂𝐿𝑆𝑃̂)

−1
𝑃̂𝑇Ω̂𝑂𝐿𝑆𝑌̂

(50)

46

Compute errors, next ΩGLS, and REPEAT:

𝜇̂𝐺𝐿𝑆0 = 𝑌̂ − 𝑃̂𝑊̂𝐹𝐺𝐿𝑆0 , Ω̂𝐺𝐿𝑆0 = 𝑑𝑖𝑎𝑔 (𝜇𝐺𝐿𝑆
2

0
, 𝜇𝐺𝐿𝑆1
2 , … , 𝜇𝐺𝐿𝑆𝑛𝑝

2)

𝑊̂𝐹𝐺𝐿𝑆1 = (𝑃̂𝑇Ω̂𝐺𝐿𝑆0𝑃̂)
−1
𝑃̂𝑇Ω̂𝐺𝐿𝑆0𝑌̂ , 𝑒𝑡𝑐.

(51)

The MSE can be computed from errors at each iteration and can be evaluated

against previously computed MSE to serve as a stopping criterion as the algorithm

approaches convergence:

 𝑀𝑆𝐸𝐺𝐿𝑆𝑖 =
𝜇̂𝐺𝐿𝑆𝑖Ω̂𝐺𝐿𝑆𝑖𝜇̂𝐺𝐿𝑆𝑖

𝑇

𝑛𝑝
 (52)

 The MATLAB code used to directly implement the iterative GLS procedure is

available in 7.4 Appendix D – MATLAB Code: Iterative GLS Regression.

 The effect of the iterative GLS regression technique on a 1-D, 3rd-order

example is dramatic compared to standard OLS regression performance. Following

from the Gauss-Markov constraints on optimum OLS performance, an example of

“bad data” which would handily violate those constraints would be marked by:

 a large percentage of outliers relative to the ideal function

 all points would exhibit at least some random noise

 some data points exhibit non-zero expectation (non-uniform bias)

 some data points exhibit uncorrelated variance (bimodal trend present)

Figure 17 shows an example of such a data distribution, with 40% of the data points

laying in a trend far outside the original function.

 The comparative results of iterative GLS regression versus standard OLS

regression are stark, and are plotted in Figure 18. Two-hundred points are

generated for the ideal function, noise is added with a normal distribution, then

40% of the data points are randomly selected and subjected to a second

uncorrelated, biased trend. The “realbest’ line in Figure 18 represents the best GLS

solution evaluated by comparing the transform MSE of (52) against the original

uncorrupted function data. The “’BEST’ GLS” line represents the best GLS solution

found after the transform MSE is evaluated against an arbitrary stopping threshold.

Certainly, GLS regression promises higher accuracy for real-world, noisy data. The

47

MATLAB code producing these results for the 1-D test case is also available in 7.4

 Appendix D – MATLAB Code: Iterative GLS Regression.

Figure 17 1-D, 3rd-order case of bad data, 40% outlaying trend

Figure 18 Iterative GLS performance vs. OLS: (a) GLS (red) beats OLS (blue),
(b) Stabilization of GLS MSE of the transform errors

3.3.2 An Iterative Ridge Regression Technique

 With polynomial-based networks, the presence of excess monomials of

relatively high order leads to over-fitting or over-constraint of outputs in the

48

validation phase. This issue, discussed at length by Moody [68] and many others, is

known across CI methodologies as generalization error. This is illustrated for a one-

dimensional case in Figure 19, wherein a finite set of data points is fit by

increasingly higher order polynomials. Though all polynomial solutions pictured

from approximately 7th-order upward approximate the particular points rather well,

one observes that the higher order solutions will not translate to an accurate model

for interpolation of new values.

Figure 19 Curve-fitting of points with polynomials of increasingly higher order

With any polynomial network scheme, solutions may be discovered in the training

phases which exhibit multicollinearity [80]. In short, some polynomial terms may

have a nearly linear relationship to each other. Not only does this lead to solutions

with excess terms, but the collinear terms tend be over-sensitive to noise in the data

and to the introduction of new patterns. Standard regression techniques such as

OLS will not automatically suppress multicollinearity. Breheny and others have

shown that in fact, ridge regression is especially suited to improving computation

with multicollinear data [81].

49

3.3.2.1 Ridge Regression – Theory

 Ridge Regression (RR), developed by Hoerl and Kennard [82], purports

advantages for multi-dimensional computation. The basic formulation is similar to

both OLS and GLS:

 𝑊̂𝑟𝑖𝑑𝑔𝑒 = (𝑃̂
𝑇𝑃̂ + 𝜆𝐼)

−1
𝑃̂𝑇𝑌̂

𝑤ℎ𝑒𝑟𝑒 𝐼 ≡ 𝑡ℎ𝑒 𝑝 × 𝑝 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑝 ≡ #𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑒𝑟𝑚𝑠) (53)
 𝜆 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

It is instructive to note that this formulation is also similar to the Levenberg-

Marquardt algorithm for non-linear least squares problems [43]. Hoerl and

Kennard have observed that the function of the resulting diagonal matrix, λI, is to

“regularize” or shrink all coefficient magnitudes, Ŵridge, rendering a model that is

less sensitive to new patterns introduced during validation. This results in much

less variance between training and validation errors. Hoerl and Kennard pose

several key theorems. First, let us define the MSE of expected model outputs versus

training outputs, and alternately versus validation outputs. Additionally, we define

the expression for the variance between these two error measurements:

 𝑀𝑆𝐸𝑌̂ = ||𝑌̂ − 𝑃̂𝑊̂𝑇||
2

≡ 𝑀𝑆𝐸 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟𝑠

(54)

 𝑀𝑆𝐸𝑌̂∗ = ||𝑌̂∗ − 𝑃̂∗𝑊̂𝑇||
2

≡ 𝑀𝑆𝐸 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑠

(55)

 𝑉𝐴𝑅(𝑀𝑆𝐸𝑌̂, 𝑀𝑆𝐸𝑌̂∗) ≡ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑟𝑟𝑜𝑟𝑠 (56)

Findings of Hoerl and Kennard [82] are presented in the parlance of CI:

 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.1: 𝑎𝑠 𝜆 → ∞, 𝑉𝐴𝑅(𝑀𝑆𝐸𝑌̂, 𝑀𝑆𝐸𝑌̂∗) → 0

The total variance of validation versus training errors is a continuous,

monotonically decreasing function of increasing λ.

 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.2: 𝑎𝑠 𝜆 → ∞,𝑀𝑆𝐸𝑌̂ → ∞ 𝑎𝑛𝑑 𝑀𝑆𝐸𝑌̂∗ → ∞

The squared training and validation bias (error) is a continuous,

monotonically increasing function of increasing λ.

50

 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.3: (Existence Theorem) ∃𝜆 > 0, ∋ 𝑀𝑆𝐸𝑌̂(𝜆) < 𝑀𝑆𝐸𝑌̂(0)

There always exists a λ such that the MSE for ridge regression is less than the

MSE for OLS.

The results of these theorems are visualized in Figure 20 relative to OLS. From this

we can infer that an improved MSE is always achievable using ridge regression, and

it is numerically computable given that both variance and the square of the bias are

monotonic.

 Breheny presents a theorem which affords an additional benefit [81]:

 𝑇ℎ𝑒𝑜𝑟𝑒𝑚: ∀ 𝑃̂, (𝑃̂𝑇𝑃̂ + 𝜆𝐼) is always invertible, thus there is always

a unique solution of 𝑊̂𝑟𝑖𝑑𝑔𝑒.

This can be used to kick a regression process that is stuck on a singular matrix

inversion problem out of insolubility, simply by adding λI to the inversion term

where λ is very small.

Figure 20 Ridge Regression [83]: The variance-bias tradeoff, and performance vs.
OLS

51

3.3.2.2 Ridge Regression – Implementation

 Celov et al. propose a Newton-Raphson/Fisher-scoring numerical method to

compute an optimized λ, or “regularization parameter” [84]. In our context,

“optimized” equivalently means that this process will produce a minimum-variance

λ. This is useful for several reasons as will be discussed. Chiefly, it computes an

initial value for λ from which an optimized MSE can be found using Hoerl’s

Theorems 4.1 and 4.2; though the minimum-variance λ will also coincide with a

non-ideal bias, one can utilize the monotonicity of the proportional λ-bias

relationship to subsequently search for a smaller λ that yields an optimized MSE.

First, in developing algorithms which solve ridge regression, Shedden and other

researchers have defined the “effective degrees of freedom” of a ridge regression

problem as [85]:

 𝑑𝑓 = 𝑡𝑟𝑎𝑐𝑒[𝑃̂(𝑃̂𝑇𝑃̂ + 𝜆𝐼)
−1
𝑃̂𝑇] (57)

Trace refers to a standard operation in linear algebra [86]. It is observed that λ and

df cannot be solved for independently. Celov et al. use Singular Value

Decomposition (SVD) [87] in their formulation, assuming a given df :

𝑙𝑒𝑡 [𝑢 𝑠 𝑣] = 𝑆𝑉𝐷(𝑃̂) , 𝑑𝑖 ≡ 𝑖𝑡ℎ𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑛𝑡𝑟𝑦 𝑜𝑓 ′𝑠′

(58)

𝑑𝑓 =∑

𝑑𝑖
2

𝑑𝑖
2 + 𝜆

𝑝

𝑖=1

 , 𝑝 ≡ 𝑟𝑜𝑤𝑠 𝑜𝑓 𝑃̂

(59)

ℎ(𝜆) =∑

𝑑𝑖
2

𝑑𝑖
2 + 𝜆

𝑝

𝑖=1

− 𝑑𝑓 = 0 ,
𝜕ℎ

𝜕𝜆
= −∑

𝑑𝑖
2

(𝑑𝑖
2 + 𝜆)2

𝑝

𝑖=1

(60)

 ℎ(𝜆) ≅ ℎ(𝜆0) + (𝜆 − 𝜆0)
𝜕ℎ

𝜕𝜆
|𝜆=𝜆0 = 0

(61)

 𝜆 = 𝜆0 − [
𝜕ℎ

𝜕𝜆
|𝜆=𝜆0]

−1

ℎ(𝜆0)

(62)

 iterative summation: (63)

52

1. 𝑎𝑠𝑠𝑢𝑚𝑒 𝑑𝑖

2 = 1, 𝜆0 =
𝑝 − 𝑑𝑓

𝑑𝑓

(64)

 2. 𝜆𝑗+1 = 𝜆𝑗 + [∑
𝑑𝑖
2

(𝑑𝑖
2 + 𝜆𝑗)

2

𝑝

𝑖=1

]

−1

[∑
𝑑𝑖
2

𝑑𝑖
2 + 𝜆𝑗

− 𝑑𝑓

𝑝

𝑖=1

] (65)

Though (57) implies a computable solution, the above method still leaves the choice

of df as an open issue. Many researchers have suggested using various quantities

such as the total number of training patterns. This author has tried multiple

quantities by trial and error, and a serendipitous choice for df, applying RR to single-

layer polynomial networks, appears to be the degree of the polynomial, i.e., the

degree of the maximum-degree monomial. The results of this choice will be seen in

further sections. The MATLAB code implementing the numerical method of (58)-

(65), and the code completing the optimization of λ, are given in 7.5 Appendix E –

MATLAB Code: Iterative Ridge Regression.

 As an initial proof-of-concept, the RR technique was applied to a single-layer

polynomial network solution computed for a highly non-linear 2-input, 2500-point

dataset, DCDCgldd (detailed later). This implementation of the iterative ridge

regression process yields the training and validation results seen in Figure 21. The

standard OLS algorithm (PolyNet) produces a monotonically descending RMSE

trend line in training. But the generalization problem, inherent with polynomial and

other node-based solutions, is pronounced in validation where the RMSE line

diverges upward from that of the training line after the network is grown to greater

than approximately 100 nodes. In contrast, the RR implementation (PolyRidge)

yields a very similar shaped RMSE trend in both training and validation, and

sustains a better optimal RMSE in validation.

53

Figure 21 Ridge regression teaser: (PolyRidge) vs. OLS regression (PolyNet)

The shrinking of both λ and of the resulting training RMSE during the iterative

process are plotted in Figure 22.

Figure 22 Iterative Ridge Regression: Both λ (Left) and training RMSE (Right)

shrink monotonically towards optimal values during processing

3.3.3 Iterative Regression Hybrids Using OLS, GLS, and Ridge Methods

 In the course of the research for this work, several hybrid regression

techniques were explored among OLS, GLS, and RR methods. Multiple combinations

of these basic types were possible, and many were tested including:

 OLS + RR: 1) RR → compute min-variance solution, 2) OLS → optimize

 OLS + RR: 1) OLS → compute initial solution, 2) RR → optimize

54

 GLS + RR: 1) RR → compute min-variance solution, 2) GLS → optimize

 GLS + RR: 1) GLS → compute initial solution, 2) RR→ optimize

 GLS + RR: embedded → iteratively compute single optimization step

combining compute GLS and RR together (multiple implementations

possible)

 etc.

Winners and losers were borne out in the course of extensive initial testing not

included in this study. Only the most promising contenders were retained for

inclusion in several polynomial-based network variants, discussed in the following

Chapter. This section introduces these hybrid regression algorithms.

3.3.3.1 The GLS + Ridge Regression Minimum-Variance Hybrid

 A special result was discovered for one hybrid combination of GLS and RR

methods. By combining the two techniques, it was observed that an optimal

minimum-variance RMSE trend line is attainable relative to using either RR alone, or

in other combinations of RR with both OLS and GLS. The combination of methods is

trivial:

1. Compute the min-variance λminvar for given training inputs, max polynomial

order, and number of training patterns (See Appendix E: 6.5.1 7.5.1

 Computation of an Initial Minimum-variance λ – OLSridge_reg.m

excerpt).

2. Compute iterative GLS regression as before, incorporating the equation:

 𝑊̂𝑚𝑖𝑛𝑣𝑎𝑟 = (𝑃̂
𝑇Ω̂𝐺𝐿𝑆𝑃̂ + 𝜆𝑚𝑖𝑛𝑣𝑎𝑟𝐼)

−1
𝑃̂𝑇Ω̂𝐺𝐿𝑆𝑌̂ (66)

The MATLAB code for this regression hybrid can be seen in Appendix F: 7.6.1
 Iterative GLS + RR Minimum-Variance Regression – GLSminvar_reg.m
excerpts. The effect of this technique is seen below in Figure 23. Though the

terrible bias renders the method unusable as a final step of a regression process

aimed at accuracy, the near-equivalence of the training and validation RMSE curves

is remarkable. Again using the 2-input, 2500-point non-linear dataset, DCDCgldd,

the PolyNet algorithm (simple one-step OLS regression) exhibits expected

55

generalization error in validation. But the minimum-variance GLS-RR combination

results in almost no generalization error for the same training and validation

patterns. Furthermore, though the overall bias is untenable, the GLS-RR method

identifies during the training phase what could potentially be an optimal set of

monomial terms for this dataset. No such indications are present in this case or as

usual for Polynet or other similar OLS techniques. This points to the use of the GLS-

RR method as a potential “optimal model probe” which could be deployed as the

first phase of a multiple-step training algorithm. This “probe” effect has significant

potential not just for polynomial-based techniques, but for any node-based CI

technique which is normally susceptible to large generalization errors and training

inefficiencies.

Figure 23 Effect of GLS-RR minimum-variance method: minimal difference in
training and validation RMSE curves

3.3.3.2 The GLS + Ridge Regression Full Optimization Hybrid

 This hybrid regression method is similar to the previous GLS + RR method of

Section 3.3.3.1. However, the process is carried out to attain a minimum RMSE, as

with the standard RR algorithm of Section 3.3.2.2. Additionally, the order of

operations of this hybrid regression technique differs from that of the λminvar

process. In this hybrid method:

1. A full iterative GLS regression is performed as in Section 3.3.1.

56

2. The resultant numerator (𝑃̂𝑇Ω𝐺𝐿𝑆𝑓𝑖𝑛𝑎𝑙𝑌̂) and denominator (𝑃̂𝑇Ω̂𝐺𝐿𝑆𝑓𝑖𝑛𝑎𝑙𝑃̂)

from 1 are retained as constant matrices.

3. The iterative RR method of Section 3.3.2 is performed on these constant

matrices.

The MATLAB code of this hybrid method can be seen in Appendix F –

7.6.2 Iterative GLS + RR Full Optimization Regression – GLSridge_reg.m excerpts.

Results of the use of this method, incorporated into two different polynomial-based

network variants, are evaluated alongside other variants in Chapter 5, Experimental

Results.

3.4 Automated N-Dimensional Radial Clustering

 Due to the introduction of several compute-intensive iterative methods

herein, a solution was sought which can efficiently parse a multi-dimensional data

space into roughly uniformly distributed clusters from which sample patterns can

be extracted for training. For large datasets numbering in the thousands, or even

tens of thousands of patterns, iterative regression techniques can have prohibitive

run times. For experiments herein where GLS regression techniques were used, a

rapid, simple clustering method was adapted from an original algorithm by B.

Wilamowski [88] to forward-process an input training set, extracting no more than

approximately 300 sample patterns from evenly-distributed clusters. Note that this

is a clustering method employed not for traditional pattern classification, but for

segmentation of a multi-dimensional data space into roughly equivalent and

adjacent groupings. For an input training set with np total patterns:

1. Initialization: The first cluster is established as the first pattern: C1={P1}. A

threshold radius, r, is established. The first cluster center is established as

the first pattern: c1 = P1. The cluster pattern count, nc, is set to 1.

2. For the remaining patterns in the training set, Pn  P2 through Pnp,

if ||c1 – Pn|| < r, Pn joins this cluster set as C1={P1, Pn}, and the current cluster

center is updated incrementally as the following:

57

 𝑐1 =
𝑃2 + 𝑐1 ∗ 𝑛𝑐

𝑛𝑐 + 1
 (67)

Otherwise, if ||c1 – Pn|| ≥ r, Pn is compared against the next cluster, ck.

3. If Pn has been compared against all cluster centers, ck and has not become a

member of any, a new cluster is formed: C2 = {Pn}. The corresponding new

center is established: c2 = Pn. The cluster pattern count is incremented: nc =

nc + 1.

4. Cluster formation continues until the final pattern, Pnp, has been evaluated.

 The result of this algorithm can be seen in Figure 24. In this example, 5,000

uniformly distributed points are generated with the Matlab peaks() function, and

fast, forward-computed radial clustering is used to form first 7 total clusters, then

110. Since the only goal of this clustering method is to adequately parse the data

space into sectors sufficiently distributed around that space, complete accuracy is

not necessary for point density, number of cluster members, etc. In fact, this

method is computationally greedy, and cluster boundaries may overlap. This does

not violate the goal of distributing training pattern sampling uniformly throughout

the data space. As shown in Figure 24, clusters become more uniformly distributed

as the total number of centers increases.

58

Figure 24 Fast, forward radial clustering of the Matlab peaks() function: (a) 7
cluster centers, top view, (b) 7 cluster centers, 3-D view, (c) 110 cluster centers, top

view, (d) 110 cluster centers, 3-D view

 The MATLAB code for this clustering method can be seen in

7.9 Appendix I – MATLAB code: Fast, Forward-Computing N-Dimensional Radial
Clustering. As mentioned, all polynomial network variants which use iterative GLS

regression employ this clustering to reduce training set sizes considerably.

59

Chapter 4

 Proposed Polynomial-Based Learning Machines:

 Seven Variants within Three Species

 Many combinations of the methods introduced in Chapter 3 were

implemented in the course of extensive initial testing not included in this work.

Three predominant species of algorithms survived initial testing. Within those

species, seven combinations of techniques discussed have been retained as

promising PLM variants which are explored for the remainder of this study. All

seven variants are single-layer feed-forward networks following the topology and

node computation of the FLN model discussed in Section 1.1.1. Additionally, the

seven variants use the efficient monomial term generation algorithm of Section 3.1

in the course of solving for intermediate and final network parameters. However,

the application of the statistical and regression methods of Chapter 3 differs

significantly among the variants. Throughout this Chapter, “epoch” is defined as a

training sequence which results in the computation of a final set of monomial

coefficients for a particular network at a particular polynomial degree.

4.1 PolyNet Species – The Initial Next-Generation Polynomial Learning Machine

 PolyNet is the most basic variant developed, and is the only member of the

PolyNet species. It operates according to the following steps.

For given training pattern inputs and outputs, and for increasing maximum

polynomial degree:

1. Generate monomial term indices and compute polynomial products

according to Section 3.1.

2. Perform one-step OLS regression, as in (21), to obtain monomial

coefficients.

60

3. RETAIN the resultant nonzero final monomial coefficients and their term

indices for the current training’s epoch.

4. STOP if either the maximum degree, or the max number of complete

polynomial terms, computed by (8), has been reached. ELSE REPEAT 1

through 3 for the next highest maximum polynomial degree.

A flowchart for the logic of PolyNet is seen in Figure 25. The MATLAB code for the

PolyNet variant can be examined in Appendix G – 7.7.1 The PolyNet Variant –

PolyNet.m excerpts.

START

X  training inputs
Y  training outputs
pterms = 0
ord = -1
ni = # inputs

pterms < Pthresh
AND

ord < maxord
RETURN

ord++
pterms =

(ord+ni)!/
(ord!ni!)

1. generate monomial term indices
2. generate: P = f(X,indices)

PolyNet
Wtemp = OLS(P,Y)

Other
Variants

yes

no

Wepoch=nonzero(Wtemp)

Common
Front-

End

PolyNet

Entry point
from

Variants

Figure 25 Flowchart for the PolyNet PLM variant

4.2 The PolyStat Species – Utilizing Statistical Pruning of Monomial Terms

 Four of the final variants make use of the forward-computed statistical

tabulation outlined in Section 3.2 in order to trim or prune monomial network

terms following iterative regression steps. Additionally, these four variants can

61

each be considered extensions of PolyNet, essentially using that algorithm as a

common front-end processor as depicted in Figure 25. The four variants differ in

their use of the different regression algorithms introduced in Section 3.3. The

PolyStat variants are:

 PolyStat – statistical term pruning plus standard OLS regression

 PlyGLS_P – same as PolyStat with iterative GLS regression instead of OLS

 PlyOLSR_P – same as PolyStat with iterative RR instead of OLS

 PlyGLSR_P – same as PolyStat with iterative hybrid GLS+RR instead of OLS

The PolyStat family of variants operates according to the following steps.

For given training pattern inputs and outputs, and for increasing maximum

polynomial degree:

1. Generate monomial term indices and compute polynomial products

according to Section 3.1.

2. Randomize the order of the training patterns, and extract a subset of

these training patterns.

3. Iteratively per training pattern subset: Perform either one-step OLS

regression, or iterative regression (GLS, OLSR, or GLSR, described in

Section 3.3) to obtain a set of temporary monomial coefficients.

4. Compute running means and standard deviations of each coefficient per

iteration.

5. REPEAT 2 through 4 until EITHER the sum of the running gradients of the

coefficient means stabilizes below a threshold, OR until the maximum

number of iterations is reached.

6. COMPUTE a threshold for the maximum-allowed STD per individual

coefficient terms.

7. REMOVE monomial terms whose coefficient STDs are above the

threshold computed in 6.

8. IF terms were removed in 7, CONTINUE steps 3 through 7 with the

pruned set of monomial terms.

62

9. ELSE, RETAIN the resultant nonzero final monomial coefficients and their

term indices for the current training’s epoch.

10. STOP if either the maximum degree or the max number of complete

polynomial terms, computed by (8), has been reached. ELSE REPEAT 1

through 9 for the next highest polynomial degree.

A flowchart for the PolyStat variants is seen in Figure 26. The MATLAB code for the

all PolyStat variants is nearly identical to that seen in Appendix C – Option 2

Example – PolyStat.m excerpts. As mentioned previously, the variants differ only in

the regression method employed.

START

Front-End
from

PolyNet

PolyStat
Wtemp = OLS(P,Y)

Wmeans = mean(Wtemp)
Wstd = std(Wtemp)

∆Wmeans <= max∆Wmeans
OR

iter > maxiter

PolyGLS_P
Wtemp = GLS(P,Y)

PolyOLSR_P
Wtemp = OLSR(P,Y,ord)

PolyGLSR_P
Wtemp = GLSR(P,Y,ord)

1. randomize training inputs
2. extract training subset no

Wstd_i > maxWstd remove all: Pi(maxWstd_i > maxWstd) = {0}

yes

yes

PolyStat Variants:
PolyStat, PolyGLS_P,

PolyOLSR_P, PolyGLSR_P

no

OR OR OR

Wepoch = nonzero(Wmeans)

Figure 26 Flowchart for the PolyStat family of PLM variants

4.3 The PolyPaP Species – A Probe-and-Prune Methodology

 Two of the final variants incorporate two regression stages. In the first stage,

the minimum-variance GLS regression of Section 3.3.3.1 is applied as a probe to seek

63

the optimal polynomial degree and monomial term set for a particular solution in an

attempt to defeat generalization issues in later stages. In the second stage, all

monomial terms are regenerated at once at the optimal order discovered in the first

stage. Then, one of two regression methods is applied to iteratively seek a final

monomial set which is optimized for minimum RMSE applied to the training

patterns. Additionally during the second stage, running statistics are accumulated

as with the PolyStat variants. However, at the end of a training epoch, the final

statistical quantities are used to identify only the single monomial term whose

coefficient exhibited the greatest excursion during training iterations. This single

term is removed from the solution set, and training proceeds until no terms remain

in the set. The two PolyPaP variants differ in their use of two regression algorithms

introduced in Section 3.3. The PolyPaP variants are:

• PlyPaPGLS – optimal polynomial degree probe, plus GLS regression and

statistical term pruning

• PlyPaPGLSR – same as PlyPaPGLS with iterative hybrid GLS+RR regression

The PolyPaP family of variants operates according to the following steps.

For given training pattern inputs and outputs:

Part I – Minimum-Variance Probe

1. Per current polynomial degree, generate monomial term indices and

compute polynomial products according to Section 3.1.

2. Perform the iterative minimum-variance GLS regression.

3. COMPUTE errors: If a current lowest MSE is computed, RETAIN the

current order as ProbeOrder.

4. STOP if either the maximum degree or the max number of complete

polynomial terms, computed by (8), has been reached. ELSE REPEAT 1

through 3 for the next highest polynomial degree.

Part II – Iterative Regression and Pruning

1. Generate all monomial terms at the polynomial degree equal to

ProbeOrder found in Part I.

64

2. Randomize the order of the training patterns, and extract a subset of

these training patterns.

3. Iteratively per training pattern subset: Perform either iterative GLS

regression, or full iterative GLS+RR regression (described in Section 3.3)

to obtain a set of temporary monomial coefficients.

4. Compute running means and standard deviations of each coefficient per

iteration.

5. REPEAT 2 through 4 until EITHER the sum of the running gradients of the

coefficient means stabilizes below a threshold, OR until the maximum

number of iterations is reached.

6. REMOVE the single monomial term whose coefficient STD is the

maximum. Pterms = pterms – 1. RETAIN the resultant nonzero final

monomial coefficients and their term indices for this epoch.

7. STOP if pterms < 1. ELSE REPEAT 2 through 6 with the reduced

monomial term set.

A flowchart for the minimum-variance probe phase of the PolyPaP variants is

seen in Figure 27. The flowchart for the optimization and pruning phase is seen in

Figure 28. The MATLAB code for the all PolyPaP variants appears in Section 7.7.2 of

Appendix G – PlyPaPGLSR.m excerpts. As mentioned previously, the variants differ

only in the regression method employed for the second phase.

65

START
Probe

Sequence

X  training inputs
Y  training outputs
pterms = 0
ord = -1
ni = # inputs
lastMSE = 999

pterms < Pthresh
AND

ord < maxord

ord++
pterms =

(ord+ni)!/
(ord!ni!)

1. generate monomial term indices
2. generate: P = f(X,indices)

Wtemp =
GLSminvar(P,Y,ord)

yes

no

Poly Probe-and-Prune Variants:
PlyPaPGLS, PlyPaPGLSR

||Y-P’*Wtemp||^2 < lastMSE

1. lastMSE = ||Y-P’*Wtemp||^2
2. ProbeOrd = ord

no

CONTINUE
Prune

Sequence

yes

Figure 27 Flowchart for the Probe phase of the PolyPaP family of PLM variants

START
Prune

Sequence

X  training inputs
Y  training outputs
ord = ProbeOrd
pterms = (ord+ni)!/(ord!ni!)

pterms >= 1

PlyPaPGLS
Wtemp = OLSR(P,Y,ord)

PlyPaPGLSR
Wtemp = GLSR(P,Y,ord)

Wmeans = mean(Wtemp)
Wstd = std(Wtemp)

∆Wmeans <= max∆Wmeans
OR

iter > maxiter

1. randomize training inputs
2. extract training subset

no

1. Wepoch = nonzero(Wmeans)
2. search: Pi(maxWstd_i)
3. remove one: Pi(maxWstd_i) = {0}
4. pterms - -

yes

Poly Probe-and-Prune Variants:
PlyPaPGLS, PlyPaPGLSR

RETURN no

yes

OR

1. generate monomial term indices
2. generate: P = f(X,indices)

Figure 28 Flowchart for the Solve/Prune phase of the PolyPaP family of PLM
variants

66

4.4 Summary of Polynomial-Based Learning Machine Variants

 The main differences of the variants presented are summarized as a feature

list in Table VI. These variants comprise the original methods of this study which

will be deployed against other prominent learning machine processes found in the

current literature.

Table VI

Feature Set of Polynomial-Based Learning Variants

Species

Poly

Variant

Min-Var

Probing

Regression Type Statistical

Smoothing

STD(ΔCoeff) Term Pruning

OLS GLS OLSR GLSR == 0 Threshold Single

PolyNet PolyNet X X

PolyStat

PolyStat X X X X

PlyGLS_P X X X X

PlyOLSR_P X X X X

PlyGLSR_P X X X X

PolyPaP
PlyPaPGLS X X X X X

PlyPaPGLSR X X X X X

67

Chapter 5

Experimental Results

 The particular testing methodologies, adopted from other current rigorous

studies, are discussed herein. Finally, results and findings from multiple

experiments with two types of benchmark problems are discussed. All competing

algorithms are exercised against nine total datasets within the two types.

5.1 Test Methodology

 The proposed PLM variants and all competing CI methods were implemented

according to theory and code specified by the original authors. The runtime

parameters for the all methods were set based on the best performance observed

during initial trials against the particular problems tested, and are noted within the

results of the following sections.

 The testing environment for all experiments consists of running 64-bit

MATLAB(vR2013b) implementations of all algorithms over a 64-bit CentOS Linux

operating system. All experiments were run in MATLAB’s single-core mode on an

Intel Core i7-3770 CPU @ 3.4GHz, with 8GB of RAM.

 For all datasets in this study, both training and validation pattern vector

input values were normalized over the range [-1:1]. Pattern vector outputs were

normalized over the range [0:1]. For industrial electronics datasets using generated

data, further processing was used to adequately simulate noise conditions in

training. This will be discussed in detail in the next Section.

 For all experiments, a 70/30 k-fold process was run for 20 separate trials per

CI algorithm, and the final parametric results were averaged over the 20 trials. As

implied by the 70/30 k-fold, the entire dataset is first randomized, and then 70% of

the total dataset for each experiment is chosen for training, while a specific 30% of

68

training vectors are withheld for validation only. The next “fold” in the process

withholds a different 30% for validation, and so on. The process repeats until all

data patterns have been cycled through the validation process. All algorithms see

the exact same permutations of the training and validation sets per each of the 20

trials of each experiment. All time metrics are measured in seconds, and all error

metrics are evaluated with the standard Root-Mean-Squared Error (RMSE):

 𝑅𝑀𝑆𝐸 = √
∑ 𝑒𝑝2
𝑛𝑝
𝑝=1

𝑛𝑝

where: np ≡ # of patterns computed (68)
 e ≡ absolute error of output vs. desired

5.2 Experiments with Industrial Electronics Problems

 Many applications of CI methods are found in the area of industrial

electronics. Two such problems are used for experiments herein: 1) output voltage

control for a DC-DC converter under variable load, and 2) resolution of angular pose

data from a 2-segment robotic arm to 3-D spatial location. For these problems,

2,500 uniformly distributed patterns were randomly generated over the normalized

range [-1:1] for the function inputs. For training only, Gaussian distributed noise is

added to the outputs, normalized in the range [0:1], with a 5% STD to simulate

imperfect real-world data. For validation/testing, no noise is added to the simulated

output data. This comprises a rigorous test of the algorithms’ generalization

abilities.

5.2.1 Voltage Control for a Czuk DC-DC Converter

 An up-down Czuk DC-DC converter [89] is pictured in Figure 29. An example

of individual component transient responses is pictured in Figure 30, where the

circuit reaches stability after approximately 30ms. A voltage control system can be

realized which targets a stable output voltage over C2 based on output load and

duty-cycle of the switching pulse. 2,500 uniformly distributed data points were

generated, representing load-conductance/duty-cycle pairs as constrained by

69

simulation of the circuit. Figure 31 shows the steady-state control surface of the

problem parameters in relation to the desired output voltage.

Figure 29 A Czuk up-down DC-DC converter circuit

Figure 30 The Czuk DCDC Converter: Non-linear transient responses, 0 to 30ms

5.2.2 3-D Reverse Kinematics Control

 A 3-D reverse-kinematics dataset was created. This emulates a control

system that must transform the angles measured from the stepper motors on pivot

points of a two-segment robotic arm to the resultant Cartesian location of the tip of

the arm assembly as depicted in Figure 33(a). 2,500 points were generated from

randomly distributed input angles according to the following three equations:

 𝑥 = 𝑅1 cos 𝛼 + 𝑅2 cos(𝛼 + 𝛽)

 𝑦 = (𝑅1 sin 𝛼 + 𝑅2 sin(𝛼 + 𝛽)) × cos𝜙 (69)

 𝑧 = (𝑅1 sin 𝛼 + 𝑅2 sin(𝛼 + 𝛽)) × sin 𝜙

70

The distribution of points occupies a sphere of all possible locations of the tip of the

arm assembly in Cartesian space, and can be seen in Figure 32. The highly non-

linear nature of the resulting functions can be seen in the 2-D mappings of two such

angles to one Cartesian dimension as in Figure 33(b). For the experiments herein,

the 3-angle y component solution is exercised.

Figure 31 Czuk Converter: non-linear steady state relationships between load

conductance and duty-cycle vs. output voltage

Figure 32 3-D reverse-kinematics: Resultant arm tip distribution in free-space of

randomly generated angle positions

71

Figure 33 (a) Reverse-kinematics problem: input angles are mapped to Cartesian
coordinates (x, y, z), (b) x-position vs. two input angles

5.2.3 Results for Two Industrial Electronics Problems

 All CI algorithms discussed herein were run on the Czuk DC-DC and 3-D

reverse-kinematics datasets. For the I-ELM variants, an impact factor of 2.7583 was

set and centers were chosen randomly from the input domain. For the SVR

algorithm, γ was set to 2-1, ϵ = 2-3, and C was set to 1. For the four PLM variants that

utilize threshold-based statistical pruning of terms based on calculated noise in the

term coefficients, the stdscale parameter must be set. This represents a threshold of

the number of normalized standard deviations above or below the mean STD of all

term coefficients at which terms will be excised. Those factors are noted within the

tabulated results.

5.2.3.1 Training and Validation Times for IE Problems

 Figure 34 and Figure 35 display the captured run times for all algorithms

operating on the two IE problems. The original PolyNet algorithm has the shortest

training times of all algorithms tested across all comparable network sizes. Due to

the multiple iterative processes contained within the other PLM variants, their

training times can be orders of magnitude above the majority. Algorithms which

contain both statistical term pruning and compound regression techniques, such as

72

PlyPaPGLS, require significantly longer run times. In these plots and others to

follow, the PLM variants which utilize term pruning by threshold can exhibit non-

monotonicity when compared with other algorithms evaluated per increasing node

count. This occurs since monomial terms are generated according to increasing

polynomial order, yet subsequent evaluation of coefficient noise during iterative

training may dictate trimming more terms at later generation stages compared to

earlier ones. Such plot traces are registered with data markers rather than with

continuous lines. Examples of such occurrences can be seen with PlyGLS_P in Figure

34, and with PolyStat, PlyGLS_P, and PlyOLSR_P in Figure 35.

Figure 34 Total training times for all algorithms up to 200 nodes: DC-DC problem

 Since the 3-D kinematics dataset exhibits both an additional dimension and a

greater degree of non-linearity than the DC-DC problem, all training times rise for all

algorithms as expected. However, the original PolyNet algorithm with one-step OLS

regression remains relatively unchanged. Finally, it is noted that the ANN-SLP

network rises sharply in training time compared to other methods as expected, due

to the costly matrix computations inherent with LM-based neural network methods.

73

Figure 35 Total training times for all algorithms up to 400 nodes: 3-D Kinematics

problem

 For some applications, certainly for real-time uses or for any tasks in which

compute time of the network is critical, validation time is more important than

training time. One expects the stable, optimized network to require much less

compute time per output computation. For all experiments herein, validation time

is tabulated not as a running total as with training time, but is measured instead per

each optimized network node size following each training cycle. This more

accurately indicates performance of each algorithm under deployed conditions.

 Such validation time results are seen in Figure 36 and Figure 37 for the DC-

DC and Kinematics datasets, respectively. It is most notable that all PLM variants

produce final optimized networks which are almost two orders of magnitude more

efficient than all other methods except SVR-RBF. SVR-RBF also shares an advantage

with only the N-D fuzzy system in that run time across a range of network sizes is

relatively stable. This is useful particularly for hardware implementations where

compute times are highly dependent upon a stable number of clock cycles. Among

the PLM variants, all enhanced methods produce slightly more efficient optimized

networks than the original PolyNet. This is likely due to the pruning of higher order

terms from the final polynomial product engine, whereas all high-order terms are

retained with the original algorithm. This is generally the case, but is not

guaranteed for the solution of every dataset.

74

Figure 36 Validation times per network size vs. nodes for all algorithms: DC-DC
problem

Figure 37 Validation times per network size vs. nodes for all algorithms: 3-D

kinematics problem

5.2.3.2 Training and Validation Accuracy for IE Problems

 For algorithms which exhibit good generalization performance (which may

itself vary versus different datasets) training error is usually a decent indication of

validation accuracy. In general, it is expected that validation accuracy will lag

behind training accuracy due to the inability of the training processes to directly

75

infer new patterns encountered during validation. However, for the two IE

problems, it is important to recall that significant noise was added to the trained

output values which accounts for higher than usual training error in these cases. As

such, most algorithms showed a decrease in performance error from training to

validation.

 Comparing Figure 38 through Figure 41, we see that the ANN-SLP algorithm

achieved the best overall accuracy for both problems. However, three PLM variants

– PolyNet, PolyStat, and PlyOLSR_P – achieved validation errors almost as low for

both. These variants also converged to optimal performance with reasonably

economical networks totaling less than 100 nodes each. Two PLM variants,

PlyGLS_P and PlyPaPGLS, exhibit good generalization, but extremely poor error bias

overall for both IE problems. It is possible that the GLS component of these

algorithms tracks the normal noise added to the training outputs as the

predominant trend in the data. Thus, where one counts on GLS to do particularly

well in the presence of truly random and asymmetric noise, it is possible that it is

duped to track noise with a symmetric normal distribution as the predominant

trend in the data.

Figure 38 Training error for all algorithms up to 200 nodes: DC-DC problem

76

Figure 39 Validation error for all algorithms up to 200 nodes: DC-DC problem

 Particularly for the Kinematics problem, the PLM variants incorporating RR

have almost identical traces between training and validation, attesting to the

exceptional generalization enhancement afforded by the technique. Though

validation error for these variants is unimpressive for these datasets, further

experimentation will yield more promising qualities.

Figure 40 Training error for all algorithms up to 400 nodes: Kinematics problem

77

Figure 41 Validation error for all algorithms up to 400 nodes: Kinematics problem

5.2.3.3 Tabulation of IE Dataset Results

 Table VII displays the relevant efficiency metrics for the thirteen algorithms

compared against the IE datasets. Training and validation/testing times are in

seconds, and the final optimized network sizes are expressed as the number of

computational nodes. In the case of the TSK FS, the number of nodes denotes the

number of values in the optimized fuzzy output table. Winners are noted in green

bold, and honorable mentions are noted in green italics. Significant last-place

finishers are highlighted in red.

TABLE VII
Algorithm Efficiencies: Processing Times and Network Size IE Problem

Algorithms

Czuk DCDC 3-D Kinematics

Training
[s]

Testing
[s]

Nodes
[#]

Training
[s]

Testing
[s]

Nodes
[#]

ANNSLP 1.9185 0.0480 7 12.3101 0.1480 20
TSK Fuzzy 21.877 0.3905 353 387.71 0.4637 11201
I-ELM 4.1230 1.4662 995 3.9960 1.5369 993
EI-ELM 41.168 1.7415 998 32.440 1.3298 996
CI-ELM 2.7211 1.1590 999 3.8145 1.5443 996
SVR-RBF 31.023 0.0176 972 46.624 0.0166 999
PolyNet 0.0361 0.0012 62 0.0450 0.0024 85
PolyStat 1.0022 0.0008 55 173.62 0.0009 86
PlyOLSRP 1.3737 0.0010 63 227.23 0.0011 151
PlyGLSP 0.8615 0.0005 28 0.3376 0.0003 20
PlyGLSRP 4.8895 0.0014 70 2.6381 0.0007 83

78

Algorithms

Czuk DCDC 3-D Kinematics

Training
[s]

Testing
[s]

Nodes
[#]

Training
[s]

Testing
[s]

Nodes
[#]

PlyPaPGLS 2,313.3 0.0003 455 955.98 0.0001 451
PlyPaPGLSR 78,772 0.0128 3 36,028 0.0077 72

 In terms of computational efficiency for training the network, the original

PolyNet PLM is the most efficient, beating the closest rivals by two orders of

magnitude. This is valuable for applications that require rapid turnaround, or for in-

situ network retraining in cases where solutions are sought that must adapt to new

trends in incoming data.

 In terms of efficiency for the testing of the deployed networks, the PLM

variants are arguably best. Though they require more nodes than the ANN, the real-

time computation cycles of the tanh kernel function of the ANN exceed that which is

necessary for the simple product and sum operations of the PLM node functions. As

such, the testing times of the final PLM networks attest to their optimal efficiency.

 The final and perhaps most important metric is network accuracy,

particularly in the deployed stage, depicted by the testing results of TABLE VIII. The

single-layer ANN, trained with the NBN algorithm, remains the winner for both

datasets tested. The PolyStat and PlyOLSR_P PLM variants performed almost as

well as the ANN for the DCDC problem. For the higher-dimensionality and non-

linearity of the 3-D kinematics problem, PolyNet achieved an honorable second-

place among all contenders. It is again noted that in most cases, testing RMSE was

better than training RMSE due to the addition of Gaussian noise to the training

outputs in the simulated system. The training RMSEs were computed against

pristine training pattern outputs without noise, yielding higher training errors than

expected compared to real-world data conditions.

79

TABLE VIII
Algorithm Accuracy: Average Training and Testing RMSEs per IE Problem

5.3 Experiments with Real-World Repository Datasets

 Multi-dimensional complex datasets were obtained from the University of

California at Irvine repository of machine learning databases [77] for the following

experiments. The sources of the data vary widely, and include but are not limited to

biological sciences, retail marketing, computer analytics, and manufacturing. The

datasets selected are often a mix of continuous and multi-modal discrete data, are

highly non-linear, and express many input dimensions. Generally, these datasets are

too complex to analyze or model with closed-form methods, and as such are

regularly utilized as benchmark datasets in the current literature. Table IX

introduces key specifications of the seven datasets used. Once again, each algorithm

is run for 20 trials of a 70/30 k-fold validation process. During each trial, each

algorithm is fed the same randomized training and testing set as all other

algorithms.

Algorithms

Czuk DCDC 3-D Kinematics

Training Testing Training Testing

ANN-SLP 0.0401 0.0079 0.0421 0.0217
TSK Fuzzy 0.0387 0.0170 0.0397 0.0390
I-ELM 0.0493 0.0292 0.1321 0.1288
EI-ELM 0.0495 0.0300 0.1306 0.1264
CI-ELM 0.0483 0.0274 0.1327 0.1289
SVR-RBF 0.0421 0.0170 0.0528 0.0432
PolyNet 0.0393 0.0087 0.0272 0.0362
PolyStat 0.0397* 0.0082 0.0482† 0.0393
PlyOLSRP 0.0397** 0.0081 0.0456† 0.0471
PlyGLSP 0.0438*** 0.0188 0.1357*** 0.1297
PlyGLSRP 0.0421†† 0.0148 0.1313†† 0.1267
PlyPaPGLS 0.0670 0.0509 0.1312 0.1306
PlyPaPGLSR 0.0945 0.0868 0.1411 0.1356

* setscale = 3.3 *** setscale = 2.0

** setscale = 3.6 †† setscale = 2.5

† setscale = 1.75

80

Table IX
Benchmark Datasets: Specifications for 70/30 k-fold Testing

Dataset # Training Vectors # Testing Vectors Dimensionality

1 Abalone 2924 1253 8
2 Auto Price 112 47 15
3 Boston Housing 355 151 13
4 California Housing 14448 6192 8
5 Delta Ailerons 4991 2138 5
6 Delta Elevators 6662 2855 6
7 Machine CPU 147 62 6

 Optimal results are selected for each algorithm on the basis of minimum

testing RMSE obtained for a converging solution. The PLM and I-ELM variants are

allowed to compute up to 500 terms/nodes on the way toward convergence. The

SVR-RBF algorithm is allowed to compute up to 1,000 nodes. The ANN-SLP is

allowed to compute up to 20 nodes per solution network due to the comparatively

long training times for the NBN training algorithm. The N-D Fuzzy system computes

up to 100,000 stored output table values on its way toward an optimal solution.

 For all datasets, the I-ELM variants used an impact factor of 2.7583, and

initial RBF centers were chosen randomly from the input domain. For the SVR

algorithm and for the four PLM variants that use threshold-based pruning of terms,

optimal parameters were discovered and set as indicated in Table X.

Table X

Optimal Parameter Settings per Dataset for SVR and PLM Variants

 SVR PolyStat PlyOLSRP PlyGLSP PlyGLSRP

Dataset C γ stdscale
Abalone 24 2-6 2.5 2.75 2.0 2.5
Auto Price 28 2-5 3.0 2.75 2.75 2.75
Boston Housing 24 2-3 2.0 2.5 2.0 2.5
California Housing 23 21 2.5 2.5 2.0 2.5
Delta Ailerons 23 2-3 1.75 2.5 2.0 2.0
Delta Elevators 20 2-2 2.0 2.75 2.0 2.5
Machine CPU 26 2-4 2.5 2.75 2.75 2.5

 Key metrics are plotted for two of the seven datasets. The Boston Housing

and Machine CPU datasets provide certain insights into the attributes of the seven

PLM variants. The Boston Housing dataset features particularly high input

dimensionality (13) which will exercise the algorithms’ ability to approach

81

convergence under such circumstances. The Machine CPU dataset expresses

moderate dimensionality, but also mixes bimodal and continuous data and high

variance within certain input dimensions.

5.3.1 Training and Testing Times for Real-World Datasets

 The training time plots of Figure 42 and Figure 43 exhibit a non-

monotonicity for the original PolyNet variant. Though no statistical term pruning is

included in this method, terms with zero-value coefficients following one-step linear

regression are certainly omitted. Due to this, it is possible to see where the

algorithm progress starts to yield excess terms as polynomial order increases, yet

new coefficients resolve to zero. As with the IE problems, the original PolyNet is

unbeatable for training speed. Also as before, the more complex PLM variants take

orders of magnitude longer to solve for equivalent sized networks.

 We also note that one of the “probe and prune” algorithms, PlyPaPGLS,

computes terms only up to the order found to indicate minimal RMSE during the

initial hybrid GLS-RR ridge regression phase. Ideally, overall training time should

be reduced as the process truncates unnecessary computation.

Figure 42 Total training times for all algorithms up to 600 nodes: Boston Housing

82

Figure 43 Total training times for all algorithms up to 400 nodes: Machine CPU

 All PLM variants again show superior validation time performance for the

optimized networks, as seen in Figure 44 and Figure 45. One algorithm, SVR-RBF,

produces a more efficient result than PolyNet for networks roughly larger than 200

terms for the Boston Housing dataset. All PLM variants produce more efficient

equal-sized networks for the Machine CPU dataset.

Figure 44 Validation times per network size vs. nodes for all algorithms: Boston
Housing

83

Figure 45 Validation times per network size vs. nodes for all algorithms: Machine
CPU

5.3.2 Training and Validation Accuracy for Real-World Datasets

 The excellent generalization abilities of all but two of the algorithms are

evident while examining the training and validation results of Figure 46 and Figure

47 for the Boston Housing dataset. PolyNet and ANN-SLP exhibit large variance

between training and validation error for this dataset. For the single epochs plotted,

SVR-RBF and PlyPaPGLSR produce the best testing error. For the 20 x 70/30 k-fold

trials, the PlyPaPGLSR algorithm wins more decisively as will be examined.

84

Figure 46 Training error for all algorithms up to 600 nodes: Boston Housing

Figure 47 Validation error for all algorithms up to 600 nodes: Boston Housing

 Very similar results are seen for the training and validation error plots of

Figure 48 and Figure 49. The PlyPaPGLSR algorithm is again the winner by a small

but definitive margin, though the optimal solution is not computed until the

network grows to over 300 terms. Though the generalization performance of

PolyNet and PlyPaPGLS is again poor, those and the remaining PLM variants find a

much smaller competitively accurate network in less than 30 nodes for this dataset,

85

as seen in Figure 49. Given this, it is important to realize that lowest validation

RMSE is not necessarily the most important metric for all applications, as a more

concise network with slightly reduced error performance may be desirable in many

cases.

Figure 48 Training error for all algorithms up to 400 nodes: Machine CPU

Figure 49 Validation error for all algorithms up to 400 nodes: Machine CPU

86

5.3.3 Tabulation of Real-World Dataset Results

 All seven repository datasets were run using the 20 x 70/30 k-fold process as

previously described. Training and validation runtimes and optimized network

node count are displayed for all algorithms versus all datasets in Table XI through

Table XIII. Per each dataset, the winners are highlighted in green bold, and numeric

values close to these (“runner-ups”) are highlighted in green italics. Results which

show particular inefficiency are highlighted in red. Overall, the PLM variants make a

strong showing for the cases of training and validation efficiency. The original

PolyNet variant is consistently at or near first place of all algorithms studied in

training time. In general, one or more PLM variants place at or near first in

validation times for every dataset. Additionally, all PLMs generally score well in

final optimized network size, though the ANN-SLP algorithm is in first place in this

category for almost every dataset.

Table XI
Average Processing Times and Network Size per Datasets 1-3

Algorithms

Abalone Auto Price Boston Housing

Training
[s]

Testing
[s]

Nodes
[#]

Training
[s]

Testing
[s]

Nodes
[#]

Training
[s]

Testing
[s]

Nodes
[#]

ANNSLP 0.4787 0.0330 2 0.0089 0.0028 1 0.2306 0.0076 5
TSK Fuzzy 1,868.4 2.0228 65,536 896.32 3.5710 32,768 212.23 1.0103 8,192
I-ELM 0.5990 0.2843 500 0.0203 0.0106 500 0.0822 0.0326 500
EI-ELM 5.9603 0.2903 500 0.1777 0.0105 500 0.6910 0.0330 500
CI-ELM 0.6098 0.2791 500 0.0204 0.0105 500 0.2237 0.0328 500
SVR-RBF 0.2659 0.4454 1,000 0.0294 0.0061 112 0.0461 0.0064 156
PolyNet 0.0056 0.0015 18 0.0005 0.0003 16 0.0070 0.0016 100
PolyStat 0.0505 0.0024 13 0.0065 0.0007 16 0.1602 0.0009 104
PlyOLSRP 8.9766 0.0029 9 0.0506 0.0014 16 0.3011 0.0019 13
PlyGLSP 2.3405 0.0018 9 0.0398 0.0020 16 0.8112 0.0013 105
PlyGLSRP 62.803 0.0046 163 0.2733 0.0023 16 29.651 0.0010 104
PlyPaPGLS 738.72 0.0005 144 0.8337 0.0003 6 63.706 0.0002 80
PlyPaPGLSR 4986.8 0.0022 71 122.72 0.0003 85 5522.1 0.0011 391

Table XII

Average Processing Times and Network Size per Datasets 4-5

Algorithms

California Housing Delta Ailerons

Training
[s]

Testing
[s]

Nodes
[#]

Training
[s]

Testing
[s]

Nodes
[#]

ANNSLP 70.936 0.8275 17 18.604 0.2560 15
TSK Fuzzy 7,154.6 13.082 65,536 3,752.12 1.7204 100,000

87

Algorithms

California Housing Delta Ailerons

Training
[s]

Testing
[s]

Nodes
[#]

Training
[s]

Testing
[s]

Nodes
[#]

I-ELM 1.8631 1.2970 500 0.5511 0.4466 500
EI-ELM 14.554 1.2650 500 5.3020 0.4852 500
CI-ELM 1.4608 1.2820 500 0.5453 0.4750 500
SVR-RBF 6.0684 0.0777 400 0.2499 0.0203 807
PolyNet 0.1183 0.0316 39 0.0563 0.0134 56
PolyStat 2.2587 0.0122 45 0.8330 0.0028 56
PlyOLSRP 0.1222 0.0023 9 0.2936 0.0007 21
PlyGLSP 408.34 0.0028 45 174.89 0.0021 60
PlyGLSRP 60.580 0.0120 162 18.705 0.0073 103
PlyPaPGLS 3,591 0.0011 30 14,854 0.0008 217
PlyPaPGLSR 3,644.4 0.0024 19 53,289 0.0079 24

Table XIII

Average Processing Times and Network Size per Datasets 6-7

Algorithms

Delta Elevators Machine CPU

Training
[s]

Testing
[s]

Nodes
[#]

Training
[s]

Testing
[s]

Nodes
[#]

ANNSLP 4.5820 0.1413 5 0.1944 0.0047 8
TSK Fuzzy 485.14 2.8707 15,625 181.46 0.0650 12,388
I-ELM 0.8651 0.6349 500 0.2549 0.0129 500
EI-ELM 8.5861 0.6363 500 0.3078 0.0128 500
CI-ELM 0.8789 0.5946 500 0.0353 0.0129 500
SVR-RBF 1.0234 0.0506 1,000 0.0265 0.0060 133
PolyNet 0.1395 0.0385 84 0.0003 0.0001 7
PolyStat 2.1873 0.0062 84 0.0032 0.0005 7
PlyOLSRP 0.3279 0.0012 28 0.0379 0.0015 10
PlyGLSP 340.28 0.0034 84 0.0320 0.0020 9
PlyGLSRP 46.526 0.0100 134 31.368 0.0010 137
PlyPaPGLS 936.88 0.0006 8 51.495 0.0001 196
PlyPaPGLSR 1,303.6 0.0007 9 14,140 0.0037 314

 The tabulated results for training and validation error for all experiments

run against all repository datasets are listed in Table XIV and Table XV. Though the

ANN-SLP algorithm prevails for four of the seven datasets overall, several of the

PLM variants have validation errors almost as low for three of those datasets

(Abalone, Delta Ailerons, and Delta Elevators). In these cases, there is negligible

difference in the final validation errors among PolyNet, PolyStat, PlyGLSP, and

PlyGLSRP. For this reason, since the PolyNet algorithm is significantly simpler and

more computationally efficient than the others, it is possible to say that the PolyNet

algorithm is the best overall choice in the case of the particular datasets run.

88

 The PlyPaPGLSR variant prevails in the remaining three datasets (Auto Price,

Boston Housing, Machine CPU) not won by ANN-SLP or SVR-RBF. It is notable that

two of these datasets exhibit particularly high dimensionality (Auto Price (15) and

Boston Housing (13)). It is arguable that the enhanced generalization ability and

incremental term pruning afforded by PlyPaPGLSR is ideal for high dimensional

data. Additionally, this variant takes up the slack particularly where the remaining

PLM variants did not place relatively near ANN-SLP. In fact, viewing the results

overall, it appears that four of the earlier variants taken together – PolyNet,

PolyStat, PlyGLSP, and PlyGLSRP – form a perfect performance compliment to

PlyPaPGLSR. If an experimenter is unsure which algorithm to run for a particular

dataset, it appears that excellent coverage could be had by running both PolyNet

(ignoring the other similarly scoring but more computationally complex variants)

and PlyPaPGLSR.

 All observations regarding the performance of the new PLM variants tested

versus other prominent algorithms can be summarized as the following:

 The PLM variants score near or better than other algorithms for a variety of

datasets, and are usually more computationally efficient for final network

implementation.

 Two variants, PlyOLSRP and PlyPaPGLS, are negligible in performance

compared alongside other PLM variants, and are therefore expendable.

 In certain dataset experiments, the PolyNet algorithm appears to match the

accuracy of other prominent ML methods such as ANN-SLP and SVR-RBF.

For these same experiments, three other variants, PlyGLSP, PlyGLSRP, and

PolyStat, score almost identically or not significantly better than the PolyNet

algorithm. Additionally, those three variants are significantly more compute

intensive during training. For these reasons, PolyStat, PlyGLSP, and

PlyGLSRP can be considered redundant, and are therefore expendable.

 For dataset cases where the PolyNet variant performs significantly worse

than other methods, such as for datasets with high dimensionality, the

PlyPaPGLSR algorithm happens to perform exceptionally well.

89

 Taken altogether, two PLM variants, PolyNet and PlyPaPGLSR, arguably

provide full coverage when both are applied to any variety of datasets.

Table XIV

Average Training and Testing RMSEs per Datasets 1-4

Table XV

Average Training and Testing RMSEs per Datasets 5-7

Algorithms

Delta Ailerons Delta Elevators Machine CPU

Training Testing Training Testing Training Testing

ANN-SLP 0.0355 0.0378 0.0518 0.0527 0.0144 0.0673
TSK Fuzzy 0.0382 0.0405 0.0556 0.0565 0.0725 0.0793
I-ELM 0.0518 0.0521 0.0698 0.0632 0.0363 0.0674
EI-ELM 0.0519 0.0516 0.0659 0.0575 0.0358 0.0554
CI-ELM 0.0423 0.0555 0.0555 0.0566 0.0400 0.0675
SVR-RBF 0.0376 0.0467 0.0377 0.0603 0.0316 0.0539
PolyNet 0.0375 0.0387 0.0521 0.0530 0.0494 0.0606
PolyStat 0.0375 0.0386 0.0521 0.0531 0.0499 0.0606
PlyOLSRP 0.0406 0.0410 0.0555 0.0559 0.0616 0.0725
PlyGLSP 0.0375 0.0387 0.0522 0.0530 0.0490 0.0589
PlyGLSRP 0.0395 0.0397 0.0551 0.0554 0.0421 0.0585
PlyPaPGLS 0.0394 0.0407 0.0539 0.0546 0.0922 0.0611
PlyPaPGLSR 0.0391 0.0408 0.0547 0.0556 0.0289 0.0449

Algorithms

Abalone Auto Price Boston Housing California Housing

Training Testing Training Testing Training Testing Training Testing

ANN-SLP 0.0731 0.0734 0.0618 0.0879 0.0409 0.0898 0.1085 0.1109
TSK Fuzzy 0.0883 0.0892 0.1678 0.1696 0.1617 0.1641 0.1648 0.1653
I-ELM 0.0922 0.0938 0.1184 0.1222 0.1359 0.1261 0.1649 0.1691
EI-ELM 0.0924 0.0829 0.1107 0.1139 0.1130 0.1077 0.1669 0.1503
CI-ELM 0.0837 0.0845 0.1168 0.1197 0.1162 0.1423 0.1648 0.1756
SVR-RBF 0.0756 0.0786 0.0395 0.0935 0.0468 0.0925 0.0845 0.1413
PolyNet 0.0772 0.0789 0.0728 0.0918 0.0530 0.0890 0.1342 0.1392
PolyStat 0.0782 0.0788 0.0729 0.0917 0.0551 0.0940 0.1317 0.1409
PlyOLSRP 0.0894 0.0919 0.0822 0.0977 0.1205 0.1263 0.2018 0.2017
PlyGLSP 0.0785 0.0788 0.0730 0.0923 0.0549 0.0926 0.1304 0.1406
PlyGLSRP 0.0842 0.0848 0.0908 0.0986 0.0739 0.0855 0.1487 0.1488
PlyPaPGLS 0.1150 0.0865 0.0782 0.0983 0.0826 0.0959 0.1641 0.1495
PlyPaPGLSR 0.0804 0.0827 0.0547 0.0707 0.0554 0.0717 0.1498 0.1519

90

Chapter 6

Conclusions and Future Work

 Following experimentation with a variety of datasets, it is apparent that

results for all such algorithms studied can be similarly varied. The selection of one

learning machine over another is in practice a highly subjective decision based on

the particular intended application. Still, an attempt will be made to summarize the

work herein, and to quantify the overall results with an original figure of merit

scheme for ML algorithms.

6.1 Evaluation of PLM Variants and Competing Methods with an Original Figure
of Merit Scheme

 In order to address final comparisons among all algorithms tested, an

original Figure of Merit (FOM) scheme is proposed. It is acknowledged that the

imposition of such a FOM is itself a highly subjective exercise. This attempt is

deemed appropriate for the dataset problems presented throughout this study.

 A set of equations is proposed which taken together, appropriately penalize

the key metrics on a logarithmic scale. Such quantities can be computed directly

from resultant experimental data and individually resolve to a range [1:0], with 1

representing perfect performance for the parameter, and 0 representing utter

failure. Five such equations are seen in (70) below. The figure of merit component

for training time is defined as fomTtime. Likewise, the component for validation time

is fomVtime. The component for the final number of nodes for an optimized network

is fom#nodes. The component for validation error is fomVerr. Validation error is

usually considered more significant than training error by itself. However, the

generalization ability of an algorithm is significant throughout this field and

throughout this work. As such, a final component for generalization ability is

defined as fomGen, and contains the ratio of best validation error over best training

91

error for the same resultant network as:
𝑅𝑀𝑆𝐸𝑉

𝑅𝑀𝑆𝐸𝑇
 . In this way, five critical metrics are

expressible as normalized quantities.

𝑓𝑜𝑚𝑇𝑡𝑖𝑚𝑒 = {

1, 𝑡 < 1𝑚𝑠
1

12
log (

𝑡 + 1𝑒9

𝑡
) , 𝑡 ≥ 1𝑚𝑠

𝑓𝑜𝑚𝑉𝑡𝑖𝑚𝑒 = {

1, 𝑡 < 0.1𝑚𝑠
1

6
log (

𝑡 + 100

𝑡
) , 𝑡 ≥ 0.1𝑚𝑠

𝑓𝑜𝑚𝑉𝑒𝑟𝑟 = {

1, 𝑡 < 0.001
1

5
log (

𝑅𝑀𝑆𝐸𝑉 + 100

𝑅𝑀𝑆𝐸𝑉
) , 𝑡 ≥ 0.001

(70)

𝑓𝑜𝑚#𝑛𝑜𝑑𝑒𝑠 = {

1, 𝑡 ≤ 10
1

3
log (

𝑛 + 10000

𝑛
) , 𝑡 > 10

 𝑓𝑜𝑚𝐺𝑒𝑛 =

{

 1, 𝑅𝑀𝑆𝐸𝑉 ≤ 𝑅𝑀𝑆𝐸𝑇

1

1.0414
log(

𝑅𝑀𝑆𝐸𝑉
𝑅𝑀𝑆𝐸𝑇

+ 10

𝑅𝑀𝑆𝐸𝑉
𝑅𝑀𝑆𝐸𝑇

) , 𝑅𝑀𝑆𝐸𝑉 > 𝑅𝑀𝑆𝐸𝑇

 From this basis of equations, one can further derive separate overall FOMs

for different applications. For this study, two such FOMs are proposed which apply

different weighting ratios to the five components of (70), resulting in final quantities

which express an overall figure of merit also in the range [1:0]. Equation (71)

introduces a real-time FOM as FOMRT. Such a rating considers final validation error

as the most important metric, but also allots sufficient weighting factors to the time

metrics for applications where training and validation times are more critical.

Similarly, a FOM is introduced in (72) for “offline” implementations, where final

validation error is weighted more heavily, and time metrics are deemphasized.

𝐹𝑂𝑀𝑅𝑇 = (0.5)𝑓𝑜𝑚𝑉𝑒𝑟𝑟 + (0.1)𝑓𝑜𝑚𝐺𝐸𝑁 + (0.15)𝑓𝑜𝑚𝑇𝑡𝑖𝑚𝑒

+ (0.15)𝑓𝑜𝑚𝑉𝑡𝑖𝑚𝑒 + (0.1)𝑓𝑜𝑚#𝑛𝑜𝑑𝑒𝑠
(71)

92

𝐹𝑂𝑀𝑂𝐿 = (0.75)𝑓𝑜𝑚𝑉𝑒𝑟𝑟 + (0.1)𝑓𝑜𝑚𝐺𝐸𝑁 + (0.05)𝑓𝑜𝑚𝑇𝑡𝑖𝑚𝑒

+ (0.05)𝑓𝑜𝑚𝑉𝑡𝑖𝑚𝑒 + (0.05)𝑓𝑜𝑚#𝑛𝑜𝑑𝑒𝑠
(72)

 The real-time FOM, FOMRT, was computed for each algorithm based on its

performance against each dataset individually. The results are shown in Table XVI

below. Winners and runner-ups are highlighted in green bold, and problematic

finishers are highlighted in red. Based on these scorings, for applications where

compute times are crucial, the PolyNet, PolyStat, and PlyGLSP algorithms score

prominently for both IE and general repository dataset problems. In contrast, the

FS algorithm scores significantly poorly for large datasets with greater than 3

dimensions. Though the PlyPaPGLSR algorithm scored well in error performance

relative to other algorithms, its success is offset by its exceptionally long training

times. As such, it might be rejected for hardware or time-critical applications.

Table XVI
FOMRT : Real-Time Figure of Merit of Each Algorithm per Dataset

 The offline FOM, FOMOL, was computed for each algorithm based on its

performance against each dataset individually. The results are shown in Table XVII

93

below. In this case, where final process accuracy is weighted much more heavily

than compute times, PolyNet and PolyStat once again emerge as strong contenders.

Also in this scenario, the ANN-SLP algorithm is properly rewarded for its superior

accuracy. The other PLM variants score occasional win or runner-up berths, but

none are as consistent as PolyNet and ANN-SLP. Again, the PlyPaPGLSR variant is

somewhat neutralized by its prohibitive training times. Also, the FS algorithm is a

last-place finisher for almost all datasets.

Table XVII

FOMOL: Offline Figure of Merit of Each Algorithm per Dataset

 Equations (71) and (72) can be applied more generally in an attempt to

compare the average performance of each algorithm against all others for all

experiments in this study. Each individual component of (70) was computed as an

average value of each associated metric across all nine datasets in this study. Those

average component values were then applied to the FOMRT and FOMOL equations to

attempt to derive an overall comparative performance evaluation of each algorithm.

Table XVIII shows the results averaged from all dataset results. For the real-time

94

evaluation, PolyNet, PolyStat, and PlyGLSP emerge as the clear winners. The FS

suffers in the overall evaluation as expected. It should be noted that in practice,

fuzzy systems are still among the easiest and most straightforward to implement in

hardware applications and therefore should not be underestimated. For the overall

offline scores, the field is much less separated since all algorithms tested exhibit

excellent accuracy performance. Even with the smaller margins, PolyNet, PolyStat,

and PlyGLSP once again prevail. The ANN-SLP is rewarded in this evaluation as

well.

Table XVIII
Overall Real-time and Offline FOMs for All Algorithms Tested

6.2 Summary Statement

 In summary, this author feels that the case has been sufficiently made for the

viability of renewed interest and research in polynomial based learning machines

throughout computational intelligence. The performance of the algorithms

developed in this work is near or better than that of several prominent methods in

use today for several accepted benchmark problems. Additionally, new methods

introduced for efficient generation of polynomial terms places PLMs at the top of the

field for computational performance. It is hoped that other researchers will

recognize these findings and proceed with ongoing development of new classes of

polynomial based learning machines that are optimal for ongoing and future

applications throughout machine learning and data mining fields.

6.3 Future Work

 Much work remains to be done to make PLMs even more viable for

deployment throughout science, industry, and business. Long runtimes for some of

95

the variants presented may betray exceptional performance in terms of

convergence, accuracy, and generalization. Additionally, the response of the PLMs

presented and of the existing methods tested is somewhat unpredictable from

dataset to dataset. There is room for improvement in both direct development of

polynomial based learning machine algorithms, and in the understanding and

classification of particular datasets for use with PLMs.

6.3.1 Improved Coefficient Term Analysis and Pruning

 The PLM variants that utilize term pruning based on noise detected in the

coefficients can be greatly improved. Term pruning according to thresholds of

coefficient noise is promising, but currently requires initial manual trials in order to

discover the optimal setting of the setscale threshold. This deviates from the desire

to deploy “run-and-done” algorithms that are completely operationally autonomous.

In contrast, the PLM variants that use the incremental “probe-and-prune” method

are operationally autonomous, but require exceptionally long runtimes due to the

application of three distinct iterative processes.

 The probe phase appears to work occasionally as a way to initially discern a

maximum term order for the processes that follow. This method can be further

explored, essentially probing each dimension of training data separately in order to

define and limit monomial degrees for those variables, and to further improve the

generalization transparency of the network looking from training to validation.

Instead of either setting a noise threshold for coefficient variation during iterative

training (PolyStat family), or creating all terms at once and removing noisy

performers one-at–a-time in reverse (Probe-and-Prune family), clustering methods

could be employed to track which coefficients move together in response to

incoming training vectors. Continuing in this regard, coefficient groups that cluster

together can be evaluated for term order, perhaps favoring and flagging lower-order

terms in the grouping. In this way, “noisy” and/or high-order terms can be

identified appropriately. Subsequent decision processes can then excise and replace

these terms, observing and responding to intermediate errors.

96

6.3.2 Process Pipelining

 Not just for PLMs, but for all learning machines, methods of data visualization

and “cold-start” analysis can be explored to discern the ideal type of learning

machine to deploy for each dataset. Recall that the PolyNet and PlyPaPGLSR

variants complement each other for performance on various datasets. There are

opportunities to develop analysis methods that can pipeline datasets or data

streams to one process or the other in an automated fashion. Discrete or modal data

are arguably distinguishable from continuous data and can be tabulated before

selection of a particular algorithm. Datasets that express high variance in one or

more parameters can be classified as well.

6.3.3 Development of a Universal Polynomial Spline Learning Machine

 The PLMs introduced in this study generally spawn all generated monomial

terms at the coordinate origin of the multi-dimensional space that is represented in

the dataset. In order to cancel unwanted features in the interpolated output space of

such polynomial-based systems, more, higher-order monomial terms must be

heaped on at the origin of the system in order to produce desired cancellations.

Additionally, such polynomial-based systems do poorly at extrapolating new output

values outside of the trained data boundaries as polynomial functions explode

beyond those boundaries. This makes such polynomial systems initially

inappropriate for predictive systems. More fundamentally, the absence of

localization leads to the requirement of higher order terms in the solution than is

suggested by the actual local gradients of the data.

 In the study of polynomial kernels, the overfitting problem is well-known

and is addressed in various ways by other historical methods. Learning machines

such as RBF-based and sigmoidal neural networks have the advantage that

computational nodes can serve to gate each other, essentially localizing the effect of

one node or group of nodes in the learning space of the dataset. Following the idea

of Banfer and Nelles [35], a hybrid polynomial based network can be created that

comprises a superset of much smaller, lower-order subset polynomial networks of

97

the kind introduced in this study. However, this hybrid network could have a layer

of gating functions which localize the range of each subset network over the data

space. Each subset network would still be a single-layer network, trainable by the

methods introduced throughout this study. New algorithms must be developed

which probe the data space and locate local minima and maxima, flagging them as

subset network coordinate centers. The combined network, though conceptually

more complex, would result in a much smaller network in terms of node terms.

Additionally, each subset could be trained by the simplest OLS method used by

PolyNet, for example.

6.3.4 Using Video Card GPUs for Machine Learning Computation

 There is mounting use in the machine learning community of video card

Graphics Processing Unit (GPU) hardware for machine learning processes [90][91].

The built-in matrix computation ability of GPUs is ideal for rapid and accurate

computation of the matrix operations encountered during machine learning

processes. Such matrix processing power would be ideal for all of the iterative

regression processes presented in this study.

98

Reference Pages

99

References

[1] Zhengyu Lin, Jiabin Wang, and D. Howe, “A Learning Feed-Forward Current

Controller for Linear Reciprocating Vapor Compressors,” IEEE Trans. Ind.
Electron., vol. 58, no. 8, pp. 3383–3390, Aug. 2011.

[2] A. Bhattacharya and C. Chakraborty, “A Shunt Active Power Filter With
Enhanced Performance Using ANN-Based Predictive and Adaptive Controllers,”
Ind. Electron. IEEE Trans. On, vol. 58, no. 2, pp. 421 –428, Feb. 2011.

[3] V. N. Ghate and S. V. Dudul, “Cascade Neural-Network-Based Fault Classifier for
Three-Phase Induction Motor,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp.
1555–1563, May 2011.

[4] T. Orlowska-Kowalska and M. Kaminski, “FPGA Implementation of the
Multilayer Neural Network for the Speed Estimation of the Two-Mass Drive
System,” IEEE Trans. Ind. Inform., vol. 7, no. 3, pp. 436–445, Aug. 2011.

[5] Rong-Jong Wai and Chun-Yu Lin, “Dual Active Low-Frequency Ripple Control
for Clean-Energy Power-Conditioning Mechanism,” IEEE Trans. Ind. Electron.,
vol. 58, no. 11, pp. 5172–5185, Nov. 2011.

[6] Yu Chen, Xuejun Pei, Songsong Nie, and Yong Kang, “Monitoring and Diagnosis
for the DC–DC Converter Using the Magnetic Near Field Waveform,” IEEE Trans.
Ind. Electron., vol. 58, no. 5, pp. 1634–1647, May 2011.

[7] G. W. Chang, Cheng-I Chen, and Yu-Feng Teng, “Radial-Basis-Function-Based
Neural Network for Harmonic Detection,” IEEE Trans. Ind. Electron., vol. 57, no.
6, pp. 2171–2179, Jun. 2010.

[8] M. Charkhgard and M. Farrokhi, “State-of-Charge Estimation for Lithium-Ion
Batteries Using Neural Networks and EKF,” IEEE Trans. Ind. Electron., vol. 57,
no. 12, pp. 4178–4187, Dec. 2010.

[9] C. He, C. Liu, Y. Li, and J. Tao, “Intelligent gear fault detection based on relevance
vector machine with variance radial basis function kernel,” in 2010 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM), 2010, pp.
785 –789.

100

[10] L. J. Mpanza and T. Marwala, “Artificial neural network and rough set for HV
bushings condition monitoring,” in 2011 15th IEEE International Conference on
Intelligent Engineering Systems (INES), 2011, pp. 109 –113.

[11] V. Machado, A. Neto, and J. D. de Melo, “A Neural Network Multiagent
Architecture Applied to Industrial Networks for Dynamic Allocation of Control
Strategies Using Standard Function Blocks,” IEEE Trans. Ind. Electron., vol. 57,
no. 5, pp. 1823–1834, May 2010.

[12] H.-G. Han, Q. Chen, and J.-F. Qiao, “An efficient self-organizing RBF neural
network for water quality prediction,” Neural Netw., vol. 24, no. 7, pp. 717–725,
Sep. 2011.

[13] Y.-H. Pao, Adaptive pattern recognition and neural networks. Addison-Wesley,
1989.

[14] M. Manic and B. Wilamowski, “Robust neural network training using partial
gradient probing,” in IEEE International Conference on Industrial Informatics,
2003. INDIN 2003. Proceedings, 2003, pp. 175 – 180.

[15] A. G. Ivakhnenko, “Polynomial Theory of Complex Systems,” IEEE Trans. Syst.
Man Cybern., vol. SMC-1, no. 4, pp. 364 –378, Oct. 1971.

[16] E. W. Weisstein, “Taylor Series -- from Wolfram MathWorld.” [Online].
Available: http://mathworld.wolfram.com/TaylorSeries.html. [Accessed: 29-
Sep-2012].

[17] M. Stinchcombe and H. White, “Universal approximation using feedforward
networks with non-sigmoid hidden layer activation functions,” in ,
International Joint Conference on Neural Networks, 1989. IJCNN, 1989, pp. 613 –
617 vol.1.

[18] M.-S. Chen and M. T. Manry, “Conventional modeling of the multilayer
perceptron using polynomial basis functions,” IEEE Trans. Neural Netw., vol. 4,
no. 1, pp. 164 –166, Jan. 1993.

[19] D. L. Elliott, “A Better Activation Function for Artificial Neural Networks,” 1993.

[20] H.-T. Yang and Y.-C. Huang, “Intelligent decision support for diagnosis of
incipient transformer faults using self-organizing polynomial networks,” IEEE
Trans. Power Syst., vol. 13, no. 3, pp. 946–952, 1998.

[21] S.-K. Oh, W. Pedrycz, and B.-J. Park, “Polynomial neural networks architecture:
analysis and design,” Comput. Electr. Eng., vol. 29, no. 6, pp. 703–725, Aug.
2003.

101

[22] G. Jēkabsons and J. Lavendels, “A Heuristic Approach for Surrogate Modelling of
Electro-Technical Systems,” in publication.editionName, 2008, pp. 62–67.

[23] G. Jekabsons, “Adaptive Basis Function Construction: An Approach for Adaptive
Building of Sparse Polynomial Regression Models,” in Machine Learning, Y.
Zhang, Ed. InTech, 2010, pp. 127–156.

[24] S. J. Russell, P. Norvig, and E. Davis, Artificial intelligence: a modern approach.
Upper Saddle River, NJ: Prentice Hall, 2010.

[25] H. Akaike, “A new look at the statistical model identification,” IEEE Trans.
Autom. Control, vol. 19, no. 6, pp. 716–723, 1974.

[26] N. Y. Nikolaev and H. Iba, Adaptive Learning of Polynomial Networks: Genetic
Programming, Backpropagation and Bayesian Methods. Springer, 2006.

[27] S.-K. Oh and W. Pedrycz, “Self-organizing polynomial neural networks based on
PNs or FPNs: Analysis and design,” Fuzzy Sets Syst, vol. 144, no. 2, pp. 365–366,
2004.

[28] S.-K. Oh and W. Pedrycz, “Fuzzy Polynomial Neuron-Based Self-Organizing
Neural Networks,” Int. J. Gen. Syst., vol. 32, no. 3, pp. 237–250, 2003.

[29] S.-K. Oh, W. Pedrycz, and T.-C. Ahn, “Self-organizing neural networks with fuzzy
polynomial neurons,” Appl. Soft Comput., vol. 2, no. 1, pp. 1–10, Aug. 2002.

[30] S.-K. Oh, W. Pedrycz, and H.-S. Park, “A New Approach to the Development of
Genetically Optimized Multilayer Fuzzy Polynomial Neural Networks,” IEEE
Trans. Ind. Electron., vol. 53, no. 4, pp. 1309–1321, 2006.

[31] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems,” Science, vol. 197, no. 4300, pp. 287–289, Jul. 1977.

[32] S.-B. Roh, W. Pedrycz, and S.-K. Oh, “Genetic Optimization of Fuzzy Polynomial
Neural Networks,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2219–2238,
2007.

[33] L. A. Zadeh, “Toward a theory of fuzzy information granulation and its
centrality in human reasoning and fuzzy logic,” Fuzzy Sets Syst., vol. 90, no. 2,
pp. 111–127, Sep. 1997.

[34] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering
algorithm,” Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984.

[35] O. Banfer and O. Nelles, “Polynomial model tree (POLYMOT) - A new training
algorithm for local model networks with higher degree polynomials,” in IEEE

102

International Conference on Control and Automation, 2009. ICCA 2009, 2009, pp.
1571–1576.

[36] O. Nelles, S. Sinsel, and R. Isermann, “Local basis function networks for
identification of a turbocharger,” in Control ’96, UKACC International Conference
on (Conf. Publ. No. 427), 1996, vol. 1, pp. 7–12 vol.1.

[37] E. W. Weisstein, “Symmetric Polynomial -- from Wolfram MathWorld.” [Online].
Available: http://mathworld.wolfram.com/SymmetricPolynomial.html.
[Accessed: 02-Oct-2012].

[38] Q. N. Le and J.-W. Jeon, “Neural-Network-Based Low-Speed-Damping Controller
for Stepper Motor With an FPGA,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp.
3167–3180, 2010.

[39] Changliang Xia, Chen Guo, and Tingna Shi, “A Neural-Network-Identifier and
Fuzzy-Controller-Based Algorithm for Dynamic Decoupling Control of
Permanent-Magnet Spherical Motor,” IEEE Trans. Ind. Electron., vol. 57, no. 8,
pp. 2868–2878, Aug. 2010.

[40] Ching-Chih Tsai, Hsu-Chih Huang, and Shui-Chun Lin, “Adaptive Neural
Network Control of a Self-Balancing Two-Wheeled Scooter,” IEEE Trans. Ind.
Electron., vol. 57, no. 4, pp. 1420–1428, Apr. 2010.

[41] Chia-Feng Juang, Yu-Cheng Chang, and Che-Meng Hsiao, “Evolving Gaits of a
Hexapod Robot by Recurrent Neural Networks With Symbiotic Species-Based
Particle Swarm Optimization,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp.
3110–3119, Jul. 2011.

[42] M. O. Efe, “Neural Network Assisted Computationally Simple PID Control of a
Quadrotor UAV,” Ind. Inform. IEEE Trans. On, vol. 7, no. 2, pp. 354 –361, May
2011.

[43] K. Levenberg, “A method for the solution of certain problems in least squares,”
Q. Appplied Math., vol. 2, pp. 164–168, 1944.

[44] MATLAB Neural Network Toolbox. MathWorks.

[45] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Computing Gradient
Vector and Jacobian Matrix in Arbitrarily Connected Neural Networks,” Ind.
Electron. IEEE Trans. On, vol. 55, no. 10, pp. 3784 –3790, Oct. 2008.

[46] B. M. Wilamowski and H. Yu, “Improved Computation for Levenberg -
Marquardt Training,” Neural Netw. IEEE Trans. On, vol. 21, no. 6, pp. 930 –937,
Jun. 2010.

103

[47] B. M. Wilamowski and H. Yu, “Neural Network Learning Without
Backpropagation,” Neural Netw. IEEE Trans. On, vol. 21, no. 11, pp. 1793 –1803,
Nov. 2010.

[48] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” Neural Netw. IEEE Trans. On, vol. 5, no. 6, pp. 989 –993,
Nov. 1994.

[49] S. E. Fahlman, “Faster-learning variations on Back-propagation: An empirical
study,” vol. pp, pp. 38–51, 1988.

[50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Publ. Online 09 Oct. 1986 Doi101038323533a0, vol.
323, no. 6088, pp. 533–536, Oct. 1986.

[51] Stuttgart Neural Network Simulator. University of Tubingen.

[52] B. M. Wilamowski and L. Torvik, “Modification of gradient computation in the
back-propagation algorithm,” in Proc. Artif. Neural Netw. Eng., St. Louis, MO,
1993, pp. 175–180.

[53] B. M. Wilamowski, “Challenges in applications of computational intelligence in
industrial electronics,” in Industrial Electronics (ISIE), 2010 IEEE International
Symposium on, 2010, pp. 15 –22.

[54] E. H. Mamdani, “Advances in the linguistic synthesis of fuzzy controllers,” Int. J.
Man-Mach. Stud., vol. 8, no. 6, pp. 669–678, Nov. 1976.

[55] B. Rezaee and M. H. F. Zarandi, “Data-driven Fuzzy Modeling for Takagi-
Sugeno-Kang Fuzzy System,” Inf Sci, vol. 180, no. 2, pp. 241–255, Jan. 2010.

[56] T. T. Xie, H. Yu, and B. M. Wilamowski, “Comparison of Fuzzy and Neural
Systems for. Implementation of Nonlinear Control Surfaces,” in Human -
Computer Systems Interaction, vol. II, Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 313–324.

[57] M. R. Civanlar and H. J. Trussell, “Constructing membership functions using
statistical data,” Fuzzy Sets Syst., vol. 18, no. 1, pp. 1–13, Jan. 1986.

[58] B. M. Wilamowski, “Neural Networks and Fuzzy Systems for Nonlinear
Applications,” in Intelligent Engineering Systems, 2007. INES 2007. 11th
International Conference on, 2007, pp. 13 –19.

[59] T. Xie, H. Yu, and B. Wilamowski, “Replacing fuzzy systems with neural
networks,” in Human System Interactions (HSI), 2010 3rd Conference on, 2010,
pp. 189 –193.

104

[60] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and
applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006.

[61] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using
incremental constructive feedforward networks with random hidden nodes,”
IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879 – 892, Jul. 2006.

[62] G.-B. Huang and L. Chen, “Convex incremental extreme learning machine,”
Neurocomputing, vol. 70, no. 16–18, pp. 3056–3062, Oct. 2007.

[63] G.-B. Huang and L. Chen, “Enhanced random search based incremental extreme
learning machine,” Neurocomputing, vol. 71, no. 16–18, pp. 3460–3468, Oct.
2008.

[64] V. Vapnik, The Nature of Statistical Learning Theory, 1st ed. Wiley Interscience,
1998.

[65] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat.
Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004.

[66] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27, 2011.

[67] Jason Weston, Andre Elisseeff, Gokhan Bakir, and Fabian Sinz, The Spider.
Tubingen, Germany: MPI for Biological Cybernetics, 2006.

[68] John E. Moody, “The Effective Number of Parameters: An Analysis of
Generalization and Regularization in Nonlinear Learning Systems,” in
Proceedings of the 1991 NIPS Conference, San Mateo, CA: Morgan Kaufmann
Publishers, 1992, pp. 847–854.

[69] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C (2Nd Ed.): The Art of Scientific Computing. New York, NY, USA:
Cambridge University Press, 1992.

[70] D. E. Knuth, in Seminumerical Algorithms, 3rd ed., vol. 2, Boston, MA: Addison-
Wesley, 1997, p. 232.

[71] J. L. Marroquin, E. A. Santana, and S. Botello, “Hidden Markov measure field
models for image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 11, pp. 1380–1387, Nov. 2003.

[72] X. Xie and R. J. Evans, “Multiple target tracking and multiple frequency line
tracking using hidden Markov models,” IEEE Trans. Signal Process., vol. 39, no.
12, pp. 2659 –2676, Dec. 1991.

105

[73] R. L. Plackett, “Some Theorems in Least Squares,” Biometrika, vol. 37, no. 1/2,
pp. 149–157, Jun. 1950.

[74] T. L. Lai, H. Robbins, and C. Z. Wei, “Strong Consistency of Least Squares
Estimates in Multiple Regression,” Proc. Natl. Acad. Sci. U. S. A., vol. 75, no. 7, pp.
3034–3036, Jul. 1978.

[75] E. Borghers and P. Wessa, “Statistics-Econometrics-Forecasting.” Office for
Research Development and Education, 2012.

[76] Paul A. Ruud, “Proof of the Gauss-Markov Theorem.” Econometrics Laboratory,
University of California, Berkeley, 1995.

[77] A. Frank and A. Asuncion, UCI Machine Learning Repository. University of
California, Irvine, School of Information and Computer Sciences, 2010.

[78] A. Aitken, “On least squares and linear combination of observations,” Proc R Soc
Edinb, vol. 55, pp. 42–48, 1934.

[79] Chung-Ming Kuan, “Generalized Least Squares Theory,” in Statistics: Concepts
and Methods, 2nd ed., Taipei, China: Huatai Publisher, 2004, pp. 77–107.

[80] D. E. Farrar and R. R. Glauber, “Multicollinearity in Regression Analysis: The
Problem Revisited,” Rev. Econ. Stat., vol. 49, no. 1, pp. 92–107, Feb. 1967.

[81] Patrick Breheny, “Ridge Regression,” presented at the BST 764: Applied
Statistical Modeling, University of Kentucky, Lexington, KY, 01-Sep-2011.

[82] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for
Nonorthogonal Problems,” Technometrics, vol. 12, no. 1, pp. 55–67, Feb. 1970.

[83] Joseph E. Cavanaugh, “Penalized (Ridge) Regression and the LASSO,” presented
at the 171:290 Model Selection, Department of Biostatistics, University of Iowa,
27-Nov-2012.

[84] Dmitrij Celov, “How to calculate regularization parameter in ridge regression
given degrees of freedom and input matrix?,” Stack Exchange, 15-Mar-2011.
[Online]. Available: http://stats.stackexchange.com/questions/8309/how-to-
calculate-regularization-parameter-in-ridge-regression-given-degrees-of-f.
[Accessed: 31-Dec-2013].

[85] Kerby Shedden, “Prediction,” presented at the Statistics 600, Department of
Statistics, University of Michigan, 07-Nov-2011.

[86] E. W. Weisstein, “Matrix Trace -- from Wolfram MathWorld.” [Online].
Available: http://mathworld.wolfram.com/MatrixTrace.html. [Accessed: 01-
Jan-2014].

106

[87] E. W. Weisstein, “Singular Value Decomposition -- from Wolfram MathWorld.”
[Online]. Available:
http://mathworld.wolfram.com/SingularValueDecomposition.html. [Accessed:
01-Jan-2014].

[88] B. M. Wilamowski, “B. Wilamowski on Fast Forward Spherical N-Dimensional
Clustering: private conversation,” Oct-2010.

[89] Baranowski Jerzy and Czajkowski Grzegorz, “Special Purpose Analog Circuits,”
in Electronic Circuits Part II Analogue and pulse nonlinear, Poland: WNT, 2004.

[90] “NVIDIA Newsroom - Releases - Researchers Deploy GPUs to Build World’s
Largest Artificial Neural Network.” [Online]. Available:
http://nvidianews.nvidia.com/Releases/Researchers-Deploy-GPUs-to-Build-
World-s-Largest-Artificial-Neural-Network-9c7.aspx. [Accessed: 16-Apr-2014].

[91] T. P. Morgan, “Netflix Speeds Machine Learning With Amazon GPUs,”
EnterpriseTech. [Online]. Available:
http://www.enterprisetech.com/2014/02/11/netflix-speeds-machine-
learning-amazon-gpus/. [Accessed: 16-Apr-2014].

[92] B. W. Oskar Xaver Schlömilch, Zeitschrift für Mathematik und Physik... 1901.

[93] G. Dahlquist, A. Bjorck, and Mathematics, Numerical Methods. Dover
Publications, 2003.

[94] “Runge’s phenomenon,” Wikipedia, the free encyclopedia. 24-Sep-2012.

[95] R. L. Burden and J. D. Faires, Numerical Analysis, 7th ed. Brooks Cole, 2000.

[96] T.-T. Lee and J.-T. Jeng, “The Chebyshev-polynomials-based unified model
neural networks for function approximation,” IEEE Trans. Syst. Man Cybern.
Part B Cybern., vol. 28, no. 6, pp. 925 –935, Dec. 1998.

[97] K. Levenberg, “A method for the solution of certain problems in least squares,”
Q. Appplied Math., vol. 2, pp. 164–168, 1944.

107

Appendices

7.1 Appendix A – Exploration of Chebychev Transform Methods

7.1.1 Background, and Two Chebychev Transform Implementations

 It is well-known that polynomial interpolations of functions produce

oscillation at the edges of the interval known as Runge’s phenomenon [92]. The

error between the generating function and the interpolating polynomial of order n is

given by [93]:

𝑓(𝑥) − 𝑃𝑛(𝑥) =

𝑓𝑛+1𝜉

(𝑛 + 1)!
∏(𝑥 − 𝑥𝑖)

𝑛+1

𝑖=1

(73)

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜉 𝑖𝑛 [−1,1]

The effect worsens for higher degrees of polynomials as seen in Figure 50 below:

Figure 50 Runge’s phenomenon and refit with Chebychev nodes [94]

108

The effect is pronounced when the inputs are spaced evenly over the input interval.

It is also well-known that transforming the input spacing to that of Chebychev node

spacing can minimize the error [95]. The affine transform spacings of inputs xi over

an arbitrary interval [a, b] are given by:

 𝑥̃𝑖 =
1

2
(𝑎 + 𝑏) +

1

2
(𝑏 − 𝑎)cos (

2𝑖 − 1

2𝑛
𝜋) (74)

 Other authors have proposed Chebychev-based polynomial neural networks

as universal approximators. Lee and Jeng simulated a feed-forward neural network

with 40 hidden computational nodes using two layers to implement a one-

dimensional Chebychev polynomial network [96]. The 1st hidden layer contained

monomial term activation functions to create the polynomial product terms, and a

2nd hidden layer was used to explicitly compute an approximate transform of the

resulting terms into Chebychev spacing. In other words, the method proposed by

Lee and Jeng requires either two separate stages of training, or requires an efficient

second-order training algorithm (such as Levenberg-Marquardt [97]). Though their

results were promising (SSE=0.2115 for 20 training epochs, max polynomial order =

19), a more efficient method was sought for the current polynomial-based networks

under study.

 Two implementations of input Chebychev transform spacing were explored.

The transform for both versions is straightforwardly computed for any real values

by the simple MATLAB routine below:

%% rescaling for Chebyshev nodes
% Runge's phenomenon
% Chebyshev nodes
a=min(min(x)); b=max(max(x));
y=0.5*(a+b)-0.5*(b-a)*cos((x-a)./(b-a)*pi);

Alternately, the transform can be more easily computed for input data that is pre-

normalized to [-1:1] as in:

function y=chebConv(x)
%% rescaling for Chebyshev nodes
% Runge's phenomenon
% Chebyshev nodes for data normalized over [-1 1]
y = -cos(((x+1)./(2))*pi);

109

The diagram of Figure 51 displays the Method 1 approach. It shows how a simple

Chebychev transform of input domain data can lead to network coefficients

(weights) and monomial terms that essentially contain the complete Chebychev

encoding – the same network weights and terms can be used for processing input

validation data without any further transformation. However, it is noted that this

method requires explicit knowledge of the input-output relationship of the function

to be trained. The desired outputs (“d.o.”) of the original training data must be

generated by a known transform function.

Method 1:

in
p

u
ts

ch
eb

y
ch

ev

Generate
Outputs

(not d.o.)

T
rain

O
u

t w
eigh

ts

Training

in
p

u
ts

O
u

t w
eigh

ts

*

Function*

P
o

ly
n

o
m

ial
T

erm
s

P
o

ly
n

o
m

ial
T

erm
s

Validation

o
u

tp
u

ts

* This method requires explicit knowledge of the generating
function – not applicable to real-world datasets

Figure 51 Polynomial Network, Chebychev Transform Method 1 – Training:
encoding of input vectors, plus regeneration of desired outputs, Validation:
straightforward processing with encoded weights and terms

Method 1 will not allow the use Chebychev transform techniques on real-world data

when the relationships between the inputs and the outputs are unknown. For those

cases, a second method was implemented.

 For Method 2, both training and validation inputs require the same

Chebychev transform, but training can proceed without reconstruction of the

underlying input-output function. System weights and terms are produced which

process equivalently during training and validation, at the cost of an additional

Chebychev transform which must be applied to validation inputs. Figure 52

illustrates Method 2:

110

Method 2:

in
p

u
ts

ch
eb

y
ch

ev

d.o.*
(collected)

T
rain

O
u

t w
eigh

ts

Training

in
p

u
ts

O
u

t w
eigh

ts

*

P
o

ly
n

o
m

ial
T

erm
s

P
o

ly
n

o
m

ial
T

erm
s

Validation

o
u

tp
u

ts

* This method does not require specific knowledge of the original function, but results in
a transformed solution that may or may not work as well as the non-Chebychev case

‘

‘

ch
eb

y
ch

ev

‘ ‘

Figure 52 Polynomial Network, Chebychev Transform Method 2 – Training:
encoding of input vectors, Validation: Chebychev encoding of inputs and processing
with encoded weights and terms

7.1.2 Chebychev Techniques – Experimental Results

 The following 2-input non-linear control surface was selected as the

experimental function to approximate:

 𝑧 =
5

1 + 0.25(𝑥 − 1)2 + 0.04(𝑦 − 2)2
+

2

1 + 0.25(𝑥 + 1)2 + 0.25(𝑦 − 1)2
 (75)

The validation surface is shown in Figure 53. Initial experimentation showed that

results with Chebychev methods vary depending on the presence of training vectors

near critical output function details, as illustrated in Figure 54. For this reason,

several different resolutions of regularly-spaced training data were tried.

Additionally, it was noted that transform method response was sensitive to noise in

the training output data, as is encountered in real-world situations. Therefore trials

were run which include these variations. All experiments were run using the initial

polynomial network variant, PolyNet, discussed elsewhere in this study.

111

Figure 53 Validation for the Chebychev Transform Experiments, 9409 points
(97x97)

Figure 54 9x9 training point grid: (left) standard spacing captures function, (right)
Chebychev spacing fails to sample function at critical points

 Experiments were run with various training point resolutions. For each

resolution, three cases were run: no Chebychev transform, Method 1, Method 2.

The output training and validation RMSE curves are shown in Figure 55 for the 81-

point (9x9) training resolution. Note that these results look initially promising for

the Chebychev methods. As expected, the training curves are almost identical for all

three variants, and are also all monotonic. As usual, the validation RMSE curve for

the non-Chebychev variant (standard PolyNet) is non-monotonic, with best

performance at max-order 7, with 36 monomials. Method 1 yields an almost

112

monotonic validation curve, and Method 2 does achieve a monotonic validation

RMSE curve which nearly matches the training curve in shape. However, these

results vary greatly depending on the resolution and location of training vectors in

the input space.

Figure 55 Training and Validation RMSE Curves (81 training points): (a) no
Chebychev spacing, (b) Method 1, (c) Method 2

113

 Testing was eventually performed with several different training input

resolutions. The final results point to a less enthusiastic conclusion for the use of

Chebychev input transforms. As seen in Table XIX, neither Chebychev transform

method outperforms the no-transform standard for all four input resolutions

depicted. In fact, Method 1, though promising in training, does not prevail in any

validation case. Method 2 appears to prevail only when the training resolution is

sparse compared to validation density.

Table XIX Results for Chebychev Transform Testing, no noise case

(RED=worst, GREEN=best)

Training

Resolution

Training RMSE Validation RMSE (9409 points)

Chebychev Method Chebychev Method

none 1 2 none 1 2

5x5 1.49e-16 1.73e-16 2.11e-16 31.57e-3 35.47e-3 22.38e-3

9x9 9.38e-16 4.34e-16 5.59e-16 2.244e-3 9.137e-3 1.438e-3

17x17 6.35e-14 1.33e-14 6.47e-16 0.153e-3 2.248e-3 1.147e-3

33x33 5.81e-10 7.00e-10 1.03e-3 0.127e-3 0.358e-3 0.980e-3

 Lastly, the same experiments were repeated by including uniformly

distributed random noise on the training outputs to a max deviation of 5% of full

output magnitude (0.05 on a 0:1 scale). Validation outputs were kept exact. The

results of Table XX show even less favorable results for the Chebychev methods in

the presence of noise in the training data. Method 2 shows promise only for the

sparsest training point resolution relative to validation density. The standard non-

Chebychev regression in PolyNet prevails more decisively against the two variants.

 In summary, no advantage was discovered in using Chebychev transform

methods on the input spacing of the system. It is assumed that even less advantage

would be apparent as the methods are applied to multi-dimensional data problems.

114

Table XX Results for Chebychev Transform Testing, 5% training noise
(RED=worst, GREEN=best)

Training

Spacing

Training RMSE Validation RMSE

Chebychev Method Chebychev Method

none 1 2 none 1 2

5x5 1.66e-16 2.16e-16 1.65e-16 43.86e-3 35.66e-3 22.26e-3

9x9 1.68e-13 1.11e-15 1.28e-15 6.397e-3 14.01e-3 8.697e-3

17x17 7.97e-3 6.54e-3 6.47e-16 3.989e-3 4.773e-3 6.097e-3

33x33 10.78e-3 11.1e-3 11.2e-3 2.648e-3 2.944e-3 3.474e-3

7.2 Appendix B – MATLAB Code: Unique Polynomial Term Generation

function index=Get_In_pol(Nmax)
%% sorting and then using index=findinx(Nmax)
[N,I]=sort(Nmax) ; % sorting from smallest to largest
temp=findinx(N);
index=ones(size(temp)); % calculating indices
for i=1:length(I), %puting everything back in the original order
 index(:,I(i))=temp(:,i);
end;
return;

function index=findinx(Nmax) % only for ordered
%% finding indices so multidim case is posible in one loop
len=length(Nmax);
if len==1, index=(1:Nmax(1))'; return; end;
ind=findinx(Nmax(1:(len-1))); %using recursion
% ind = [1:Nmax(1)]'
[x,y]=size(ind);
index=[];
for i=1:x,
 for j=ind(i,y):Nmax(len)
 add=[ind(i,:),j];
 index=[index;add];
 end;
end;
return;

7.3 Appendix C – MATLAB Code: Statistical Processing of Monomial Term

Weights

Option 1 Example – PlyPaPGLS.m excerpts

115

These variants remove one monomial term at a time following iterative evaluation
of noise-responsiveness of term coefficients.

function ['...'] = PlyPaPGLS('...')

trins = otrins ; % training pattern inputs

trouts = otrouts ; % training pattern outputs

[np,nd]=size(trins);

agu=[ones(np,1),trins]; %agumented input space (+1 is added in the

column)

['...']

maxmeansslope = 1e-2 ;

trpct = 0.75 ; % percent of training data to pull into the

iterative training

Nmax=(nd+1)*ones(1,PrOrder);% GENERATE all monomial term indices up to

a max order

ind=Get_In_pol(Nmax) ; % get **all** poly indices right away

[Nt,Nd]=size(ind) ; % get indices size for current round

tridx = 1 ; % initial training index value to store output vectors

while (Nt >= 1)

 % ENTER the iterative OLS (or other) regression phase:

 wwmeans = 0 ; % initialize running mean

 wwabsmax = [] ; % initial running max abs value of coeffs

 wwscstds = 0 ;

 wwscmeans = 0 ;

 prevwwscaled = 0 ; % initialize k-1 normalized weights

 scmeanslope = 0 ;

 for k = 1:100 % drill down to the essential output weights for

each instance

 agusubset = agu(1:trlength,:);% take subset of training

patterns

 troutsbst = trouts(1:trlength,:) ;

 %% BUILDING polynomial terms...

 Jsub = [] ; % DON'T FORGET the zero-order term..

 for jj=1:Nt

 Pr=1;

 for i=1:Nd

 Pr=Pr.*agusubset(:,ind(jj,i));

 end

 Jsub = [Jsub Pr];

 end

 wwtemp = OLS_reg(Jsub,troutsbst);% Finding weights, OLS (this

case)

 wwmeans = (wwtemp + wwmeans.*(k-1))./k;% compute running means

of raw coefficients

 wwabsmax = max(abs([wwabsmax wwtemp]),[],2) + 1e-16 ; % compute

running max-abs of raw coefficients

116

 wwscaled = wwtemp./wwabsmax ; % NORMALIZE raw coefficients per

current max-abs

 prevscmeans = wwscmeans ; % capture preceding normalized coeff

means

 wwscmeans = (wwscaled + wwscmeans.*(k-1))./k ; % compute

running means of scaled coefficients

 scmeansn_1 = sum(abs(wwscmeans - prevscmeans)) ; % compute sum

of 1st order gradients from last scaled means to current

 scmeanslope = abs(scmeanslope + scmeansn_1)/k ; % compute

running mean of all scmeansn-1

 % Compute incremental STDs of normalized mean coefficients per

monomial term

 wwscstds = sqrt((((wwscstds.^2)./k + ((wwscmeans -

prevscmeans).^2)).*(k-1))) ;

 if (avscmeansslope <= maxmeansslope) % STOPPING criterion

 break

 end

 shuffle = randperm(np) ; % set up for next iteration...

 agu = agu(shuffle,:) ;

 trouts = trouts(shuffle,:) ;

 end

 wwtemp = wwmeans ; % assign last wwmeans as final coeffs

 ['...']

 tridx = tridx + 1 ; % increment the trial index for output vectors

 % &%&

 % TRIM the noisiest term from the poly set, run again

 [maxwwscstd maxstdidx] = max(wwscstds);% find the current

"noisiest" coefficient term

 ind(maxstdidx,:) = [] ; % ...remove it

 Nt = Nt - 1 ; % ...reduce total poly term count by 1

end

Option 2 Example – PolyStat.m excerpts

These variants remove one one or more monomial terms at a time following
iterative threshold-based evaluation of noise-responsiveness of term coefficients.

function [“…”] = PolyStat(“…”)

maxmeansslope = 1e-2 ; % arbitrary max Delta to stop iterative training

trpct = 0.75 ; % percent of training data to pull into the

iterative training

stdscale = 2.75 % multiplication factor for max STD threshold

trins = otrins ; % training pattern inputs

trouts = otrouts ; % training pattern outputs

[…]

117

ind = "..." % GENERATE polynomial term indices..

reducing = true ; % set flag to indicate we are still in the term-

pruning mode

while (reducing == true)

 % ENTER the iterative OLS (or other) regression phase:

 wwmeans = 0 ; % initialize running mean

 wwabsmax = [] ; % initial running max abs value of coeffs

 wwscstds = 0 ;

 wwscmeans = 0 ;

 scmeanslope = 0 ;

 for k = 1:50 % drill down to the essential output weights

 [Nt,Nd]=size(ind) ; % get indices size for current round

 agusubset = agu(1:trlength,:);% take subset of training

patterns

 troutsbst = trouts(1:trlength,:) ;

 %% BUILDING POLY TERMS

 Jsub = [] ; % DON'T FORGET the zero-order term..

 for jj=1:Nt

 Pr=1;

 for i=1:Nd

 Pr=Pr.*agusubset(:,ind(jj,i));

 end

 Jsub = [Jsub Pr];

 end

 wwtemp = lin_reg(Jsub,troutsbst) ; % Finding weights, OLS

method

 prevmeans = wwmeans ; % capture preceding raw coefficient means

 wwmeans = (wwtemp + wwmeans.*(k-1))./k ;% compute running means

of raw coefficients

 wwabsmax = max(abs([wwabsmax wwtemp]),[],2) + 1e-16 ; % compute

running max-abs of raw coefficients

 wwscaled = wwtemp./wwabsmax ; % NORMALIZE raw coefficients per

current max-abs

 prevscmeans = wwscmeans ; % capture preceding normalized ???

 wwscmeans = (wwscaled + wwscmeans.*(k-1))./k ; % compute

running means of scaled coefficients

 scmeansn_1 = sum(abs(wwscmeans - prevscmeans)) ; % compute sum

of 1st order gradients from last scaled means to current

 scmeanslope = abs(scmeanslope + scmeansn_1)/k ; % compute

running mean of all scmeansn-1

 % Compute incremental STDs of normalized mean coefficients per

monomial term

 wwscstds = sqrt((((wwscstds.^2)./k + ((wwscmeans -

prevscmeans).^2)).*(k-1))) ;

 if (scmeanslope <= maxmeansslope) % STOPPING criterion

 break

 end

 shuffle = randperm(np) ; % set up for next iteration...

 agu = agu(shuffle,:) ;

 trouts = trouts(shuffle,:) ;

118

 end

 meanstd = mean(wwscstds(find(wwscstds),:)) ; % only figure non-

zeros into this..

 stdstd = std(wwscstds(find(wwscstds),:),1) ; % only figure non-

zeros into this..

 maxscstd = meanstd + (stdscale * stdstd) ; % MAX stdstd threshold

criterion

 termthresh = (wwscstds > maxscstd) ; % PRUNE terms...

 if ((sum(termthresh) > 0) && (sum(termthresh) < Nt))

 wwtemp = wwtemp.*(~termthresh);% code terms over threshold with

zeros

 nonzeroidx = find(wwtemp) ; % kick out zero-coefficient

terms

 ind = ind(nonzeroidx,:) ; % REDUCE POLYNOMIAL TERMS !!!

 else

 reducing = false ; % we're done reducing, kick out

 break

 end

end

wwtemp = wwmeans ; % assign last wwmeans as final coeffs

7.4 Appendix D – MATLAB Code: Iterative GLS Regression

7.4 1 1-D 3rd-order Test – GLS_1D.m excerpts

function GLS_1D(npts,pctbad)

% INPUTS:

% npts: number of data points

% pctbad[whole#]: percentage of data points with a terrible

outlaying

% value and a terrible bias

x = linspace(0,1,npts) ;

yideal = x.^3 ;

% first step: create normally distributed noise in all data:

y1 = x.^3 + (0.04).*randn([1,npts]) ;

% next step: make it worse by creating randomly distributed large

magnitude

% errors with a non-symmetric bias:

replacex = sort(randi(npts,1,ceil((pctbad/100)*npts))) ;

y2 = y1 ;

for i=replacex

 y2(i) = y1(i) - x(i)*0.65*(1 - 0.2*abs(randn)) ;

end

figure(9); clf

plot(x,y2,'.',x,yideal,'k') ; hold on

119

h_title = title('Bad Data (nonuniform dist, uncorr var, awful trend,

etc.)') ;

h_xlabel = xlabel('x'); h_ylabel = ylabel('x^2');

legend('bad data','y=x^3','Location','northwest')

figure(10); clf % this plot is for all proper 1st order tests

plot(x,y2,'.',x,yideal,'k', 'LineWidth',2) ; hold on

augx3 = [ones(1,npts)' x' (x.^2)' (x.^3)'] ; % prep 3rd order

overfit

X3tX3 = augx3'*augx3 ; % 3rd order

W22 = augx3\y2' ; % 3nd order

Y22 = augx3*W22 ; % 2nd order overfit

figure(10)

plot(x,Y22,'LineWidth',2) ; hold all

% compute a baseline error btw desired function (y==x) and our full

"bad

% data" set:

ebase = sqrt(sum((yideal - y2).^2)/npts) ;

display(['Baseline, inherent RMSE, bad data vs. ideal: '

num2str(ebase)]) ;

% compute the "real" error btw desired fcn and our current regression

% method, which is equivalent to OLS:

ereal_OLS = sqrt(sum((yideal - Y22').^2)/npts) ;

display(['Real error, RMSE OLS(ours) vs. ideal: ' num2str(ereal_OLS)])

;

% compute the "dataset" error btw given (bad) data and our current

regression

% method, which is equivalent to OLS:

edata_OLS = sqrt(sum((y2 - Y22').^2)/npts) ;

display(['Data error, RMSE OLS(ours) vs. bad data: '

num2str(edata_OLS)]) ;

% NEW METHOD: "GENERALIZED LEAST SQUARES"

errs = (y2 - Y22') ; % compute the unsquared errors of our first

OLS attempt

Omega_1 = (diag(errs.^(2))) ;

edata_OLS

old_rmseGLS = 999 ;

BESTrmseI = 999 ;

RMSEs = [] ;

OmegaErrs = 999 ;

minGLSerr = 999 ;

for i = 1:50

 [a b] = size(augx3) ;

 lambdaI = (0.25/b).*eye(b) ;

 Bfgls = (augx3'*Omega_1*augx3 + lambdaI)\(augx3'*Omega_1*y2') ;

 Ygls = augx3*Bfgls ;

 errs = (y2 - Ygls') ;

 xfrmErr = sum(errs*Omega_1*errs')/npts ;

 if (xfrmErr < minGLSerr)

 minGLSerr = xfrmErr ;

120

 Bfinal = Bfgls ;

 end

 OmegaErrs = [OmegaErrs xfrmErr] ;

 IDEALrmse = sqrt(sum((yideal - Ygls').^2)/npts) ;

 RMSEs = [RMSEs IDEALrmse] ;

 if (IDEALrmse < BESTrmseI)

 BESTrmseI = IDEALrmse ;

 BESTi = i ;

 Bgls = Bfgls ;

 end

 if (i == 2)

 RMSEat2 = IDEALrmse ;

 Bglsat2 = Bfgls

 end

 if ((mod(i,1)==0) && abs(OmegaErrs(end-1)-xfrmErr)<=1e-10)

 breaki = i

 break

 end

 Omega_1 = (diag(errs.^(2))) ;

end

RMSEat2

BESTrmseI

BESTi

figure(10)

plot(x,augx3*Bgls,'-.',x,augx3*Bfinal,'--','LineWidth',2); hold all

legend('bad data','y=x^3','OLS','realbest','"BEST"

GLS','Location','northwest')

h_title = title(['GLS vs. OLS with BAD DATA: ' num2str(pctbad) '%

corruption']) ;

h_xlabel = xlabel('x'); h_ylabel = ylabel('x^2');

figprefs;

OmegaErrs(1) = [] ; % eliminate initial sum value

figure(22); clf

plot(OmegaErrs)

7.4.2 General GLS Code for Multiple Dimension Data Regression – GLS_reg.m

excerpts

function ww=GLS_reg(J,out)

%% Generalized Least Squares linear regression

maxERR = 1e-7 ;

maxiter = 150 ;

[np,ni]=size(J);

[n1,n2]=size(out);

if (np ~= n1) || (n2 ~= 1)

 error('Matrix size in GLS_reg.m are wrong');

end

initlambdaI = 1e-15.*eye(ni) ; % a simple strategy to get unstuck from

local minima..

121

% 1) compute the standard (OLS) linear regression to start the process:

Bols = J\out ;

if (isnan(sum(Bols)))

 Bols = lscov(J,out) ; % if matrix singular, use MATLAB's OLS

end

% 2) compute intermediate Y* and errors, construct the FGLS diagonal

matrix,

% Omega:

Yols = J*Bols ; % standard OLS regression

OLSerrs = (out' - Yols') ; % unsquared errors of our first OLS attempt

Omega_1 = (diag(OLSerrs.^2,0)) ;

% 3) begin iterative process to minimize transformed GLS error each

time:

lastErr = 999 ;

for i = 1:maxiter

 invprod = J'*Omega_1*J ; % denominator...

 numprod = J'*Omega_1*out ; % numerator...

 Bfgls = invprod\numprod ;

 % PROTECT against singular matrix potential...

 if (isnan(sum(Bfgls)))

 lambdaI = initlambdaI ;

 while (isnan(sum(Bfgls)))

 lambdaI = 10.*lambdaI ;

 Bfgls = (invprod+lambdaI)\(numprod) ;

 if (lambdaI(1,1) > 1e4)

 try

 Bfgls = lscov(J,out,Omega_1,'orth') ;

 if (isnan(sum(Bfgls)))

 Bfgls = Bols ; %

 end

 catch

 try

 Bfgls = lscov(J,out,Omega_1) ;

 if (isnan(sum(Bfgls)))

 Bfgls = Bols ; %

 end

 catch

 Bfgls = Bols ; % RESORT TO OLS if all else

fails

 end

 end

 end

 end

 end

 Ygls = J*Bfgls ; % compute intermediate values

 errs = (out' - Ygls') ; % compute intermediate errors

 xfrmErr = (errs*Omega_1*errs')/np ; % intermediate GLS TRANSFORM

MSE

 if (abs(lastErr-xfrmErr)<=maxERR)

 ww = Bfgls ;

 break

 end

 lastErr = xfrmErr ;

 Omega_1 = (diag(errs.^2,0)) ; % compute next Omega if necessary

122

end

if (i==maxiter)

 'WARN max GLS iter'

 ww = Bfgls ;

end

7.5 Appendix E – MATLAB Code: Iterative Ridge Regression

7.5.1 Computation of an Initial Minimum-variance λ – OLSridge_reg.m excerpt

The following computes a minimum-variance λ for all variants of iterative ridge
regression. This is the necessary first-step preceding an original iterative process.
The code is adapted from Celov et al. [84].

%% &%&%&%&%&%&% AUXILLIARY FUNCTION &%&%&%&%&%&%&%&%&%&%&%&%
% Compute a minimum-variance lambda by Newton-Raphson/Fisher process
function [lamda] = calc_lamda(Xnormalised,df,p)

 %Finding SVD of data
 [u s v]=svd(Xnormalised); % canned MATLAB function
 Di=diag(s) ;
 Dsq=Di.^2;

 %Newton-rapson method to solve for lamda
 lamdaPrev = (p-df)/df ;
 lamdaCur = 99 ;%random large value
 diff=lamdaCur-lamdaPrev;
 threshold = 1e-14 ;
 count = 0 ;
 while (diff>threshold) && (count < 51)
 count = count + 1 ;
 numerator=sum(Dsq ./(Dsq+lamdaPrev))-df ;
 denominator=sum(Dsq./((Dsq+lamdaPrev).^2)) ;
 lamdaCur=lamdaPrev+(numerator/denominator);
 diff=abs(lamdaCur-lamdaPrev) ;
 lamdaPrev=lamdaCur;
 end
 lamda=lamdaCur ;
return

7.5.2 Iterative λ Optimization Process – OLSridge_reg.m excerpt

The following computes an optimized (minimum RMSE) λ, balancing a compromise
between ideal variance and ideal bias.

function ww=OLSridge_reg(J,out,df)

%% OLS-Ridge regression

% INPUTS: J: training vector inputs

% out: training vector outputs

% df: RR degrees of freedom (usually polynomial order)

123

[np,ni]=size(J);

[n1,n2]=size(out);

if (np ~= n1) || (n2 ~= 1)

 error('Matrix size is wrong');

end

muscale = 1.5 ; % initial lambda scaling factor to hunt for ideal

lambda = calc_lamda(J,df,ni) ; % compute initial min-var lambda

prevSSE = np ; % initialize previous errors

prevlambda = lambda ; % needed for odd condition of RMSE increase upon

first iteration

hessi = J'*J ; % compute once, use repeatedly

regnum = J'*out ; % compute once, use repeatedly

for count = 1:1000 % overkill, but just in case...

 ww = (hessi+(lambda.*eye(ni)))\regnum ; %compute initial weights

 currSSE = sum((out' - (J*ww)').^2) ; % compute current errors

 if (currSSE < prevSSE) % condition for shrinkage

 prevlambda = lambda ;

 lambda = lambda - lambda/muscale ; % shrink lambda

 prevSSE = currSSE ;

 elseif (currSSE > prevSSE) % condition for overshoot...

 lambda = prevlambda ;

 muscale = muscale*2 ;

 else

 break % we hope we are done

 end

end

7.6 Appendix F – MATLAB Code: Hybrid Regression Techniques Including RR

7.6.1 Iterative GLS + RR Minimum-Variance Regression – GLSminvar_reg.m

excerpts

function ww=GLSminvar_reg(J,out,df)
%% Generalized Least Squares linear regression which initially computes
% the minimum-variance Lambda (from Ridge Regression). This produces
% training and validation RMSE results with the least variance between

the two.
% INPUTS: J: training vector inputs
% out: training vector outputs
% df: degrees of freedom (usually polynomial order)

maxERR = 1e-7 ;
maxiter = 100 ;

[np,ni]=size(J);
[n1,n2]=size(out);
if (np ~= n1) || (n2 ~= 1)
 error('Matrix size is wrong');
end

lambdaI = calc_lamda(J,df,ni).*eye(ni) ; % SEE APPENDIX E

124

% 1) compute the standard (OLS) linear regression to start the process:
Bols = J\out ;
if (isnan(sum(Bols)))
 Bols = lscov(J,out) ; %
end
% 2) compute intermediate Y* and errors, construct the FGLS diagonal

matrix,
% Omega:
Yols = J*Bols ; % standard linear regression
OLSerrs = (out' - Yols') ; % unsquared errors of our first OLS attempt
Omega_1 = (diag(OLSerrs.^2,0)) ;
% 3) begin iterative process to minimize transformed GLS error each

time:
lastErr = 999 ;
for i = 1:maxiter
 Bfgls = (J'*Omega_1*J+lambdaI)\(J'*Omega_1*out) ;
 if (isnan(sum(Bfgls))) % trap singular matrix conditions
 Bfgls = (J'*J+lambdaI)\(J'*out) ;
 end
 Ygls = J*Bfgls ; % compute intermediate values
 errs = (out' - Ygls') ; % compute intermediate errors
 xfrmErr = (errs*Omega_1*errs')/np ; % intermediate transform MSE
 if (abs(lastErr-xfrmErr)<=maxERR)
 ww = Bfgls ;
 break
 end
 lastErr = xfrmErr ;
 Omega_1 = (diag(errs.^2,0)) ; % compute next Omega if necessary
end

7.6.2 Iterative GLS + RR Full Optimization Regression – GLSridge_reg.m excerpts

function ww=GLSridge_reg(J,out,df)

%% Generalized Least Squares regression with ridge regression component

maxERR = 1e-7 ;

maxiter = 200 ;

[np,ni]=size(J);

[n1,n2]=size(out);

% NOTE: this just uses the lambdaI technique to avoid singularity, no

ridge yet..

initlambdaI = 1e-15.*eye(ni) ; % simple method to escape singular

matrix problem

% 1) compute the standard (OLS) linear regression to start the process:

Bols = J\out ;

if (isnan(sum(Bols)))

 Bols = lscov(J,out) ; %

end

% 2) compute intermediate Y* and errors, construct the FGLS diagonal

matrix,

% Omega:

Yols = J*Bols ; % standard linear regression

OLSerrs = (out' - Yols') ; % unsquared errors of our first OLS attempt

125

Omega_1 = (diag(OLSerrs.^2,0)) ;

% 3) begin iterative process to minimize transformed GLS error each

time:

lastErr = 999 ;

for i = 1:maxiter

 invprod = J'*Omega_1*J ;

 numprod = J'*Omega_1*out ;

 Bfgls = invprod\numprod ;

 if (isnan(sum(Bfgls)))

 lambdaI = initlambdaI ;

 while (isnan(sum(Bfgls)))

 lambdaI = 10.*lambdaI ;

 Bfgls = (invprod+lambdaI)\(numprod) ;

 if (lambdaI(1,1) > 1e4)

 try

 Bfgls = lscov(J,out,Omega_1,'orth') ;

 if (isnan(sum(Bfgls)))

 Bfgls = Bols ; %

 end

 catch

 try

 Bfgls = lscov(J,out,Omega_1) ;

 if (isnan(sum(Bfgls)))

 Bfgls = Bols ; %

 end

 catch

 Bfgls = Bols ;

 end

 end

 end

 end

 end

 Ygls = J*Bfgls ; % compute intermediate values

 errs = (out' - Ygls') ; % compute intermediate errors

 xfrmErr = (errs*Omega_1*errs')/np ; % intermediate MSE

 if (abs(lastErr-xfrmErr)<=maxERR) % lowest yet !!!

 break

 end

 lastErr = xfrmErr ;

 Omega_1 = (diag(errs.^2,0)) ; % compute next Omega if necessary

end

% 4) NOW begin iterative Lambda-tuning process

lambda = calc_lamda(J,df,ni) ; % compute initial min-var Lambda

muscale = 1.5 ; % initial lambda scaling factor to hunt for ideal

prevSSE = np ; % initialize previous errors

prevlambda = lambda ; % needed for larger RMSE on first iteration

for count = 1:1000

 ww = (invprod+(lambda.*eye(ni)))\numprod ; %compute initial

weights

 currSSE = sum((out' - (J*ww)').^2) ; % compute current errors

 if (currSSE < prevSSE) % condition for shrinkage

 prevlambda = lambda ;

 lambda = lambda - lambda/muscale ; % shrink lambda

 prevSSE = currSSE ;

 elseif (currSSE > prevSSE) % condition for overshoot...

 lambda = prevlambda ;

126

 muscale = muscale*2 ;

 else

 break % we hope we are done

 end

end

7.7 Appendix G – MATLAB Code: Two Types of PLM Implementations

7.7.1 The PolyNet Variant – PolyNet.m excerpts

function [ww,indfinal,npp,"..."] =

PolyNet(trins,trouts,maxord,Pthresh"...")

[np,nd]=size(trins);
agu=[ones(np,1),trins]; %agumented input space (+1 is added in the

column)

pterms = 0 ; % initialize number of monomials
ord = -1 ; % initialize polynomial order
orders = [] ; % initialize vector of orders per solution
[...]
rmseTr = [] ; % per solution RMSEs
npp = [] ; % initialize count of poly terms
while ((pterms <= Pthresh) && (ord < maxord))
 ord = ord + 1 ;
 pterms=factorial(ord+nd)/(factorial(ord)*factorial(nd)) ;
 if (pterms <= Pthresh)
 Nmax=(nd+1)*ones(1,ord+1);
 ind=Get_In_pol(Nmax) ;
 [Nt,Nd]=size(ind);

 %% calculating polynomial terms
 J = [] ;
 for jj=1:Nt
 Pr=1;
 for i=1:Nd
 Pr=Pr.*agu(:,ind(jj,i));
 end
 J = [J Pr];
 end
 wwtemp = lin_reg(J,trouts) ; % Finding weights
 nonzeroidx = find(wwtemp) ;

 % Now reduce all matrices considerably :) :) :)
 ww{:,ord+1} = wwtemp(nonzeroidx) ;
 Jreduced{:,:,ord+1} = J(:,nonzeroidx) ;
 indfinal{:,:,ord+1} = ind(nonzeroidx,:) ;

 %% verifying with training points and getting errors
 Xappx = Jreduced{:,ord+1}*ww{:,ord+1} ;
 rmse = sqrt(sum(sum((trouts - Xappx).^2))/np) ;
 npp = [npp length(nonzeroidx)] ;
 orders = [orders ord+1] ;
 rmseTr = [rmseTr rmse] ;

127

 end
end

7.7.2 The PolyPaP Variants – PlyPaPGLSR.m excerpts

function [ww,indfinal,npp,maxorders,"..."] ...

 = PlyPaPGLSR(trins,trouts,maxord,Pthresh,"...")

[np,nd]=size(trins);

agu=[ones(np,1),trins]; %agumented input space (+1 is added in the

column)

% &%&%&%&%&%&%&%&% INITIAL STUFF FOR PROBE SEQUENCE

tic ; % prepare to capture probing time ...

pterms = 0 ; % initialize number of monomials

ord = -1 ; % initialize polynomial order

rmsePr = 9999 ; % Initialize "lowest" probe RMSE

while ((pterms <= Pthresh) && (ord < maxord))

 ord = ord + 1 ;

 pterms=factorial(ord+nd)/(factorial(ord)*factorial(nd)) ;

 if (pterms <= Pthresh)

 Nmax=(nd+1)*ones(1,ord+1);

 ind=Get_In_pol(Nmax) ;

 [Nt,Nd]=size(ind);

 %% calculating weights

 J = [] ; % DON'T FORGET the zero-order term..

 for jj=1:Nt

 Pr=1;

 for i=1:Nd

 Pr=Pr.*agu(:,ind(jj,i));

 end

 J = [J Pr];

 end

 wwtemp = GLSminvar_reg(J,trouts,Nd) ; % Use min-var ridge to

probe min RMSE point..

 XappxPr = J*wwtemp ;

 rmse = sqrt(sum(sum((trouts - XappxPr).^2))/np) ;

 if (rmse < rmsePr)

 PrOrder = ord ; % set optimized probe order

 rmsePr = rmse ; % set new optimized probe RMSE

 end

 end

end

PrTime = toc ; % capture training time for probe sequence

% &%&%&%&%&%&%&%&%&%&%&%&%& END PROBE SEQUENCE

maxmeansslope = 1e-2 ;

trpct = 0.75 ; % percent of training data to pull into the

iterative training

trlength = ceil(trpct*np) ; % establish number pf patterns to

include for each spin

maxorders = [] ; % initialize vector of maxorders per solution

128

npp = [] ; % initialize count of poly terms

Nmax=(nd+1)*ones(1,PrOrder); % GENERATE all terms at ProbeOrd order...

ind=Get_In_pol(Nmax) ;

[Nt,Nd]=size(ind) ; % get indices size for current round

tridx = 1 ; % initial training index value to store

output vectors

while (Nt >= 1)

 tic ; % start clocking time for this node's training

 % ENTER the iterative OLS regression phase:

 tstwwmeans = 0 ; % initialize running mean

 tstwwabsmax = [] ; % initial running max abs value of coeffs

 tstwwscstds = 0 ;

 tstwwscmeans = 0 ;

 prevwwscaled = 0 ; % initialize k-1 normalized weights

 avscmeansslope = 0 ;

 for k = 1:100 % drill down to the essential output weights for

each instance

 agusubset = agu(1:trlength,:) ; % take subset of training

patterns

 troutsbst = trouts(1:trlength,:) ;

 %% building monomial terms

 Jsub = [] ;

 for jj=1:Nt

 Pr=1;

 for i=1:Nd

 Pr=Pr.*agusubset(:,ind(jj,i));

 end

 Jsub = [Jsub Pr];

 end

 wwtemp = GLSridge_reg(Jsub,troutsbst,Nd) ; % Finding weights,

OLS with iterative ridge regression

 tstwwmeans = (wwtemp + tstwwmeans.*(k-1))./k ; %

compute running means of raw coefficients

 tstwwabsmax = max(abs([tstwwabsmax wwtemp]),[],2) + 1e-16 ; %

compute running max-abs of raw coefficients

 tstwwscaled = wwtemp./tstwwabsmax ; % NORMALIZE raw

coefficients per current max-abs

 prevscmeans = tstwwscmeans ; % capture preceding

normalized ???

 tstwwscmeans = (tstwwscaled + tstwwscmeans.*(k-1))./k ;

 scmeansnn_1 = sum(abs(tstwwscmeans - prevscmeans)) ;

 avscmeansslope = abs(avscmeansslope + scmeansnn_1)/k ;

 tstwwscstds = sqrt((((tstwwscstds.^2)./k + ((tstwwscmeans -

prevscmeans).^2)).*(k-1))) ;

 if (avscmeansslope <= maxmeansslope)

 break

 end

 shuffle = randperm(np) ;

 agu = agu(shuffle,:) ;

 trouts = trouts(shuffle,:) ;

129

 end

 finalk = k

 wwtemp = tstwwmeans ; % assign last wwmeans as final coeffs

(this is the way to go 7/3/13)

 ["..."]

 %% checking weights: Keep only poly vectors with non-zero

coefficients

 nonzeroidx = find(wwtemp) ; % necessary one more time...

 ["..."]

 tridx = tridx + 1 ; % increment the trial index for output

vectors

 % &%&

 % TRIM the noisiest term from the poly set, run again

 [maxwwscstd maxstdidx] = max(tstwwscstds) ; % find the current

"noisiest" coefficient term

 ind(maxstdidx,:) = [] ; % ...remove it

 Nt = Nt - 1 ; % ...reduce total poly

term count by 1

end

7.8 Appendix H – MATLAB Code: An N-Dimensional Data-Driven TSK Fuzzy
System

7.8.1 Efficient Recursive Interpolation – recurinter.m excerpts

function [outputs] = recurinter(intrain,intpts,varargin)

% This is a program which recursively interpolates new output values

for

% any input set of points (one or many), given randomly spaced

% multi-dimensional input data as "training points".

%

% INPUTS:

% intrain: -- input "training points" of dataset

% intpts: -- set of point locations to interpolate, eg:

% [x1,y1,...,w1;

% x2,y2,...,w2;

% xnp,ynp,...,wnp]

% varargin{1}=dim -- current dimension to sort and thin

% varagrin{2}=lastdim -- last dimension to operate upon

% varargin{3}=radius -- current 1-D "radius" for

identification

% of candidate vectors

% varargin{4}=mode -- '0'==interior point search

% '1'==boundary point search

% OUTPUT:

% outputs: -- the interpolated points with final 'Z'

values

inithalfspan = 0.00625 ; % initial search radius for points to

interpolate

%% MAIN: Recursive Interpolation

if (nargin==2) % If initial invocation, wrapper tasks ensue...

130

 [irows,icols] = size(intpts) ;

 maxhfspan = 2*sqrt(icols) ; % mark greatest span across

hypercube..

 outputs = [] ; % initialize final set of outputs

 for row = 1:irows

 tempsets = [] ; % initialize final subset of training pts to be

averaged

 tmpvectors = 0 ;% initialize number of tempsets members

 halfspan = inithalfspan ; % initial 1-D "radius"

 mode = 0 ; % we start by assuming non-boundary point search

 while (tmpvectors < icols) % require at least one datapoint

per dimension..

 halfspan = halfspan*1.1 ;

 if (halfspan > maxhfspan)

 mode = 1 ; % now we are at an "edge" and search as

boundary point

 halfspan = inithalfspan*1.1 ;

 end

 tempsets =

recurinter(intrain,intpts(row,:),1,icols,halfspan,mode) ;

 [tmpvectors, tmpcols] = size(tempsets) ;

 end

 outputs = [outputs; [intpts(row,:)

computeval(tempsets,intpts(row,:))]] ;

 end

 return ;

end

% vvvvv if this is a recursive call: vvvvv

dim = varargin{1} ; % current dimension

lastdim = varargin{2} ; % last input dimension

radius = varargin{3} ; % 1-D "radius"

mode = varargin{4} ; % '0' for in-bound point search, '1' for out-

of-bounds search

if (dim<=lastdim)

 nextidx = (intrain(:,dim)>=(intpts(dim)-

radius))&(intrain(:,dim)<=(intpts(dim)+radius)) ;

 subset = intrain(nextidx,:) ;

 dim = dim + 1 ;

 if (dim > lastdim)

 if (~isempty(subset) && (mode==0))

 for p = 1:lastdim

 testo = find(subset(:,p)>intpts(p), 1) ;

 if isempty(testo)

 subset = [] ;

 break

 end

 testo = find(subset(:,p)<intpts(p), 1);

 if isempty(testo)

 subset = [] ;

 break

 end

 end

 end

 outputs = subset ;

 else

131

 outputs = recurinter(subset,intpts,dim,lastdim,radius,mode) ;

 end

end

return % recurinter()

%% COMPUTE final interpolated value for current testpoint

function ruleval = computeval(subset,tstpt)

% Support function for recurinter: Computes the interpolated output

value

% once the complete subset of points for the current interpolation

point is

% identified. Avoids square root computation.

%

% INPUTS:

% subset: -- the set of valid poitns for which the

% interpolated value is computed

% tstpt: -- the current point at which to compute

the

% value

% OUTPUT:

% ruleval: -- the interpolated output value for the

% current point location

[rows cols] = size(subset) ;

if (rows == 1)

 ruleval = subset(1,cols) ;

else

 rawdists2 = [] ;

 for row = 1:rows

 rawdists2 = [rawdists2; (tstpt - subset(row,1:(cols-1))).^2] ;

 end

 sumdists = sum(rawdists2,2) ;

 sumalldists = sum(sumdists).*ones(rows,1) ;

 Zprods = subset(:,end).*(sumalldists - sumdists) ;

 ruleval = sum(Zprods)/(sumalldists(1)*(rows-1)) ;

 if isnan(ruleval)

 ruleval = 0 ;

 end

end

return % computeval()

7.8 2 The TSK Fuzzy System Engine

Training:

function [fuzztables,npp,"..."] ...

 = NFuzzyT1(trins,trouts,FTmax,F1Dmax)

% INPUTS:

% trins: the inputs to the dataset you would like to train

% trouts: the training outputs corresponding to the inputs

% FTmax: max allowed number of output fuzzy table values

% F1Dmax: max allowed number of table breakpoints along 1-D

132

trainset = [trins trouts] ; % "training" set

[np,nd]=size(trins);

dim = nd ;

nF1D = 0 ; % initialize number of breakpoints along 1 table

dimension

FTterms = 0 ; % initialize total number of table elements

rmseTr = [] ; % per solution RMSEs

npp = [] ; % initialize count of fuzzy table elements

while ((FTterms <= FTmax) && (nF1D < F1Dmax))

 nF1D = nF1D + 1 ;

 FTterms = nF1D^nd

 if (FTterms <= FTmax)

 % vvvvv set up fuzzy table points, same coordinates for all

dimensions:

 % NOTE: final set of coords will be

(#breakpoints)^(#dimensions), beware..

 span = 2/(nF1D-1) ;

 if (isinf(span))

 tblpts = [0] ;

 else

 tblpts = [-1:span:1];

 end

 dim = nd ; % this initializes for each new fuzzy table..

 % create set of all multi-dim fuzzy table points:

 tblcoords = [] ; % initialize table of fuzzy output value

locations

 tblidx = [] ;

 expo = 0 ; % initial power of 2 exponent

 while(dim > 0)

 vect = [] ;

 idxvect = [] ;

 for i = (0.00001):1/(nF1D^expo):nF1D

 vect = [vect tblpts(ceil(i))] ;

 idxvect = [idxvect ceil(i)] ;

 end

 expo = expo + 1 ;

 fullvect = [] ;

 fullidxvect = [] ;

 for j = 1:(nF1D^(dim-1))

 fullvect = [vect fullvect] ;

 fullidxvect = [idxvect fullidxvect] ;

 end

 dim = dim - 1 ;

 tblcoords = [fullvect' tblcoords] ;

 tblidx = [fullidxvect' tblidx] ;

 end

 tblidx = num2cell(tblidx) ;

 [tblrws,tblcols] = size(tblcoords) ;

 % compute the fuzzy output table values and assign to an

indexable matrix:

 intrpouts = recurinter(trainset,tblcoords) ;

133

 for p = 1:tblrws

 fuzztable(tblidx{p,:}) = intrpouts(p,end) ;

 end

 fuzztables{:,nF1D} = fuzztable ;

 % ***** "training" verification -- COMPUTE fuzzy outputs...

 fuzzouts = nDfuzz_out(fuzztable,trins) ;

 rmse = sqrt(sum(sum((trouts - fuzzouts).^2))/np) ;

 npp = [npp FTterms] ;

 rmseTr = [rmseTr rmse] ;

 end

end

Fuzzy Table Output Generation:

function [fuzzouts] = nDfuzz_out(fuzztbl,validins)

% Author: Michael S. Pukish

% Modification Date: 09/21/13

% Description: Computes n-D fuzzy system outputs given a set of input

points

% and the normalized n-D fuzzy output table.

% INPUTS:

% fuzztbl: -- the n-D fuzzy output table

% validins: -- row vector points to solve for

% OUTPUTS:

tblres = size(fuzztbl,1) ; % capture resolution along one

axis

yint = (tblres+1)/2 ; % compute y-intercept for all

fuzzified axis conversions

yslope = (tblres-1)/2 ;

[vrows inlength] = size(validins) ; % capture max count & length of

vectors

fuzzouts = [] ; % initialize fuzzy outputs

for vidx = 1:vrows

 vect = yslope.*(validins(vidx,:)) + yint ; % capture/convert

current vector to solve

 floors = floor(vect) ; % get integer bounds of each dimension

 ceils = ceil(vect) ; % ...

 % vvvv build up solution subset from fuzz table vvvv :

 setstr = 'subset=fuzztbl(' ;

 for m = 1:inlength

 if ((vect(m)>1) && (vect(m)<tblres))

 em = num2str(m) ;

 setstr = [setstr 'floors(' em '):ceils(' em '),'] ;

 elseif (vect(m)<=1)

 setstr = [setstr '1,'] ;

 else

 setstr = [setstr num2str(tblres) ','] ;

 end

134

 end

 setstr(end) = []; setstr = [setstr ');'] ;

 eval(setstr) ; % resolves subset for current input

vector

 % now, build the products...

 if ((vect(1)>1) && (vect(1)<tblres)) % initialize the first-

D fuzzy distances..

 fzzfact = mod(vect(1),1) ; % ...compute fuzzy

distance factor for current

 else

 fzzfact = 1 ;

 end

 fuzzprods = nonzeros([(1-fzzfact) fzzfact]) ; % initialize the

product values

 for d = 2:inlength

 if ((vect(d)>1) && (vect(d)<tblres))

 fzzfact = mod(vect(d),1) ;

 else

 fzzfact = 1 ;

 end

 twonew = nonzeros([(1-fzzfact) fzzfact]) ; % next dimension to

examine..

 tempprods = [] ; % initialize current 1-D

product sequence

 for i = 1:length(twonew)

 for e = 1:length(fuzzprods)

 tempprods = [tempprods twonew(i)*fuzzprods(e)] ;

 end

 end

 fuzzprods = tempprods ;

 end

 fuzzouts = [fuzzouts; fuzzprods*subset(:)] ; % build columned

output vector

end

7.9 Appendix I – MATLAB code: Fast, Forward-Computing N-Dimensional Radial
Clustering

function [outclusidx] = clstrsets(inptrns,maxrad,minclstrs,minclslen)

% Parses an input set of training patterns into multiple output

clusters. Only

% indices of the original data set are reported, according to the input

pattern

% indices (one vector per row).

%

% INPUTS: inptrns: -- row vectors of given input pattern set

% maxrad: -- maximum (starting) radius of output clusers

% minclstrs: -- minimum number of output clusters

% minclslen: -- minimum length allowed per cluster

%

% OUTPUTS: outclusidx: --

[n,m]=size(inptrns); % determine dimensions of dataset array

135

for k = (maxrad*100):-1:1, % vary test radii from marad downto 0.01

in steps of 0.01

 % np: number(s) of patterns per clusters, p: location(s) of cluster

centers

 r=k/100; np=[]; p=[]; p(1,:)=inptrns(1,:); np(1)=1; nc=1; %

initialize values

 clstridx{1} = 1 ;

 for i=2:n, % for all patterns...

 nt=0;

 for j=1:nc, % per each cluster in existence...

 % compute distance btw cluster center and present pattern,

compare

 dd=p(j,:)- inptrns(i,:); d=sqrt(dd*dd');

 if (d < r) % if distance of present pattern < current

threshold...

 % update weights for pressnt cluster's neuron

 p(j,:)=(inptrns(i,:)+p(j,:)*np(j))/(np(j)+1) ;

 clstridx{j} = [clstridx{j} i] ;

 np(j)=np(j)+1; % increment pattern count for this

cluster...

 break;

 end;

 nt=nt+1; % ... otherwise,

 end;

 if nt==nc, % ... create a new cluster

 nc=nc+1; p(nc,:)=inptrns(i,:); np(nc)=1; % increment #

clusters,

 clstridx{nc} = i ;

 end;

 end;

 idxcnt = 1;

 for q=1:nc

 if (length(clstridx{idxcnt}) < minclslen)

 putsetidx = clstridx{idxcnt} ;

 clstridx(idxcnt) = [] ;

 p(idxcnt,:) = [] ;

 nc = nc - 1 ;

 clstridx = putback(clstridx,putsetidx,r,inptrns,p,nc) ;

 else

 idxcnt = idxcnt + 1 ;

 end

 end

 if (nc > minclstrs)

 break

 end

end;

outclusidx = clstridx ;

return

% helper function -- putback finds a new home for clusters that are too

% small

function [clsidxout] =

putback(clsidxin,pbset,initr,allpat,clsctrs,numclus)

pbsetlen = length(pbset) ;

136

for i = 1:pbsetlen

 currad = initr ;

 found = false ;

 while (~found)

 currad = currad + 0.01 ;

 for j = numclus:-1:1

 dd=clsctrs(j,:)- allpat(pbset(i),:); d=sqrt(dd*dd');

 if d<currad, % if distance of present pattern < current

threshold...

 clsidxin{j} = [clsidxin{j} pbset(i)] ;

 found = true ;

 break;

 end;

 end

 end

end

clsidxout = clsidxin ;

return

7.10 Appendix J – Selected Publications by This Author

Journal Articles

D. Hunter, H. Yu, M. S. Pukish, J. Kolbusz, and B. M. Wilamowski, “Selection of Proper
Neural Network Sizes and Architectures -- A Comparative Study,” Industrial
Informatics, IEEE Transactions on, vol. 8, no. 2, pp. 228 –240, May 2012.

M. S. Pukish, P. Różycki, and B. M. Wilamowski, “Advances in Polynomial-Based
Learning Machines for Industrial Electronics,” Industrial Informatics, IEEE
Transactions On, May 2014. [submitted and under review]

Conference Papers

M. S. Pukish, S. Wang, and B. M. Wilamowski, “Segmentation of Cerebral Cortex MRI
Images with Artificial Neural Network (ANN) Training,” in 2013 The 6th
International Conference on Human System Interaction (HSI), 2013, pp. 320–327.

Michael S. Pukish, Philip Reiner, and Xing Wu, “Recent Advances in the Application
of Real-Time Computational Intelligence to Industrial Electronics,” presented at the
IECON2012, Montreal, Canada, 2012.

Pukish, Michael S., Gnanachchelvi, Parameshwaran, and Wu, Xing, “Recent
Developments in Wireless Hardware Design, Modeling, and Analysis for Industrial
Applications,” presented at the IEEE IECON2012, Montreal, Canada, 2012.

137

Parameshwaran Gnanachchelvi, Jiao Yu, and Michael Pukish, “Current Trends in In-
vehicle Electrical Engineering Applications,” presented at the IEEE IECON2012,
Montreal, Canada, 2012.

Xing Wu, Hao Yu, Tiantian Xie, and Michael S. Pukish, “Current Trends in Industrial
Control,” presented at the IEEE IECON2012, Montreal, Canada, 2012.

Joseph Cali, Xueyeng Geng, Michael Pukish, and Jianjun Yu, “A 1 GHz DDFS for
Stretch Processing Radar in 130nm CMOS process,” 2012.

Jianjun Yu, Joseph Cali, Feng Zhao, and Michael Pukish, “An X-Band Chirp Radar
Transmitter with Direct Digital Synthesis in 0.13um BiCMOS,” 2012.

Yuan Yao, Jianjun Yu, Michael Pukish, Siyu Yang, and Zachary Hubbard, “A 12-bit
60MS/s Inter-leaved Pipeline A/D Converter with Op-amp Sharing Techniques,”
2012.

