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Abstract

Emily M. Dempsey, Mathematics, Auburn University

The Inverse Eigenvalue Problem for Euclidean Distance Matrices

This paper examines the inverse eigenvalue problem (IEP) for the particular class of

Euclidean distance matrices (EDM). Studying the necessary and sufficient conditions for

a matrix to be an element of EDM gives us a better understanding as to the necessary

conditions placed on the numbers to be the eigenvalues of some Euclidean distance matrix.

Using this necessary conditions, Hayden was able to solve the IEP order n using a Hadamard

matrix of the same order. After 10 years, an error in his construction of Hayden’s solution

order n + 1 was noted and corrected accordingly however the result was not a solution to

the IEP of order n+ 1.
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Chapter 1

What is an inverse eigenvalue problem?

An inverse eigenvalue problem deals with the reconstruction of a matrix from given spec-

tral data (including complete or partial information of eigenvalues or eigenvectors). Often,

reconstructing a matrix with some particular structure (such as being a circulant matrix or

a tridiagonal matrix) given spectral data is the aim. Also, given spectral data, does a matrix

with some particular structure even exist? Considerable time has been spent on finding the

necessary and sufficient conditions in order for a given inverse eigenvalue problem to have a

solution. An efficient algorithm for finding such a solution to an inverse eigenvalue problem

is normally quite difficult.

1.1 Examples of solved inverse eigenvalue problems

For some classes of matrices, the inverse eigenvalue problem has been solved. For in-

stance, the inverse eigenvalue problem for a circulant matrix C ∈ Rn×n has been solved,

along with symmetric tridiagonal matrix T ∈ Rn×n.
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1.1.1 Circulant matrices

A circulant matrix C ∈ Rn×n is of the form



α0 α1 α2 · · · αn−1

αn−1 α0 α1 · · · αn−2

αn−2 αn−1 α0 · · · αn−3
...

. . . . . . . . .
...

α1 α2 . . . αn−1 α0


.

Each row of a circulant matrix is the previous row cycled horizontally one place to the right.

Define a basic circulant P =



0 0 · · · 0 1

1 0 · · · 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 0


, where αn−1 = 1, and αi = 0 for i 6= n−1.

Notice that the minimal polynomial for P is q(t) = tn − 1. So σ(P ) is the set of distinct nth

roots of unity, say {γ0, γ1, . . . , γn−1} where γ = e
2πi
n . Let {λ0, λ1, . . . , λn−1} be the eigen-

values of circulant matrix C∗, and therefore the roots of characteristic polynomial of C∗.

By interpolation, there is a polynomial Q(x) of degree n − 1 that maps each γi to λi. So,

C∗ = Q(P ) and hence σ(Q(P )) = σ(C∗) = {λ0, . . . , λn−1}.

1.1.2 Real symmetric tridiagonal matrices

Real symmetric tridiagonal matrices are of the form



α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0 β2
. . . . . . 0

...
. . . . . . αn−1 βn−1

0 . . . 0 βn−1 αn


.

Given real numbers λ1 < µ1 < λ2 < · · · < λn−1 < µn−1 < λn, there exists a unique
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tridiagonal (or Jacobi matrix), T =



α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0 β2
. . . . . . 0

...
. . . . . . αn−1 βn−1

0 . . . 0 βn−1 αn


with βi > 0 such that

σ(T ) = {λ1, . . . , λn} and σ(T1,1) = {µ1, . . . , µn−1}, where T1,1 ∈ R(n−1)×(n−1) denotes the

matrix T ∈ Rn×n with column 1 and row 1 removed [1].
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Chapter 2

Definition and existence of an Euclidean distance matrix

Distance matrices are a class of matrices subject to the condition that each entry repre-

sents the distance pairwise between points in a finite dimension k. Storing distances among

points in matrix form is relatively efficient. There are obviously necessary conditions for an

n× n matrix M to possibly be a distance matrix; however the initial obvious conditions are

not sufficient to classify as a distance matrix. Euclidean distance matrices are a sub-class of

distance matrices in that the distance is measured using the Euclidean metric.

2.1 EDM definition

An Euclidean space is a finite-dimensional real vector space Rk with inner product

defined by 〈x,y〉 = 〈(x1, x2, . . . , xk), (y1, y2, . . . yk)〉 = x1y1 + x2y2 + · · · + xkyk. The inner

product induces a distance or metric d(x,y) = ‖x − y‖2 =
√

Σk
i=1(xi − yi)2. An element

of the set of Euclidean distance matries, denoted EDM, is derived by a complete list of the

squared distances between pairs of points from a list of k {xi, i = 1 . . . k}. The entries of the

distance matrix are defined by dij = ‖xi − xj‖22 = 〈xi − xj,xi − xj〉, which represents the

distance (squared) between the ith and jth point. Note that the number of points in the list

N, does not have to equal the dimension of the space k.

The absolute distance squared between points xi and xj for i, j = 1, . . . , N must satisfy

the metric space properties:

1. dij ≥ 0, i 6= j

2. dij = 0 if and only if xi = xj

4



3. dij = dji

4. dij ≤ dik + dkj, i 6= j 6= k

A distance matrix D has N2 entries but since it is symmetric and has diagonal 0, D

contains only N(N − 1)/2 pieces of information. Note that, EDM, the set of Euclidean

squared-distance matrices, is a subset of RN×N
+ .

2.2 Characterization of EDM

Although the entries in any distance matrix D must satisfy the metric properties given

above, that is not a sufficient condition for the matrix D to be in EDM. It wasn’t until 1982,

that J. C. Gower gave necessary and sufficient conditions for a matrix D to be in EDM.

His result, according to many mathematicians, is rather late given its significance. Gower’s

results are explained in Theorem 2.1. Following the proof, is an example as to why matrix a

A ∈ Rn×n, with entries only satisfying the metric properties may not be and element of EDM.

Theorem 2.1. Let s ∈ Rn, with sTe = 1, e the all 1’s vector. D is a distance matrix if and

only if

1. D is symmetric,

2. diag(D) = 0 and

3. (I − esT )D(I − seT ) is negative semidefinite with rank bounded above by k.

Proof. (⇒) Let D = [dij] be a distance matrix defined by the points in the list {x` ∈ Rn,

` = 1, . . . , N}. Define X := [x1, . . . ,xN ] ∈ Rn×N where each vector in the list is a column

of the matrix X. Each entry in D, dij = ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xTi xj. Therefore

D = XeT + eXT − 2P TP where Pk×n = [x1, . . . ,xn], xi ∈ Rk and X = [‖x1‖2, . . . , ‖xn‖2]T .

Let u ∈ Rn then uT (I − esT )D(I − seT )u=((I − seT )u)TD(I − seT )u. Let v = (I − seT )u

then v = (I−seT )u ∈ {e}⊥ since eT (I−seT )u = (eT−((eT s)eT )u = (eT−eT )u = 0T ·u = 0.

5



vTDv = vT (XeT + eXT − 2P TP )v

= vTXeTv + vTeXTv − 2vTP TPv

= −2(Pv)T (Pv)

= −2‖Pv‖2 ≤ 0

(⇐) Let D = DT , diag(D)=0 and (I−esT )D(I− seT ) be negative semidefinite. There-

fore −1
2
(I − esT )D(I − seT ) is positive semidefinite. Since rank{(I − esT )D(I − seT )} ≤ k,

∃ Qk×n = [y1, ...,yn], yi ∈ Rk such that QTQ = −1
2
(I − esT )D(I − seT ). Then, −2QTQ =

(I−esT )D(I−seT ) = D−esTD−DseT +esTDseT . Let g = Ds− 1
2
sTDse. Then −2QTQ =

D − geT − egT . After rearranging, D = geT + egT − 2QTQ. So, 0 = dii = gi + gi − 2yTi yi,

and therefore gi = yTi yi = ‖yi‖2. Finally, dij = ‖yi‖2 + ‖yj‖2 − 2yTi yj = ‖yi − yj‖2.

Observation 2.2. If sTe = 1 then (I − seT )x ∈ {e}⊥ for all x since eT (I − seT )x =

(eT − eT )x = 0. Therefore, condition 3 of Theorem 2.1 can be restated as D is negative

semidefinite on the subspace {e}⊥ for D ∈ EDM.

Observation 2.3. By the pure definition and metric properties, if D ∈ EDM, D must be

symmetric, positive real valued with 0 diagonal to have a chance of being in EDM. From now

on, denote the set of n×n square symmetric zero diagonal non-negative matrices as SYM+
0 .

Therefore Theorem 2.1 could be restated more simply: Let D ∈ SYM+
0 . Then D ∈ EDM iff

D is negative semidefinite on {e}⊥.

Together, conditions 1, 2, and 3 of Theorem 2.1 are the necessary and sufficient condi-

tions for a matrix D ∈ EDM. The matrix A ∈ SYM+
0 solely satisfying the metric properties

does not guarantee A ∈ EDM.
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Example 1: Define

A =



0 1 1 4

1 0 1 1

1 1 0 1

4 1 1 0


.

Upon inspection, the entries in A satisfy each metric property 1-4 and conditions 1 and 2 of

Theorem 2.1 therefore A is in SYM+
0 . In checking the last condition, let s =

[
1 −1 0 1

]T
,

with sTe = 1. Compute Â = (I − esT )A(I − seT )

Â =



0 1 0 −1

−1 2 0 −1

−1 1 1 −1

−1 1 0 0





0 1 1 4

1 0 1 1

1 1 0 1

4 1 1 0





0 −1 −1 −1

1 2 1 1

0 0 1 0

−1 −1 −1 0



=



−2 0 1 2

0 0 2 0

1 2 2 1

2 0 1 −2


.

Condition 3 of Theorem 2.1 states Â = (I−esT )A(I−seT ) must be negative semidefinite

in order for A ∈ EDM. By the definition of negative semidefinite, and our computation,

the inequality xT (I − esT )A(I − seT )x = xT Âx ≤ 0 must hold for any x ∈ R4. But

xT Âx =

[
0 0 1 0

]


−2 0 1 2

0 0 2 0

1 2 2 1

2 0 1 −2





0

0

1

0


= 2. Therefore the matrix A cannot be an

Euclidean distance matrix.
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2.3 Eigenvalue properties of EDM

Before attempting to solve an inverse eigenvalue problem for D ∈ EDM, as with any

class of matrices, it is important to have an understanding of the way the eigenvalues of

D behave, relationships with their eigenvectors and other spectral properties of EDM as a

set. Each potential distance matrix M ∈ SYM+
0 is symmetric and real-valued. Therefore

σ(M) ∈ R since λ̄〈x,x〉 = 〈λx,x〉 = 〈Mx,x〉 = 〈x,MTx〉 = 〈x,Mx〉 = 〈x, λx〉 = λ〈x,x〉 for

any λ ∈ σ(M). Moreover, if M ∈ SYM+
0 with σ(M) = {λ1, λ2, . . . , λn}, then trace(M) = 0;

meaning that
n∑
i=1

λi = 0. These properties of eigenvalues of any matrix in SYM+
0 gives us an

obvious starting point for the purpose of reconstructing an Euclidean distance matrix from

spectral data. Next it will be useful to state and prove the Courant-Fisher Theorem for the

real symmetric case.

Theorem 2.4 (The Courant-Fischer Theorem). Let A be an n × n real symmetric matrix

with ordered eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · ≤ λn and L a subspace of Rn. Define

F (L) = FA(L) = max{xTAx|x ∈ L, ‖x‖2 = 1}, and define f(L) = fA(L) = min{xTAx|x ∈

L, ‖x‖2 = 1}. Then, λk = min{F (L)|dim(L) = k} = max{f(L)|dim(L) = n− k + 1}.

Proof. Let A be an n × n real symmetric matrix with ordered eigenvalues λ1 ≤ λ2 ≤

· · · ≤ λk ≤ · · · ≤ λn and L a subspace of Rn. Define F (L) = FA(L) = max{xTAx|x ∈

L, ‖x‖2 = 1}, and define f(L) = fA(L) = min{xTAx|x ∈ L, ‖x‖2 = 1}. Then f(L) ≤

min{f(L)|dim(L) = k} ≤ max{f(L)|dim(L) = k} ≤ max{f(L)|dim(L) = n− k + 1} = λk.

Similarly, F (L) ≥ max{F (L)|dim(L) = n − k + 1} ≥ min{F (L)|dim(L) = n − k + 1} ≥

min{F (L)|dim(L) = k} = λk.

Definition 2.5. A symmetric matrix B is said to be almost negative semidefinite if xTBx ≤

0 for all x ∈ Rn such that xTe = 0, (x ∈ {e}⊥).

The following theorem was adapted from J. Ferland and J.P. Crouzeix’s theorem on

properties of almost positive semidefinite matrices and gives some useful conditions for the
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analogous almost negative semidefinite matrices. This, in turn, gives alternate necessary and

sufficient conditions for a matrix A to be in EDM involving spectral data, which is useful

for the study of inverse eigenvalue problems, [3].

Theorem 2.6. Let D ∈ SYM+
0 and D 6= 0. D ∈ EDM if and only if

1. D has exactly one positive eigenvalue,

2. ∃ w ∈ Rn such that Dw = e and wTe ≥ 0.

Proof. (⇒)(1) Let D ∈ EDM. Suppose L ⊆ Rn. Define F (L) = max{xTDx| x ∈ L, ‖x‖2 =

1}. By the Courant-Fisher Theorem, λk = min{F (L)| dim(L) = k}. Let λ1 ≤ λ2 ≤ · · · ≤ λn

be the ordered eigenvalues of D. λn−1 = min{F ({e}⊥)| dim({e}⊥) = n − 1} ≤ F ({e}⊥).

By Theorem 2.1, F ({e}⊥) ≤ 0 because
(
I − seT

)
v = v for all v ∈ {e}⊥. So, λ1 ≤ λ2 ≤

· · · ≤ λn−1 ≤ 0. If λ1 = λ2 = · · · = λn−1 = 0, then λn = 0 since Trace(D) =
n∑
i=1

λi = 0.

If D had all zero eigenvalues, D would be orthonormally similar to the 0 matrix which is a

contradiction. Therefore there are some non-zero eigenvalues of D and λn > 0.

(⇒) (2) By (1) D is not negative semidefinite. Suppose e 6∈ range(D), therefore there

does not exist w ∈ Rn such that Dw = e. Recall, e can be written as e = x + y where

x ∈ ker(D) and y ∈ range(D). Note that D = DT , so range(D)=range(DT ). Since e /∈

range(D), x 6= 0. xTe = xT (x + y) = xTx + xTy = xTx since ker(D) ⊥ range(D), so

xTy = 0. Let v ∈ Rn. Define h =
(
I − 1

xT e
xeT

)
v.

hTDh =

((
I − 1

xTe
xeT

)
v

)T
D

((
I − 1

xTe
xeT

)
v

)
= vTDv − 1

xTe
vTDxeTv − 1

xTe
vTexTDv +

1

(xTe)2
vTexTDxeTv

= vTDv.

9



Note that

hTe = vT
(
I − 1

xTe
exT

)
e

= vTe− vT
(

1

xTe
exTe

)
= vTe− vTe

= 0.

So by Theorem 2.1 with s =
(

1
xT e

)
x, hTDh = vTDv ≤ 0. D cannot be negative

semidefinite so e ∈ range(D). Therefore there exists w ∈ Rn such that Dw = e.

Now suppose wTe 6= 0. We are going to show wTe > 0. Let u be an eigenvector corre-

sponding to the positive eigenvalue of D. Let g =
(
I − ( 1

wT e
)weT

)
u =

(
u− ( 1

wT e
)weTu

)
.

Re arrange to obtain, u = g + ( 1
wT e

)weTu, then compute

uTDu =

(
g +

1

wTe
weTu

)T
D

(
g +

1

wTe
weTu

)
= gTDg + gTD

1

wTe
weTu + uT

1

eTw
ewTDg + uT

1

(eTw)2
ewTDweTu.

Using Dw = e to simplify,

uTDu = gTDg +
gTeeTu

wTe
+

uTeeTg

eTw
+

uTewTeeTu

eTwwTe
.

Since gTe =
((
I − 1

wT e
weT

)
u
)T

e = 0,

We obtain

10



uTDu = gTDg +
(uTe)(uTe)T

(wTe)(wTe)T
(wTe)

= gTDg +

(
uTe

wTe

)2

wTe.

Since u is an eigenvector corresponding to the positive eigenvalue of D, uTDu > 0.

Noting that g ∈ {e}⊥ and gTDg ≤ 0, by Theorem 2.1. Therefore wTe > 0.

(⇐) Let λ be the positive eigenvalue of D with orthonormal eigenvector u 6= 0. i.e.

Du = λu. Since the remaining eigenvalues of D are non-positive, D can be written as

D = λuuT − CTC. By assumption, there exists w ∈ Rn satisfying Dw = e and wTe ≥ 0.

Dw = (λuuT − CTC)w = λuTwu− CTCw = e (*)

and,

wTDw = λwTuTwu−wTCTCw = wTe ≥ 0. (**)

If uTw = 0, then −‖Cw‖2 = −wTCTCw = wTe ≥ 0, by (**). This implies Cw = 0.

Then (*) leads to the contradiction e = 0. We conclude uTw 6= 0, and Cw 6= 0. Since λ > 0

and uTw 6= 0, (*) may be rearranged to give u = 1
λuTw

(e + CTCw).

D = λuuT − CTC

= λ

(
1

λuTw
(e + CTCw)

)(
1

λuTw
(e + CTCw)

)T
− CTC

=
1

λ(uTw)2
(eeT + ewTCTC + CTCweT + CTCwwTCTC)− CTC.

11



Let h ∈ Rn satisfy hTe = 0. Then

hTDh =
1

λ(uTw)2
(hTCTCwwTCTCh)− hTCTCh.

By (**), λ(uTw)2 ≥ ‖Cw‖2. Therefore,

hTDh ≤ 1

‖Cw‖2
(hTCTCw)2 − ‖Ch‖2

=
1

(Cw)T (Cw)
[(Ch)T (Cw)]2 − (Ch)T (Ch)

≤ 0,

since by Cauchy-Schwarz we have [(Ch)T (Cw)]2 ≤ (Cw)(Cw)T (Ch)(Ch). Hence D is

negative semidefinite on the subspace {e}⊥. So by Theorem 2.1, D ∈ EDM.

Observation 2.7. An important fact to note is if there exists two vectors w1,w2 ∈ Rn such

that Dw1 = Dw2 = e, then w1 − w2 = z ∈ ker(D). So, eTw1 − eTw2 = eTz. However

eTz = wT
1Dz = 0, therefore the conclusion is wT

1 e = wT
2 e.

A special simple case of Theorem 2.6, which will be used later, is when D has eigenvector

e associated with its only positive eigenvalue.

Corollary 2.8. Let D ∈ SYM+
0 and have only one positive eigenvalue λ1, with eigenvector

e. Then D is a distance matrix.

Proof. Suppose D ∈ SYM+
0 and has only one positive eigenvalue λ1, with eigenvector 1√

n
e.

All other eigenvalues of D are nonpositive, D = λ1
1
n
eeT − CTC. If xTe = 0,

xTDx = λ1
1

n
xTeexT − xTCTCxT

= −xTCTCxT = −‖Cx‖2

≤ 0.

12



Therefore by Theorem 2.1 since matrix D is symmetric with diag(D) = 0 and is negative

semidefinite on {e}⊥, D ∈ EDM.

By Theorem 2.6, D must have exactly one positive eigenvalue; call it λ1. So necessarily

λ1 = −λ2 − · · · − λn since
n∑
i=1

λi = 0.

13



Chapter 3

Connections between Hadamard and Euclidean distance matrices

So far, we have characterized EDM as a set of matrices all of which are symmetric and

have zero diagonal from the geometry of distance and metric properties. By Theorem 2.1,

any D in EDM must be negative semidefinite on the subspace {e}⊥. We also found from

Theorem 2.6, D in EDM must have exactly one positive eigenvalue. The all 1’s vector e

must be of the form Dw for some w with wTe ≥ 0. And the sum of the eigenvalues of D is

zero. In this section we discuss how to construct a distance matrix with specified eigenvalues

from a known Hadamard matrix.

3.1 Hadamard matrices

First some preliminary definitions and background.

Definition 3.1. A matrix H ∈ Rn×n is a Hadamard matrix if each entry is ±1 and HTH =

nI meaning the rows, and consequently columns, are pairwise orthogonal and H is non-

singular.

Historically, Hadamard matrices were known as far back as 1867 and it is believed there

is a connection between Hadamard matrices and tessellations. Hadamard matrices are only

known to exist if n = 1, 2 or n ≡ 0 mod 4 and it is unknown if this condition is sufficient [2].

In order to show connection between Hadamard matrices and EDM, it is very useful to point

out shared properties for a set real numbers in common with the eigenvalues for D ∈ EDM.

Lemma 3.2. Let λ1 ≥ 0 ≥ λ2 ≥ . . . ≥ λn where
n∑
i=1

λi = 0, then (n − 1)|λn| ≥ λ1 and

(n− 1)|λ2| ≤ λ1.
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Proof. By the given assumption, λ1 = |λ2| + |λ3| + . . . + |λn| and |λ2| ≤ |λ3| ≤ . . . ≤ |λn|.

Therefore (n − 1)|λ2| ≤ |λ2| ≤ |λ3| ≤ . . . ≤ |λn| ≤ (n − 1)|λn|, and by replacing with λ1,

(n− 1) ≤ λ1 ≤ (n− 1)|λn|.

3.2 Solution to the IEP based on a given Hadamard matrix

The next theorem published by Thomas Hayden, Robert Reams, and James Wells in

1999 [7], shows the closest and perhaps strongest connection distance matrices have with

Hadamard matrices and solves the inverse eigenvalue problem for EDM in a finite number

of cases.

Theorem 3.3. Let n be such that there exists a Hadamard matrix of order n. Let λ1 ≥

0 ≥ λ2 ≥ . . . ≥ λn and
n∑
i=1

λi = 0, then there exists a distance matrix D with eigenvalues

λ1, λ2, . . . , λn.

Proof. Let e ∈ Rn, and H ∈ Rn×n be a Hadamard matrix of order n. Let U = 1√
n
H so

that U is an orthonormal matrix. Let Λ = diag(λ1, λ2, . . . , λn). Therefore D = UTΛU is

symmetric and has eigenvalues λ1, λ2, . . . , λn. H has one row of all ones, assume it is row 1

of H.

De = UTΛUe = 1
n
HTΛHe = 1

n
HT



nλ1

0

...

0


= 1

n



nλ1

nλ1
...

nλ1


= λ1e. Therefore e is an

eigenvector of D corresponding to eigenvalue λ1. It can be computed dii =
∑n

i=1
1
n
λi = 0

since
∑n

i=1 λi = 0. By Corollary 2.8, D ∈ EDM.

For the purpose of constructing D ∈ EDM of any finite order given particular spectral

properties, this is sufficient but not necessary condition. For example, there exists distance

matrices of order 3 so they cannot be Hadamard. Furthermore, it is not even known if there

exists a Hadamard matrix for every n ≥ 4 which is a multiple of 4 [2].
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3.2.1 An example constructing a distance matrix using a Hadamard matrix of

the same order

Let n = 4, assign λ1 = 6, λ2 = −1, λ3 = −2, λ4 = −3,

so that

Λ =



6 0 0 0

0 −1 0 0

0 0 −2 0

0 0 0 −3


.

Let Hadamard matrix,

H =



1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1


, then U =

1

2



1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1


.

So UTΛU =



0 2 2.5 1.5

2 0 1.5 2.5

2.5 1.5 0 2

1.5 2.5 2 0


is a distance matrix by Theorem 3.3; call it D. Also, by

Corollary 2.8, since De = 6e; D is in EDM.

3.3 Solving the inverse eigenvalue problem for other orders

The next step in solving the inverse eigenvalue problem of Euclidean distance matrices

for all orders of n, has been focused especially on the n + 1 case. Starting with a matrix

D ∈ EDM of order n constructed from given spectral data, is there any way to border the

matrix D to get a matrix D̂ of size n+ 1 with D̂ ∈ EDM?
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In order to begin looking at the inverse eigenvalue problem for the n + 1 case we need

a few preliminary theorems due to Fiedler [3].

Theorem 3.4. Let A be a symmetric m×m matrix with eigenvalues α1, . . . , αm and let u be

a unit eigenvector corresponding to α1. Let B be a symmetric n×n matrix with eigenvalues

β1, . . . , βn and let v be a unit eigenvector corresponding to β1. Then for any p, the matrix

C =

 A puvT

pvuT B


has eigenvalues α2, . . . , αm, β2, . . . , βm, γ1, γ2 where γ1 and γ2 are eigenvalues of the matrix

C∗ =

α1 p

p β1

 .
Proof. Let u1,u2, . . . ,um be an orthogonal set of eigenvectors of A,

Aui = αiui, i = 2, . . . ,m.

By direct verification

ui

0

 are eigenvectors of C with the corresponding i = 2, . . . ,m.

Similarly, for B, let v1,v2, . . . ,vn be an orthogonal set of eigenvectors of B,

Bvi = βivi, i = 2, . . . , n.

By direct verification

vi

0

 are eigenvectors of C with the corresponding i = 2, . . . , n.

Let γ1 and γ2 be eigenvalues of C∗ with corresponding eigenvectors (g, h)T and (j, k)T .
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α1 p

p β1


 g

h

 = γ1

 g

h

, gives us the equations


α1g + ph = γ1g

pg + β1h = γ1h

.

α1 p

p β1


 j

k

 = γ2

 j

k

, gives us the equations


α1j + pk = γ2j

pg + β1h = γ2k

.

Then, A puvT

pvuT B


 gu

hv

 =

 gAu + hpu

gpv + hBv

 =

 (gα1 + hp)u

(gp+ hβ1)v

 = γ1

 gu

hv


and, A puvT

pvuT B


 ju

kv

 =

 jAu + kpu

jpv + kBv

 =

 (jα1 + kp)u

(jp+ kβ1)v

 = γ2

 ju

kv

.

Therefore γ1 and γ2 are eigenvalues of C with corresponding eigenvectors (g, h)T and

(j, k)T .

Theorem 3.5. Let α1 ≥ α2 ≥ . . . ≥ αk be the eigenvalues of the symmetric non-negative

matrix A ∈ Rk×k and β1 ≥ β2 ≥ . . . ≥ βl be the eigenvalues of the symmetric non-negative

matrix B ∈ Rl×l, where α1 ≥ β1. Also, Au = α1u, Bv = β1v and u and v are corresponding

unit Perron vectors. Then with p =
√
σ(α1 − β1 + σ) the matrix

 A puvT

pvuT B


has eigenvalues α1 + σ, β1 − σ, α2, . . . , αk, β2, . . . , βl for any σ ≥ 0.

Proof. By Theorem 3.4,

 A puvT

pvuT B

 has eigenvalues α2, . . . , αm, β2, . . . , βm. If σ ≥ 0

choose p =
√
σ(α1 − β1 + σ). Set det


α1 p

p β1

− λI
 = 0.
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det


α1 p

p β1

− λI
 = (α1 − λ)(β1 − λ)− p2

= λ2 − (α1 + β1)λ+ (α1β1 − p2) = 0

By the quadratic formula,

λ =
α1 + β1 ±

√
(α1 + β1)2 − 4(α1β1 − p2)

2

=
1

2

[
α1 + β1 ±

√
α2
1 − 2α1β1 + β2

1 + 4p2
]
.

After plugging in p and distributing, and grouping α1, β1,

λ =
1

2

[
α1 + β1 ±

√
(α1 − β1)2 + 4σα1 − 4σβ1 + 4σ2

]
=

1

2

[
α1 + β1 ±

√
(α1 − β1)2 + 4σ(α1 − β1) + 4σ2

]
=

1

2

[
α1 + β1 ±

√
(2σ + (α1 − β1))2

]
=

1

2
[α1 + β1 ± (2σ + α1 − β1)]

Therefore λ1 = 1
2
[α1+β1+2σ+α1−β1] = α1+σ1, and λ2 = 1

2
[α1+β1−2σ−α1+β1] = β1−σ.

By Theorem 3.4, α1 + σ and β1 − σ are eigenvalues of the matrix

 A puvT

pvuT B

.
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3.3.1 An error attempting to solve the inverse eigenvalue problem for EDM for

the (n+ 1)× (n+ 1) case

In 1999, T.L. Hayden et. al. claimed to solve the inverse eigenvalue problem for distance

matrices (n + 1) × (n + 1) using a distance matrix of size n constructed from a Hadamard

matrix and specified eigenvalules as in Theorem 3.3. [7].

The theorem states:

Let n be such that there exists a Hadamard matrix of order n. Let λ1 ≥ 0 ≥ λ2 ≥ . . . ≥ λn+1

and
n+1∑
i=1

λi = 0, then there is an (n + 1) × (n + 1) distance matrix D̂ with eigenvalues

λ1, λ2, . . . , λn+1.

Let n = 4 and λ1 = 6.1623, λ2 = −0.1623, λ3 = −1, λ4 = −2, λ5 = −3. Following the

construction in the proof in the original paper, we begin with a distance matrix constructed

from a Hadamard matrix (same matrix as in our previous example)

D =



0 2 2.5 1.5

2 0 1.5 2.5

2.5 1.5 0 2

1.5 2.5 2 0


,

with eigenvalues {6.1623+(-0.1623), -1, -2, -3} and Perron vector e. Following Theorem 3.5,

define D̂=

 D pu

puT 0

, letting u=1
2
e and p =

√
−6.1623(−.1623) ≈ 1.0001. By computing
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the block matrix

D̂ ≈



0 2 2.5 1.5 .5

2 0 1.5 2.5 .5

2.5 1.5 0 2 .5

1.5 2.5 2 0 .5

.5 .5 .5 .5 0


with eigenvalues {6.1623, -.1623, -1, -2, -3}. Define ŵ = [.5, .5, .5, .5,−4]T , Dŵ = ê, but by

inspection ŵT ê < 0 and by Theorem 2.6, D̂ cannot be a distance matrix.

Over 10 years after the original paper was published, Jaklic and Modic were able to

note the error, salvage some of the proof but yield different results [11].

3.4 Current state of the n+ 1 case

Building on his solution for solving IEP of EDM’s of order such that a Hadamard matrix

exists, Hayden in 1999, considered the n+ 1 case. Despite a major error in his solution, the

paper was published and the inverse eigenvalue problem was supposedly solved for the n+ 1

case. Jaklic and Modic in 2013 noted the error in the theorem of Hayden’s n+1 followed the

direction of the proof and added a small but significant condition [11]. However, as a result,

this did not solve an IEP for EDM; but suffices to give a general construction algorithm for

a distance matrix, but not from prescribed spectral data.

Theorem 3.6. Let D ∈ EDM and D 6= 0 with Perron eigenvalue r and the corresponding

normalized Perron eigenvector u. Let Dw=e, wTe ≥ 0 and p > 0. Then the matrix D̂= D pu

puT 0

 ∈ EDM iff p ∈ [α−, α+], where α± := r

uTe∓
√
reTw

, noting that the denominator

can be zero if u = 1√
ne

. In this case, take α+ =∞.

Proof. By Theorem 2.6 matrix D̂ ∈ EDM if (1) it has exactly one positive eigenvalue and

(2) there exists a vector ŵ ∈ Rn+1, such that D̂w = e and ŵTe ≥ 0.

1. The matrix D̂ has exactly one positive eigenvalue:
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By Theorem 3.4, D̂ has n− 1 non-positive eigenvalues of the original distance matrix D and

the eigenvalues of the matrix r p

p 0

 .
This can be seen by looking at the roots of characteristic polynomial p(x) = x2 − rx − p2

which are 1
2
(r±

√
r2 + 4p2). Because

√
r2 + 4p2 > r and D̂ has n− 1 non-positive eigenval-

ues, then D̂ has exactly one positive eigenvalue.

2. We now must find values of p such that eT ŵ ≥ 0.

Define

ŵ =

w − (u
T e
r
− 1

p
)u

1
p
(uTe− r

p
)


so that D̂ŵ = e.

eT ŵ = eTw − 1

r
eTuTeu +

1

p
eTu +

1

p
uTe− r

p2
(3.1)

= eTw − 1

r
(uTe)2 +

2

p
uTe− r

p2
(3.2)

Case 1: Suppose u = 1√
n
e. Then w = 1

r
e since Du = ru means D 1√

n
e = r 1√

n
e; and

therefore D 1
r
e = e. So w = 1

r
e because Dw = e. After substituting those values into (2)

and reducing, eT ŵ = 1
p2

(2p
√
n − r). So eT ŵ ≥ 0 if and only if 2p

√
n − r ≥ 0, meaning

p ≥ r
2
√
n
. Using what we defined vectors u and w to be, plugging in and reducing,

α± =
r

uTe∓
√
reTw

=
r√

n∓
√
n
.

Therefore eT ŵ ≥ 0 if and only if p ∈ [α−, α+] = [ r
2
√
n
,∞].
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Case 2: Suppose u 6= 1√
n
e. Refer to equation (3.2), rearrange and set equal to zero.

eTw − 1

r
(uTe)2 +

2

p
uTe− r

p2
= 0,

(
−1

r

)
(uTe)2 +

(
2

p

)
uTe +

(
eTw − r

p2

)
= 0.

By the quadratic formula the roots of the polynomial equation

f(x) = −1
r
x2 + 2

p
x+

(
eTw − r

p2

)
are r

p
±
√
r(eTw).

Therefore, eT ŵ =
(
uTe− r

p
+
√
r(eTw)

)(
uTe− r

p
−
√
r(eTw)

)
= 0, noting that(

uTe− r
p

+
√
r(eTw)

)
≥
(
uTe− r

p
−
√
r(eTw)

)
. Setting each term equal to 0 and solving

for p, we achvieve,

p =
r

uTe +
√
r(eTw)

or p =
r

uTe−
√
r(eTw)

.

Observe that [α−, α+] is well defined since for any w ∈ Rn satisfying Dw = e, eTw is unique.

Refer to observation 2.7. So if p ∈ [α−, α+], where α± = r

uT e∓
√
reTw

given any u ∈ Rn, then

eT ŵ ≥ 0.

In conclusion, D̂=

 D pu

puT 0

 ∈ EDM where D ∈ EDM of any size, iff p ∈ [α−, α+], where

α± = r

uTe∓
√
reTw

.

Looking back at Example 3.3.1, with u = 1
2
e, 1

6
w = e and r = 6. By inspection,

the interval [α−, α+] = [3
2
,∞]. Note p ≈ 1.0001 /∈ [α−, α+]. Therefore, by Theorem 3.6,

D̂=

 D pu

puT 0

 can not be a distance matrix.

By including the condition p ∈ [α+, α−], Theorem 3.6, guarantees that D̂ is a distance

matrix but does not necessarily solve the inverse eigenvalue problem. The added condition

for p ∈ [α−, α+] and the definition of α means p is defined in terms of r which, recall, is an

eigenvalue of our original distance matrix D.
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