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Abstract 

 

 

   The development of fMRI has revolutionized cognitive neuroscience. There are two related 

areas gaining increasing interest: 1) Investigating the directional interactions between different 

regions. 2) Predicting human behaviors from brain activities. In this thesis, supervised learning 

models were applied on fMRI data for solving these problems. Firstly, dynamic Granger 

causality, a regression based supervised learning model, was experimentally demonstrated to be 

capable of inferring stimulus-evoked sub-100ms timing difference in fMRI responses, providing 

a reliable data-driven method for effective connectivity analysis of fMRI data. Secondly, Patel’s 

τ – a method which performed best for inferring directional interactions in a previous simulation 

– was investigated using experimental fMRI data, highlighting the necessity of experimental 

validation of simulation results. Lastly, recursive cluster elimination based support vector 

machine, a classification based supervised learning model, was used to predict purchase 

decisions using spatio-temporal fMRI features, providing a reliable framework for using fMRI 

data to predict purchase-related decisions.  
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Chapter 1: Introduction 

 

1.1 MRI 

   Magnetic Resonance Imaging (MRI) is a noninvasive medical imaging technique using 

high magnetic fields and wave pulses instead of ionizing radiations or radioactive tracers 

to image the structures inside the body. When a patient is positioned inside the MRI 

scanner which forms a strong magnetic field, the randomly spinning nuclei will align 

with the direction of the magnetic field. Three gradient coils are then used to choose the 

orientation of the slices in the three directions; the nuclei at different locations will rotate 

at different speeds because of the spatial variance of the magnetic field. The hydrogen 

atoms will get excited and emit a radio frequency signal when the RF energy is applied at 

the appropriate resonant frequency (Larmour frequency). These MR signals detected at 

the receiver are the mixture of RF signals with different amplitudes, frequencies and 

phases containing spatial information. Inverse Fourier transform is then applied to 

recover the spatial information and reconstruct the image of scanned area [1].  

 

 

    

Figure 1.1 MRI scanner 
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   Compared with other medical imaging techniques, MRI has three primary advantages 

[2]: 1) It has the potential of getting very high spatial resolution images for both bone and 

soft tissue. 2) Ionizing radiation is not required as X-rays or CT scans. 3) It could get 

images in any plane through the body. Therefore, MRI has become one of the most 

popular diagnostic imaging techniques over the past two decades. 

 

1.2 Functional MRI 

   Functional magnetic resonance imaging is a neuroimaging technique using standard 

MRI scanner to investigate the neuronal changes in brain function over time [2]. The 

measurement of brain activity is mainly based on the blood oxygenation level dependent 

(BOLD) contrast. It relies on the fact that Cerebral Blood Flow (CBF) and neuronal 

activation are normally coupled. Whenever a brain region is activated either 

simultaneously or driven by some tasks, it will demand more oxygen. The demanded 

oxygen is carried to neurons by hemoglobin in capillary red blood cells, leading to the 

increase of blood flow in that region which can be detected by MRI. The change in MR 

signal from neuronal activation is called hemodynamic response (HDR). HDR always 

lags 1 to 2 seconds after the neuronal events triggering it, and takes another 5 seconds to 

rise to a peak.  

   The spatial resolution of an fMRI image is determined by its voxel dimensions, which 

are specified by three parameters [2]: field of view, matrix size, and slice thickness. Full-

brain experiments will use larger voxel size, while those focusing on the changes in 

specific regions of interest (ROIs) will use smaller ones. Spatial resolution of fMRI could 

be as small as the order of millimeter. Temporal resolution of fMRI scan is usually 
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between 1 second and 2 second. Therefore, fMRI has a poor temporal resolution 

compared with some other neuroimaging techniques such as electroencephalography 

(EEG) and magnetoencephalography (MEG), but it has an attractive high spatial 

resolution and thus has been extensively used in both research and clinical applications. 

 

1.3 Functional and Effective connectivity 

   One area of rapidly increasing interest in neuroimaging is the mapping of brain network 

[3]. Different brain regions are assumed to perform different brain functions, while many 

neuronal processes cannot be localized in a single region and hence are presumed to be 

encoded by a network formed by several brain regions. Such “mapping” usually starts by 

defining a set of function nodes [3]. In the context of fMRI, nodes are defined as specific 

regions of interest (ROIs). Once nodes are identified, various approaches are taken to 

estimate the edges (connections) between the nodes, using the experimental time courses 

in ROIs. The most straightforward method may be looking at the correlation between the 

time courses of the node pair. However, correlation cannot indicate the directionality of 

the node pair, or whether the connection of this node pair is direct or indirect [3]. 

Generally, The approaches estimating the interaction between brain regions can be 

classified into two categories: functional connectivity and effective connectivity. 

Functional connectivity is defined as “temporal correlations between spatially remote 

neurophysiological events” while effective connectivity is defined as “the influence one 

neuronal system exerts over another” [4]. Typically the estimation of directionality of 

influence is harder than just estimating whether a connection exists or not, but always of 

greater interest as it provides a mechanistic characterization of the underlying neuronal 
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processes in terms of information flow. Both functional and effective connectivity can be 

estimated by data-driven or model-driven approaches.  

 

1.4 Supervised Learning 

   A supervised learning model is to reason from the external instances given with known 

output to build a general hypothesis, which is then used to make predictions about future 

instances [5]. Supervised learning is the process of learning the inherent rules from the 

training data, creating a classifier or regressor that can be applied to generalize from 

future instances for prediction of their outputs. There are several steps of supervised 

learning process. The first step is to collect training data and select features that may be 

informative for prediction. Feature subset selection is usually the second step to remove 

the irrelative features and reduce the dimensionality of data. Next part is algorithm 

selection. There are many approaches proposed for supervised learning. Most commonly 

used algorithms include artificial neural networks (ANN) [6], support vector machine 

(SVM) [7], regression models, etc. A particular algorithm will be chosen and performed 

on the training data. After that, cross-validation is often used in order to estimate the 

performance of the predictor, by dividing the training data into two exclusive subsets, one 

for training and the other for testing. Supervised learning models have a broad application 

in many areas. In the context of fMRI, they can be used for inferring brain function and 

predicting behavior.  
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1.4.1 Granger causality and Effective connectivity 

   Granger causality [8] is an autoregressive (AR) model firstly proposed for assessing the 

‘causality’ of different time series in the context of economics. Given two time series Xt 

and Yt, if the past values of one time series can help predict the current and future values 

of the other, then we can say that the former Granger-cause the latter. AR models are 

used for the estimation of Granger causality. Individually,  

 

 

Then bivariate AR models are used for consideration of cross correlation. 

 

 

Where a and d represent autocorrelation of each time series, b and c represent cross-

correlation between time series. E represent estimation errors (or noises). P is the order of 

the model, which may be determined by Bayesian Information Criterion (BIC) [9]. Then 

Granger causality can be calculated from the estimation errors. 

 

  

 



 6 

The variance ratio cannot be less than 1, because the introduction of additional 

parameters in the model cannot lead to an increase of estimation errors. Therefore, 

Granger causality exists on the interval (0, ∞), representing the degree to which one time 

series can help predict the other. 

   Previous studies have demonstrated that when applied to electrophysiological data, 

Granger causality is capable of getting interpretable results in terms of both the 

directionality and the magnitude of synaptic transmissions [10, 11]. However, in the 

context of fMRI, the application of Granger causality for estimating effective 

connectivity is still debated. There are three factors that could have the potential to 

confound the results of Granger causality: (i) Hemodynamic variability across different 

brain regions. (ii) Low temporal resolution. (iii) Low Signal-to-noise ratio SNR [12].  

   However, despite these concerns, highly interpretable results applying Granger 

causality in fMRI appeared both in simulation works [13, 14] and experimental works 

[15, 16]. Therefore, the issue of to what extent Granger causality can be applied to fMRI 

still needs for further considering.  

 

1.4.2 Support Vector Machine and Brain state classification 

   Support vector machine (SVM) is a supervised learning algorithm developed by Vapnik 

[7] to solve the classification problems. The goal in a classification problem is to separate 

different classes by a function which learns the implicit rules by the training data, such 

that it will be able to assign a novel unlabeled input into a correct class. The fundamental 

assumption is that samples of the same class will have similar values in feature space, and 
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thus be near to each other. Therefore, a decision hyperplane can be used to separate the 

different classes in feature space, as fig.2.2 shows.  

 

 

   The goal of a linear SVM classifier it to find the optimal linear hyperplane in the 

feature space with the largest margin, since larger margin always means better 

generalization of the classifier. Given a linear separable training data set (xi,yi), where xi 

is the input features of the ith sample and yi is a binary value (either 0 or 1) indicating the 

class label of the ith sample, then a pair (w,b) exists such that 

 

 

 

Figure.1.2 An illustration of a decision plane in a three-dimension feature space. 

This figure is adapted from [22] 
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Then the decision hyperplance could be given by , where w is the weight vector 

and b is the bias. Then an optimal hyperplane maximizing the distance between different 

classes can be found by solving a convex quadratic programming problem [5]: 

 

 

 

 

   Among the machine learning and data mining methods, SVM has been an active 

technique and has been applied in a broad range of areas. At the same time, the 

classification problems in the literature of fMRI have also been gaining more and more 

attention. The implication of these problems is that brain state can be predicted using 

fMRI data, which can enhance the understanding of the cognitive process and brain 

system [17]. SVMs have been extensively applied to solve the classification problems in 

fMRI, because they have some unique properties appropriate for the context of fMRI. 

Among these, one fact is that SVM is capable of dealing with small sample sizes and 

high dimensional features, which matches the situation of fMRI data [17]. Previous 

studies have demonstrated the feasibility and potential for the application of SVM in 

Fmri [17, 18], providing a reliable framework for brain state classification. 

 

1.5 Motivation and Organization 

   FMRI is a non-invasive technique, and it allows researchers to obtain indirect estimates 

of neural activity at a spatial resolution of millimeters within a matter of seconds. 

Consequently, mining fMRI data provides a powerful tool for understanding human 
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cognitive processes. Among all the applications of fMRI in neuroscience, there are two 

areas gaining particular increasing interest: 1) Mapping the functional network of brain 

and investigating the directional interactions of different regions. 2) Decoding and 

predicting human behaviors from brain activities. 

   The goal of this thesis is to apply supervised learning models to infer brain function and 

predict behavior from fMRI data. There are two categories of supervised learning 

models: regression models and classification models. Both of them were used for the 

analysis of fMRI data in different chapters. In chapter 2, dynamic Granger causality [19], 

a regression based supervised learning model, is experimentally demonstrated to be 

capable of inferring stimulus-evoked sub-100 ms timing difference from fMRI, providing 

a reliable data-driven method for effective connectivity analysis of fMRI data. Chapter 3 

is a continuance of chapter 2, where Patel’s τ [20] – a higher order statistics method 

which performed best for inferring directional interactions from fMRI in a previous 

simulation study [3] – was verified using experimental fMRI data, highlighting the 

necessity of experimental validation of simulation results. In chapter 4, recursive cluster 

elimination based support vector machine [21], a classification based supervised learning 

model, was used to predict purchase decisions using spatio-temporal fMRI features. This 

provides a reliable framework for using fMRI data to predict purchase-related decision-

making as well as infer its neural correlates. Chapter 5 presents a conclusion of the whole 

work in the thesis.  
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Chapter 2: Experimental Validation of Dynamic Granger Causality for Inferring 

Stimulus-evoked Sub-100ms Timing Differences from fMRI 

 

Abstract 

   Decoding the sequential flow of events in the human brain non-invasively is critical for 

gaining a mechanistic understanding of brain function. In this study, we propose a 

method based on dynamic Granger causality analysis to measure timing differences in 

brain responses from fMRI. We experimentally validate this method by detecting sub-

100ms timing differences in fMRI responses obtained from bilateral visual cortex using 

fast sampling, ultra-high field and an event-related visual hemifield paradigm with known 

timing difference between the hemifields. Classical Granger causality was previously 

shown to be able to detect sub-100 ms timing differences in the visual cortex. Since 

classical Granger causality does not differentiate between spontaneous and stimulus-

evoked responses, dynamic Granger causality has been proposed as an alternative, 

thereby necessitating its experimental validation. In addition to detecting timing 

differences as low as 28 ms during dynamic Granger causality, the significance of the 

inference from our method increased with increasing delay. Therefore, it provides a 

methodology for understanding mental chronometry from fMRI in a data-driven way. 
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2.1 Introduction 

   Correct measurements of small temporal differences in brain activities play a critical 

role in fully understanding the neural connectivities underlying brain processes. 

Functional MRI (fMRI) is an indirect measure of neuronal activity based on the blood 

oxygenation level-dependent (BOLD) hemodynamic response. Typically the 

hemodynamic response takes 5-8 seconds to reach its peak and 15-30 seconds to return to 

baseline. On the other hand, neural latencies are typically of the order of tens to hundreds 

of milliseconds. Therefore, accurate detection of the timing difference of neuronal 

activities using fMRI is challenging. However, using innovative experimental designs, 

previous studies have shown that fMRI is sensitive to latency differences of the order of 

hundreds of milliseconds in the human brain, notwithstanding its poor temporal 

resolution and hemodynamic smoothing [23,24]. Recently, a study performed by Katwal 

et al. [16], suggested that recent advances in ultrahigh field image acquisition, fast 

temporal sampling, and techniques for increasing the available signal-to-noise ratio 

(SNR) may improve the ability to detect shorter timing differences. Using these 

strategies, Katwal et al. attempted to detect small timing differences in BOLD signals by 

introducing known timing differences between left and right visual cortices. They showed 

that Granger Causality (GC) works well for detecting small temporal precedence in 

BOLD responses in the visual cortex [16]. GC is a widely-applied method for mapping 

effective connectivity over the brain, which is based on a statistical measure of how one 

time series predicts the future values of another [8,14,25,26]. However, conventional GC 

is sensitive to both spontaneous and stimulus evoked responses [27]. Therefore, previous 
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studies have proposed that by estimating time-varying coefficients using a dynamic 

Granger causality model (dGC), temporal precedence due to stimulus-evoked BOLD 

responses can be separated from that due to spontaneous activity using both EEG [27,28] 

and BOLD fMRI data [30-32]. In this study, we validate this method by demonstrating 

the ability of the dGC model to detect sub-100 milliseconds of timing differences 

between BOLD fMRI time series from left and right visual cortices. Note that dGC was 

used to detect temporal precedence and not to infer causal influences in this study. 

 

2.2 Methods 

2.2.1 Data acquisition 

   Gradient-echo EPI data (TR=250 ms, TE=25 ms, flip angle=30°, FOV=128 mm×128 

mm and voxel size=1 mm×1 mm×2 mm) were acquired from a 7T Philips Achieva 

scanner from 5 healthy subjects in two coronal slices (with no slice gap) around the 

calcarine fissure. An event-related visual hemifield paradigm with known timing 

difference between the hemifields was used. Each visual stimulus comprised a 2-s 

flashing of checkerboard followed by a 16-s fixation cross for total trial duration of 18 s. 

Each run included 17 trials and the total run time was 306 seconds. For each subject, five 

runs were executed by introducing known delays (including 0, 28, 56, 84, 112 ms) 

between right and left hemifield stimulus. Fig.2.1 shows the stimulus paradigm. FMRI 

data which consisted of average time series from two activated visual cortical regions 

(denoted as X and Y for right and left hemisphere, respectively) were obtained using 

voxels selected by a novel graph-based visualization of self-organizing maps [16,33]. 

These fMRI data were used for the current analyses. 
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2.2.2 Dynamic Granger Causality Analysis 

   As mentioned above, conventional GC is incapable of separating temporal precedence 

due to spontaneous and stimulus-evoked brain activity. One possible approach for 

inferring temporal precedence only from stimulus-evoked brain activity is to show that 

Granger causal estimates covary with the experimental paradigm. Such modulation can 

confirm temporal precedence due to stimulus-evoked activity and rule out temporal 

precedence from spontaneous activity. However, conventional GC can only provide one 

connectivity measure for the entire experiment, because it assumes that the model 

coefficients are stationary and invariant across time as shown below. Let k fMRI time 

Figure 2.1 The stimulus paradigm. Adapted from Katwal et al 2012 with permission 
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criterion [25,34], a are the model coefficients and e is the model error. Note that a(0) 
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time in order to make the MVAR model dynamic as given below.  

        

Considering the model coefficients aij(n,t) as a state vector of a Kalman filter, they were 

adaptively estimated using the algorithm proposed by Arnold et al. [36]. Dynamic 

Granger causality (dGC) was then obtained as follows: 
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A similar metric has been previously used in the static case [37]. Since we had only one 

time series each from right and left visual cortices for every subject, we used a bivariate 

model with k=2 in this study. We denote the fMRI time series obtained from right and 

left visual cortices as X and Y, respectively. The dGC model was used to get XY and 

YX connectivity time series for all subjects and delays using a model order of one as 

determined by the Bayesian Information Criterion [9,14]. The forgetting factor for the 

Kalman filter was estimated based on minimization of relative error variance [32]. 

Subsequently, we calculated dynamic Granger causality difference (dGCD) time series, 

i.e. XY – YX to infer the difference in timing between X and Y. If dGCD is larger 

than zero, it means that the precedence is from X to Y, and vice versa if dGCD is 

negative.  

 

2.2.3 Covariance of Connectivity with Experimental Paradigm 

   A time series representing the experimental paradigm was generated by the convolution 

of the stimulus boxcar function with Statistical Parametric Mapping (SPM)’s canonical 

HRF. Fig.2.2 shows the stimulus function and the time series representing the 

experimental paradigm. In order to evaluate how dGCD covaried with the experimental 

paradigm, a general linear model (GLM) was used, considering the dGCD time series as 

the response variable and the experimental paradigm as the predictor variable [30,31]. 

The t-value obtained from the GLM represents the strength of co-variance between 

dGCD time series and the experimental paradigm. For each delay, we obtained 5 t-values 

corresponding to the five subjects. Subsequently, a one-side z-test was performed to 

examine whether the sample represented by the 5 t-values had a mean significantly larger 
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than zero. The null hypothesis of z-test was that the sample belonged to a normal 

distribution with zero mean, and standard deviation of σ. For all z-tests, we set σ equal to 

the standard deviation of the t-values obtained by 0 ms delay.  

 

2.2.4 Comparison with cross-correlation function 

   The conventionally used metric for estimating delays between time series is the cross-

correlation function which computes Pearson’s correlation coefficient between two time 

series at various delays and infer the delay corresponding to the highest correlation 

coefficient as the time delay between the time series. We compared the efficacy of dGCD 

with that of the conventionally used cross-correlation function for inferring neural 

latencies. The minimum latency that can be inferred using the cross-correlation method is 

equal to the sampling period. The TR of the fMRI time series we used was 250 ms. Since 

we were interested in inferring sub-100 ms delays, we upsampled the data 25 times such 

that the resampled data had a sampling period of 10 ms. For each delay and subject, we 

obtained the cross-correlation function between the upsampled data from bilateral visual 

cortices. The delay corresponding to the maximum cross-correlation value was found in 

each case. A one-side z-test was performed to test whether the timing differences 

obtained from the cross-correlation function were significantly greater than zero, similar 

to the procedure adopted in the case of dGCD.  
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2.3 Results 

   Fig.2.3 shows the t-values of the GLM fit between the experimental paradigm and 

dGCD time series. Table 2.1 shows the p-values of a one-sided z-test used to test whether 

the t-value sample was significantly greater than zero. It is notable that no causality was 

detected for a delay of zero, while dGCD significantly covaried with the experimental 

paradigm for all other delays. Also, the significance of causality generally increased with 

increasing delay. This indicates that dGCD derived from fMRI data was sensitive to even 

28 ms latency and that the sensitivity increased with increasing delay time.  

 

 

Figure 2.2 Stimulus boxcar function and experimental paradigm 
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Delay (ms) p-value 

0 0.1120 

28 0.0034 

56 0.0141 

84 5.18×10-07 

112 3.81×10-12 

Figure 2.3 t-values for the GLM fit between dGCD and experimental 

paradigm versus delay times 

Table 2.1 p-values of a z-test with the null hypothesis that the distribution of t-

values obtained from all subjects has zero mean 
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   Fig.2.4 shows the delays inferred from the cross-correlation function on the y-axis and 

the true delays on the x-axis. The p-values of the one-sided z-test used to test whether the 

delays inferred from the cross-correlation function were significantly different from zero 

are shown in Table 2.2. It is apparent that the cross-correlation function infers a delay 

when there is no true delay and does not infer a delay when there is one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delay (ms) p-value 

0 0.0079 

28 0.9939 

56 0.6852 

84 1 

112 0.8326 

Table 2.2 p-values of a z-test with the null hypothesis that the distribution of 

delays inferred from the cross-correlation function has zero mean 
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2.4 Discussion  

   There has been intense debate in the past 2 years regarding methods which are suitable 

to infer directional connectivity information from fMRI [38-42]. Simulations by Smith et 

al [3] showed that Patel’s τ [20] was more suitable than lag-based methods such as 

Granger causality for detecting directional connectivity. However, studies conducted by 

different groups have shown that under certain conditions, such as fast sampling and 

hemodynamic variability being within a range typically observed in healthy individuals, 

Granger causality can faithfully capture directionality information from fMRI based on 

Figure 2.4 Delays inferred from the cross-correlation function on the y-axis 

and the true delays on the x-axis 
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neuronal latencies [12,15,43,44]. The most recent and compelling experimental evidence 

in favor of Granger causality corresponds to the study by Katwal et al. which showed that 

using Granger causality for relative timing measurement and self-organizing maps for 

voxel selection, timing differences as low as 28 ms can be inferred from fMRI time series 

in bilateral visual cortices, which had experimentally controlled timing differences 

induced by time-lagged hemi-field stimulation [16]. This makes the data obtained from 

the Katwal et al.’s study ideal for testing and validating potential approaches for inferring 

latencies from fMRI.  

   One outstanding issue with conventional GC is that it is sensitive to both spontaneous 

and stimulus evoked responses [27]. Previous studies using both EEG [28,29] and BOLD 

fMRI data [30-32] have proposed that by estimating time-varying coefficients using a 

dynamic Granger causality model (dGC), temporal precedence due to stimulus-evoked 

BOLD responses can be separated from that due to spontaneous activity. Therefore, in 

this study, we have reused the data from the study conducted by Katwal et al [16] to 

demonstrate and validate the use of dynamic Granger causality to infer tens of 

milliseconds of stimulus-evoked timing differences from BOLD fMRI. In order to be 

consistent with the study by Katwal et al., we used dynamic Granger causality difference 

between bilateral visual cortices as our metric. 

   We tested three primary hypotheses. First, whether the covariance of dynamic Granger 

causality difference with the experimental paradigm was non-significant for a delay of 0 

ms. This was indeed the case as shown in the results of Table.2.1wherein the null result 

would indicate that there was no underlying timing difference. Second, the amount of 

covariance of dynamic Granger causality difference with the experimental paradigm must 
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increase with increasing latency. The increasing t-value of the GLM in Fig.2.3 (and 

decreasing p-value in Table.2.1) supports this hypothesis. Consequently, the t-value can 

be interpreted in terms of the amount of latency between the time series. Third, we 

hypothesized that even for a 28 ms delay, we would find significant (p<0.05) covariance 

between dynamic Granger causality difference and the experimental paradigm. This was 

proven right as shown from the results in Table.2.1. Results obtained from the 

conventionally used cross-correlation function demonstrated its inability to infer neuronal 

latencies from fMRI data. 

   Finally, we provide a few cautionary notes for interpreting the results presented in this 

report. First, given the confounding effect of the variability of the hemodynamic response 

[45,46] on Granger causal estimates obtained from BOLD fMRI [15,47], it is noteworthy 

that hemodynamic variability was probably not a factor influencing the results of both the 

Katwal et al.’s study [16] as well as the current study since left and right visual cortices 

are likely to have the same hemodynamics as they are fed by a common hemodynamic 

source. However, if the proposed dGC technique is applied to other situations where this 

may not be the case, we recommend that the dGC model be applied on deconvolved 

fMRI data [48,49]. Second, the performance of the dGC model was aided by the high 

SNR obtained from the 7T magnet as well as high temporal resolution provided by a TR 

of 250 ms. More studies are required to ascertain the applicability of these results at 

lower field strengths and longer TRs. Third, our results should be strictly interpreted 

within the framework of detecting neuronal delays and not directional connectivity in 

general. Neuronal delays are an established electrophysiological signature of directional 

connectivity; however the activity of region A may directionally influence (or predict) the 
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activity of region B regardless of an explicit delay between the activities obtained from 

both the regions. 

 

2.5 Conclusion 

   In this study, dynamic Granger causality analysis was performed to detect sub-100ms 

timing differences in BOLD responses from the visual cortex. While Katwal et al. [16] 

demonstrated this possibility using conventional Granger causality, our proposed 

dynamic Granger causality metric relies on experimental modulation of causality with 

time. Consequently, the proposed model was able to infer only stimulus-evoked (and not 

spontaneous) neural timing differences. In summary, our experimental validation of 

dynamic Granger causality to detect sub-100ms (as small as 28 ms) timing differences 

provides a reliable data-driven method for effective connectivity analysis of fMRI data. 
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Chapter 3: Experimental evidence demonstrating the inability of Patel's τ for 

estimating directionality of brain networks from fMRI 

 

Abstract 

  Investigating the directional interactions between brain regions plays a critical role in 

fully understanding brain function. Consequently, multiple methods have been developed 

for non-invasively inferring directional connectivity from the human brain using 

functional magnetic resonance imaging (fMRI). Recent simulations by Smith et al 

showed that Patel’s τ, a method based on higher order statistics, was the best approach for 

inferring directional interactions from fMRI. Since simulations make restrictive 

assumptions about reality, we set out to verify this finding using experimental fMRI data 

obtained from a three-region network in a rat modal with electrophysiological validation. 

Our hypothesis was that Patel’s τ obtained from fMRI data should correctly estimate the 

directionality of neuronal influences obtained from intra-cerebral EEG in this network. 

However, our results indicate that the accuracy of network directionality estimated using 

Patel’s τ was not better than chance. First, our results highlight the necessity of 

experimental validation of simulation results. Second, it is unclear which brain 

mechanism is modeled by a directionality inferred from Patel’s τ. Third, this study shows 

that a directional connection ascertained by different methods may mean different things 

and more experimental studies are needed for investigating the neuronal mechanisms 

underlying the direction of a connection in the brain ascertained by fMRI using different 

methods.   
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3.1 Introduction 

   Functional magnetic resonance imaging (fMRI) has primarily been used to explore the 

spatial localization of brain function [89] where in different brain regions are assumed to 

perform different brain functions. However, many neuronal processes cannot be localized 

in a single region and hence are presumed to be encoded by a network formed by several 

brain regions. Therefore, it is increasingly being recognized that investigating the 

interactions between brain regions plays a critical role in fully understanding brain 

function. There are many different methods that have been proposed to characterize the 

interactions between brain regions. These can be broadly classified into two categories: 

functional connectivity and effective connectivity. Functional connectivity is defined as 

“temporal correlations between spatially remote neurophysiological events” while 

effective connectivity is defined as “the influence one neuronal system exerts over 

another” [4]. The estimation of directionality of influence is often of great interest as it 

provides a mechanistic characterization of the underlying neuronal processes in terms of 

information flow. However, it is much harder to estimate the direction of influence than 

just estimate whether a connection exists or not. There are three general classes of 

methods to accomplish this. The first one is “lag-based” methods such as Granger 

causality [8]. The assumption of these methods is that if one time course is similar to a 

time-shifted version of the other, then the one with temporal precedence may cause the 

other. The second class utilizes the concept of conditional independence such as Bayes 

net methods [50]. The last class is based on higher order statistics such as Patel’s τ [20] 

wherein asymmetries in the probability of activation of brain region A given the 

activation of another brain region B versus the probability of activation of region B given 
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the activation of region A are used to infer the directionality of the influences between 

regions A and B. 

   While some neuroimaging techniques such as electroencephalography (EEG) and 

magnetoencephalography (MEG) have attractive temporal resolution that may favor the 

application of the above approaches, they are limited by their poor spatial resolution. In 

contrast, functional magnetic resonance imaging (fMRI) can provide excellent spatial 

resolution of millimeters and thus has become a popular choice for network estimation. 

However, fMRI is an indirect measure of neural activities suffering from hemodynamic 

smoothing and poor temporal resolution [23]. Some approaches whose application to 

EEG has been established, remain debated when applied to fMRI data (e.g. Granger 

Causality) [12]. Therefore, careful validation is necessary for the application of network 

estimation methods, especially for the estimation of directionality of influence. Recently, 

Smith et al. performed extensive analyses of simulated fMRI data to evaluate the validity 

of various network estimation methods [3], observing that Patel's τ performed best in the 

estimation of connection directionality compared to other methods such as Granger 

causality. However, any simulation is limited by the underlying assumptions, and Smith 

et al. used a generative biophysical model without an explicit delay, which may have 

favored Patel’s τ over lag-based methods because the former is not based on a delay 

assumption while the latter is [26,40]. Meanwhile Roebroeck et al. [14] and Luo et al. 

[13] reported excellent results with Granger causality while explicitly including delays in 

their simulated data. It is notable that we can never make a final conclusion from 

simulations since they often make restrictive assumptions about reality which might not 

hold true. Therefore experimental validation of simulations is required. Two recent 



 27 

studies for experimental validation of effective connectivity methods for fMRI are 

noteworthy. In the first one, Katwal et al. showed that Granger Causality was capable of 

inferring sub-100 ms timing differences between right and left visual hemi field stimuli 

[16]. In the second work, David et al. performed simultaneous EEG and fMRI 

measurements followed by intra-cerebral EEG (iEEG) recordings in rats [15]. Effective 

connectivity obtained from both from raw and deconvolved fMRI data [8] using Granger 

Causality and that obtained from Dynamic Causal Modeling (DCM) [51] were compared 

with directed functional coupling estimated from iEEG recording for validation. The 

results showed that Granger causality applied to deconvolved fMRI data as well as DCM 

were able to estimate network directionality which was consistent with that obtained from 

iEEG.  

   In this study, we aimed to use experimental data from the study by David et al to verify 

the validation of simulation results obtained by Smith et al., specifically with reference to 

the superiority of Patel’s τ for obtaining the directionality of brain connectivity. Patel’s τ 

was performed on these data to estimate the directionality of the three-voxel network; the 

results were compared to the network estimated by iEEG for validation. Our results 

indicate that Patel’s τ cannot correctly estimate the directionality of brain network. 

 

3.2 Methods 

3.2.1 Animal model selection 

   Genetic Absence Epilepsy Rats from Strasbourg (GAERS) [52] were used in this 

experiment. GAERS results from genetic selection of more than 80 generations. The rats 

show spontaneous spike and wave discharges (SWDs), lasting 20 seconds on average and 
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repeating every minute when they are at rest. Previous studies using genetic model of 

absence epilepsy have shown that SWDs originate from the perioral regions of the first 

somatosensory cortex [52,53], thus providing a reference for validating directionality 

estimation results using fMRI.  

 

3.2.2 FMRI/EEG data acquisition and processing 

   Six male adult GAERS were included in the fMRI/EEG study. Spontaneous SWDs 

during MR experiments were measured using EEG. Three carbon electrodes were used, 

locating on the skull near the midline (frontal, parietal and occipital). Two additional 

carbon electrodes were introduced for measurement of cardiac activity 

(electrocardiography [ECG]). MR experiments were performed in a horizontal-bore 2.35 

T magnet. FMRI data were acquired using gradient-echo echo-planar imaging (EPI) 

sequence with the following parameters: two shots, data matrix = 48 × 48, FOV = 35 × 

35 mm2, 15 contiguous 1.5-mm-thick slices covering the whole brain, alpha = 90°, TE = 

20 ms, TR = 3 s. T1 weighted anatomical scans were also obtained using a 3D-MDEFT 

sequence [54] with the following parameters: voxel size = 0.33 × 0.33 × 0.33 mm3, TI = 

605 ms, quot = 0.45, alpha = 22°, TR/TE = 15/5 ms, and BW = 20 kHz.  

   SPM 5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) was used for data processing 

and analysis [55]. Standard spatial preprocessing was performed including realigning, 

normalizing and smoothing. A SWD regressor was then obtained by convolving the 

down-sampled EEG signal with a canonical HRF. This regressor was then used to obtain 

SWD-related t-statistic maps and identify ROIs. Several significant activated and 

deactivated regions were found at the group level. Three of them were identified as ROIs: 
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Primary somatosensory cortex, barrel field (S1BF), Thalamus and Striatum (caudate-

putamen; CPu). Activations were found in S1BF and Thalamus while deactivations were 

found in CPu. There were several reasons for selecting these 3 regions: (1) they were 

most consistently activated over different sessions and rats. (2) they exhibit different 

hemodynamics, which can provide a rigorous validation since HRF variability is a vital 

concern for many approaches. (3) our current understanding of SWDs can easily integrate 

them. The time courses from these three regions were used in the following analysis. 

Please refer to David et al [15] for complete details of data acquisition and activation 

analysis. 

 

3.2.3 IEEG experiments and data analysis 

   Five adult GAERS (two males, three females) were used in the iEEG experiment. 

GAERS were implanted with intra-cerebral electrodes locating in the three ROIs (S1BF, 

ventrobasal thalamus and striatum). Another two electrodes were fixed in the nasal and 

occipital bones for reference. EEG data were obtained in awake and feely moving rats. 

Please refer to David et al [15] for details of the iEEG experiments. IEEG connectivity 

was obtained by spike averaging and generalized synchronization. Significant 

directionality were found from S1BF to the striatum (p < 10-9) and from S1BF to the 

thalamus (p < 0.02), while the connectivity from striatum to thalamus was not significant 

(p > 0.3). These results were also in accordance with some previous studies [52,53], thus 

were used as ground truth to validate the results obtained from fMRI connectivity 

analysis. 
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3.2.4 Patel’s conditional dependence measures 

   A data-driven and hypothesis-unconstrained Bayesian approach was proposed by Patel 

et al. to examine both functional connectivity and effective connectivity [20]. It assesses 

the connectivity between two voxel or ROI time series by comparing joint and marginal 

probabilities of evoked activity of voxel/ROI pairs using a Bayesian method. Note that 

the inferences are made using time series, which could either be extracted from a single 

voxel or be obtained by averaging time series from multiple voxels within an ROI. In this 

study, we employed mean time series extracted from the ROIs S1BF, Thalamus and 

Striatum. Three steps were taken for the measurement of directionality: determining 

voxel activation, Patel’s kappa for measurement of functional connectivity, and Patel’s 

tau for measurement of ascendancy (or directionality). 

   Determining voxel activation. Patel’s method derives inferences based on a binary time 

series indicating whether a ROI is evoked or not at each time point (or TR). Here, we use 

the word “evoked” in order to refer to both activations and deactivations. In order to 

determine the evocation of ROIs at each time point, we first normalized the time series to 

the range [0,1], limiting the largest 10 percentile data to 1 and lowest 10 percentile data to 

0, and linearly mapping other data to 0:1. A pre-chosen threshold T (0 < T <1) was used 

for binarization. Since S1BF and thalamus were shown to be activated by David et al 

[14], normalized values larger than T were binarized to 1 and others were binarized to 0. 

However, David et al showed that the striatum (CPu) was deactivated [14], and hence 

normalized values smaller than 1 – T were binarized to 1 and others were binarized to 0 

[8]. Given two ROIs a and b, joint evocation probabilities were calculated from the 

binary time series extracted from corresponding mean ROI time series. , , ,  were 
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denoted as the probability of ROI a evoked and ROI b evoked, the probability of ROI a 

evoked and ROI b rest, the probability of ROI a rest and ROI b evoked, and the 

probability of ROI a rest and ROI b rest, respectively. 

   Patel’s κ is a measure of functional connectivity based on the posterior distributions. κ 

is defined as follows [20]: 

 

 

 

Where  

 

 

 

 

 

Here the numerator of κ is the difference between the joint probability of both ROIs 

being evoked and the expected joint probability under the case of independence, while 

the denominator is just a constant restricting κ from -1 to 1. Specifically, if ROI a and 

ROI b are statistically independent, κ will be 0. When ROI a and ROI b are evoked 

simultaneously (θ2 = θ3 =0), κ will be 1. Large value of κ indicates a stronger dependence 

relationship, or say, functional connectivity between the two ROIs. 

   Patel’s τ is a measure of ascendancy (or directional influence) between any given ROIs 

a and b. The assumption is that if ROI b is ascendant to ROI a, the time period when ROI 
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a is evoked should be in the subset of the period when ROI b is evoked, if ROIs a and b 

are functional connected. τ is define as follows [20]: 

 

=  

 

τab ranges from -1 to +1, with a positive value indicating that the influence is from ROIs a 

to b, and a negative value indicating directional influence from ROI b to a, given κ ≠ 0. 

 

3.3 Results 

   Functional connectivity between S1BF, Thalamus and Striatum was determined using 

Patel’s κ with a threshold 0.75. The choice of this value for the threshold is guided by the 

recommendations of Smith et al [3]. Fig.1 shows Patel’s κ values obtained from each of 

the five rats between the three ROIs. It is notable that a negative κ indicates that the ROI 

under consideration tends to be evoked at the rest period of the other. In our study, since 

the three ROIs have been previously demonstrated to be involved in SWDs and were 

identified using an fMRI regressor, negative κ values were regarded as errors in the 

estimation of κ. Fig.3.1 shows that most of the κ values were positive, indicating that the 

three ROIs were functionally connected.    
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   Subsequently, the directionality of connectivity in the 3-ROI network was estimated by 

computing Patel’s τ with threshold being 0.75. The results were compared with the 

ground truth network obtained from iEEG data for validation (please refer to David et al 

[15] for this result). Fig.3.2 shows the network estimated using Patel’s τ for each rat.  

 

Figure 3.1 Patel’s κ for all ROI pairs for each rat showing that the ROIs 

are functionally connected 
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   At the group level, the correct estimation rate for each ROI pair was obtained over the 

six rats. In order to get the statistical significance of the correct estimation rate over 

chance level, a binomial null distribution B (η, ρ) was formed, where η is the number of 

rats (i.e. 6), ρ is the success probability at chance level (i.e. 0.5). The correct estimation 

rates based on Patel’s τ were compared with the null distribution to get p-values, as 

shown in Fig.3.3. All the p-values were greater than 0.05, indicating that Patel’s τ cannot 

correctly estimate the directionality of network.  

 

Figure 3.2 Estimated directionality of the network using Patel’s τ. Blue arrows indicate 

estimated directions which agree with that obtained from iEEG while red arrows indicate 

estimated directions which disagree with that obtained from iEEG [14] 
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   In order to consider the effect of different thresholds, Patel’s τ with two other 

thresholds (0.5 and 0.25) as well as the case of no binarization was performed to get 

estimates of the 3-ROI network. Fig.3.4 shows the correct estimation rates and 

corresponding p-values in these three cases. 

Figure 3.3 Correct group level estimation rates and corresponding p-values for 

each ROI pair. 
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3.4 Discussion 

   In this study, we experimentally demonstrate that Patel’s τ is unable to correctly 

estimate the directionality of neuronal influences from fMRI data. This finding does not 

support previous simulations that suggested Patel's τ as an effective measure of 

directional brain connectivity [3]. Our experimental conditions were fairly similar to 

those used in the simulations by Smith et al [3]: both used a TR of 3 s, we had data 

lengths up to 3 times more than those used by Smith et al (note that different rats had 

different data lengths [15]) which should favor all methods including Patel’s τ, and HRF 

variability was simulated by Smith et al [3] and was reported in the dataset used in the 

current work by David et al [15]. Further, Smith et al showed that the accuracy of the 

Figure 3.4 Correct group level estimation rates and corresponding 

p-values for each ROI pairs for different thresholds.  
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estimation of network directionality using Patel’s τ showed a strong positive dependence 

on the length of the time series and strength of connections. As mentioned earlier, the fact 

that we used a longer time series than that used by Smith et al should favor Patel’s τ. 

However, Rat-2 had the shortest time series of all rats and yet we were able to correctly 

estimate the directionality of all the three paths in this rat. Also, David et al showed based 

on directional connectivity estimated from iEEG data that S1BF had very strong 

directional influences on Thalamus and the Striatum. This should also favor Patel’s τ. 

Taken together, our results demonstrate that even though we had reasonable similarity of 

experimental conditions as compared to the simulations by Smith et al [3], with certain 

parameters which were favorable to Patel’s τ, we were not able to correctly estimate the 

directionality of connections in the rat brain. This opens up the possibility that certain 

assumptions made Smith et al [3] may not hold true in reality. However, we are unable to 

speculate on specific factors which led to this negative result, and this is an aspect that 

may be probed in future studies. It is noteworthy that simulations are required to model 

experimental conditions and not vice versa. Hence, our results could be viewed 

independently from the simulations of Smith et al as well. Generally speaking, our results 

demonstrate the need for experimental validation of simulations, since the latter often 

make restrictive assumptions about reality which might not hold true. 

   Another issue that should be highlighted is the lack of clarity in the neuroimaging 

community regarding the neuronal mechanisms underlying the direction of a connection 

in the brain ascertained by fMRI using various methods. On the one hand, lag-based 

methods have a clear neuroscientific connotation as it is linked to the concept of mental 

chronometry. Also, electrophysiological experiments such as the ones employing 
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syntactic event-related potentials have observed latencies in the primary visual cortex 100 

ms post stimulus and in the parietal cortex 500-600 ms most stimulus [57]. These 

“causal” chains of events in the brain make the interpretation of directionality in lag-

based methods fairly straightforward. On the other hand, other methods which assign 

directionality to connections, specifically Patel’s τ derived from higher order statistics, 

may not capture “directional influence” in a temporal sense, the way it is intuitively 

construed by many people. Rather, they rely on other concepts, such as the asymmetries 

in the probability of activation of a region A given the activation of another region B, 

versus the probability of activation of a region B given the activation of region A, as in 

Patel’s τ. Our results indicate that such concepts may not be capable of correctly 

estimating the directionality of neuronal influence. Therefore, more research is needed to 

ascertain the neuronal mechanistic underpinnings of methods claiming to ascertain 

directionality of neuronal influence from fMRI data.  
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Chapter 4: Predicting Purchase Decisions based on Spatio-temporal Functional 

MRI Features using Machine Learning 

 

Abstract 

   Machine learning algorithms allow us to directly predict brain states based on 

functional magnetic resonance imaging (fMRI) data. In this study, we demonstrate the 

application of this framework to neuromarketing by predicting purchase decisions from 

spatio-temporal fMRI data. A sample of 24 subjects were shown product images and 

asked to make decisions of whether to buy them or not while undergoing fMRI scanning. 

Eight brain regions which were significantly activated during decision-making were 

identified using a general linear model. Time series were extracted from these regions 

and input into a recursive cluster elimination based support vector machine (RCE-SVM) 

for predicting purchase decisions. This method iteratively eliminates features which are 

unimportant until only the most discriminative features giving maximum accuracy are 

obtained. We were able to predict purchase decisions with 71% accuracy, which is higher 

than previously reported. In addition, we found that the most discriminative features were 

in signals from medial and superior frontal cortices, both before and after the decision 

point. Therefore, this approach provides a reliable framework for using fMRI data to 

predict purchase-related decision-making as well as infer its neural correlates. 
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4.1 Introduction 

   The development of functional MRI (fMRI) has greatly promoted our understanding of 

human brain function. One fundamental and valued problem in neuroimaging is its 

potential to predict human behaviors from their brain activations. FMRI is a non-invasive 

technique, and it allows researchers to obtain indirect estimates of neural activity at a 

spatial resolution of millimeters within a matter of seconds [58]. Consequently, mining 

fMRI data provides a powerful tool for understanding human cognitive processes.  

   Recently, multivariate pattern recognition (MPR) methods have been extensively 

applied to analyze fMRI data for decoding behaviors and cognitive processes 

[18,59,60,61]. In these approaches, fMRI data are used to detect the differences in 

activation patterns of cognitive state (state 1 vs. state 2) and discriminate one from the 

other. Many earlier studies have shown that MPR methods can successfully predict 

behaviors from brain activations. For example, Haxby et al. distinguished the category of 

perceived visual stimuli [62], Kamitani et al. decoded the direction of movement [63], 

Mitchell et al. predicted whether the subjects were looking at a picture or a sentence [64], 

etc. 

   Methodologically, the framework of MPR methods applied in neuroimaging usually 

consists of three parts: feature extraction, feature selection and a particular pattern 

recognition algorithm [65]. Feature extraction is to obtain some specific characteristics 

from fMRI data, with the hope that they may have the power to discriminate different 

classes. The most commonly used features are voxel intensities from specific brain 

regions of interest (ROIs) [60]. While traditional fMRI studies focused on the spatial 

features to identify the relevant brain regions, Mourão-Miranda et al. proposed a spatio-
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temporal classifier by considering both spatial and temporal features [66]. This approach 

is valuable for finding out not only ‘where’ but also ‘when’ the brain activation predicts 

behavior. After feature extraction, feature selection is used to select subsets of features 

that possess the most discriminatory power. Feature selection is essential for fMRI 

studies, not only because it can improve the performance of classifiers in terms of 

prediction accuracy, but also because it can identify the relevant regions and time points 

that are most useful for classifying different cognitive states. There are two main 

categories of existing feature selection approaches: “filter methods” such as t-test [64] 

and “wrapper methods” such as recursive feature elimination (RFE) [67]. Generally, the 

wrapper methods perform better than filter methods for fMRI studies [59]. In the last 

part, the selected features are input to a specific pattern recognition algorithm (example: 

support vector machine) to separate the different classes and correctly predict the class of 

a novel pattern. Strategies using any combination of each individual part (i.e. feature 

extraction, feature selection and pattern recognition algorithm) can be used for brain state 

classification. 

   While most of the previous studies related to brain state classification focused on the 

prediction of sensory stimulus perceived by human beings, the possibility of using fMRI 

data to directly predict human decisions is greatly attractive in many applications. One 

such example is neuromarketing – the application of neuroimaging techniques to 

objectively characterize the effect of product marketing on human brains – which has 

gained increasing popularity [68]. A mechanistic insight into the neurocognitive 

processes underlying an individual’s decision on whether to buy a product or not is the 

most fundamental quest in marketing analysis. There are a couple of previous studies 
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using fMRI data and MPR methods to predict purchase decisions. Knutson et al. 

extracted fMRI data from the following brain regions – bilateral nucleus accumbens 

(NAcc), bilateral medial prefrontal cortex (MPFC) and right insula – and used a simple 

logistic regression model to predict purchase decisions with prediction accuracy at 60% 

[69]. In order to increase prediction accuracy and yield interpretable coefficients for 

gaining insight into the neural mechanisms underlying the decision process, Grosenick et 

al. reused the data from Knutson et al. and applied six different classification models to 

predict purchase behavior [70]. They showed that PDA-ENET (penalized discriminant 

analysis – elastic net) classifier [71, 72] performs best with across-subjects classification 

rate at 66% and within-subjects classification rate at 67.05% and 63.15% for the two 

presentation datasets respectively [70]. Although Grosenick et al. significantly increased 

the prediction accuracy as well as temporal and spatial interpretability compared to 

Knutson et al, we highlight the following outstanding issues. First, three periods were 

included in the experiment designed by Knutson et al.: product period, price period and 

choice period [69]. Although prices are an essential element for marketing analysis, the 

induction of price period may make it difficult to disentangle the effects of product 

design features and price on the purchase decision. Therefore, in this study, we asked 

participants to make purchasing decisions solely based on product design features 

without price considerations, i.e. prices were not displayed. Second, the authors 

employed three different regression models (i.e. Least Absolute Shrinkage and Selection 

Operator (LASSO), Elastic Net (ENET) and Univariate Soft Thresholding (UST)) for 

Penalized Discriminant Analysis (PDA) classifiers. All of the three models have the 

mechanism of automatic variable selection, i.e. removing less discriminative features 
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from the model. However, the linear Support Vector Machine (SVM) used by the authors 

does not actually have such ‘feature selection’ part embedded into it [70]. Thus, the fact 

that PDA classifiers gave a better prediction accuracy and spatial-temporal 

interpretability than linear SVM are less convincing. Therefore we employed a method 

based on RFE for selecting features, which were then input into the SVM classifier so 

that the efficacy of SVMs for brain state classification in the context of predicting 

purchase decisions using fMRI data can be established. 

  Specifically, we used spatio-temporal fMRI features with Recursive Cluster Elimination 

based Support Vector Machine (RCE-SVM) [21] for predicting purchase decisions. The 

signal features were extracted from time series obtained from 8 different ROIs activated 

during the task. The reason for adopting RCE as feature selection method is that the 

wrapper methods have been shown to be advantageous over filter methods for feature 

selection [59], and RCE considers feature clusters rather than individual features 

(assuming that features are usually correlated with each other) which makes it faster than 

the RFE method [21]. Also, RCE-SVM has been reported to be a very reliable 

classification method in some earlier fMRI studies [65, 73]. Using this method, we were 

able to achieve an average classification accuracy of 71%, which is better than that 

obtained by previous purchase decision prediction studies. Also we ranked the features 

based on their discriminability and in order to infer where and when brain activation can 

best predict purchase decisions. 
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4.2 Method 

4.2.1 Experiment design and data acquisition 

   Twenty-four healthy subjects (17 female and 7 male; mean age = 23.6; age range – 19 – 

59 years) who were recruited from Auburn University participated in this study. The 

study protocol was approved by the Institutional Review Board at the university and 

informed consent was obtained from each subject prior to their participation.  

   While being scanned, the subjects participated in an event-related task. There were 64 

actual product images, with equal number of complex and simple product designs (32 

each). There were also an equal number of products reflecting both hedonic and 

utilitarian product categories (32 each). Please refer to our other publication for details 

regarding how the product images were chosen based on behavioral testing [74]. For each 

trial, the subjects were shown one of the 64 product images for 5 seconds, and allowed 

another 5 seconds to make a purchase decision (buy or not buy?). The 64 stimuli were 

shown in pseudo-random order, using the E-prime software 

(http://www.pstnet.com/software.cfm?ID=101). Inter-trial intervals were also randomly 

chosen using optseq software (http://surfer.nmr.mgh.harvard.edu/optseq/). The schematic 

of this event-related design is shown in fig.4.1. 

 

Figure 4.1 The schematic of the event-related experimental design 

http://www.pstnet.com/software.cfm?ID=101
http://surfer.nmr.mgh.harvard.edu/optseq/
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   Functional MRI images were acquired with a 3 Tesla Siemens Verio scanner. 64 visual 

stimuli were presented to the subjects using an MR-compatible projection system while 

they lay in the scanner. An MR-compatible button box was used to record the subjects’ 

response to each stimulus. Whenever the subjects had a choice they would press different 

buttons for buy/not buy decisions. FMRI data were obtained using Echo-planar imaging 

(EPI) sequence [75] with a 32-channel head coil and the following parameters: TR = 

1000 ms, TE = 30 ms, FOV = 24 cm, matrix = 64 × 64, 3 × 3 mm2 in-plane resolution 

and contiguous slices of 5 mm thickness with whole brain coverage. High-resolution 

anatomical scans were also obtained for an anatomical reference using the 3D 

magnetization-prepared rapid gradient echo (MPRAGE) [76] sequence (TE/TR = 5/35 

ms, matrix = 256×208×196, FOV = 256×208×192 mm2, and a 1 mm isotropic 

resolution). FMRI data were subjected to standard pre-processing using statistical 

parametric mapping (SPM) software (www.fil.ion.ucl.ac.uk/spm/).  

 

4.2.2 ROI selection and feature extraction 

   Using a general linear model [77], brain regions activated more when a product was 

bought compared to when it was not and vice versa were identified. We employed a 

stringent threshold of p<0.01 FWE corrected for multiple comparisons so that only the 

most discriminative activations were used for further analysis.  

   One fundamental assumption in MPR methods is that all the training trials in the same 

class (e.g. state 1) will have the same properties and thus can be exchanged with each 

other. If only spatial features are extracted for prediction, the stationarity and 

exchangeability assumption cannot hold [66]. Simple temporal embedding can solve this 

http://www.fil.ion.ucl.ac.uk/spm/
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problem (i.e. MPR methods would then use both spatial and temporal features for 

prediction). The feature selection part can produce a discriminating score for both voxel 

and time point, providing insight into dynamic changes in discriminating power of 

voxels/ROIs. 

   Eight activated ROIs were selected; their names and coordinates are shown in Table 

4.1. Ten time points (5 from the viewing window and 5 from the decision window) 

extracted for each subject and each trial was aligned with respect to the exact time point 

when the subjects made the purchase decision (indicated via pressing the button). Most of 

the subjects made the decision between time point 6 and 8. So the length of aligned time 

series was 8 time points, with the decision point being 6th, as shown in Fig.4.2. All the 

aligned time series were arranged wherein the input space covered both voxels and time 

points [66, 70]. Specifically, the data was arranged as a three dimensional (N × F × S) 

matrix X, with N corresponding to the number of trials per subject (64), F corresponding 

to the input features of the classifier (64), and S corresponding to the number of subjects. 

For each trial, the extracted features were the 8-timepoint aligned time series in the 8 

ROIs, so F (input features) was 8 × 8 = 64. In this study, we focused on the classification 

within individual subjects. For each subject, the 64 input features were used in a classifier 

to obtain the prediction accuracy.  
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Name Peak MNI coordinate 

Inferior Temporal Gyrus (ITG) -52, -36, -24 

Medial Frontal Gyrus (MFG) 1, 3, 46 

Angular Gyrus (AG) -50, -74, 16 

Superior Frontal Gyrus (SFG) -14, 32, 62 

Middle Frontal Gyrus (MiFG) 52, 24, 38 

Left Middle Temporal Gyrus (L MTG) -46, -40, -6 

Right Middle Temporal Gyrus (R MTG) 56, -44, -12 

Mid Orbitofrontal Cortex (MOFC) 32, 58, -14 

 

 

 

 

 

 

 

Table 4.1 ROI names and peak MNI coordinates 

Figure 4.2 An illustration of the process of alignment of ROI time series with 

respect to the decision time point (red point) 
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4.2.3 Recursive Cluster Elimination Based Support Vector Machine Classifier 

   Support Vector Machine (SVM), which was initially proposed by Vapnik [7], is a 

widely used machine learning method for classification in many different fields of 

research [78]. Earlier studies have shown that using discriminatory input features will 

enhance the performance of SVM classifier [67]. Filtering methods and wrapper methods 

are two commonly used approaches for feature selection [79,80]. In filtering methods, 

statistical tests such as t-test are performed to select the features that are statistically 

different between classes [81]. The limitation of this method is that the features are 

selected independent of the classification process, and the measures are univariate 

without considering the relationship between features [82]. Wrapper methods can 

successfully solve these problems by embedding the feature selection into the 

classification process. In this method, features are iteratively eliminated to minimize 

prediction error [59, 79, 83]. RCE-SVM is a wrapper methods based SVM. It was firstly 

proposed for gene classification to enhance both classification accuracy and 

computational efficiency [21], and then successfully applied in some previous fMRI 

studies [65, 73]. In this study, we propose a method that takes advantage of both filter 

and wrapper methods. Selection of spatio-temporal features using GLM analysis 

represents a “filtering” of the input space for dimensionality reduction using mass 

univariate models. By using these selected features in an RCE-SVM wrapper model, our 

approach represents a fusion of both filter and wrapper methods.  

   There are three main steps in RCE-SVM algorithm: cluster step, SVM scoring step and 

RCE step, as shown in Fig.4.3 [65, 21]. Firstly, the input features on the 64 trials for each 

subject were equally divided into two sets, one for training and the other for testing. In 
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the cluster step, an unsupervised learning method K-means algorithm [84] was performed 

to identify features correlated in the training set which were clustered into n clusters, 

where n was the initial number of clusters and set to a pre-chosen number (i.e. 35 in this 

study). In the next step, SVM score of each cluster was defined as its ability to 

discriminate the two classes. The scores were obtained through a cross-validation by a 

linear SVM. The training data were randomly and equally partitioned into 5 non-

overlapping folds; linear SVM using the features in one particular cluster was trained 

over 4 folds and performance was calculated from the remaining fold. The procedure was 

repeated for 50 times in order to take into account different partitions to ensure the 

reliability of performance. The mean classification accuracy over all the folds and 

repetitions was assigned as the SVM score of each feature. In the RCE step, the 20% of 

features with the lowest SVM scores were removed. The remaining features were merged 

and n was set to n – 0.2*n. All the three steps were repeated until n is equal to 2. Testing 

set was used to evaluate the prediction performance at the end of each iteration. There is 

no bias in the performance accuracy using this procedure because of total separation of 

training and testing data [85]. The accuracy at each RCE-SVM loop was obtained from 

the average accuracy of all 50 repetitions using the feature clusters of testing data at the 

corresponding loop.  

   A within-subject prediction performance was calculated as the mean value of the 

individual subject RCE-SVM classifier prediction accuracies. In order to calculate the 

statistical significance of prediction accuracy over chance level, a binomial null 

distribution B(η, ρ) [61] was formed, where η is the number of trials (i.e. 64), ρ is the 

success probability of chance level (i.e. 0.5). The prediction accuracies were compared 
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with the null distribution to get p-values and only accuracies whose p-values were less 

than 0.05 were considered as significantly higher than guess level. 

 

 

 

 

Figure 4.3 Flowchart of RCE-SVM algorithm 
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4.3 Results 

4.3.1 Prediction accuracy 

   The average prediction accuracies at each RCE-SVM step (i.e. using particular number 

of feature clusters) are shown in Fig.4.4. The figure illustrates that the average 

performance of prediction increased with the removal of non-discriminative features and 

reached a highest accuracy of 70.73% using 2 clusters and 4 features. The p-values 

corresponding to accuracies at each step are shown in Table 4.2. For each individual 

subject, the prediction accuracy was defined as the maximum accuracy in the accuracy 

curve. When prediction accuracy was calculated separately for male and female subjects, 

no significant differences in accuracy were observed (p>0.05). Fig.4.5 shows the 

histogram and statistics of the individual prediction accuracies for all the subjects. The 

mean and median accuracy is 70.98% and 70.56% respectively. 11 subjects had rates > 

70%, with a maximum individual accuracy of 83.35%. 

 

 

 Figure 4.4 The evolving prediction accuracy of RCE-SVM with 

decreasing number of features 
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4.3.2 Important spatio-temporal features for classification    

   The SVM scores indicating discriminatory power of individual features were averaged 

over all the RCE-SVM classifiers and ranked in descending order, i.e. the feature with 

Number of features Prediction accuracy (%) P-value 

64 55.70 0.1919 

51 59.39 0.0517 

40 61.50 0.0300 

31 63.35 0.0164 

24 65.01 0.0084 

19 66.28 0.0041 

15 67.13 0.0041 

11 68.19 0.0018 

8 69.07 0.0008 

6 69.76 0.0008 

4 70.73 0.0003 

Table 4.2 Prediction accuracies and corresponding p-values at each step of RCE-

SVM classifier 

Figure 4.5 Statistics and histogram of RCE-SVM within-subject prediction 

accuracies 
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rank-1 was the most discriminative. Fig.4.6 shows the dynamic changes of discriminatory 

power in the 8 ROIs across the entire trial. The top 4 ranked are indicated in red since 

they gave the best prediction accuracy.  

 

 

 

 

Figure 4.6 Dynamic changes of discriminatory power in 8 ROIs 

(Red-labeled points are top-4-ranked features; green-labeled 

points are decision points) 
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4.4 Discussion 

   The goals of this study were: (1) to predict purchase decisions by utilizing machine 

learning methods (2) to find the spatio-temporal features which were most important for 

prediction, and (3) to interpret them. We employed a recursive cluster elimination based 

support vector machine for prediction of purchase decisions based on spatial-temporal 

fMRI features and obtained those features which have the highest predictive power. We 

obtained >70% which was significantly higher than chance level. Further, the most 

discriminative features were in medial and superior frontal cortices, both before and after 

the decision point. We elaborate on these themes below. 

   Recently, SVMs have been extensively applied in fMRI data analysis [59, 65, 66]. 

There are two main motivations for utilizing machine learning methods for fMRI 

analysis: (1) Classifiers can be seen as a pattern recognition method used to predict 

cognitive behaviors from brain activity. The optimization of prediction accuracy is 

crucial for this case. (2) The classification procedure can also provide an insight into the 

neuronal mechanisms underlying the cognitive process [66]. The two motivations also 

correspond to the two goals in our study.  

   The average prediction accuracy curve in Fig.4.4 shows that without the feature 

selection part (i.e. RCE part), the average accuracy was 55.70% with a p-value < 0.05. In 

contrast, the average individual accuracy obtained from RCE-SVM after eliminating 

uninformative features was much higher. The results demonstrate that the feature 

selection part is of great importance for advancing the utility of machine learning 

algorithms for brain state classification. Therefore, the results obtained by Grosenick et al 
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which claimed that the LDA classifier performs better than linear support vector machine 

for purchase prediction needs to be viewed in the context that they did not employ feature 

selection before using the SVM [70].  

   The dynamic changes of SVM scores in ROIs shown in Fig.4.6 provide the spatio-

temporal information about ‘when’ and ‘where’ the human brain activations are most 

important for purchase decision prediction. It shows that the most important features for 

purchase prediction included signal amplitudes in SFG and MFG before the decision 

point, and in SFG after the decision point. Therefore, understanding the role of SFG and 

MFG in decision-making process is essential for insight into the underlying neural 

mechanism. SFG has been proved to be less important when a single action is selected, 

but necessary when the decision rules change dynamically [86,87]. In our experiment, 

products with different design features (i.e. hedonic or utilitarian products with either 

simple or complex design) were presented to the participants in a random order. It is 

obvious that the rules for whether to buy a hedonic product will be different from the 

rules for whether to buy a utilitarian product. SFG was activated and generated 

discriminatory power soon after participants viewed the products, but 3 s before they 

made the purchase decision. Medial frontal gyrus (MFG, also referred to as medial 

prefrontal cortex) plays an important role in integrating gains and losses [74]. Previous 

studies have shown that MFG is activated in economic decisions [69, 74]. After viewing 

the products and before making a decision whether to buy it or not, considering the gains 

and losses of a decision activated MFG. This probably explains the predictive power of 

the amplitude of MFG signal 2 s before the decision point. After the decision point, 

participants will hold a short term-memory for what decision they made. SFG has been 
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implicated in working memory (WM) [88], indicating a probable reason for its 

discriminatory power after participants made a purchase decision.  

 

4.5 Conclusion 

   In this study, we adopted recursive cluster elimination based support vector machine to 

predict purchase decisions, (i.e. whether an individual decides to buy a product or not), 

using spatio-temporal fMRI features with more than 70% accuracy. We combined filter 

methods (i.e. GLM) with wrapping methods (i.e. RCE) for feature selection. This enabled 

us to identify the signal values in medial and superior frontal gyrus, both before and after 

the decision point, as spatio-temporal features possessing the most discriminatory power 

for predicting purchase decisions. Our approach provides a reliable multivariate pattern 

recognition framework for brain state classification using neuroimaging data, in terms of 

both improving prediction accuracy and generating interpretable spatio-temporal 

information. 
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Chapter 5: Conclusion 

    

   In this thesis supervised learning models were applied for estimating effective 

connectivity and predicting purchase decisions from fMRI data. Our proposed dynamic 

Granger causality relies on experimental modulation of causality with time, and therefore 

was able to infer only stimulus-evoked (and not spontaneous) neural timing differences. 

Subsequently, we experimentally demonstrated that Patel’s τ was unable to correctly 

estimate the directionality of neuronal influence of spontaneous spike and wave 

discharges (SWDs) in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). These 

findings do not support previous simulations that suggested Patel's τ as the most effective 

measure of directional connectivity, and demonstrate the need for experimental validation 

of simulations since the latter often make restrictive assumptions about reality which 

might not hold true. Last but not least, we adopted recursive cluster elimination based 

support vector machine to predict purchase decisions, using spatio-temporal fMRI 

features with more than 70% accuracy. The combination of filter methods with wrapping 

methods for feature selection enabled us to identify the signal values in medial and 

superior frontal gyrus, both before and after the decision point, as spatio-temporal 

features possessing the most discriminatory power for predicting purchase decisions. In 

conclusion, this thesis provides some reliable validation and methodology for the 

application of supervised learning models in the context of fMRI.  
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