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Abstract 

 
 At the present time, the need in all disciplines for efficient and powerful 

algorithms for the handling of large and complex datasets is certainly at its highest.  

Extremely large multi-dimensional datasets are commonplace in archival 

climatology and weather prediction, image processing, biology, genetics, industrial 

electronics, financial analysis and forecasting, telecommunications, cyber security, 

and throughout the social sciences.  In addition to the size and high dimensionality 

of the data, agile real-time systems are needed to process such information for 

interpolation and extrapolation implementations applied toward control systems, 

data streaming and filtering, and simulation and modeling. 

 In the interest of analysis and manipulation of the “big data” associated with 

such disciplines and tasks, certain techniques have come and gone over time, 

leading to a current subset of prevalent Computational Intelligence (CI) techniques.  

Throughout the fields of computer science and electrical engineering, these 

particular techniques have risen to their present popularity largely due to their 

existing familiarity and positive track record among researchers and engineers.  

Such techniques include fuzzy systems, Artificial Neural Networks (ANN), Radial 

Basis Function (RBF) networks, Support Vector Machines (SVM), Gaussian 

Processes (GP), and Evolutionary Computation (EC) (of which Genetic Algorithms 

(GA) are a predominant subset).  Specific variants of some of these methods include 

Support Vector Regression (SVR) and a currently popular subset of RBF-based 

neural networks known as Extreme Learning Machines (ELM).  Both of those 

variants and some of the more general techniques will be highlighted further in this 

work. 

 Historically, Polynomial-Based Learning Machines (PLM) had been used for 

the same classes of problems mentioned thus far.  However, unwieldy kernel 

functions (in the form of large, high-order polynomials) and relatively limited 
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computer speed and capacity had limited the use of PLMs to comparatively small 

problems with low dimensionality and simple functional relationships among inputs 

and outputs.  Thus, polynomial-based solutions within CI have, for the most part, 

drifted out of vogue for at least two decades. 

 This work attempts to reinvigorate the interest and viability of PLMs for use 

throughout all applications of CI by introducing enhancements for their 

implementation.  It will be shown that once certain algorithms are applied to the 

generation, “training”, and functional operation of PLMs, PLMs compete on par with 

the predominant methods currently in use, and in many cases perform with 

superior efficiency, compute time, and accuracy.  Functional enhancements will be 

explained, and seven variants of a new generation of PLMs will be compared 

alongside the predominant CI techniques, through experimentation with a variety of 

problem types ranging from real-time industrial applications to approximation of 

benchmark “big data” sets. 
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Chapter 1  

Background of Polynomial Networks 

 
1.1 Introduction 
 
 The field of Computational Intelligence (CI) currently includes several 

prominent areas:  Artificial Neural Networks (ANN), Fuzzy Systems (FS), Radial 

Basis Function (RBF) networks, Support Vector Regression (SVR), Gaussian Process 

(GP) methods, and evolutionary computation (EC) techniques.  A major interest in 

these areas is in their ability to approximate non-linear functions with relative 

efficiency, computational speed, and accuracy.  As a result of these characteristics, CI 

systems are most prominently used as control systems across such varied areas 

from motor actuation and control [1]–[4], to power systems [5]–[8], an on to an 

array of complex problem solving such as fault detection [9]–[11] and even water 

quality prediction [12]. 

 Along the road to this current array of choices, conceptually and 

architecturally simple ideas have been introduced in previous decades in the form of 

Functional Link Networks (FLN).  These networks, explored by researchers such as 

Pao [13], feature a single-layer architecture of an unlimited number of non-linear 

function-generating nodes, and a single summation output node.  Single-layer 

network methods such as RBF, SVR, etc., with different node functions for each 

node, are actually subsets of FLN.  In terms of the application of such a network to 

Machine Learning (ML), such a network can train a set of multi-dimensional input 

patterns to an equal number of desired output patterns using an appropriate single-

layer method, such as linear regression [14].  Figure 1 shows such a general FLN 

with multi-dimensional inputs, Xm, and a potentially unlimited number of non-

linear sub-function generators, Fn, which can theoretically approximate a complex 

non-linear function, Z.  Note that multiple outputs, Z, could be approximated with 
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the inclusion of multiple parallel output summation stages.  Each would be trained 

separately to the same patterns fed to the same or subset of same inputs, Xm, as 

necessary to produce multi-dimensional outputs.   
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Figure 1  Diagram of a generalized functional link network 

Of course, the important questions to ask are:   

 What types of non-linear functions lend themselves to overall good 

performance as part of a universally approximating FLN?   

 How can such functions be efficiently generated?   

 The goal of this work is to address these questions and to present promising 

results obtained with a novel implementation of polynomial artificial neural 

networks.  Herein, a new algorithm for implementing a single-layer polynomial 

network is introduced that can be rapidly generated and trained to approximate 

multi-dimensional non-linear functions of significant complexity.  Novel applications 

of existing improvements to polynomial networks are also introduced which greatly 

increase the accuracy of the polynomial network such that comparison with other 

universal approximating (UA) algorithms is either comparable or superior for 

certain performance parameters. 
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1.2 Existing Polynomial Networks 
 
1.2.1 Development of the Group Method of Data Handling (GMDH) 
 
 CI methods and other similar algorithms generally propose a single type or 

family of related functions as computational units to be replicated within particular 

network architecture.  The replication of computational units lends advantages in 

both software and hardware implementation of such networks in terms of reuse, 

scalability, etc.  If we think of tasks such as function approximation (interpolation), 

function prediction (extrapolation), etc., as being variants of curve fitting, one can 

see that the choice of computational unit will determine, to a large extent, the ability 

and efficiency of a network to properly represent non-linearities.  Many choices 

exist in the literature for these computational units. 

 Ivakhnenko first proposed a formal implementation of a polynomial–based 

computational engine in 1971 [15].  The potential of polynomial-based networks to 

approximate highly complex nonlinear functions is apparent with the examination 

of the Taylor Series expansion in a single dimension (in this case) [16]: 

 𝑓(𝑥) =  ∑
𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 (1) 

 = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓(2)(𝑎)

2!
(𝑥 − 𝑎)2 +⋯ 

 

(2) 

Many familiar nonlinear functions are adequately approximated with the Taylor 

Series [16]: 

  𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+. . .  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥  

 √1 + 𝑥 = 1 +
1

2
𝑥 −

1

8
𝑥2 +

1

16
𝑥3 −

5

128
𝑥4 +⋯   𝑓𝑜𝑟|𝑥| ≤ 1  

   sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
− ⋯   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 (3) 

  cosh𝑥 = 1 +
𝑥2

2!
+
𝑥4

4!
+ ⋯   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥  

  tanh 𝑥 = 𝑥 −
1

3
𝑥3 +

2

15
𝑥5 −

17

315
𝑥7 +⋯   𝑓𝑜𝑟 |𝑥| <

𝜋

2
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For the one-dimensional cases in (3), all approximations are simply polynomials 

with monomial terms of unique degree, each with a scalar coefficient.  This is the 

case for multi-dimensional non-linear function approximations as well.   

 The difficulty in using polynomials as basis functions for learning networks, 

recognized by Ivakhnenko and many others, lies in the questions of how to 

efficiently generate such polynomial product terms (monomials) of the correct 

exponential degree or order, as well as how to solve for the coefficients of these 

terms.  The first problem to recognize is the potential impact of the sheer number of 

monomials on computer memory.  To illustrate the memory problem, let us first 

consider a three-dimensional (three-input) case for which both a second and third 

order solution are assumed.  For three variables, x, y, and z, the full second-order 

polynomial captures all monomial terms of degree-2 and lower, and is yielded by 

the expansion of (𝑥 + 𝑦 + 𝑧 + 1)2.  Similarly, the third-order expression is given by 

(𝑥 + 𝑦 + 𝑧 + 1)3.  Typically in code or in hardware, barring any special algorithm, all 

product terms are generated straightforwardly by applying the multiplications 

indicated by the exponent.  Equation (4) explicitly shows the product operations 

generated by such a straightforward approach for the three-input, second-order 

case:   

 
(𝑥 + 𝑦 + 𝑧 + 1)2 = 𝑥2 + 𝑥𝑦 + 𝑥𝑧 + 𝑥 + 𝑥𝑦 + 𝑦2 + 𝑦𝑧 + 𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑧2 +
                                      𝑧 + 𝑥 +  𝑦 + 𝑧 + 1, 16 product terms 

(4) 

 
After combining terms and rearranging, the three-input second-order polynomial 

becomes: 

 
(𝑥 + 𝑦 + 𝑧 + 1)2 = 𝑥2 + 𝑦2 + 𝑧2 + 2𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧  + 2𝑥 + 2𝑦 +

                                          2𝑧 +  1, 10 unique terms 
(5) 

 
Note that for the three-input, third-order case, the number of product operations 

begins to dramatically increase, yielding 64 such terms (not shown).  Combining and 

rearranging to obtain only unique unrepeated terms, and omitting coefficients: 

 
(𝑥 + 𝑦 + 𝑧 + 1)3 → 𝑥3 + 𝑦3 + 𝑧3 + 𝑥2𝑦 + 𝑥2𝑧 + 𝑥𝑦2 + 𝑦2𝑧 + 𝑥𝑧2 + 𝑦𝑧2 +
                                       𝑥𝑦𝑧 + 𝑥2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑥 + 𝑦 + 𝑧 + 1,  

                                          20 unique terms 

(6) 
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Without any reduction of duplicates, the total number of monomial product terms 

created by a simple multiplicative algorithm as depicted by (4) is given by: 

 
 (𝑘 + 1)𝑜  

 𝑤ℎ𝑒𝑟𝑒 (7) 
   𝑜 ≡ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  

 𝑘 ≡ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠/𝑖𝑛𝑝𝑢𝑡𝑠  
 
Table I illustrates how the number of resultant multiplicative terms can quickly 

overwhelm computer memory as both the maximum polynomial order and the 

number of input dimensions increase. 

 
Table I   

Total Number of Product Terms per Polynomial Order and Number of Inputs 

 
 
The number of unique terms in a complete polynomial of a particular max and lower 

order, such as that of (5) and (6), is given by: 

 # 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 =
(𝑜 + 𝑘)!

𝑜! 𝑘!
 

 
(8) 

For computational and storage efficiency, it is essential to avoid accumulation of 

unnecessary terms during the generation process.  Table II shows the results of this 

expansion for multiple combinations of max order and number of inputs, but with 

duplicate terms removed. 
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Table II   
Number of Monomial Terms per Dimensions and Inputs 

 
 

 In recognition of the difficulty of the problem of the generation of polynomial 

terms of a particular maximum order, Ivakhnenko and colleagues developed the 

Group Method of Data Handling (GMDH) [15] which remains the foundational 

method of polynomial term generation among researchers to this day.  The idea is to 

create a single node function, in the original case a two-input second-order 

polynomial, which when cascaded in a multi-layer architecture, produces 

permutations of monomial product terms which comprise an estimation of higher 

order terms necessary to approximate various functions.  The single node function 

specified by Ivakhnenko is a second-order polynomial transform expressed as: 

 
 𝑌 = 𝐴2(𝑋) = 𝑎0 + 𝑎1𝑥1

2 + 𝑎2𝑥2
2 + 𝑎3𝑥1 + 𝑎4𝑥2 + 𝑎5  (9) 

 

Note that each node requires the solution of six coefficients.  A GMDH 

representation of a polynomial network which would be necessary to approximate 

the three-input, third-order polynomial expressed in (6) is shown in Figure 2. 
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Figure 2  GMDH network for the solution of a 3-input, 3rd (or 4th) order function 

 
Each A2 node in Figure 2 must create the six input product terms and solve for the 

six associated coefficients, usually by linear regression, in order to produce an 

intermediate polynomial value (Y0, Z0, etc.).  Figure 3 details the computational 

function of each GMDH node.   

 Though the GMDH network simplifies some of the required process by 

avoiding the explicit specification and generation of each polynomial term, several 

drawbacks become apparent.  Network “training” necessary for solving for an 

optimized set of input and desired output relations, cannot be straightforward.  

Methods such as one-step linear regression, though used for each A2 node, are not 

adequate for multi-layer feedforward networks.  As will be discussed, due to the 

inherent multi-layered architecture, many complex algorithms are necessary to 

grow and prune GMDH networks, and to iteratively train optimal final sets of 

network coefficients in order to obtain reasonable results.  Following the 

computation through the cascaded architecture, it becomes apparent that many 

redundant monomial terms are created through inner products, and many excess 

coefficients are created as well.  Examining the intermediate polynomial terms of 

only the first layer of Figure 2 yields (term coefficients ignored): 
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𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑇𝑒𝑟𝑚𝑠: 
        𝑥3 + 𝑦3 + 𝑧3 + 𝑥2𝑦 + 𝑥2𝑧 + 𝑥𝑦2 + 𝑦2𝑧 + 𝑥𝑧2 + 𝑦𝑧2 + 𝑥𝑦𝑧 + 𝑥2 +
        𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑥 + 𝑦 + 𝑧 + 𝐶    
 

 

 
𝑌0 → 𝑥2 + 𝑦2 + 𝑥𝑦 + 𝑥 + 𝑦 + 𝑐0 

 
(10) 

 
𝑌1 → 𝑥2 + 𝑧2 + 𝑥𝑧 + 𝑥 + 𝑧 + 𝑐1, 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑡𝑒𝑟𝑚𝑠:  𝑥

2, 𝑥, 𝑐1 
 

 

 𝑌2 → 𝑦2 + 𝑧2 + 𝑦𝑧 + 𝑦 + 𝑧 + 𝑐2, 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑡𝑒𝑟𝑚𝑠:  𝑦
2, 𝑧2, 𝑦, 𝑧, 𝑐2  

 
After the processing of the first layer, eight non-unique terms are created, and the 

network has not yet produced the required third-order terms.  Though the second 

layer of the GMDH network produces the necessary third-order terms, many excess 

or unnecessary terms are represented by the generated outputs: 

 

 
𝑍0 → 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑒𝑟𝑚𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑:  𝑥3, 𝑦3, 𝑧3, 𝑥2𝑦, 𝑥2𝑧, 𝑥𝑦2, 𝑦2𝑧, 𝑥𝑧2, 
                                                                    𝑦𝑧2, 𝑥𝑦𝑧   
           𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑐𝑒𝑠𝑠 𝑡𝑒𝑟𝑚𝑠:  23  

(11) 

 
The original three-input, third-order polynomial expression contains 20 terms and 

their coefficients.  In contrast, the necessary GMDH solution, built with second-

order, two-input nodes, ultimately requires 24 coefficients, and generates combined 

product terms which comprise the equivalent of 31 excess terms beyond those 

required in (6). 

 

Figure 3  2-input, 2nd-order computational node of the original GMDH architecture 
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1.2.2 Evolution of the GMDH Model 
 
 Since the introduction of the GMDH method, various polynomial network 

implementations have competed successfully against the predominant perceptron-

based feedforward networks.  Stinchcombe and White proved that general 

nonlinear functions in the hidden layer, and not necessarily sigmoid functions, are 

adequate for the function of universal approximation [17].  Chen and Manry then 

verified that in fact, polynomial basis functions can be used to model multi-layer 

perceptron networks with good results as long as the degree of the model was 

sufficient to represent the training data [18].  They note most importantly that 

polynomial basis functions are more easily implemented in hardware than explicit 

sigmoid activation functions.  That said, it should be noted that many hardware 

applications of neural networks utilize sufficient approximations of sigmoidal 

functions such as the Elliott function [19].  Though these improve the speed and 

ease of some computation, many implementations include both exponentials and 

division operations, potentially leading to solutions that are more complex than 

polynomial sum and product operations in some cases.   

 Almost all existing polynomial networks have been implemented with some 

variation on the GMDH model.  Yang and Huang [20] added a third-order basis 

function to the GMDH model in addition to the second-order basis function.  An 

elaborate algorithm was implemented, the Self-Organizing Polynomial Network 

(SOPN), which generates multiple cascading network layers which instantiate either 

the second or third-order node function, and which solves for intermediate values at 

each layer using standard Ordinary Least Squares (OLS) regression.  Though OLS 

applied at each layer is computationally efficient compared to more elaborate 

training schemes, the confinement of the computation domain to within the 

boundary of each layer leads to arbitrary network construction which is potentially 

inefficient during validation operations.   

 Oh and Pedrycz [21] also add the option of third-order node activation 

functions, and similar to Yang and Huang, utilize OLS regression to develop 

intermediate solutions at each layer boundary.  Their text goes further in analyzing 
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several drawbacks to GMDH.  Chiefly, they note that pruning algorithms are 

mandatory to avoid networks which suffer from over-fitting to particular solutions.  

Additionally, they note that for deploying GMDH against low-dimensional datasets, 

the problem of over-fitted solutions becomes acute.   

 Jekabsons and Lavendels [22] confirm the same issues for GMDH applied to 

low-dimensional problems, and highlight the susceptibility of GMDH to local minima 

problems, similar to those found with use of ANNs.  They produce data showing that 

for the second-order node function, problems of dimensionality less than or equal to 

four are likely to produce non-optimal results compared with other methods.  They 

also point out the acute variance deficiencies of GMDH networks when deployed 

against noisy data sets, especially evident during k-fold testing methods.  In a later 

publication [23], Jekabsons introduces the Adaptive Basis Function Construction 

(ABFC), a hill-climbing technique [24] which tries to grow a single-layer polynomial 

network by adding monomial terms one at a time.  Per each new term, outputs for 

the entire network are computed via OLS regression and evaluated against desired 

output values by the Akaike Information Criterion (Corrected) (AICC) [25].  

However, Jekabsons indicates several drawbacks to the method:  Solution sets are 

susceptible to local minima and maxima errors.  Due to the inherent and unknown 

correlation of monomials of a particular polynomial, the addition or extraction of 

single monomials at a time often results in under-damped or over-damped system 

responses as higher order terms are added.  Such results do not present 

immediately with the ordered addition or extraction of terms.  Jekabsons 

compensates with arbitrarily adding 2 or more terms at a time, but eventually 

confirms that this does not definitively overcome this issue.  Computationally costly 

methods are employed, such as building several networks in parallel in response to 

the same training data, then averaging the final model based on AICC evaluations. 

 Nikolav and Iba developed yet another multi-layer GMDH variant which adds 

whole layers to the network, evaluates RMSE at the addition of each layer, then uses 

complex Genetic Algorithm (GA) techniques to prune apparently detrimental 

network connections [26].  While movement beyond standard linear regression 

techniques promises to more accurately groom the network for better 
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generalization performance during validation, repeated terms are still inferred in 

the network due to the cascaded GMDH model.  Additionally, the computational 

complexity for high-dimensional data is prohibitive with GA methods since in 

general, all variants of the system must be fully computed before genetic selection 

can take effect. 

 Fuzzy Polynomial Neural Networks (FPNN) are a purported self-organizing 

neural network family theorized in earlier literature by Oh et al. [26–28].  This 

family uses a fuzzy front-end to gate node inputs in the first GMDH layer, thereby 

promising better function localization in the network performance.  The original 

FPNNs required the designer to iteratively adjust certain fuzzy parameters, and to 

manually provide many of the GMDH network attributes.  Still based on the GMDH 

model, an upgraded variant was offered in 2006 – the Genetically optimized FPNN 

(gFPNN) [30].  This variant uses GA techniques to select what is hoped to be an 

optimized GMDH network architecture.  However, the resultant system architecture 

is extremely complex, and still requires offline specification of many design 

parameters (fuzzy membership functions, input assignments per node, total number 

of nodes retained after each generation, max width and depth of the GMDH network, 

etc.) based on analysis of the training data.  The authors warn that the gFPNN is as 

yet prone to generalization errors if the proper design parameters are not specified.  

Furthermore, the final gFPNN system proposed is only tested with a single one-

dimensional case (chaotic Mackey-Glass time series [31]) with only modest results 

compared to earlier FPNN variants, and is not compared to common benchmark 

problems alongside other well-known methods.  Roh and Pedrycz revisit the gFPNN 

in a later work [32] whereby Information Granulation (IG) techniques [33] and C-

means clustering [34] are used to automate some of the required analysis of the 

training data.  An even more structurally complex system results that still requires 

tuning by the designer, though performs apparently well for three cases presented. 

 
1.2.3 Divergence from the GMDH Model 
 
 Banfer and Nelles [35] depart from the GMDH model and propose a single-

layer network structure which partitions the input and output space of a target 
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dataset into localized polynomial networks that are optimized to solve each 

resultant segment of the full solution.  The outputs of each localized network are 

then superposed to afford the complete network solution.  Figure 4 shows the 

diagram of their particular system: 

 

Figure 4  The Banfer and Nelles local model network [35]:  The outputs ŷi of the local 
polynomial networks (LMi) are weighted with their associated domain function 

values (Φi) and superposed. 

In this system, the outputs of localized polynomial transfer functions are essentially 

gated according to the current input domain by “validity functions” (Φi), and all 

resultant outputs ŷi are finally added to yield a complete network solution.  The 

authors assume that the “validity function” centers and standard deviations are 

given per the dataset under processing.  This is akin to manually specifying 

membership functions in a fuzzy system, and therefore requires complex offline 

analysis of data, especially in multi-dimensional cases.  Then per each local 

component, a stepwise technique is employed to grow that component’s polynomial 

function by one increasing order at a time.  An unspecified stepwise regression 

technique is used to compare output errors, and to subsequently add higher-order 

monomials to the current local network, or to split the local network into another 

which spans the same domain.  The algorithm is tested on only one 9-input case, and 

comparisons are made only against one earlier variant proposed by the same 
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authors [36].  As previously noted by Jekabsons et al., Banfer and Nelles corroborate 

the inability to locate optimal solutions by evaluating the growth of polynomial 

functions by one term at a time.  They acknowledge that local models can still 

generate excess terms which deteriorate the composite network’s generalization 

ability. 

 
1.2.4 Functional Link Networks – Complete Polynomials 
 
 For all CI methods, selection of the computational node functions is 

important, followed by the determination of network weights by “training”, or by 

more direct computation if possible (such as by various forms of linear or non-linear 

regression).  In the case of polynomial networks, the node functions are the 

individual monomial terms expressed as products of input variables and without 

coefficients.  If one considers that for the realm of machine learning, such 

coefficients could be discovered via an appropriate training method, then it is easily 

seen that a FLN adapted with polynomial basis functions in the hidden layer 

achieves a simple polynomial network.  This is viable, provided there is a way to 

generate all necessary polynomial terms in an efficient way.  The coefficients of the 

composite polynomial expressed by the network become the trainable weights.  

Following from (5) and (6), all monomials are expressed from the degree of the 

maximum exponent downward to ‘1’ as the constant term of degree-0.  For the same 

inputs x, y, and z, the Complete Homogeneous set of Symmetric Polynomials (CHSP) 

[37], ℎ𝑘(𝑥, 𝑦, 𝑧), consists of the unique products without coefficients of the 

expression, (𝑥 + 𝑦 + 𝑧)𝑘, where k is the degree of the polynomial.  For example, the 

full result for k = 2 would be: 

 ℎ2(𝑥, 𝑦, 𝑧) = 𝑥
2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 (12) 

 
Note that the degree of every product term is 2.  The function in (12) can be 

expressed formally as: 

 ℎ2(𝑋1, 𝑋2, 𝑋3) = ∑ 𝑋𝑗𝑋𝑘
1≤𝑗≤𝑘≤3

 (13) 

 



14 

Similarly, the third-order expression, ℎ3 , for a three-input CHSP would be expressed 

as: 

 ℎ3(𝑋1, 𝑋2, 𝑋3) = ∑ 𝑋𝑗𝑋𝑘𝑋𝑙
1≤𝑗≤𝑘≤𝑙≤3

 (14) 

 
 The general form of (14) for any number of input variables and for any 

degree, k, is: 

 ℎ𝑘(𝑋1, 𝑋2, … , 𝑋𝑛) = ∑ 𝑋𝑖1𝑋𝑖2 …𝑋𝑖𝑘
1≤𝑖1≤𝑖2≤⋯≤𝑖𝑘≤𝑛

 (15) 

 
An identity for the zero-order CHSP is introduced: 

 ℎ0(𝑋1, 𝑋2, … , 𝑋𝑛) = 1 (16) 
 
For present purposes, we would like to define the definitive set of all homogeneous 

symmetric polynomial terms using the concepts of (15) and (16) above.  For this 

definitive set, the sum of all monomial terms of degree k and lower is expressed: 

 
𝐾𝑘 = ℎ𝑘(𝑋1, 𝑋2, … , 𝑋𝑛) + ℎ𝑘−1(𝑋1, 𝑋2, … , 𝑋𝑛) + ⋯

+ ℎ0(𝑋1, 𝑋2, … , 𝑋𝑛),𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 0 
(17) 

 
For variables x, y, and z, and for maximum polynomial degree of 2, the complete set 

of CHSPs of descending order can be defined as K2: 

 𝐾2(𝑥, 𝑦, 𝑧) = ℎ2(𝑥, 𝑦, 𝑧) + ℎ1(𝑥, 𝑦, 𝑧) + ℎ0(𝑥, 𝑦, 𝑧) (18) 
 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑥 + 𝑦 + 𝑧 + 1  

 

For comparison, for a two-input case, and for maximum polynomial degree of 3: 

 𝐾3(𝑥, 𝑦) = ℎ3(𝑥, 𝑦) + ℎ2(𝑥, 𝑦) + ℎ1(𝑥, 𝑦) + ℎ0(𝑥, 𝑦) (19) 

 
= 𝑥3 + 𝑦3 + 𝑥2𝑦 + 𝑦2𝑥 + 𝑥2 + 𝑦2 + 𝑥𝑦 + 𝑥 + 𝑦 + 1 

 
 

Equation (18) introduces the function, K2 , which expresses the sum of all monomial 

terms of degrees 2 and lower for the given input variables.  Thus, for any degree of a 

polynomial, a function exists to construct all degree product terms of a polynomial 

for a max degree and lower.  For clarification, equation (19) expresses the same 

function for two input variables of max degree 3.  The network diagram of Figure 5 

shows the polynomial neural network necessary to realize the 3-input, degree-2 

function of (18).   
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Figure 5  Polynomial network of degree 2 for 3 input variables 

It is noted at this point that such a single-layer network can be trained in one matrix 

operation with techniques such as linear regression [14], where the following 

quantities of (20) and single ordinary least squares (OLS) matrix operation of (21) 

correspond to Figure 5: 

 
X̂ =  [

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
… … …
𝑥𝑛𝑝 𝑦𝑛𝑝 𝑧𝑛𝑝

],   𝑃̂ =

[
 
 
 
1 𝑥1 𝑦1 𝑧1 𝑥1𝑦1 … 𝑧1

2

1 𝑥2 𝑦2 𝑧2 𝑥2𝑦2 … 𝑧2
2

1 … … … … … …
1 𝑥𝑛𝑝 𝑦𝑛𝑝 𝑧𝑛𝑝 𝑥𝑛𝑝𝑦𝑛𝑝 … 𝑧𝑛𝑝

2 ]
 
 
 

 

 

 

 𝑊̂ =

[
 
 
 
 
𝑤0
𝑤1
𝑤2
…
𝑤𝑁]
 
 
 
 

,   𝑌 ̂ = [

𝑜1
𝑜2
…
𝑜𝑛𝑝

] (20) 

 
 𝑤ℎ𝑒𝑟𝑒 𝑛𝑝 ≡ # 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 
                 𝑁 ≡ # 𝑜𝑓 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑒𝑟𝑚𝑠 
 

 

 𝑊̂ = (𝑃̂𝑇𝑃̂)
−1
𝑃̂𝑇𝑌̂ (21) 
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1.2.5 Summary of the State of the Art for Polynomial Systems 
 
 At this point, it is noted that polynomial-based CI systems do appear in the 

literature, but are neither predominant nor significant in comparison with the use 

and performance of other methods.  Key drawbacks exhibited by all such 

polynomial-based methods reviewed include: 

 Deficient term generation and storage – No known systems make use of 

algorithms for direct generation of only the monomials necessary to produce 

polynomials of arbitrarily high order.  Additionally, all systems studied 

compute and store all terms, including excess terms.  This leads to computer 

memory limitations for problems of high dimensionality and/or large 

numbers of training patterns. 

 Generalization error – Excess monomials are generated either directly or 

equivalently, leading to significant validation or testing bias that is not 

foreshadowed by performance during training.   

 Network complexity – Methods which avoid explicit and economical 

generation of unique terms lead to complex network connectivity, which in 

turn necessitates complex training and pruning algorithms to improve 

generalization results. 

 Training deficiencies – Some methods reviewed either rely too heavily on 

standard OLS regression, which does not necessarily optimize polynomial 

term coefficients for validation performance.  Other methods are extremely 

complex in response to inefficient multi-layer network structure, and require 

initial data analysis and hands-on determination of run-time parameters. 

The goals of this work aim to address these drawbacks, and to develop a family of 

polynomial-based learning systems which not only improve the state of the art, but 

which compete strongly with other popular CI methodologies. 
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Chapter 2  

Implementation of Competing Methods 

 
 The PLM variants introduced later in this work were tested against several 

methods prominently in-use throughout CI.  A basic introduction to each of these 

methods is included in this Chapter.  The proposed PLM variants are ideal for 

operating offline upon highly non-linear multi-dimensional data, and in real-time, 

within highly non-linear applications requiring computational solutions within 

reliable run times.  This quality is shared among several prominent CI algorithms 

which have been selected for competition against the PLMs including Artificial 

Neural Networks, Fuzzy Systems, and Radial Basis Function systems such as the 

Extreme Learning Machine variants, and Support Vector Regression with RBF 

kernels. 

 
2.1 The Single-Layer Feed-Forward Neural Network (SLFN) 
 
 Artificial neural networks (ANN) are commonly applied to various problems 

in industrial fields, such as motor actuation and control [38], [39], fault detection 

and prediction [11], and robotics [40]–[42].  They are capable of providing models 

for highly nonlinear and noisy data that are difficult to process with classical 

parametric techniques.  Three choices common with ANN design are network 

architecture (size and topology), activation (node) function, and training.   

 Though there are many different kinds of ANN architectures, Single Layer 

Perceptrons (SLP) are neural network SLFNs which are both simplest to train, and 

are historically the most thoroughly investigated in comparative studies with other 

CI methods.  One practical reason for the prominence of SLPs in research is the lack 

of a well-known training algorithm which is both accurate and efficient, and can also 

train bridged architectures.  Variants of the Levenberg-Marquardt (LM) [43] 
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algorithm (supplied in the MATLAB Neural Network Toolbox [44]) and its 

derivatives are widespread, however it cannot handle bridged networks.  For these 

reasons, a SLP is chosen for comparisons in this study.  An example of a SLP is 

pictured in Figure 6. 

x1

x2

x3

x4

+1+1
 

Figure 6  A 4-input, 5-neuron SLP with 4 neurons in the hidden node 

 
 The most traditional implementation of an artificial neuron as a 

computational node is with either a unipolar or bipolar sigmoidal “soft” activation 

function based on the hyperbolic tanh function.  The unipolar case is as follows: 

 

 

𝑓(𝑛𝑒𝑡) =
tanh(𝑔𝑎𝑖𝑛 × 𝑛𝑒𝑡) + 1

2
 

 

𝑤ℎ𝑒𝑟𝑒:  𝑛𝑒𝑡 =∑𝑤𝑛𝑖𝑥𝑛𝑖

𝐾𝑛

𝑖=0

 

 (22) 
 𝑖 ≡ 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛  
 𝑛 ≡ 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛  

 𝐾𝑛 ≡ 𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛  
 
 The training algorithm used in the comparative studies herein is the Neuron-

By-Neuron (NBN) algorithm, an LM derivative developed by Wilamowski et al. [45]–

[47].  This training algorithm has been shown to possess many advantages over 

other known LM variants, including efficient matrix computation, reduced memory 

usage, and superior convergence accuracy [46].  NBN employs an enhanced second-

order gradient method to optimize network solutions.  Regression is employed 

similar to the PLMs, however instead of directly solving for network weights, an 
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updating factor is iteratively computed for an initially randomly generated set of 

network weights.  All LM variants, including NBN, update network weights 

according to the following equation [48]: 

 
 Δ𝒘 = (𝑱𝑻𝑱 + 𝜇𝑰)−1𝑱𝑻𝒆 (23) 

 
where w is the weight vector, I is the identity matrix, and μ is the combination 

coefficient.  The Jacobian matrix, J, with dimensions (P × M) × N, and the error 

vector, e, with dimensions (P × M) × 1, are defined as: 

 

 𝑱 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑒11
𝜕𝑤1

𝜕𝑒11
𝜕𝑤2

…
𝜕𝑒11
𝜕𝑤𝑁

𝜕𝑒12
𝜕𝑤1

𝜕𝑒12
𝜕𝑤2

…
𝜕𝑒12
𝜕𝑤𝑁… … … …

𝜕𝑒1𝑀
𝜕𝑤1

𝜕𝑒1𝑀
𝜕𝑤2

…
𝜕𝑒1𝑀
𝜕𝑤𝑁… … … …

𝜕𝑒𝑃1
𝜕𝑤1

𝜕𝑒𝑃1
𝜕𝑤2

…
𝜕𝑒𝑃1
𝜕𝑤𝑁… … … …

𝜕𝑒𝑃𝑀
𝜕𝑤1

𝜕𝑒𝑃𝑀
𝜕𝑤2

…
𝜕𝑒𝑃𝑀
𝜕𝑤𝑁 ]

 
 
 
 
 
 
 
 
 
 
 
 

     𝒆 =

[
 
 
 
 
 
 
 
𝑒11
𝑒12
…
𝑒1𝑀
…
𝑒𝑃1
…
𝑒𝑃𝑀]

 
 
 
 
 
 
 

 (24) 

 
where P is the number of training patterns, M is the number of outputs, and N is the 

number of weighted connections.  Elements in the error vector, e, are calculated by: 

 

 
𝑒𝑝𝑚 = 𝑑𝑝𝑚 − 𝑜𝑝𝑚 (25) 

where dpm and opm are the desired and actual output respectively, at network output 

m, when training pattern p. 

 
2.1.1 Competitive Considerations of Neural Networks 
 
 Neural networks, along with other node-based computational systems, are 

generally capable of finding better solutions than other methods.  However, the 

performance of neural networks relies heavily on the training algorithm involved.  

Because LM derivatives, and earlier first-order training methods such as Error Back-
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Propagation (EBP) and its derivatives [49]–[51], all rely on randomized production 

of network weights at various stages, ANNs are particularly susceptible to 

converging to local minima and maxima as first or second order gradients are 

computed.  Also, due to the flat tail of the tanh() function extending out to +/- 

infinity, many computer and hardware learning implementations have trouble when  

function inputs that are too far out on the margins result in stagnant error 

computations that encounter the digital quantization limit of the host processor.  

This is known as the flat-spot problem [52].  Thus, multiple iterative trials are 

necessary to generate a family of solutions, which must then be searched for the 

best solution.  An example of this can be seen in Figure 7.  In summary, ANNs offer 

good probability of convergence to some solution, but never guarantee convergence 

to an optimal solution. 

 

 

Figure 7  Typical Iterative ANN Training:  “hot spot” issue 

 
2.2 The Takagi-Sugeno-Kang Fuzzy System 
 
 Fuzzy systems are at least as popular as neural networks for solving similar 

types of approximation and prediction problems.  Traditionally, fuzzy systems do 

not require training with sample data.  However, particularly in those cases they 

require hands-on front-end development by the designer in order to approach 
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acceptable solutions [53].  Two foundational designs predominate for fuzzy systems 

– The Mamdani inference [54], and the Takagi-Sugeno-Kang (TSK) inference [55].  

For the comparative studies in this work, the TSK approach has been selected for its 

architectural simplicity and since it tends to yield more accurate output mapping 

than the Mamdani model for the same problems with equal input resolution [56].   

 In applying fuzzy systems to dataset problems, each input dimension must be 

evaluated in order to properly select the resolution and/or precise location of 

sample points, which are then translated to in-situ Look-Up Tables (LUT) for real-

time deployment.  Care must be taken for designs that intend to handle high 

dimensionality, since the fuzzy output table storage increases by O(nD), where D is 

the number of input dimensions.  The development of the input data translators, 

called membership functions, is often done by the designer without explicit or 

complete data available.  For data of high dimensionality, the design and resolution 

of the membership functions can become highly subjective [57].  One such example 

of fuzzification of an input temperature variable converted to a scaled subjective 

value is seen in Figure 8.  The underlying basis for the output value is certainly 

numeric and amounts to transformation of input quantities to a sum of weighted 

neighboring factors included in the membership function.  The specific type of 

membership function pictured in Figure 8 is the trapezoidal.  The slope of the sides 

of the trapezoid is maps directly to weighting factors which will be applied to 

interpolate an input value that lies between stored breakpoints on the input axis.  

Other membership functions include Gaussian and triangular.  Triangular 

membership functions have been shown to give better output resolution than other 

methods for the same input resolution.  For this reason, triangular functions will be 

used in this study.  A comparison of different membership function outputs for the 

same function at the same output resolution is seen in Figure 9. 

 Following the fuzzy design process, the resulting architecture is sufficiently 

simple, essentially an input-to-output LUT, such that fuzzy systems are often 

preferred over other methods for hardware implementation.  The validation times 

for real-time fuzzy systems are extremely reliable, further lending value to use of 

these systems in clock-based designs, since equivalent computations are done for 
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each input-to-output operation.  It should be noted that the validation times for 

fuzzy systems are not necessarily minimal compared to other methods.  Propagation 

delay in hardware systems merely becomes an address spin, followed by 

multiplicative interpolation of a finite number of values extracted from the fuzzy 

table LUT.   

 

Figure 8  Example of a Trapezoidal Fuzzy Membership Function Operation 

 

 

Figure 9  TSK Product Encoding Output:  Comparison of membership functions 
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 In general, node-based computation systems such as PLMs, ANNs, etc., 

provide smoother, more accurate non-linear mapping of functions than fuzzy 

systems [58].  Though output accuracy can be increased by increasing the resolution 

and of breakpoints in the membership functions, this could lead to stability 

problems known as “hunting” [59] in feedback applications of fuzzy systems.  An 

example of a TSK system output to that of an ANN for the same problem is shown in 

Figure 10. 

 

Figure 10  Comparison of TSK and ANN (node-based) Output Quality 

 
2.2.1 Development of a Novel Data-Driven N-Dimensional TSK Fuzzy System 
 
 For proper comparison with PLMs and with the other algorithms studied, an 

N-dimensional TSK fuzzy system was developed.  Instead of manual design of 

membership functions, a recursive algorithm was developed to compute regularly-

spaced interpolation values for the fuzzy output table, given any random 

distribution of n-dimensional training data over the input range.  Since all dataset 

inputs and outputs are normalized (see Section 5.1 Test Methodology) in keeping 

with current testing standards in the field of CI, the job of automatically generating 

optimized interpolated values is made easier.  Following generation of the fuzzy 

output table, the TSK product method is coded to forward-compute n-dimensional 

output values from stored output tables. 
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2.2.1.1   Fast Recursive N-dimensional Interpolation 
 
  An original, efficient recursive algorithm was developed which accepts 

randomized multi-dimensional data points as input, as well as a set of target 

interpolation points (regularized or arbitrary), and returns the target points 

populated with optimized interpolation values.  The algorithm is used for the 

purpose of generating the required fuzzy output table; however its uses could be 

extended to any process which requires regularization of multidimensional data, or 

merely interpolation at specific arbitrary points.  The MATLAB code for this 

algorithm is included in Section 7.8.1 of Appendix H. 

 A summary of the operation of this process follows. 

Starting with the complete set of training data as input, and with a complete 

set of arbitrary interpolation target points: 

1. Initialization Stage:  Per each target interpolation point vector, the 

algorithm begins in interior-point mode.  A 1-D span is set which will be 

used along each dimension at a time.  This strategy is aided as all input 

vector values are standardized, that is, they are scaled to the range [-1:1].  

Stage 2 is called recursively.  If Stage 2 returns with less than the 

minimum candidate points, the 1-D search span is increased.  If the 1-D 

search span exceeds a maximum value, the fore-aft requirement cannot 

be met; the target point is on an edge, so the radius is reset to a minimum 

value and the mode becomes boundary point mode, and Stage 2 is called 

recursively.  If Stage 2 returns with candidate points, Stage 3 is called and 

the current target vector receives an output interpolation value.  If there 

are more target vectors, Stage 2 is called with that vector.  If not, 

algorithm returns the complete set of interpolated target points. 

2. Candidate Search Stage:  Given the full training data point set and a single 

interpolation target coordinate, the algorithm searches along one 

dimension at a time.  In the interior point mode, the algorithm searches 

along one dimension for at least one point fore, and one aft of the target 

point.  If this condition cannot be met after searching, the output subset is 
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set to NULL as a signal to Stage 1, and the level returns to Stage 1.  In the 

boundary point mode, the fore-aft requirement is not enforced.  If the last 

dimension has not yet been processed, and if the subset of candidate 

points is non-empty, the search dimension is incremented, and the 

subset, current mode, current radius, and current target point is sent 

recursively to another call to Stage 2.  If the last dimension has been 

searched, the final subset of candidate points is returned.   

3.  Value Interpolation:  For a valid set of candidate points, the output 

interpolation value is computed without a square root operation 

according to the following sequence and returned to Stage 1: 

 

 
Given:  𝐼 = (𝑥1, 𝑥2, … 𝑥𝐷) ≡ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 
 

 

 
𝑌̂ = [

𝑦11 𝑦21 … 𝑦𝐷1
𝑦12 𝑦22 … 𝑦𝐷2
… … … …
𝑦1𝑁 𝑦2𝑁 … 𝑦𝐷𝑁

] ≡ 𝑠𝑢𝑏𝑠𝑒𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

 (26) 

 𝑍̂ = [

𝑧1
𝑧2
…
𝑧𝑁

] ≡ 𝑠𝑢𝑏𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠  

 𝑤ℎ𝑒𝑟𝑒 𝐷 ≡ # 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠  
 𝑁 ≡ # 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠  

 
𝑅̂ =

[
 
 
 
 
 
 
 
 
 
∑(𝐼𝑖 − 𝑌̂𝑖1)

2
𝐷

𝑖=1

∑(𝐼𝑖 − 𝑌̂𝑖2)
2

𝐷

𝑖=1 …

∑(𝐼𝑖 − 𝑌̂𝑖𝑁)
2

𝐷

𝑖=1 ]
 
 
 
 
 
 
 
 
 

≡ 𝑟𝑜𝑤 𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

 

(27) 

 𝑆𝑆𝑄 =∑𝑅̂𝑖

𝑁

𝑖=1

≡ 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑅̂ (28) 

 𝑂𝑢𝑡𝑝𝑢𝑡 =
𝑅̂𝑇𝑍̂

𝑆𝑆𝑄 × (𝑁 − 1)
≡ 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 (29) 
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 To demonstrate the effectiveness of the interpolator, the highly non-linear 

MATLAB peaks() function is used to generate 1000 randomly distributed points 

over a 3-D space.  The proposed function is used to interpolate regularized (in this 

case) target points for potential population of an output fuzzy table.  The 

randomized points and 25 (5 breakpoints along each dimension) interpolated point 

locations are seen in Figure 11.  Figure 12 demonstrates a comparison as the 

original function is interpolated with increasing resolution as the interpolated point 

density increases from 5 to 20 breakpoints along each dimension. 

 

 

Figure 11  (a) View of random generated peaks() values, (b) Overlay with 
interpolated values 
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Figure 12  (a) Original function, 1000 data points, (b) 5x5 grid, (c) 10x10 grid,  
(d) 20x20 grid 

 
2.2.1.2   Completion of an N-dimensional TSK Fuzzy Engine 
 
 The TSK fuzzy system implemented for this study proceeds with forward-

computed product encoding, which addresses points to output within the fuzzy 

output table created from the interpolation software, and which builds the required 

weighted product terms using the common formula: 

 
𝑂𝑢𝑡𝑝𝑢𝑡 =

∑ 𝑤𝑘𝑧𝑘
2𝑁
𝑘=1

∑ 𝑤𝑘
2𝑁
𝑘=1

 

 

(30) 

 𝑤ℎ𝑒𝑟𝑒 𝑁 ≡ # 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠  

 
𝑤 ≡ 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠  

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑎𝑙𝑢𝑒 
 

 𝑧 ≡ 𝑓𝑢𝑧𝑧𝑦 𝑡𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠  
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For all cases, the denominator of (30) reduces to 1 and may be ignored.  The 

weighting factors, wk, are all inverse-proportional in distance from the target point 

to the fore and aft fuzzy table terms along each dimension, and sum to 1 in each 

case.   

 Original software was created to complete the implementation of an N-

dimensional fuzzy engine for comparison studies.  The system receives input 

training datasets and maximum tolerance values, and subsequently uses the 

methods described previously to generate TSK solutions of increasingly higher 

resolution by specifying an equal number of regularly distributed fuzzy table 

breakpoints along each dimension.  Each solution evaluates training and validation 

error and runtime results, and reports these values to other coordinating software.  

The associated MATLAB code for the TSK fuzzy engine can be viewed in Section 

7.8.2 of Appendix H.  

 
2.2.2 Radial Basis Function Learning Machines 
 
 Currently in the literature, much attention is garnered by SLFNs constructed 

with Radial Basis Function (RBF) nodes in the hidden layer.  Architecturally, RBF 

systems resemble both PLMs and ANNs.  However, just as training paradigms 

identify ANNs from other learning machines, specific RBF methods diverge from 

other CI methods largely but not solely based on computational differences in the 

training phase.  The most prominent RBF-based algorithms at the time of this 

writing will be compared in this study. 

 
2.2.2.1   Review of RBF Networks 
 
 Figure 13 represents a typical RBF network structure.  In reference to the 

Figure: 

 p is the index from 1 to P, where P is the total number of input patterns. 

 H is the total number of hidden-layer RBF nodes. 

 d is the index from 1 to D, where D is the number of dimensions in the input. 

 Input patterns, x, of dimension, D, are described as 𝑥𝑝 = [𝑥𝑝,1, 𝑥𝑝,2, … , 𝑥𝑝,𝐷]. 
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 βh are the multiplicative weighting factors per RBF node output. 

 op are the network outputs per input pattern. 

 

 

Figure 13  A typical RBF network containing H neurons and D inputs 

 
 A RBF SLFN, like the PLM, is comprised of a single hidden layer of H 

computational nodes, an output summing node, and D input ports.  Each of the H 

nodes contains a kernel function, gn(x), which again similar to the PLM, are 

parametrically nonidentical to the kernel functions of other nodes in the same 

network.  For all RBF variants in this work, the node kernel functions will be defined 

as Gaussian functions of the form: 

 
𝑔𝑛 = exp(−

||𝑥𝑝 − 𝑐𝑛||
2

𝜎𝑛2
) 

 

(31) 

 𝑤ℎ𝑒𝑟𝑒:  𝑐𝑛 ≡ 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑅𝐵𝐹 𝑢𝑛𝑖𝑡  
 𝜎𝑛 ≡ 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑅𝐵𝐹 𝑢𝑛𝑖𝑡  

 || ̇|| ≡ 𝑡ℎ𝑒 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑁𝑜𝑟𝑚 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛  

 
The output summing function per input pattern then becomes: 

 𝑜𝑝 = 𝑓(𝑥𝑝) = ∑𝛽𝑛𝑔𝑛(𝑥𝑝)

𝐻

𝑛=1

 (32) 
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From (31) and (32), it is seen that per a particular RBF network architecture, three 

parameters can be adjusted for the purpose of RBF network optimization.  The three 

parameters are the weights, centers, and radii given by βn, cn, and σn, respectively.  

Any training method (LM, regression, etc.) can be chosen in any combination for this 

optimization task.   

 
2.2.2.2   The Extreme Learning Machine RBF Variants 
 
 Huang et al. originally developed the Extreme Learning Machine (ELM) 

algorithm in [60].  The authors propose a RBF system which seeks to optimize 

network weights and biases after first randomizing the initial sets of those 

quantities.  Final output weights are then solved for using a matrix pseudo-inversion 

technique.  ELM was expanded by Huang et al. into an incrementally constructive 

algorithm (I-ELM) in [61].  Following this, two additional algorithms were 

introduced by the same authors in further attempts to improve upon I-ELM.  The 

Convex Incremental Extreme Learning Machine (CI-ELM) and Enhanced random-

search-based Incremental Extreme Learning Machine (EI-ELM) are introduced in 

[62] and [63] respectively.  All of these algorithms are deployed in comparative 

publications using Gaussian RBF artificial neurons as the kernel function as in (31).  

 For all ELM variants, new nodes are added incrementally with randomly 

generated centers and radii.  CI-ELM uses an equation to minimize in-process 

training error by adjusting all of the output weights in the existing network each 

time a new neuron is added.  In the case of EI-ELM, a parameter, k, is introduced 

which specifies the number of new randomized nodes added for each training 

epoch.  As a final sequence of each such epoch, errors are computed for each of the k 

added neurons, and the one with minimum resultant error is selected and added to 

the network.  Following the indices established in Section 2.2.2.1, the general 

algorithm for the I-ELM is shown below as a basis for all the ELM variants.  The 

algorithm is extracted directly from Huang et al. [61]: 
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 Given a training set {(𝑥𝑝, 𝑦𝑝) | 𝑥𝑝 𝜖 ℜ
𝐷 ,  𝑦𝑝 𝜖 ℜ, 𝑝 = [1. . 𝑃]}, an activation 

function g(x) (31), a maximum node number H, and an expected learning accuracy ε: 

 
1. Initialize: Let the number of nodes, n=0, and residual error, E = y. 

2. Learning: While(n < H) and (RMSE > ε) 

a. n++ 

b. Assign random center cn and a width σn within an acceptable range for 

the new hidden node. 

c. Based on the random activation function and the error, calculate the 

output weight βn for the node: 

 𝛽𝑛 =
∑ 𝑒𝑝𝑔𝑛(𝑥𝑝)
𝑃
𝑝=1

∑ 𝑔𝑛(𝑥𝑝)
2𝑃

𝑝=1

 (33) 

d. Calculate the residual error after adding the new hidden node: 

 𝐸 = 𝐸 − 𝛽𝑛 ∗ 𝑔𝑛(𝑥) (34) 

 
𝑤ℎ𝑒𝑟𝑒 𝑥 𝑎𝑛𝑑 𝐸 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙  
𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑎𝑛𝑑 𝑒𝑟𝑟𝑜𝑟𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 
𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

 

End while loop 

3. Output is calculated using equation (32). 

 
 This algorithm will yield a network with a single hidden layer of RBF nodes 

connected with weighting terms, β, to a summing output node.  It was proven by 

Huang et al. that this network is ideal as a universal approximator.  The algorithm 

allows for fast training times and in the case of I-ELM, there is only one calculation 

to make per iteration.  The computation of β in matrix form can be done efficiently 

in most environments.  However, the drawback to all ELM variants is that only one 

of the three RBF neuron parameters is optimized.  The ELM variants have been 

previously implemented in MATLAB code by this research group and documented 

elsewhere. 

 
2.2.2.3   Support Vector Regression with RBF Kernels 
 
 Support Vector Regression (SVR) is a complex method of machine learning 

that retains selected training patterns for in-situ processing in addition to 
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incorporating a variety of network architectures and computational kernels.  The 

theory was initially introduced by Vapnik [64], and most mature implementations 

are informed by Smola and Scholkopf [65].  SVR systems with RBF kernels have 

been cited in many recent comparative works, including those of Huang et al., and 

are therefore included among the methods studied in this work.  When 

implemented correctly, they achieve excellent training and validation error 

compared to other methods.  Though accuracy is often superior to most other 

methodologies, SVR requires offline optimization of runtime parameters by the 

designer.  Essentially, a superior result is always possible but not guaranteed.  SVR 

is described extensively in the included references, and is therefore not detailed in 

this work. 

 The SVR with RBF kernel networks tested in this study were implemented 

with the widely-used LIBSVM C/C++ code library by Chang and Lin [66], and were 

compiled for the Microsoft Windows 7 operating system.  For consistency, the SVR 

libraries were executed within a MATLAB wrapper environment, also widely-used, 

and developed by Weston et al. as part of the Spider machine learning environment 

[67]. 
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Chapter 3  

Computational Strategies to Improve Polynomial Network Performance 

 
 This Chapter features new methods applied to a single-layer model of a 

polynomial network.  Several strategies have been studied, and theory and 

implementation of each relevant strategy will be described herein.  In the course of 

research, many methods were explored.  Only those methods which appear to 

provide significant advantage, in light of the drawbacks to current schemes 

highlighted at the end of the previous Chapter, will be discussed.  One method was 

extensively explored but did not make the final cut for affording effective 

improvement.  The results of that study can be examined in  Appendix A – 

Exploration of Chebychev Transform Methods. 

 
3.1 Efficient Generation of Monomial Polynomial Terms 
 
 For the proposed polynomial networks, it is first and foremost desirable to 

generate the individual monomial terms in such a way as to avoid unnecessary 

scalar multipliers and repeated terms.  We also want to be able to adapt the general 

case for theoretically unlimited multi-dimensional input data and monomial term 

order.  An analogous observation is pictured for the 3-input, 3rd-order case of 

Figure 14.  In this case, the necessary 3rd and lower-order terms are unique if only 

the upper diagonal of the initial 2-D multiplication matrix are used, followed by the 

terms encompassed by the downward-sliding diagonal for the multiplication of the 

initial 2-D plane by each dimension.  The same principle can be extended for 

additional dimensions/inputs, and for higher orders.  The best algorithm will 

generate the intended terms directly without extra or repeated terms.  
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Figure 14  3-input 3rd-order case:  Unique monomial terms on sliding diagonal 

 
 As pictured in Figure 14, we can conceive of arranging the 1st order terms of 

each input variable into an array, Â,  with a leading 1 as first term, such as  

Â = [1,x,y,z].  The indices for the elements of Â from left to right would be (1, 2, 3, 4).  

An algorithm is introduced in Table III which, per given input array and max 

polynomial order, generates sets of indices representing the position of elements of 

Â as product terms comprising all monomial terms of the intended polynomial. 

 
Table III 

The Poly-Gen Algorithm for Generation of Unique Monomial Terms 

indices = POLY-GEN(Â,maxord) 

1 nd  length of Â 

2 Nmax  ∅ 

3 for I  1 to maxord 

4       Nmax  {Nmax, nd} 

5 indices = Find-Idx(Nmax)  // recursion 

6 return indices 

 

indices = FIND-IDX(Nmax) 

1 len  length of Nmax 

2 if len = 1 

3       then indices = [1:Nmax(0)]T 

4       return indices 

5 idx  FIND-IDX(Nmax[1: len – 1)])   // recursion 

6 [rows, cols]  size of idx 

7 indices  ∅  

8 for row  1 to rows 
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9       for j  idx[row,cols] to len 

10             new  {idx[row,1:cols], j} 

11             indices  append new to last row of indices 

12 return indices 

 
Two advantages to this algorithm are: 

 Per each max order, no terms are repeated. 

 No products are yet formed.  Only the indices of the ordered input variables 

are generated and stored for later operation. 

 
Table IV displays an example of recursive polynomial factor index generation for 

a 3-input, max-order-2 case where the indices correspond to the array: [1,x,y,z].  The 

MATLAB code which generates the polynomial term indices is included in 7.2  

Appendix B – MATLAB Code:  Unique Polynomial Term Generation. 

 

 

 

 

Table IV 
Example of the Recursive Poly-Gen Function for a 3-input, order-2 Case 

Phase I  

(advance across) 

       

 1  2  1  

Nmax len idx Nmax len idx Nmax len idx 

[4 4] 2 -- [4] 1 

[

1
2
3
4

] 

[4 4] 2 

[

1
2
3
4

] 

Phase II  

(advance down) 

       

new indices  new indices  new indices 

idx_row=1 j=1  idx_row=2 j=2  idx_row=3 j=3 
[1 1] [1 1]  [2 2] 

[
 
 
 
 
1 1
1 2
1 3
1 4
2 2]

 
 
 
 

 

 [3 3] 

[
 
 
 
 
 
 
 
1 1
1 2
1 3
1 4
2 2
2 3
2 4
3 3]
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idx_row=1 j=2  idx_row=2 j=3  idx_row=3 j=4 
[1 2] [

1 1
1 2

]  [2 3] 

[
 
 
 
 
 
1 1
1 2
1 3
1 4
2 2
2 3]

 
 
 
 
 

 

 [3 4] 

[
 
 
 
 
 
 
 
 
1 1
1 2
1 3
1 4
2 2
2 3
2 4
3 3
3 4]

 
 
 
 
 
 
 
 

 

idx_row=1 j=3  idx_row=2 j=4 idx_row=4 j=4 terms  
[1 3] 

[
1 1
1 2
1 3

] 
 [2 4] 

[
 
 
 
 
 
 
1 1
1 2
1 3
1 4
2 2
2 3
2 4]

 
 
 
 
 
 

 

[4 4] 

[
 
 
 
 
 
 
 
 
 
1 1
1 2
1 3
1 4
2 2
2 3
2 4
3 3
3 4
4 4]

 
 
 
 
 
 
 
 
 

 

1 
x 
y 
z 
x2 
xy 
xz 
y2 
yz 
z2 

idx_row=1 j=4       
[1 4] 

[

1 1
1 2
1 3
1 4

] 

      

 

 
3.2 Statistical Smoothing and Pruning of Monomial Coefficients 
 
 As previously discussed, most methods in the literature which attempt to 

improve network performance, apart from enhanced regression methods, focus on 

heuristic approaches which rely on direct relationships either between the training 

patterns and output training error computations, or between the inclusion or 

exclusion of polynomial terms and similar output error computations.  In all such 

cases studied, the evaluation of a particular monomial term is done following from 

and independently of some regression computation.  In this section, an iterative 

strategy is introduced which uses incremental statistical computations to both 

stabilize monomial coefficients in the face of noisy and or spurious training data, 

and to eliminate one or more monomial terms based on the variation of their 

coefficients, borne out during iterative network training techniques.   
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3.2.1 A Training Strategy to Stabilize and Isolate Noise-Responsive Coefficients 
 
 In most real-world applications, noise is present in the training data and 

must be dealt with to achieve reasonable network performance, regardless of the 

method.  Additionally, systems which optimize to training data usually perform 

significantly worse in response to new data during validation.  This is commonly 

known as generalization error [68]. For polynomial-based and other node-based 

supervised learning methods using standard linear (or other) regression 

techniques, training data are often evaluated and streamlined via clustering, 

filtering, or other schemes as part of an additional front-end process.  Then the 

surviving training vectors are put through to the regression technique at hand.  

Instead of using front-end schemes which attempt to deal with the training data 

directly, the strategy discussed herein iteratively runs randomly-selected subsets of 

the training data through the regression engine, and computes increasingly stable 

mean coefficient values.  At the same time, incremental standard deviation (STD) 

computations are performed which are later used to flag noise-responsive 

coefficients for removal from the final network. 

 Following once again from the OLS regression equation of (21), it is noted 

that the full set of initial training vectors, X̂, can be iteratively broken into randomly 

selected subsets, and fed through the regression process (OLS in this case), yielding 

multiple corresponding polynomial equations, P̂k, and solution weight sets, Ŵk: 

 

 

𝑊̂0 = (𝑃̂0
𝑇
𝑃̂0)

−1

𝑃̂0
𝑇
𝑌̂,   𝑊̂1 = (𝑃̂1

𝑇
𝑃̂1)

−1

𝑃̂1
𝑇
𝑌̂, … ,   𝑊̂𝐾 =

(𝑃̂𝐾
𝑇
𝑃̂𝐾)

−1

𝑃̂𝐾
𝑇
𝑌̂ 

𝑤ℎ𝑒𝑟𝑒𝐾 ≡ 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 

(35) 

 
It is expected that during the training process, Ŵk will vary during successive 

regression computations due to the alternate absence or presence of critical 

patterns in the training subsets, as well as due to noise among what would ideally be 

equivalent training patterns.  A running mean can be numerically computed for each 

weight as processing continues, which essentially promises to approach a more 

stable average value for that particular weight: 
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 𝑊̂̅𝐾 =

[
 
 
 
(𝑤01 + 𝑤02 +⋯+𝑤0𝐾)/𝐾

(𝑤11 + 𝑤12 +⋯+𝑤1𝐾)/𝐾
…

(𝑤𝑁1 + 𝑤𝑁2 +⋯+𝑤𝑁𝐾)/𝐾]
 
 
 

= [

𝑤̅0
𝑤̅1
…
𝑤̅𝑁

] (36) 

  
 Simultaneous to the weight stabilization, a set of more involved 

computations can be employed to track the average magnitude of the variation of 

each coefficient from iteration to iteration.  At the completion of such an iterative 

training process, this criterion can be used to make decisions about which 

monomials may be over-responsive to both noise in critical inputs and more 

generally, to the presence of erroneous training patterns.  The following section will 

detail the computation steps but in general, we seek an expression to evaluate the 

magnitude of the perturbation of the network monomial weights in response to 

iterative processing of random subsets of the training data.  A typical standard 

deviation expression for such a process is defined:   

 

 𝑆𝑇𝐷𝐸𝑉𝑊̂𝐾
= [

𝜎𝑤0𝐾
𝜎𝑤1𝐾
…

𝜎𝑤𝑁𝐾

] (37) 

 
Once these values are known per monomial weight, computational decisions can be 

made to excise either the “noisiest” monomial term, or “noisiest” terms above a 

designated threshold, based on the relative magnitude of these values.  It is 

proposed that such a method, focusing on the response of network terms to training 

data, is potentially more efficient and accurate than the many complex and arbitrary 

filtering and clustering methods proposed as front-end processors of the training 

data themselves. 

 
3.2.2 Forward-Computed Statistical Methods – Overview 
 
 This section formalizes the statistical computation included in some of the 

polynomial-based algorithm variants in this study.  These numerical methods are 

designed to forward-compute current key values per each training iteration, thereby 
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reducing memory and processing overhead possible with the large matrices 

involved.  The associated computations discussed herein are used for: 

 smoothing monomial weights towards more stable average values 

 flagging “noisy” or otherwise susceptible monomial terms  

 tracking stopping criteria for the iterative processes involved 

The essential MATLAB code implementation of all such statistical processes is 
included in 7.3 Appendix C – MATLAB Code:  Statistical Processing of 
Monomial Term  

Weights.  A summary of the computational steps follows in Table V: 

 
Table V   

Computational Steps for Statistical Processing of Monomial Term Weights   

Computational Step 
(iterative) 

Code 
Variable 

Uses 
Equation 

Purpose 

Stabilize 
Values 

Evaluate 
Term 
Noise 

Stopping 
Criteria 

Collect/compute monomial 
weights 

wwtemp (OLS, etc.) X X X 

Compute running means of 
weights 

wwmeans (38) X X X 

Compute normalized weights 
per current maximum 

absolute 
wwscaled (39)  X X 

Compute running means of 
normalized weights 

wwscmeans (40)  X X 

Compute sum of iteration Δ ∀ 
wwscmeans (1st order) 

scmeansn_1 (41)  X X 

Compute iteration Δ ∀ 
scmeansnn_1 (2nd order) 

scmeanslope (42)   X 

Compute running stdev of 
means of normalized weights 

wwscstds (43)  X  

Option 1:  STOP, remove “noisiest” term, REPEAT 

Option 2:  CONTINUE, compute threshold criteria, remove terms, REPEAT 

Computational Step 
(post-iterative) 

  
   

Compute mean of final 
wwscstds 

meanstd (44)  X  

Compute stdev of final 
wwscstds 

stdstd (45)  X  

Compute threshold of term 
removal 

maxscstd (46)  X  
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3.2.3 Forward-Computed Statistical Methods – Iterative Numerical Detail 
 
 For the iterative training process described, wherein randomly selected 

subsets of the training data are successively processed, the following computations 

are performed.  For all equations in this section, subscripts for an individual 

member of Ŵ, such as w0, will be omitted as in, w, to simplify readability.   

 Initial values for monomial term weights, Ŵ0, are computed as in (35) per the 

particular regression method associated with the current polynomial network 

variant in use.  A straightforward running mean is computed per monomial term 

weight.  Such formulae can be found in numerous sources, such as in Press et al.’s 

Numerical Recipes series [69]: 

 

 𝑤̅𝑘 =
(𝑘 − 1)𝑤̅𝑘−1 + 𝑤𝑘

𝑘
, 𝑤ℎ𝑒𝑟𝑒:  𝑤 𝜖 𝑊̂  

 𝑘 ≡ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (38) 
 𝑤̅ ≡ 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡  

 
 The maximum absolute value of each weight is updated at each iteration and 

is used to forward-compute a normalized version of that weight.  Herein, a “dot” will 

be used to designate a normalized value.  Thus, normalized weights become: 

 

 𝑤̇𝑘 =
𝑤𝑘

𝑚𝑎𝑥𝑎𝑏𝑠(𝑤)
,    𝑎𝑛𝑑  𝑊̂̇𝑘 ≡ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (39) 

 
 The running means of the normalized weights are now computed as in (38): 

 

 𝑤̅̇ =
(𝑘 − 1)𝑤̅̇𝑘−1 + 𝑤̇𝑘

𝑘
 (40) 

 
 The sum of the absolute values of the slopes, w ̇̅ k – w ̇̅ k-1, is forward computed 

as an incremental measure of the quiescence of the entire set of normalized means 

in the course of the iteration process.  This is similar to a 1st-order gradient:  

 

 
𝑆𝑘 =∑|𝑤̅̇𝑖𝑘 − 𝑤̅̇𝑖𝑘−1|,       𝑤ℎ𝑒𝑟𝑒 𝑁

𝑁

𝑖=1

≡ # 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

(41) 
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 The tracking of the sequential change in the running scaled means is further 

smoothed by averaging, similar to (38) and (40).  The effect of this is similar to a 2nd-

order gradient: 

 𝑆𝑘̅ =
𝑆𝑘̅−1 + 𝑆𝑘

𝑘
 (42) 

 
The current value of S̅k is evaluated against an arbitrary maximum value set at run 

time, and in this way, (41) and (42) are used solely as stopping criteria for the 

iterative training algorithm. 

 The plot of Figure 15 shows how the mean values of term coefficients 

stabilize as regression iterations proceed successively on randomized subsets of the 

training data.  Each subset contains approximately 75% of the original training set.  

Each data point marks the average of the absolute value of the sum of the change of 

the coefficient means from one iteration to the next as computed by (42): 

 

 

Figure 15  Stabilization of final normalized coefficient means as training proceeds 

 
For this particular case, a threshold arbitrarily set at 10-2 would cause the algorithm 

to stop at 25 iterations or fewer for all cases plotted.   

 Computation continues to measure the relatively stability of monomial 

weights in a current network.  As mentioned thus far, running means have been 

normalized earlier in the process.  This is necessary to avoid a biased numerical 
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decision that would tend to penalize a larger magnitude optimized monomial term 

coefficient versus a smaller optimized term coefficient.  Per monomial term, the 

running standard deviation of the normalized means of the iterative weight values is 

computed following a numerical formula adapted from an original algorithm by 

Donald Knuth [70], but taking advantage of quantities that have already been 

normalized, thus insuring a uniform range of output values in the range [0:1] for all 

monomial weights.  For an individual weight in Ŵ, the formula is: 

 

 𝑆𝑇𝐷𝑤𝑘 = 𝜎𝑤̅̇𝑘 = √(
𝜎𝑤̅̇𝑘−1
2

𝑘
+ (𝑤̅̇𝑘 − 𝑤̅̇𝑘−1)2) × (𝑘 − 1) (43) 

 
The formula has been tested alongside the non-incremental MATLAB std() function, 

and it is accurate to less than 1×10-14 absolute error on a 64-bit processor running 

64-bit MATLAB.  The output of the function in (43) was observed as in Figure 16.  In 

the plot shown, each column of data points represents normalized standard 

deviations computed for the full set of monomial term weights active during a 

particular training epoch.   

 

 

Figure 16  Tracking monomial term coefficient variation over successive training 
iterations 



43 

As training subset iterations proceed, one can see that values are indeed 

normalized, and that “noisy” terms can easily be identified at the end of a training 

epoch. 

 At this point, two options arise in the statistical processing: 

 Option 1 – The most noise-responsive monomial term can be extracted 

from the set, and training can continue with remaining terms applied to 

additional epochs. 

 Option 2 – Threshold criteria can be computed at the end of an iterative 

epoch, and multiple monomial terms can be excised, after which 

remaining terms continue through to the next epoch. 

 
In the case of Option 2, two more computations remain.  Once the iterative subset 

training completes, a simple mean of all final STDs computed by (43) can be 

computed: 

 
𝑆𝑇𝐷̅̅ ̅̅ ̅̅

𝑊̂𝐾
= 𝜎𝑊̅̇𝐾

= (𝜎𝑤̅̇0𝐾
+ 𝜎𝑤̅̇1𝐾

+⋯+ 𝜎𝑤̅̇𝑁𝐾
)/𝑁  

𝑤ℎ𝑒𝑟𝑒 𝑁 ≡ # 𝑜𝑓 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑒𝑟𝑚𝑠 
(44) 

 
Additionally, a simple (non-iterative) STD of all elements of STDWK can be computed: 

 

 𝑆𝑇𝐷𝑆𝑇𝐷𝑊̂𝐾
= 𝜎𝜎

𝑊̅̅̅̇𝐾
= 𝑆𝑇𝐷 (𝜎𝑤̅̇0𝐾

, 𝜎𝑤̅̇1𝑘
, … , 𝜎𝑤̅̇𝑁𝐾

)  (45) 

 
A parameter, stdscale, can be arbitrarily set at run-time, and with the quantities 

computed in (44) and (45), monomial terms can be evaluated by their respective 

STDwK from (43), relative to those of other terms as depicted in Figure 16.  The final 

threshold criterion for inclusion/exclusion is expressed as: 

 

 𝑚𝑎𝑥𝑆𝑇𝐷 = 𝑆𝑇𝐷̅̅ ̅̅ ̅̅
𝑊̂𝐾

+ (𝑠𝑡𝑑𝑠𝑐𝑎𝑙𝑒 × 𝑆𝑇𝐷𝑆𝑇𝐷𝑊̂𝐾
) (46) 

 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒:  𝑆𝑇𝐷𝑤𝐾 > 𝑚𝑎𝑥𝑆𝑇𝐷  
 
3.3 Exploration of Enhanced Regression Techniques 
 
 As previously mentioned, the predominant method used in the literature to 

solve single-layer polynomial networks, or single-layer segments of those networks, 

is standard OLS, as depicted in (21).  Several enhanced regression techniques were 
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explored, and two in particular were found to display significant improvement in 

network accuracy under certain conditions.  Generalized Least Squares (GLS) and 

Ridge Regression (RR) are discussed in this section.  Finally, hybrid 

implementations of both techniques were explored, and successful variations are 

discussed as well. 

 
3.3.1 An Iterative Generalized Least Squares Regression Technique 
 
 In the world of supervised learning techniques in CI, a primary goal is finding 

and employing training methods which circumvent “bad data” or more specifically, 

noisy data and extreme “outliers” in the training data.  Bad data are a significant 

problem especially for single-layer polynomial networks solved via OLS, since 

polynomial networks are already extremely susceptible to over-fitting solutions.  As 

mentioned previously, most existing methods attempt to pre-process the training 

data with unsupervised culling techniques such as clustering, hidden-Markov chain 

analysis [44] [45], or other filtering techniques.  Herein, an iterative regression 

technique using the Generalized Least Squares (GLS) method is implemented. 

 In the field of statistics, the Gauss-Markov theorem [73] states that the Best 

Linear Unbiased Estimator (BLUE) of the coefficients of a linear regression model is 

given by the OLS estimator but only under certain conditions.  Applied to machine 

learning, “best” indicates that the variance between training and validation output 

results is minimized.  The conditions are that errors among the different input 

dimensions must have expectation zero (zero bias about a true mean), must be 

uncorrelated from dimension to dimension, and must be “homoscedastic” (equal 

variance among each input dimension) [74].  Matrix algebra and geometric proofs of 

the theorem are offered by Borghers [75] and Ruud [76] respectively.  

 Consider at this point,  the real-world dataset, “Abalone”, available from the 

UC Irvine Machine Learning Repository [77].  This dataset attempts to predict the 

age of abalone from physical measurements.  The equal variance restriction for 

using OLS as a BLUE applies to the errors present in the different input dimensions 

or “attributes”.  Two such attributes for the Abalone dataset are “viscera weight 

after bleeding”, given in grams, and sex of the animal, tabulated as “male, female, or 



45 

infant [indeterminate]”.  It is highly unlikely that errors acquired in the collection 

and tabulation of those separate attributes have equal variance, though those errors 

may indeed be uncorrelated.  Additionally, the condition that the expectation of 

attribute errors be zero (perfectly uniform around the correct mean value) is also 

unlikely for such varied attributes tabulated in real-world conditions.  Hence, there 

is reason to search for regression techniques other than OLS which promise better 

results for multi-dimensional real-world datasets. 

 GLS regression, discovered by Aitken [78] and described in detail by Kuan 

[79], promises several key advantages including handling of correlated errors, and 

handling of “heteroscedastic” data;  Errors along different dimensions of training 

data can have different variance and non-zero expectation (non-uniform error bias).  

Keeping in mind the OLS regression equation of (21), the basic GLS matrix equation 

is introduced: 

 
𝑊̂𝐺𝐿𝑆 = (𝑃̂𝑇Ω̂𝐺𝐿𝑆𝑃̂)

−1
𝑃̂𝑇Ω̂𝐺𝐿𝑆𝑌̂ 

 
𝑤ℎ𝑒𝑟𝑒 Ω̂𝐺𝐿𝑆 ≡ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑟𝑟𝑜𝑟𝑠 

(47) 

 
Kuan notes that for ΩGLS, “The covariance structure of the errors must [usually] be 

known up to a multiplicative constant.”  However, Kuan purports a two-step 

method:  Compute initial error components in Ω using OLS, compute the initial 

Feasible Generalized Least Squares (FGLS) estimator, ŴFGLS0, and then use an 

iterative method to apply GLS and successively recompute errors to update Ω.  

Following Kuan’s procedure: 

 

 

Compute initial errors: 

𝑊̂𝑂𝐿𝑆 = (𝑃̂
𝑇𝑃̂)

−1
𝑃̂𝑇𝑌̂ , 𝜇̂𝑂𝐿𝑆 = 𝑌̂ − 𝑃̂𝑊̂𝑂𝐿𝑆 

 

(48) 

 

Construct initial OLS covariance matrix: 

Ω̂𝑂𝐿𝑆 = 𝑑𝑖𝑎𝑔 (μ𝑂𝐿𝑆1
2 , 𝜇𝑂𝐿𝑆2

2 , … , 𝜇𝑂𝐿𝑆𝑛𝑝
2 ) , 

𝑤ℎ𝑒𝑟𝑒 𝑛𝑝 ≡ # 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 
 

(49) 

 

Compute initial FGLS estimator: 

𝑊̂𝐹𝐺𝐿𝑆0 = (𝑃̂
𝑇Ω̂𝑂𝐿𝑆𝑃̂)

−1
𝑃̂𝑇Ω̂𝑂𝐿𝑆𝑌̂ 

 

(50) 
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Compute errors, next ΩGLS, and REPEAT: 

𝜇̂𝐺𝐿𝑆0 = 𝑌̂ − 𝑃̂𝑊̂𝐹𝐺𝐿𝑆0 ,   Ω̂𝐺𝐿𝑆0 = 𝑑𝑖𝑎𝑔 (𝜇𝐺𝐿𝑆
2

0
, 𝜇𝐺𝐿𝑆1
2 , … , 𝜇𝐺𝐿𝑆𝑛𝑝

2 ) 

𝑊̂𝐹𝐺𝐿𝑆1 = (𝑃̂𝑇Ω̂𝐺𝐿𝑆0𝑃̂)
−1
𝑃̂𝑇Ω̂𝐺𝐿𝑆0𝑌̂ , 𝑒𝑡𝑐. 

(51) 

 
The MSE can be computed from errors at each iteration and can be evaluated 

against previously computed MSE to serve as a stopping criterion as the algorithm 

approaches convergence: 

 𝑀𝑆𝐸𝐺𝐿𝑆𝑖 =
𝜇̂𝐺𝐿𝑆𝑖Ω̂𝐺𝐿𝑆𝑖𝜇̂𝐺𝐿𝑆𝑖

𝑇

𝑛𝑝
 (52) 

 
 The MATLAB code used to directly implement the iterative GLS procedure is 

available in 7.4 Appendix D – MATLAB Code:  Iterative GLS Regression. 

 The effect of the iterative GLS regression technique on a 1-D, 3rd-order 

example is dramatic compared to standard OLS regression performance.  Following 

from the Gauss-Markov constraints on optimum OLS performance, an example of 

“bad data” which would handily violate those constraints would be marked by: 

 a large percentage of outliers relative to the ideal function 

 all points would exhibit at least some random noise 

 some data points exhibit non-zero expectation (non-uniform bias) 

 some data points exhibit uncorrelated variance (bimodal trend present) 

Figure 17 shows an example of such a data distribution, with 40% of the data points 

laying in a trend far outside the original function.   

 The comparative results of iterative GLS regression versus standard OLS 

regression are stark, and are plotted in Figure 18.  Two-hundred points are 

generated for the ideal function, noise is added with a normal distribution, then 

40% of the data points are randomly selected and subjected to a second 

uncorrelated, biased trend.  The “realbest’ line in Figure 18 represents the best GLS 

solution evaluated by comparing the transform MSE of (52) against the original 

uncorrupted function data.  The “’BEST’ GLS” line represents the best GLS solution 

found after the transform MSE is evaluated against an arbitrary stopping threshold.  

Certainly, GLS regression promises higher accuracy for real-world, noisy data.  The 
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MATLAB code producing these results for the 1-D test case is also available in 7.4

 Appendix D – MATLAB Code:  Iterative GLS Regression.  

 

 

Figure 17  1-D, 3rd-order case of bad data, 40% outlaying trend 

 

 

Figure 18  Iterative GLS performance vs. OLS: (a) GLS (red) beats OLS (blue),  
(b) Stabilization of GLS MSE of the transform errors 

 
3.3.2 An Iterative Ridge Regression Technique 
 
 With polynomial-based networks, the presence of excess monomials of 

relatively high order leads to over-fitting or over-constraint of outputs in the 
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validation phase.  This issue, discussed at length by Moody [68] and many others, is 

known across CI methodologies as generalization error.  This is illustrated for a one-

dimensional case in Figure 19, wherein a finite set of data points is fit by 

increasingly higher order polynomials.  Though all polynomial solutions pictured 

from approximately 7th-order upward approximate the particular points rather well, 

one observes that the higher order solutions will not translate to an accurate model 

for interpolation of new values. 

 

 

Figure 19  Curve-fitting of points with polynomials of increasingly higher order 

 
With any polynomial network scheme, solutions may be discovered in the training 

phases which exhibit multicollinearity [80].  In short, some polynomial terms may 

have a nearly linear relationship to each other.  Not only does this lead to solutions 

with excess terms, but the collinear terms tend be over-sensitive to noise in the data 

and to the introduction of new patterns.  Standard regression techniques such as 

OLS will not automatically suppress multicollinearity.  Breheny and others have 

shown that in fact, ridge regression is especially suited to improving computation 

with multicollinear data [81]. 
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3.3.2.1   Ridge Regression – Theory 
 
 Ridge Regression (RR), developed by Hoerl and Kennard [82], purports 

advantages for multi-dimensional computation.  The basic formulation is similar to 

both OLS and GLS: 

 𝑊̂𝑟𝑖𝑑𝑔𝑒 = (𝑃̂
𝑇𝑃̂ + 𝜆𝐼)

−1
𝑃̂𝑇𝑌̂ 

𝑤ℎ𝑒𝑟𝑒 𝐼 ≡ 𝑡ℎ𝑒 𝑝 × 𝑝 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑝 ≡ #𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑒𝑟𝑚𝑠) (53) 
 𝜆 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 
It is instructive to note that this formulation is also similar to the Levenberg-

Marquardt algorithm for non-linear least squares problems [43].  Hoerl and 

Kennard have observed that the function of the resulting diagonal matrix, λI, is to 

“regularize” or shrink all coefficient magnitudes, Ŵridge, rendering a model that is 

less sensitive to new patterns introduced during validation.  This results in much 

less variance between training and validation errors.  Hoerl and Kennard pose 

several key theorems.  First, let us define the MSE of expected model outputs versus 

training outputs, and alternately versus validation outputs.  Additionally, we define 

the expression for the variance between these two error measurements: 

 𝑀𝑆𝐸𝑌̂ = ||𝑌̂ − 𝑃̂𝑊̂𝑇||
2

≡ 𝑀𝑆𝐸 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟𝑠 

 
(54) 

 𝑀𝑆𝐸𝑌̂∗ = ||𝑌̂∗ − 𝑃̂∗𝑊̂𝑇||
2

≡ 𝑀𝑆𝐸 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑠 

 
(55) 

 𝑉𝐴𝑅(𝑀𝑆𝐸𝑌̂, 𝑀𝑆𝐸𝑌̂∗) ≡ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑟𝑟𝑜𝑟𝑠 (56) 
 
Findings of Hoerl and Kennard [82] are presented in the parlance of CI: 

 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.1:  𝑎𝑠 𝜆 → ∞, 𝑉𝐴𝑅(𝑀𝑆𝐸𝑌̂, 𝑀𝑆𝐸𝑌̂∗) → 0  

The total variance of validation versus training errors is a continuous, 

monotonically decreasing function of increasing λ. 

 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.2:  𝑎𝑠 𝜆 → ∞,𝑀𝑆𝐸𝑌̂ → ∞  𝑎𝑛𝑑  𝑀𝑆𝐸𝑌̂∗ → ∞ 

The squared training and validation bias (error) is a continuous, 

monotonically increasing function of increasing λ. 
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 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.3:  (Existence Theorem)  ∃𝜆 > 0, ∋ 𝑀𝑆𝐸𝑌̂(𝜆) < 𝑀𝑆𝐸𝑌̂(0) 

There always exists a λ such that the MSE for ridge regression is less than the 

MSE for OLS. 

 
The results of these theorems are visualized in Figure 20 relative to OLS.  From this 

we can infer that an improved MSE is always achievable using ridge regression, and 

it is numerically computable given that both variance and the square of the bias are 

monotonic. 

 Breheny presents a theorem which affords an additional benefit [81]: 

 𝑇ℎ𝑒𝑜𝑟𝑒𝑚:  ∀ 𝑃̂, (𝑃̂𝑇𝑃̂ + 𝜆𝐼) is always invertible, thus there is always  

a unique solution of 𝑊̂𝑟𝑖𝑑𝑔𝑒.  

 
This can be used to kick a regression process that is stuck on a singular matrix 

inversion problem out of insolubility, simply by adding λI to the inversion term 

where λ is very small. 

 

 

Figure 20  Ridge Regression [83]:  The variance-bias tradeoff, and performance vs. 
OLS 
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3.3.2.2   Ridge Regression – Implementation 
 
 Celov et al. propose a Newton-Raphson/Fisher-scoring numerical method to 

compute an optimized λ, or “regularization parameter” [84].  In our context, 

“optimized” equivalently means that this process will produce a minimum-variance 

λ.  This is useful for several reasons as will be discussed.  Chiefly, it computes an 

initial value for λ from which an optimized MSE can be found using Hoerl’s 

Theorems 4.1 and 4.2; though the minimum-variance λ will also coincide with a 

non-ideal bias, one can utilize the monotonicity of the proportional λ-bias 

relationship to subsequently search for a smaller λ that yields an optimized MSE.  

First, in developing algorithms which solve ridge regression, Shedden and other 

researchers have defined the “effective degrees of freedom” of a ridge regression 

problem as [85]: 

 𝑑𝑓 = 𝑡𝑟𝑎𝑐𝑒[𝑃̂(𝑃̂𝑇𝑃̂ + 𝜆𝐼)
−1
𝑃̂𝑇] (57) 

 
Trace refers to a standard operation in linear algebra [86].  It is observed that λ and 

df cannot be solved for independently.  Celov et al. use Singular Value 

Decomposition  (SVD) [87] in their formulation, assuming a given df : 

 

 
𝑙𝑒𝑡 [𝑢 𝑠 𝑣] = 𝑆𝑉𝐷(𝑃̂) ,   𝑑𝑖 ≡ 𝑖𝑡ℎ𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑛𝑡𝑟𝑦 𝑜𝑓 ′𝑠′ 

 
(58) 

 
𝑑𝑓 =∑

𝑑𝑖
2

𝑑𝑖
2 + 𝜆

𝑝

𝑖=1

  ,   𝑝 ≡ 𝑟𝑜𝑤𝑠 𝑜𝑓 𝑃̂ 

 

(59) 

 
ℎ(𝜆) =∑

𝑑𝑖
2

𝑑𝑖
2 + 𝜆

𝑝

𝑖=1

− 𝑑𝑓 = 0 ,
𝜕ℎ

𝜕𝜆
= −∑

𝑑𝑖
2

(𝑑𝑖
2 + 𝜆)2

𝑝

𝑖=1

 

 

(60) 

 ℎ(𝜆) ≅ ℎ(𝜆0) + (𝜆 − 𝜆0)
𝜕ℎ

𝜕𝜆
|𝜆=𝜆0 = 0 

 
(61) 

 𝜆 = 𝜆0 − [
𝜕ℎ

𝜕𝜆
|𝜆=𝜆0]

−1

ℎ(𝜆0) 

 

(62) 

 iterative summation: (63) 
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1.  𝑎𝑠𝑠𝑢𝑚𝑒 𝑑𝑖

2 = 1, 𝜆0 =
𝑝 − 𝑑𝑓

𝑑𝑓
 

 
(64) 

 2.  𝜆𝑗+1 = 𝜆𝑗 + [∑
𝑑𝑖
2

(𝑑𝑖
2 + 𝜆𝑗)

2

𝑝

𝑖=1

]

−1

[∑
𝑑𝑖
2

𝑑𝑖
2 + 𝜆𝑗

− 𝑑𝑓

𝑝

𝑖=1

] (65) 

 
Though (57) implies a computable solution, the above method still leaves the choice 

of df as an open issue.  Many researchers have suggested using various quantities 

such as the total number of training patterns.  This author has tried multiple 

quantities by trial and error, and a serendipitous choice for df, applying RR to single-

layer polynomial networks, appears to be the degree of the polynomial, i.e., the 

degree of the maximum-degree monomial.  The results of this choice will be seen in 

further sections.  The MATLAB code implementing the numerical method of (58)-

(65), and the code completing the optimization of λ, are given in 7.5 Appendix E – 

MATLAB Code:  Iterative Ridge Regression. 

 As an initial proof-of-concept, the RR technique was applied to a single-layer 

polynomial network solution computed for a highly non-linear 2-input, 2500-point 

dataset, DCDCgldd (detailed later).  This implementation of the iterative ridge 

regression process yields the training and validation results seen in Figure 21.  The 

standard OLS algorithm (PolyNet) produces a monotonically descending RMSE 

trend line in training.  But the generalization problem, inherent with polynomial and 

other node-based solutions, is pronounced in validation where the RMSE line 

diverges upward from that of the training line after the network is grown to greater 

than approximately 100 nodes.  In contrast, the RR implementation (PolyRidge) 

yields a very similar shaped RMSE trend in both training and validation, and 

sustains a better optimal RMSE in validation. 
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Figure 21  Ridge regression teaser:  (PolyRidge) vs. OLS regression (PolyNet) 

 
The shrinking of both λ and of the resulting training RMSE during the iterative 

process are plotted in Figure 22. 

 

 
Figure 22  Iterative Ridge Regression:  Both λ (Left) and training RMSE (Right) 

shrink monotonically towards optimal values during processing 

 
3.3.3 Iterative Regression Hybrids Using OLS, GLS, and Ridge Methods 

 
 In the course of the research for this work, several hybrid regression 

techniques were explored among OLS, GLS, and RR methods.  Multiple combinations 

of these basic types were possible, and many were tested including: 

 OLS + RR:  1) RR → compute min-variance solution, 2) OLS → optimize 

 OLS + RR:  1) OLS → compute initial solution, 2) RR → optimize 
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 GLS + RR:  1) RR → compute min-variance solution, 2) GLS → optimize  

 GLS + RR:  1) GLS → compute initial solution, 2) RR→ optimize 

 GLS + RR:  embedded → iteratively compute single optimization step 

combining compute GLS and RR together (multiple implementations 

possible) 

 etc. 

 
Winners and losers were borne out in the course of extensive initial testing not 

included in this study.  Only the most promising contenders were retained for 

inclusion in several polynomial-based network variants, discussed in the following 

Chapter.  This section introduces these hybrid regression algorithms. 

 
3.3.3.1   The GLS + Ridge Regression Minimum-Variance Hybrid 
 
 A special result was discovered for one hybrid combination of GLS and RR 

methods.  By combining the two techniques, it was observed that an optimal 

minimum-variance RMSE trend line is attainable relative to using either RR alone, or 

in other combinations of RR with both OLS and GLS.  The combination of methods is 

trivial: 

1. Compute the min-variance λminvar for given training inputs, max polynomial 

order, and number of training patterns (See Appendix E: 6.5.1 7.5.1

 Computation of an Initial Minimum-variance λ – OLSridge_reg.m 

excerpt). 

2. Compute iterative GLS regression as before, incorporating the equation: 

 𝑊̂𝑚𝑖𝑛𝑣𝑎𝑟 = (𝑃̂
𝑇Ω̂𝐺𝐿𝑆𝑃̂ + 𝜆𝑚𝑖𝑛𝑣𝑎𝑟𝐼)

−1
𝑃̂𝑇Ω̂𝐺𝐿𝑆𝑌̂ (66) 

 
The MATLAB code for this regression hybrid can be seen in Appendix F: 7.6.1
 Iterative GLS + RR Minimum-Variance Regression – GLSminvar_reg.m  
excerpts.  The effect of this technique is seen below in Figure 23.  Though the 

terrible bias renders the method unusable as a final step of a regression process 

aimed at accuracy, the near-equivalence of the training and validation RMSE curves 

is remarkable.  Again using the 2-input, 2500-point non-linear dataset, DCDCgldd, 

the PolyNet algorithm (simple one-step OLS regression) exhibits expected 
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generalization error in validation.  But the minimum-variance GLS-RR combination 

results in almost no generalization error for the same training and validation 

patterns.  Furthermore, though the overall bias is untenable, the GLS-RR method 

identifies during the training phase what could potentially be an optimal set of 

monomial terms for this dataset.  No such indications are present in this case or as 

usual for Polynet or other similar OLS techniques.  This points to the use of the GLS-

RR method as a potential “optimal model probe” which could be deployed as the 

first phase of a multiple-step training algorithm.  This “probe” effect has significant 

potential not just for polynomial-based techniques, but for any node-based CI 

technique which is normally susceptible to large generalization errors and training 

inefficiencies. 

 

 

Figure 23  Effect of GLS-RR minimum-variance method: minimal difference in 
training and validation RMSE curves 

 
3.3.3.2   The GLS + Ridge Regression Full Optimization Hybrid 
 
 This hybrid regression method is similar to the previous GLS + RR method of 

Section 3.3.3.1.  However, the process is carried out to attain a minimum RMSE, as 

with the standard RR algorithm of Section 3.3.2.2.  Additionally, the order of 

operations of this hybrid regression technique differs from that of the λminvar 

process.  In this hybrid method: 

1. A full iterative GLS regression is performed as in Section 3.3.1. 
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2. The resultant numerator (𝑃̂𝑇Ω𝐺𝐿𝑆𝑓𝑖𝑛𝑎𝑙𝑌̂) and denominator (𝑃̂𝑇Ω̂𝐺𝐿𝑆𝑓𝑖𝑛𝑎𝑙𝑃̂) 

from 1 are retained as constant matrices. 

3. The iterative RR method of Section 3.3.2 is performed on these constant 

matrices. 

 
The MATLAB code of this hybrid method can be seen in Appendix F –  

7.6.2 Iterative GLS + RR Full Optimization Regression – GLSridge_reg.m excerpts.  

Results of the use of this method, incorporated into two different polynomial-based 

network variants, are evaluated alongside other variants in Chapter 5, Experimental 

Results. 

 
3.4 Automated N-Dimensional Radial Clustering 

 
 Due to the introduction of several compute-intensive iterative methods 

herein, a solution was sought which can efficiently parse a multi-dimensional data 

space into roughly uniformly distributed clusters from which sample patterns can 

be extracted for training.  For large datasets numbering in the thousands, or even 

tens of thousands of patterns, iterative regression techniques can have prohibitive 

run times.  For experiments herein where GLS regression techniques were used, a 

rapid, simple clustering method was adapted from an original algorithm by B. 

Wilamowski [88] to forward-process an input training set, extracting no more than 

approximately 300 sample patterns from evenly-distributed clusters.  Note that this 

is a clustering method employed not for traditional pattern classification, but for 

segmentation of a multi-dimensional data space into roughly equivalent and 

adjacent groupings.  For an input training set with np total patterns: 

1. Initialization: The first cluster is established as the first pattern: C1={P1}.  A 

threshold radius, r, is established.  The first cluster center is established as 

the first pattern: c1 = P1.  The cluster pattern count, nc, is set to 1. 

2. For the remaining patterns in the training set, Pn  P2 through Pnp,  

if ||c1 – Pn|| < r,  Pn joins this cluster set as C1={P1, Pn}, and the current cluster 

center is updated incrementally as the following: 
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 𝑐1 = 
𝑃2 + 𝑐1 ∗ 𝑛𝑐

𝑛𝑐 + 1
 (67) 

Otherwise, if ||c1 – Pn|| ≥ r, Pn is compared against the next cluster, ck. 

3. If Pn has been compared against all cluster centers, ck and has not become a 

member of any, a new cluster is formed: C2 = {Pn}.  The corresponding new 

center is established: c2 = Pn.  The cluster pattern count is incremented: nc = 

nc + 1. 

4. Cluster formation continues until the final pattern, Pnp, has been evaluated. 

 The result of this algorithm can be seen in Figure 24.  In this example, 5,000 

uniformly distributed points are generated with the Matlab peaks() function, and 

fast, forward-computed radial clustering is used to form first 7 total clusters, then 

110.  Since the only goal of this clustering method is to adequately parse the data 

space into sectors sufficiently distributed around that space, complete accuracy is 

not necessary for point density, number of cluster members, etc.  In fact, this 

method is computationally greedy, and cluster boundaries may overlap.  This does 

not violate the goal of distributing training pattern sampling uniformly throughout 

the data space.  As shown in Figure 24, clusters become more uniformly distributed 

as the total number of centers increases. 
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Figure 24  Fast, forward radial clustering of the Matlab peaks() function:  (a) 7 
cluster centers, top view, (b) 7 cluster centers, 3-D view, (c) 110 cluster centers, top 

view, (d) 110 cluster centers, 3-D view 

 
 The MATLAB code for this clustering method can be seen in  

7.9 Appendix I – MATLAB code:  Fast, Forward-Computing N-Dimensional Radial  
Clustering.  As mentioned, all polynomial network variants which use iterative GLS 

regression employ this clustering to reduce training set sizes considerably. 
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Chapter 4  

        Proposed Polynomial-Based Learning Machines: 

         Seven Variants within Three Species 

 
 Many combinations of the methods introduced in Chapter 3 were 

implemented in the course of extensive initial testing not included in this work.  

Three predominant species of algorithms survived initial testing.  Within those 

species, seven combinations of techniques discussed have been retained as 

promising PLM variants which are explored for the remainder of this study.  All 

seven variants are single-layer feed-forward networks following the topology and 

node computation of the FLN model discussed in Section 1.1.1.  Additionally, the 

seven variants use the efficient monomial term generation algorithm of Section 3.1 

in the course of solving for intermediate and final network parameters.  However, 

the application of the statistical and regression methods of Chapter 3 differs 

significantly among the variants.  Throughout this Chapter, “epoch” is defined as a 

training sequence which results in the computation of a final set of monomial 

coefficients for a particular network at a particular polynomial degree. 

 
4.1 PolyNet Species – The Initial Next-Generation Polynomial Learning Machine 
  
 PolyNet is the most basic variant developed, and is the only member of the 

PolyNet species.  It operates according to the following steps. 

For given training pattern inputs and outputs, and for increasing maximum 

polynomial degree: 

1. Generate monomial term indices and compute polynomial products 

according to Section 3.1. 

2. Perform one-step OLS regression, as in (21), to obtain monomial 

coefficients. 
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3. RETAIN the resultant nonzero final monomial coefficients and their term 

indices for the current training’s epoch. 

4. STOP if either the maximum degree, or the max number of complete 

polynomial terms, computed by (8), has been reached.  ELSE REPEAT 1 

through 3 for the next highest maximum polynomial degree. 

 
A flowchart for the logic of PolyNet is seen in Figure 25.  The MATLAB code for the 

PolyNet variant can be examined in Appendix G – 7.7.1 The PolyNet Variant – 

PolyNet.m excerpts.   

START

X  training inputs
Y  training outputs
pterms = 0
ord = -1
ni = # inputs

pterms < Pthresh
AND

ord < maxord
RETURN

ord++
pterms = 

(ord+ni)!/
(ord!ni!)

1. generate monomial term indices
2. generate:  P = f(X,indices)

PolyNet
Wtemp = OLS(P,Y)

Other 
Variants

yes

no

Wepoch=nonzero(Wtemp)

Common
Front-

End

PolyNet

Entry point
from

Variants

 

Figure 25  Flowchart for the PolyNet PLM variant 

 
4.2 The PolyStat Species – Utilizing Statistical Pruning of Monomial Terms 
 
 Four of the final variants make use of the forward-computed statistical 

tabulation outlined in Section 3.2 in order to trim or prune monomial network 

terms following iterative regression steps.  Additionally, these four variants can 
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each be considered extensions of PolyNet, essentially using that algorithm as a 

common front-end processor as depicted in Figure 25.  The four variants differ in 

their use of the different regression algorithms introduced in Section 3.3.  The 

PolyStat variants are: 

 PolyStat – statistical term pruning plus standard OLS regression 

 PlyGLS_P – same as PolyStat with iterative GLS regression instead of OLS 

 PlyOLSR_P – same as PolyStat with iterative RR instead of OLS 

 PlyGLSR_P – same as PolyStat with iterative hybrid GLS+RR instead of OLS 

 
The PolyStat family of variants operates according to the following steps. 

For given training pattern inputs and outputs, and for increasing maximum 

polynomial degree: 

1. Generate monomial term indices and compute polynomial products 

according to Section 3.1. 

2. Randomize the order of the training patterns, and extract a subset of 

these training patterns. 

3. Iteratively per training pattern subset:  Perform either one-step OLS 

regression, or iterative regression (GLS, OLSR, or GLSR, described in 

Section 3.3) to obtain a set of temporary monomial coefficients. 

4. Compute running means and standard deviations of each coefficient per 

iteration. 

5. REPEAT 2 through 4 until EITHER the sum of the running gradients of the 

coefficient means stabilizes below a threshold, OR until the maximum 

number of iterations is reached.   

6. COMPUTE a threshold for the maximum-allowed STD per individual 

coefficient terms. 

7. REMOVE monomial terms whose coefficient STDs are above the 

threshold computed in 6. 

8. IF terms were removed in 7, CONTINUE steps 3 through 7 with the 

pruned set of monomial terms. 
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9. ELSE, RETAIN the resultant nonzero final monomial coefficients and their 

term indices for the current training’s epoch. 

10. STOP if either the maximum degree or the max number of complete 

polynomial terms, computed by (8), has been reached.  ELSE REPEAT 1 

through 9 for the next highest polynomial degree. 

 
A flowchart for the PolyStat variants is seen in Figure 26.  The MATLAB code for the 

all PolyStat variants is nearly identical to that seen in Appendix C – Option 2 

Example – PolyStat.m excerpts.  As mentioned previously, the variants differ only in 

the regression method employed.  

 
START

Front-End
from

PolyNet

PolyStat
Wtemp = OLS(P,Y)

Wmeans = mean(Wtemp)
Wstd = std(Wtemp)

∆Wmeans <= max∆Wmeans
OR

iter > maxiter

PolyGLS_P
Wtemp = GLS(P,Y)

PolyOLSR_P
Wtemp = OLSR(P,Y,ord)

PolyGLSR_P
Wtemp = GLSR(P,Y,ord)

1. randomize training inputs
2. extract training subset no

Wstd_i > maxWstd remove all:  Pi(maxWstd_i > maxWstd) = {0}

yes

yes

PolyStat Variants:
PolyStat, PolyGLS_P, 

PolyOLSR_P, PolyGLSR_P

no

OR OR OR

Wepoch = nonzero(Wmeans)

 

Figure 26  Flowchart for the PolyStat family of PLM variants 

 
4.3 The PolyPaP Species – A Probe-and-Prune Methodology 
 
 Two of the final variants incorporate two regression stages.  In the first stage, 

the minimum-variance GLS regression of Section 3.3.3.1 is applied as a probe to seek 
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the optimal polynomial degree and monomial term set for a particular solution in an 

attempt to defeat generalization issues in later stages.  In the second stage, all 

monomial terms are regenerated at once at the optimal order discovered in the first 

stage.  Then, one of two regression methods is applied to iteratively seek a final 

monomial set which is optimized for minimum RMSE applied to the training 

patterns.  Additionally during the second stage, running statistics are accumulated 

as with the PolyStat variants.  However, at the end of a training epoch, the final 

statistical quantities are used to identify only the single monomial term whose 

coefficient exhibited the greatest excursion during training iterations.  This single 

term is removed from the solution set, and training proceeds until no terms remain 

in the set.  The two PolyPaP variants differ in their use of two regression algorithms 

introduced in Section 3.3.  The PolyPaP variants are: 

• PlyPaPGLS – optimal polynomial degree probe, plus GLS regression and 

statistical term pruning 

• PlyPaPGLSR – same as PlyPaPGLS with iterative hybrid GLS+RR regression 

 
The PolyPaP family of variants operates according to the following steps. 

For given training pattern inputs and outputs: 

Part I – Minimum-Variance Probe 

1. Per current polynomial degree, generate monomial term indices and 

compute polynomial products according to Section 3.1. 

2. Perform the iterative minimum-variance GLS regression. 

3. COMPUTE errors:  If a current lowest MSE is computed, RETAIN the 

current order as ProbeOrder. 

4. STOP if either the maximum degree or the max number of complete 

polynomial terms, computed by (8), has been reached.  ELSE REPEAT 1 

through 3 for the next highest polynomial degree. 

Part II – Iterative Regression and Pruning 

1. Generate all monomial terms at the polynomial degree equal to 

ProbeOrder found in Part I. 
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2. Randomize the order of the training patterns, and extract a subset of 

these training patterns. 

3. Iteratively per training pattern subset:  Perform either iterative GLS 

regression, or full iterative GLS+RR regression (described in Section 3.3) 

to obtain a set of temporary monomial coefficients. 

4. Compute running means and standard deviations of each coefficient per 

iteration. 

5. REPEAT 2 through 4 until EITHER the sum of the running gradients of the 

coefficient means stabilizes below a threshold, OR until the maximum 

number of iterations is reached.   

6. REMOVE the single monomial term whose coefficient STD is the 

maximum.  Pterms = pterms – 1.  RETAIN the resultant nonzero final 

monomial coefficients and their term indices for this epoch. 

7. STOP if pterms < 1.  ELSE REPEAT 2 through 6 with the reduced 

monomial term set. 

 
A flowchart for the minimum-variance probe phase of the PolyPaP variants is 

seen in Figure 27.  The flowchart for the optimization and pruning phase is seen in 

Figure 28.  The MATLAB code for the all PolyPaP variants appears in Section 7.7.2 of 

Appendix G – PlyPaPGLSR.m excerpts.  As mentioned previously, the variants differ 

only in the regression method employed for the second phase.  
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START
Probe 

Sequence

X  training inputs
Y  training outputs
pterms = 0
ord = -1
ni = # inputs
lastMSE = 999

pterms < Pthresh
AND

ord < maxord

ord++
pterms = 

(ord+ni)!/
(ord!ni!)

1. generate monomial term indices
2. generate:  P = f(X,indices)

Wtemp = 
GLSminvar(P,Y,ord)

yes

no

Poly Probe-and-Prune Variants:
PlyPaPGLS, PlyPaPGLSR

||Y-P’*Wtemp||^2 < lastMSE

1. lastMSE = ||Y-P’*Wtemp||^2
2. ProbeOrd = ord

no

CONTINUE
Prune 

Sequence

yes

 

Figure 27  Flowchart for the Probe phase of the PolyPaP family of PLM variants 

START
Prune 

Sequence

X  training inputs
Y  training outputs
ord = ProbeOrd
pterms = (ord+ni)!/(ord!ni!)

pterms >= 1

PlyPaPGLS
Wtemp = OLSR(P,Y,ord)

PlyPaPGLSR
Wtemp = GLSR(P,Y,ord)

Wmeans = mean(Wtemp)
Wstd = std(Wtemp)

∆Wmeans <= max∆Wmeans
OR

iter > maxiter

1. randomize training inputs
2. extract training subset

no

1. Wepoch = nonzero(Wmeans)
2. search: Pi( maxWstd_i)
3. remove one:  Pi(maxWstd_i) = {0}
4. pterms - -

yes

Poly Probe-and-Prune Variants:
PlyPaPGLS, PlyPaPGLSR

RETURN no

yes

OR

1. generate monomial term indices
2. generate:  P = f(X,indices)

 

Figure 28  Flowchart for the Solve/Prune phase of the PolyPaP family of PLM 
variants 
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4.4 Summary of Polynomial-Based Learning Machine Variants 
 
 The main differences of the variants presented are summarized as a feature 

list in Table VI.  These variants comprise the original methods of this study which 

will be deployed against other prominent learning machine processes found in the 

current literature. 

 
Table VI 

Feature Set of Polynomial-Based Learning Variants 

Species 

Poly 

Variant 

Min-Var 

Probing 

Regression Type Statistical  

Smoothing 

STD(ΔCoeff) Term Pruning 

OLS GLS OLSR GLSR == 0 Threshold Single 

PolyNet PolyNet  X     X   

PolyStat 

PolyStat  X    X X X  

PlyGLS_P   X   X X X  

PlyOLSR_P    X  X X X  

PlyGLSR_P     X X X X  

PolyPaP 
PlyPaPGLS X  X   X X  X 

PlyPaPGLSR X    X X X  X 
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Chapter 5  

Experimental Results 

 
 The particular testing methodologies, adopted from other current rigorous 

studies, are discussed herein.  Finally, results and findings from multiple 

experiments with two types of benchmark problems are discussed.  All competing 

algorithms are exercised against nine total datasets within the two types. 

 
5.1 Test Methodology 
 
 The proposed PLM variants and all competing CI methods were implemented 

according to theory and code specified by the original authors.  The runtime 

parameters for the all methods were set based on the best performance observed 

during initial trials against the particular problems tested, and are noted within the 

results of the following sections.   

 The testing environment for all experiments consists of running 64-bit 

MATLAB(vR2013b) implementations of all algorithms over a 64-bit CentOS Linux 

operating system.  All experiments were run in MATLAB’s single-core mode on an 

Intel Core i7-3770 CPU @ 3.4GHz, with 8GB of RAM. 

 For all datasets in this study, both training and validation pattern vector 

input values were normalized over the range [-1:1].  Pattern vector outputs were 

normalized over the range [0:1].  For industrial electronics datasets using generated 

data, further processing was used to adequately simulate noise conditions in 

training.  This will be discussed in detail in the next Section. 

 For all experiments, a 70/30 k-fold process was run for 20 separate trials per 

CI algorithm, and the final parametric results were averaged over the 20 trials.  As 

implied by the 70/30 k-fold, the entire dataset is first randomized, and then 70% of 

the total dataset for each experiment is chosen for training, while a specific 30% of 
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training vectors are withheld for validation only.  The next “fold” in the process 

withholds a different 30% for validation, and so on.  The process repeats until all 

data patterns have been cycled through the validation process.  All algorithms see 

the exact same permutations of the training and validation sets per each of the 20 

trials of each experiment.  All time metrics are measured in seconds, and all error 

metrics are evaluated with the standard Root-Mean-Squared Error (RMSE): 

 

 𝑅𝑀𝑆𝐸 = √
∑ 𝑒𝑝2
𝑛𝑝
𝑝=1

𝑛𝑝
 

where: np ≡ # of patterns computed (68) 
 e ≡ absolute error of output vs. desired  

 
5.2 Experiments with Industrial Electronics Problems 
 
 Many applications of CI methods are found in the area of industrial 

electronics.  Two such problems are used for experiments herein: 1) output voltage 

control for a DC-DC converter under variable load, and 2) resolution of angular pose 

data from a 2-segment robotic arm to 3-D spatial location.  For these problems, 

2,500 uniformly distributed patterns were randomly generated over the normalized 

range [-1:1] for the function inputs.  For training only, Gaussian distributed noise is 

added to the outputs, normalized in the range [0:1], with a 5% STD to simulate 

imperfect real-world data.  For validation/testing, no noise is added to the simulated 

output data.  This comprises a rigorous test of the algorithms’ generalization 

abilities. 

 
5.2.1 Voltage Control for a Czuk DC-DC Converter 
 
 An up-down Czuk DC-DC converter [89] is pictured in Figure 29.  An example 

of individual component transient responses is pictured in Figure 30, where the 

circuit reaches stability after approximately 30ms.  A voltage control system can be 

realized which targets a stable output voltage over C2 based on output load and 

duty-cycle of the switching pulse.  2,500 uniformly distributed data points were 

generated, representing load-conductance/duty-cycle pairs as constrained by 
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simulation of the circuit.  Figure 31 shows the steady-state control surface of the 

problem parameters in relation to the desired output voltage. 

 

Figure 29  A Czuk up-down DC-DC converter circuit 

 

 

Figure 30  The Czuk DCDC Converter:  Non-linear transient responses, 0 to 30ms 

 
5.2.2 3-D Reverse Kinematics Control 
 
 A 3-D reverse-kinematics dataset was created.  This emulates a control 

system that must transform the angles measured from the stepper motors on pivot 

points of a two-segment robotic arm to the resultant Cartesian location of the tip of 

the arm assembly as depicted in Figure 33(a).  2,500 points were generated from 

randomly distributed input angles according to the following three equations: 

 𝑥 = 𝑅1 cos 𝛼 + 𝑅2 cos(𝛼 + 𝛽)  

 𝑦 = (𝑅1 sin 𝛼 + 𝑅2 sin(𝛼 + 𝛽)) × cos𝜙 (69) 

 𝑧 = (𝑅1 sin 𝛼 + 𝑅2 sin(𝛼 + 𝛽)) × sin 𝜙  
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The distribution of points occupies a sphere of all possible locations of the tip of the 

arm assembly in Cartesian space, and can be seen in Figure 32.  The highly non-

linear nature of the resulting functions can be seen in the 2-D mappings of two such 

angles to one Cartesian dimension as in Figure 33(b).  For the experiments herein, 

the 3-angle y component solution is exercised. 

 

 
Figure 31  Czuk Converter: non-linear steady state relationships between load 

conductance and duty-cycle vs. output voltage 

 

 
Figure 32  3-D reverse-kinematics: Resultant arm tip distribution in free-space of 

randomly generated angle positions 
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Figure 33  (a) Reverse-kinematics problem:  input angles are mapped to Cartesian 
coordinates (x, y, z), (b) x-position vs. two input angles 

 
5.2.3 Results for Two Industrial Electronics Problems 
 
 All CI algorithms discussed herein were run on the Czuk DC-DC and 3-D 

reverse-kinematics datasets.  For the I-ELM variants, an impact factor of 2.7583 was 

set and centers were chosen randomly from the input domain.  For the SVR 

algorithm, γ was set to 2-1, ϵ = 2-3, and C was set to 1.  For the four PLM variants that 

utilize threshold-based statistical pruning of terms based on calculated noise in the 

term coefficients, the stdscale parameter must be set.  This represents a threshold of 

the number of normalized standard deviations above or below the mean STD of all 

term coefficients at which terms will be excised.  Those factors are noted within the 

tabulated results. 

 
5.2.3.1   Training and Validation Times for IE Problems 
 
 Figure 34 and Figure 35 display the captured run times for all algorithms 

operating on the two IE problems.  The original PolyNet algorithm has the shortest 

training times of all algorithms tested across all comparable network sizes.  Due to 

the multiple iterative processes contained within the other PLM variants, their 

training times can be orders of magnitude above the majority.  Algorithms which 

contain both statistical term pruning and compound regression techniques, such as 
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PlyPaPGLS, require significantly longer run times.  In these plots and others to 

follow, the PLM variants which utilize term pruning by threshold can exhibit non-

monotonicity when compared with other algorithms evaluated per increasing node 

count.  This occurs since monomial terms are generated according to increasing 

polynomial order, yet subsequent evaluation of coefficient noise during iterative 

training may dictate trimming more terms at later generation stages compared to 

earlier ones.  Such plot traces are registered with data markers rather than with 

continuous lines.  Examples of such occurrences can be seen with PlyGLS_P in Figure 

34, and with PolyStat, PlyGLS_P, and PlyOLSR_P in Figure 35.   

  

 

Figure 34  Total training times for all algorithms up to 200 nodes: DC-DC problem 

 
 Since the 3-D kinematics dataset exhibits both an additional dimension and a 

greater degree of non-linearity than the DC-DC problem, all training times rise for all 

algorithms as expected.  However, the original PolyNet algorithm with one-step OLS 

regression remains relatively unchanged.  Finally, it is noted that the ANN-SLP 

network rises sharply in training time compared to other methods as expected, due 

to the costly matrix computations inherent with LM-based neural network methods. 
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Figure 35  Total training times for all algorithms up to 400 nodes: 3-D Kinematics 

problem 

 For some applications, certainly for real-time uses or for any tasks in which 

compute time of the network is critical, validation time is more important than 

training time.  One expects the stable, optimized network to require much less 

compute time per output computation.  For all experiments herein, validation time 

is tabulated not as a running total as with training time, but is measured instead per 

each optimized network node size following each training cycle.  This more 

accurately indicates performance of each algorithm under deployed conditions.   

 Such validation time results are seen in Figure 36 and Figure 37 for the DC-

DC and Kinematics datasets, respectively.  It is most notable that all PLM variants 

produce final optimized networks which are almost two orders of magnitude more 

efficient than all other methods except SVR-RBF.  SVR-RBF also shares an advantage 

with only the N-D fuzzy system in that run time across a range of network sizes is 

relatively stable.  This is useful particularly for hardware implementations where 

compute times are highly dependent upon a stable number of clock cycles.  Among 

the PLM variants, all enhanced methods produce slightly more efficient optimized 

networks than the original PolyNet.  This is likely due to the pruning of higher order 

terms from the final polynomial product engine, whereas all high-order terms are 

retained with the original algorithm.  This is generally the case, but is not 

guaranteed for the solution of every dataset. 
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Figure 36  Validation times per network size vs. nodes for all algorithms:  DC-DC 
problem 

 

 
Figure 37  Validation times per network size vs. nodes for all algorithms:  3-D 

kinematics problem 

 
5.2.3.2   Training and Validation Accuracy for IE Problems 
 
 For algorithms which exhibit good generalization performance (which may 

itself vary versus different datasets) training error is usually a decent indication of 

validation accuracy.  In general, it is expected that validation accuracy will lag 

behind training accuracy due to the inability of the training processes to directly 
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infer new patterns encountered during validation.  However, for the two IE 

problems, it is important to recall that significant noise was added to the trained 

output values which accounts for higher than usual training error in these cases.  As 

such, most algorithms showed a decrease in performance error from training to 

validation.   

 Comparing Figure 38 through Figure 41, we see that the ANN-SLP algorithm 

achieved the best overall accuracy for both problems.  However, three PLM variants 

– PolyNet, PolyStat, and PlyOLSR_P – achieved validation errors almost as low for 

both.  These variants also converged to optimal performance with reasonably 

economical networks totaling less than 100 nodes each.  Two PLM variants, 

PlyGLS_P and PlyPaPGLS, exhibit good generalization, but extremely poor error bias 

overall for both IE problems.  It is possible that the GLS component of these 

algorithms tracks the normal noise added to the training outputs as the 

predominant trend in the data.  Thus, where one counts on GLS to do particularly 

well in the presence of truly random and asymmetric noise, it is possible that it is 

duped to track noise with a symmetric normal distribution as the predominant 

trend in the data.   

 

 

Figure 38  Training error for all algorithms up to 200 nodes: DC-DC problem 
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Figure 39  Validation error for all algorithms up to 200 nodes:  DC-DC problem 

 
 Particularly for the Kinematics problem, the PLM variants incorporating RR 

have almost identical traces between training and validation, attesting to the 

exceptional generalization enhancement afforded by the technique.  Though 

validation error for these variants is unimpressive for these datasets, further 

experimentation will yield more promising qualities. 

 

 
Figure 40  Training error for all algorithms up to 400 nodes:  Kinematics problem 
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Figure 41  Validation error for all algorithms up to 400 nodes:  Kinematics problem 

 
5.2.3.3   Tabulation of IE Dataset Results 
 
 Table VII displays the relevant efficiency metrics for the thirteen algorithms 

compared against the IE datasets.  Training and validation/testing times are in 

seconds, and the final optimized network sizes are expressed as the number of 

computational nodes.  In the case of the TSK FS, the number of nodes denotes the 

number of values in the optimized fuzzy output table.  Winners are noted in green 

bold, and honorable mentions are noted in green italics.  Significant last-place 

finishers are highlighted in red. 

TABLE VII  
Algorithm Efficiencies: Processing Times and Network Size IE Problem 

Algorithms 

Czuk DCDC 3-D Kinematics 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

ANNSLP 1.9185 0.0480 7 12.3101 0.1480 20 
TSK Fuzzy 21.877 0.3905 353 387.71 0.4637 11201 
I-ELM 4.1230 1.4662 995 3.9960 1.5369 993 
EI-ELM 41.168 1.7415 998 32.440 1.3298 996 
CI-ELM 2.7211 1.1590 999 3.8145 1.5443 996 
SVR-RBF 31.023 0.0176 972 46.624 0.0166 999 
PolyNet 0.0361 0.0012 62 0.0450 0.0024 85 
PolyStat 1.0022 0.0008 55 173.62 0.0009 86 
PlyOLSRP 1.3737 0.0010 63 227.23 0.0011 151 
PlyGLSP 0.8615 0.0005 28 0.3376 0.0003 20 
PlyGLSRP 4.8895 0.0014 70 2.6381 0.0007 83 
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Algorithms 

Czuk DCDC 3-D Kinematics 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

PlyPaPGLS 2,313.3 0.0003 455 955.98 0.0001 451 
PlyPaPGLSR 78,772 0.0128 3 36,028 0.0077 72 

 

 
 In terms of computational efficiency for training the network, the original 

PolyNet PLM is the most efficient, beating the closest rivals by two orders of 

magnitude.  This is valuable for applications that require rapid turnaround, or for in-

situ network retraining in cases where solutions are sought that must adapt to new 

trends in incoming data.   

 In terms of efficiency for the testing of the deployed networks, the PLM 

variants are arguably best.  Though they require more nodes than the ANN, the real-

time computation cycles of the tanh kernel function of the ANN exceed that which is 

necessary for the simple product and sum operations of the PLM node functions.  As 

such, the testing times of the final PLM networks attest to their optimal efficiency.   

 The final and perhaps most important metric is network accuracy, 

particularly in the deployed stage, depicted by the testing results of TABLE VIII.  The 

single-layer ANN, trained with the NBN algorithm, remains the winner for both 

datasets tested.  The PolyStat and PlyOLSR_P PLM variants performed almost as 

well as the ANN for the DCDC problem.  For the higher-dimensionality and non-

linearity of the 3-D kinematics problem, PolyNet achieved an honorable second-

place among all contenders.  It is again noted that in most cases, testing RMSE was 

better than training RMSE due to the addition of Gaussian noise to the training 

outputs in the simulated system.  The training RMSEs were computed against 

pristine training pattern outputs without noise, yielding higher training errors than 

expected compared to real-world data conditions. 
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TABLE VIII  
Algorithm Accuracy:  Average Training and Testing RMSEs per IE Problem 

 

 
5.3 Experiments with Real-World Repository Datasets 
 
 Multi-dimensional complex datasets were obtained from the University of 

California at Irvine repository of machine learning databases [77] for the following 

experiments.  The sources of the data vary widely, and include but are not limited to 

biological sciences, retail marketing, computer analytics, and manufacturing.  The 

datasets selected are often a mix of continuous and multi-modal discrete data, are 

highly non-linear, and express many input dimensions.  Generally, these datasets are 

too complex to analyze or model with closed-form methods, and as such are 

regularly utilized as benchmark datasets in the current literature.  Table IX 

introduces key specifications of the seven datasets used.  Once again, each algorithm 

is run for 20 trials of a 70/30 k-fold validation process.  During each trial, each 

algorithm is fed the same randomized training and testing set as all other 

algorithms. 

 
 
 

Algorithms 

Czuk DCDC 3-D Kinematics 

Training Testing Training Testing 

ANN-SLP 0.0401 0.0079 0.0421 0.0217 
TSK Fuzzy 0.0387 0.0170 0.0397 0.0390 
I-ELM 0.0493 0.0292 0.1321 0.1288 
EI-ELM 0.0495 0.0300 0.1306 0.1264 
CI-ELM 0.0483 0.0274 0.1327 0.1289 
SVR-RBF 0.0421 0.0170 0.0528 0.0432 
PolyNet 0.0393 0.0087 0.0272 0.0362 
PolyStat 0.0397* 0.0082 0.0482† 0.0393 
PlyOLSRP 0.0397** 0.0081 0.0456† 0.0471 
PlyGLSP 0.0438*** 0.0188 0.1357*** 0.1297 
PlyGLSRP 0.0421†† 0.0148 0.1313†† 0.1267 
PlyPaPGLS 0.0670 0.0509 0.1312 0.1306 
PlyPaPGLSR 0.0945 0.0868 0.1411 0.1356 

* setscale = 3.3 *** setscale = 2.0  

** setscale = 3.6 †† setscale = 2.5  

† setscale = 1.75    
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Table IX   
Benchmark Datasets:  Specifications for 70/30 k-fold Testing 

Dataset # Training Vectors # Testing Vectors Dimensionality 

1 Abalone 2924 1253 8 
2 Auto Price 112 47 15 
3 Boston Housing 355 151 13 
4 California Housing 14448 6192 8 
5 Delta Ailerons 4991 2138 5 
6 Delta Elevators 6662 2855 6 
7 Machine CPU 147 62 6 

 
 Optimal results are selected for each algorithm on the basis of minimum 

testing RMSE obtained for a converging solution.  The PLM and I-ELM variants are 

allowed to compute up to 500 terms/nodes on the way toward convergence.  The 

SVR-RBF algorithm is allowed to compute up to 1,000 nodes.  The ANN-SLP is 

allowed to compute up to 20 nodes per solution network due to the comparatively 

long training times for the NBN training algorithm.  The N-D Fuzzy system computes 

up to 100,000 stored output table values on its way toward an optimal solution.   

 For all datasets, the I-ELM variants used an impact factor of 2.7583, and 

initial RBF centers were chosen randomly from the input domain.  For the SVR 

algorithm and for the four PLM variants that use threshold-based pruning of terms, 

optimal parameters were discovered and set as indicated in Table X.   

 
Table X   

Optimal Parameter Settings per Dataset for SVR and PLM Variants 

 SVR PolyStat PlyOLSRP PlyGLSP PlyGLSRP 

Dataset C γ stdscale 
Abalone 24 2-6 2.5 2.75 2.0 2.5 
Auto Price 28 2-5 3.0 2.75 2.75 2.75 
Boston Housing 24 2-3 2.0 2.5 2.0 2.5 
California Housing 23 21 2.5 2.5 2.0 2.5 
Delta Ailerons 23 2-3 1.75 2.5 2.0 2.0 
Delta Elevators 20 2-2 2.0 2.75 2.0 2.5 
Machine CPU 26 2-4 2.5 2.75 2.75 2.5 

 
 Key metrics are plotted for two of the seven datasets.  The Boston Housing 

and Machine CPU datasets provide certain insights into the attributes of the seven 

PLM variants.  The Boston Housing dataset features particularly high input 

dimensionality (13) which will exercise the algorithms’ ability to approach 
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convergence under such circumstances.  The Machine CPU dataset expresses 

moderate dimensionality, but also mixes bimodal and continuous data and high 

variance within certain input dimensions. 

 
5.3.1 Training and Testing Times for Real-World Datasets 
 
 The training time plots of Figure 42 and Figure 43 exhibit a non-

monotonicity for the original PolyNet variant.  Though no statistical term pruning is 

included in this method, terms with zero-value coefficients following one-step linear 

regression are certainly omitted.  Due to this, it is possible to see where the 

algorithm progress starts to yield excess terms as polynomial order increases, yet 

new coefficients resolve to zero.  As with the IE problems, the original PolyNet is 

unbeatable for training speed.  Also as before, the more complex PLM variants take 

orders of magnitude longer to solve for equivalent sized networks.   

 We also note that one of the “probe and prune” algorithms, PlyPaPGLS, 

computes terms only up to the order found to indicate minimal RMSE during the 

initial hybrid GLS-RR ridge regression phase.  Ideally, overall training time should 

be reduced as the process truncates unnecessary computation. 

 

 

Figure 42  Total training times for all algorithms up to 600 nodes: Boston Housing 
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Figure 43  Total training times for all algorithms up to 400 nodes: Machine CPU 

 
 All PLM variants again show superior validation time performance for the 

optimized networks, as seen in Figure 44 and Figure 45.  One algorithm, SVR-RBF, 

produces a more efficient result than PolyNet for networks roughly larger than 200 

terms for the Boston Housing dataset.  All PLM variants produce more efficient 

equal-sized networks for the Machine CPU dataset. 

 

 

Figure 44  Validation times per network size vs. nodes for all algorithms:  Boston 
Housing 
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Figure 45  Validation times per network size vs. nodes for all algorithms:  Machine 
CPU 

 
5.3.2 Training and Validation Accuracy for Real-World Datasets 
 
 The excellent generalization abilities of all but two of the algorithms are 

evident while examining the training and validation results of Figure 46 and Figure 

47 for the Boston Housing dataset.  PolyNet and ANN-SLP exhibit large variance 

between training and validation error for this dataset.  For the single epochs plotted, 

SVR-RBF and PlyPaPGLSR produce the best testing error.  For the 20 x 70/30 k-fold 

trials, the PlyPaPGLSR algorithm wins more decisively as will be examined.   
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Figure 46  Training error for all algorithms up to 600 nodes: Boston Housing 

 

 

Figure 47  Validation error for all algorithms up to 600 nodes: Boston Housing 

 
 Very similar results are seen for the training and validation error plots of 

Figure 48 and Figure 49.  The PlyPaPGLSR algorithm is again the winner by a small 

but definitive margin, though the optimal solution is not computed until the 

network grows to over 300 terms.  Though the generalization performance of 

PolyNet and PlyPaPGLS is again poor, those and the remaining PLM variants find a 

much smaller competitively accurate network in less than 30 nodes for this dataset, 
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as seen in Figure 49.  Given this, it is important to realize that lowest validation 

RMSE is not necessarily the most important metric for all applications, as a more 

concise network with slightly reduced error performance may be desirable in many 

cases. 

 

 

Figure 48  Training error for all algorithms up to 400 nodes: Machine CPU 

 

 

Figure 49  Validation error for all algorithms up to 400 nodes: Machine CPU 
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5.3.3 Tabulation of Real-World Dataset Results 
 
 All seven repository datasets were run using the 20 x 70/30 k-fold process as 

previously described.  Training and validation runtimes and optimized network 

node count are displayed for all algorithms versus all datasets in Table XI through 

Table XIII.  Per each dataset, the winners are highlighted in green bold, and numeric 

values close to these (“runner-ups”) are highlighted in green italics.  Results which 

show particular inefficiency are highlighted in red.  Overall, the PLM variants make a 

strong showing for the cases of training and validation efficiency.  The original 

PolyNet variant is consistently at or near first place of all algorithms studied in 

training time.  In general, one or more PLM variants place at or near first in 

validation times for every dataset.  Additionally, all PLMs generally score well in 

final optimized network size, though the ANN-SLP algorithm is in first place in this 

category for almost every dataset.   

Table XI 
Average Processing Times and Network Size per Datasets 1-3  

Algorithms 

Abalone Auto Price Boston Housing 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

ANNSLP 0.4787 0.0330 2 0.0089 0.0028 1 0.2306 0.0076 5 
TSK Fuzzy 1,868.4 2.0228 65,536 896.32 3.5710 32,768 212.23 1.0103 8,192 
I-ELM 0.5990 0.2843 500 0.0203 0.0106 500 0.0822 0.0326 500 
EI-ELM 5.9603 0.2903 500 0.1777 0.0105 500 0.6910 0.0330 500 
CI-ELM 0.6098 0.2791 500 0.0204 0.0105 500 0.2237 0.0328 500 
SVR-RBF 0.2659 0.4454 1,000 0.0294 0.0061 112 0.0461 0.0064 156 
PolyNet 0.0056 0.0015 18 0.0005 0.0003 16 0.0070 0.0016 100 
PolyStat 0.0505 0.0024 13 0.0065 0.0007 16 0.1602 0.0009 104 
PlyOLSRP 8.9766 0.0029 9 0.0506 0.0014 16 0.3011 0.0019 13 
PlyGLSP 2.3405 0.0018 9 0.0398 0.0020 16 0.8112 0.0013 105 
PlyGLSRP 62.803 0.0046 163 0.2733 0.0023 16 29.651 0.0010 104 
PlyPaPGLS 738.72 0.0005 144 0.8337 0.0003 6 63.706 0.0002 80 
PlyPaPGLSR 4986.8 0.0022 71 122.72 0.0003 85 5522.1 0.0011 391 

 
Table XII 

Average Processing Times and Network Size per Datasets 4-5 

Algorithms 

California Housing Delta Ailerons 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

ANNSLP 70.936 0.8275 17 18.604 0.2560 15 
TSK Fuzzy 7,154.6 13.082 65,536 3,752.12 1.7204 100,000 
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Algorithms 

California Housing Delta Ailerons 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

I-ELM 1.8631 1.2970 500 0.5511 0.4466 500 
EI-ELM 14.554 1.2650 500 5.3020 0.4852 500 
CI-ELM 1.4608 1.2820 500 0.5453 0.4750 500 
SVR-RBF 6.0684 0.0777 400 0.2499 0.0203 807 
PolyNet 0.1183 0.0316 39 0.0563 0.0134 56 
PolyStat 2.2587 0.0122 45 0.8330 0.0028 56 
PlyOLSRP 0.1222 0.0023 9 0.2936 0.0007 21 
PlyGLSP 408.34 0.0028 45 174.89 0.0021 60 
PlyGLSRP 60.580 0.0120 162 18.705 0.0073 103 
PlyPaPGLS 3,591 0.0011 30 14,854 0.0008 217 
PlyPaPGLSR 3,644.4 0.0024 19 53,289 0.0079 24 

 
Table XIII 

Average Processing Times and Network Size per Datasets 6-7 

Algorithms 

Delta Elevators Machine CPU 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

Training 
[s] 

Testing 
[s] 

Nodes 
[#] 

ANNSLP 4.5820 0.1413 5 0.1944 0.0047 8 
TSK Fuzzy 485.14 2.8707 15,625 181.46 0.0650 12,388 
I-ELM 0.8651 0.6349 500 0.2549 0.0129 500 
EI-ELM 8.5861 0.6363 500 0.3078 0.0128 500 
CI-ELM 0.8789 0.5946 500 0.0353 0.0129 500 
SVR-RBF 1.0234 0.0506 1,000 0.0265 0.0060 133 
PolyNet 0.1395 0.0385 84 0.0003 0.0001 7 
PolyStat 2.1873 0.0062 84 0.0032 0.0005 7 
PlyOLSRP 0.3279 0.0012 28 0.0379 0.0015 10 
PlyGLSP 340.28 0.0034 84 0.0320 0.0020 9 
PlyGLSRP 46.526 0.0100 134 31.368 0.0010 137 
PlyPaPGLS 936.88 0.0006 8 51.495 0.0001 196 
PlyPaPGLSR 1,303.6 0.0007 9 14,140 0.0037 314 

 

 The tabulated results for training and validation error for all experiments 

run against all repository datasets are listed in Table XIV and Table XV.  Though the 

ANN-SLP algorithm prevails for four of the seven datasets overall, several of the 

PLM variants have validation errors almost as low for three of those datasets 

(Abalone, Delta Ailerons, and Delta Elevators).  In these cases, there is negligible 

difference in the final validation errors among PolyNet, PolyStat, PlyGLSP, and 

PlyGLSRP.  For this reason, since the PolyNet algorithm is significantly simpler and 

more computationally efficient than the others, it is possible to say that the PolyNet 

algorithm is the best overall choice in the case of the particular datasets run.   
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 The PlyPaPGLSR variant prevails in the remaining three datasets (Auto Price, 

Boston Housing, Machine CPU) not won by ANN-SLP or SVR-RBF.  It is notable that 

two of these datasets exhibit particularly high dimensionality (Auto Price (15) and 

Boston Housing (13)).  It is arguable that the enhanced generalization ability and 

incremental term pruning afforded by PlyPaPGLSR is ideal for high dimensional 

data.  Additionally, this variant takes up the slack particularly where the remaining 

PLM variants did not place relatively near ANN-SLP.  In fact, viewing the results 

overall, it appears that four of the earlier variants taken together – PolyNet, 

PolyStat, PlyGLSP, and PlyGLSRP – form a perfect performance compliment to 

PlyPaPGLSR.  If an experimenter is unsure which algorithm to run for a particular 

dataset, it appears that excellent coverage could be had by running both PolyNet 

(ignoring the other similarly scoring but more computationally complex variants) 

and PlyPaPGLSR.   

 All observations regarding the performance of the new PLM variants tested 

versus other prominent algorithms can be summarized as the following: 

 The PLM variants score near or better than other algorithms for a variety of 

datasets, and are usually more computationally efficient for final network 

implementation. 

 Two variants, PlyOLSRP and PlyPaPGLS, are negligible in performance 

compared alongside other PLM variants, and are therefore expendable. 

 In certain dataset experiments, the PolyNet algorithm appears to match the 

accuracy of other prominent ML methods such as ANN-SLP and SVR-RBF.  

For these same experiments, three other variants, PlyGLSP, PlyGLSRP, and 

PolyStat, score almost identically or not significantly better than the PolyNet 

algorithm.  Additionally, those three variants are significantly more compute 

intensive during training.  For these reasons, PolyStat, PlyGLSP, and 

PlyGLSRP can be considered redundant, and are therefore expendable. 

 For dataset cases where the PolyNet variant performs significantly worse 

than other methods, such as for datasets with high dimensionality, the 

PlyPaPGLSR algorithm happens to perform exceptionally well. 



89 

 Taken altogether, two PLM variants, PolyNet and PlyPaPGLSR, arguably 

provide full coverage when both are applied to any variety of datasets. 

 
Table XIV 

Average Training and Testing RMSEs per Datasets 1-4 

 
Table XV 

Average Training and Testing RMSEs per Datasets 5-7 

Algorithms 

Delta Ailerons Delta Elevators Machine CPU 

Training Testing Training Testing Training Testing 

ANN-SLP 0.0355 0.0378 0.0518 0.0527 0.0144 0.0673 
TSK Fuzzy 0.0382 0.0405 0.0556 0.0565 0.0725 0.0793 
I-ELM 0.0518 0.0521 0.0698 0.0632 0.0363 0.0674 
EI-ELM 0.0519 0.0516 0.0659 0.0575 0.0358 0.0554 
CI-ELM 0.0423 0.0555 0.0555 0.0566 0.0400 0.0675 
SVR-RBF 0.0376 0.0467 0.0377 0.0603 0.0316 0.0539 
PolyNet 0.0375 0.0387 0.0521 0.0530 0.0494 0.0606 
PolyStat 0.0375 0.0386 0.0521 0.0531 0.0499 0.0606 
PlyOLSRP 0.0406 0.0410 0.0555 0.0559 0.0616 0.0725 
PlyGLSP 0.0375 0.0387 0.0522 0.0530 0.0490 0.0589 
PlyGLSRP 0.0395 0.0397 0.0551 0.0554 0.0421 0.0585 
PlyPaPGLS 0.0394 0.0407 0.0539 0.0546 0.0922 0.0611 
PlyPaPGLSR 0.0391 0.0408 0.0547 0.0556 0.0289 0.0449 

 

 
 
 
 
 
  

Algorithms 

Abalone Auto Price Boston Housing California Housing 

Training Testing Training Testing Training Testing Training Testing 

ANN-SLP 0.0731 0.0734 0.0618 0.0879 0.0409 0.0898 0.1085 0.1109 
TSK Fuzzy 0.0883 0.0892 0.1678 0.1696 0.1617 0.1641 0.1648 0.1653 
I-ELM 0.0922 0.0938 0.1184 0.1222 0.1359 0.1261 0.1649 0.1691 
EI-ELM 0.0924 0.0829 0.1107 0.1139 0.1130 0.1077 0.1669 0.1503 
CI-ELM 0.0837 0.0845 0.1168 0.1197 0.1162 0.1423 0.1648 0.1756 
SVR-RBF 0.0756 0.0786 0.0395 0.0935 0.0468 0.0925 0.0845 0.1413 
PolyNet 0.0772 0.0789 0.0728 0.0918 0.0530 0.0890 0.1342 0.1392 
PolyStat 0.0782 0.0788 0.0729 0.0917 0.0551 0.0940 0.1317 0.1409 
PlyOLSRP 0.0894 0.0919 0.0822 0.0977 0.1205 0.1263 0.2018 0.2017 
PlyGLSP 0.0785 0.0788 0.0730 0.0923 0.0549 0.0926 0.1304 0.1406 
PlyGLSRP 0.0842 0.0848 0.0908 0.0986 0.0739 0.0855 0.1487 0.1488 
PlyPaPGLS 0.1150 0.0865 0.0782 0.0983 0.0826 0.0959 0.1641 0.1495 
PlyPaPGLSR 0.0804 0.0827 0.0547 0.0707 0.0554 0.0717 0.1498 0.1519 
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Chapter 6  

Conclusions and Future Work 

 
 Following experimentation with a variety of datasets, it is apparent that 

results for all such algorithms studied can be similarly varied.  The selection of one 

learning machine over another is in practice a highly subjective decision based on 

the particular intended application.  Still, an attempt will be made to summarize the 

work herein, and to quantify the overall results with an original figure of merit 

scheme for ML algorithms. 

6.1 Evaluation of PLM Variants and Competing Methods with an Original Figure  
of Merit Scheme 

 
 In order to address final comparisons among all algorithms tested, an 

original Figure of Merit (FOM) scheme is proposed.  It is acknowledged that the 

imposition of such a FOM is itself a highly subjective exercise.  This attempt is 

deemed appropriate for the dataset problems presented throughout this study.  

 A set of equations is proposed which taken together, appropriately penalize 

the key metrics on a logarithmic scale.  Such quantities can be computed directly 

from resultant experimental data and individually resolve to a range [1:0], with 1 

representing perfect performance for the parameter, and 0 representing utter 

failure.  Five such equations are seen in (70) below.  The figure of merit component 

for training time is defined as fomTtime.  Likewise, the component for validation time 

is fomVtime.  The component for the final number of nodes for an optimized network 

is fom#nodes.  The component for validation error is fomVerr.  Validation error is 

usually considered more significant than training error by itself.  However, the 

generalization ability of an algorithm is significant throughout this field and 

throughout this work.  As such, a final component for generalization ability is 

defined as fomGen, and contains the ratio of best validation error over best training 
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error for the same resultant network as:  
𝑅𝑀𝑆𝐸𝑉

𝑅𝑀𝑆𝐸𝑇
 .  In this way, five critical metrics are 

expressible as normalized quantities. 
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 From this basis of equations, one can further derive separate overall FOMs 

for different applications.  For this study, two such FOMs are proposed which apply 

different weighting ratios to the five components of (70), resulting in final quantities 

which express an overall figure of merit also in the range [1:0].  Equation (71) 

introduces a real-time FOM as FOMRT.  Such a rating considers final validation error 

as the most important metric, but also allots sufficient weighting factors to the time 

metrics for applications where training and validation times are more critical.  

Similarly, a FOM is introduced in (72) for “offline” implementations, where final 

validation error is weighted more heavily, and time metrics are deemphasized. 

 
𝐹𝑂𝑀𝑅𝑇 = (0.5)𝑓𝑜𝑚𝑉𝑒𝑟𝑟 + (0.1)𝑓𝑜𝑚𝐺𝐸𝑁 + (0.15)𝑓𝑜𝑚𝑇𝑡𝑖𝑚𝑒

+ (0.15)𝑓𝑜𝑚𝑉𝑡𝑖𝑚𝑒 + (0.1)𝑓𝑜𝑚#𝑛𝑜𝑑𝑒𝑠 
(71) 
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𝐹𝑂𝑀𝑂𝐿 = (0.75)𝑓𝑜𝑚𝑉𝑒𝑟𝑟 + (0.1)𝑓𝑜𝑚𝐺𝐸𝑁 + (0.05)𝑓𝑜𝑚𝑇𝑡𝑖𝑚𝑒

+ (0.05)𝑓𝑜𝑚𝑉𝑡𝑖𝑚𝑒 + (0.05)𝑓𝑜𝑚#𝑛𝑜𝑑𝑒𝑠 
(72) 

 

 The real-time FOM, FOMRT, was computed for each algorithm based on its 

performance against each dataset individually.  The results are shown in Table XVI 

below.  Winners and runner-ups are highlighted in green bold, and problematic 

finishers are highlighted in red.  Based on these scorings, for applications where 

compute times are crucial, the PolyNet, PolyStat, and PlyGLSP algorithms score 

prominently for both IE and general repository dataset problems.  In contrast, the 

FS algorithm scores significantly poorly for large datasets with greater than 3 

dimensions.  Though the PlyPaPGLSR algorithm scored well in error performance 

relative to other algorithms, its success is offset by its exceptionally long training 

times.  As such, it might be rejected for hardware or time-critical applications. 

Table XVI 
FOMRT : Real-Time Figure of Merit of Each Algorithm per Dataset 

 

 The offline FOM, FOMOL, was computed for each algorithm based on its 

performance against each dataset individually.  The results are shown in Table XVII 
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below.  In this case, where final process accuracy is weighted much more heavily 

than compute times, PolyNet and PolyStat once again emerge as strong contenders.  

Also in this scenario, the ANN-SLP algorithm is properly rewarded for its superior 

accuracy.  The other PLM variants score occasional win or runner-up berths, but 

none are as consistent as PolyNet and ANN-SLP.  Again, the PlyPaPGLSR variant is 

somewhat neutralized by its prohibitive training times.  Also, the FS algorithm is a 

last-place finisher for almost all datasets. 

 
Table XVII 

FOMOL: Offline Figure of Merit of Each Algorithm per Dataset 

 
 
 Equations (71) and (72) can be applied more generally in an attempt to 

compare the average performance of each algorithm against all others for all 

experiments in this study.  Each individual component of (70) was computed as an 

average value of each associated metric across all nine datasets in this study.  Those 

average component values were then applied to the FOMRT and FOMOL equations to 

attempt to derive an overall comparative performance evaluation of each algorithm.  

Table XVIII shows the results averaged from all dataset results.  For the real-time 
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evaluation, PolyNet, PolyStat, and PlyGLSP emerge as the clear winners.  The FS 

suffers in the overall evaluation as expected.  It should be noted that in practice, 

fuzzy systems are still among the easiest and most straightforward to implement in 

hardware applications and therefore should not be underestimated.  For the overall 

offline scores, the field is much less separated since all algorithms tested exhibit 

excellent accuracy performance.  Even with the smaller margins, PolyNet, PolyStat, 

and PlyGLSP once again prevail.  The ANN-SLP is rewarded in this evaluation as 

well.   

Table XVIII 
Overall Real-time and Offline FOMs for All Algorithms Tested 

 

 
6.2 Summary Statement 
 
 In summary, this author feels that the case has been sufficiently made for the 

viability of renewed interest and research in polynomial based learning machines 

throughout computational intelligence.  The performance of the algorithms 

developed in this work is near or better than that of several prominent methods in 

use today for several accepted benchmark problems.  Additionally, new methods 

introduced for efficient generation of polynomial terms places PLMs at the top of the 

field for computational performance.  It is hoped that other researchers will 

recognize these findings and proceed with ongoing development of new classes of 

polynomial based learning machines that are optimal for ongoing and future 

applications throughout machine learning and data mining fields. 

 
6.3 Future Work 
 
 Much work remains to be done to make PLMs even more viable for 

deployment throughout science, industry, and business.  Long runtimes for some of 
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the variants presented may betray exceptional performance in terms of 

convergence, accuracy, and generalization.  Additionally, the response of the PLMs 

presented and of the existing methods tested is somewhat unpredictable from 

dataset to dataset.  There is room for improvement in both direct development of 

polynomial based learning machine algorithms, and in the understanding and 

classification of particular datasets for use with PLMs. 

 
6.3.1 Improved Coefficient Term Analysis and Pruning 
 
 The PLM variants that utilize term pruning based on noise detected in the 

coefficients can be greatly improved.  Term pruning according to thresholds of 

coefficient noise is promising, but currently requires initial manual trials in order to 

discover the optimal setting of the setscale threshold.  This deviates from the desire 

to deploy “run-and-done” algorithms that are completely operationally autonomous.  

In contrast, the PLM variants that use the incremental “probe-and-prune” method 

are operationally autonomous, but require exceptionally long runtimes due to the 

application of three distinct iterative processes.   

 The probe phase appears to work occasionally as a way to initially discern a 

maximum term order for the processes that follow.  This method can be further 

explored, essentially probing each dimension of training data separately in order to 

define and limit monomial degrees for those variables, and to further improve the 

generalization transparency of the network looking from training to validation.  

Instead of either setting a noise threshold for coefficient variation during iterative 

training (PolyStat family), or creating all terms at once and removing noisy 

performers one-at–a-time in reverse (Probe-and-Prune family), clustering methods 

could be employed to track which coefficients move together in response to 

incoming training vectors.  Continuing in this regard, coefficient groups that cluster 

together can be evaluated for term order, perhaps favoring and flagging lower-order 

terms in the grouping.  In this way, “noisy” and/or high-order terms can be 

identified appropriately.  Subsequent decision processes can then excise and replace 

these terms, observing and responding to intermediate errors. 
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6.3.2 Process Pipelining 
 
 Not just for PLMs, but for all learning machines, methods of data visualization 

and “cold-start” analysis can be explored to discern the ideal type of learning 

machine to deploy for each dataset.  Recall that the PolyNet and PlyPaPGLSR 

variants complement each other for performance on various datasets.  There are 

opportunities to develop analysis methods that can pipeline datasets or data 

streams to one process or the other in an automated fashion.  Discrete or modal data 

are arguably distinguishable from continuous data and can be tabulated before 

selection of a particular algorithm.  Datasets that express high variance in one or 

more parameters can be classified as well. 

 
6.3.3 Development of a Universal Polynomial Spline Learning Machine 
 
 The PLMs introduced in this study generally spawn all generated monomial 

terms at the coordinate origin of the multi-dimensional space that is represented in 

the dataset.  In order to cancel unwanted features in the interpolated output space of 

such polynomial-based systems, more, higher-order monomial terms must be 

heaped on at the origin of the system in order to produce desired cancellations.  

Additionally, such polynomial-based systems do poorly at extrapolating new output 

values outside of the trained data boundaries as polynomial functions explode 

beyond those boundaries.  This makes such polynomial systems initially 

inappropriate for predictive systems.  More fundamentally, the absence of 

localization leads to the requirement of higher order terms in the solution than is 

suggested by the actual local gradients of the data. 

 In the study of polynomial kernels, the overfitting problem is well-known 

and is addressed in various ways by other historical methods.  Learning machines 

such as RBF-based and sigmoidal neural networks have the advantage that 

computational nodes can serve to gate each other, essentially localizing the effect of 

one node or group of nodes in the learning space of the dataset.  Following the idea 

of Banfer and Nelles [35], a hybrid polynomial based network can be created that 

comprises a superset of much smaller, lower-order subset polynomial networks of 
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the kind introduced in this study.  However, this hybrid network could have a layer 

of gating functions which localize the range of each subset network over the data 

space.  Each subset network would still be a single-layer network, trainable by the 

methods introduced throughout this study.  New algorithms must be developed 

which probe the data space and locate local minima and maxima, flagging them as 

subset network coordinate centers.  The combined network, though conceptually 

more complex, would result in a much smaller network in terms of node terms.  

Additionally, each subset could be trained by the simplest OLS method used by 

PolyNet, for example. 

 
6.3.4 Using Video Card GPUs for Machine Learning Computation 
 
 There is mounting use in the machine learning community of video card 

Graphics Processing Unit (GPU) hardware for machine learning processes [90][91].  

The built-in matrix computation ability of GPUs is ideal for rapid and accurate 

computation of the matrix operations encountered during machine learning 

processes.  Such matrix processing power would be ideal for all of the iterative 

regression processes presented in this study. 
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Appendices 

 
7.1 Appendix A – Exploration of Chebychev Transform Methods 
 
7.1.1 Background, and Two Chebychev Transform Implementations 
 
 It is well-known that polynomial interpolations of functions produce 

oscillation at the edges of the interval known as Runge’s phenomenon [92].  The 

error between the generating function and the interpolating polynomial of order n is 

given by [93]: 

 
𝑓(𝑥) − 𝑃𝑛(𝑥) =

𝑓𝑛+1𝜉

(𝑛 + 1)!
∏(𝑥 − 𝑥𝑖)

𝑛+1

𝑖=1

 

 

(73) 

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜉 𝑖𝑛 [−1,1]  
 
The effect worsens for higher degrees of polynomials as seen in Figure 50 below: 

 

 
Figure 50  Runge’s phenomenon and refit with Chebychev nodes [94] 
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The effect is pronounced when the inputs are spaced evenly over the input interval.  

It is also well-known that transforming the input spacing to that of Chebychev node 

spacing can minimize the error [95].  The affine transform spacings of inputs xi over 

an arbitrary interval [a, b] are given by: 

 

 𝑥̃𝑖 =
1

2
(𝑎 + 𝑏) +

1

2
(𝑏 − 𝑎)cos (

2𝑖 − 1

2𝑛
𝜋)   (74) 

 
 Other authors have proposed Chebychev-based polynomial neural networks 

as universal approximators.  Lee and Jeng simulated a feed-forward neural network 

with 40 hidden computational nodes using two layers to implement a one-

dimensional Chebychev polynomial network [96].  The 1st hidden layer contained 

monomial term activation functions to create the polynomial product terms, and a 

2nd hidden layer was used to explicitly compute an approximate transform of the 

resulting terms into Chebychev spacing.  In other words, the method proposed by 

Lee and Jeng requires either two separate stages of training, or requires an efficient 

second-order training algorithm (such as Levenberg-Marquardt [97]).  Though their 

results were promising (SSE=0.2115 for 20 training epochs, max polynomial order = 

19), a more efficient method was sought for the current polynomial-based networks 

under study.   

 Two implementations of input Chebychev transform spacing were explored.  

The transform for both versions is straightforwardly computed for any real values 

by the simple MATLAB routine below: 

 

%% rescaling for Chebyshev nodes 
% Runge's phenomenon 
% Chebyshev nodes 
a=min(min(x)); b=max(max(x)); 
y=0.5*(a+b)-0.5*(b-a)*cos((x-a)./(b-a)*pi); 

 

Alternately, the transform can be more easily computed for input data that is pre-

normalized to [-1:1] as in: 

function y=chebConv(x) 
%% rescaling for Chebyshev nodes 
% Runge's phenomenon 
% Chebyshev nodes for data normalized over [-1 1] 
y = -cos( ((x+1)./(2))*pi ); 
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The diagram of Figure 51 displays the Method 1 approach.  It shows how a simple 

Chebychev transform of input domain data can lead to network coefficients 

(weights) and monomial terms that essentially contain the complete Chebychev 

encoding – the same network weights and terms can be used for processing input 

validation data without any further transformation.  However, it is noted that this 

method requires explicit knowledge of the input-output relationship of the function 

to be trained.  The desired outputs (“d.o.”) of the original training data must be 

generated by a known transform function.  
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* This method requires explicit knowledge of the generating 
function – not applicable to real-world datasets  

Figure 51  Polynomial Network, Chebychev Transform Method 1 – Training: 
encoding of input vectors, plus regeneration of desired outputs, Validation: 
straightforward processing with encoded weights and terms 
 
Method 1 will not allow the use Chebychev transform techniques on real-world data 

when the relationships between the inputs and the outputs are unknown.  For those 

cases, a second method was implemented.   

 For Method 2, both training and validation inputs require the same 

Chebychev transform, but training can proceed without reconstruction of the 

underlying input-output function.  System weights and terms are produced which 

process equivalently during training and validation, at the cost of an additional 

Chebychev transform which must be applied to validation inputs.  Figure 52 

illustrates Method 2: 
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Figure 52  Polynomial Network, Chebychev Transform Method 2 – Training: 
encoding of input vectors, Validation: Chebychev encoding of inputs and processing 
with encoded weights and terms 

 
7.1.2 Chebychev Techniques – Experimental Results 
 
 The following 2-input non-linear control surface was selected as the 

experimental function to approximate: 

 

 𝑧 =
5

1 + 0.25(𝑥 − 1)2 + 0.04(𝑦 − 2)2
+

2

1 + 0.25(𝑥 + 1)2 + 0.25(𝑦 − 1)2
 (75) 

 
The validation surface is shown in Figure 53.  Initial experimentation showed that 

results with Chebychev methods vary depending on the presence of training vectors 

near critical output function details, as illustrated in Figure 54.  For this reason, 

several different resolutions of regularly-spaced training data were tried.  

Additionally, it was noted that transform method response was sensitive to noise in 

the training output data, as is encountered in real-world situations.  Therefore trials 

were run which include these variations.  All experiments were run using the initial 

polynomial network variant, PolyNet, discussed elsewhere in this study. 
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Figure 53  Validation for the Chebychev Transform Experiments, 9409 points 
(97x97) 

 

 

Figure 54  9x9 training point grid:  (left) standard spacing captures function, (right) 
Chebychev spacing fails to sample function at critical points 

 
 Experiments were run with various training point resolutions.  For each 

resolution, three cases were run:  no Chebychev transform, Method 1, Method 2.  

The output training and validation RMSE curves are shown in Figure 55 for the 81-

point (9x9) training resolution.  Note that these results look initially promising for 

the Chebychev methods.  As expected, the training curves are almost identical for all 

three variants, and are also all monotonic.  As usual, the validation RMSE curve for 

the non-Chebychev variant (standard PolyNet) is non-monotonic, with best 

performance at max-order 7, with 36 monomials.  Method 1 yields an almost 
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monotonic validation curve, and Method 2 does achieve a monotonic validation 

RMSE curve which nearly matches the training curve in shape.  However, these 

results vary greatly depending on the resolution and location of training vectors in 

the input space. 

 

 

Figure 55  Training and Validation RMSE Curves (81 training points): (a) no 
Chebychev spacing, (b) Method 1, (c) Method 2 
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 Testing was eventually performed with several different training input 

resolutions.  The final results point to a less enthusiastic conclusion for the use of 

Chebychev input transforms.  As seen in Table XIX, neither Chebychev transform 

method outperforms the no-transform standard for all four input resolutions 

depicted.  In fact, Method 1, though promising in training, does not prevail in any 

validation case.  Method 2 appears to prevail only when the training resolution is 

sparse compared to validation density. 

 
Table XIX  Results for Chebychev Transform Testing, no noise case  

(RED=worst, GREEN=best) 

Training 

Resolution 

Training RMSE Validation RMSE (9409 points) 

Chebychev Method Chebychev Method 

none 1 2 none 1 2 

5x5 1.49e-16 1.73e-16 2.11e-16 31.57e-3 35.47e-3 22.38e-3 

9x9 9.38e-16 4.34e-16 5.59e-16 2.244e-3 9.137e-3 1.438e-3 

17x17 6.35e-14 1.33e-14 6.47e-16 0.153e-3 2.248e-3 1.147e-3 

33x33 5.81e-10 7.00e-10 1.03e-3 0.127e-3 0.358e-3 0.980e-3 

 
 
 Lastly, the same experiments were repeated by including uniformly 

distributed random noise on the training outputs to a max deviation of 5% of full 

output magnitude (0.05 on a 0:1 scale).  Validation outputs were kept exact.  The 

results of Table XX show even less favorable results for the Chebychev methods in 

the presence of noise in the training data.  Method 2 shows promise only for the 

sparsest training point resolution relative to validation density.  The standard non-

Chebychev regression in PolyNet prevails more decisively against the two variants. 

 In summary, no advantage was discovered in using Chebychev transform 

methods on the input spacing of the system.  It is assumed that even less advantage 

would be apparent as the methods are applied to multi-dimensional data problems. 

 



114 

Table XX  Results for Chebychev Transform Testing, 5% training noise  
(RED=worst, GREEN=best) 

Training 

Spacing 

Training RMSE Validation RMSE 

Chebychev Method Chebychev Method 

none 1 2 none 1 2 

5x5 1.66e-16 2.16e-16 1.65e-16 43.86e-3 35.66e-3 22.26e-3 

9x9 1.68e-13 1.11e-15 1.28e-15 6.397e-3 14.01e-3 8.697e-3 

17x17 7.97e-3 6.54e-3 6.47e-16 3.989e-3 4.773e-3 6.097e-3 

33x33 10.78e-3 11.1e-3 11.2e-3 2.648e-3 2.944e-3 3.474e-3 

 

 
7.2 Appendix B – MATLAB Code:  Unique Polynomial Term Generation  
 
function index=Get_In_pol(Nmax) 
%% sorting and then using  index=findinx(Nmax) 
[N,I]=sort(Nmax) ;  % sorting from smallest to largest 
temp=findinx(N); 
index=ones(size(temp));   % calculating indices 
for i=1:length(I),    %puting everything back in the original order 
    index(:,I(i))=temp(:,i);   
end; 
return; 

 
function index=findinx(Nmax)   % only for ordered 
%% finding indices so multidim case is posible in one loop 
len=length(Nmax); 
if len==1,      index=(1:Nmax(1))';    return;  end; 
ind=findinx(Nmax(1:(len-1)));   %using recursion 
% ind = [1:Nmax(1)]' 
[x,y]=size(ind); 
index=[]; 
for i=1:x, 
    for j=ind(i,y):Nmax(len) 
        add=[ind(i,:),j]; 
        index=[index;add]; 
    end; 
end; 
return; 

 
 
7.3 Appendix C – MATLAB Code:  Statistical Processing of Monomial Term  

Weights 
  
Option 1 Example – PlyPaPGLS.m excerpts 
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These variants remove one monomial term at a time following iterative evaluation 
of noise-responsiveness of term coefficients. 
 
function ['...'] = PlyPaPGLS('...') 

  

trins = otrins ;  % training pattern inputs 

trouts = otrouts ; % training pattern outputs 

  

[np,nd]=size(trins); 

agu=[ones(np,1),trins];  %agumented input space  (+1 is added in the 

column) 

  

['...'] 

  

maxmeansslope = 1e-2 ; 

trpct = 0.75 ;       % percent of training data to pull into the 

iterative training 

  

Nmax=(nd+1)*ones(1,PrOrder);% GENERATE all monomial term indices up to 

a max order 

ind=Get_In_pol(Nmax) ;  % get **all** poly indices right away 

[Nt,Nd]=size(ind) ;     % get indices size for current round 

  

tridx = 1 ;      % initial training index value to store output vectors 

while (Nt >= 1)    

    % ENTER the iterative OLS (or other) regression phase: 

    wwmeans = 0 ;    % initialize running mean 

    wwabsmax = [] ;   % initial running max abs value of coeffs 

    wwscstds = 0 ; 

    wwscmeans = 0 ; 

    prevwwscaled = 0 ;    % initialize k-1 normalized weights 

    scmeanslope = 0 ; 

    for k = 1:100  % drill down to the essential output weights for 

each instance 

        agusubset = agu(1:trlength,:);% take subset of training 

patterns 

        troutsbst = trouts(1:trlength,:) ; 

         

        %% BUILDING polynomial terms... 

        Jsub = [] ;  % DON'T FORGET the zero-order term.. 

        for jj=1:Nt 

            Pr=1; 

            for i=1:Nd 

                Pr=Pr.*agusubset(:,ind(jj,i)); 

            end 

            Jsub = [Jsub Pr]; 

        end 

         

        wwtemp = OLS_reg(Jsub,troutsbst);% Finding weights, OLS (this 

case) 

        wwmeans = (wwtemp + wwmeans.*(k-1))./k;% compute running means 

of raw coefficients 

        wwabsmax = max(abs([wwabsmax wwtemp]),[],2) + 1e-16 ; % compute 

running max-abs of raw coefficients 

         



116 

        wwscaled = wwtemp./wwabsmax ; % NORMALIZE raw coefficients per 

current max-abs 

        prevscmeans = wwscmeans ; % capture preceding normalized coeff 

means 

        wwscmeans = (wwscaled + wwscmeans.*(k-1))./k ;  % compute 

running means of scaled coefficients 

        scmeansn_1 = sum(abs(wwscmeans - prevscmeans)) ; % compute sum 

of 1st order gradients from last scaled means to current 

        scmeanslope = abs(scmeanslope + scmeansn_1)/k ;  % compute 

running mean of all scmeansn-1 

 

        % Compute incremental STDs of normalized mean coefficients per 

monomial term                     

        wwscstds = sqrt( (((wwscstds.^2)./k + ((wwscmeans - 

prevscmeans).^2)).*(k-1)) ) ; 

             

        if (avscmeansslope <= maxmeansslope)  % STOPPING criterion 

             break 

        end 

                 

        shuffle = randperm(np) ; %  set up for next iteration... 

        agu = agu(shuffle,:) ; 

        trouts = trouts(shuffle,:) ; 

    end 

     

    wwtemp = wwmeans ;    % assign last wwmeans as final coeffs   

     

    ['...'] 

     

    tridx = tridx + 1 ;  % increment the trial index for output vectors   

    % &%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%& 

    % TRIM the noisiest term from the poly set, run again 

    [maxwwscstd maxstdidx] = max(wwscstds);% find the current 

"noisiest" coefficient term 

    ind(maxstdidx,:) = [] ;   % ...remove it 

    Nt = Nt - 1 ;             % ...reduce total poly term count by 1 

end 

 

 
Option 2 Example – PolyStat.m excerpts 
 
These variants remove one one or more monomial terms at a time following 
iterative threshold-based evaluation of noise-responsiveness of term coefficients.   
 
function [“…”] = PolyStat(“…”) 

  

maxmeansslope = 1e-2 ; % arbitrary max Delta to stop iterative training 

trpct = 0.75 ;       % percent of training data to pull into the 

iterative training 

stdscale = 2.75    % multiplication factor for max STD threshold 

  

trins = otrins ;    % training pattern inputs 

trouts = otrouts ;   % training pattern outputs 

  

[…] 
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ind = "..."  % GENERATE polynomial term indices..  

reducing = true ;   % set flag to indicate we are still in the term-

pruning mode 

while (reducing == true) 

     

    % ENTER the iterative OLS (or other) regression phase: 

    wwmeans = 0 ;    % initialize running mean 

    wwabsmax = [] ;   % initial running max abs value of coeffs 

    wwscstds = 0 ; 

    wwscmeans = 0 ; 

    scmeanslope = 0 ; 

  

    for k = 1:50    % drill down to the essential output weights 

        [Nt,Nd]=size(ind) ;       % get indices size for current round 

        agusubset = agu(1:trlength,:);% take subset of training 

patterns 

        troutsbst = trouts(1:trlength,:) ; 

         

        %% BUILDING POLY TERMS 

        Jsub = [] ;  % DON'T FORGET the zero-order term.. 

        for jj=1:Nt 

            Pr=1; 

            for i=1:Nd 

                Pr=Pr.*agusubset(:,ind(jj,i)); 

            end 

            Jsub = [Jsub Pr]; 

        end 

        wwtemp = lin_reg(Jsub,troutsbst) ;  % Finding weights, OLS 

method 

        prevmeans = wwmeans ; % capture preceding raw coefficient means 

        wwmeans = (wwtemp + wwmeans.*(k-1))./k ;% compute running means 

of raw coefficients 

        wwabsmax = max(abs([wwabsmax wwtemp]),[],2) + 1e-16 ; % compute 

running max-abs of raw coefficients 

         

        wwscaled = wwtemp./wwabsmax ; % NORMALIZE raw coefficients per 

current max-abs 

        prevscmeans = wwscmeans ; % capture preceding normalized ??? 

        wwscmeans = (wwscaled + wwscmeans.*(k-1))./k ;  % compute 

running means of scaled coefficients 

        scmeansn_1 = sum(abs(wwscmeans - prevscmeans)) ; % compute sum 

of 1st order gradients from last scaled means to current 

        scmeanslope = abs(scmeanslope + scmeansn_1)/k ;  % compute 

running mean of all scmeansn-1 

 

        % Compute incremental STDs of normalized mean coefficients per 

monomial term 

        wwscstds = sqrt( (((wwscstds.^2)./k + ((wwscmeans - 

prevscmeans).^2)).*(k-1)) ) ; 

       

        if (scmeanslope <= maxmeansslope)  % STOPPING criterion 

            break 

        end 

         

        shuffle = randperm(np) ;   %  set up for next iteration... 

        agu = agu(shuffle,:) ; 

        trouts = trouts(shuffle,:) ; 
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    end 

   

    meanstd = mean(wwscstds(find(wwscstds),:)) ; % only figure non-

zeros into this.. 

    stdstd = std(wwscstds(find(wwscstds),:),1) ; % only figure non-

zeros into this.. 

    maxscstd = meanstd + (stdscale * stdstd) ;   % MAX stdstd threshold 

criterion 

     

    termthresh = (wwscstds > maxscstd) ;    %  PRUNE terms... 

    if ( (sum(termthresh) > 0) && (sum(termthresh) < Nt) ) 

        wwtemp = wwtemp.*(~termthresh);% code terms over threshold with 

zeros 

        nonzeroidx = find(wwtemp) ;    % kick out zero-coefficient 

terms 

        ind = ind(nonzeroidx,:) ;      % REDUCE POLYNOMIAL TERMS !!! 

    else 

        reducing = false ;             % we're done reducing, kick out 

        break 

    end 

end 

  

wwtemp = wwmeans ;    % assign last wwmeans as final coeffs 

 

 
7.4 Appendix D – MATLAB Code:  Iterative GLS Regression 
 
7.4 1 1-D 3rd-order Test – GLS_1D.m excerpts 
 
function GLS_1D(npts,pctbad) 

% INPUTS: 

%           npts:           number of data points 

%           pctbad[whole#]: percentage of data points with a terrible 

outlaying 

%                               value and a terrible bias 

  

x = linspace(0,1,npts) ; 

  

yideal = x.^3 ; 

  

% first step: create normally distributed noise in all data: 

y1 = x.^3 + (0.04).*randn([1,npts]) ; 

  

% next step: make it worse by creating randomly distributed large 

magnitude 

%   errors with a non-symmetric bias: 

replacex = sort(randi(npts,1,ceil((pctbad/100)*npts))) ;  

y2 = y1 ; 

for i=replacex 

    y2(i) = y1(i) - x(i)*0.65*(1 - 0.2*abs(randn)) ; 

end 

  

figure(9); clf 

plot(x,y2,'.',x,yideal,'k') ; hold on 
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h_title = title('Bad Data (nonuniform dist, uncorr var, awful trend, 

etc.)') ; 

h_xlabel = xlabel('x'); h_ylabel = ylabel('x^2'); 

legend('bad data','y=x^3','Location','northwest') 

  

figure(10); clf     % this plot is for all proper 1st order tests 

plot(x,y2,'.',x,yideal,'k', 'LineWidth',2) ; hold on 

  

augx3 = [ones(1,npts)' x' (x.^2)' (x.^3)'] ;    % prep 3rd order 

overfit  

X3tX3 = augx3'*augx3 ;                          % 3rd order  

W22 = augx3\y2' ;                               % 3nd order  

Y22 = augx3*W22 ;   % 2nd order overfit 

  

figure(10) 

plot(x,Y22,'LineWidth',2) ; hold all 

  

% compute a baseline error btw desired function (y==x) and our full 

"bad 

%   data" set: 

ebase = sqrt(sum((yideal - y2).^2)/npts) ; 

display(['Baseline, inherent RMSE, bad data vs. ideal: ' 

num2str(ebase)]) ; 

  

% compute the "real" error btw desired fcn and our current regression 

%   method, which is equivalent to OLS: 

ereal_OLS = sqrt(sum((yideal - Y22').^2)/npts) ; 

display(['Real error, RMSE OLS(ours) vs. ideal: ' num2str(ereal_OLS)]) 

; 

  

% compute the "dataset" error btw given (bad) data and our current 

regression 

%   method, which is equivalent to OLS:   

edata_OLS = sqrt(sum((y2 - Y22').^2)/npts) ; 

display(['Data error, RMSE OLS(ours) vs. bad data: ' 

num2str(edata_OLS)]) ; 

  

% NEW METHOD: "GENERALIZED LEAST SQUARES" 

errs = (y2 - Y22') ;     % compute the unsquared errors of our first 

OLS attempt 

Omega_1 = (diag(errs.^(2))) ; 

edata_OLS 

old_rmseGLS = 999 ; 

BESTrmseI = 999 ; 

RMSEs = [] ; 

OmegaErrs = 999 ; 

minGLSerr = 999 ; 

for i = 1:50 

    [a b] = size(augx3) ;  

    lambdaI = (0.25/b).*eye(b) ; 

    Bfgls = (augx3'*Omega_1*augx3 + lambdaI)\(augx3'*Omega_1*y2') ; 

  

    Ygls = augx3*Bfgls ; 

    errs = (y2 - Ygls') ; 

    xfrmErr = sum(errs*Omega_1*errs')/npts ; 

    if (xfrmErr < minGLSerr) 

        minGLSerr = xfrmErr ; 
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        Bfinal = Bfgls ;  

    end 

    OmegaErrs = [OmegaErrs xfrmErr] ; 

    IDEALrmse = sqrt(sum((yideal - Ygls').^2)/npts) ; 

    RMSEs = [RMSEs IDEALrmse] ; 

    if (IDEALrmse < BESTrmseI) 

        BESTrmseI = IDEALrmse ; 

        BESTi = i ; 

        Bgls = Bfgls ; 

    end 

    if (i == 2) 

        RMSEat2 = IDEALrmse ; 

        Bglsat2 = Bfgls 

    end 

     

    if ((mod(i,1)==0) && abs(OmegaErrs(end-1)-xfrmErr)<=1e-10)  

        breaki = i 

         break 

     end 

    Omega_1 = (diag(errs.^(2))) ; 

end 

  

RMSEat2 

BESTrmseI 

BESTi 

  

figure(10) 

plot(x,augx3*Bgls,'-.',x,augx3*Bfinal,'--','LineWidth',2); hold all 

legend('bad data','y=x^3','OLS','realbest','"BEST" 

GLS','Location','northwest') 

h_title = title(['GLS vs. OLS with BAD DATA: ' num2str(pctbad) '% 

corruption']) ; 

h_xlabel = xlabel('x'); h_ylabel = ylabel('x^2'); 

figprefs; 

  

OmegaErrs(1) = [] ;    % eliminate initial sum value 

figure(22); clf 

plot(OmegaErrs) 

 

 
7.4.2 General GLS Code for Multiple Dimension Data Regression – GLS_reg.m  

excerpts 
 
function ww=GLS_reg(J,out) 

%% Generalized Least Squares linear regression  

maxERR = 1e-7 ; 

maxiter = 150 ; 

  

[np,ni]=size(J); 

[n1,n2]=size(out); 

if (np ~= n1) || (n2 ~= 1) 

    error('Matrix size in GLS_reg.m are wrong');    

end 

  

initlambdaI = 1e-15.*eye(ni) ;  % a simple strategy to get unstuck from 

local minima.. 
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% 1) compute the standard (OLS) linear regression to start the process: 

Bols = J\out ; 

if ( isnan(sum(Bols)) ) 

    Bols = lscov(J,out) ;  % if matrix singular, use MATLAB's OLS 

end 

% 2) compute intermediate Y* and errors, construct the FGLS diagonal 

matrix, 

%    Omega: 

Yols = J*Bols ;         % standard OLS regression 

OLSerrs = (out' - Yols') ;  % unsquared errors of our first OLS attempt 

Omega_1 = (diag(OLSerrs.^2,0)) ; 

% 3) begin iterative process to minimize transformed GLS error each 

time: 

lastErr = 999 ; 

for i = 1:maxiter 

    invprod = J'*Omega_1*J ;    % denominator... 

    numprod = J'*Omega_1*out ;  % numerator... 

    Bfgls = invprod\numprod ; 

     

   % PROTECT against singular matrix potential... 

    if ( isnan(sum(Bfgls)) ) 

        lambdaI = initlambdaI ; 

        while ( isnan(sum(Bfgls)) ) 

            lambdaI = 10.*lambdaI ; 

            Bfgls = (invprod+lambdaI)\(numprod) ; 

            if ( lambdaI(1,1) > 1e4 ) 

                try 

                    Bfgls = lscov(J,out,Omega_1,'orth') ; 

                    if ( isnan(sum(Bfgls)) ) 

                        Bfgls = Bols ;  % 

                    end 

                catch 

                    try 

                        Bfgls = lscov(J,out,Omega_1) ; 

                        if ( isnan(sum(Bfgls)) ) 

                            Bfgls = Bols ;  % 

                        end 

                    catch 

                        Bfgls = Bols ;  % RESORT TO OLS if all else 

fails 

                    end 

                end 

            end 

        end 

    end 

  

    Ygls = J*Bfgls ;                    % compute intermediate values 

    errs = (out' - Ygls') ;              % compute intermediate errors 

    xfrmErr = (errs*Omega_1*errs')/np  ;  % intermediate GLS TRANSFORM 

MSE 

    if (abs(lastErr-xfrmErr)<=maxERR)  

        ww = Bfgls ; 

        break 

    end 

    lastErr = xfrmErr ; 

    Omega_1 = (diag(errs.^2,0)) ;   % compute next Omega if necessary 
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end 

  

if (i==maxiter) 

    'WARN max GLS iter' 

    ww = Bfgls ; 

end 

 

7.5 Appendix E – MATLAB Code:  Iterative Ridge Regression 
 
7.5.1 Computation of an Initial Minimum-variance λ – OLSridge_reg.m excerpt 
 
The following computes a minimum-variance λ for all variants of iterative ridge 
regression.  This is the necessary first-step preceding an original iterative process.  
The code is adapted from Celov et al. [84]. 
 
%% &%&%&%&%&%&% AUXILLIARY FUNCTION &%&%&%&%&%&%&%&%&%&%&%&% 
% Compute a minimum-variance lambda by Newton-Raphson/Fisher process 
function [lamda] = calc_lamda(Xnormalised,df,p) 

  
        %Finding SVD of data 
        [u s v]=svd(Xnormalised);  % canned MATLAB function 
        Di=diag(s) ; 
        Dsq=Di.^2; 

  
        %Newton-rapson method to solve for lamda 
        lamdaPrev = (p-df)/df ; 
        lamdaCur = 99 ;%random large value 
        diff=lamdaCur-lamdaPrev;    
        threshold = 1e-14 ;     
        count = 0 ; 
        while (diff>threshold) && (count < 51) 
            count = count + 1 ; 
            numerator=sum(Dsq ./(Dsq+lamdaPrev))-df ;        
            denominator=sum(Dsq./((Dsq+lamdaPrev).^2)) ;        
            lamdaCur=lamdaPrev+(numerator/denominator);         
            diff=abs(lamdaCur-lamdaPrev) ;       
            lamdaPrev=lamdaCur;         
        end 
        lamda=lamdaCur ; 
return 

 

7.5.2 Iterative λ Optimization Process – OLSridge_reg.m excerpt 
 
The following computes an optimized (minimum RMSE) λ, balancing a compromise 
between ideal variance and ideal bias. 
 
function ww=OLSridge_reg(J,out,df) 

%% OLS-Ridge regression 

% INPUTS:   J:      training vector inputs 

%           out:    training vector outputs 

%           df:     RR degrees of freedom (usually polynomial order) 



123 

  

[np,ni]=size(J); 

[n1,n2]=size(out); 

if (np ~= n1) || (n2 ~= 1) 

    error('Matrix size is wrong');    

end 

  

muscale = 1.5 ;       % initial lambda scaling factor to hunt for ideal 

  

lambda = calc_lamda(J,df,ni) ;      %  compute initial min-var lambda 

prevSSE = np ;                   % initialize previous errors 

prevlambda = lambda ;  % needed for odd condition of RMSE increase upon 

first iteration 

hessi = J'*J ;      % compute once, use repeatedly 

regnum = J'*out ;   % compute once, use repeatedly 

for count = 1:1000  % overkill, but just in case... 

    ww = (hessi+(lambda.*eye(ni)))\regnum ;  %compute initial weights 

    currSSE = sum((out' - (J*ww)').^2) ;   % compute current errors 

    if (currSSE < prevSSE)       % condition for shrinkage 

        prevlambda = lambda ; 

        lambda = lambda - lambda/muscale ;   % shrink lambda 

        prevSSE = currSSE ; 

    elseif (currSSE > prevSSE)  % condition for overshoot... 

        lambda = prevlambda ; 

        muscale = muscale*2 ; 

    else 

        break                   % we hope we are done 

    end 

end 

 

7.6 Appendix F – MATLAB Code:  Hybrid Regression Techniques Including RR 
 
7.6.1 Iterative GLS + RR Minimum-Variance Regression – GLSminvar_reg.m  

excerpts  
 
function ww=GLSminvar_reg(J,out,df) 
%% Generalized Least Squares linear regression which initially computes  
% the minimum-variance Lambda (from Ridge Regression).  This produces  
% training and validation RMSE results with the least variance between 

the two. 
% INPUTS:   J:      training vector inputs 
%           out:    training vector outputs 
%           df:     degrees of freedom (usually polynomial order) 

  
maxERR = 1e-7 ; 
maxiter = 100 ; 

  
[np,ni]=size(J); 
[n1,n2]=size(out); 
if (np ~= n1) || (n2 ~= 1) 
    error('Matrix size is wrong');    
end 

  
lambdaI = calc_lamda(J,df,ni).*eye(ni) ;  % SEE APPENDIX E  
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% 1) compute the standard (OLS) linear regression to start the process: 
Bols = J\out ; 
if ( isnan(sum(Bols)) ) 
    Bols = lscov(J,out) ;  % 
end 
% 2) compute intermediate Y* and errors, construct the FGLS diagonal 

matrix, 
%    Omega: 
Yols = J*Bols ;         % standard linear regression 
OLSerrs = (out' - Yols') ;  % unsquared errors of our first OLS attempt 
Omega_1 = (diag(OLSerrs.^2,0)) ; 
% 3) begin iterative process to minimize transformed GLS error each 

time: 
lastErr = 999 ; 
for i = 1:maxiter 
    Bfgls = (J'*Omega_1*J+lambdaI)\(J'*Omega_1*out) ; 
    if ( isnan(sum(Bfgls)) )        % trap singular matrix conditions 
        Bfgls = (J'*J+lambdaI)\(J'*out) ; 
    end 
    Ygls = J*Bfgls ;                    % compute intermediate values 
    errs = (out' - Ygls') ;              % compute intermediate errors 
    xfrmErr = (errs*Omega_1*errs')/np  ;  % intermediate transform MSE 
    if (abs(lastErr-xfrmErr)<=maxERR)  
        ww = Bfgls ; 
        break 
    end 
    lastErr = xfrmErr ; 
    Omega_1 = (diag(errs.^2,0)) ;   % compute next Omega if necessary 
end 

 

7.6.2 Iterative GLS + RR Full Optimization Regression – GLSridge_reg.m excerpts  
 
function ww=GLSridge_reg(J,out,df) 

%% Generalized Least Squares regression with ridge regression component 

maxERR = 1e-7 ; 

maxiter = 200 ; 

  

[np,ni]=size(J); 

[n1,n2]=size(out); 

  

% NOTE: this just uses the lambdaI technique to avoid singularity, no 

ridge yet.. 

initlambdaI = 1e-15.*eye(ni) ;   % simple method to escape singular 

matrix problem 

  

% 1) compute the standard (OLS) linear regression to start the process: 

Bols = J\out ; 

if ( isnan(sum(Bols)) ) 

    Bols = lscov(J,out) ;  % 

end 

% 2) compute intermediate Y* and errors, construct the FGLS diagonal 

matrix, 

% Omega: 

Yols = J*Bols ;         % standard linear regression 

OLSerrs = (out' - Yols') ;  % unsquared errors of our first OLS attempt 
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Omega_1 = (diag(OLSerrs.^2,0)) ; 

% 3) begin iterative process to minimize transformed GLS error each 

time: 

lastErr = 999 ; 

for i = 1:maxiter 

    invprod = J'*Omega_1*J ; 

    numprod = J'*Omega_1*out ; 

    Bfgls = invprod\numprod ; 

    if ( isnan(sum(Bfgls)) ) 

        lambdaI = initlambdaI ; 

        while ( isnan(sum(Bfgls)) ) 

            lambdaI = 10.*lambdaI ; 

            Bfgls = (invprod+lambdaI)\(numprod) ; 

            if ( lambdaI(1,1) > 1e4 ) 

                try 

                    Bfgls = lscov(J,out,Omega_1,'orth') ; 

                    if ( isnan(sum(Bfgls)) ) 

                        Bfgls = Bols ;  % 

                    end 

                catch 

                    try 

                        Bfgls = lscov(J,out,Omega_1) ; 

                        if ( isnan(sum(Bfgls)) ) 

                            Bfgls = Bols ;  % 

                        end 

                    catch 

                        Bfgls = Bols ; 

                    end 

                end 

            end 

        end 

    end 

    Ygls = J*Bfgls ;                    % compute intermediate values 

    errs = (out' - Ygls') ;              % compute intermediate errors  

    xfrmErr = (errs*Omega_1*errs')/np  ;  % intermediate MSE 

    if (abs(lastErr-xfrmErr)<=maxERR) % lowest yet !!! 

        break 

    end 

    lastErr = xfrmErr ; 

    Omega_1 = (diag(errs.^2,0)) ;   % compute next Omega if necessary 

end 

  

% 4) NOW begin iterative Lambda-tuning process 

lambda = calc_lamda(J,df,ni) ;  % compute initial min-var Lambda 

muscale = 1.5 ;       % initial lambda scaling factor to hunt for ideal 

prevSSE = np ;                   % initialize previous errors 

prevlambda = lambda ;  % needed for larger RMSE on first iteration 

for count = 1:1000 

    ww = (invprod+(lambda.*eye(ni)))\numprod ;  %compute initial 

weights 

    currSSE = sum((out' - (J*ww)').^2) ;   % compute current errors 

    if (currSSE < prevSSE)       % condition for shrinkage 

        prevlambda = lambda ; 

        lambda = lambda - lambda/muscale ;   % shrink lambda 

        prevSSE = currSSE ; 

    elseif (currSSE > prevSSE)  % condition for overshoot... 

        lambda = prevlambda ; 
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        muscale = muscale*2 ; 

    else 

        break                   % we hope we are done 

    end 

end 

 

7.7 Appendix G – MATLAB Code:  Two Types of PLM Implementations 
 
7.7.1 The PolyNet Variant – PolyNet.m excerpts 
 
function [ww,indfinal,npp,"..."] = 

PolyNet(trins,trouts,maxord,Pthresh"...") 

  
[np,nd]=size(trins); 
agu=[ones(np,1),trins];  %agumented input space  (+1 is added in the 

column) 

  
pterms = 0 ;    % initialize number of monomials  
ord = -1 ;       % initialize polynomial order 
orders = [] ;    % initialize vector of orders per solution 
[...] 
rmseTr = [] ;   % per solution RMSEs  
npp = [] ;       % initialize count of poly terms  
while ((pterms <= Pthresh) && (ord < maxord)) 
    ord = ord + 1 ; 
    pterms=factorial(ord+nd)/(factorial(ord)*factorial(nd) ) ; 
    if (pterms <= Pthresh) 
        Nmax=(nd+1)*ones(1,ord+1); 
        ind=Get_In_pol(Nmax) ; 
        [Nt,Nd]=size(ind); 

         
        %% calculating polynomial terms 
        J = [] ;   
        for jj=1:Nt 
            Pr=1; 
            for i=1:Nd 
                Pr=Pr.*agu(:,ind(jj,i)); 
            end 
            J = [J Pr]; 
        end 
        wwtemp = lin_reg(J,trouts) ;  % Finding weights 
        nonzeroidx = find(wwtemp) ; 

         
        % Now reduce all matrices considerably :) :)  :) 
        ww{:,ord+1} = wwtemp(nonzeroidx) ; 
        Jreduced{:,:,ord+1} = J(:,nonzeroidx) ; 
        indfinal{:,:,ord+1} = ind(nonzeroidx,:) ; 

         
        %% verifying with training points and getting errors 
        Xappx = Jreduced{:,ord+1}*ww{:,ord+1} ; 
        rmse = sqrt(sum(sum((trouts - Xappx).^2))/np) ; 
        npp = [npp length(nonzeroidx)] ; 
        orders = [orders ord+1] ; 
        rmseTr = [rmseTr rmse] ; 
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    end 
end 

 

7.7.2 The PolyPaP Variants – PlyPaPGLSR.m excerpts 
 
function [ww,indfinal,npp,maxorders,"..."] ... 

          = PlyPaPGLSR(trins,trouts,maxord,Pthresh,"...") 

                   

[np,nd]=size(trins); 

agu=[ones(np,1),trins];  %agumented input space  (+1 is added in the 

column) 

  

% &%&%&%&%&%&%&%&%  INITIAL STUFF FOR PROBE SEQUENCE ..... 

tic ;   % prepare to capture probing time ... 

pterms = 0 ;    % initialize number of monomials  

ord = -1 ;       % initialize polynomial order 

rmsePr = 9999 ;   % Initialize "lowest" probe RMSE  

while ((pterms <= Pthresh) && (ord < maxord)) 

    ord = ord + 1 ; 

    pterms=factorial(ord+nd)/(factorial(ord)*factorial(nd) ) ; 

    if (pterms <= Pthresh) 

        Nmax=(nd+1)*ones(1,ord+1); 

        ind=Get_In_pol(Nmax) ; 

        [Nt,Nd]=size(ind); 

         

        %% calculating weights 

        J = [] ;  % DON'T FORGET the zero-order term.. 

        for jj=1:Nt 

            Pr=1; 

            for i=1:Nd 

                Pr=Pr.*agu(:,ind(jj,i)); 

            end 

            J = [J Pr]; 

        end 

         

        wwtemp = GLSminvar_reg(J,trouts,Nd) ;   % Use min-var ridge to 

probe min RMSE point.. 

        XappxPr = J*wwtemp ; 

        rmse = sqrt(sum(sum((trouts - XappxPr).^2))/np) ; 

        if (rmse < rmsePr) 

            PrOrder = ord ;     % set optimized probe order 

            rmsePr = rmse ;     % set new optimized probe RMSE 

        end 

    end 

end 

PrTime = toc ;      % capture training time for probe sequence 

% &%&%&%&%&%&%&%&%&%&%&%&%& END PROBE SEQUENCE  

  

maxmeansslope = 1e-2 ; 

trpct = 0.75 ;       % percent of training data to pull into the 

iterative training 

  

trlength = ceil(trpct*np) ;     % establish number pf patterns to 

include for each spin 

maxorders = [] ;    % initialize vector of maxorders per solution 
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npp = [] ;       % initialize count of poly terms  

  

Nmax=(nd+1)*ones(1,PrOrder); % GENERATE all terms at ProbeOrd order... 

ind=Get_In_pol(Nmax) ;       

[Nt,Nd]=size(ind) ;         % get indices size for current round 

  

tridx = 1 ;                 % initial training index value to store 

output vectors 

while (Nt >= 1)    

    tic ;   % start clocking time for this node's training 

    % ENTER the iterative OLS regression phase: 

    tstwwmeans = 0 ;    % initialize running mean 

    tstwwabsmax = [] ;   % initial running max abs value of coeffs 

    tstwwscstds = 0 ; 

    tstwwscmeans = 0 ; 

    prevwwscaled = 0 ;    % initialize k-1 normalized weights 

    avscmeansslope = 0 ; 

    for k = 1:100    % drill down to the essential output weights for 

each instance 

        agusubset = agu(1:trlength,:) ;     % take subset of training 

patterns 

        troutsbst = trouts(1:trlength,:) ; 

         

        %% building monomial terms 

        Jsub = [] ;   

        for jj=1:Nt 

            Pr=1; 

            for i=1:Nd 

                Pr=Pr.*agusubset(:,ind(jj,i)); 

            end 

            Jsub = [Jsub Pr]; 

        end 

         

        wwtemp = GLSridge_reg(Jsub,troutsbst,Nd) ;  % Finding weights, 

OLS with iterative ridge regression 

        tstwwmeans = (wwtemp + tstwwmeans.*(k-1))./k ;              % 

compute running means of raw coefficients 

        tstwwabsmax = max(abs([tstwwabsmax wwtemp]),[],2) + 1e-16 ; % 

compute running max-abs of raw coefficients 

         

        tstwwscaled = wwtemp./tstwwabsmax ;     % NORMALIZE raw 

coefficients per current max-abs 

        prevscmeans = tstwwscmeans ;            % capture preceding 

normalized ??? 

        tstwwscmeans = (tstwwscaled + tstwwscmeans.*(k-1))./k ; 

        scmeansnn_1 = sum(abs(tstwwscmeans - prevscmeans)) ; 

        avscmeansslope = abs(avscmeansslope + scmeansnn_1)/k ; 

                        

        tstwwscstds = sqrt( (((tstwwscstds.^2)./k + ((tstwwscmeans - 

prevscmeans).^2)).*(k-1)) ) ; 

           

        if (avscmeansslope <= maxmeansslope) 

            break 

        end 

        shuffle = randperm(np) ; 

        agu = agu(shuffle,:) ; 

        trouts = trouts(shuffle,:) ; 
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    end 

    finalk = k 

     

    wwtemp = tstwwmeans ;    % assign last wwmeans as final coeffs 

(this is the way to go 7/3/13)   

    ["..."] 

    %% checking weights:  Keep only poly vectors with non-zero 

coefficients 

    nonzeroidx = find(wwtemp) ;     % necessary one more time... 

    ["..."] 

    tridx = tridx + 1 ;         % increment the trial index for output 

vectors 

         

    % &%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%& 

    % TRIM the noisiest term from the poly set, run again 

    [maxwwscstd maxstdidx] = max(tstwwscstds) ;  % find the current 

"noisiest" coefficient term 

    ind(maxstdidx,:) = [] ;                      % ...remove it 

    Nt = Nt - 1 ;                                % ...reduce total poly 

term count by 1 

end 

 

7.8 Appendix H – MATLAB Code:  An N-Dimensional Data-Driven TSK Fuzzy  
System 

 
7.8.1 Efficient Recursive Interpolation – recurinter.m excerpts 
 
function [outputs] = recurinter(intrain,intpts,varargin) 

% This is a program which recursively interpolates new output values 

for  

% any input set of points (one or many), given randomly spaced  

% multi-dimensional input data as "training points".   

% 

% INPUTS: 

%           intrain:    -- input "training points" of dataset 

%           intpts:     -- set of point locations to interpolate, eg: 

%                           [x1,y1,...,w1; 

%                            x2,y2,...,w2; 

%                            xnp,ynp,...,wnp] 

%           varargin{1}=dim     -- current dimension to sort and thin 

%           varagrin{2}=lastdim   -- last dimension to operate upon  

%           varargin{3}=radius -- current 1-D "radius" for 

identification 

%                                   of candidate vectors 

%           varargin{4}=mode -- '0'==interior point search 

%                               '1'==boundary point search 

% OUTPUT: 

%           outputs:     -- the interpolated points with final 'Z' 

values 

  

inithalfspan = 0.00625 ;    % initial search radius for points to 

interpolate 

  

%% MAIN:  Recursive Interpolation 

if (nargin==2)     % If initial invocation, wrapper tasks ensue... 
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    [irows,icols] = size(intpts) ; 

    maxhfspan = 2*sqrt(icols) ;     % mark greatest span across 

hypercube.. 

    outputs = [] ;      % initialize final set of outputs 

    for row = 1:irows 

        tempsets = [] ; % initialize final subset of training pts to be 

averaged 

        tmpvectors = 0 ;% initialize number of tempsets members 

        halfspan = inithalfspan ;    % initial 1-D "radius" 

        mode = 0 ;  % we start by assuming non-boundary point search 

  

        while (tmpvectors < icols)  % require at least one datapoint 

per dimension.. 

            halfspan = halfspan*1.1 ; 

            if (halfspan > maxhfspan) 

                mode = 1 ; % now we are at an "edge" and search as 

boundary point 

                halfspan = inithalfspan*1.1 ; 

            end 

            tempsets = 

recurinter(intrain,intpts(row,:),1,icols,halfspan,mode) ; 

            [tmpvectors, tmpcols] = size(tempsets) ; 

        end 

        outputs = [outputs; [intpts(row,:) 

computeval(tempsets,intpts(row,:))]] ; 

    end 

    return ; 

end 

  

% vvvvv if this is a recursive call: vvvvv 

dim = varargin{1} ;     % current dimension 

lastdim = varargin{2} ; % last input dimension 

radius = varargin{3} ;  % 1-D "radius" 

mode = varargin{4} ;    % '0' for in-bound point search, '1' for out-

of-bounds search 

if ( dim<=lastdim ) 

    nextidx = (intrain(:,dim)>=(intpts(dim)-

radius))&(intrain(:,dim)<=(intpts(dim)+radius)) ; 

    subset = intrain(nextidx,:) ; 

    dim = dim + 1 ; 

    if (dim > lastdim) 

        if (~isempty(subset) && (mode==0)) 

            for p = 1:lastdim 

                testo = find(subset(:,p)>intpts(p), 1) ; 

                if isempty(testo) 

                    subset = [] ; 

                    break 

                end 

                testo = find(subset(:,p)<intpts(p), 1); 

                if isempty(testo) 

                    subset = [] ; 

                    break 

                end 

            end 

        end 

        outputs = subset ; 

    else 
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        outputs = recurinter(subset,intpts,dim,lastdim,radius,mode) ; 

    end 

end 

return  % recurinter() 

  

%% COMPUTE final interpolated value for current testpoint 

function ruleval = computeval(subset,tstpt) 

% Support function for recurinter:  Computes the interpolated output 

value 

% once the complete subset of points for the current interpolation 

point is 

% identified.  Avoids square root computation. 

% 

% INPUTS: 

%           subset:         -- the set of valid poitns for which the 

%                               interpolated value is computed 

%           tstpt:          -- the current point at which to compute 

the 

%                               value 

% OUTPUT: 

%           ruleval:        -- the interpolated output value for the 

%                               current point location 

  

[rows cols] = size(subset) ; 

if (rows == 1) 

    ruleval = subset(1,cols) ; 

else 

    rawdists2 = [] ; 

    for row = 1:rows 

        rawdists2 = [rawdists2; (tstpt - subset(row,1:(cols-1))).^2] ; 

    end 

     

    sumdists = sum(rawdists2,2) ; 

    sumalldists = sum(sumdists).*ones(rows,1) ; 

     

    Zprods = subset(:,end).*(sumalldists - sumdists) ; 

    ruleval = sum(Zprods)/(sumalldists(1)*(rows-1)) ; 

     

    if isnan(ruleval) 

        ruleval = 0 ; 

    end 

end 

return  % computeval() 

 

7.8 2 The TSK Fuzzy System Engine  
 
Training: 
 
function [fuzztables,npp,"..."] ... 

    = NFuzzyT1(trins,trouts,FTmax,F1Dmax) 

% INPUTS: 

%       trins:      the inputs to the dataset you would like to train 

%       trouts:     the training outputs corresponding to the inputs 

%       FTmax:      max allowed number of output fuzzy table values 

%       F1Dmax:     max allowed number of table breakpoints along 1-D 
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trainset = [trins trouts] ;         % "training" set 

  

[np,nd]=size(trins); 

dim = nd ; 

nF1D = 0 ;      % initialize number of breakpoints along 1 table 

dimension  

FTterms = 0 ;   % initialize total number of table elements 

  

rmseTr = [] ;   % per solution RMSEs  

npp = [] ;      % initialize count of fuzzy table elements  

while ((FTterms <= FTmax) && (nF1D < F1Dmax)) 

    nF1D = nF1D + 1 ; 

    FTterms = nF1D^nd  

    if (FTterms <= FTmax) 

        % vvvvv set up fuzzy table points, same coordinates for all 

dimensions: 

        % NOTE:  final set of coords will be 

(#breakpoints)^(#dimensions), beware.. 

        span = 2/(nF1D-1) ; 

        if (isinf(span)) 

            tblpts = [0] ; 

        else 

            tblpts = [-1:span:1];  

        end 

        dim = nd ;     % this initializes for each new fuzzy table.. 

        % create set of all multi-dim fuzzy table points: 

        tblcoords = [] ; % initialize table of fuzzy output value 

*locations* 

        tblidx = [] ; 

        expo = 0 ;      % initial power of 2 exponent 

        while(dim > 0) 

            vect = [] ; 

            idxvect = [] ; 

            for i = (0.00001):1/(nF1D^expo):nF1D 

                vect = [vect tblpts(ceil(i))] ; 

                idxvect = [idxvect ceil(i)] ; 

            end 

            expo = expo + 1 ; 

            fullvect = [] ; 

            fullidxvect = [] ; 

            for j = 1:(nF1D^(dim-1)) 

                fullvect = [vect fullvect] ; 

                fullidxvect = [idxvect fullidxvect] ; 

            end 

            dim = dim - 1 ; 

            tblcoords = [fullvect' tblcoords] ; 

            tblidx = [fullidxvect' tblidx] ; 

        end 

     

        tblidx = num2cell(tblidx) ; 

        [tblrws,tblcols] = size(tblcoords) ; 

         

        % compute the fuzzy output table values and assign to an 

indexable matrix: 

        intrpouts = recurinter(trainset,tblcoords) ; 
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        for p = 1:tblrws 

            fuzztable(tblidx{p,:}) = intrpouts(p,end) ; 

        end 

        fuzztables{:,nF1D} = fuzztable ; 

         

        % ***** "training" verification -- COMPUTE fuzzy outputs... 

***** 

        fuzzouts = nDfuzz_out(fuzztable,trins) ; 

         

        rmse = sqrt(sum(sum((trouts - fuzzouts).^2))/np) ; 

        npp = [npp FTterms] ; 

        rmseTr = [rmseTr rmse] ; 

    end 

end 

 
 
Fuzzy Table Output Generation: 
 
function [fuzzouts] = nDfuzz_out(fuzztbl,validins) 

% Author:  Michael S. Pukish 

% Modification Date:  09/21/13 

% Description:  Computes n-D fuzzy system outputs given a set of input 

points 

%   and the normalized n-D fuzzy output table. 

%   INPUTS: 

%       fuzztbl:        -- the n-D fuzzy output table 

%       validins:       -- row vector points to solve for 

%   OUTPUTS: 

  

tblres = size(fuzztbl,1) ;              % capture resolution along one 

axis 

yint = (tblres+1)/2 ;                   % compute y-intercept for all 

fuzzified axis conversions 

yslope = (tblres-1)/2 ; 

  

[vrows inlength] = size(validins) ;     % capture max count & length of 

vectors 

  

fuzzouts = [] ;                 % initialize fuzzy outputs 

for vidx = 1:vrows 

    vect = yslope.*(validins(vidx,:)) + yint ;   % capture/convert 

current vector to solve 

    floors = floor(vect) ;      % get integer bounds of each dimension 

    ceils = ceil(vect) ;        %   ... 

     

    % vvvv build up solution subset from fuzz table vvvv : 

    setstr = 'subset=fuzztbl(' ; 

    for m = 1:inlength 

        if (( vect(m)>1 ) && ( vect(m)<tblres )) 

            em = num2str(m) ; 

            setstr = [setstr 'floors(' em '):ceils(' em '),'] ; 

        elseif ( vect(m)<=1 ) 

            setstr = [setstr '1,'] ; 

        else 

            setstr = [setstr num2str(tblres) ','] ; 

        end 
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    end 

    setstr(end) = []; setstr = [setstr ');'] ; 

    eval(setstr) ;              % resolves subset for current input 

vector 

  

    % now, build the products... 

    if (( vect(1)>1 ) && ( vect(1)<tblres ))    % initialize the first-

D fuzzy distances.. 

        fzzfact = mod(vect(1),1) ;              % ...compute fuzzy 

distance factor for current 

    else                                     

        fzzfact = 1 ; 

    end 

    fuzzprods = nonzeros([(1-fzzfact) fzzfact]) ;  % initialize the 

product values 

    for d = 2:inlength 

        if (( vect(d)>1 ) && ( vect(d)<tblres )) 

            fzzfact = mod(vect(d),1) ; 

        else 

            fzzfact = 1 ; 

        end 

        twonew = nonzeros([(1-fzzfact) fzzfact]) ;  % next dimension to 

examine.. 

        tempprods = [] ;                    % initialize current 1-D 

product sequence 

        for i = 1:length(twonew) 

            for e = 1:length(fuzzprods) 

                tempprods = [tempprods twonew(i)*fuzzprods(e)] ; 

            end 

        end 

        fuzzprods = tempprods ; 

    end 

     

    fuzzouts = [fuzzouts; fuzzprods*subset(:)] ;  % build columned 

output vector 

end 

 

7.9 Appendix I – MATLAB code:  Fast, Forward-Computing N-Dimensional Radial  
Clustering 

 
function [outclusidx] = clstrsets(inptrns,maxrad,minclstrs,minclslen) 

% Parses an input set of training patterns into multiple output 

clusters.  Only 

% indices of the original data set are reported, according to the input 

pattern 

% indices (one vector per row). 

% 

% INPUTS:   inptrns:    -- row vectors of given input pattern set 

%           maxrad:     -- maximum (starting) radius of output clusers 

%           minclstrs:  -- minimum number of output clusters 

%           minclslen:  -- minimum length allowed per cluster 

% 

% OUTPUTS:  outclusidx: --  

  

[n,m]=size(inptrns);  % determine dimensions of dataset array 
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for k = (maxrad*100):-1:1,    % vary test radii from marad downto 0.01 

in steps of 0.01 

    % np: number(s) of patterns per clusters, p: location(s) of cluster 

centers 

    r=k/100; np=[]; p=[]; p(1,:)=inptrns(1,:); np(1)=1; nc=1;  % 

initialize values 

    clstridx{1} = 1 ; 

    for i=2:n, % for all patterns... 

        nt=0; 

        for j=1:nc,  % per each cluster in existence... 

            % compute distance btw cluster center and present pattern, 

compare 

            dd=p(j,:)- inptrns(i,:); d=sqrt(dd*dd');   

            if (d < r) % if distance of present pattern < current 

threshold... 

                % update weights for pressnt cluster's neuron 

                p(j,:)=(inptrns(i,:)+p(j,:)*np(j))/(np(j)+1) ; 

                clstridx{j} = [clstridx{j} i] ; 

                np(j)=np(j)+1;  % increment pattern count for this 

cluster... 

                break; 

            end; 

            nt=nt+1;            % ... otherwise,  

        end; 

        if nt==nc,              % ... create a new cluster 

            nc=nc+1; p(nc,:)=inptrns(i,:); np(nc)=1; % increment # 

clusters,  

            clstridx{nc} = i ; 

        end; 

    end; 

    idxcnt = 1; 

    for q=1:nc 

        if (length(clstridx{idxcnt}) < minclslen) 

            putsetidx = clstridx{idxcnt} ; 

            clstridx(idxcnt) = [] ; 

            p(idxcnt,:) = [] ; 

            nc = nc - 1 ; 

            clstridx = putback(clstridx,putsetidx,r,inptrns,p,nc) ; 

        else 

            idxcnt = idxcnt + 1 ; 

        end 

    end 

    if (nc > minclstrs) 

        break 

    end 

end; 

  

outclusidx = clstridx ; 

return 

  

% helper function -- putback finds a new home for clusters that are too 

% small  

function [clsidxout] = 

putback(clsidxin,pbset,initr,allpat,clsctrs,numclus) 

pbsetlen = length(pbset) ; 
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for i = 1:pbsetlen 

    currad = initr ; 

    found = false ; 

    while (~found) 

        currad = currad + 0.01 ; 

        for j = numclus:-1:1 

            dd=clsctrs(j,:)- allpat(pbset(i),:); d=sqrt(dd*dd');  

            if d<currad,  % if distance of present pattern < current 

threshold... 

                clsidxin{j} = [clsidxin{j} pbset(i)] ; 

                found = true ; 

                break; 

            end; 

        end 

    end 

end 

  

clsidxout = clsidxin ; 

return 
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