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 One-dimensional modeling of frictional compressible gaseous flow through a 

high-pressure piezoelectrically-actuated microvalve is studied.  Focusing on the micro-

scale gap between the boss and seat plates, variations of flow properties were predicted 

using two 1-D models: 1. Channel Flow Model, 2. Radial Flow Model.  Both models 

utilized a 4th order Runge-Kutta algorithm to integrate a respective system of nonlinear 

ordinary differential equations.   

A channel flow model was developed for steady, compressible flow of a perfect 

gas between two infinite insulated parallel plates.  This model served the purpose of 

benchmarking the numerical code against analytical expressions for the properties of 

flow through a constant-area channel.  Additionally, utilizing this model, the total 
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pressure loss through the outlet tube was found to be negligible in comparison to that of 

total pressure loss across the seat rings.   

The radial flow model was developed for steady, axisymmetric, compressible 

flow of a perfect gas between two insulated, parallel disks flowing radially toward an 

outlet hole at the center of the bottom disk. This model was implemented to determine the 

variation of properties of flow between the boss and seat plates of a JPL microvalve.  The 

most notable conclusion from the flow property trends is that of a drastic increase in 

density and static pressure in contrast to a rather small increase in the Mach number.  

Also of importance, the total pressure drop was shown to be significant across the seat 

rings. 

A 2-D Stokes flow model was derived  for incompressible, axisymmetric, radial 

flow between two concentric parallel disks.  The results of this model were used to verify 

the flow property variations from the radial flow model.  In particular, for the Stokes flow 

model, relations for radial velocity, average velocity, Darcy friction factor, volumetric 

flowrate, static pressure rise, and total pressure drop were derived.  The Stokes flow 

model trends for both static and total pressure were in accord with the radial compressible 

flow model trends.  In addition, a comparison of Stokes flow values for both the static 

pressure rise and the total pressure drop to that of the numerical results demonstrates the 

necessity of accounting for compressibility effects. 
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NOMENCLATURE 

 

English Symbols

a modified friction coefficient exponential constant for dimensionless obstacle 

height, E 

A cross-sectional area, µm2

As        wall surface area, µm2

b         modified friction coefficient exponential constant for the Reynolds number, ReDh

c modified friction coefficient exponential constant for dimensionless pitch length, 

D 

Cp constant pressure specific heat, J/(kg K) 

d pitch length of the channel obstacles, µm 

ds change in entropy, J/K 

D dimensionless pitch length of the channel obstacles, d/H 

Dh hydraulic diameter, µm  

e obstacle height, µm 

E dimensionless obstacle height, e/H 

f Darcy friction factor 

F modified friction coefficient 

h half of the channel height, or half of the spacing between the disks, H/2, µm 
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ht total enthalpy, J/kg 

H the channel height or spacing between the disks, µm 

K modified friction coefficient multiplication constant 

Kn Knudsen number, defined as M/(ReDh)1/2

Lmax maximum length a gas will travel before reaching Mach 1, µm 

M Mach number, defined as V/(γRT)1/2

N total number of points for integration 

P static pressure, kPa abs. 

Pt total pressure, kPa abs. 

Q volumetric flowrate, SCCM, ACCM 

r radial coordinate, µm 

ri radial coordinate of the inlet station 

ro radial coordinate of the outlet station  

r+ dimensionless radial location, r/ri

R gas constant, J/(kg K) 

ReDh Reynolds number, defined as ρVDh/µ 

T temperature, K 

Tt stagnation temperature, K 

v applied voltage, volts 

V velocity or average velocity, m/s 

Vr velocity component in the radial direction, m/s 

w width into the paper, µm 

x channel distance coordinate, µm 



 xxiii

x+ dimensionless channel coordinate, defined as x/Dh

xlim end point of integration 

z vertical coordinate, µm 

Greek Symbols

γ ratio of the specific heats, defined as Cp/Cv

δ deflection height of the boss plate above the seat rings, µm 

µ viscosity, (kg m)/s  

ρ density, kg/m3

τf wall shear stress, N/m2

ω step size shrinkage percentage 

 

Subscripts

i denotes values at the inlet 

o denotes values at the outlet 

 

Superscripts

+ nondimensionalized by the initial value, with the exception of x+
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CHAPTER 1  INTRODUCTION 

 

1.1 Background 

 The technological applications of microfluidic devices seem to be limitless.  

Currently, a great number of applicable concepts are being developed in relation to 

cooling of microelectronics, drug delivery systems, poisonous chemical sensors, lab-on- 

chip systems, DNA analysis, and micropropulsion systems (Ouellette, 2003).   

Micropropulsion systems are of great interest to the aerospace field through the 

concept of spacecraft miniaturization.  Currently, the launch cost range from $10,000 to 

$100,000 per kilogram of the spacecraft (Janson et al., 1998).  A reduction in size (and 

thus mass) to the micron level would greatly reduce the costs of manufacturing and 

launching of future space missions.  These cost reductions could also allow a greater 

number of launches for a given budget.  Furthermore, the size reduction often assists in 

attaining a necessary power reduction as well.   

Let us focus on the proposed microsatellites.  Generally, “standard” satellite size 

is down to a mass of 1000 kg, “small” size is considered down to 100 kg, a 

“microspacecraft” is down to 10 kg, and a “nanospacecraft” is 1 kg or less (Janson et al., 

1998).  A diagram displaying a range of satellite sizes is shown in Figure 1.1.  The 

implementation of microsatellites technology could lead to better performance over 

current satellite technology.  In many proposed applications of microspacecrafts, it is 
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suggested to use dense constellations of theses devices to perform the function of older 

larger satellites.  This could provide many advantages over existing larger satellites such 

as higher data transmission resolution from a distributed antenna array, and a decreased 

chance of functional failure (Mueller et al., 2000).   That is the loss of a single 

microsatellite may slightly degrade constellation performance but would not cripple 

operation.  A concept drawing of microsatellite is shown in Figure 1.2, and a photo of a 

microsatellite designed by the SpaceQuest Ltd. Company is shown in Figure 1.3. 

Miniaturization of the microspacecraft naturally necessitates marked size 

reduction of all the various components.  Among these, the fluid handling and control 

issues must be addressed within strict design constraints.  Successful design, optimization 

and fabrication of these microfluidic devices depends on the ability to understand and 

control the fluid flow through the particular device.  Among the typical microfluidic 

devices, micropumps, microvalves, and microthrusters have been studied extensively.  In 

this thesis, results of modeling of a piezoelectrically-actuated high-pressure gas 

microvalve is presented.  It is important to note that inert helium was used as the working 

fluid for the microvalve operation experiments because of its low molecular weight, that 

makes it a good choice for leak testing.  Actual micropropulsion systems will handle 

propellants. 

 

1.2 Microvalves for Micropropulsion System Applications 

 The current study focuses on modeling of gaseous compressible flow through a 

piezoelectrically-actuated JPL (Jet Propulsion Laboratory) microvalve component of 

envisioned micropropulsion systems.  The size restriction of the system requires that the 
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propulsion tank be highly-pressured in order to provide adequate thrust capability and 

propellant storage.  These two coupled design aspects are expressed in a term called an 

impulse bit, which is thrust integrated over thruster on-time (Newtons-Seconds) (Mueller 

et al., 2000).  Once in orbit, the propulsion system would be used for operations such as 

altitude control, turning antenna for data transmission, and maneuvering for optical 

observations (Yang et al., 2004).  These operations would not be frequent.  Therefore, the 

high-pressure micropropulsion system would be normally idle.  Thus, the microvalve 

component would have to be normally-closed, and leak-tight under high pressure.  In 

addition, it must also have a fast enough actuation in order to maneuver the spacecraft 

accurately.   

 

1.3 Objectives 

 The main objective of this thesis is to determine the variations of the flow 

properties from an inlet to an outlet port for gaseous compressible flow through the JPL 

microvalve during static operation.  This is achieved through the implementation of two 

1-D models, namely:  

1. Channel Flow Model,  

2. Radial Flow Model. 

A 4th order Runge-Kutta algorithm was utilized to integrate a system of coupled 

nonlinear ordinary differential equations for both models.   

 The channel flow model was developed for the purpose of benchmarking the 

numerical code.  The differential equations for the flow properties are similar to those of 
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compressible flow in a constant-area insulated duct with friction.  Analytical relations for 

the flow properties were derived as the benchmarking tools. 

 The radial flow model involves a more accurate approximation of the microvalve 

geometry.  This model accounts for compressibility flow of a perfect gas between two 

insulated, parallel disks flowing radially toward an outlet hole at the center of the bottom 

disk.  Additionally, a 2-D Stokes flow model was derived  for incompressible, 

axisymmetric, radial flow between two concentric parallel disks.  The results of this 

model were used to verify the flow property variations from the radial flow model. 

 

1.4 Outline of the Thesis 

A literature review of microvalves is given in Chapter 2.  In Chapter 3, the JPL 

microvalve is discussed in detail, and a modeling strategy is developed.  Chapter 4 

focuses on the mathematical formulation and derivation of the differential equations for 

the flow properties for both models.  In Chapter 5, a presentation and discussion of the 

results are given.  Lastly, conclusions and recommendations for future work are discussed 

in Chapter 6. 

 



 

 

 

 

 

 

Figure 1.1:  Diagram displaying a range of satellite sizes (source: 
http://www.sstl.co.uk/) 
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Figure 1.2:  Concept drawing of a microsatellite (Janson et al., 1998) 
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Figure 1.3:  A microsatellite developed by the SpaceQuest Ltd. Company in a low 
Earth orbit (source: http://www.spacequest.com/) 
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CHAPTER 2  LITERATURE REVIEW OF MICROVALVES 

 

 Microfluidic devices and systems have a number of advantages over traditional 

technology associated with their size, including lower power consumption, lower 

production costs, and high reproducibility in manufacturing with batched fabrication.  As 

with any fluid system, fluid control will almost always involve valves.  As a vital 

component to microfluidic systems, an abundant amount of research has gone into 

developing microvalves.   

 

2.1  Microvalve Categorization 

 Microvalves can be categorized in a number of different ways, such as the 

working fluid involved (although most are designed for gaseous flow), application, 

normally-closed or normally-open, and actuation.  This review will focus on microvalve 

designs in terms of the type of actuation utilized.  Specifically, the most popularly 

employed forms of actuation are as follows: 

1. Thermopneumatic,  2.    Shape Memory Alloy (SMA), 

3. Bi-morph,    4.    Electromagnetic, 

5. Electrostatic,        6.    Piezoelectric. 
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2.1.1 Thermopneumatic Actuation 

 The operating principle behind thermopneumatic actuation is the heating of a 

fluid in a sealed cavity to its boiling point, which causes the bulging of a silicon 

membrane covering the cavity to close a flow port.  Although these microvalves can be 

designed to be either normally-closed or normally-open, they are by majority designed as 

normally-open microvalves.   

 A normally-open thermopneumatic microvalve for high flowrates was developed 

by Rich and Wise (2003).  A schematic diagram of the microvalve cross-section is 

illustrated in Figure 2.1.  A small quantity of a volatile fluid (for instance pentane or 

methanol) at saturated liguid-vapor phase is contained within the actuator cavity below 

silicon membranes attached to the valve plate.  Upon heating the fluid with resistance 

heaters on the bottom of the cavity, the pressure rises, deflects the valve plate and closes 

the flow port.  This particular valve works well for an application that requires a high 

flowrate, but does not require a fast actuation (< 1sec.) or cycling rate.  Since the 

actuation is executed by pressure forces, it allows greater deflection over other forms of 

actuation. This allows for higher flowrates through the valve.  This valve was reported to 

close with 350 mW at a 1000 torr inlet pressure and maintain closure with a 30 mW 

input.  Under a differential pressure of 1500 torr, the valve had a flowrate of 400 SCCM 

(Standard Cubic Cm per Minute) with a leak rate of 10-3 SCCM.  Also, the response time 

of the valve was 1 second, which is relatively high when compared to the response time 

of other forms of actuation. 

 A normally-open thermopneumatic microvalve with a silicone rubber membrane 

was fabricated by Yang et al. (1997).  The valve has three component parts: the heater 
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wafer, the membrane/cavity wafer, and the valve seat.  These components are illustrated 

in Figure 2.2.  This particular microvalve is designed to allow for high flowrates through 

the use of a rubber membrane as opposed to a silicone membrane.  The silicone rubber 

used is MRTV1 manufactured by American Safety Technologies.  The rubber has a very 

low modulus (~ 1 MPa), high elongation, and provides good sealing on rough surfaces.  

This rubber is well-suited for microfabrication techniques, since it is resistant to certain 

chemicals used in the process such as: hydrofluoric acid, positive photoresist developer, 

and alcohol.  The working fluid used (Fluoriner) and the actuation fluid (isopropanol) 

were non-corrosive to the rubber membrane.  The maximum deflection of the membrane 

was 70 µm.  Under an inlet pressure of  20 psig, the valve was shown to shut of a flow off 

1340 ccm/min. with a power input of 280 mW. 

 Thermopneumatic microvalves are useful for high flowrates under specific 

application guidelines.  In general, these guideline limitations include slow actuation, and 

cycling time (i.e. time to cool down).  Additionally, in order to keep power consumption 

low, volatile actuation fluids are used that require only a slight increase in temperature to 

create a sufficient increase in vapor pressure for actuation.  This requires that the 

microvalve by impervious to environmental temperature change, since it could cause 

unwanted actuation or malfunction.  

 

2.1.2 Shape Memory Alloy (SMA) Actuation 

 The operating principle behind SMA actuation is the use of SMA (most common 

is Ti-Ni) for control of a deflection membrane that either opens or closes a flow port.  

Shape memory alloys are deformed by heating the material to its transition temperature 
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(Mueller, 2000).  When the SMA membrane reaches the transition temperature, it 

deforms to its parent state.  This parent state is established during the fabrication using a 

high-temperature anneal (Mueller, 2000).  These valves can be designed for either 

normally-open or normally-closed operational purposes.  However, due to the lack of 

controllability of the SMA membrane deflection they are limited to use as an on-off 

valve.   

 A normally closed microvalve using a SMA actuator was designed by Geon et al. 

(2000).  A schematic cross-sectional view of the microvalve operation is illustrated in 

Figure 2.3.  The microvalve consists of three stacked layers: a flat silicon spring (spring 

constant is 330 N/m), a patterned TiNi SMA actuator, and an orifice die.  The silicon 

spring applies an initial closing force against the orifice, thus making the valve-normally 

closed.  The opening time was 50 msec and the closing time was 18 msec.  The 

maximum flowrate achieved was 0.17 lpm with an inlet air pressure of 34.5 kPa and a 

leakage of 0.005 lpm.    

 A normally open microvalve using a SMA actuator was designed by Skrobanek et 

al. (1997).  In contrast to a normally-closed valve, instead of overcoming the seating 

pressure of a spring the SMA actuator acts against the pressure of the fluid.  Schematic 

cross-sections of the microvalve are given in Figures 2.4 and 2.5.  For improvement of 

the microvalve operation the SMA membrane was stress optimized.  Skrobanek et al. 

(1997) describes stress optimization as designing the SMA membrane so that 

“homogeneous spatial stress profiles” are created for a given load pattern.  For an 

operational differential pressure limit of 1200 Pa, air flow of 1600 SCCM and a work 

output of 35 pNm were observed. Response times for closing the valve varies between 
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0.5 and 1.2 seconds. The cooling time (i.e. the opening time) varies between 1 and 2 

seconds.   

 Generally, shape memory alloy microvalves have developed for inlet pressures of 

100 psi to 400 psi with corresponding maximum flowrates of 6000 SCCM.  The fastest 

corresponding response times are about 1 ms to open and 20 ms to close.  However, cycle 

times are longer, because of the necessary cooling time to reverse the opening or closing 

operation.  Power requirements range from 0.3 to 2 watts.  In addition, leak rates as low 

as 0.01 SCCM have been measured (Mueller, 2000). 

 

2.1.3 Bi-Morph Actuation 

 Bi-morph (or Bimetal) actuation works on the principle of having a membrane 

composed of two materials with different coefficients of thermal expansion bonded 

together.  Typically, a thin metal (normally Ni of Al) membrane bonded on top of a thin 

silicon membrane to form a single membrane is utilized.  An electrical resistance heater 

is embedded or diffused into the silicon membrane.  Upon heating, the membrane 

deflects to open the valve due to the metal’s higher coefficient of thermal expansion to 

that of silicon (Mueller, 2000).  By varying the electrical power input of the heater (the 

temperature of the bimetal membrane), the deflection can be controlled.   

 A normally-open, bimetallically actuated microvalve was developed by Jerman et 

al. (1990) and tested in the interest of investigating its accuracy of flow control.  A cross-

sectional view of the microvalve is shown in Figure 2.6.  The valve consists of a 

aluminum-silicon membrane actuator with diffused resistors attached to a central boss 

plate that is bonded to the etched valve body.  For an inlet pressure of 30 psi, the 
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microvalve provided accurate pressure regulation over a flow range from less than 1 

cc/min to around 35 cc/min.   

 A normally-closed, bimetallically actuated, 3-way microvalve was developed by 

Messner et al. (1998).  This valve was designed to control differential pressures of 1000 

kPa.  A cross-sectional view of the microvalve is illustrated in Figure 2.7.  Additionally, 

an isolated, cross-sectional view of the bimetallic actuator is shown in Figure 2.8.  The 

valve has 3 flow ports and two actuation states.  In the off-state, fluid port 1 is sealed by 

the pre-stressed actuator membrane, and fluid port 2 is connected to fluid port 3.  In the 

on-state, fluid port 1 is opened and fluid port 3 is sealed.  Therefore, fluid port 1 is 

connected to fluid port 2.  For an inlet pressure of 600 kPa and a temperature range of 

0˚C to 50˚C, flowrates up to 800 ml/min were achieved.  The power consumption was 

about 1 W.   

 Bimetallically-actuated microvalves are typically easier to fabricate as opposed to 

other actuation forms, because of its simple design and lack of a need for a complicated 

external actuator.  Generally, this form of actuation is capable of producing large force 

generation and large displacements.  However, as with the thermopneumatically-actuated 

and SMA-actuated microvalves, the relaxation time has a retardation effect on response 

time.  Also, if the silicon substrate is not isolated from the bimetallic membrane, a heat 

will dissipate into the substrate.  This can cause a large increase in power consumption 

(Tomonari et al., 2003).   
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2.1.4 Electromagnetic Actuation 

Electromagnetic actuation utilizes electromagnetic forces produced by coil turns 

to induce a deflection of a magnetic membrane that seals the flow port.  Due to the 

complications of micromachining a sufficient number of coil turns, most electromagnetic 

valves use external macro-sized coils or permanent magnets (Mueller, 2000).  Ideally, the 

entire microvalve would be of micromachined components. 

 An electromagnetic microvalve was fabricated using a combination of miniature 

and micromachined components by Shinozawa et al. (1997).  This particular microvalve 

is a good example of the difficulties and inefficiencies of a ‘hybrid’ electromagnetic 

microvalve.   A schematic of the microvalve is illustrated in Figure 2.9.  A small 

permanent magnet is attached to the valve plug, and is actuated by an electromagnetic 

force from an external micromachined coil.  The vertical displacement of the valve plug 

opens and closes the valve.  The microvalve is about 5x5x5 mm in size and has a 0.5 mm 

maximum displacement of the valve plug.  The smallest controllable amount of water 

was 0.7 µl/min and the maximum controllable amount was 900 µl/min.  The authors 

make note of the difficulties associated with combing components of different scales.  

These problems include clogging of the flow passage and insufficient actuation force for 

a millimeter-sized region. 

A fully-micromachined, normally-open electromagnetically actuated microvalve 

was designed and fabricated by Bintoro and Hesketh (2005).  This is of particular 

interest, not only because is it fully-micromachined, but also because it was fabricated 

from using a single silicon wafer.  There is no wafer bonding to create layers, which 

amounts to a lower fabrication cost.  A schematic of the microvalve is shown in Figure 
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2.10.  In Figure 2.11, there is a schematic displaying the operation of the microvalve.  

The membrane is separated from the microcoil by a 12 micron gap.  To close the 

microvalve, an electric current is applied to the microcoil to produce an electromagnetic 

force that displaces the soft magnetic dome over the outlet port.  The working fluid used 

was a 50% diluted methanol with water.  This microvalve was able to close for a 

maximum inlet pressure of 26.5 kPa.  The leak rate was in the range of 0.024-0.033 

µl/min over a differential pressure range of 1.5-17 kPa.  Also, the range of operational 

power of the microvalve was 0.3-1.2 W. 

In general, electromagnetic microvalves have been reported to have response 

times less than 1 ms, with valve strokes in the range of 10-15 microns.  Additionally, 

electromagnetic valves have low power consumption.  However, the electrostatic forces 

do not fair well against high pressures.  Also, for a normally-open microvalve, a loss of 

power would cause the valve to fail open (Mueller, 2000). 

 

2.1.5 Electrostatic Actuation 

 The operating principle of electrostatic actuation utilizes the electrostatic force 

between two electrode plates when a voltage is applied between them.  The actuator’s 

closure membrane is a cantilever structure over the inlet port.  Typically, these valves are 

designed for normally-open operation.   

 A normally-open electrostatically actuated silicon microvalve for gaseous flows 

was developed by Ohnstein et al. (1990).  A schematic of the microvalve is shown in 

Figure 2.12.  The microvalve is approximately 600 x 600 microns, with the closure plate 

being about 350 x 390 microns.  The microvalve operational maximum inlet pressure is 
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114 mmHg, with flows of up to 150 SCCM.  The leak rate of the closed valve was 

approximately 0.1 SCCM.   

 A normally-closed, electrostatically-actuated microvalve was developed by Huff 

et al. (1990).  This is one of the few examples of a normally-closed, electrostatic valve.  

A schematic of the valve is shown in Figure 2.13.  This paper presents a unique concept 

in using the pressure from the incoming fluid to assist the electrostatic actuation used to 

open the valve.  This paper discussed the design and fabrication of the microvalve, but 

not flow testing.  One foreseeable problem with this design is that it limits the maximum 

allowable inlet pressure to retain closure.   

 Generally, electrostatic valves provided the benefits of both low power 

consumption and fast response times.  However, their greatest drawback is the 

electrostatic forces are relatively weak.  Therefore, these microvalves are not useful under 

high pressures.  Additionally, the electrostatic forces are limited by the deflection, 

because the force generated between two electrode plates is inversely related to the 

spacing between them (Roberts et al., 2003). 

 

2.1.6 Piezoelectric Actuation 

 Piezoelectric actuation utilizes piezoelectric materials that deform slightly with an 

applied voltage.  Since a single piezoelectric element provides only a small deflection, 

the elements are stacked on top of each other, because with this arrangement the 

deflections are additive.  Additionally, this configuration has the advantages of larger 

deflections for smaller applied voltages, and higher actuation forces at smaller deflections 

(Mueller, 2000). 
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 A normally-open, piezoelectrically-actuated microvalve for micropumping 

systems was developed by Roberts et al. (2003).  A schematic of the microvalve is shown 

in Figure 2.14.  The microvalve has three major components: a piezoelectric actuator 

element, an enclosed ‘hydraulic amplification chamber’ (HAC), and a membrane with an 

attached valve sealing cap.  With an applied voltage to the piezoelectric element, the 

element strains and deflects the piston, thus generating pressure in the ‘HAC’ which 

pushes the valve sealing cap against the inlet port.  The working fluid was a degassed 

silicon oil.  The microvalve can operate for pressures greater than 300 kPa, and produces 

strokes of 20-30 microns.  The maximum average flowrate through the microvalve was 

0.21 ml/s for a valve opening of 17 microns and a differential pressure of 260 kPa. 

 In general, piezoelectric microvalves have an operational applied voltage range of 

25-100 volts.  Additionally, they have demonstrated leak rates of 0.1 SCCM or less.  The 

advantages of piezoelectric microvalves include fast response times, and substantial 

actuation forces.  The major drawbacks of these microvalves are that they require larger 

operating voltages than other actuation forms and they require a stacked piezoelectric 

element arrangement to achieve substantial actuation deflections.  The stacked 

arrangement also makes the fabrication more complicated (Mueller, 2000). 

 

2.2 Closure 

 Six basic actuation methods including examples have been described in the 

previous sections.  The main criteria one must consider when choosing a microvalve 

actuation method for an application are actuation cycle time (response time), maximum 

allowable inlet pressure, actuation force, displacement, power consumption, necessary 



applied voltage for actuation, leakage, and reliability.  A general summary of some of 

these criteria for the different actuation methods is given in Table 2.1 (Ayhan, 2000).  

Additionally, an evaluation of the microvalve actuation methods as they apply to the 

application of micropropulsion is given in Table 2.2 (Mueller, 2000). 

 

Table 2.1  Characteristics of Microvalve Actuation Methods (Ayhan, 2002) 

 

Actuators  Force Displacement Response 
Time  Reliability 

Solenoid Plunger  Small  Large  Medium  Good  

Piezoelectric  Very 
large  

Medium  Fast  Good  

Pneumatic  Large  Very Small  Slow  Good  

SMA  Large  Large  Slow  Poor  

Electrostatic  Small  Very small  Very Fast  Very 
Good  

Thermopneumatic  Large  Medium  Medium  Good  

Electromagnetic  Small  Large  Fast  Good  

Bimetallic  Large  Small  Medium  Poor  

 
 

Table 2.2  Evaluation of Microvalve Actuation for Microspacecraft Applications 

(Mueller, 2000) 

Thermopneumatic Bi-Morph Shape Memory-Alloy Electrostatic Piezoelectric Electromagnetic
Size & Weight Excellent Excellent Excellent Excellent Excellent Excellent
Power Good Good Good Excellent Excellent Excellent
Voltage Acceptable Unknown Unknown Poor Poor Acceptable
Cycle Time Poor Poor Poor Excellent Excellent Excellent
Pressure Marginal Marginal Marginal Poor Unknown Unknown
Leakage Poor Poor Poor Poor Unknown Unknown
Seating Pressures Acceptable Acceptable Acceptable Poor Good Good  
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Figure 2.1:  Cross-section of a thermopneumatic microvalve (Rich and Wise, 2003) 
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Figure 2.2:  Cross-section of a thermopneumatic microvalve (Yang et al., 1997) 
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Figure 2.3:  Cross-section of a SMA microvalve , a) closed position, b) open position 
(Geon et al., 2000) 
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Figure 2.4:  Schematic cross section of the SMA microvalve (A, B, and C denote the 
valve ports) (Skrobanek et al., 1997) 
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Figure 2.5:  Schematic the SMA microvalve cross-section during open operation 
(Skrobanek et al., 1997) 
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Figure 2.6:  Cross-section of a bimetallically actuated microvalve (Jerman, 
1990) 
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Figure 2.7:  Cross-section of a 3-way bimetallically actuated microvalve 
(Messner et al., 1998) 
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Figure 2.8:  Cross-section of a bimetallic actuator of a 3-way microvalve 
(Messner et al., 1998) 
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Figure 2.9:  Cross-section of an electromagnetically-actuated microvalve 
(Shinozawa et al., 1997) 
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Figure 2.10:  Schematic of an electromagnetic microvalve (all dimensions are in 
µm). 1 = inlet orifice; 2 = microvalve’s base; 3 = Au microcoil; 4 = outlet 
orifice; 4∗ = gasket (defined by the center of Au microcoil); 5 = circular support 
(NiFe); 6 = center soft magnetic dome (NiFe); 7 = membrane’s supported legs 
(NiFe). The component no.’s 6 and 7 form the microvalve’s membrane. (Bintoro 
and Hesketh, 2005) 

 

 

 28
 



 

 

 

 

Figure 2.11:  Schematic of an electromagnetic microvalve’s operation.  (a) The 
fluid flows from the inlet orifice to the outlet orifice and beneath the membrane. 
(b) Current (Icoil) is drawn to the microcoil and it produces an electromagnetic 
force (FEM) that displaces the membrane downward. When the bottom of the 
membrane touches the gasket, the fluid flow is choked, i.e. the microvalve is 
closed. (Bintoro and Hesketh, 2005) 
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Figure 2.12:  Schematic of an electrostatically-actuated microvalve (Ohnstein et 
al., 1990) 
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Figure 2.13:  Schematic of an electrostatically-actuated microvalve (Huff et al., 
1990) 
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Figure 2.14:  Schematic of a piezoelectrically-actuated microvalve (Roberts et 
al., 2003) 
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CHAPTER 3  MICROVALVE MODELING APPROACH 

 

3.1 Background and JPL Microvalve Design Requirements 

 In this Chapter, details of a JPL high-pressure piezoelectrically-actuated 

microvalve will be given.  This will be followed by the steps leading to simplification of 

the complex microvalve geometry to a 1-D model.  The microvalve modeled in this study 

was designed by Drs. E-H Yang, C. Lee, J. Mueller, and T. George of the MEMS 

Technology Group at NASA’s Jet Propulsion Laboratory.  The following description of 

the purpose, design, and operating conditions of the microvalve was taken from Yang et 

al. (2004): 

Constellations of microspacecrafts (10 kg total mass) are being envisioned to 

study magnetic fields or radiation belts around the Earth.   By using large constellations, 

tensor mapping of fields and particles may be conducted. The Magnetic Constellation 

mission, which has recently been approved by NASA, seeks to map Earth’s magnetic field 

with 50 – 100 spacecrafts, each equipped with its own magnetometer.  Such large 

constellations of spacecraft are only feasible if very small spacecraft are used in order to 

keep the total launch mass reasonable and the launch cost affordable.  

Constellation spacecraft may have propulsive requirements, either to maintain a 

formation, or to turn (slew) the spacecraft to point an antenna to Earth for data 

transmission, or to aim a camera for observation.  In case of such small spacecraft, 



significant propulsion system size and mass reduction over current state-of-the-art is 

required for these subsystems to fit within the greatly reduced mass and size envelope.  

Thrust and impulse bit capabilities may also be required to be very small depending on 

spacecraft mass and required pointing accuracy.  Required impulse bits may range from 

the mNs-range for larger craft having relatively coarse attitude requirements, into the 

µNs-range and possible even nNs-range for very tight pointing requirements and very 

small spacecraft.   Thus, there exists a need for very low impulse bit, micro-Newton thrust 

level propulsion systems in order to provide the required pointing accuracies for the 

attitude control of the microspacecraft.  Such micropropulsion systems require precisely 

controlled, extremely small propellant flow from a pressurized propellant tank.  A fast 

actuation, leak-tight microvalve at high propellant pressures is required for 

micropropulsion applications as described in Table 3.1. 

 

Table 3.1  Microvalve Requirements for NASA’s Miniature Spacecraft Propulsion 
Needs, Compared with Reported Performance to Date (Yang et al., 2004) 

 

Requirements Target Demonstrated
Leak Rate < 0.005 sccm/He 10-4 sccm/He at 800 psi

Response time < 10 ms < 10 ms
Inlet Pressure 300 ~ 3000 psi 0 ~ 1000 psi

Power < 1 W ~ 4 mW (static)
Temperature 0 ~ 75 ˚C Not tested yet.  

 

Ideally, this valve will be tightly integrated with thruster components to allow for a 

compact and lightweight overall thruster module design.  

Solenoid-based miniaturized valves have been developed.  Some of these valves 

meet most of micropropulsion requirements.  However, they still consume several Watts 
 34
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to operate the valves.   Microspacecraft systems are anticipated to have severely limited 

power budgets.  It is therefore desirable to incorporate “low power” valves meeting all 

the requirements for micropropulsion.  Other previously reported microvalves do not 

meet the requirements for pressure range and/or leak rate needed for micropropulsion.  

Recently, leak-tight microvalves operating at 10 atm have been reported, which still fall 

short of pressure range.  Thermally actuated microvalves usually have slow response 

time (~ 100 ms to complete a cycle), which is unacceptable for micropropulsion 

applications.  This is because the slow valve actuation time causes long thruster on-times 

and wide impulse bits.  Thermally actuated valves also suffer from the risk of random 

valve opening if ambient heating or cooling occurs, resulting in uncontrolled initiation of 

the actuation mechanism.  Most microvalves reported previously have shown marginal 

valve seating at high pressures.  Microvalves without adequate seating are exposed to 

severe problems in leakage and pressure handling capability.  Therefore, significant 

efforts are required for the development of high-pressure microvalves to meet the 

micropropulsion requirements.  In response to such needs, a fully characterized leak-

tight piezoelectric microvalve, operating under extremely high inlet pressures for 

micropropulsion applications has been developed. 

 

3.1.1 Design of the Microvalve 

The piezoelectric microvalve described in this paper consists of a seat plate, a 

boss plate and an actuator as shown in Figure 3.1.  The microvalve components do not 

contain fragile membranes in order to allow high-pressure operation.  Major elements of 

the microvalve design include its seating configuration with narrow seat rings.  The 
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seating configuration is provided by an initial opening pressure attributable to the tensile 

stress in the silicon tether extended by the valve seat as shown in Figure 3.2.  A series of 

narrow rings on the seat plate is designed to reduce potential leakage due to scratches 

over a seat ring.   The narrow rings reduce contact area, increasing the seating pressure 

and consequently reducing internal leaks.  An additional advantage of the narrow/hard-

seat design is that contact pressures may be high enough to crush contaminant particles, 

thereby also reducing the leakage attributable to contaminants in the flow.  The boss 

plate has a 2 µm thick silicon dioxide layer as a hard seat material in the boss-center 

plate.  The outer part of the boss plate is a metal-to-metal compression bonded to the seat 

plate.  The boss-center plate covered by the silicon dioxide is slightly thicker than the 

outer part.  This causes the boss-center plate to be pressed toward the seat plate by the 

stretched tether, enhancing a leak-tight valve operation.  The piezoelectric stack actuator 

exhibits a very high block-pressure (50 MPa in this case), providing enough pressure to 

overcome the high differential pressure in addition to the downward bending stress from 

the tethers.  The custom designed stack of piezoelectric actuators consists of active zones 

and an inactive central zone.  The piezoelectric stack with mechanically separated (by 

deep U-grooves) active zones is bonded to the boss plate within a rigid housing.  

Application of a potential (~40 V) to the stack makes the active zones vertically expand 

by 5 µm, lifting the boss center plate, which is bonded to the inactive zone of the stack, 

away from the seat plate.   This actuation creates a channel between the two openings, 

allowing for the passage of fluids as shown in Figure 3.3.   Since the piezoelectric 

element is essentially a stacked capacitor, the actuator consumes an extremely low power 
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when it is not moving, thus making it possible to achieve a nearly zero-power, normally-

closed valve system (Yang et al., 2004). 

 Several figures have been included to assist in visualization and understanding of 

the microvalve geometry.  Scanning electron micrographs (SEM) of the seat plate and the 

boss plate are shown in Figure 3.4.  These SEMs clearly show the geometry and scale of 

these components.  The 1.5 µm by 10 µm cross-section of a seat ring is depicted well.  In 

addition, a detailed perspective of the boss plate is shown.  The flexible tethers and the 

center plate that deflects with actuation are easily observed.  A photograph depicting the 

size of the packaged microvalve is shown in Figure 3.5.  Additionally, isometric drawings 

in Figures 3.6 and 3.7 illustrate various components and their configuration within the 

housing of the packaged microvalve.  Lastly, a cross-sectional schematic diagram of the 

dimensions within the housing is shown in Figure 3.8.   

 

3.2 2-Dimensional Axisymmetic Geometry Model 

There are several difficulties in computational modeling the 3-dimensional flow 

field within the complex geometry of the microvalve with all of its details.  For instance, 

the overall complexity and corresponding problem of grid generation with such drastic 

differences between the millimeter-scale housing of the cavity and the micron-scale gap 

poses a great challenge.  Furthermore, interaction of the fluid with a moving boundary 

during dynamic operation is another complication that might require dynamic re-

meshing.  Therefore, instead of solving the 3-D compressible flow equations for the gas 

flow in the actual geometry, simplifications of geometry are considered for the static 

operation.   



Observing Figures 3.3b and 3.8, one notices the relatively large cavity space as 

compared to the 11 to 15 µm gap created during open static operation.  Therefore, it can 

safely be assumed that within most of this space the velocity of the gas is negligible 

( ) and the gas is stagnant.  Thus, the cavity represents the stagnation chamber and 

the dynamic component of the total (stagnation) pressure within the cavity is assumed to 

be negligibly small.  This leads to the assumption that the static pressure within the cavity 

is equal to the total pressure (Figure 3.8).  Furthermore, it can be hypothesized that a 

major part of the total pressure drop through the valve occurs within the micron-size gap 

between the boss plate and seat plate (11 to 15 µm).  This hypothesis is reasonable due to 

the small spacing between the boss and seat plates, in addition to the excessive friction 

imposed on the fluid by the rings.  In support of this hypothesis, analysis was done to 

determine the total pressure drop through the inlet piping to the housing cavity (Figures 

3.3b, 3.5-3.8) of the microvalve.  First, equivalent lengths (L

0≈V

e/D) and loss coefficients (K) 

were determined for the piping network shown in Figure 3.9 (White, 1999).  Then, the 

total pressure drop for internal incompressible viscous flow (White, 1999) was found.  

The results for the incompressible analysis are given in Table 3.2, and a sample 

calculation for the total pressure drop is given in Sections 3.2.1. 
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Table 3.2  Total Pressure Drop (∆Pt) for the Inlet Piping Network (the flowrates were 

extrapolated from measurements of Yang et al. (2004); details are in Appendix C) 

 

11 1.844E-06 3.522E-08 3.488E-01 0.0441
12 7.350E-06 1.403E-07 1.392E+00 0.1761
13 1.636E-05 3.124E-07 3.107E+00 0.3929
14 2.891E-05 5.521E-07 5.510E+00 0.6967
15 4.499E-05 8.591E-07 8.612E+00 1.0890
11 1.583E-06 5.937E-08 2.996E-01 0.0202
12 8.390E-06 3.146E-07 1.593E+00 0.1076
13 2.047E-05 7.677E-07 3.914E+00 0.2644
14 3.783E-05 1.419E-06 7.301E+00 0.4932
15 6.047E-05 2.268E-06 1.181E+01 0.7979
11 1.225E-06 6.642E-08 2.318E-01 0.0107
12 6.797E-06 3.685E-07 1.292E+00 0.0595
13 1.677E-05 9.094E-07 3.213E+00 0.1481
14 3.115E-05 1.689E-06 6.035E+00 0.2781
15 4.994E-05 2.707E-06 9.815E+00 0.4523

300

100

200

Percentage 
of total ∆Pt

Inlet 
Incomp.   
∆Pt [kPa]

Pti           

[psig]
H        

[µm]
Qactual 

[m3/min]

Mass 
Flowrate 

[kg/s]

 

 

The total pressure drop for the inlet piping network is miniscule compared to the 

total pressure that is measured upstream of the microvalve system.  The percentage of the 

total pressure drop of the inlet piping network as compared to that of the complete system 

is less than 1.1%.   

 

3.2.1 Sample Calculation for Incompressible Total Pressure Drop of the Inlet 

Piping Network 

The experimental data of Yang et al. (2004) were extrapolated thus leading to 15 

flow cases dependent on the initial total pressure (Pti) and the gap (H) between the boss 

and seat plates.  A detailed description of these 15 cases is given in Section 5.1.1 and the 

initial conditions are shown in Table 5.1.  For this sample calculation the case of Pti = 200 
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psig and a gap of H = 15 µm is considered.  First, a dimensionless equivalent length 

(Le/D) for the piping network is needed.  For the three rounded 90˚ bends, a 

dimensionless equivalent length of 12 diameters was determined from Figure 8.16a of 

Fox et al. (2004).  A dimensionless equivalent length  of 1000 diameters was used for the 

needle valve, and 8 diameters for the toggle valve (http://www.carf-engineering.com, 

Warring, 1982) .  The dimensionless equivalent lengths for the different diameter sections 

of the piping network are then calculated as follows: 
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For the sharp 90˚ bend in the last section of the inlet tube, a dimensionless equivalent 

length of 60 diameters was determined from Figure 8.16b of Fox et al. (2004): 
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      (3.1d) 

The sudden contraction loss coefficients for the three abrupt changes in diameter within 

the piping network were determined from Figure 6.22 of White (1999).  They are listed 

as follows: 

From D = 3/16 in. to 1 mm: 

K1 = 0.39,          (3.2a) 
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From D = 1 mm to 1/3 mm: 

K2 = 0.37,          (3.2b) 

From D = 1/3 mm to 0.2 mm: 

K3 = 0.28.          (3.2c) 

The volumetric flowrate extrapolated from the experimental results of Yang et al. (2004) 

had to be converted from standard form to actual form (see Appendix C).  The mass 

flowrate is calculated by multiplying the initial actual volumetric flowrate (Qactual) and the 

initial density (ρi).  The average velocities (Vavg) for the four different diameter sections 

were found by dividing volumetric flowrate by the respective cross-sectional areas.  The 

Reynolds numbers (ReD) for the respective piping sections were then calculated.  The 

average velocities and corresponding ReD are listed as follows: 

For D = 3/16 inch tube: 

Vavg1 = 0.057 m/s,  ReD1 = 31,       (3.3a) 

For D = 1 mm tube: 

Vavg2 = 1.28 m/s,  ReD2 = 148,       (3.3b) 

For D = 1/3 mm tube:  

Vavg3 = 11.55 m/s,  ReD3 = 444,       (3.3c) 

For D = 0.2 mm tube: 

Vavg4 = 32.08 m/s,  ReD4 = 739.       (3.3d) 

Finally, the total pressure drop (∆Pt) is given by: 



( )

.8.11

2
08.32)110(

2
08.3228.0

2
55.11)18(

2
55.1137.0

2
28.1)7(

2
28.139.0

2
057.0)1164(

25.2

22Re
64

2

739
64

22

444
64

22

148
64

22

31
64

4

1

22

3

1

kPa

V
K

V

D
L

P

m
kg

avg
j

avge

D
it

jj

j

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆ ∑ +ρ

    (3.4) 

 

3.2.2 Outline of the 2-Dimensional Axisymmetric Geometry Model 

Based on the aforementioned hypothesis and supported by the analysis given in 

the previous section, a simplified 2-D axisymmetric geometry of the gap region is 

considered.  The flow problem between the boss and seat plates is then considered to be 

steady, axisymmetric and compressible flow between two parallel disks flowing radially 

toward an outlet hole at the center of the bottom disk (Figures 3.10 & 3.11). 

The proposed 2-D flow model with compressibility effects is still a complicated 

problem to solve.  The 2-dimensionality of the problem due to the presence of the rings 

necessitates utilization of CFD tools.  However, the geometry can be simplified further to 

a 1-D axisymmetric model. 
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3.3 1-Dimensional Axisymmetric Geometry Model 

Employing the Fanno frictional analysis, the 2-D axisymmetric geometry is 

simplified to a 1-D axisymmetric geometry through the representation of the seat rings 

with an apparent increase in flow friction.  The effective increase in flow friction due to 

the presence of the seat rings is determined from the experimental data of Luy et al. 

(1991).  In addition, the disks are assumed to be insulated, and thus the flow can be 

considered adiabatic.  This is reasonable because of the short length of the radial 

geometry, and the large magnitude of the flow velocity relative to that length, which 

makes heat exchange negligible.  The 1-D axisymmetric geometry model is then posed as 

steady, axisymmetric, compressible frictional flow of a perfect gas between two 

insulated, parallel disks flowing radially toward an outlet hole at the center of the bottom 

disk (Figure 3.12). 

 

3.4 Closure 

The complex microvalve geometry coupled with complicated dynamic operation 

has been simplified to a 1-D axisymmetric problem under static operating conditions.  

The total pressure drop from the pressure sensor to the microvalve cavity has been shown 

to be negligible.  This allows for the assumption that the initial conditions at the edge of 

the seat rings is at the same total pressure measured by the upstream pressure gauge.  The 

major portion of the total pressure drop is hypothesized to occur as the gas flows between 

the boss and seat plates and over the seat rings.  Substitution of increased flow friction 

due to the presence of the seat rings was proposed.  A correlation for experimental data 

(Luy et al., 1991) is to be derived for a modification in the friction coefficient of the flow.  
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In Chapter 4, a system of coupled simultaneous nonlinear ordinary differential equations 

are derived for predicting the flow properties within the framework of the proposed 1-D 

model. 

 



 

 

 

 

Figure 3.1: Schematic diagram of the leak-tight piezoelectric microvalve (Yang et 
al., 2004) 
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Figure 3.2:  Cross-sectional microvalve configuration, showing the suspension of the 
boss plate by tensile stressed silicon tethers over the extended valve seat  (Yang et 
al., 2004) 
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Figure 3.3:  Operation principle of the microvalve:  (a) Microvalve closed (cross
section A-A), and (b) Microvalve open (cross-section B-B)  (Yang et al., 2004) 

 

 

 

 

 

 

 47



 

 

 

 

 

 

Figure 3.4: Scanning electron micrographs (SEM) of the seat plate and the boss 
plate (Yang et al., 2004) 
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Figure 3.5: Packaged high-pressure piezoelectric microvalve (Yang et al., 2004) 
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Figure 3.6: Isometric view of the microvalve enclosed in the housing 
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Figure 3.7: Exploded isometric view of the microvalve enclosed in the housing 
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Figure 3.8: Schematic diagram of the microvalve housing and geometry showing the
main features (not drawn to scale) 
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Figure 3.9: Schematic diagram of the piping network leading to the microvalve cavity
(not drawn to scale) 
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Figure 3.10: Isometric view of the radial flow problem with arrows indicating the 
directions of the incoming and outgoing flow streams 
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Figure 3.11: Top view of the radial flow problem with the boss plate not 
shown 
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Figure 3.12: Geometry of the 1-D Axisymmetric Model
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CHAPTER 4  MATHEMATICAL FORMULATION 

 

 The flow in the actual microvalve geometry is compressible, 3-dimensional and 

can be affected by possible non-continuum effects.  In addition, interaction of the fluid 

with a moving boundary during dynamic operation is another complication.  Instead of 

solving the 3-D compressible flow equations, two simpler models were adopted.  For 

both models, a 1-D Fanno analysis is used to determine the variations of flow properties 

from the inlet to the outlet for the conditions of static operation of the microvalve.  For 

both models, the effect of the presence of seat rings can be incorporated via a modified 

correlation for the friction coefficient.  This Chapter deals with the development of the 

two models, namely:   

1. Channel Flow Model,  

2. Radial Flow Model.   

The channel model was developed for the sake of the benchmarking of a 

computer code, whereas the radial model is used to uncover the flow features in the 

microvalve. 

 

4.1    Channel Flow Model 

 A 1-D channel flow model was employed as a preliminary groundwork and a 

simplified starting point of the study.  The intent was to keep the model similar to
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compressible flow in a constant-area insulated duct with friction.  Therefore, the effects 

of the area change and heat addition are ignored.  In doing so, analytical solutions for this 

model are tabulated in the Fanno flow tables that are available in compressible flow texts 

(e.g. John, 1984).  The results of numerical integration of the nonlinear differential 

equations derived in this section will then be compared to the analytic solutions.  In 

relation to the microvalve application, the major drawback of the channel flow model is 

that it disregards the area change, but this restriction will be removed upon development 

of the radial disk flow model.    

The 2-D version of the channel model geometry is idealized as steady, 

compressible flow of a perfect gas between two infinite insulated parallel plates with seat 

rings on the lower plate (Figure 4.1).  The presence of the seat rings are accounted for by 

a modified friction coefficient in the 1-D version of the channel model (Figure 4.2).  

Adiabatic conditions prevail because of insulated plates, short length of the geometry, 

and the large magnitude of the flow velocity relative to that length, which makes heat 

exchange negligible.  In this situation, the flow properties are only affected by the 

retarding action of friction on the two walls.  Therefore, only the significance of friction 

is to be considered.   

 

4.1.1 Governing Equations 

In view of the simple geometry under consideration, the Cartesian coordinate 

system is an obvious choice (Fig. 4.2).  The following assumptions are made: 

1. Steady flow, 



2. One-dimensional flow (properties only depend on one spatial coordinate, i.e. 

x-coordinate in Fig. 4.2), 

3. Perfect gas with constant specific heats, 

4. Adiabatic flow with no external work. 

The governing equations, i.e., the continuity, momentum, and energy equations are 

then written in the following forms: 

Since the cross-sectional area does not change, the continuity equation is: 

Vρ  = constant,         (4.1a) 

or in difference form: 

0=+
V
dVd

ρ
ρ .          (4.1b) 

The momentum equation is:  

( )AdVVF

S

xx
vv

•= ∫∫∑ ρ ,        (4.2) 

and it will be discussed in greater detail below. 

The energy equation is:   

=+
2

2Vh  constant ,          (4.3a) 

or in difference form: 

0=+VdVdh .          (4.3b) 
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4.2 Derivation of the Differential Equations for Flow Properties 

The derivation of the expressions for flow properties is similar to the derivation of 

the Fanno flow expressions.  Consider the differential control volume shown in Figure 

4.3 that extends from x to x + dx.  The flow properties change (identified by the symbol 

‘d’ for ‘differential’) as the flow moves from one end of the control volume to the other 

end.  Listed below are some appropriate definitions for the infinite-parallel-plates 

geometry under consideration. 

Perimeter = 2(2h+w),         (4.4a) 

with w being the width into the paper. 
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)Wall Surface Area, .      (4.4b) ( dxperimeterAs =

The hydraulic diameter is defined as: 

( )
( ) hh

wh
hw

perimeter
AD

w
h 4

2
8

22
24lim4

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
→∞ ,     (4.4c) 

where A = 2hw is the cross-sectional area of the channel. 

Assuming fully-developed laminar flow of an incompressible fluid between two 

infinite parallel plates, a parabolic velocity distribution is established between the two 

plates.  The appropriate relation for the wall shear stress (τf) is (White, 1999): 

h
V

dy
du

hy
f

µµτ 3
==

+=
 ,        (4.5a) 

with µ being the fluid viscosity.  The friction Darcy factor ( ) is then: f

hD

f
VhV

f
Re

96
)4(

964
2

2
1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

µ
ρρ

τ

 ,         (4.5b) 



with V being the average velocity between the two plates.  The difference equations for 

the definitions of the Mach number and the constitutive relation of a perfect gas are: 

Mach number for a perfect gas is defined as:   

RT
VM
γ

= ,          (4.6a) 

or in two difference forms: 

T
dT

V
dV

M
dM

−= 2

2

2

2

,         (4.6b) 

T
dT

V
dV

M
dM

2
1−= .         (4.6c)  

Constitutive relation for a perfect gas is: 2

2

M
VRTP

γ
ρρ == ,    (4.7a) 

or in difference form: 

T
dTd

P
dP

+=
ρ
ρ .         (4.7b) 

 

4.2.1 Derivation of the Differential Equation for the Mach number (M) 

Accounting for all the forces acting on the 1-D differential control volume (Figure 

4.4), the momentum equation in the x- direction is:                              

( ) ( )( ) ( )VAVdVVAVAAdPPPA sf ρρτ −+=−+− ,    (4.8a) 

which simplifies to: 

AVdVAAdP sf ρτ =−− .        (4.8b) 

Substituting for the wall shear stress (τf) (Eq. 4.5a) in the momentum equation and 

dividing both sides by the cross-sectional area (A = 2hw) gives: 
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VdV
D
dxfVdP

h
ρρ =−− 2

2
1

.       (4.9) 

Dividing the momentum equation by 2

2

M
VP

γ

ρ
= , one gets: 

022
2
1 =++

V
dVM

D
dxfM

P
dP

h
γγ .       (4.10) 

Combining the perfect gas equation (4.7b), the Mach number equation (4.6c) and 

recalling the continuity relation (Eq. 4.1b) yields: 

M
dM

T
dT

P
dP

−= 2
1 .         (4.11) 

Substituting for 
P

dP   from Eq. (4.11) and 
V
dV  from the Mach number equation (4.6c) 

into Eq. 4.10, one gets: 

0
2

2
22

2
1

2
1 =+++−

T
dTM

M
dMM

D
dxfM

M
dM

T
dT

h

γγγ .     (4.12) 

In order to obtain an expression for the Mach number as a function of the axial location 

in the channel, the temperature term must be eliminated.  This is done by substituting an 

expression for temperature as a function of the Mach number.  Assuming a perfect gas 

with constant specific heats, the energy equation (Eq. 4.3a) takes on a difference form: 

2

2dVdTCP −= .           (4.13a) 

Dividing by  and substituting TCP ( )1−
=

γ
γRCP  and RT

VM
γ

2
2 = , this becomes: 

2

2
2

2
1

V
dVM

T
dT −

−=
γ .        (4.13b) 
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Substituting for 2

2

V
dV  from the definition of the Mach number (Eq. 4.6b) gives: 

( )
2

2
1

1

1

M

MdM
T
dT

−
+

−
−=

γ
γ

 ,        (4.13c) 

which is the same as the difference form for temperature given in compressible flow texts 

(Saad, 1993). 

Equation (4.13c) can also be written as a differential equation if both sides are divided by 

dx: 

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−
−=

2
2

11

1

M

MT
dx

dM
dx
dT

γ
γ

.        (4.13d) 

Substituting the expression for 
T
dT  into the most current form of the momentum relation 

(Eq. 4.12) and upon simplification, one gets: 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛ −
+

−
=

22

2

2
1

2
11

1

MM

M
M

dM
D
fdx

h γγ ,       (4.14) 

that then leads to the differential equation for the Mach number of the fluid in the 

channel: 

)1(2

2
11

2

23

M

M
D
fM

dx
dM h

−

⎟
⎠

⎞
⎜
⎝

⎛ −
+

=

γγ

.       (4.15) 

This constitutes as a nonlinear ordinary differential equation that can be integrated to 

determine the dependence of M on axial distance x. 
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 It should be noted that Eq. (4.14) can be integrated analytically provided that f is 

constant (this is the case in this model).  If the distance that a fluid at Mach number M 

travels to reach M = 1 is denoted by Lmax, an expression for 
hD

fLmax  will be formed that 

depends on γ and M (Appendix E).  On the other hand, an explicit expression for M as a 

function of x does not exist which necessitates the numerical integration of Eq. (4.15). 

 

4.2.2 Derivation of the Differential Equation for Pressure (P) 

Substituting for 
V
dV  from the Mach number equation (4.6c) into equation (4.10) 

and utilizing Eq. (4.13c), one gets: 

( ) 0

2
11

1
2

2

2
122

2
1 =

−
+

−
−++

M

MdMM
M

dMM
D
dxfM

P
dP

h γ
γγγγ

.   (4.16a) 

Substituting for 
hD

dxf2
1  and simplifying this relation, one gets: 

( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−+
−=

2

2

2
11

11

M

M
M

dM
P

dP
γ
γ ,        (4.16b) 

that is the same as the difference form for pressure given in compressible flow texts (e.g. 

Saad, 1993). 

Equation (4.16b) can be written in its differential form: 

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−+
⎟
⎠

⎞
⎜
⎝

⎛−=
2

2

2
11

11

M

M
M
P

dx
dM

dx
dP

γ
γ

.       (4.16c) 
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4.2.3 Derivation of the Differential Equation for Velocity (V) 

Substituting for 
P

dP  from the perfect gas equation (4.7b) into equation (4.10), one 

gets: 

022
2
1 =+++

V
dVM

D
dxfM

T
dTd

h
γγ

ρ
ρ

.      (4.17a) 

Substituting for 
ρ
ρd  from the Continuity equation (4.1b),

hD
dxf2

1  and 
T
dT , one gets: 

( ) 0

2
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2
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1 2
22

2
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2
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−
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−
−−

V
dVM

MM

M
M

dMM
M

MdM
V
dV γ

γγ
γ

γ
γ

.   (4.17b) 

Simplifying this leads to:   

⎟
⎟
⎟
⎟

⎠

⎞

⎜
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⎜
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⎝

⎛

−
+

=
2

2
11

1

MM
dM

V
dV

γ ,        (4.17c) 

which is the same as the difference form for velocity given in compressible flow texts 

(Saad, 1993). 

Equation (4.17c) can be rewritten as: 

⎟
⎟
⎟
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4.2.4 Derivation of the Differential Equation for Density (ρ) 

From the continuity relation (Eq. 4.1b):  

V
dVd

−=
ρ
ρ ,          (4.18a) 

or: 

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−=

dx
dV

Vdx
d ρρ

.         (4.18b) 

In addition, differential equations for stagnation or total pressure, Pt, and entropy change, 

ds can be derived.   

 

4.2.5 Derivation of the Differential Equation for Total Pressure (Pt) 

The differential expression for Pt is derived from the isentropic relation, but first 

an expression for total temperature must be derived beginning with the energy equation.  

Define the total enthalpy as: 

2

2Vhht += .         (4.19a)  

Assuming a perfect gas with constant specific heats, 

)( TTChh tpt −=− ,        (4.19b) 

thus leading to: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=+=

TC
V

TT
C

V
T

pp
t 2

1
2

22

.       (4.19c) 
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Introducing 1−
=
γ
γR

C p into (4.19c), one gets: 

⎟
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⎞

⎜
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⎝

⎛ −
+=

RT
V

TTt γ
γ
2

)1(
1

2

.        (4.19d) 

Substituting the definition of the Mach number from equation (4.6a), one gets: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+= 2

2
)1(1 MTTt

γ
.        (4.20) 

This expression is then substituted into the isentropic relation: 

)1( −
⎟⎟
⎠

⎞
⎜⎜
⎝
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γ
γ

T
T

P
P tt

,         (4.21a) 
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MPPt .       (4.21c) 

Letting ⎟
⎠

⎞
⎜
⎝

⎛ −
+= 2

2
)1(1 MB γ

 and differentiating with respect to the Mach number, 
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M
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dP

P
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dM
dP ttt γγγ

γ
−− +=

∂
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+
∂
∂

=    (4.22a) 

Multiplying by dM, and dividing by Pt, one gets:     
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Substituting 
,

)1( −

=
γ

γ
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P
P t

 and ,)1(

P
P

B t=−γ
γ

one gets:      
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Substituting , we get: 22 dMMdM =
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Plugging in equation (4.16) and simplifying leads to: 
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which is the same as the difference form for total pressure given in compressible flow 

texts (Saad, 1993). 

Equation (4.23a) can be written in its differential form: 
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4.2.6 Derivation of the Differential Equation for Entropy Change (ds) 

The derivation of the differential equation for the entropy change (ds) is related to 

the equation for the change of entropy for a perfect gas: 

p
dp

R
T
dT

Cds p −= .        (4.24a) 

Substituting for Cp in terms of R and γ , and plugging equations (4.13c) and (4.16b) for 

T
dT

 and p
dp

, respectively, one gets: 
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By comparing equation (4.24b) to equation (4.23a), one observes that: 

t

t
P

dP
R
ds

−= ,          (4.24c) 

or: 

( )
t

t

p P
dP

C
ds

γ
γ 1−

−=
.        (4.24d) 

This relation is the same as the difference form for entropy change given in compressible 

flow texts (Saad, 1993). 
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4.3 Dimensionless Forms of the Differential Equations 

Due to the small length scale of this particular geometry, it is practical to 

nondimensionalize the equations using the inlet conditions rather than the Mach 1 state.  

Denoting the inlet conditions with subscript “i”, the dimensionless variables are given by: 

hD
xX =+

, iM
M

M =+
,   

iP
P

P =+
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T
T =+

,        (4.25) 

iV
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ρ

ρ =+
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t
t P
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.   

The dimensionless forms of the differential equations are then: 
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The above equations are similar to the equations for Fanno flow in a constant-area 

channel except that they are nondimensionalized using the inlet conditions instead of the 

Mach 1 state.  Given a set of initial conditions at a specific x+ location, these relations can 

be integrated in the flow direction (x+ increasing).  The results of the numerical 

integration can then be conveniently compared to the analytical relations for this specific 

flow.  

In order to verify the accuracy of the numerical code and corresponding numerical 

results, analytical solutions to the above equations (4.26 through 4.32) are determined 

following a procedure described by Saad (1993).  The analytical solutions are: 
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Having derived the differential equations for the channel flow properties, the 

modified friction coefficient (Appendix A), F, is included in the differential equation for 

the Mach number (Eq. 4.26) to account for the presence of the seat rings.   The 

differential equation for the Mach number then becomes: 
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4.4 Radial Disk Flow Model 

The radial disk flow model is posed as steady, axisymmetric, compressible flow of 

a perfect gas between two insulated, parallel disks flowing radially toward an outlet hole 

at the center of the bottom disk (Figure 4.5).  This geometry is a more realistic 

approximation of the actual microvalve geometry.  The presence of the seat rings is 

accounted for by employing a modified friction correlation to determine an apparent 

friction coefficient.  Although the data of Luy et al. (1991) were developed for a channel 

flow geometry, it is reasonable to also apply the correlation of Appendix A to the radial 

flow model.  This is considered reasonable in this case because in taking infinitesimal 

steps in the radial direction the cross-sectional area is not changing drastically. 

 

4.4.1 Governing Equations 

Similar to the channel flow model, the following assumptions are made: 

1. Steady flow, 

2. One-dimensional flow (properties depend on the radial coordinate, r), 

3. Axisymmetric geometry, 

4. Perfect gas with constant specific heats, 

5. Adiabatic flow with no external work. 

In order to maintain harmony with the derivations of section 4.2, the continuity, 

momentum, and energy equations are left in terms of the distance in the flow direction (x) 

and are later converted to the radial coordinate, r (Figure 4.5). 

Since the cross-sectional area is changing, the continuity equation is: 

AVρ  = constant,         (4.34a) 
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or in difference form: 

0=++
A

dA
V
dVd

ρ
ρ

.         (4.34b) 

The momentum equation is:   

( )AdVVF

S

xx
vv

•= ∫∫∑ ρ
,        (4.35) 

and it will be discussed in greater detail below. 

The energy equation is:   

=+
2

2Vh  constant,          (4.36a) 

or in difference form:  

0=+VdVdh .          (4.36b) 

 

4.5 Derivation of Differential Expressions for Flow Properties 

The derivation of the expressions for flow properties is similar to the derivation of 

the Fanno flow through a channel.  Consider the differential control volume shown in 

Figure 4.6 that extends from x to x + dx.  The coordinates x and x + dx correspond to r 

and r – dr, respectively.  Listed below are some appropriate definitions for the concentric 

radial disks geometry under consideration. 

Perimeter = 2(2πr).         (4.37a) 

Wall Surface Area, ( ) dx
D

AdxperimeterA
h

s
4

== .     (4.37b) 

The hydraulic diameter is defined as: 
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where A = 2πr(2h) is the cross-sectional area and h is half the distance between the disks. 

Assuming laminar Stokes flow of an incompressible fluid flowing radially 

between two concentric disks, a parabolic velocity distribution will be observed 

(Appendix B).  The appropriate relation for the wall shear stress (τf) is (Appendix B): 

h
V

dr
dph

dz
dV

hz

r
f

µµτ 3
===

+= ,       (4.38a) 

with µ being the fluid viscosity.  The friction factor ( ) is then: f
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µ

ρ

µ

ρ

τ
,       (4.38b) 

with V being the average velocity between the two disks. 

 

4.5.1 Derivation of the Differential Equation for the Mach number (M) 

Accounting for all the forces acting on the 1-D control volume (Figure 4.7), the 

momentum equation in the x- direction is:  

( )( ) AVdVAdAAdPPPA sf ρτ =−++− .     (4.39a) 

Eliminating the 2nd order terms, this simplifies to: 

AVdVAAdPPdA sf ρτ =−−− .      (4.39b) 

Plugging in for surface area (As) from equation (4.37b) and for τf from the definition of 

friction factor, gives: 
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Bringing all the terms to one side and dividing by 2

2

M
VP

γ
ρ=

 and cross-sectional area, 

(A), one gets: 
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V
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γγ

.     (4.41) 

Substituting for P
dP

 from the perfect gas relation (4.7b), one gets: 
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ρ

.    (4.42) 

Using the continuity equation (4.34b) to eliminate ρ
ρd

 and A
dA

 gives: 
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V
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T
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V
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 .    (4.43) 

Substituting for V
dV

 from the Mach number equation (4.6c) yields: 

0
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2
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2
1 =++++−
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M
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D
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T
dT

M
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h

γ
γγ

.  (4.44) 

Assuming adiabatic flow, the term T
dT

 is borrowed from equation (4.13c) and 

upon simplifying, one gets: 
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This then leads to the differential equation for the Mach number of the fluid: 
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that is identical to equation (4.15). 

 

4.5.2 Differential Equations for Temperature (T), Stagnation Pressure (Pt) and 

Entropy Change (ds) 

The derivations of 
dx
dT , 

dx
dPt  and 

pC
ds

 are identical to those derived for the 

channel flow model.  These are: 
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4.5.3 Derivation of the Differential Equation for Density (ρ) 

From the continuity equation (4.34b): 

A
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4.5.4 Derivation of the Differential Equation for Velocity (V) 

The derivation of dx
dV  starts with the form of the momentum equation in (4.43), 

that is: 
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Plugging in for T
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 and 
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 from equations (4.13c) and (4.45), respectively, and 

simplifying, one gets, 
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This relation for the radial flow model is identical to equation (4.17d) for the channel 

flow model. 

 

4.5.5 Derivation of the Differential Equation for Pressure (P) 

The derivation of dx
dP

 starts with the form of the momentum equation in (4.41): 
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. 

Substituting for V
dV

 and T
dT

 from the Mach number equation (4.6c), and equation 

(4.13c), respectively, one gets: 

( )
0

2
11

1
2

2

2
122

2
1 =

−
+

−
−+++

M

MdMM
M

dMM
D
dxfM

P
dP

A
dA

h γ
γγ

γγ
. (4.52) 

Substituting for 
hD

dxf
2
1

 from equation (4.45) and simplifying, gives: 
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or in the differential equation form: 
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Note the similarity of this relation to equation (4.16c), except for the first term on the 

right hand side that accounts for the area change in the radial model. 

 

4.6 Conversion of Differential Equations in Terms of Radial Coordinate (r) 

Differential equations for flow properties have been derived in terms of distance 

in the flow direction, i.e. x.  For the radial model, conversion of the independent variable 

x into radial coordinate, r is more convenient.  The relations for conversion are shown 

below. 

Considering  Figure 4.5:  

rhhrA ππ 4)2(2 == .        (4.54a) 

Differentiating with respect to r, yields: 

h
dr
dA

π4= .          (4.54b) 

The two independent variables r and x are related through: 

r = (constant – x),         (4.55a) 

with the corresponding difference equation: 

dr = -dx  .          (4.55b) 

 

Using the above relation, equations (4.46), (4.47), (4.48), (4.49), (4.50b), (4.51b), and 

(4.53b) become: 
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4.7 Dimensionless Form of the Differential Equations 

Similar to the channel flow model, the equations are nondimensionalized using 

the inlet conditions at the outer edge of the disks rather than the Mach 1 state.  Denoting 

the inlet conditions with subscript “i”, the dimensionless variables are identical to those 

for the channel flow model (Eq. 4.25), except for r+ that is defined as: 
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,          (4.63) 

where ri is the radial coordinate of the incoming fluid station (Figure 4.5). 

Introducing the modified friction coefficient, F, the dimensionless forms of the 

differential equations are then: 
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 83

The differential equations for the flow properties for the radial flow model are 

similar to the equations for the channel flow model with only three exceptions.  These 

are: 

1. The area-change term in the pressure equation (1/r+), 

2. The area-change term in the density equation (1/r+), 

3. Geometric ratio term in the Mach number relation (ri/Dh). 

It should be noted that the Reynolds number will also change in the flow direction 

due to the variation of area. 

 

4.8 Closure 

 Two simplified 1-D flow models have been developed.  The channel flow model 

was developed first to serve as a benchmarking tool for a computer code.  The more 

relevant radial flow model is the main contribution of this research study.  Through 

numerical solutions of the coupled nonlinear ordinary differential equations, the variation 

of the flow properties between the inlet and outlet ports can be elucidated.  The solutions 

of the equations for the two models are presented in Chapter 5. 



 

 

 

 

 

 

 

 

Figure 4.1:  The 2-D channel model of the microvalve geometry 
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Figure 4.2:  The 1-D channel model of the microvalve geometry 
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Figure 4.3:  Control volume for the changes in flow properties of the 1-D channel 
model 
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Figure 4.4:  Forces acting on the control volume of the 1-D channel model 
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Figure 4.5: Schematic diagram of the radial flow model displaying radial 
locations, and the directions of x and r 
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Figure 4.6:  Control volume for the changes in flow properties of the 1-D radial model 
for (a) side view and (b) top view 
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Figure 4.7:  Forces acting on the control volume of the 1-D radial model 
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CHAPTER 5  PREDICTIONS OF THE FLOW PROPERTIES UTILIZING THE 

MODELS 

 

 In Chapter 4, using the radial and channel flow models, systems of simultaneous 

nonlinear ordinary differential equations were derived for various flow properties.  These 

flow properties are: 

- Mach number  - velocity 

- temperature   - density 

- entropy   - total pressure 

- static pressure. 

In addition to these variables, related quantities such as the Reynolds number and 

the Knudsen number can change throughout the flow field and expressions for these were 

also reported.  The channel flow model was developed for the sole purpose of 

benchmarking the accuracy of the computer code through comparison with analytical 

expressions for the Fanno flow through a constant-area duct (e.g. Saad, 1993).  On the 

other hand, the more realistic radial flow model can be used to determine the variations of 

the flow properties within the JPL microvalve.  

 In this Chapter, details of the numerical methods, benchmarking information, and 

comprehensive results of the predictions based on the radial flow model are presented.   
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5.1 Numerical Analysis 

A 4th order Runge-Kutta method was employed for numerical integration of the 

system of simultaneous nonlinear ordinary differential equations.  This method was 

utilized because of its high accuracy and convenience involving initial value problems.  

The Runge-Kutta algorithm can be applied to an arbitrary number of coupled ordinary 

differential equations and only requires the appropriate initial conditions, beginning and 

end points, and step size of the independent variable.  Examples of the Runge-Kutta 

algorithm can be found in Burden and Faires (1997) and White (1991).   

 

5.1.1 Initial Conditions 

 Since all the flow properties except entropy change were nondimensionalized by 

the initial (i.e. inlet) values (e.g. Φ+ = Φ/Φi), all the associated initial conditions are set 

equal to unity.  Due to the relative nature of the entropy change, this quantity was set to 

zero at the inlet station.  Additionally, in order to integrate the differential equations 

(Equations 4.26 – 4.32 and 4.64 – 4.70), initial condition quantities for the following are 

required:   

- initial Mach number (Mi)  - ratio of specific heats (γ) 

- modified friction coefficient (Fi) - Reynolds number (ReDhi).  

The working fluid is helium and its properties were taken from Tsederburg et al. (1971).  

The initial Reynolds number and the initial Mach number are calculated using the 

following known quantities (Appendix C): 

- initial velocity (Vi)   - initial density (ρi) 

- hydraulic diameter (Dh)  - viscosity of the fluid (µ). 



The following terms were needed to calculate density from the perfect gas equation and 

hydraulic diameter: 

- initial total pressure (Pti)  - gas constant (R)   

- initial temperature (Ti)  - spacing between the disks (H = 2h). 

The initial modified friction coefficient (Fi) is calculated from the following quantities 

(Appendix C): 

- dimensionless ring height (E=e/H) 

- initial Reynolds number (ReDhi).   

In addition, the initial Mach number and the Reynolds number values are used to 

initialize the Knudsen number ( 2
1

Re−= iDii
h

MKn ). 

The initial flow conditions were extrapolated from the experimental results 

reported by Yang et al. (2004) using digitization software (DigXY, 2003) and a Least-

Squares Fit (LSF) method of curve-fitting (see Figure 5.1, Section 1 of Appendix C).  

The JPL microvalve successfully operates at pressures up to 1000 psig, however the 

flowmeter used could only measure flowrates with an inlet pressure range up to 300 psig.  

The microvalve has a deflection (shown as displacement in Figure 5.1) range of 1 to 5 µm 

from the top of the 10 µm seat rings.  With the effect of the seat rings accommodated in 

the model by the modified friction factor, the gap between the two disks (H) varies from 

11 to 15 µm.  Therefore, 15 sets of initial values were determined for each of the 

deflections at three inlet total pressures of 100, 200 and 300 psig.  The initial flow 

conditions are tabulated in Table 5.1.  In addition, see Appendix C for an illustration of 

the calculation of the initial flow conditions. 

 93
 



Table 5.1  Measured (Yang et al., 2004) and extrapolated initial flow conditions 

 

Pti [psig] H [µm] Q [SCCM] Q [ACMM] Vi [m/s] Mi ReDhi E D Fi
11 12.55 1.84E-06 0.1483 0.00015 0.1892 0.9091 24.7934 23.9907
12 50.00 7.35E-06 0.5416 0.00054 0.7540 0.8333 22.7273 17.9116
13 111.30 1.64E-05 1.1128 0.00110 1.6785 0.7692 20.9790 13.9951
14 196.68 2.89E-05 1.8260 0.00181 2.9660 0.7143 19.4805 11.3339
15 306.06 4.5E-05 2.6520 0.00263 4.6154 0.6667 18.1818 9.4464
11 21.54 1.58E-06 0.1273 0.00013 0.3249 0.9091 24.7934 23.9946
12 114.14 8.39E-06 0.6182 0.00061 1.7213 0.8333 22.7273 17.9319
13 278.54 2.05E-05 1.3924 0.00138 4.2004 0.7692 20.9790 14.0365
14 514.73 3.78E-05 2.3894 0.00237 7.7623 0.7143 19.4805 11.3977
15 822.72 6.05E-05 3.5645 0.00354 12.4068 0.6667 18.1818 9.5329
11 25.00 1.23E-06 0.0985 0.00010 0.3770 0.9091 24.7934 23.9960
12 138.71 6.8E-06 0.5008 0.00050 2.0917 0.8333 22.7273 17.9397
13 342.29 1.68E-05 1.1408 0.00113 5.1618 0.7692 20.9790 14.0523
14 635.75 3.12E-05 1.9674 0.00195 9.5872 0.7143 19.4805 11.4221
15 1019.09 4.99E-05 2.9435 0.00292 15.3681 0.6667 18.1818 9.5660

300

100

200

 

 

 It is noted that the Mach numbers are extremely low and the initial values of ReDhi 

are of the order of 15 or less.  The enhanced effect of friction due to the presence of the 

rings at the inlet station is estimated to be as high as 24 times the case without the rings. 

 

5.2 Benchmarking of the Computer Code for the Channel Flow Model 

 The channel model was used to benchmark the computer code against analytical 

expressions for the Fanno flow through a constant-area channel (e.g. Saad, 1993).  An 

analytical expression for the maximum channel length (Lmax) was derived following a 

procedure described by Saad (1993).  Lmax is defined as the distance a gas at Mach 

number M must travel to reach M = 1.  Equation 4.14 was integrated with the help of the 

method of partial fractions to get the relation (Appendix E): 
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+
maxL was solved for the given initial Mach number (subsonic) and this quantity was 

assigned in the code as the end point of the integration.  Therefore, the predicted Mach 

number at can be checked to determine whether it is equal to the expected value of 

Mach 1.  In order for this particular check to be valid, a shrinking step size was necessary 

and this feature is discussed in detail in the next section.  

+
maxL

 In addition to the end point check, at each point during the updating of the 

independent variable (x+), the predicted values for the flow properties were compared to 

the respective analytical values given by the expressions of Chapter 4 (Equations 4.33a – 

f).  The error percentages between the numerical and analytical values for all the flow 

properties were extremely small.  Another realizability condition related to the continuity 

relation for the channel model that must be satisfied at every point is: 

.1=++Vρ           (5.2) 

This relation was strictly satisfied in the channel flow simulations.  Having satisfied these 

three benchmarking criteria, the computer code was confirmed to be accurate and viable. 
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5.2.1 Variable Step Size 

It was determined during benchmarking of the computer code that a uniform step 

size will not be sufficient in producing accurate results.  As part of verifying the 

predictions of the code against analytical expressions, the code was run for various cases 

for a maximum channel length (Lmax) that corresponds to the end point at which Mach 1 

is reached.  Using a uniform step size, the Lmax point was corresponding to a Mach 

number slightly less (2%) to drastically less (15%) than Mach 1, depending on the 

particular case.  This was determined to be due to the exponential-like trend of the Mach 

number increase in that close to Lmax the change in Mach number was increasingly 

sensitive to slight changes in position.  This situation was remedied by employing a 

shrinking step size.  The step size (∆x+) was derived from a geometric series and it 

shrinks at a user-specified percentage of the previous step size, i.e: 

++
+ ∆=∆ ii xx ω1 ,         (5.3) 

with constant ω chosen to be less than 1.   

The first step size (∆x+
1) necessary for the series of steps to end at the user-

specified end point is: 

( )
)1(

)1(
11 N

xxx N ω
ω

−
−

−=∆ +++
,       (5.4) 

where x+
N is the ending point of integration, x+

1 is the beginning point, ω is the 

percentage of previous step size and N is the total number of points.   
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 The utilization of a shrinking step size resulted in a Mach number accurately 

(<<1%) corresponding to 1 at the Lmax point of integration.  Through trial and error, the 

most effective ω value was 0.96 for all 15 cases. 

 

5.3 Radial Flow Model Results and Discussions 

The numerical predictions of the radial flow model are reported in graphical form 

for the following flow properties in terms of radial location, r+: 

 - Reynolds number (ReDh)  - change in entropy (ds)    

- Mach number (M+)   - velocity (V+)  

- temperature (T+)   - total pressure ( )    
+

tP

- static pressure (P+)   - density (ρ+) 

- Knudsen number (Kn). 

 The beginning and end points of integration were ri = 3000 µm and ro = 100 µm, 

respectively.  The number of steps used was 1,000, whereas ω was set to 0.96.  Increasing 

the number of points more than 1,000 had no appreciable effect on the results, so using 

1,000 points was deemed satisfactory. 

 

5.3.1 Variation of the Reynolds Number (ReDh)  
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 The dependence of the local Reynolds number on the radial position for initial 

total pressures of 100 psig, 200 psig, and 300 psig are shown in Figures 5.2, 5.3, and 5.4, 

respectively.  The Reynolds number is based on the hydraulic diameter and varies with 

changes in density and velocity at each location.  Starting at the respective initial values 

at r+ = 1 tabulated in Table 5.1, the Reynolds number is consistently shown to rise as the 



gas nears the outlet at r+
o = ro/ri = 1/30 = 0.033.  Through simple algebraic manipulation it 

can be shown that the Reynolds number varies inversely with the radial position, r+ (see 

Appendix D).  Through close agreement of the predicted Reynolds number with the 

analytical Reynolds number relation, the simulated Reynolds number results are justified. 

 

5.3.2 Variation of the Change in Entropy (ds)  

For the radial flow model, flow was assumed to be adiabatic and is irreversible 

due to friction.  Therefore, according to the second law of thermodynamics there must be 

an entropy rise in this system.  The variations of the change in entropy with the radial 

position in Figures 5.5, 5.6 and 5.7 clearly show this trend.  The observed entropy rise is 

directly related to the incurred loss of the total pressure that will be discussed in detail 

below. 

 

5.3.3 Variation of the Mach Number (M+) and Velocity (V+) 

The Mach number is defined as the fluid velocity divided by the local speed of 

sound, so variations of the Mach number (M+) and velocity (V+) are considered together 

in this section.  In interpreting the predicted Mach number or velocity variations (Figures 

5.8-5.13), consider Equation (4.56).  Note that the direction of the radial coordinate is 

opposite to the flow direction.  The hydraulic diameter, gas constant (γ), friction factor 

(f), and M are always positive.  Therefore, the (1 – M2) term determines the sign of dr
dM

.  

If the Mach number is less than one, the slope is positive and if the Mach number is 

greater than one the slope is negative.  This shows that the presence of friction causes the 
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Mach number tend toward one.  Once a Mach number of one is reached, changes 

downstream no longer affect upstream conditions and flow is considered ‘choked’ 

(Oosthuizen and Carscallen, 1997).  The operating Mach numbers of the current radial 

flow cases were subsonic.  Therefore, a gradual increase of the Mach number in the flow 

direction is expected (Figures 5.8-5.10).  Due to the negligible change in the gas 

temperature (section 5.3.4), dimensionless velocity shows similar trends (Figures 5.11-

5.13).  The gas is observed to accelerate in the flow direction, however this velocity rise 

is not significant.  In each of the Figures 5.11-5.13, the variation of the dimensionless 

velocity for an incompressible fluid is also shown.  Using continuity, one can easily show 

that: 

+
+
= =

r
V 1

const.ρ ,         (5.5) 

suggesting that an incompressible fluid will dramatically accelerate in the radial 

direction.  The marked disparity of the predictions of the compressible model in 

comparison to the incompressible flow relation points to the need for accounting for the 

compressibility effects.   

 

5.3.4 Variation of the Temperature (T+)  

In interpreting the predictions for the variation of the temperature, consider the 

energy equation (4.3a).  For an ideal gas with constant specific heats (which is an 

assumption in the radial model), changes in enthalpy are proportional to changes in 

temperature.  Therefore, the energy equation indicates that for an accelerating flow there 

is a corresponding decrease in enthalpy or temperature.  Conversely, for a decelerating 
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flow there is a corresponding increase in enthalpy.  For the radial flow cases, the flow is 

subsonic and accelerating.  Therefore, as shown graphically, there is an extremely mild 

decrease in temperature (Figures 5.14-5.16).   

5.3.5 Variation of the Total Pressure ( )  
+

tP

The total or stagnation pressure of a moving fluid is defined as the static pressure 

(P) plus its dynamic pressure (ρV2/2).  In interpreting the predictions for the variation of 

the total pressure (Figures 5.17, 5.18, and 5.19), consider the difference equation 4.24c 

(same as Eq. 4.49).  Since the change in entropy is always positive, this equation 

indicates that there is a decrease in the total pressure regardless of whether flow is 

subsonic or supersonic. The numerical predictions of the total pressure drop through the 

passageway are compared to the total pressure drop relation (Eq. B.23) for Stokes flow 

from Appendix B in Table 5.2.   
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Table 5.2  Total Pressure Drop ( ) for the Radial Flow Model 

Compared to the Incompressible Stokes Model 

oi ttt PPP −≡∆ +

 

11 1.844E-06 2.1131 11.9311 2.3356
12 7.350E-06 8.4209 27.6364 7.1983
13 1.636E-05 18.7456 38.1025 12.6963
14 2.891E-05 33.1248 43.8836 18.1660
15 4.499E-05 51.5460 46.4365 23.3444
11 1.583E-06 3.5625 9.5476 2.0067
12 8.390E-06 18.8764 29.3631 8.2697
13 2.047E-05 46.0634 44.4654 16.1761
14 3.783E-05 85.1237 53.8081 24.6497
15 6.047E-05 136.0571 58.8977 33.3647
11 1.225E-06 3.9854 7.2085 1.5531
12 6.797E-06 22.1099 23.1575 6.7128
13 1.677E-05 54.5612 35.4285 13.3260
14 3.115E-05 101.3395 43.1155 20.5223
15 4.994E-05 162.4447 47.4225 28.0650

Numerical 
∆Pt [kPa]

Stokes 
∆Pt [kPa]

Pti           

[psig]
H        

[µm]
Qactual 

[m3/min]

Mass 
Flowrate 
[mg/min]

200

300

100

 

 

It is clear that the total pressure drop for Stokes incompressible flow is 

consistently lower than the predictions of the radial model that accounts for the 

compressibility effect.  The numerical predictions of the total pressure drop in 

comparison to the Stokes relation are shown in Figure 5.20.  For an imposed total 

pressure at the inlet station (Pti = constant), both approaches show that as the spacing is 

changed from 11 to 15 µm, the incurred total pressure drop is observed to rise with the 

mass flowrate.  Note that the percentage difference between the predictions and Stokes 

relation diminishes as the spacing is raised.  This is expected since the effect of the ring 

becomes more negligible as the two disks move apart and the Stokes model becomes 

more realistic. 
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5.3.6 Variation of the Static Pressure (P+)  

Figures 5.21, 5.22, and 5.23 show the static pressure increasing with the decrease 

of the radial coordinate, r+.  The pressure rise in the flow direction is observed to be 

weakly affected by the initial conditions or the gap between the two disks.  Also shown 

on these figures are the pressure variation of an ideal incompressible fluid (Bernoulli’s 

equation) moving radially inward (Section F.1 of Appendix F).  In contrast to the 

pressure rise trends predicted by the compressible model, the Bernoulli’s equation 

predicts that the pressure will decrease in the flow direction.  In order to address these 

contradicting behaviors, two other simplified models for the static pressure variation were 

derived in Appendix F.  These are: 

1. Ideal Compressible Flow (Section F.2),  

2. Stokes Flow (Section F.3).   

For the present simulated cases for which Mi’s are extremely small, P+ ≈ 1.  The 

predictions of the fluid static pressure within the passageway using the Stokes flow 

model are shown in Figure 5.24 for the cases with Pti = 300 psig and H = 11 and 15 µm.  

The more realistic Stokes model that accounts for fluid viscosity predicts the static 

pressure rise that is in concert with the numerical integrations.  The Stokes flow relation 

for the static pressure rise (Eq. B.13) through the passageway is compared to the 

numerical pressure rise predictions in Table 5.3.  

 

 

 



Table 5.3  Static Pressure Rise (∆P = Po-Pi) for the Radial Flow Model Compared 

to the  Incompressible Stokes Model 

 

11 2.1131 2.26E+04 2.3328
12 8.4209 2.21E+04 7.1607
13 18.7456 2.18E+04 12.5374
14 33.1248 2.16E+04 17.7381
15 51.5460 2.15E+04 22.4419
11 3.5625 4.26E+04 2.0026
12 18.8764 4.20E+04 8.1734
13 46.0634 4.16E+04 15.6875
14 85.1237 4.13E+04 23.2109
15 136.0571 4.12E+04 30.1630
11 3.9854 6.27E+04 1.5495
12 22.1099 6.22E+04 6.6215
13 54.5612 6.19E+04 12.8519
14 101.3395 6.16E+04 19.1120
15 162.4447 6.15E+04 24.9083

Numerical 
[kPa]

100

Mass 
Flowrate 
[mg/min]

200

300

Static ∆P
Stokes 
[kPa]

Pti           

[psig]
H        

[µm]

 

 

 

The compressible model predictions for static pressure rise through the 

passageway are consistently much higher than that of the Stokes flow relation.  This 

marked difference between the two approaches further reinforces the need for accounting 

for the compressibility effects. 

 

5.3.7 Variation of the Density (ρ+)  

Considering the ideal gas relation, density varies linearly with pressure.  

However, density varies inversely with temperature, T.  Due to the predicted negligible 

temperature change, density exhibits a similar trend to that of static pressure (Figures 
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5.25-5.27).  The drastic increase in density as compared to the relatively small increase in 

the Mach number suggests that the fluid is compressed markedly more than it is being 

accelerated.  Using the continuity relation, a simple realizability condition must be 

satisfied by the predicted dimensionless density and velocity values at every radial 

location.  This relation is: 

+
++ =

r
V 1ρ .         (5.6) 

This relation was shown to hold very well. 

 

5.3.8 Variation of the Knudsen Number (Kn)  

 The Knudsen number is the ratio of the mean free path of a gas molecule to the 

characteristic length scale of a given flow problem.  The Knudsen number can be defined 

in terms of the Mach number and Re.  The Knudsen number provides a method for 

determining the validity of the continuum flow assumption or whether a rarefied flow 

must be considered.  Continuum flow is valid when gas molecules are close enough 

together that they collide with one another frequently and the gas acts as a continuous 

fluid.  The criterion for the continuum flow assumption for large Re is (John, 1984): 

01.0
Re

<=
MKn .         (5.7) 

Variation of the local Knudsen number throughout the flow is given in Figures 5.28-5.30.  

It is observed that the Kn is decreasing nonlinearly.  This decrease represents a 

shortening of the mean free path.  This is consistent with an increase of fluid density in 

the flow direction.  Density rise forces the gas molecules closer together, thus reducing 
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the mean free path.  Therefore, the continuum assumption remains valid, and it is not 

necessary to consider a slip flow condition on the walls.  

 

5.4 Analysis of the Total Pressure Losses Beyond the Seat Rings 

The radial model is capable of predicting various flow properties as the gas flows 

between the two disks.  Further analysis was done to determine the total pressure drop 

through the outlet tube of the microvalve for the conditions of incompressibility and 

compressibility.  First, an equivalent length was calculated for the outlet tube shown in 

Figure 3.4a (Fox et al., 2004).  Then, the total pressure drop for internal incompressible 

viscous flow (Fox et al., 2004) was found.  In addition, the channel model code was used 

to perform the Fanno analysis through the circular outlet tube.  The results for both 

incompressible and compressible analyses are shown in Table 5.4, and a sample 

calculation for the incompressible total pressure drop is given in Sections 5.4.1. 

 

 

 

 

 

 

 

 

 



Table 5.4  Total Pressure Drop (∆Pt) Through the Outlet Tube (Incompressible 

and Compressible Fanno Analyses) 

  

11 1.844E-06 2.113062 3.385E+01 3.311E-02 3.285E-05 1.15E+01 1.345E-02 5.086E-04
12 7.350E-06 8.420895 3.317E+01 1.347E-01 1.336E-04 4.57E+01 5.471E-02 2.068E-03
13 1.636E-05 18.74555 3.271E+01 3.040E-01 3.015E-04 1.02E+02 1.235E-01 4.669E-03
14 2.891E-05 33.12479 3.246E+01 5.413E-01 5.370E-04 1.80E+02 2.199E-01 8.314E-03
15 4.499E-05 51.54602 3.235E+01 8.452E-01 8.384E-04 2.80E+02 3.434E-01 1.298E-02
11 1.583E-06 3.562472 6.706E+01 2.818E-02 2.795E-05 1.94E+01 1.145E-02 4.125E-04
12 8.390E-06 18.87638 6.616E+01 1.514E-01 1.501E-04 1.03E+02 6.149E-02 2.216E-03
13 2.047E-05 46.06344 6.547E+01 3.732E-01 3.702E-04 2.50E+02 1.516E-01 5.464E-03
14 3.783E-05 85.12367 6.505E+01 6.943E-01 6.887E-04 4.62E+02 2.820E-01 1.016E-02
15 6.047E-05 136.0571 6.481E+01 1.114E+00 1.105E-03 7.39E+02 4.524E-01 1.630E-02
11 1.225E-06 3.9854 9.727E+01 2.174E-02 2.156E-05 2.17E+01 8.830E-03 3.226E-04
12 6.797E-06 22.10986 9.655E+01 1.215E-01 1.205E-04 1.20E+02 4.935E-02 1.803E-03
13 1.677E-05 54.56123 9.600E+01 3.015E-01 2.991E-04 2.96E+02 1.225E-01 4.475E-03
14 3.115E-05 101.3395 9.565E+01 5.621E-01 5.575E-04 5.51E+02 2.283E-01 8.341E-03
15 4.994E-05 162.4447 9.546E+01 9.028E-01 8.955E-04 8.83E+02 3.667E-01 1.340E-02

100

200

300

H        
[µm]

Qactual 

[m3/min]

Mass 
Flowrate 
[mg/min]

Pti           

[psig]

Outlet 
Incomp.  
∆Pt [kPa]

Outlet 
Comp.    

∆Pt [kPa]

ρo      

[kg/m3]
Vavg       

[m/s]
Mach 

Number
ReD

 

 

5.4.1 Sample Calculation for Incompressible Total Pressure Drop of the Outlet 

Tube 

For this sample calculation the case of Pti = 100 psig and H = 12 µm is 

considered.  First, a dimensionless equivalent length (Le/D) for the outlet tube is needed.  

For the sharp 90˚ bend, a dimensionless equivalent length of 60 diameters was 

determined from Figure 8.16 of Fox et al. (2004). The dimensionless equivalent length 

for the 200 micron diameter outlet tube is then calculated as follows: 

 13060
2.0

5.105.3
=+

+
=

mm
mmmm

D
Le

.      (5.8) 

The mass flowrate is calculated by multiplying the initial actual volumetric flowrate 

(Qactual) and the initial density (ρi).  The average velocity (Vavg) for the outlet tube is then 
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calculated using the area of the outlet tube and the density (ρo) at the opening of the outlet 

given by the value at the endpoint of the radial flow model: 

( ) s
m

m
kg

mg

o
avg smg

kg
A

mV 1347.0
60
min1

1
10

0001.017.33

421.8 6

2
min

3

=
⎟
⎠
⎞⎜

⎝
⎛

==
πρ

&

.  (5.9) 

The initial Mach number in the outlet tube is then given by: 

.1034.1
)293(~)2077(67.1

1347.0 4−×=== s
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o

TR

V
M

i γ    (5.10) 

The Reynolds number (ReD) in the tube will remain constant and is calculated as follows: 

( )
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0002.01347.017.33
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.  (5.11) 

Finally, the total pressure drop (∆Pt) that is equal to the static pressure drop is given by: 

( )
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 (5.12) 

In determining the compressible Fanno estimation of ∆Pt, the equivalent length (Le/D), 

initial Mach number (Moi), and Reynolds number (ReD) were used as inputs to the 

numerical code. 
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The total pressure drops for both the incompressible and compressible results are 

miniscule compared to the total pressure drop predicted by the radial flow model.  This 

supports the initial hypothesis that most of total pressure drop through the valve occurs as 

the gas flows over the seat rings. 

 

5.5 Closure 

Variations of flow properties through the microvalve for the radial flow model were 

presented.  The trends for the derived Stokes flow relation for both static and total 

pressures were in agreement with the predicted trends based on the radial flow model.  

Additionally, a comparison of the numerically-predicted total pressure drops to that of the 

Stokes flow calculations, supports the necessity of accounting for compressibility effects.  

The total pressure drop through the outlet tube was calculated and determined to be 

negligible compared to the total pressure drop over the rings.  Conclusions and 

recommendations for future work are discussed in Chapter 6. 

 

 

 

 

 



 

 

 

 

 

 

Figure 5.1: Measured flow rates for an actuated microvalve (Yang et al., 2004) 
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Figure 5.2:  Variation of ReDh for an inlet total pressure of 100 psig 
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Figure 5.3:  Variation of ReDh for an inlet total pressure of 200 psig 
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Figure 5.4:  Variation of ReDh for an inlet total pressure of 300 psig 
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Figure 5.5:  Variation of the change in entropy for an inlet total pressure of 100 psig 
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Figure 5.6:  Variation of the change in entropy for an inlet total pressure of 200 psig 
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Figure 5.7:  Variation of the change in entropy for an inlet total pressure of 300 psig 
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Figure 5.8:  Variation of the Mach number for an inlet total pressure of 100 psig 
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Figure 5.9:  Variation of the Mach number for an inlet total pressure of 200 psig 
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Figure 5.10:  Variation of the Mach number for an inlet total pressure of 300 psig 
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Figure 5.11:  Variation of the velocity for an inlet total pressure of 100 psig 
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Figure 5.12:  Variation of the velocity for an inlet total pressure of 200 psig 
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Figure 5.13:  Variation of the velocity for an inlet total pressure of 300 psig 
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Figure 5.14:  Variation of the temperature for an inlet total pressure of 100 psig 
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Figure 5.15:  Variation of the temperature for an inlet total pressure of 200 psig 
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Figure 5.16:  Variation of the temperature for an inlet total pressure of 300 psig 
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Figure 5.17:  Variation of the total pressure for an inlet total pressure of 100 psig 
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Figure 5.18:  Variation of the total pressure for an inlet total pressure of 200 psig 
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Figure 5.19:  Variation of the total pressure for an inlet total pressure of 300 psig 
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Figure 5.20:  Comparison of total pressure drop (numerical results and Stokes 
relation) vs. mass flowrate 
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Figure 5.21:  Variation of the static pressure for an inlet total pressure of 100 psig 
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Figure 5.22:  Variation of the static pressure for an inlet total pressure of 200 psig 
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Figure 5.23:  Variation of the static pressure for an inlet total pressure of 300 psig 
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Figure 5.24:  Variations of the static pressure for the Stokes flow relation for an 
inlet total pressure of 300 psig 
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Figure 5.25:  Variation of the density for an inlet total pressure of 100 psig 
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Figure 5.26:  Variation of the density for an inlet total pressure of 200 psig 
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Figure 5.27:  Variation of the density for an inlet total pressure of 300 psig 
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Figure 5.28:  Variation of the Knudsen number for an inlet total pressure of 100 psig 
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Figure 5.29:  Variation of the Knudsen number for an inlet total pressure of 200 psig 
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Figure 5.30:  Variation of the Knudsen number for an inlet total pressure of 300 psig 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

In order to determine the variations of flow properties over the rings for the 

conditions of static operation of the microvalve, two 1-D flow models were developed 

and the results analyzed.  The main conclusions and achievements of this study are 

summarized as follows: 

1.  A channel flow model was developed for steady, compressible frictional flow 

of a perfect gas between two infinite insulated parallel plates.  This code was 

implemented in benchmarking the numerical code against analytical expressions for the 

properties of flow through a constant-area channel.  In addition, this model was used to 

perform a 1-D Fanno analysis of flow through the outlet tube of the microvalve in order 

to determine the total pressure drop incurred. 

 2.  Based on the data for flow through a channel with rectangular fins mounted on 

the bottom wall (Luy et al., 1991), a correlation for a modified friction coefficient was 

derived that accounts for the fins’ presence.   The modified friction coefficient allowed 

for a simpler 1-D analysis of flow through the microvalve to be accomplished.   

 3.  A radial flow model was developed for steady, axisymmetric, compressible 

frictional flow of a perfect gas between two insulated, parallel disks flowing radially 
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toward an outlet hole at the center of the bottom disk. This model was implemented to 

determine the variation of properties of flow between the boss and seat plates of a JPL 

microvalve.  The most notable conclusion from the flow property trends is that of a 

drastic increase in density and static pressure in contrast to a rather small increase in the 

Mach number.  One can infer from these findings that the gas is being compressed more 

than it is being accelerated.  Also of importance, the total pressure drop was shown to be 

significant across the seat rings. 

 4.  A 2-D Stokes flow model was derived for incompressible, axisymmetric, 

radial flow between two concentric parallel disks.  The results of this model were used to 

verify the flow property variations from the radial flow model.  In particular, for the 

Stokes flow model, relations for radial velocity, average velocity, Darcy friction factor, 

volumetric flowrate, static pressure rise, and total pressure drop were derived.   The 

Stokes flow model trends for both static and total pressure were in accordance with the 

radial compressible flow model trends.  In addition, a comparison of Stokes flow values 

for both the static pressure rise and the total pressure drop to that of the numerical results 

demonstrates the necessity of accounting for compressibility effects. 

 5.  Implementing the channel flow model for the outlet tube, the total pressure 

loss through the outlet tube was found to be negligible in comparison to that of total 

pressure loss across the seat rings.  Therefore, the hypothesis that most of total pressure 

drop occurs across the rings between the boss and seat plates is upheld. 
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6.2 Recommendations for Future Work 

The suggestions for future work are summarized as follows: 

1.  The variation of the flow properties for the microvalve models involve 

conditions at relatively low Mach numbers.  However, the models are incapable of 

functioning with Mach numbers approaching 1.  An investigation into higher Mach 

number conditions would be of interest.  This could be made possible through the 

implementation of a perturbation method within the existing numerical code. 

2.  An investigation into non-continuum flow effects would be of interest.  The 

current two models that are implemented in the computer code can easily handle slip 

conditions.  However, the Knudsen numbers for the microvalve flow conditions did not 

merit the use of a slip condition on the walls. 

3.  This thesis focused on modeling the flow through the microvalve for static 

operating conditions and ignored the complications of the microvalve’s dynamic 

operation.  It would be of value to investigate the dynamic operation through a moving-

boundary microvalve model. 

4.  A 2-D or 3-D CFD analysis of the microvalve would be of interest.  Despite 

the anticipated difficulties of grid generation and compressibility effects involved with 

this approach, the results would be of great consequence to the understanding of the flow 

through the microvalve. 
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Appendix A 
 

Correlation for the Modified Friction Coefficient 
 

A.1 Channel Flow Model 

The simplest model for the microvalve system is posed as steady compressible 

flow of a perfect gas between two infinite parallel plates (Figure. 4.1).  The gas emerging 

from the inlet port flows over the repeating obstacles that represent the actual seat rings 

in the microvalve.  This represents a 2-dimensional flow problem that requires the 

solution of the governing partial differential equations.  Instead of following such a 

complicated path, a 1-D channel flow model is proposed using a modified friction factor 

that accounts for the repeating rectangular obstacles (Figure 4.2).  In essence, this 

constitutes substituting the friction coefficient, i.e. 96/ReDh, with a friction factor that 

accounts for the height of the obstacles (E = e/H), the spacing between the obstacles (D = 

d/H), and the Reynolds number (Figure A.1).  Using computational data of Luy et al. 

(1991), a correlation was generated to calculate the modified friction factor as a function 

of the ReDh and geometrical parameters (D and E).   

The original computational data of Luy et al. (1991) has parameter ranges for 

ReDh, E, and D of 10-300, 0.1-0.5, and 1-4, respectively. A sample of the CFD-based 

results of Luy et al. (1991) are presented in Figure A.2.  Based on the trends of the data of 

Luy et al. (1991), the suggested correlation is of the following separated form:

 



 
cDbaE eeKeF

f
f hDRe

channel

modified == ,             (A.1) 

 
with E = e/H and D = d/H being the dimensionless obstacle height and spacing, 

respectively.  The coefficients K, a, b, and c are to be determined using the procedure 

outlined next. 

Naturally, the proposed ratio is always greater than unity due to the presence of 

the obstacles.  Using a graph digitizing software (DigXY, 2003), a total of 68 points were 

gathered.  By organizing the data into sets holding two of the three parameters (ReDh, D, 

and E) constant, the Least-Squares Fit (LSF) method was used to determine each of the 

three coefficients a, b, and c.  For example, for five data points with ReDh = 10 and D = 2, 

the LSF method leads to the following relation: 

 
2.610205E

channel

modified e
f
f

∝  .             (A.2)       

 
The five data points along with the relation (A.2) are shown in Figure A.3. The 

exponential coefficient 2.610205 and all other constants for the sets of f vs. E data are 

categorized as ‘a’ constants.  Similarly, the constants for f vs. ReDh data are grouped as 

‘b’ constants, and f vs. D data as ‘c’ constants.  Using a weighted averaging scheme, the 

correlation’s exponential constants (a, b and c) were determined from the groups of 

constants from each set.  These exponential constants are summarized in Table A.1 where 

the minimum, maximum, weighted average, and standard deviation for each constant are 

given.  These average values were used exclusively from this point on to evaluate the 

exponential relations.  
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For each of the 68 data points, the value of f was divided by the value calculated 

from the exponential relations.  For example, for the data point with E = 0.1, ReDh = 10 

and D = 2: 

 

.5471.01.03971
)2(13361.0)10(00117.0)1.0(866.3

Re2,10Re,1.0

==

=

−

===

eee

eee

FK
cDbaE

data
DE

hDhD

    (A.3) 

 
The universal constant K was determined by averaging all the K values for each point. 

The maximum, minimum, weighted average and standard deviation of the coefficient K 

are also listed in Table A.1.   

 

Table A.1  Summary of Coefficients for the Modified Friction Correlation 
 
 

  a b c K 
Max 4.230523 0.003419 -0.04646 1.20007 
Min 2.610205 0.00016 -0.26996 0.329265 
W. Avg. 3.86602 0.00117 -0.13361 0.713826 
St. Dev. 0.496064 0.000927 0.066154 0.227608 

 
 
 

The final form of the correlated data of Luy et al. (1991) is: 
 

DE eeeF
f
f hD 13361.0Re00117.086602.3

channel

modified 713826.0 −== .            (A.4) 

 
When comparing the actual friction coefficient to that predicted by equation (A.4), an 

average error of 14.2 % and maximum error of 40.6% were determined.  The comparison 

between the actual data and those calculated from the correlation (A.4) is shown in the 

Figure A.4. 
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A.2     Application of the Modified Friction Correlation to the Radial Flow Model 

In applying this correlation to the geometry of the radial flow model, the ranges of 

the governing parameters must be comparable.  The ReDh for the radial flow model varies 

with radial distance, since density times velocity is not constant due to area change.  The 

ReDh and E are contained in the ranges of 0.19-450 and 0.67-0.91, respectively, which are 

close to the ranges of the correlation’s parent data. However, the range of D for the model 

is 18-25 which is well beyond the range of the correlation of 0-4.  With the limited data 

and range used to develop the D relation in the correlation, the trend can not be 

accurately captured for use with the radial flow model’s geometric parameters.  

Furthermore, the use of the correlation in its current form results in erroneous friction 

factors less than 96/ReDh, which would give the impossible result of friction conditions 

less than that of Fanno flow.  To correct for this problem, the knowledge that as ∞→D  

results in a friction factor of 96/ReDh is utilized.  Therefore, the D relation part of the 

correlation is set to 1 for use with the radial flow model geometry.  Therefore, the 

following relation is used: 

hDeeF
f
f E Re00117.086602.3

channel

modified 713826.0== .     (A.5) 
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Figure A.1: Geometry for the study of Luy et al. (1991) 
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Figure A.2:  Sample computational data from Luy et al. (1991) 
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Figure A.3: LSF for the five-data-point set with ReDh=10 and D=2 
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Figure A.4: Correlated approximation in comparison with data of Luy et al. (1991) 
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Appendix B 

Radial Stokes Flow Between Two Concentric Parallel Disks 

 

The flow between the seat and boss plates can be simplified as an axisymmetric 

radial flow between two concentric parallel disks.  The geometry is shown in Figure B.1, 

with the distance between the disks being 2h.  It is assumed that for this axisymmetric 

flow, the velocity components in the z and θ directions are negligible ( ).  The 

flow is laminar, incompressible and steady.   

0≠rV

 

B.1 Variation of the Radial Velocity Component 

By applying these assumptions to the governing equations, the continuity and 

momentum equations in the r and z directions are simplified to:  

,0)( =
∂
∂

rrV
r

          (B.1) 

,2

2

z
V

r
P

r
VV rr

r ∂
∂

+
∂
∂

−=
∂
∂

µρ         (B.2) 

,0=
∂
∂

z
P           (B.3) 

where and P are the velocity in the radial direction and the fluid static pressure, 

respectively.  Quantity ρ is the density and µ represents the viscosity of the working fluid.   

rV

Ideally, the above equations should be solved analytically to find the pressure 

drop (or rise) as a function of the mass flow rate.  In doing so, introduce a new variable f 

( ) that automatically satisfies the continuity equation (Eq. B.1).  The new form 

of the momentum equation in the r direction will be: 

rrVzf =)(
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3

2''

r
f

r
f

dr
dP ρµ += .         (B.4) 

Note that pressure is just a function of r (Eq. B.3), so the partial differentiation of 

pressure in Eq. B.2 is changed to ordinary differentiation in Eq. B.4. 

Equation B.4 is not solvable analytically because of the nonlinear term ( 3

2

r
f ).  

This term represents the convective effect in the Navier-Stokes equation.  This term can 

be neglected by assuming very low Reynolds number (very low fluid velocity, i.e. Stokes 

flow, which is valid for Re << 1 (White, 1991)).  Equation B.4 then becomes: 

r
f

dr
dP ''

µ= .          (B.5a) 

Upon separating variables, each side depends on the independent variables r and 

z, leading to: 

constant'' == f
dr
dPr µ .        (B.5b) 

Upon integrating twice, one gets: 

21
2

2
)( CzCz

dr
dPrzf ++=

µ
.        (B.6) 

The physical boundary conditions are: 

At :  ,        (B.7a) hz ±= 0for  0 ==rV

At : 0=z 0for  0 =′=
∂
∂

z
Vr

.        (B.7b) 
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Upon applying the boundary conditions, one gets: 

.1
2

)( 22

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
==

h
z

dr
dPh

r
zfVr µ        (B.8) 

Denoting the constant in Eq. (B.5b) by K, we have: 

,
r
K

dr
dP

=           (B.9) 

integration of which leads to: 

,ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆=−

i

o
io r

r
KPPP         (B.10) 

with subscripts i and o denoting the inlet and outlet positions, respectively.  Then: 

,
)ln(

i

o

r
r

r

P
dr
dP ∆

=          (B.11) 

and finally: 

.1
)ln(

1
2

)( 22

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛∆
==

h
z

r
r
P

r
h

r
zfV

i

o
r µ        (B.12) 

It is observed that under the Stokes flow conditions, at a given radial position, the radial 

velocity component varies parbolically. 

The volumetric flowrate expression is determined at a given radial location as: 

)ln(3

4
3

4)2(
33

o

i

h

h

r

r
r
Ph

dr
dPrhdzrVQ

µ

π
µ

ππ ∆
=== ∫

+

−
.      (B.13) 
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B.2 Friction Factor 

The friction factor for the radial Stokes flow between two concentric disks can 

now be determined.  The wall shear stress, τf, is computed from the wall velocity 

gradient: 

dr
dPh

dz
dV

hz

r
f ==

+=
µτ .        (B.14) 

An expression for dr
dP

 in terms of average velocity is needed.  Dividing equation B.13 

by cross-sectional area, A = 2πr(2h), one gets the average velocity: 

⎟
⎠
⎞⎜

⎝
⎛
∆

===

o

i
r
rr

Ph
dr
dPh

hr
QV

ln33)2(2

22

µµπ .      (B.15) 

Solving Eq. B.15 for dr
dP

, one gets: 

2
3

h

V
dr
dP µ

= .          (B.16) 

Substituting for dr
dP

 in Eq. B.14, one gets: 

h
V

f
µτ 3

= .          (B.17) 

Nondimensionalizing by the dynamic pressure, one gets the Darcy friction factor, f: 

VhV
f f

ρ
µ

ρ

τ 244
2

2
1

== .         (B.18) 

Taking note of the hydraulic diameter, Dh,  
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h
r
hr

perimeter
A

Dh 4
)2(2

)22(44 -sectionalcross ===
π
π

.      (B.19) 

Finally, Equation B.18 becomes, 

hD
f

Re
96

= .          (B.20) 

 

B.3 Total Pressure Drop Relation 

 The total pressure is defined as the pressure attained if the flow was brought 

isentropically to rest at that point.  Furthermore, the total pressure is the sum of the static 

pressure and dynamic pressure.  Therefore, the equation for change in total pressure 

between outlet position, denoted ‘o’and the inlet position, denoted ‘i’, is: 

( ) ( )
( ) ( )

( ).VVP

VVPP

VPVPPP
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1
io
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ρ

ρ

ρρ

     (B.21) 

Substituting for the average velocities from equation B.15, one gets: 

⎟⎟
⎠

⎞
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⎝

⎛
−+∆=− 22io
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22

2

32tt PPP
io rrh

Q

π

ρ
.      (B.22) 

Substituting for ∆P from equation B.13 gives: 
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⎥
⎦
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Figure B.1: Geometry of the radial flow between two parallel concentric disks 
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Appendix C 

Sample Calculation for the Initial Flow Conditions 

 

C.1 Extrapolation of the Experimental Data 

Figure 5.1 shows the limited experimental results of Yang et al. (2004) for both 

microvalve displacement (δ) and volumetric flowrate (Q) vs. applied voltage (v).  It is a 

common practice in industry to specify mass flowrate of a gaseous medium in terms of 

volumetric flowrate at standard conditions. The volumetric flowrate of gaseous flows can 

be expressed in Standard Cubic Centimeters per Minute (SCCM).  The standard form is 

defined as flowrates expressed at standard reference conditions (20˚C and 1 atm).  The 

units of the volumetric flow rate must be converted from SCCM  to actual flowrate 

(ACMM) before calculating the velocity of the flowing gas.   

Using digitization software (DigXY, 2003) and a Least-Squares Fit (LSF) method 

of curve-fitting, equations for the experimental data were extrapolated from Figure 5.1.  

The LSF equations are listed below. 

Microvalve displacement (δ) in µm vs. applied voltage (v) in volts: 

02.0)1291.0( += νδ .        (C.1) 

Volumetric flowrate in SCCM (Q) vs. v  in volts for Pti = 100 psig: 

8.024.02.0 2 −+= ννQ .        (C.2) 

Volumetric flowrate in SCCM (Q) vs. v  in volts for Pti = 200 psig: 
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4486.0763.15983.0 2 +−= ννQ .       (C.3) 

Volumetric flowrate (Q) in SCCM vs. v  in volts for Pti = 300 psig: 

7742.0494.2749.0 2 +−= ννQ .       (C.4) 

The actual and extrapolated experimental data of Yang et al. (2004) are summarized in 

Figure C.1. 

 

C.2 Conversion of the Units for Flowrate 

For illustration purposes, the details involved in the conversion of the units for the 

volumetric flowrate are given for one case.  Considering an initial total pressure of 200 

psig and a deflection of 4 µm, the volumetric flowrate for this case is determined.   

Using equation C.1, the voltage corresponding to a displacement of 4 µm is calculated: 

volts83.30
1291.0

02.04
=

−
=ν .   

Substituting this voltage into equation C.3 to determine the standard flowrate, one gets: 

.SCCM73.5144486.0)83.30)(763.1()83.30)(5983.0( 2
standard =+−=Q  

This standard volumetric flowrate can then be converted to an actual value in cubic 

meters per minute (ACMM) via the following relation: 

.10783.3
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 (C.5) 
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C.3 Calculation of the Initial Flow Properties 

 Continuing with the current example, the initial velocity can be calculated and 

used to determine the initial Mach number and Reynolds number.   

Dividing the volumetric flowrate by cross-sectional area, A = 2πri(H), one gets, 

s
m

m

i smm
V 39.2

60
.min1

)1014)(003.0(2

10783.3
6

min
5 3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅

⋅
=

−

−

π . 

The gas being considered is helium.  Using the initial velocity to compute the initial 

Mach number, Mi, one gets, 

00237.0
293)2077(67.1

39.2
=== s

m
i

i
RT

V
M

γ . 

Substituting the initial velocity into the Reynolds number equation gives: 

( )( )
71.7

10953.1

102839.225.2
Re

5

6
3

=
⋅

⋅⎟
⎠
⎞

⎜
⎝
⎛

==
⋅−

−

s
mkg

s
m

m
kg

hi
iD

mDV
h µ

ρ
. 

The properties of helium were taken from Tsederburg et al. (1971). 

For the current example, the dimensionless ring height, E = e/H, and the Reynolds 

number can be used to determine the initial modified friction coefficient.  Substituting the 

initial parameters for the current example into equation A.5 (see Appendix A), the initial 

modified friction coefficient (Fi) is calculated: 

.397.11713826.0

713826.0

)71.7(00117.00.714286)(86602.3

Re00117.086602.3

channel

modified

==

==

ee

ee
f
fF hDE

i
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Figure C.1: The actual and extrapolated experimental data of Yang et al. (2004) 
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Appendix D 

Reynolds Number Relation in a Radial Disk 

 

 A relation for the Reynolds number (ReDh) dependence on the radial distance, r+, 

is determined.  This relation can be used to verify the predictions of the computer code 

for the Reynolds number.   

The Reynolds number at a radial position is defined as: 

µ
ρ h

D
VD

h
=Re ,         (D.1) 

where ρ is density, V is average radial velocity, Dh is hydraulic diameter, and µ is the 

fluid viscosity.  Consider the expression for mass flowrate, i.e: 

VAm ρ=& .          (D.2) 

Substituting equation D.2 into equation D.1, one gets: 

µA
Dm h

Dh

&
=Re .         (D.3) 

Substituting for cross-sectional area (A) and hydraulic diameter (Dh) from equation 4.37c 

gives: 

µπr
m

hD
&

=Re ,         (D.4) 
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showing that the Reynolds number varies inversely with the radial distance.  Note that for 

the initial ReDh at the inlet port (Rei): 

µπ i
i r

m&
=Re .          (D.5) 

Dividing equation D.4 by D.5, one gets: 

+
+ ===

rr
ri

D
i

D
h

h 1Re
Re

Re
.       (D.6) 

Equation D.6 shows that Re+
Dh is inversely proportional to dimensionless radial distance, 

r+.  A graph of the relation is shown in Figure D.1.   
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Figure D.1: Variation of Re+
Dh with dimensionless radial coordinate, r+
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Appendix E 

Derivation of the Analytical Expression for Lmax  

 

E.1 Analytical Lmax for the Channel Flow Model 

 Using a procedure described by Saad (1993), an analytical expression for Lmax for 

a channel (constant f) can be derived through integration of Equation 4.14.  Setting the 

limits of integration to M at the entrance of the channel and M = 1 at Lmax, the integral of 

Equation 4.14 becomes: 

( ) dM
MM

M
D
fdx

M

L

h ∫∫
⎟
⎠

⎞
⎜
⎝

⎛ −
+

−
=

1

32

2

0 2
11

12
max

γγ .       (E.1) 

Noting that dM2 = 2MdM, Equation E.1 becomes: 

2
1

42

2
max

2
2

11

1 dM
MM

M
D

fL

M
h ∫

⎟
⎠

⎞
⎜
⎝

⎛ −
+

−
=

γγ .       (E.2) 

Before integrating, the method of partial fractions is used to put the right hand side of 

Equation E.2 into an easier form for integration.   

Letting x = M2, and denoting 2
)1( −= γa the integrand of Equation E.2 becomes: 

ax
C

x

B
x
A

axx

x

MM

M
+

++=
+

−
=

⎟
⎠
⎞⎜

⎝
⎛ +

−
− 1)1(

1

1

1
2242

2
1

2

γ .    (E.3) 
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Multiplying both sides by x2(1 + ax), one gets: 

2)1()1(1 CxaxBaxAxx ++++=− .      (E.4) 

Combining terms will lead to: 

BxaBAxCaAx ++++=− )()(1 2
.      (E.5) 

Equating terms having the same power of x gives: 

A = - (1 + a), 

B = 1, 

C = a(1 + a). 

Thus, Equation E.2 becomes: 

2
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242
1max

2 1

)1(11 dM
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++
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Integrating Equation E.6, one gets: 

1
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2
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2
)1ln()1(1)ln()1(
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D
fL

⎥
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+++−+−= γ .    (E.7) 

Applying the limits and combining like terms gives: 
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Subsituting ‘a’ into the equation, one gets: 
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Recalling that for channel flow, f = 96/ReDh, the dimensionless Lmax is given by: 
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Appendix F 

Derivation of Static Pressure Relations for the Radial Disk Geometry 

 

F.1 Ideal Incompressible Flow Relation for Static Pressure 

 The derivation for this relation is started with the Bernoulli’s equation.  The 

Bernoulli’s equation is: 

2
2
12

2
1

ii VPVP ρρ +=+ .       (F.1) 

Rearranging Equation F.1 for P, one gets: 

( )22
2
1 VVPP ii −+= ρ .        (F.2) 

An expression for V can be found using the continuity equation as follows: 

ii VhrVhr )2(2)2(2 ππ = .        (F.3) 

Rearranging Equation F.3 for V, one gets: 

r
rV

V ii= .          (F.4) 

Substituting V from Equation F.4 into Equation F.2 gives: 
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Equation F.5 is nondimensionalized to give: 
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Substituting for 
iP
ρ

 from the perfect gas relation, one gets: 
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Introducing the Mach number (Eq. 4.6a) into equation F.7 gives: 

( ) ⎟⎟
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2
1 11 rMP iγ

.       (F.8) 

 

F.2 Ideal Compressible Flow Relation for Static Pressure 

The derivation for the ideal compressible flow case is started with the difference 

form of the Bernoulli’s equation. 

Neglecting gravity effects, the difference form of the Bernoulli’s equation (White, 1999) 

is: 

0=+VdVdP
ρ .         (F.9) 

Substituting for ρ from ideal gas relation assuming constant temperature, and integrating, 

one gets: 

constantln 2
2
1 =+ VPRT .       (F.10) 

Setting the right hand side to conditions at the inlet port gives: 
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2
2
12

2
1 lnln ii VPRTVPRT +=+ .      (F.11) 

An expression for V can be found from the continuity equation: 

VhrVhr iii ρπρπ )2(2)2(2 = ,      (F.12) 

which upon introducing the perfect gas relation gives, 

P
P

r
rV

V iii= .         (F.13) 

Rearranging equation F.11 and substituting for V from equation F.13, one gets: 
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Introducing the Mach number (Eq. 4.6a) into equation F.14 gives: 
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Equation F.15 can be nondimensionalized to give: 
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γ
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This equation can not be solved explicitly for P+, however it can be evaluated 

numerically for values of γ, Mi and r+ < 1. 

For the present simulated cases for which Mi’s are extremely small, it can be shown that 

P+ ≈ 1. 
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F.3 Stokes Flow Relation for Static Pressure (Incompressible Fluid) 

The Stokes flow relation for the variation of the static pressure is derived by 

integrating Equation B.11: 

∫∫ −
=

r

r
i
o

io
P

P ii

r
dr

r
r

PPdP
)ln(

)(
.        (F.17) 

Equation F.17 becomes: 
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Equation B.13 yields an expression for )ln(

)(

i
o
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r
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PP −
, that is: 
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Substituting Equation F.19 into Equation F.18, one gets: 
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which finally becomes the dimensionless expression for static pressure: 
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