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Abstract 
 

 
 Predation and competition can have significant effects on population dynamics. Range 

expansion of coyotes (Canis latrans) and the growing number of wild pigs (Sus scrofa) can 

negatively impact white-tailed deer (Odocoileus virginianus) populations. Traditional methods 

for estimating demographics, such as mark-recapture, can be labor intensive and difficult to 

implement on large scales. N-mixture models rely only on spatially and temporally replicated 

count data, and can be employed for large-scale monitoring. We evaluated the efficacy of N-

mixture models for estimating deer populations, and estimated effects of predator removal and 

interspecific competition on deer population dynamics using N-mixture models. Time-lapse 

photography and N-mixture models provided accurate estimates of deer density and may be an 

effective method for surveying and monitoring deer. Our results indicate that short term coyote 

removal programs may negatively impact deer populations. Additionally, our data suggest that 

wild pigs are displacing or excluding deer from pulse food resources.   
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Chapter 1: 

Efficacy of time-lapse photography and N-mixture models for surveying white-tailed deer 

populations   

ABSTRACT 

 Automated cameras have become increasingly common for monitoring wildlife 

populations. However, most analytical methods fail to account for incomplete and variable 

detection probabilities, which biases density estimates. The goal of this study was to evaluate the 

accuracy and effectiveness of the repeated point counts (N-mixture) method, which explicitly 

incorporates detection probability, to monitor white-tailed deer (Odocoileus virginianus) by 

using a known, marked population to collect data and estimate density. Motion-triggered camera 

surveys were conducted at Auburn University’s deer research facility in 2010 and data were 

standardized at 5-minute intervals to mimic a time-lapse survey. Density estimates were 

generated using N-mixture models and compared to the known number of marked deer in the 

population. We compared detection and density estimates generated from a decreasing number 

of survey days used in analysis and by time periods (DAY, NIGHT, SUNRISE, SUNSET, 

CREPUSCULAR, ALL TIMES). Detection was significantly less during the day and increased 

from 0.0087 during a 24-hour survey to 0.0116 during night surveys. Accurate density estimates 

were generated using 24 hours of data and nighttime only. Accuracy of density estimates 

increased with increasing number of survey days until day 5, and there was no improvement with 

additional data. This suggests that, for our system, five-day camera surveys conducted at night 

were adequate for density estimation and population monitoring. Further, this demonstrates that 
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N-mixture models with time-lapse photography may be a highly effective method for estimation 

and monitoring of white-tailed deer populations. 

 

INTRODUCTION 

 Accurate estimates of population size and structure are essential for wildlife management 

decisions, particularly decisions regarding harvest. Methods used to estimate population and 

demographic parameters based on direct counts of white-tailed deer (Odocoileus virginianus) 

have included spotlight counts (McCullough 1982, Fafarman and DeYoung 1986), pellet counts 

(Eberhardt and Van Etten 1956, Fuller 1991), aerial surveys (Potvin et al. 2002), and thermal 

imaging surveys (Gill et al. 1997). An assumption with many survey methods is that all animals 

have equal probability of detection (Krebs 1999) despite the fact that detection is often imperfect 

and variable between and among species, sites, and years (Pollock et al. 2002, Sollmann et al. 

2013). Spotlight counts, for instance, are subjected to variable detection rates (Collier et al. 2007, 

Collier et al. 2013) and bias associated with sampling along roads (Anderson 2001). 

Furthermore, many of these methods are labor intensive and limited to certain habitat types 

(Lancia et al. 1994). Dense vegetation has been shown to affect detection using thermal imaging 

surveys (Ditchkoff et al. 2005), spotlight counts (Collier et al. 2013), and pellet counts (Langdon 

2001).  

            Automated cameras have been used to monitor wildlife in a variety of habitat types 

(Jacobson et al. 1997, Koerth et al. 1997, Curtis et al. 2009). One important distinction among 

automated cameras is related to how the camera is triggered to capture images. Some cameras 

use an infrared-trigger (IR) to capture images whereas others use time-lapse photography to 

capture images at regular intervals. IR cameras capture an image when a sensor detects a change 
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in background infrared radiation wavelengths. Both types of surveys face variable detectability 

due to sex and age of the animal, environmental conditions, and time of day, but variability in 

sensor detection of an animal present at the station adds additional variability in detection rates 

among cameras, sites, or dates (Damm et al. 2010). Variation in this IR-sensor detection among 

cameras may arise from environmental conditions (Bernatas and Nelson 2004, Swann et al. 

2004), variable sensitivity or placement of camera sensors (Swann et al. 2004, Damm et al. 

2010), or differences in sensor detection of types of species  (Damm et al. 2010). The variable 

detection associated with IR sensors can influence photographic capture rates and confound 

comparisons between sexes or age classes even in the absence of other factors affecting visitation 

rates and patterns. Time-lapse photography eliminates this variation but greatly increases the 

number of images and data storage needs. Large-scale, time-lapse camera surveys can easily 

result in hundreds of thousands of images, many of which may not contain the targeted species 

but still need to be evaluated.  

            Various options are available for design and analysis of camera surveys.  Mark-recapture 

or mark-resight models can be used to analyze camera data containing individuals that are 

marked or uniquely identifiable (Karanth and Nichols 1998). However, the process of capturing 

and marking animals often is expensive and time consuming and may not be possible in many 

situations. Jacobson et al. (1997) developed a survey method for white-tailed deer which utilizes 

the unique features of branch-antlered bucks (antler configuration and mass, pelage, and body 

characteristics) to identify individuals.  The number of individual branch-antlered bucks and 

ratios of branch-antlered males to spikes, does, and fawns, are then used to derive population 

estimates and demographic parameters.  This method eliminates the need to commit financial 

and time resources to capture and mark animals, resulting in significant savings.  For example, 
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Jacobson et al. (1997) calculated a cost of $5/ha for a camera density of 1/65 ha, disregarding 

expenses for labor.  

 The Jacobson et al. (1997) method provides significant savings over traditional mark-

recapture methods. However, the assumption of equal detection between all age classes and 

sexes is potentially inaccurate and may result in biased estimates (Koerth and Kroll 2000, 

McCoy et al. 2011, Weckel et al. 2011).  Weckel et al. (2011) suggested incorporation of trap 

success (number of survey days with at least 1 deer photographed/total number of survey days) 

to adjust the Jacobson et al. (1997) method to account for differences in detection between 

branch-antlered males, spikes, females, and fawns. This adaptation would also address the 

potential bias resulting from baited camera sites and different visitation and feeding patterns of 

males, females, and fawns (Koerth and Kroll 2000, McCoy et al. 2011). However, the 

amendment proposed by Weckel et al. (2011) does not address variation in detection that exists 

due to environmental factors or temporal variation in visitation rates.  

 An alternative to the Jacobson et al. (1997) method is Royle’s (2004) N-mixture model. 

Similar to the Jacobson et al. (1997), the N-mixture model does not require marked individuals, 

yet accounts for variation in detection. Royle’s (2004) N-mixture model incorporates detection 

probability into the abundance estimate using a mixture of binomial and Poisson distribution 

models from spatially and temporally replicated counts. Royle’s (2004) N-mixture model is a 

hierarchical model that estimates 2 parameters, detection probability (p) and mean abundance (λ) 

with spatially and temporally varying covariates. This model assumes that the population is 

demographically closed, individuals are not counted at more than one site, and all individuals 

within the sampling unit have some probability of being detected (Royle 2004). Repeated point 

counts have been utilized in a multitude of avian species including black oystercatchers 
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(Haematopus bachmani; Lyons et al. 2012) and wild turkeys (Meleagris gallopavo; Damm 

2010). An additional advantage to this method is that individual identification is not required, 

which may reduce time and effort associated with surveys and facilitate large scale surveys 

(Lyons et al. 2012). 

 Our goal for this study was to evaluate the accuracy and effectiveness of Royle’s (2004) 

N-mixture model applied to camera surveys of white-tailed deer. We utilized an enclosed 

population with a largely known number of marked deer, to compare accuracy of density 

estimates from camera surveys. Our specific objectives were to 1) evaluate estimation accuracy, 

2) determine how detection varied temporally, and 3) determine how changes in camera survey 

efforts affected accuracy of density estimation for white-tailed deer using Royle’s (2004) N-

mixture model.  

 

STUDY AREA 

 Our study focused on Auburn University’s deer research facility near Camp Hill, Lee 

County, Alabama. An eight-foot high-tensile fence enclosed approximately 174 ha within the 

Piedmont Agricultural Experiment Station. A large creek bisected the property, and vegetation 

was dominated by hardwood bottomlands and uplands, old pastures, and planted pines. 

Supplemental feed was available at 3 feeding stations placed throughout the facility as well as 

several food plots. During the study, the facility contained approximately 100 deer, which 

descended from the wild deer population within the fence at the time of construction in 2007. At 

the time of this study, our known population size of marked individuals was 75 deer consisting 

of 41 males and 34 females. No hunting occurred within the research facility.  

 



6 
 

METHODS 

 Auburn University’s deer research facility contained a population of white-tailed deer 

that has been extensively studied during the previous 5 years. Researchers attempted to capture 

every individual each year and recorded antler and body size and tagged individuals [see Acker 

(2013) for specific capture and handling techniques]. Individuals were assigned a unique 

number, freeze branded, and tagged in both ears with cattle ear tags which made identification 

possible from multiple angles. Capture techniques followed American Society of Mammalogists’ 

guidelines (Sikes et al. 2011) and were in accordance with Auburn University’s Institutional 

Animal Care and Use Committee (2008-1241, 2010-1785).  

 Camera surveys were conducted in 2010 from September 21- September 27 (survey 1) 

and October 5- October 11 (survey 2) as part of another research initiative [see Acker (2013)]. 

Four sites were systematically established for survey 1, and 4 different sites were systematically 

established for survey 2 with a camera density of approximately 1/44 ha. Specific locations were 

sought beneath the forest canopy in areas where vegetation would not affect image quality and 

field of view. Sites were pre-baited 5 days prior to camera deployment with 22 kg of whole corn 

and were refreshed as needed. Infrared-triggered PixController trail cameras (DigitalEye 7.2, 

PixController Inc., Export, PA) were set on a 5-minute trigger-delay setting, meaning that no 

more than one photo could be taken in 5 minutes. Sensitivity, flash brightness, and ISO settings 

were all standardized. Cameras were set out for 7 days and were placed on steel mounting boards 

1.5 m above ground level and aimed downward at a 15° angle (Holtfreter et al. 2008). 

 All images were processed by a single observer to maintain consistency throughout the 

study. We identified individual deer by tag number. Only marked deer with readable ear tags 

were included in the count data because freeze brands were inconsistently legible. We recorded 
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tag number, time, date, and sex for every tagged deer in each picture. We constructed encounter 

histories as the number of marked individuals per 5-minute time interval for each site, with this 

interval specified to mimic a time-lapse setting and to standardize time of occasions for all sites. 

Occasions for which there were no images were given a zero count. 

  Detection probabilities generated from the N-mixture model (estimated detection) were 

not reported.  Instead we calculated an observed detection (𝑝) for a more direct measure of 

detection for each date and time as: 

𝑛𝑖𝑡
𝑁

 

where 𝑛𝑖𝑡 was the number of individuals photographed in time 𝑡 at location 𝑖, and 𝑁 was the 

total number of marked deer (n = 75). We chose to use this more direct and precise measure of 

detection as calculated here because it allowed us to calculate detailed, time-specific detection 

rates without variability and uncertainty of the estimated detection from the N-mixture model. In 

this paper we focused on evaluating the abundance estimators of the N-mixture model for white-

tailed deer. Our precise calculation of detection allowed us to evaluate how detection varied 

across time (i.e., date, day of the week, time of day) which would not have been possible using 

the N-mixture model estimator in this study. When calculating observed detection for males and 

females we divided by the number of each sex (41 males, 34 females). Standard errors were 

calculated using all date and time specific observed detection probabilities either during each 

time period or survey day.  We compared observed detection between time periods for males and 

females using a Welch’s two sample t-test with significance level set at α ≤ 0.05.  

 For analysis of density we used the count of male and female deer in each picture without 

respect to individual identity. We generated abundance estimates separately for males and 

females in MATLAB® (The MathWorks, Inc., Natick, Massachusetts) using the maximum-
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likelihood N-mixture model (Royle 2004) with counts (photos) every 10 minutes. Most camera 

surveys use a 4- or 5-minute delay setting (Jacobson et al. 1997, Koerth and Kroll 2000, Curtis et 

al. 2009). However, research has shown that deer spend > 10 minutes feeding when bait is 

scattered on the ground (Kozicky 1997). Further, a 10-minture trigger delay resulted in equal or 

greater individual identifications than a 5-minute trigger delay with half the photographs (Acker 

2013). To reduce computational time we increased survey occasions to 10 minutes instead of 

using each image every 5 minutes. Using the 5-minute occasions would have greatly increased 

computational time with no new information gleaned from the additional photos.  

 The N-mixture model (Royle 2004) estimates mean abundance (λ). With assumptions 

made about the area each site represents and the area those animals use, density can be 

calculated. Mean home range of adult male deer within a high-fence area of 260 ha was 58 ha, 

and ranged from 24-94 ha (Karns, unpublished data). Deer partitioned the area into quadrants 

and only ventured outside that area a few times during peak rut (Karns, unpublished data). The 

deer research facility was slightly smaller (174 ha), and home range size would likely be more 

constricted.  To convert from abundance to density, we assumed that each of the 4 sites 

represented 43.5 ha (174 total ha/ 4 sites). Then, we multiplied mean abundance (λ) by 4 to 

account for each site to get density (deer/174 ha), which also represents total population size 

within the facility.  

 We reduced camera survey effort for density analysis post hoc by utilizing data only from 

certain time periods of the day and by eliminating number of survey days used to generate 

density estimates.  In general, such a reduction limits the number of picture occasions in a data 

set and thereby reduces the time required for picture assessment and analysis, but may also affect 

estimator precision. The time periods we evaluated were DAY (8 hour time period 2 hours after 
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sunrise to 2 hours before sunset), NIGHT (16 hour time period from 2 hours prior to sunset to 2 

hours after sunrise), SUNRISE (4 hour time period around sunrise), SUNSET (4 hour time 

period around sunset), CREPUSCULAR (both sunrise and sunset time periods), and ALL 

TIMES (24 hours). For the second survey, density estimates were adjusted to account for the 

number of individuals that visited more than one site, which was a violation of one of the model 

assumptions of Royle’s (2004) N-mixture model. To do this we multiplied density by the percent 

of individuals that did not visit more than one site. Accuracy of estimates was calculated as the 

relative deviation from the number of known, marked individuals, and was calculated as 𝑁
�−𝑁
𝑁

, 

where 𝑁� is the estimated density and 𝑁 is the true population size.  

 

RESULTS 

 Of the 75 available marked deer, we observed 34 in survey 1 and 46 in survey 2 (Table 

1.1). In survey 1, one deer was observed at more than one site compared to 23 in survey 2. Mean 

number of deer counted per survey day increased from 69.5 on day 1 to 213 on day 3, and then 

decreased thereafter. There was no clear trend in detection across survey days (Figure 1.1). 

However, mean detection probability of females (𝑝̅= 0.0101 ± 0.0003) was greater (𝑃 <

0.001) than that of males (𝑝̅ = 0.0075 ± 0.00027). Detection probability of females was greater 

than detection probability of males during the DAY (female 𝑝̅ = 0.0053 ± 0.00037, male 

𝑝̅ = 0.0009 ± 0.00016; 𝑃 < 0.001), NIGHT (female 𝑝̅ = 0.0124 ± 0.00042, male 𝑝̅ =

0.0109 ± 0.00038; 𝑃 = 0.009), SUNSET (female 𝑝̅ = 0.0150 ± 0.00092, male 𝑝̅ = 0.0101 ±

0.00075; 𝑃 < 0.001), and CREPUSCULAR (female 𝑝̅ = 0.0138 ± 0.00062, male 𝑝̅ =

0.0112 ± 0.00056; 𝑃 = 0.002) time periods also. Detection decreased following sunrise and 
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increased and peaked following sunset (Figure 1.2). We also found that detection during the 

DAY time period was less (𝑃 < 0.001) than all other time periods (Table 1.2).  

 We did not estimate density for the DAY time period because detection rates were too 

low. Density estimates for the ALL TIMES and NIGHT time periods provided the most accurate 

density estimates for the total population. Prior to adjustment for the number of individuals that 

visited more than one site, abundance estimates for the ALL TIMES and NIGHT time periods 

from the second survey were 176.8 ± 13.5 and 137.6 ± 13.5, respectively. After adjusting for 

occurrences of multiple camera visits, female abundance estimates for ALL TIMES (38.3 ± 6.8), 

NIGHT (32.9 ± 6.7), SUNRISE (168.9 ± 12.3), SUNSET (32.6 ± 8.2), and CREPUSCULAR 

(40.6 ± 7.9) time periods had an accuracy of 12.6%, 3.2%, 396.8%, 4.1%, and 19.4%, 

respectively. For males, density estimates for the ALL TIMES (46.7 ± 7.0), NIGHT (39.7 ± 7.1), 

SUNRISE (18.1 ± 8.3), SUNSET (107.4 ± 42.2), and CREPUSCULAR (90.0 ± 7.1) time periods 

had an accuracy of 13.9%, 3.2%, 55.9%, 162.0%, and 119.5%, respectively. Using at least 5 

survey days resulted in density estimates closest to our true population size for the ALL TIMES 

and NIGHT time periods, and there was no increase in accuracy with additional days surveyed 

(Figure 1.3).  

 

DISCUSSION 

 With the increasing use of automated cameras to survey for white-tailed deer there have 

been a growing number of studies evaluating the accuracy of these survey methods. Previous 

studies have compared estimates with other forms of estimation to evaluate accuracy (Jacobson 

et al. 1997, McKinley et al 2006, Curtis et al. 2009, Weckel et al. 2011). Here we had the unique 

opportunity to compare our density estimates generated using Royle’s (2004) N-mixture model 
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with a known number of marked deer. Our findings suggest that use of N-mixture models can 

provide accurate density estimates for white-tailed deer. Density estimates from the NIGHT and 

ALL TIMES time periods were similar to our true population size with fairly small standard 

errors (coefficient of variation was consistently ~20% or less). Further, density of males and 

females were accurately estimated for the NIGHT and ALL TIMES time periods so male:female 

ratio estimates would be representative of the population. Due to the season in which we 

conducted our camera surveys, we were unable to estimate fawn abundance. In our study area 

fawns are born in July and August (Gray et al. 2002) and would not be very mobile at the time of 

the survey. In fact, studies have noted lower fawn:doe ratios during fall surveys than in winter or 

spring surveys (Jacobson et al. 1997, McCoy et al. 2011), suggesting that information gleaned 

from fawn:doe ratios during fall surveys in this region may not accurately reflect reality.   

 It is important to note the fundamental differences in the underlying assumptions of the 

N-mixture models (Royle 2004) and those of methods which rely on individual identification, 

such as the Jacobson et al. (1997) method. The Jacobson et al. (1997) method assumes that 

individual branch-antlered males can be accurately identified, and that there is equal detectability 

among sexes and age classes. As noted above, the N-mixture model (Royle 2004) estimates 

mean abundance assuming that all individuals have some probability of being counted, and that 

individuals will not be counted at more than one site. Making further assumptions about how 

much area those animals use and what area each site represents we can estimate density. This 

will be closely tied with camera density, sampling density (effective sampling area), and deer 

home range size. If camera and sampling density are too high then individuals may be counted at 

more than one site. This would be an unbiased estimate of the number of animals that use a 

particular site. However, when extrapolating to the total effective sampling area, density 
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estimates would likely be biased high. Conversely, if camera and sampling density are too low, 

then some individuals may not be counted and estimates of density and the number of animals 

that use a particular site may be biased low. The camera and sampling density required to 

balance these two assumptions would be inversely related to the home range size of the targeted 

species. Males have a greater home range than females (Vanderhoof and Jacobson 1993, Walter 

et al. 2011) and would require a lower camera and sampling density to meet the assumptions and 

accurately estimate density.  

 Other studies have noted variation in density estimates due to camera density.  Jacobson 

et al. (1997) and McKinley et al. (2006) found that the highest camera density (<1/65 ha) they 

tested provided more accurate estimates than lower camera densities. This is because the 

Jacobson et al. (1997) method relies on individual identification, and increasing camera density 

should increase photographic recapture rates. Increasing camera density increases the probability 

that all deer will be observed, meeting the criteria that all animals have some probability of being 

sampled. However, a high camera density can result in individuals being observed at more than 

one site, which is in violation of one of the N-mixture model assumptions (Royle 2004). This 

inflates density estimates, as evidenced by our overestimation of density prior to adjustment for 

individuals that were observed at more than one site during our second survey. If we were 

surveying an unmarked population we would have been unable to adjust the density estimates. 

Therefore, ideal camera density for N-mixture models should be low enough that individual deer 

are unlikely to be counted at more than one site, but high enough to ensure that every individual 

could be counted on at least one site.  

 Surveying for a minimum of 5 days resulted in accurate density estimates for the ALL 

TIMES and NIGHT time periods in this study, suggesting that surveying for 5 days may be 
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sufficient under similar conditions. Jacobson et al. (1997) found that within 10 days they 

observed >80% of marked deer. Despite our greater camera density, we observed a collective 

64% of the total population (marked population) during the two survey periods. Granted, 

Jacobson et al. (1997) was comparing their photographic recapture rates to the total number of 

marked deer and not the whole population. McKinley et al. (2006) observed 89% of marked deer 

at a camera density of 1/41 ha but estimated they only tagged <43% of the female population. 

The Jacobson et al. (1997) method requires the identification of a minimum number of branch 

antlered males, so a greater survey period or greater camera density may be necessary to 

maximize the number of individual deer photographed when using that technique. N-mixture 

models are not hindered by individual identification, and instead rely upon spatially and 

temporally replicated count data. Surveys using the N-mixture model (Royle 2004) may not 

require as many survey days as methods which do require individual identification. Shorter 

camera surveys that maintain accuracy of estimates can reduce time and therefore cost of 

examining images, and decrease costs associated with bait, fuel, and labor.  

 Many studies evaluating camera survey techniques have noted potential bias in different 

visitation rates among sexes and age classes, and suggest the need to account for this variability 

in detection (Jacobson et al. 1997, McCoy et al. 2011, Weckel et al. 2011). Jacobson et al. (1997) 

noted different photographic observation rates between males and females under a range of 

camera densities. They attributed this to differences in home range size between males and 

females but failed to account for this difference in the density estimates. We also found a 

difference between the sexes with male detection probability significantly less than female 

detection probability. This is contrary to Jacobson et al. (1997) who found that males were 

photographed more frequently, especially at low camera density (1/259 ha). The difference found 
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by Jacobson et al. (1997) could be due to their lower camera density of 1/65 ha, whereas our 

camera density was 1/44 ha.  Our results are similar to those of Weckel et al. (2011) who noted 

females were photographed more frequently with a higher camera density ( <1/25 ha). Home 

range size of female deer is approximately half that of males (Vanderhoof and Jacobson 1993, 

Walter et al. 2011) and a greater camera density would likely result in cameras being placed 

within a females core area. Further, our study was conducted on a high-fence population with a 

high population density which may also lead to smaller home ranges (Marchinton and Hirth 

1984).  

 We also observed a significant difference between detection probability during the day 

and all other time periods which could serve as another potential source of variability in 

detection that is unaccounted for. It is commonly accepted that detectability is not uniform and 

may differ between sexes, age classes, individuals, and location (Cutler and Swann 1999, McCoy 

et al. 2011), however temporal variation is generally not considered. During the day, deer are 

generally less active (Beier and McCullough 1990) and may be detected less frequently during 

that time. Further, long term studies may encounter changes in detection probabilities from year 

to year or season to season. Analyses based on indices or raw counts may result in inaccurate 

conclusions about population change if a time trend in detection probability exists. Modeling 

more sources of variation in detection can result in less biased, more accurate estimates of 

abundance. 

 We conclude that use of Royle’s (2004) N-mixture model can provide accurate 

population and demographic estimates for white-tailed deer if the survey design does not violate 

model assumptions. We found that surveying for 5 nights returned highly accurate estimates of 

male and female deer abundance in our study area. Our study was conducted on a high-fence 
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population, and in a wild population it may take longer than 5 nights to obtain enough captures to 

accurately estimate abundance because population density may be less than in this closed, high-

fence area. Our results may also be influenced by the manipulation of a motion-trigger delay 

setting to mimic a time-lapse setting. Variability exists in the sensitivity of motion sensors 

(Damm et al. 2010) and deer that were present at the site may have not been photographed.  

However, our estimates of accuracy would likely be conservative if this occurred. Regardless, 

our results indicate that time-lapse camera surveys using N-mixture model analysis has high 

potential for use in monitoring white-tailed deer populations. 

 

MANAGEMENT IMPLICATIONS 

We suggest that the repeated counts approach (Royle 2004) for estimating deer density and 

demographics could be widely adopted for monitoring deer populations and informing harvest 

management decisions.  Our results can be used to better plan future camera surveys and 

monitoring programs for white-tailed deer in an economically efficient way and help to reduce 

survey effort. For example, in our study area shortening camera survey lengths to 5 days would 

decrease costs associated with fuel, bait, and labor, while also reducing the number of pictures to 

examine. Additionally, surveying only at night could further reduce effort without reducing 

estimation precision. We found that abundance estimates using only night time data provided 

comparable estimates to surveying for 24 hours, which would result in a 50% decrease in the 

number of photographs using a time-lapse setting.  

Other considerations when designing a survey are camera density and sampling density 

(effective sampling area). Ideal camera and sampling density will differ among survey 

techniques. For the Jacobson et al. (1997) method or even Mark-Recapture it is important to 
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place cameras close enough to either maximize number of unique individuals photographed or to 

increase recapture rates. For N-mixture models (Royle 2004), camera and sampling density need 

to balance the model assumptions of every individual having some probability of being detected, 

and of individuals not being photographed at more than one site. Lower camera and sampling 

densities could result in sex biased estimates favoring males (Jacobson et al. 1997), depending on 

home range size. If the sampling density is much larger or smaller than the home range size of 

the animal, the effective sampling area must be adjusted to convert from site-specific abundance 

to density. Otherwise, estimates of density would be biased. Studies of free-ranging deer should 

evaluate the relationship between home range size and density estimates from repeated point 

counts surveys.  

Our study comparing known numbers of marked deer to abundance estimates from N-

mixture models indicate that repeated counts of unmarked deer using time-lapse photography is 

potentially a highly effective and efficient way to survey white-tailed deer.  Although the code is 

available for Program R (The R Foundation for Statistical Computing, 2009; Royle and Dorazio 

2008) the repeated counts method still requires the knowledge of computer code and software.   

Further, hierarchical models are technically cumbersome while the Jacobson et al. (1997) method 

is perceived to be a useful tool for managers because it does not require advanced quantitative 

analyses. However, the Jacobson et al. (1997) approach does not address sources of potentially 

significant estimation bias (spatial, temporal, gender and age detection biases).  We contend that 

although an analysis is more familiar and technically easier, potentially biased estimates that do 

not account for the complexities of detection variability could lead managers to incorrect 

inference and flawed decisions.   
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TABLES AND FIGURES 

 

Table 1.1. True population size of marked deer (N) and number of male, female, and total deer 

identified from two camera surveys of a fenced white-tailed deer population at Auburn 

University’s deer research facility located near Camp Hill, Alabama from September and 

October of 2010. 

 Survey 1 Survey 2 Collective N a 

Male 19 24 26 41 

Female 15 22 22 34 

Total 34 46 48 75 

a Total number of marked deer. 
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Figure 1.1. Detection probability for a fenced population of white-tailed deer by survey day at 

Auburn University’s deer research facility located near Camp Hill, Alabama during September 

and October of 2010.  
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Figure 1.2. Detection rate for a fenced population of white-tailed deer by time of day at Auburn 

University’s deer research facility located near Camp Hill, Alabama from September and 

October of 2010.  
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Table 1.2. Detection rate and density estimates by time period, DAY (2 hours after sunrise to 2 

hours before sunset), NIGHT (2 hours before sunset to 2 hours after sunrise), SUNRISE (2 hours 

before and after sunrise), SUNSET (2 hours before and after sunset), CREPUSCULAR (2 hours 

before and after both sunrise and sunset), and ALL TIMES (24 hours) of a fenced white-tailed 

deer population at Auburn University’s deer research facility located near Camp Hill, Alabama 

from September and October of 2010. The true population size of marked deer was 75.  

Time period Mean detection probability SE Mean density estimate SE 

DAY 0.0029 0.00019 N/Aa N/Aa 

NIGHT 0.0116 0.00029 72.6 13.8 

SUNRISE 0.0124 0.00059 187.0 20.5 

SUNSET 0.0123 0.00062 140.0 50.5 

CREPESCULAR 0.0124 0.00043 130.7 15.1 

ALL TIMES 0.0087 0.00021 77.4 13.8 

a These values were inestimable due to low detection rate.  
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Figure 1.3. Density estimates for a marked, known population of fenced white-tailed deer by 

number of survey days used for analysis using repeated point counts for two different time 

periods, Night (2 hours before sunset to 2 hours after sunrise; open bars) and All Times (24 

hours; solid bars) at Auburn University’s deer research facility located near Camp Hill, Alabama 

from September and October of 2010. True density of the marked population is denoted by the 

black dashed line.  
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Chapter 2: 

Impacts of predator removal and interspecific competition on white-tailed deer population 

dynamics 

ABSTRACT 

 Predation and interspecific competition can have significant effects on population 

dynamics and influence management decisions. Expansion of coyotes (Canis latrans) into the 

Southeast has altered the predator community, and many studies have shown that coyote 

predation on white-tailed deer (Odocoileus virginianus) fawns can reduce recruitment. Predator 

removal temporarily increases fawn recruitment, however the long term effects of coyote 

removal on population dynamics are still unclear. Additionally, wild pigs (Sus scrofa), which 

have recently expanded in range and numbers, are thought to displace or exclude deer from pulse 

food resources. Understanding the impacts of coyote removal and wild pig presence and 

abundance on deer population dynamics will give insight on how changing community structure 

affects an important native game species, and will be imperative for future management of 

white-tailed deer. We estimated white-tailed deer population size and structure at Fort Rucker, 

Alabama, and evaluated the effects of coyote removal, wild pigs, change in harvest regulations, 

and habitat type on these parameters using N-mixture models for open populations in 

UNMARKED. We conducted time-lapse camera surveys in the spring and fall of 2011-2012 and 

spring of 2013 to collect count data of does, bucks, and fawns. Fort Rucker biologists removed 

coyotes since spring 2011.  Coyote removal increased site-specific fawn abundance. However, 

the increase in fawn abundance did not result in a significant increase in the adult population. 
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Additionally, our data suggest that wild pigs displace or exclude deer from pulse food resources, 

and support the hypothesis that wild pigs compete with deer. 

 

INTRODUCTION 

As species ranges expand and contract in response to anthropomorphic environmental alterations 

(e.g., climate change, exotic species introductions) ecological community structure can become 

highly altered. There are a variety of species in the southeastern United States that have been 

extirpated (e.g., red wolves [Canis rufus], Nowak 2002; cougars [Puma concolor], Lindzey 

1987), and a variety of others that have been introduced and/or expanded their range (e.g., red 

imported fire ants [Solenopsis invictaI], Deyrup et al. 2000; coyotes [Canis latrans], Parker 

1995) to exploit vacated niches within the remaining communities. New predators may impact 

prey populations differently than their extirpated predecessors (Salo et al. 2010), and new 

competitors could alter native species behavior and population dynamics (Gurnell et al. 2004). 

This could have ramifications for management strategies in either conservation or harvest 

contexts. Management of a species often relies on or requires a thorough understanding of 

population dynamics, or temporal changes in population size and structure. For management to 

affect population size, it must influence either gains (i.e., reproduction or immigration) or losses 

to the population (i.e., mortality or emigration). Processes such as predation and interspecific 

competition can have potentially significant effects on population dynamics, and would demand 

knowledge at the community level to fully explain a population of interest.  Coyotes, wild pigs 

(Sus scrofa), and white-tailed deer (Odocoileus virginianus) in the southeastern US provide 

opportunities to study the emerging dynamics between relatively new predators, competitors, and 

a native, intensively managed and highly important game species.  
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 White-tailed deer have been extensively studied due to their economic importance, and 

many factors driving deer population dynamics have already been determined and quantified. 

However, the recent expansion of coyotes into the southeastern United States (Parker 1995) has 

altered the predator community, and their impact on deer population dynamics is still uncertain. 

Coyotes were once restricted to the Great Plains region, but with the extirpation of apex 

predators and the clearing of land for agriculture coyotes now inhabit the entire continental 

United States (Parker 1995). Coyotes will likely impact prey populations differently than the 

extirpated gray wolf (Canis lupus) in the north or the red wolf in the south and east, which 

coyotes have theoretically replaced in the ecological communities in this region (Ballard et al. 

1999). Generally, introduced predators have greater impacts on prey populations than do native 

predators (Salo et al. 2007, Salo et al. 2010). Although not a major threat to mature deer, coyotes 

have been shown to heavily prey upon fawns (Saalfeld and Ditchkoff 2007, VanGilder et al. 

2009, Kilgo et al. 2012, Jackson and Ditchkoff 2013, McCoy et al. 2013), and food habit studies 

have reported that deer occur most frequently in coyotes’ diet during the fawning period in the 

Southeast (Wooding 1984, Ballard et al. 2001, Schrecengost et al. 2008) and also during the 

winter in deer and coyotes’ northern ranges (Patterson et al. 1998). Additionally, low fawn 

survival has been noted in several areas across the Southeast (Saalfeld and Ditchkoff 2007, Kilgo 

et al. 2012, Jackson and Ditchkoff 2013, McCoy et al. 2013) and other reaches of coyote and 

deer distribution (Cook et al. 1971, Bartush and Lewis 1981, Long et al. 1998), primarily 

attributed to coyote predation. Some deer populations might benefit from this new predator, but 

with a shift towards Quality Deer Management (QDM) promoting high female harvests and 

lower population levels than under traditional management (Miller and Marchinton 1995), 

coyotes may have the potential to significantly impact deer populations.  
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 Coyote removal is an option for managers and private landowners to negate effects of 

coyote predation on fawn recruitment. Predator control programs have had mixed results, and 

certain factors may lead to removal having more of an effect on prey populations. To be 

effective, Ballard et al. (2001) suggested that 1) predator control be used when deer populations 

are well below carrying capacity of the habitat, 2) predation is a limiting factor, 3) predator 

populations be substantially reduced (reduced by roughly 70%), 4) removal occurs prior to 

fawning, and 5) the study area be relatively small (<1000 km2). Predator removal studies 

conducted when deer populations are below carrying capacity have resulted in increases in 

fawn:doe ratios (Beasom 1974, Bartush and Lewis 1981, Stout 1982). Conversely, deer herds 

that were at or near carrying capacity experienced little to no increase in recruitment following 

predator removal (Bartmann et al. 1992). Studies conducted on small scales have shown that 

predator removal can increase fawn survival and recruitment when predation is limiting and a 

majority of the coyote population is removed (Ballard et al. 2001). Although some studies have 

found substantial increases to white-tailed deer fawn recruitment in the season following coyote 

removal (156% increase in fawn recruitment, Beasom 1974; 154%, Stout 1982; 153%, 

VanGilder et al. 2009; 115%, Howze et al. 2009), more information is needed on the effects of 

successive years of coyote removal on deer population dynamics.  

 The impetus for most predator removal programs is to reduce human-wildlife conflicts, 

minimize loss of livestock, and increase or maintain game species populations (Parker 1995). 

Coyotes will likely not be completely eradicated, and removal programs may play an important 

role for deer management in the future. Following removal, coyotes can quickly recolonize 

removal areas, and open-area removals typically contend with immigration of predators from 

neighboring areas (Korpimäki et al. 2002). For example, a predator removal study found that 
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track counts dropped to near zero in an experimental area until removal efforts ceased, then 

gradually increased thereafter until reaching control area levels within five months (Beasom 

1974). Areas which aren’t fenced often require continuous predator removal (Holt et al. 2008, 

Salo et al. 2010). Maintaining removal efforts to increase deer abundance and hunter harvest 

opportunities can be costly to implement, especially on larger scales. Hurley et al. (2011) found 

that coyote removal increased fawn survival 15% and determined that in ten years 65 additional 

yearling males would be produced, costing $1,581 per deer using an average annual cost of 

coyote removal at $10,276. If trophy management is the objective, then an estimated 6 additional 

4-year-old males in ten years would cost $17,127 per deer over ten years (Hurley et al. 2011). A 

better understanding of the effects of coyote removal on population growth rate could enable 

managers to strategically plan long-term removal efforts to maximize cost effectiveness.  

 Although it is easy to perceive the link between predation and prey population dynamics, 

the relationship between interspecific competition and population dynamics may be more 

abstruse. Competition can be defined as one organism negatively impacting another by 

controlling access to (e.g. reduced access to high quality resources, Wauters et al. 2001) or 

consuming a limited resource (Keddy 1989). This can adversely affect population dynamics such 

as reproduction, survival, or recruitment of immigrants. Potential exists for wild pigs to compete 

with deer due to dietary overlap (Wood and Roark 1980, Taylor and Hellgren 1997). Wild pigs 

are an introduced species in North America, and are expanding in range and numbers. Their 

success can be attributed to intentional introductions and stocking for meat and commercial 

hunting (Long 2003), a high fecundity rate (Dzieciolowski et al. 1992, Taylor et al. 1998), high 

dietary plasticity (Genov 1981, Taylor and Hellgren 1997, Baubet et al. 2004), low predator 

abundances (Ickes 2001, Massei and Genov 2004), and their tolerance to a wide range of 
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environmental conditions as evidenced by their wide native distribution in Europe and Asia 

(Baskin and Danell 2003).  

 Few studies have detailed the impacts of wild pigs on white-tailed deer populations, 

however anecdotal observations indicate that pigs displace or exclude deer from pulse food 

resources (Tolleson et al. 1995, Taylor and Hellgren 1997). The displacement of deer by wild 

pigs might result from some negative effect of wild pigs on deer populations, or it may be 

apparent and result from changes in detectability in deer survey data. Wild pigs can potentially 

lower detection probability of deer at baited sites or food resources which can have implications 

for camera surveys geared at estimating abundance. Tolleson et al. (1995) also stated that wild 

pigs are an important competitor with deer, and that deer will avoid foraging in areas utilized by 

wild pigs. This competition has potential to impact population parameters. Studies of the effects 

of wild pigs on deer are needed to accurately estimate deer population parameters. 

Understanding white-tailed deer population dynamics given the changes in community structure 

will be imperative for future management decisions. 

 Estimates of white-tailed deer population size, age structure, and sex ratios and impacts 

of coyote removal and wild pigs on these parameters will give insight on how altered community 

structure affects an important native game species, and will be imperative for future management 

of white-tailed deer. Traditionally, these parameters would be estimated using mark-recapture 

methods, and potentially require multiple studies to determine population parameters and how 

they are affected by coyote removal and wild pigs. Mark-recapture is labor intensive and can be 

costly to implement on large scales. Dail and Madsen (2011) proposed a hierarchical model 

which can estimate population parameters and covariate effects on those parameters using only 

spatially and temporally replicated count data. N-mixture models can accurately estimate white-
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tailed deer density using count data from camera surveys for a single season (Keever, 

unpublished data). Expanding this to an open population allows inference to be made regarding 

impacts of coyote removal and wild pigs on population parameters in current and subsequent 

years. In this study, we use the Dail-Madsen (2011) model to identify and estimate factors that 

influence white-tailed deer population dynamics. Specifically, we estimated density, age and sex 

structure, recruitment, and apparent survival using time-lapse camera surveys and N-mixture 

models (Royle 2004) for open populations (Dail and Madsen 2011). Through covariate analyses 

we determined the effects of coyote removal on fawn abundance and investigated a time-lag 

effect of coyote removal. We also estimated the impact of wild pigs, habitat characteristics, and 

change in harvest regulations on deer population parameters.  

 

STUDY AREA 

 This study was conducted at Fort Rucker in southeastern Alabama (Dale and Coffee 

counties) located near Enterprise, Alabama. Fort Rucker was a U.S. Army installation where 

helicopter pilots were trained for the Army Aviation branch and the U.S. Air Force. The facility 

was 255 km2 but the upper third (57 km2) was an impact area and off limits to access.  A 2.4-m-

tall chain linked fence topped with barbed wire partially encased the facility while still allowing 

movement of animals.  Fort Rucker was located in the Lower Coastal Plains physiographic 

region and had fragile deep sands derived from marine and fluvial sediments (Mitchell 2008). 

The plant community was primarily pine (Pinus spp.; typically located in upland areas) and 

mixed pine-hardwood forests (usually found on lower slopes and alluvial bottoms) dominated 

by: loblolly pine (Pinus taeda), shortleaf pine (P. echinata), longleaf pine (P. palustris), slash 

pine (P. elliottii), sweetgum (Liquidambar styraciflua), yellow-poplar (Liriodendron tulipifera), 
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southern red oak (Quercus falcata), laurel oak (Q. laurifolia), and persimmon (Diospyros 

virginiana), among others. Hardwood stands consisted of various species of hickory (Carya 

spp.), oak (Quercus spp.), and magnolia (Magnolia spp.) and were found primarily in alluvial 

valleys (Mount and Diamond 1992). Wildlife food plots were dispersed throughout the 

installation with various crops planted to supplement natural food sources as well as wildlife 

openings which were maintained by mowing. The main water source was Lake Tholocco with 

various creeks throughout the facility. 

 Management practices on the post included prescribed burns which began in the 1980s 

but increased in intensity and frequency with around 45 km2 burned annually.  Additionally, 

thinning and herbicides were used to maintain desired species composition. Predator control in 

the form of coyote removal began in spring of 2011. Efforts were concentrated before the 

fawning period, however, coyote trapping continued opportunistically throughout the course of 

this study. Wild pig trapping also occurred throughout the installation. All land resources were 

managed in compliance with Federal, State, and local regulations while operating for the good of 

the U.S. Army.  

 Archery and firearm hunting were permitted on Fort Rucker with exception of the impact 

area. In the 1980s Fort Rucker showed signs of poor white-tailed deer herd condition (e.g., body 

weights, parasite counts, etc.). This suggested that the population was above the carrying 

capacity of the habitat, and managers increased antlerless harvest to decrease the population. 

Herd conditions improved but deer densities fell below preferred levels. Fort Rucker biologists 

decreased antlerless harvest in 1995, however, the population never rebounded and harvest rates 

were considered too low. Recently, harvest of white-tailed deer was below 100 deer on the entire 

facility. For the 2011-2012 hunting season, 59 deer were harvested including 18 does and 41 
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bucks. Following the 2011-2012 hunting season harvest of does was prohibited, and only 22 

antlered deer were reported harvested in the 2012-2013 season. The low harvest rates were 

thought to be a result of greater coyote predation on fawns. A study conducted at Fort Rucker 

from 2009 to 2010 found fawn survival to six months to be 0.26 (95% CI = 0.10 – 0.68) with a 

probability of mortality due to coyote predation of 0.65 (95% CI = 0.14 – 0.86; Jackson and 

Ditchkoff 2013). 

 

METHODS 

We conducted time-lapse camera surveys from 22 February-2 March 2011 (primary 

period 1), 26 September-4 October 2011 (primary period 2), 21 February-1 March 2012 (primary 

period 3), 24 September-5 October 2012 (primary period 4), and 19 February-27 February 2013 

(primary period 5).  Twenty-six sites were established 2.41 km apart based on a grid design 

throughout the base excluding the impact area (Figure 2.1). For each primary period we 

randomly selected 20 sites to survey using a random number generator. Fort Rucker biologists 

located site centroids with handheld GPS units. Near the centroid, we placed cameras in 

locations with signs of deer activity or suitable habitat to maximize capture probability. To 

decrease bias in camera placement, locations were first sought within a 91-m buffer of the 

centroid, then within a 183-m and 274-m buffer as needed. Cameras were placed on trees 

approximately 1.5 m above the ground and oriented either north or south. Any vegetation 

obstructing the camera’s view of the bait was cleared. Each site was pre-baited one week prior to 

the survey with 11 kg of corn 4 m away from the cameras. Sites were refreshed with corn after 3 

to 4 days and re-baited with 11 kg of corn when cameras were deployed. We used Reconyx PC-

85 game cameras (RECONYX, Inc., Holmen, Wisconsin) set on a 4-minute time-lapse setting. 
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Cameras were set out for a minimum of 7 days, and sites were refreshed with corn after 3 days. 

Sites were visited a total of 5 times each primary period: 1) prebait, 2) refresh bait and trim 

vegetation, 3) deploy cameras, refresh bait, and trim vegetation, 4) refresh bait and trim 

vegetation, and 5) retrieve cameras. 

Deer were counted in each image, and were classified as bucks, does, fawns, or 

unknowns. A deer was classified as an unknown when the deer’s position in the image made 

determining sex and/or age impossible (e.g., the head was outside the frame of the image). All 

images were processed by a single observer to maintain consistent classification. Due to 

computational limitations and the large amount of images generated from the 4-minute time-

lapse setting, sampling occasions were condensed to times of peak activity (Keever, unpublished 

data). In spring surveys, images from 15:36 to 8:12 were used, and in fall surveys, images from 

16:36 to 8:24 were used, representing 2 hours before mean sunset time till 2 hours after mean 

sunrise time. Although most camera surveys for deer use a 4- or 5-minute delay setting 

(Jacobson et al. 1997, Koerth and Kroll 2000, Curtis et al. 2009) we used images captured every 

12 minutes for analyses. Kozicky (1997) reported that deer spend more than 10 minutes feeding 

at scattered bait piles, and Acker (2013) reported that a 10-minute trigger delay resulted in 

equivocal individual identifications as a 5-minute trigger delay setting.  

Population abundance, covariate effects, and standard errors were estimated using the 

program R (The R Foundation for Statistical Computing, 2013, version 3.0.2) UNMARKED 

package (Fiske and Chandler 2011) for N-mixture models of open populations (Dail and Madsen 

2011). The Dail-Madsen model (Dail and Madsen 2011) was a generalized form of the Royle 

(2004) repeated counts N-mixture model, allowing for a robust design where the closure 

assumption must only be met within a primary period. In our paper we use the symbols and 



37 
 

parameter nomenclature used by Fiske and Chandler (2011).  Initial abundance (λ) was modeled 

using a Poisson distribution, 𝑁𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) where 𝑁𝑖𝑡 was the number of individuals at site 𝑖 in 

primary period 𝑡. In subsequent years, abundance was the result of mortality, recruitment, and 

movements, such that  

𝑁𝑖𝑡+1 = 𝐺𝑖𝑡 + 𝑆𝑖𝑡 

 

The number recruited to the population (𝐺𝑖𝑡) followed 𝐺𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛾𝑖𝑡), and the number that 

survived and did not emigrate (𝑆𝑖𝑡) was modeled as 𝑆𝑖𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖𝑡−1,𝜔𝑖𝑡). The detection 

process was modeled as 𝑦𝑖𝑗𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖𝑡,𝑝𝑖𝑗𝑡), where 𝑦𝑖𝑗𝑡 is the observed count and 𝑝𝑖𝑗𝑡 at 

site 𝑖 in sampling occasion 𝑗 and primary period 𝑡. The four parameters estimated by the model 

were initial abundance (𝜆𝑖), apparent survival probability (𝜔𝑖𝑡), recruitment rate (𝛾𝑖𝑡), and 

detection probability (𝑝𝑖𝑗𝑡). Since individuals were unmarked it was not possible to differentiate 

between emigration and death or immigration and recruitment. Therefore, recruitment rate (𝛾𝑖𝑡) 

was the rate at which individuals were gained at a site, and apparent survival probability (𝜔𝑖𝑡) 

was one minus the probability of losing an individual at a site.  We used the auto-regressive 

model for does and bucks where recruitment rate (𝛾𝑖𝑡) was modeled as 𝐺𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛾𝑖𝑡 × 𝑁𝑖𝑡−1) 

and impacted the latent parameter 𝐺𝑖𝑡. Fawns were modeled using the trend dynamic in 

which 𝑁𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑖𝑡−1 × 𝛾𝑖𝑡), where 𝛾𝑖𝑡 was the finite rate of increase and directly affected 

abundance, and the latent parameters 𝑆𝑖𝑡 and 𝐺𝑖𝑡 were not included. A Poisson distribution was 

used for initial abundance (𝜆𝑖) in buck, doe, and fawn models. The model also required a 

specified K value, which is an integer defining the upper bound for integration of the likelihood. 

A low K value could bias parameter estimates, and a high K value would increase computational 

time. We used the null model (constant model for all parameters) to determine a K value which 
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produced stable parameter estimates. A K value of 200 was used for the doe and buck models, 

and a K value of 100 was used for the fawn models.  

Each of the four estimated parameters can be modelled as a function of covariates (Fiske 

and Chandler 2011). Covariates used for detection (𝑝) were amount of precipitation (rain), time 

of day (time), frequency of wild pig site visitation (pHog), and season. Hourly precipitation 

amounts were obtained from the National Oceanic and Atmospheric Association. Each site and 

occasion within an hour had the same value for rain.  Time was a quartic function 

(time+time2+time3+time4) to account for the crepuscular behavior of deer and variation in 

temporal visitation rates of deer (Keever, unpublished data). PHog was the number of images 

with wild pigs per hour and was site specific. We included this covariate to account for the effect 

of temporal separation or behavioral exclusion of deer from bait sites on detection. Season was a 

binary number with spring as the reference group. Landscape classifications provided by Fort 

Rucker were used as covariates for initial abundance (λ). The percentage of developed lands 

(Dev), hardwoods (Hrdwd), mixed pine-hardwood forests (Mixed), and pines (Pine) were 

determined in a 340 ha area around each survey point using ArcGIS (ESRI, Inc., Redlands, CA). 

This area represented the approximate mean home range size of bucks (Appendix A).  Covariates 

for recruitment (γ) included coyote removal (Coy), a time-lag effect of coyote removal (Lag), 

and the number of individual wild pigs identified that used a specific site (Hog).  The Lag 

covariate was a binary number where 1 represented coyote removal occurred at the site the year 

before and 0 was no coyote removal the year before. The Hog covariate was intended to serve as 

an index of hog abundance or density, and was included here to assess the impact of hog 

abundance/density on deer population demographics. Coyote removal by Fort Rucker biologists 

began in spring 2011 and occurred at random sites throughout the study. Only sites where 
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coyotes were removed prior to or during the fawning period were counted as having coyote 

removal. We modeled apparent survival (ω) using variables for harvest separately for males 

(HarM) and females (HarF). We standardized all continuous covariate data by subtracting the 

mean and dividing by the standard deviation.  

We compared models using AIC corrected for small sample size (AICc), with the number 

of survey occasions as the sample size, and model probability (𝑤) (Burnham and Anderson 

2002). Due to the large number of covariates and potential candidate models, we used a 

hierarchical or sequential process to run models similar to Franklin et al. (2004) or McGowan et 

al. (2011). We first compared all detection (𝑝) models for does, bucks, and fawns using the 

average initial abundance (𝜆(. )) and recruitment (𝛾(. )) models, and for does and bucks the 

average apparent survival (𝜔(. )) model. Detection models were run first because it could impact 

the biological parameters (initial abundance, recruitment, apparent survival) that we were most 

interested in. Then, the best detection models (cumulative AICc weight (𝑤) of > 90) were used 

to compare abundance (λ) models with the average recruitment (𝛾(. )) and apparent survival 

(𝜔(. )) models. Initial abundance models were run next because the other parameters (recruitment 

and apparent survival) are transitions from the initial abundance to determine abundance in the 

next time step. For fawns, the best models were then compared to recruitment (𝛾) models for 

final model selection. In does and bucks, the best models from the abundance (λ) selection 

process were compared first to apparent survival (𝜔) models, then recruitment (𝛾) models, and 

this order was arbitrary.  

 All estimates of covariate effects were estimated using model averaging due to 

uncertainty in model selection (Burnham and Anderson 2002). Covariate effects were reported as 

odds ratios or the estimates of effects on the unstandardized scale (β values). Site-specific 
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abundance estimates were generated using the built in empirical Bayes method in UNMARKED 

(Fiske and Chandler 2011). The posterior probability distributions for each season and site were 

weighted by model probability (𝑤) for the top models (ΔAICc < 2). We then created mean 

probability distributions of abundance for each season by taking the arithmetic mean of site-

specific probability distributions. To convert from abundance to density, we divided mean 

abundance by an effective sampled area (ESA) using Bayes nets in Netica (Norsys Software 

Corp., 2012, version 5.09) (Appendix B).  We adjusted for estimated home range size because 

sampling density was low relative to home range size, and estimates of density and the number 

of animals that use a particular site would be biased low. We searched the literature for home 

range estimates of free-ranging deer in the Southeast and surrounding states (Appendix A). Each 

sampling unit represented an area of 5.83 km2, which was larger than the average home range 

size of deer (Appendix A). We used the compilation of estimates of home range size to create a 

home range size probability distribution for bucks, and a home range size probability distribution 

for does and fawns to account for uncertainty in home range size. We used the first 95% of the 

probability of density for bucks, does, and fawns to eliminate the effects that the tails of the 

probability distributions had on estimated density. 

 

RESULTS 

 We had 1 camera fail during primary period 1, 3 cameras fail during primary period 4, 

and 2 cameras fail during primary period 5. A total of 279,052 images were produced and 

processed during the 5 primary periods. Deer were present in 6,998 (2.5%) of those images. 

Bucks were observed in images more frequently (53.2% of images with deer) than any other 

classification, followed by does (34.9% of images with deer), unknowns (16.3% of images with 
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deer), and fawns (8.4% of images with deer; Table 2.1). We had a count of 1,176 unknown deer 

(14.0 % of total count). After reducing camera survey occasions to every 12 minutes at night, we 

had total of 62,432 survey occasions. There was no coyote removal prior to spring 2011 (primary 

period 1). For fall 2011 (primary period 2) and spring 2012 (primary period 3) there were 8 sites 

where coyote removal occurred, which resulted in the removal of 17 coyotes from camera sites. 

For fall 2012 and spring 2013 there were 9 sites where coyotes were removed, and 4 of those 

sites had coyotes removed the year prior. There were 14 coyotes removed for fall 2012 and 

spring 2013 from camera sites. We identified a total of 11 wild pigs at 2 of 19 sites in spring 

2011, 21 wild pigs at 9 of 20 sites in fall 2011, 15 wild pigs at 6 of 20 sites in spring 2012, 46 

wild pigs at 5 of 16 sites in fall 2012, and 54 wild pigs at 10 of 18 sites in spring 2013. 

 The top buck detection (𝑝) model estimated detection based on amount of precipitation, 

frequency of wild pig site visitation, time of day, and season (𝑤 = 0.62; Table 2.2). However, 

there was some uncertainty in model selection, and 2 other models were deemed competitive. All 

other top models included time of day and season as covariates for detection. We found that 

bucks were 1.74 times as likely (1.44-2.12; 95% C.L.) to be detected in the spring than the fall.  

Also, we noted a negative relationship between detection probability and amount of precipitation 

(-1.04 ± 0.81; β ± SE) and frequency of wild pig site visitation (-0.21 ± 0.16; β ± SE). 

Additionally, we found a quartic relationship between detection and time of day (Figure 2.2). 

The top detection (𝑝) model for does included frequency of wild pig site visitation and time of 

day, however there was considerable model uncertainty (top model 𝑤 = 0.36) and the top 4 

models were supported as competing models for doe detection probability (𝑤 ≥ 0.15; Table 

2.3).  The top four models all had frequency of wild pig site visitation and time as covariates for 

detection. We did not find an effect of season on doe detection probability. We found a negative 
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effect of rain (-0.55 ± 0.05; β ± SE) and frequency of wild pig site visitation (-0.38 ± 0.17; β ± 

SE) on doe detection probability. We also noted a quartic relationship between detection 

probability of does and time of day. For fawns, the top detection (𝑝) model included the amount 

of precipitation, frequency of wild pig visitation, time of day, and season as covariates of 

detection probability (𝑤 = 0.69; Table 2.4). Only one other model was competitive, and it 

included frequency of wild pig visitation, time of day, and season (𝑤 = 0.29). Notably, all 

models that included the effect of season were ranked higher than models without the effect of 

season. We found that fawns were 13.06 times as likely (6.14-27.77; 95% C.L.) to be detected in 

the spring than in the fall. We also found a negative effect of frequency of wild pig site visitation 

(-1.99 ± 0.96; β ± SE) and precipitation (-2.10 ± 2.09; β ± SE) on fawn detection. Similarly to 

does and bucks, we found a quartic relationship between detection probability of fawns and time 

of day.   

 There were a total of 48 initial abundance models for bucks, and the top 10 were selected 

for the next model selection step based on the criteria of a cumulative 𝑤 ≥ 0.90. The top model 

(𝑤 = 0.27) included number of wild pigs, % hardwood, % mixed pine-hardwood, and % pine as 

covariates for initial abundance, and precipitation, frequency of wild pig visitation, time of day, 

and season for detection (Table 2.5). We found a positive relationship between initial abundance 

and % developed lands and % pines (Figure 2.3). We found a negative relationship between 

initial abundance of bucks and % hardwoods, % mixed pine-hardwoods, and the number of wild 

pigs identified using a site (Figure 2.4). The top initial abundance model for does estimated 

abundance based on % developed land and % pines, and detection based on the amount of 

precipitation, frequency of wild pig visitation, time of day, and season (𝑤 = 0.28).  However, 

there was a great deal of uncertainty in model selection and 16 models were selected as 
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competitive (Table 2.6).  We found a positive relationship between initial doe abundance and % 

pines (Figure 2.5). We found a negative relationship between initial abundance of does and % 

hardwoods, % mixed pine-hardwoods, and number of wild pigs. We found no effect of % 

developed lands on initial doe abundance. The top model for fawn abundance included number 

of wild pigs, % hardwood, % mixed pine-hardwood, and % pine as covariates for initial 

abundance, and precipitation, frequency of wild pig visitation, time of day, and season as 

covariates for detection (𝑤 = 0.22; Table 2.7). Due to uncertainty in model selection, 6 models 

were selected for the next step in the hierarchical process. We found a positive relationship 

between initial fawn abundance and % developed lands and % pines (Figure 2.6). We found a 

negative relationship between initial fawn abundance and % hardwoods, % mixed pine-

hardwoods, and the number of wild pigs identified using a site.  

 The top apparent survival probability model (𝑤 = 0.30) for bucks included the constant 

model for apparent survival, number of wild pigs, % hardwood, % mixed pine-hardwood, and % 

pine as covariates for initial abundance, and the amount of precipitation, frequency of wild pig 

visitation, time of day, and season for detection probability (Table 2.8). In fact, all models which 

included the constant for apparent survival were better than models which included the harvest 

covariate. Since there was some uncertainty in model selection, 7 models were selected for the 

next step in the hierarchical model selection process. The top apparent survival model for does 

included the constant model for apparent survival, % developed lands and % pine for initial 

abundance, and amount of precipitation, frequency of wild pig visitation, time of day, and season 

for detection probability (𝑤 = 0.31; Table 2.9). There was some uncertainty in model selection 

and 10 models were selected. All of those models included the constant model for apparent 

survival probability and % pine for initial abundance.  
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 The top overall model for bucks estimated initial abundance as a function of the number 

of wild pigs, % hardwoods, % mixed pine-hardwoods, and % pine, and detection probability was 

modeled with amount of precipitation, frequency of wild pig visitation, time of day, and season 

with no covariates for recruitment or apparent survival (𝑤 = 0.15; Table 2.10). We found no 

effect of wild pigs (0.02 ± 0.03; β ± SE) or a time lag effect of coyote removal (0.04 ± 0.03; β ± 

SE) on buck recruitment rate. The top model for does included % pine and % developed lands as 

covariates for initial abundance, amount of precipitation, frequency of wild pig visitation, time of 

day, and season as covariates for detection, and no covariates for recruitment or apparent 

survival (𝑤 = 0.11; Table 2.11).  We found no effect of coyote removal the year prior (0.08 ± 

0.16; β ± SE) or wild pigs (0.05 ± 0.07; β ± SE) on doe recruitment rate. The top recruitment 

model for fawns included the effect of coyote removal and a time lag effect of coyote removal to 

estimate recruitment rate, the number of wild pigs, % hardwood, % mixed pine-hardwood, and % 

pine for initial abundance, and detection based on the amount of precipitation, frequency of wild 

pig visitation, time of day, and season (𝑤 = 0.10; Table 2.12). The next two best approximating 

models estimated recruitment as a function of coyote removal (𝑤 = 0.07 and 𝑤 = 0.06, 

respectively). We found a positive relationship between coyote removal and the finite rate of 

increase of fawns (0.32 ± 0.30; β ± SE), however we also observed a negative effect of coyote 

removal the previous year (-0.26 ± 0.41; β ± SE) on the predicted finite rate of increase (Figure 

2.7). We did not observe any effect of the number of wild pigs on the finite rate of increase of 

fawns (-0.003 ± 0.02; β ± SE).  

 Density estimates of bucks, does, and fawns decreased until spring 2012 (Table 2.13). 

Mean fawn:doe estimates were 0.80 in spring 2011, 0.79 in fall 2011, 0.69 in spring 2012, 0.72 

in fall 2012, and 0.67 in spring 2013. Sites that never had coyote removal had 0.37 fawns per 
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doe. Sites that had coyote removal only in the current year (no time lag effect) had 0.86 fawns 

per doe. Sites that had coyote removal the year before but not in the current year (lag effect) had 

fawn:doe ratio of 0.38. Sites that had 2 consecutive years of coyote removal (coyote and lag 

effect) had 0.77 fawns per doe. Mean buck:doe ratios during the study period were 1:1.41 in 

spring 2011, 1:1.45 in fall 2011, 1:1.52 in spring 2012, 1:1.54 in fall 2012, and 1:1.64 in spring 

2013. There was a slight decrease in total density each spring (Figure 2.8). However, there were 

large standard errors and little change in density over the course of the study.   

 

DISCUSSION 

 Understanding the factors that influence white-tailed deer population dynamics is 

important for making informed management decisions. Gains and losses to the population can be 

affected by community level processes such as predation and interspecific competition. 

Typically, estimating demographics and impacts of predation and competition requires years of 

intensive data collection, and is therefore primarily limited to relatively small spatial scales 

(Williams et al. 2002). The model proposed by Dail and Madsen (2011) extended N-mixture 

models (Royle 2004) to open populations to estimate demographic parameters from spatially and 

temporally replicated count data. We used this model to estimate density, age and sex ratios, and 

the impacts of predator removal and wild pigs on these parameters. Our estimates of density 

were low, however still within the range of recorded density estimates in the southeast (3-98 

deer/km2, Kie et al. 1983, DeYoung 1985, Keyser et al. 2005, Kilgo et al. 2010, Donohue et al. 

2013). Sex ratios were fairly balanced (1:1.5 bucks per doe), and within the range of estimates 

under normal hunting scenarios (1:1 to 1:3.5 bucks per doe; Keyser et al. 2006). Fawn:doe ratios 

were greater than prior estimates of fawn:doe ratios at Fort Rucker (0.28 fawns per doe; Jackson 
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and Ditchkoff 2013). Jackson and Ditchkoff (2013) did not account for differences in detection 

probability, and their study was prior to any coyote removal on the installation. Our estimates of 

fawn:doe ratios without any coyote removal were similar to those reported by Kilgo et al. (2010) 

following coyote establishment (0.41 fawns per doe), and with coyote removal our estimates 

were similar to pre coyote establishment fawn:doe ratios (0.80; Kilgo et al. 2010). Howze et al. 

(2009) reported fawn:doe ratios of 0.97 on coyote removal sites and 0.45 on non-removal zones. 

Similarly, Beasom (1974) reported 0.82 fawns per doe when coyotes were removed and 0.32 on 

the control area.  

 An issue with estimating density is accounting for the space that an animal uses and 

uncertainty in home rage or animal space use. Sampling density (site spacing) may over- or 

under-represent the area that the targeted species utilizes, and would result in biased estimates of 

density when converting from site abundance. Spatial capture-recapture models (Royle and 

Young 2008, Royle et al. 2009) use the number and location of individual activity centers to 

estimate density, however these models require individuals to be uniquely identifiable. Chandler 

and Royle (2013) developed a spatially-explicit model for unmarked populations to estimate 

density. This model capitalizes on the spatial structure of count data from close proximity sites to 

make inferences about spatial distribution and population size (Chandler and Royle 2013). 

However, that method requires high sampling density which would prove costly and difficult for 

large study areas.  Instead, to convert from abundance to density we divided abundance estimates 

by an ESA.  There are many ways to determine the ESA and different methods can produce very 

different density estimates (Parmenter et al. 2003, Soisalo and Cavalcanti 2006, Foster and 

Harmsen 2012). The ESA ultimately adjusts for the discrepancy between sampling density (site 

spacing) and home range size when extrapolating density to the entire study area. Sites were 
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spaced to meet the model assumption that deer were not counted at more than once site. Our 

sampling density was 1 site per 5.83 km2, whereas the mean home range of females based on a 

literature search was only 1.38 km2, and for males was 3.23 km2.  It is well established that males 

tend to have a greater home range than females (Vanderhoof and Jacobson 1993, Walter et al. 

2011), and also that density can affect home range size (Smith 1970, Bertrand et al. 1996, 

Kilpatrick et al. 2001).  Additionally, it has been posited that bait sites can shift or alter home 

ranges of deer (Van Brackle et al. 1995). Although studies have found shifts in deer core use 

areas due to baiting, those studies noted no effect on total home range size (Kilpatrick and Stober 

2002, Cooper et al. 2006), suggesting that our use of bait would not impact the assumed size of 

the area an animal uses. By creating a probability distribution of home range and using that 

rather than a single estimate of home range size to convert to density, we accounted for 

variability and also uncertainty in home range size and animal space use. In the end our density 

estimates represent the probable density given uncertainty in abundance estimates and home 

range size. 

 Camera surveys conducted in the fall can underrepresent fawn abundance and 

recruitment (McCoy et al. 2011), particularly in populations in the Southeast where fawns are 

born during late summer (Causey 1990, Gray et al. 2002). Our estimates of fawn density and 

fawn:doe ratios were consistent for fall and spring surveys because detection probability was 

incorporated into the estimation process. We did note, however, that season greatly influenced 

detection probability of bucks and fawns. Detection probability of fawns and bucks was greater 

in the spring than in the fall. The fact that fawns were more likely to be detected in the spring 

was not unexpected because in southern Alabama fawns are born in late summer (Gray et al. 

2002) and would not be very mobile at the time of the fall survey. Spring surveys took place in 
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late February, which was near the end of the breeding season in southeastern Alabama (Causey 

1990). During the rut bucks reduce feeding effort (Geist 1982), and may be more likely to visit 

bait sites following the rut to feed, which could explain the greater detection probability of bucks 

in the spring. Although some studies raised concern with variation in use of bait by sex or age 

class biasing estimates of population size (Jacobson et al. 1997, McCoy et al. 2011), the 

incorporation of detection probability into the estimation process should have accounted for this.  

Additionally, we noted that an increase in precipitation greatly decreased detection probability 

for bucks, does, and fawns.  

 When two co-occurring species utilize the same food or habitat resources, competition 

for limited resources can occur (Begon et al. 2005). Our data indicate that wild pigs displace or 

exclude deer from pulse food resources, and support the hypothesis that wild pigs are a 

competitor with deer. Although we did not observe an effect of wild pigs on recruitment, we 

found that the number of wild pigs negatively affected the initial distribution of deer (initial 

abundance). The more wild pigs at a site, the lower the initial deer abundance or density were at 

that site. This could be the result of direct interference competition, and wild pigs could be 

excluding deer from food resources. Also, there is potential for competition between these 

species to be indirect, e.g. through exploitation of food resources. The diet of wild pigs is 

primarily comprised of plant material (e.g., roots, bulbs, tubers, stems, leaves, and hard and soft 

mast; Ditchkoff and Mayer 2009), and slightly overlaps with deer diet (Wood and Roark 1980, 

Taylor and Hellgren 1997). Population dynamics of large herbivores are typically driven by 

competition for limiting food resources (Sinclair 1989). The most adverse effects of competition 

are reduced reproductive output and survival (Begon et al. 2005), but reduced immigration and 

changes in habitat use can also result from competition (Gurnell et al. 2001, Gurnell et al. 2004). 
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Our data also indicate that detection probability of deer decreased with increasing frequency of 

wild pig site visitation.  Spatial and temporal avoidance or resource partitioning is a common 

behavioral mechanism to cope with competition and allow coexistence (Palomares and Caro 

1999, Dhondt 2012). Our findings suggest that deer avoid wild pigs and may be spatially and 

temporally partitioning resources, as would be expected if wild pigs excluded deer from pulse 

food resources. This form of interference competition typically results from either agonistic 

interactions or exclusion from a territory or resource (Begon et al. 1996). Wild pigs display 

agonistic behaviors with other pigs when resources are limiting and defendable (Schnebel and 

Griswold 1983; Sparklin et al. 2009), however, it is unknown whether agonistic interactions 

occur between wild pigs and deer.  

 It is possible that we did not observe an effect of wild pigs on deer recruitment because 

deer population density was low at the site and food was not limiting. Deer density at the study 

site was on the low end of the range for other areas in the Southeast (3-98 deer/km2, Kie et al. 

1983, DeYoung 1985, Keyser et al. 2005, Kilgo et al. 2010, Donohue et al. 2013), and food may 

not be limiting reproduction. Deer population density can greatly impact health and body mass 

(Shea et al. 1992, Keyser et al. 2005) which can affect reproductive output (McCullough 1979, 

Kie and White 1985). Resource partitioning could also explain the lack of effect of wild pigs on 

deer recruitment. Spatial or temporal resource partitioning reduces overlap of resource use and 

allows coexistence of competitors (Schoener 1974). Spatial segregation and partitioning of 

resources is important for closely related bird species occupying the same habitat (Robinson and 

Terborgh 1995, Wiens 2012). At greater population densities when resources are limiting, spatial 

and temporal separation may not be as effective at mitigating the negative repercussions of 
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competition to population dynamics. More intensive studies at greater deer densities would better 

elucidate the interspecific competition between pigs and deer.  

 Similar to previous studies (Beasom 1974, Stout 1982, Howze et al. 2009, VanGilder et 

al. 2009), we found that coyote removal increased fawn recruitment rates. Removal of coyotes 

increased the finite rate of increase of fawns meaning there was greater fawn abundance 

following removal relative to the year prior. If coyote removal occurred the year before and not 

in the current year we observed decreased fawn abundance relative to the year prior. However, 

coyote removal would have resulted in more fawns the year before (during the year of coyote 

removal) so there would be a net gain in fawns produced relative to if there was never any coyote 

removal.  For example, based on our estimated finite rate of increase, if we start with 100 fawns 

and don’t have coyote removal for 2 years we would end up with 67 fawns (100 × 0.822 ×

0.822). If we had coyote removal in the first year and not the second, then we would end up with 

77 fawns (100 × 1.156 × 0.669). If we removed coyotes in the second year but not the first, 

then we would end up with 95 fawns (100 × 0.822 × 1.156). If we had 2 years of coyote 

removal, then we would end up with 104 fawns (100 × 1.156 × 0.898).  After removal, coyotes 

quickly recolonize areas (Beasom 1974, Mosnier et al. 2008) and move in from neighboring 

lands (Korpimäki et al. 2002). Coyotes actively defend territories and exhibit significant home 

range fidelity (Kitchen et al. 2000). However, yearlings and non-breeding adults tend to disperse 

(Gese et al. 1996). When coyotes are removed from an area, one or more coyotes may move in 

and occupy a vacant territory prior to the next fawning season (Beasom 1974, Connolly 1995), 

and could result in elevated predation and reduced recruitment of fawns the following year. 

 With two consecutive years of coyote removal at a site we observed a lower finite rate of 

increase compared to a site with no coyote removal the year prior. Returning to the previous 
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example, if we start with 100 fawns and we remove coyotes for 2 years we end up with 104 

fawns. Although we had an increase of 4 fawns, the rate at which fawn abundance is changing is 

decreasing. If we remove coyotes 3 years in a row we could get 93 fawns (100 × 1.156 ×

0.898 × 0.898), assuming there is no difference in the finite rate of increase for 3 consecutive 

years of coyote removal relative to 2. Reduction in coyote density can result in increased 

reproductive output (Andelt 1987, 1996), which would result in more coyotes and an increased 

energetic demand for the mated pair during pup rearing. Female coyotes expend an additional 

142% over field metabolic rate for an average litter size during lactation, and even during pup 

dependence males expend an additional 46.8% and females an additional 53.3% over field 

metabolic rate to supply pups with food (Laundré and Hernández 2003).  Pup rearing occurs 

from June to September (Chamberlain and Leopold 2001, Schrecengost et al. 2008), concurrent 

with the fawning season (Causey 1990, Gray et al. 2002). Deer represent a greater source of 

nutrients than other dietary items and would likely be favored during this time when deer fawns 

are most vulnerable and coyote nutrient demands are at their peak. Despite two successive years 

of coyote removal the increased energetic burden of pup rearing could result in increased 

predation on fawns. Till and Knowlton (1983) demonstrated that depredation of lambs was 

driven by coyote pup rearing, and upon removal of coyote pups coyote predation on sheep 

ceased. Additionally, increased nutrient requirements of coyotes may result in increased 

movements and coyote movement (based on per-hour rate) was found to be greater during the 

fawning period (Turner et al. 2011). Increased movements during fawning would bring coyotes 

into contact with vulnerable fawns more frequently, and could explain the decrease in the finite 

rate of increase of fawns following 2 years of coyote removal.   
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 We found no effect of coyote removal on buck or doe recruitment the following year, 

which suggests that the documented increase in fawn abundance did not translate to the adult 

population. Many predator removal programs fail to see effects on population future size (Holt et 

al. 2008). Predator removals which are ineffective at obtaining desired prey population increases 

tend to be conducted on open-areas (Salo et al. 2010). Fort Rucker is only partially fenced, and 

animals can move freely onto or off the installation. After removal, coyotes can move in from 

neighboring lands (Korpimäki et al. 2002). Additionally, Fort Rucker is a large installation and 

coyotes are removed throughout the installation whereas coyote removal is most effective on a 

smaller scale (Ballard et al. 2001). Our density estimates are for the entire installation, and do not 

represent density at sites with coyote removal compared to sites without coyote removal which 

could be why coyote removal on density at the scale of the entire installation. Concentrating 

removal efforts to a small area of the base and removing more of the predator population for 

successive years could result in increases to prey population size, theoretically, if predation were 

additive (Ballard et al. 2001). Although Hurley et al. (2011) noted that coyote removal 

successfully decreased depredation of mule deer fawns, there was no effect on fawn ratios or 

mule deer abundance in Idaho, suggesting that mortality was compensatory (Ballard et al. 2001). 

Coyote predation in the Southeast may be additive due to mild winters and abundant food 

resources for deer. It is generally assumed that the effects of predation on ecological 

communities are more pronounced in mild environments (Callaway et al. 2002). An alternative 

explanation for a lack of population size response to coyote removal is that deer in our study 

population were limited by food resources. However, this was unlikely due to the low population 

density and good condition of deer (Spiller, unpublished data). We did note an increase in doe 
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abundance following antlered deer only hunting season, suggesting that reducing harvest may be 

more efficient at increasing deer populations than coyote removal. 

 Predation and interspecific competition can have substantial impacts on population 

dynamics under the right conditions. In this study we used non-invasive methods to evaluate the 

effects of both predation and interspecific competition on a valued game species, white-tailed 

deer. Although our data demonstrate that interspecific competition with wild pigs is likely 

occurring, at the very least as behavioral exclusion over pulse resources, the impacts to deer 

demographics are limited, probably due to existing low deer population density. However, we 

can conclude that pigs affect deer detection probabilities. Not accounting for the effects of pigs 

on deer detection and subsequent demographics could result in underestimating deer abundance 

and impact harvest and other management strategies (e.g., lethal coyote control) for deer 

populations. Furthermore, we did not directly manipulate the hog population to observe and 

estimate deer response but rather passively studied associations between existing hog densities 

and deer demographics which may have reduced our capacity to detect a demographic 

interaction. Low deer population density may render the population more vulnerable to the 

limiting or regulating effects of coyote predation. Our results suggest that contrary to previously 

published data describing the effects of coyote removal on deer populations (Beasom 1974, Stout 

1982, VanGilder et al. 2009, Howze et al. 2009), short term coyote control efforts may actually 

have a negative impact on deer populations. Management of white-tailed deer may need to 

include successive years of coyote removal coupled with a reduction in doe harvest to increase 

low density herds. Although this study took place in the Southeast, these findings can provide 

insights for areas outside this region regarding the effects of coyote predation and interspecific 

competition on white-tailed deer population dynamics and help guide management decisions. 
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Intensive data collection, such as capture recapture or manipulative experiments excluding wild 

pigs and removing coyotes, may further reveal the complex species interactions shaping deer 

herds in the altered communities of the Southeast.  
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TABLES AND FIGURES 

Table 2.1. Uncorrected counts of deer separated into sex and age classes from 5 time-lapse 

camera surveys conducted spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, 

Alabama.  

 Buck Doe Fawn Unknown Total 

Count 3829 2715 656 1176 8376 

Number of images with deera 3723 2443 588 1139 6998 

Percent of sites deer were countedb 100% 100% 92.3% 100% 100% 

a A total of 279,052 images were produced during the 5 surveys 
b n=26 
 

 

 

 

 

  



68 
 

Table 2.2. Comparison of detection (𝑝) models for buck abundance estimation using 5 time-

lapse camera surveys conducted spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, 

Alabama. For each model, AIC corrected for small sample size, relative difference in AICc, 

number of estimable parameters (K), model likelihood (Lik), and model probability (𝑤) are 

shown.  

  Model AICc ΔAICc K Lik 𝑤 

λ(.)γ(.)ω(.)p(rain+pHog+time+season) 9737.67 0 9 1.00 0.62 

λ(.)γ(.)ω(.)p(rain+time+season) 9740.23 2.56 10 0.28 0.17 

λ(.)γ(.)ω(.)p(pHog+time+season) 9740.30 2.64 10 0.27 0.17 

λ(.)γ(.)ω(.)p(time+season) 9742.90 5.24 11 0.07 0.05 

λ(.)γ(.)ω(.)p(rain+pHog+time) 9766.98 29.32 8 0 0 

λ(.)γ(.)ω(.)p(pHog+time) 9768.28 30.62 9 0 0 

λ(.)γ(.)ω(.)p(rain+time) 9775.35 37.68 9 0 0 

λ(.)γ(.)ω(.)p(time) 9776.54 38.88 10 0 0 

λ(.)γ(.)ω(.)p(rain+season) 9940.36 202.69 5 0 0 

λ(.)γ(.)ω(.)p(season) 9941.11 203.44 6 0 0 

λ(.)γ(.)ω(.)p(rain+pHog+season) 9942.07 204.40 6 0 0 

λ(.)γ(.)ω(.)p(pHog+season) 9942.81 205.14 7 0 0 

λ(.)γ(.)ω(.)p(pHog) 9965.16 227.49 4 0 0 

λ(.)γ(.)ω(.)p(.) 9965.37 227.70 5 0 0 

λ(.)γ(.)ω(.)p(rain+pHog) 9965.39 227.73 5 0 0 

λ(.)γ(.)ω(.)p(rain) 9965.63 227.97 6 0 0 
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Table 2.3. Comparison of detection (𝑝) models for doe abundance estimation using 5 time-lapse 

camera surveys conducted spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, 

Alabama. For each model, AIC corrected for small sample size, relative difference in AICc, 

number of estimable parameters (K), model likelihood (Lik), and model probability (𝑤) are 

shown.  

  Model AICc ΔAICc K Lik 𝑤 

λ(.)γ(.)ω(.)p(pHog+time) 7657.45 0 9 1.00 0.36 

λ(.)γ(.)ω(.)p(rain+pHog+time) 7658.04 0.58 10 0.75 0.27 

λ(.)γ(.)ω(.)p(pHog+time+season) 7658.76 1.31 10 0.52 0.19 

λ(.)γ(.)ω(.)p(rain+pHog+time+season) 7659.18 1.73 11 0.42 0.15 

λ(.)γ(.)ω(.)p(time) 7663.77 6.32 8 0.04 0.02 

λ(.)γ(.)ω(.)p(rain+time) 7664.50 7.04 9 0.03 0.01 

λ(.)γ(.)ω(.)p(time+season) 7664.67 7.22 9 0.03 0.01 

λ(.)γ(.)ω(.)p(rain+time+season) 7665.21 7.76 10 0.02 0.01 

λ(.)γ(.)ω(.)p(pHog) 7728.88 71.43 5 0 0 

λ(.)γ(.)ω(.)p(rain+pHog) 7730 72.55 6 0 0 

λ(.)γ(.)ω(.)p(pHog+season) 7730.34 72.89 6 0 0 

λ(.)γ(.)ω(.)p(rain+pHog+season) 7731.35 73.90 7 0 0 

λ(.)γ(.)ω(.)p(.) 7731.57 74.12 4 0 0 

λ(.)γ(.)ω(.)p(season) 7732.74 75.29 5 0 0 

λ(.)γ(.)ω(.)p(rain) 7732.76 75.31 5 0 0 

λ(.)γ(.)ω(.)p(rain+season) 7733.80 76.35 6 0 0 
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Table 2.4. Comparison of detection (𝑝) models for fawn abundance estimation using 5 time-

lapse camera surveys conducted spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, 

Alabama. For each model, AIC corrected for small sample size, relative difference in AICc, 

number of estimable parameters (K), model likelihood (Lik), and model probability (𝑤) are 

shown.  

 
Model AICc ΔAICc K Lik 𝑤 

λ(.)γ(.)ω(.)p(rain+pHog+time+season) 2218.91 0 10 1.00 0.69 

λ(.)γ(.)ω(.)p(pHog+time+season) 2220.65 1.75 9 0.42 0.29 

λ(.)γ(.)ω(.)p(rain+time+season) 2227.16 8.25 9 0.02 0.01 

λ(.)γ(.)ω(.)p(time+season) 2228.91 10 8 0.01 0 

λ(.)γ(.)ω(.)p(rain+pHog+season) 2238.58 19.67 6 0 0 

λ(.)γ(.)ω(.)p(pHog+season) 2239.95 21.04 5 0 0 

λ(.)γ(.)ω(.)p(rain+season) 2243.96 25.05 5 0 0 

λ(.)γ(.)ω(.)p(season) 2245.34 26.44 4 0 0 

λ(.)γ(.)ω(.)p(rain+pHog+time) 2289.38 70.47 9 0 0 

λ(.)γ(.)ω(.)p(pHog+time) 2289.83 70.93 8 0 0 

λ(.)γ(.)ω(.)p(rain+pHog) 2310.74 91.83 5 0 0 

λ(.)γ(.)ω(.)p(pHog) 2310.81 91.90 4 0 0 

λ(.)γ(.)ω(.)p(rain+time) 2316.00 97.09 8 0 0 

λ(.)γ(.)ω(.)p(time) 2316.27 97.36 7 0 0 

λ(.)γ(.)ω(.)p(.) 2331.68 112.78 3 0 0 

λ(.)γ(.)ω(.)p(rain) 2331.75 112.84 4 0 0 
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Table 2.5. Comparison of initial abundance (λ) models for buck abundance estimation using 5 time-lapse camera surveys conducted 

spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, Alabama. For each model, AIC corrected for small sample size, 

relative difference in AICc, number of estimable parameters (K), model likelihood (Lik), and model probability (𝑤) are shown. Only 

the best detection (𝑝) models were used for initial abundance (λ) model comparisons.   

Model AICc ΔAICc K Lik 𝑤 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9726.80 0 15 1.00 0.27 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9727.90 1.09 16 0.58 0.16 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+time+season) 9728.46 1.65 14 0.44 0.12 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time+season) 9729.26 2.46 13 0.29 0.08 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 9729.28 2.47 14 0.29 0.08 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+time+season) 9729.41 2.61 15 0.27 0.07 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 9730.36 3.56 15 0.17 0.05 

λ(Dev+Hog)γ(.)ω(.)p(rain+time+season) 9731.00 4.19 12 0.12 0.03 

λ(Hog)γ(.)ω(.)p(rain+pHog+time+season) 9731.78 4.98 12 0.08 0.02 

λ(Dev+Hog)γ(.)ω(.)p(pHog+time+season) 9731.81 5.00 12 0.08 0.02 

λ(Hog+Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 9732.30 5.50 13 0.06 0.02 
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λ(Hog+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9732.53 5.72 13 0.06 0.02 

λ(Hog+Mixed)γ(.)ω(.)p(rain+pHog+time+season) 9733.31 6.51 13 0.04 0.01 

λ(Hog)γ(.)ω(.)p(rain+time+season) 9733.88 7.08 11 0.03 0.01 

λ(Hog+Hrdwd)γ(.)ω(.)p(rain+time+season) 9734.28 7.47 12 0.02 0.01 

λ(Hog)γ(.)ω(.)p(pHog+time+season) 9734.38 7.57 11 0.02 0.01 

λ(Hog+Pine)γ(.)ω(.)p(rain+time+season) 9734.63 7.83 12 0.02 0.01 

λ(Hog+Hrdwd)γ(.)ω(.)p(pHog+time+season) 9734.90 8.09 12 0.02 0 

λ(Hog+Pine)γ(.)ω(.)p(pHog+time+season) 9735.11 8.31 12 0.02 0 

λ(Hog+Mixed)γ(.)ω(.)p(rain+time+season) 9735.39 8.59 12 0.01 0 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9735.55 8.75 13 0.01 0 

λ(Hog+Mixed)γ(.)ω(.)p(pHog+time+season) 9735.90 9.10 12 0.01 0 

λ(Pine)γ(.)ω(.)p(rain+pHog+time+season) 9737.49 10.69 12 0 0 

λ(.)γ(.)ω(.)p(rain+pHog+time+season) 9737.67 10.86 11 0 0 

λ(Dev+Pine)γ(.)ω(.)p(rain+time+season) 9738.10 11.29 12 0 0 

λ(Dev+Pine)γ(.)ω(.)p(pHog+time+season) 9738.10 11.30 12 0 0 

λ(Dev)γ(.)ω(.)p(rain+pHog+time+season) 9738.13 11.33 12 0 0 
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λ(Mixed)γ(.)ω(.)p(rain+pHog+time+season) 9738.98 12.18 12 0 0 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9739.02 12.22 15 0 0 

λ(Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 9739.31 12.51 12 0 0 

λ(Dev+Mixed)γ(.)ω(.)p(rain+pHog+time+season) 9739.86 13.06 13 0 0 

λ(Dev+Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 9740.08 13.28 13 0 0 

λ(Pine)γ(.)ω(.)p(pHog+time+season) 9740.11 13.31 11 0 0 

λ(Pine)γ(.)ω(.)p(rain+time+season) 9740.12 13.32 11 0 0 

λ(.)γ(.)ω(.)p(rain+time+season) 9740.23 13.43 10 0 0 

λ(.)γ(.)ω(.)p(pHog+time+season) 9740.30 13.50 10 0 0 

λ(Dev)γ(.)ω(.)p(rain+time+season) 9740.61 13.81 11 0 0 

λ(Dev)γ(.)ω(.)p(pHog+time+season) 9740.74 13.94 11 0 0 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 9741.57 14.77 14 0 0 

λ(Mixed)γ(.)ω(.)p(rain+time+season) 9741.57 14.77 11 0 0 

λ(Mixed)γ(.)ω(.)p(pHog+time+season) 9741.60 14.80 11 0 0 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+time+season) 9741.65 14.85 14 0 0 

λ(Hrdwd)γ(.)ω(.)p(rain+time+season) 9741.88 15.08 11 0 0 
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λ(Hrdwd)γ(.)ω(.)p(pHog+time+season) 9741.95 15.14 11 0 0 

λ(Dev+Mixed)γ(.)ω(.)p(rain+time+season) 9742.36 15.56 12 0 0 

λ(Dev+Mixed)γ(.)ω(.)p(pHog+time+season) 9742.46 15.66 12 0 0 

λ(Dev+Hrdwd)γ(.)ω(.)p(rain+time+season) 9742.57 15.76 12 0 0 

λ(Dev+Hrdwd)γ(.)ω(.)p(pHog+time+season) 9742.69 15.89 12 0 0 
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Table 2.6. Comparison of initial abundance (λ) models for doe abundance estimation using 5 time-lapse camera surveys conducted 

spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, Alabama. For each model, AIC corrected for small sample size, 

relative difference in AICc, number of estimable parameters (K), model likelihood (Lik), and model probability (𝑤) are shown. Only 

the best detection (𝑝) models were used for initial abundance (λ) model comparisons.   

Model AICc ΔAICc K Lik 𝑤 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7451.47 0 13 1.00 0.28 

λ(Pine)γ(.)ω(.)p(rain+pHog+time+season) 7452.56 1.10 12 0.58 0.16 

λ(Hog+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.00 2.54 13 0.28 0.08 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.00 2.54 15 0.28 0.08 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.02 2.55 16 0.28 0.08 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time) 7454.57 3.11 12 0.21 0.06 

λ(Pine)γ(.)ω(.)p(rain+pHog+time) 7456.06 4.59 11 0.10 0.03 

λ(Dev+Pine)γ(.)ω(.)p(pHog+time+season) 7456.27 4.81 12 0.09 0.03 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time) 7456.98 5.51 15 0.06 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time) 7457.02 5.56 14 0.06 0.02 

λ(.)γ(.)ω(.)p(rain+pHog+time+season) 7457.10 5.64 11 0.06 0.02 
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λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7457.28 5.82 15 0.05 0.02 

λ(Pine)γ(.)ω(.)p(pHog+time+season) 7457.41 5.95 11 0.05 0.01 

λ(Hog)γ(.)ω(.)p(rain+pHog+time+season) 7457.44 5.97 12 0.05 0.01 

λ(Hog+Pine)γ(.)ω(.)p(rain+pHog+time) 7457.51 6.04 12 0.05 0.01 

λ(Mixed)γ(.)ω(.)p(rain+pHog+time+season) 7458.33 6.86 12 0.03 0.01 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time+season) 7458.66 7.19 13 0.03 0.01 

λ(Dev+Pine)γ(.)ω(.)p(pHog+time) 7458.66 7.20 11 0.03 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 7458.78 7.31 15 0.03 0.01 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 7458.80 7.33 14 0.03 0.01 

λ(Hog+Pine)γ(.)ω(.)p(pHog+time+season) 7458.84 7.37 12 0.03 0.01 

λ(Hog+Mixed)γ(.)ω(.)p(rain+pHog+time+season) 7458.86 7.39 13 0.02 0.01 

λ(Dev)γ(.)ω(.)p(rain+pHog+time+season) 7458.87 7.41 12 0.02 0.01 

λ(Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 7458.93 7.46 12 0.02 0.01 

λ(Hog+Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 7459.39 7.92 13 0.02 0.01 

λ(Pine)γ(.)ω(.)p(pHog+time) 7460.17 8.70 10 0.01 0 

λ(Dev+Mixed)γ(.)ω(.)p(rain+pHog+time+season) 7460.28 8.81 13 0.01 0 
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λ(Dev+Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 7460.53 9.06 13 0.01 0 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time) 7460.66 9.19 14 0.01 0 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time) 7461.03 9.56 14 0.01 0 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time) 7461.11 9.64 13 0.01 0 

λ(.)γ(.)ω(.)p(rain+pHog+time) 7461.46 9.99 10 0.01 0 

λ(Hog+Pine)γ(.)ω(.)p(pHog+time) 7461.60 10.13 11 0.01 0 

λ(Hog)γ(.)ω(.)p(rain+pHog+time) 7461.72 10.25 11 0.01 0 

λ(.)γ(.)ω(.)p(pHog+time+season) 7462.02 10.56 10 0.01 0 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 7462.10 10.64 14 0 0 

λ(Hog)γ(.)ω(.)p(pHog+time+season) 7462.33 10.86 11 0 0 

λ(Mixed)γ(.)ω(.)p(rain+pHog+time) 7462.60 11.13 11 0 0 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time) 7462.86 11.40 12 0 0 

λ(Hog+Mixed)γ(.)ω(.)p(rain+pHog+time) 7463.07 11.60 12 0 0 

λ(Dev)γ(.)ω(.)p(rain+pHog+time) 7463.20 11.73 11 0 0 

λ(Mixed)γ(.)ω(.)p(pHog+time+season) 7463.23 11.76 11 0 0 

λ(Hrdwd)γ(.)ω(.)p(rain+pHog+time) 7463.28 11.81 11 0 0 
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λ(Dev+Hog)γ(.)ω(.)p(pHog+time+season) 7463.53 12.07 12 0 0 

λ(Hog+Hrdwd)γ(.)ω(.)p(rain+pHog+time) 7463.67 12.20 12 0 0 

λ(Hog+Mixed)γ(.)ω(.)p(pHog+time+season) 7463.73 12.27 12 0 0 

λ(Dev)γ(.)ω(.)p(pHog+time+season) 7463.79 12.32 11 0 0 

λ(Hrdwd)γ(.)ω(.)p(pHog+time+season) 7463.84 12.37 11 0 0 

λ(Hog+Hrdwd)γ(.)ω(.)p(pHog+time+season) 7464.27 12.81 12 0 0 

λ(Dev+Mixed)γ(.)ω(.)p(rain+pHog+time) 7464.54 13.07 12 0 0 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time) 7464.75 13.28 13 0 0 

λ(Dev+Hrdwd)γ(.)ω(.)p(rain+pHog+time) 7464.84 13.37 12 0 0 

λ(Dev+Mixed)γ(.)ω(.)p(pHog+time+season) 7465.18 13.71 12 0 0 

λ(Dev+Hrdwd)γ(.)ω(.)p(pHog+time+season) 7465.43 13.97 12 0 0 

λ(.)γ(.)ω(.)p(pHog+time) 7465.58 14.12 9 0 0 

λ(Hog)γ(.)ω(.)p(pHog+time) 7465.81 14.35 10 0 0 

λ(Mixed)γ(.)ω(.)p(pHog+time) 7466.71 15.24 10 0 0 

λ(Dev+Hog)γ(.)ω(.)p(pHog+time) 7466.95 15.48 11 0 0 

λ(Hog+Mixed)γ(.)ω(.)p(pHog+time) 7467.15 15.69 11 0 0 
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λ(Dev)γ(.)ω(.)p(pHog+time) 7467.32 15.86 10 0 0 

λ(Hrdwd)γ(.)ω(.)p(pHog+time) 7467.40 15.93 10 0 0 

λ(Hog+Hrdwd)γ(.)ω(.)p(pHog+time) 7467.76 16.30 11 0 0 

λ(Dev+Mixed)γ(.)ω(.)p(pHog+time) 7468.65 17.18 11 0 0 

λ(Dev+Hrdwd)γ(.)ω(.)p(pHog+time) 7468.95 17.48 11 0 0 
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Table 2.7. Comparison of initial abundance (λ) models for fawn abundance estimation using 5 time-lapse camera surveys conducted 

spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, Alabama. For each model, AIC corrected for small sample size, 

relative difference in AICc, number of estimable parameters (K), model likelihood (Lik), and model probability (𝑤) are shown. Only 

the best detection (𝑝) models were used for initial abundance (λ) model comparisons.   

Model AICc ΔAICc K Lik 𝑤 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 2192.50 0 14 1.00 0.22 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 2192.61 0.10 14 0.95 0.21 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time+season) 2193.42 0.92 12 0.63 0.14 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 2193.72 1.22 13 0.54 0.12 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 2193.77 1.26 13 0.53 0.12 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time+season) 2194.41 1.91 12 0.38 0.08 

λ(Dev+Hog)γ(.)ω(.)p(pHog+time+season) 2194.80 2.29 11 0.32 0.07 

λ(Dev+Pine)γ(.)ω(.)p(pHog+time+season) 2195.68 3.17 11 0.20 0.04 

λ(Dev+Mixed)γ(.)ω(.)p(rain+pHog+time+season) 2200.36 7.86 12 0.02 0 

λ(Dev+Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 2201.00 8.50 12 0.01 0 

λ(Dev+Mixed)γ(.)ω(.)p(pHog+time+season) 2201.75 9.24 11 0.01 0 
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λ(Dev+Hrdwd)γ(.)ω(.)p(pHog+time+season) 2202.39 9.89 11 0.01 0 

λ(Dev)γ(.)ω(.)p(rain+pHog+time+season) 2203.25 10.74 11 0 0 

λ(Dev)γ(.)ω(.)p(pHog+time+season) 2204.74 12.24 10 0 0 

λ(Hog+Mixed)γ(.)ω(.)p(rain+pHog+time+season) 2206.12 13.61 12 0 0 

λ(Hog+Mixed)γ(.)ω(.)p(pHog+time+season) 2207.62 15.12 11 0 0 

λ(Mixed)γ(.)ω(.)p(rain+pHog+time+season) 2209.68 17.18 11 0 0 

λ(Mixed)γ(.)ω(.)p(pHog+time+season) 2211.22 18.72 10 0 0 

λ(Hog)γ(.)ω(.)p(rain+pHog+time+season) 2214.81 22.31 11 0 0 

λ(Hog+Pine)γ(.)ω(.)p(rain+pHog+time+season) 2216.51 24.00 12 0 0 

λ(Hog)γ(.)ω(.)p(pHog+time+season) 2216.51 24.01 10 0 0 

λ(Hog+Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 2216.81 24.30 12 0 0 

λ(Hog+Pine)γ(.)ω(.)p(pHog+time+season) 2218.19 25.69 11 0 0 

λ(Hog+Hrdwd)γ(.)ω(.)p(pHog+time+season) 2218.50 26.00 11 0 0 

λ(.)γ(.)ω(.)p(rain+pHog+time+season) 2218.91 26.40 10 0 0 

λ(Pine)γ(.)ω(.)p(rain+pHog+time+season) 2220.31 27.80 11 0 0 

λ(.)γ(.)ω(.)p(pHog+time+season) 2220.65 28.15 9 0 0 
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λ(Hrdwd)γ(.)ω(.)p(rain+pHog+time+season) 2220.70 28.20 11 0 0 

λ(Pine)γ(.)ω(.)p(pHog+time+season) 2222.04 29.53 10 0 0 

λ(Hrdwd)γ(.)ω(.)p(pHog+time+season) 2222.44 29.94 10 0 0 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 35447.83 33255.32 14 0 0 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 35449.83 33257.33 15 0 0 
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Table 2.8. Comparison of apparent survival probability (𝜔) models for buck abundance estimation using 5 time-lapse camera surveys 

conducted spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, Alabama. For each model, AIC corrected for small sample 

size, relative difference in AICc, number of estimable parameters (K), model likelihood (Lik), and model probability (𝑤) are shown. 

Only the best detection (𝑝) and initial abundance (λ) models were used for apparent survival probability (𝜔) model comparisons.  

Model AICc ΔAICc K Lik 𝑤 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9726.82 0 15 1.00 0.30 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9727.89 1.07 16 0.58 0.17 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+time+season) 9728.46 1.64 14 0.44 0.13 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time+season) 9729.26 2.44 13 0.29 0.09 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 9729.28 2.46 14 0.29 0.09 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9729.41 2.59 15 0.27 0.08 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9730.36 3.54 15 0.17 0.05 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time+season) 9731.00 4.18 12 0.12 0.04 

λ(Hog)γ(.)ω(.)p(rain+pHog+time+season) 9731.78 4.96 12 0.08 0.03 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time+season) 9731.81 4.98 12 0.08 0.02 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarM)p(rain+pHog+time+season) 26746.45 17019.63 16 0 0 
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λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarM)p(rain+pHog+time+season) 26747.06 17020.24 17 0 0 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarM)p(rain+pHog+time+season) 26747.81 17020.99 15 0 0 

λ(Dev+Hog)γ(.)ω(HarM)p(rain+pHog+time+season) 26748.27 17021.45 13 0 0 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarM)p(rain+pHog+time+season) 26748.40 17021.58 16 0 0 

λ(Dev+Hog)γ(.)ω(HarM)p(rain+pHog+time+season) 26748.84 17022.02 14 0 0 

λ(Hog)γ(.)ω(HarM)p(rain+pHog+time+season) 26751.97 17025.15 13 0 0 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarM)p(rain+pHog+time+season) 26753.85 17027.03 16 0 0 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarM)p(rain+pHog+time+season) 26754.00 17027.18 15 0 0 

λ(Dev+Hog)γ(.)ω(HarM)p(rain+pHog+time+season) 26754.57 17027.75 13 0 0 
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Table 2.9. Comparison of apparent survival probability (𝜔) models for doe abundance estimation using 5 time-lapse camera surveys 

conducted spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, Alabama. For each model, AIC corrected for small sample 

size, relative difference in AICc, number of estimable parameters (K), model likelihood (Lik), and model probability (𝑤) are shown. 

Only the best detection (𝑝) and initial abundance (λ) models were used for apparent survival probability (𝜔) model comparisons.  

Model AICc ΔAICc K Lik 𝑤 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7451.47 0 13 1.00 0.31 

λ(Pine)γ(.)ω(.)p(rain+pHog+time+season) 7452.57 1.10 12 0.58 0.18 

λ(Hog+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.01 2.54 13 0.28 0.09 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.01 2.54 15 0.28 0.09 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.03 2.56 16 0.28 0.09 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time) 7454.58 3.10 12 0.21 0.07 

λ(Pine)γ(.)ω(.)p(rain+pHog+time) 7456.06 4.59 11 0.10 0.03 

λ(Dev+Pine)γ(.)ω(.)p(pHog+time+season) 7456.27 4.80 12 0.09 0.03 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time) 7456.98 5.51 15 0.06 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time) 7457.03 5.56 14 0.06 0.02 

λ(.)γ(.)ω(.)p(rain+pHog+time+season) 7457.10 5.63 11 0.06 0.02 
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λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7457.29 5.82 15 0.05 0.02 

λ(Pine)γ(.)ω(.)p(pHog+time+season) 7457.41 5.94 11 0.05 0.02 

λ(Hog)γ(.)ω(.)p(rain+pHog+time+season) 7457.44 5.97 12 0.05 0.02 

λ(Hog+Pine)γ(.)ω(.)p(rain+pHog+time) 7457.51 6.04 12 0.05 0.02 

λ(Mixed)γ(.)ω(.)p(rain+pHog+time+season) 7458.33 6.86 12 0.03 0.01 

λ(Pine)γ(.)ω(HarF)p(rain+pHog+time) 26662.15 19210.68 12 0 0 

λ(Dev+Pine)γ(.)ω(HarF)p(rain+pHog+time) 26663.81 19212.34 13 0 0 

λ(Pine)γ(.)ω(HarF)p(rain+pHog+time+season) 26664.03 19212.55 13 0 0 

λ(Hog+Pine)γ(.)ω(HarF)p(rain+pHog+time) 26664.15 19212.68 13 0 0 

λ(Dev+Pine)γ(.)ω(HarF)p(rain+pHog+time+season) 26665.68 19214.21 14 0 0 

λ(Hog+Pine)γ(.)ω(HarF)p(rain+pHog+time+season) 26666.03 19214.56 14 0 0 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(HarF)p(rain+pHog+time) 26667.26 19215.79 15 0 0 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(HarF)p(rain+pHog+time+season) 26669.08 19217.61 16 0 0 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarF)p(rain+pHog+time) 26669.26 19217.79 16 0 0 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarF)p(rain+pHog+time+season) 26669.41 19217.93 16 0 0 

λ(Pine)γ(.)ω(HarF)p(pHog+time+season) 26670.75 19219.28 12 0 0 
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λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(HarF)p(rain+pHog+time+season) 26671.08 19219.61 17 0 0 

λ(Dev+Pine)γ(.)ω(HarF)p(pHog+time+season) 26672.39 19220.92 13 0 0 

λ(.)γ(.)ω(HarF)p(rain+pHog+time+season) 26676.74 19225.27 12 0 0 

λ(Mixed)γ(.)ω(HarF)p(rain+pHog+time+season) 26678.52 19227.05 13 0 0 

λ(Hog)γ(.)ω(HarF)p(rain+pHog+time+season) 26678.74 19227.27 13 0 0 
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Table 2.10. Comparison of recruitment rate (𝛾), apparent survival probability (𝜔), initial abundance (λ), and detection probability (𝑝) 

models for buck abundance estimation using 5 time-lapse camera surveys conducted spring and fall of 2011-2012 and spring of 2013 

at Fort Rucker, Alabama. For each model, AIC corrected for small sample size, relative difference in AICc, number of estimable 

parameters (K), model likelihood (Lik), and model probability (𝑤) are shown. Only the best detection (𝑝), initial abundance (λ), and 

apparent survival probability (𝜔) models were used for model comparisons.  

Model AICc ΔAICc K Lik 𝑤 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9726.80 0 15 1 0.15 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 9727.91 1.11 16 0.57 0.09 

λ(Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 9728.19 1.38 16 0.50 0.08 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+time+season) 9728.46 1.65 14 0.44 0.07 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 9728.54 1.73 16 0.42 0.06 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 9729.26 2.46 17 0.29 0.05 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time+season) 9729.26 2.46 13 0.29 0.05 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 9729.28 2.48 14 0.29 0.04 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+time+season) 9729.41 2.61 15 0.27 0.04 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 9729.62 2.82 17 0.24 0.04 
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λ(Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+time+season) 9729.65 2.85 15 0.24 0.04 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 9730 3.20 17 0.20 0.03 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+time+season) 9730.22 3.42 15 0.18 0.03 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 9730.38 3.58 15 0.17 0.03 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+time+season) 9730.59 3.79 16 0.15 0.02 

λ(Dev+Hog)γ(Hog)ω(.)p(rain+pHog+time+season) 9730.66 3.85 14 0.15 0.02 

λ(Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(pHog+time+season) 9730.74 3.94 15 0.14 0.02 

λ(Dev+Hog)γ(Lag)ω(.)p(rain+pHog+time+season) 9730.97 4.17 14 0.12 0.02 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 9731.06 4.26 18 0.12 0.02 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(pHog+time+season) 9731.08 4.28 15 0.12 0.02 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+time+season) 9731.16 4.36 16 0.11 0.02 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+time+season) 9731.51 4.71 16 0.09 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(pHog+time+season) 9731.82 5.02 16 0.08 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(pHog+time+season) 9732.11 5.31 16 0.07 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+time+season) 9732.44 5.63 17 0.06 0.01 

λ(Dev+Hog)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 9732.45 5.65 15 0.06 0.01 



90 
 

 

 

  

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(pHog+time+season) 9732.61 5.81 16 0.05 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(pHog+time+season) 9733.65 6.85 17 0.03 0 
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Table 2.11. Comparison of recruitment rate (𝛾), apparent survival probability (𝜔), initial abundance (λ), and detection probability (𝑝) 

models for doe abundance estimation using 5 time-lapse camera surveys conducted spring and fall of 2011-2012 and spring of 2013 at 

Fort Rucker, Alabama. For each model, AIC corrected for small sample size, relative difference in AICc, number of estimable 

parameters (K), model likelihood (Lik), and model probability (𝑤) are shown. Only the best detection (𝑝), initial abundance (λ), and 

apparent survival probability (𝜔) models were used for model comparisons.  

Model AICc ΔAICc K Lik 𝑤 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7451.47 0 13 1.00 0.11 

λ(Dev+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 7451.59 0.11 14 0.94 0.10 

λ(Pine)γ(.)ω(.)p(rain+pHog+time+season) 7452.57 1.10 12 0.58 0.06 

λ(Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 7452.78 1.31 13 0.52 0.06 

λ(Dev+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 7452.82 1.35 15 0.51 0.06 

λ(Dev+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 7452.95 1.47 14 0.48 0.05 

λ(Hog+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.01 2.54 13 0.28 0.03 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.01 2.54 15 0.28 0.03 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 7454.03 2.56 16 0.28 0.03 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 7454.05 2.58 17 0.28 0.03 
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λ(Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 7454.08 2.61 14 0.27 0.03 

λ(Dev+Pine)γ(Hog)ω(.)p(rain+pHog+time) 7454.09 2.62 13 0.27 0.03 

λ(Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 7454.09 2.62 13 0.27 0.03 

λ(Dev+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 7454.13 2.66 16 0.26 0.03 

λ(Hog+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 7454.18 2.71 14 0.26 0.03 

λ(Dev+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time) 7454.56 3.09 14 0.21 0.02 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time) 7454.58 3.11 12 0.21 0.02 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 7455.19 3.72 18 0.16 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 7455.32 3.85 17 0.15 0.02 

λ(Dev+Pine)γ(Lag)ω(.)p(rain+pHog+time) 7455.38 3.91 13 0.14 0.02 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 7455.43 3.96 17 0.14 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 7455.44 3.97 16 0.14 0.02 

λ(Hog+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 7455.47 4.00 15 0.14 0.02 

λ(Hog+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 7455.52 4.05 14 0.13 0.01 

λ(Pine)γ(Hog)ω(.)p(rain+pHog+time) 7455.66 4.19 12 0.12 0.01 

λ(Pine)γ(.)ω(.)p(rain+pHog+time) 7456.06 4.59 11 0.10 0.01 
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λ(Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time) 7456.19 4.72 13 0.09 0.01 

λ(Dev+Pine)γ(.)ω(.)p(pHog+time+season) 7456.28 4.80 12 0.09 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+pHog+time) 7456.37 4.90 16 0.09 0.01 

λ(Dev+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+pHog+time) 7456.56 5.09 15 0.08 0.01 

λ(Dev+Pine)γ(Hog)ω(.)p(pHog+time+season) 7456.57 5.10 13 0.08 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time) 7456.74 5.27 17 0.07 0.01 

λ(Pine)γ(Lag)ω(.)p(rain+pHog+time) 7456.91 5.44 12 0.07 0.01 

λ(Dev+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time) 7456.98 5.51 16 0.06 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time) 7456.98 5.51 15 0.06 0.01 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time) 7457.03 5.56 14 0.06 0.01 

λ(Dev+Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+pHog+time) 7457.70 6.23 16 0.04 0 

λ(Dev+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+pHog+time) 7457.79 6.32 15 0.04 0 

λ(Dev+Pine)γ(Lag)ω(.)p(pHog+time+season) 7457.93 6.46 13 0.04 0 

λ(Dev+Pine)γ(Lag+Hog)ω(.)p(pHog+time+season) 7458.05 6.58 14 0.04 0 
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Table 2.12. Comparison of recruitment rate (𝛾), initial abundance (λ), and detection probability (𝑝) models for fawn abundance 

estimation using 5 time-lapse camera surveys conducted spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, Alabama. 

For each model, AIC corrected for small sample size, relative difference in AICc, number of estimable parameters (K), model 

likelihood (Lik), and model probability (𝑤) are shown. Only the best detection (𝑝), and initial abundance (λ) models were used for 

model comparisons.  

Model AICc ΔAICc K Lik 𝑤 

λ(Hog+Hrdwd+Mixed+Pine)γ(Coy+Lag)ω(.)p(rain+pHog+time+season) 2191.34 0 16 1.00 0.10 

λ(Dev+Hrdwd+Mixed+Pine)γ(Coy)ω(.)p(rain+pHog+time+season) 2191.90 0.56 15 0.76 0.07 

λ(Hog+Hrdwd+Mixed+Pine)γ(Coy)ω(.)p(rain+pHog+time+season) 2192.19 0.85 15 0.65 0.06 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 2192.50 1.16 14 0.56 0.05 

λ(Hog+Hrdwd+Mixed+Pine)γ(Coy+Lag)ω(.)p(pHog+time+season) 2192.54 1.20 15 0.55 0.05 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(rain+pHog+time+season) 2192.61 1.27 14 0.53 0.05 

λ(Dev+Hrdwd+Mixed+Pine)γ(Coy)ω(.)p(pHog+time+season) 2193.10 1.76 14 0.41 0.04 

λ(Dev+Hrdwd+Mixed+Pine)γ(Coy+Lag)ω(.)p(rain+pHog+time+season) 2193.13 1.79 16 0.41 0.04 

λ(Hog+Hrdwd+Mixed+Pine)γ(Coy+Lag+Hog)ω(.)p(rain+pHog+time+season) 2193.30 1.96 17 0.37 0.04 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 2193.45 2.11 15 0.35 0.03 
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λ(Hog+Hrdwd+Mixed+Pine)γ(Coy)ω(.)p(pHog+time+season) 2193.55 2.21 14 0.33 0.03 

λ(Dev+Hrdwd+Mixed+Pine)γ(Coy+Hog)ω(.)p(rain+pHog+time+season) 2193.59 2.25 16 0.32 0.03 

λ(Dev+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 2193.72 2.38 13 0.30 0.03 

λ(Hog+Hrdwd+Mixed+Pine)γ(.)ω(.)p(pHog+time+season) 2193.77 2.43 13 0.30 0.03 

λ(Hog+Hrdwd+Mixed+Pine)γ(Coy+Hog)ω(.)p(rain+pHog+time+season) 2194.08 2.74 16 0.25 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(Coy+Lag)ω(.)p(pHog+time+season) 2194.25 2.91 15 0.23 0.02 

λ(Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 2194.42 3.08 15 0.21 0.02 

λ(Dev+Pine)γ(.)ω(.)p(rain+pHog+time+season) 2194.41 3.07 12 0.22 0.02 

λ(Dev+Pine)γ(Coy)ω(.)p(rain+pHog+time+season) 2194.44 3.10 13 0.21 0.02 

λ(Hog+Hrdwd+Mixed+Pine)γ(Coy+Lag+Hog)ω(.)p(pHog+time+season) 2194.50 3.16 16 0.21 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 2194.58 3.24 15 0.20 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 2194.61 3.27 15 0.20 0.02 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(pHog+time+season) 2194.61 3.27 14 0.19 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(Coy+Hog)ω(.)p(pHog+time+season) 2194.78 3.44 15 0.18 0.02 

λ(Dev+Hrdwd+Mixed+Pine)γ(Coy+Lag+Hog)ω(.)p(rain+pHog+time+season) 2194.90 3.56 17 0.17 0.02 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 2195.19 3.85 16 0.15 0.01 
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λ(Hog+Hrdwd+Mixed+Pine)γ(Coy+Hog)ω(.)p(pHog+time+season) 2195.44 4.10 15 0.13 0.01 

λ(Dev+Pine)γ(Coy+Lag)ω(.)p(rain+pHog+time+season) 2195.55 4.21 14 0.12 0.01 

λ(Hog+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(pHog+time+season) 2195.69 4.35 14 0.11 0.01 

λ(Dev+Hrdwd+Mixed+Pine)γ(Hog)ω(.)p(pHog+time+season) 2195.70 4.36 14 0.11 0.01 

λ(Dev+Hrdwd+Mixed+Pine)γ(Lag)ω(.)p(pHog+time+season) 2195.72 4.38 14 0.11 0.01 

λ(Dev+Hrdwd+Mixed+Pine)γ(Coy+Lag+Hog)ω(.)p(pHog+time+season) 2196.00 4.66 16 0.10 0.01 

λ(Dev+Pine)γ(Coy+Hog)ω(.)p(rain+pHog+time+season) 2196.11 4.77 14 0.09 0.01 

λ(Dev+Pine)γ(Lag)ω(.)p(rain+pHog+time+season) 2196.39 5.05 13 0.08 0.01 

λ(Hog+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(pHog+time+season) 2196.40 5.06 15 0.08 0.01 

λ(Dev+Pine)γ(Hog)ω(.)p(rain+pHog+time+season) 2196.41 5.07 13 0.08 0.01 

λ(Dev+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 2196.58 5.24 16 0.07 0.01 

λ(Dev+Pine)γ(Coy+Lag+Hog)ω(.)p(rain+pHog+time+season) 2197.30 5.96 15 0.05 0 

λ(Dev+Hrdwd+Mixed+Pine)γ(Lag+Hog)ω(.)p(pHog+time+season) 2197.70 6.36 15 0.04 0 

λ(Dev+Pine)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 2198.38 7.04 14 0.03 0 

λ(Dev+Hog)γ(.)ω(.)p(pHog+time+season) 35441.83 33250.49 11 0 0 

λ(Dev+Hog)γ(.)ω(.)p(rain+pHog+time+season) 35443.83 33252.49 12 0 0 
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λ(Dev+Hog)γ(Hog)ω(.)p(pHog+time+season) 35443.83 33252.49 12 0 0 

λ(Dev+Hog)γ(Lag)ω(.)p(pHog+time+season) 35443.83 33252.49 12 0 0 

λ(Dev+Hog)γ(Coy)ω(.)p(pHog+time+season) 35443.83 33252.49 12 0 0 

λ(Dev+Hog)γ(Hog)ω(.)p(rain+pHog+time+season) 35445.83 33254.49 13 0 0 

λ(Dev+Hog)γ(Lag)ω(.)p(rain+pHog+time+season) 35445.83 33254.49 13 0 0 

λ(Dev+Hog)γ(Coy)ω(.)p(rain+pHog+time+season) 35445.83 33254.49 13 0 0 

λ(Dev+Hog)γ(Lag+Hog)ω(.)p(pHog+time+season) 35445.83 33254.49 13 0 0 

λ(Dev+Hog)γ(Coy+Lag)ω(.)p(pHog+time+season) 35445.83 33254.49 13 0 0 

λ(Dev+Hog)γ(Coy+Hog)ω(.)p(pHog+time+season) 35445.83 33254.49 13 0 0 

λ(Dev+Hog)γ(Lag+Hog)ω(.)p(rain+pHog+time+season) 35447.83 33256.49 14 0 0 

λ(Dev+Hog)γ(Coy+Lag)ω(.)p(rain+pHog+time+season) 35447.83 33256.49 14 0 0 

λ(Dev+Hog)γ(Coy+Hog)ω(.)p(rain+pHog+time+season) 35447.83 33256.49 14 0 0 

λ(Dev+Hog)γ(Coy+Lag+Hog)ω(.)p(pHog+time+season) 35447.83 33256.49 14 0 0 

λ(Dev+Hog)γ(Coy+Lag+Hog)ω(.)p(rain+pHog+time+season) 35449.83 33258.49 15 0 0 
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Table 2.13. Density estimates for bucks, does, and fawns (𝑥) and standard deviation (SD) for 

spring and fall of 2011-2012 and spring of 2013 at Fort Rucker, Alabama.  

 Spring 2011 Fall 2011 Spring 2012 Fall 2012 Spring 2013 

 𝑥 SD 𝑥 SD 𝑥 SD 𝑥 SD 𝑥 SD 

Bucks 1.8 2.4 1.53 2.4 1.29 2.1 1.42 2.2 1.45 2.2 

Does 2.55 3.0 2.22 2.9 1.96 2.5 2.18 2.9 2.39 3.1 

Fawns 2.05 2.8 1.76 2.6 1.36 2.2 1.58 2.5 1.61 2.4 
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Figure 2.1. Map of the study area and survey grid at Fort Rucker located in southeastern 

Alabama for 5 time-lapse camera surveys conducted spring and fall of 2011-2012 and spring of 

2013. 
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Figure 2.2. Relationship between time of day and detection probability (𝑝) for buck, doe, and 

fawn abundance estimation using time-lapse camera surveys conducted in spring and fall of 

2011-2012 and spring of 2013 at Fort Rucker, Alabama. 
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Figure 2.3. Modeled covariate effects of percent land cover (solid black line) with upper and 

lower confidence limits (dashed grey line) on initial abundance (λ) for buck abundance 

estimation using time-lapse camera surveys conducted in spring and fall of 2011-2012 and spring 

of 2013 at Fort Rucker, Alabama. 
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Figure 2.4. Relationship between the number of wild pigs and initial abundance (λ) for buck, 

doe, and fawn abundance estimation using time-lapse camera surveys conducted in spring and 

fall of 2011-2012 and spring of 2013 at Fort Rucker, Alabama. 
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Figure 2.5. Modeled covariate effects of percent land cover (solid black line) with upper and 

lower confidence limits (dashed grey line) on initial abundance (λ) for doe abundance estimation 

using time-lapse camera surveys conducted in spring and fall of 2011-2012 and spring of 2013 at 

Fort Rucker, Alabama. 
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Figure 2.6. Modeled covariate effects of percent land cover (solid black line) with upper and 

lower confidence limits (dashed grey line) on initial abundance (λ) for fawn abundance 

estimation using time-lapse camera surveys conducted in spring and fall of 2011-2012 and spring 

of 2013 at Fort Rucker, Alabama. 
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Figure 2.7. The finite rate of increase of white-tailed deer fawns under different coyote removal 

treatments at Fort Rucker, Alabama. No removal represented sites that never had coyote 

removal, Coy was sites that had coyote removal in the current year but not last year, Lag was 

sites that had coyote removal last year but not in the current year, and Coy and Lag was sites that 

had 2 consecutive years of coyote removal.  
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Figure 2.8. Density (deer/km2) of white-tailed deer and standard deviation for spring and fall of 

2011-2012 and spring of 2013 at Fort Rucker, Alabama. 
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Appendix A. Home range probability distribution.  

Literature compilation of 20 sources of white-tailed deer home ranges focusing on southeastern 

states and corresponding references used to create the home range probability distribution for 

bucks and does. Reported values of home range size were then fit to a Weibull distribution using 

EasyFit (Mathwave Technologies, 2014, version 5.5). The Anderson-Darling goodness of fit 

statistic for the Weibull distribution for bucks was 0.45 and for does was 0.39, and the Weibull 

distribution was ranked in the top 5 distributions for both bucks and does.  
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Table A.1. Studies reporting home range size (km2) of buck and doe white-tailed deer. The location, time of study, and whether or not 

supplemental feed was available is also reported.  

Source Bucks Does Time of study Location Supplemental feed 

Brunjes et al. 2009  1.47 Spring Texas No 

Brunjes et al. 2009  4.32 Spring Texas No 

Brunjes et al. 2009  0.92 Summer Texas No 

Brunjes et al. 2009  2.08 Summer Texas No 

Brunjes et al. 2009  2.25 Year Long Texas No 

Brunjes et al. 2009  1.77 Year long Texas No 

Campell et al. 2004 2.27 0.82 Fall West Virginia No 

Campell et al. 2004 0.98 0.79 Summer West Virginia No 

Campell et al. 2004 0.64 0.91 Winter West Virginia No 

Clements et al. 2011 3.98  Jan-May Iowa No 

Clements et al. 2011 2.66  Jun-Sep Iowa No 

Clements et al. 2011 4.65  Sep-Dec Iowa No 

Hölzenbein and Schwede 1989  0.25 Dec Virginia  
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Hölzenbein and Schwede 1989  0.50 Oct-Dec Virginia  

Hölzenbein and Schwede 1989  0.39 Sep-Oct Virginia  

Hölzenbein and Marchinton 1992 0.63  Fall Virginia  

Hölzenbein and Marchinton 1992 1.07  Summer Virginia  

Ivey and Causey 1981  0.63 Nov-March Alabama No 

Kilgo et al. 1998  0.22 Jan-Sep Florida No 

Kilgo et al. 1998  0.26 Sep-Jan Florida No 

Labisky and Fritzen 1998  0.23 Aug-Sep Florida No 

Labisky and Fritzen 1998  0.31 Sep-Oct Florida No 

Labisky and Fritzen 1998  0.32 Oct-Dec Florida No 

Land et al. 1993 4.72 1.94 Year long Florida No 

Land et al. 1993 10.49  Year long Florida No 

Nixon et al. 1991 3.23 0.85 Summer Illinois No 

Rhoads et al. 2010  1.92 Year long Pennsylvania No 

Root et al. 1988 7.27 1.92 November Missouri  

Root et al. 1988 7.14 2.85 November Missouri  
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Root et al. 1988 5.98 3.00 November Missouri  

Root et al. 1988  2.36 November Missouri  

Root et al. 1988  2.02 November Missouri  

Root et al. 1988  2.00 November Missouri  

Sargent and Labisky 1995 3.50  Apr-June Florida No 

Sargent and Labisky 1995 1.50  Apr-June Florida No 

Sargent and Labisky 1995 7.00  Apr-Mar Florida No 

Sargent and Labisky 1995 2.90  Apr-Mar Florida No 

Sargent and Labisky 1995 2.60  Jan-Mar Florida No 

Sargent and Labisky 1995 0.60  Jan-Mar Florida No 

Sargent and Labisky 1995 3.90  July-Sep Florida No 

Sargent and Labisky 1995 2.40  July-Sep Florida No 

Sargent and Labisky 1995 4.20  Oct-Dec Florida No 

Sargent and Labisky 1995 1.00  Oct-Dec Florida No 

Smith 1970 6.23 2.45  Florida  

Storm et al. 2007  0.53 Sumer Illinois No 
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Storm et al. 2007  0.90 Winter Illinois No 

Thayer et al. 2009 2.31  Feb-May Louisiana Yes 

Thayer et al. 2009 1.53  Feb-May Louisiana Yes 

Thayer et al. 2009 0.86  June-Sep Louisiana Yes 

Thayer et al. 2009 0.70  June-Sep Louisiana Yes 

Thayer et al. 2009 1.18  Oct-Feb Louisiana Yes 

Thayer et al. 2009 1.47  Year long Louisiana Yes 

Thayer et al. 2009 1.08  Year long Louisiana Yes 

Vanderhoof and Jacobson 1993 6.66 3.17 Dec-May Mississippi No 

Vanderhoof and Jacobson 1993 4.18 2.02 June-Nov Mississippi No 

Vanderhoof and Jacobson 1993 6.91 3.43 Year long Mississippi No 

Walter et al. 2009  0.99 Year long Illinois No 

Walter et al. 2009  1.34 Year long Michigan No 

Walter et al. 2009  1.20 Year long Nebraska No 

Walter et al. 2009  1.47 Year long Wisconsin No 

Walter et al. 2011 3.50 0.95 Year long Missouri No 
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Webb et al. 2009  0.38 Birth Oklahoma No 

Webb et al. 2009 4.01 1.22 Spring Oklahoma No 

Webb et al. 2009 3.15 0.83 Year long Oklahoma No 
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Figure A.1. Probability of home range size (km2) for bucks and does.  
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Appendix B. Netica model to estimate deer abundance and density 

 

Figure B.1. Mean probability distribution of abundance in spring and fall of 2011-2012 and 

spring of 2013 for bucks, does, and fawns at Fort Rucker, Alabama.   
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 0 +

2.55 ± 3.2

BucksYR2
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

51.6
14.1
5.11
3.45
2.31
2.48
2.49
1.97
1.65
1.73
2.03
2.46
2.72
2.48
1.77
0.99
0.44
0.16
.048
.012
.003

3.26 ± 4.4

DoesYR2
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
20 to 21
other-

42.8
16.4
8.54
5.36
4.63
5.27
4.65
2.83
1.24
0.46
0.42
0.68
0.85
0.85
0.76
0.69
0.68
0.67
0.62
0.51
1.12

3.31 ± 4.5

DoesYR5
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

49.3
9.10
5.22
5.35
4.95
4.02
3.65
3.28
2.81
2.54
2.42
2.22
1.87
1.39
0.90
0.50
0.25
0.12
.056
.027
.033

3.33 ± 4

DoesYR4
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

51.0
11.5
5.16
3.62
3.62
4.43
5.09
4.92
3.91
2.63
1.59
0.92
0.55
0.35
0.23
0.16
0.11
.069
.044
.028
.046

2.87 ± 3.4

DoesYR3
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

41.4
22.8
9.12
5.89
4.64
4.14
2.51
1.69
2.07
2.29
1.77
0.98
0.42
0.15
.044
.012
.004
.001
 0 +
 0 +
 0 +

2.48 ± 2.8

DoesYR1
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
13 to 14
14 to 15
15 to 16
16 to 17
20 to 21
21 to 22
22 to 23
23 to 24
other-

35.2
11.4
11.4
9.47
8.09
5.61
3.99
2.46
1.61
1.36
0.99
0.57
0.71
0.94
0.87
0.58
0.72
0.83
0.73
0.48
1.96

3.94 ± 5

FawnsYR2
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

56.4
12.7
8.07
5.06
3.61
2.86
2.33
1.86
1.44
1.10
0.84
0.67
0.55
0.48
0.42
0.36
0.31
0.26
0.21
0.16
0.39

2.36 ± 3.5

FawnsYR3
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

65.3
14.8
6.64
2.97
1.60
1.38
1.36
1.33
1.28
1.15
0.90
0.60
0.34
0.18
.087
.044
.025
.015
.011
.007
.019

1.64 ± 2.4

FawnsYR4
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

66.8
7.95
5.60
3.76
2.83
2.33
1.99
1.68
1.40
1.14
0.91
0.73
0.57
0.45
0.36
0.29
0.23
0.19
0.15
0.12
0.52

2.12 ± 3.5

FawnsYR5
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

57.7
12.0
9.33
6.29
4.03
2.54
1.67
1.32
1.23
1.16
0.98
0.71
0.45
0.26
0.14
.069
.034
.018
0.01
.005
.008

1.99 ± 2.6

FawnsYR1
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
17 to 18
18 to 19
19 to 20
20 to 21
21 to 22
22 to 23
23 to 24
24 to 25
other-

42.6
21.1
10.6
4.82
2.44
1.84
2.34
3.04
3.03
2.25
1.29
0.58
0.32
0.43
0.51
0.52
0.48
0.40
0.31
0.22
0.96

3.06 ± 4.5

BucksYR5
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6
6 to 7
7 to 8
8 to 9
9 to 10
10 to 11
11 to 12
12 to 13
13 to 14
14 to 15
15 to 16
16 to 17
17 to 18
18 to 19
19 to 20
other-

37.3
18.3
13.9
7.69
3.35
3.45
3.47
2.60
1.84
1.66
1.79
1.65
1.19
0.71
0.41
0.25
0.16
0.10
.064
.039
.052

2.95 ± 3.4
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Figure B.2. Probability distribution of home range size for bucks and does based on a literature 

search used in a model to estimate density at Fort Rucker, Alabama.   

 

 

  

Buck Home Range (km2)
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

4.01
9.30
10.4
10.3
9.71
8.85
7.89
6.91
5.96
5.09
4.29
3.58
2.96
2.42
1.96
1.57
1.25
0.98
0.76
0.59
1.22

3.35 ± 2.3

Doe Home Range (km2)
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

15.0
26.9
21.1
14.5
9.25
5.67
3.36
1.94
1.09
0.60
0.32
0.17
.086
.043
.021
0.01
.005
.002
 0 +
 0 +
 0 +

1.41 ± 1
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Figure B.3. Probability distribution of density in spring and fall of 2011-2012 and spring of 

2013 for bucks, does, and fawns at Fort Rucker, Alabama.   

 

 

Buck Density Season 1
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

35.3
18.6
11.3
7.67
5.39
4.02
3.03
2.37
1.86
1.53
1.24
1.08
0.87
0.77
0.60
0.55
0.50
0.43
0.39
0.35
2.14

1.8 ± 2.4

Buck Density Season 2
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

53.7
13.2
6.61
4.70
3.55
2.83
2.26
1.86
1.50
1.25
1.07
0.93
0.79
0.67
0.61
0.54
0.49
0.42
0.38
0.36
2.24

1.53 ± 2.4

Fawn Density Season 1
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

34.0
19.1
10.9
6.91
4.75
3.73
2.72
2.26
1.94
1.63
1.36
1.22
1.09
0.96
0.88
0.74
0.70
0.63
0.58
0.53
3.42

2.05 ± 2.8

Doe Density Season 1
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

27.5
14.6
10.2
7.74
6.10
4.98
4.12
3.42
2.77
2.43
2.04
1.79
1.51
1.29
1.18
0.98
0.93
0.83
0.71
0.66
4.23

2.55 ± 3

Doe Density Season 2
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

33.3
17.3
9.89
6.73
4.93
3.93
3.30
2.72
2.17
1.88
1.64
1.46
1.23
1.13
0.98
0.86
0.79
0.76
0.67
0.61
3.68

2.22 ± 2.9

Doe Density Season 3
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

32.7
19.5
11.3
7.20
5.18
3.99
3.02
2.49
2.09
1.74
1.43
1.25
1.09
0.96
0.83
0.68
0.64
0.53
0.48
0.43
2.46

1.96 ± 2.5

Doe Density Season 4
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

38.2
16.2
7.86
4.96
4.16
3.57
3.18
2.77
2.46
2.18
1.83
1.56
1.40
1.23
1.13
0.99
0.87
0.73
0.68
0.62
3.36

2.18 ± 2.9

Doe Density Season 5
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

36.7
15.3
7.83
5.03
4.14
3.64
3.18
2.84
2.46
2.19
2.01
1.74
1.57
1.37
1.23
1.12
0.99
0.89
0.79
0.75
4.24

2.39 ± 3.1

Buck Density Season 3
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

52.1
17.2
8.40
5.11
3.50
2.49
1.84
1.44
1.11
0.90
0.77
0.63
0.52
0.46
0.39
0.35
0.32
0.30
0.26
0.25
1.60

1.29 ± 2.1

Buck Density Season 4
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

52.2
13.9
8.10
5.50
3.95
2.95
2.21
1.72
1.38
1.14
0.93
0.78
0.67
0.56
0.49
0.41
0.38
0.33
0.30
0.28
1.75

1.42 ± 2.2

Buck Density Season 5
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

46.0
17.9
9.69
6.17
4.21
2.98
2.23
1.74
1.33
1.12
0.89
0.74
0.63
0.54
0.47
0.41
0.35
0.32
0.29
0.27
1.73

1.45 ± 2.2

Fawn Density Season 2
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

41.9
18.7
9.19
5.64
3.92
3.13
2.51
1.98
1.68
1.41
1.23
1.06
0.93
0.79
0.69
0.65
0.57
0.54
0.46
0.42
2.62

1.76 ± 2.6

Fawn Density Season 3
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

48.9
20.2
9.28
4.53
3.04
2.20
1.74
1.31
1.16
0.95
0.81
0.70
0.62
0.53
0.48
0.43
0.38
0.35
0.31
0.28
1.84

1.36 ± 2.2

Fawn Density Season 4
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

48.8
18.3
7.75
4.35
2.96
2.47
1.99
1.65
1.42
1.24
1.06
0.94
0.82
0.72
0.67
0.58
0.52
0.48
0.45
0.40
2.51

1.58 ± 2.5

Fawn Density Season 5
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4
4 to 4.5
4.5 to 5
5 to 5.5
5.5 to 6
6 to 6.5
6.5 to 7
7 to 7.5
7.5 to 8
8 to 8.5
8.5 to 9
9 to 9.5
9.5 to 10
other-

43.2
18.4
9.27
5.99
4.08
3.31
2.51
2.01
1.65
1.33
1.11
0.88
0.81
0.71
0.60
0.53
0.46
0.40
0.37
0.34
2.02

1.61 ± 2.4


	Chapter 1:
	ABSTRACT
	INTRODUCTION
	STUDY AREA
	METHODS
	RESULTS
	DISCUSSION
	MANAGEMENT IMPLICATIONS
	LITERATURE CITED
	TABLES AND FIGURES

	Chapter 2:
	ABSTRACT
	INTRODUCTION
	STUDY AREA
	METHODS
	RESULTS
	DISCUSSION
	LITERATURE CITED
	TABLES AND FIGURES


