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Abstract
This thesis is a survey of known results concerning random time change and its
applications. It will cover basic probabilistic concepts and then follow with a detailed
look at major results in several branches of probability all concerning random time
change. The  rst of these major results is a theorem on how an increasing process
adapted to a  ltration can be used to transform the time scale and  ltration. Next we
show how an arbitrary continuous local martingale can be changed into a Brownian
motion. We then show that a simple point process can be changed into a Poisson
process using a random time change. Lastly, we look at an application of random
time change to create solutions of stochastic di erential equations.
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Chapter 1
Introduction
1.1 Summary
This thesis discusses the subject of random time change by looking at several
known results in various areas of probability theory. In the  rst chapter, we give
several basic de nitions and theorems of probability theory, including a section dis-
cussing martingales and Brownian motion. These de nitions and theorems will be
used throughout the thesis and are in most basic probability texts.
In the second chapter we began with our results on random time change. The
main result of the second chapter discusses how an increasing process adapted to a
 ltration can be used to create a process of optional times that transform the time
scale and  ltration. This theorem will appear in the following chapters particularly
in regard to the creation of a process of optional times.
In the third chapter we begin with a discussion of the quadratic variation process
and stochastic integration. These topics are also fundamental in probability theory,
and will be important for all further results in the thesis. We will omit some of the
proofs of the more detailed results but will include references. We then use these
new concepts to prove L evy?s characterization of Browian motion. This theorem
shows that a Brownian motion is a martingale and gives conditions for a continuous
local martingale to be a Brownian motion. We then use L evy?s characterization of
Brownian motion to prove the main result of chapter three that is, using a process
of optional times, we can change an arbitrary continuous local martingale into a
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Brownian motion. Our process of optional times depends on the quadratic variation
of the local martingale and so we will break the proof of the main result into two
cases depending on whether the limit of the quadratic variation is  nite or in nite.
Lastly in chapter three, we discuss two di erent ways to extend our main result to
higher dimensions.
To start our fourth chapter we introduce random measures, point processes,
and Poisson processes. Following that we introduce the Doob-Meyer decomposition
of a submartingale and explain its relation to random measures. The Doob-Meyer
decomposition is an in-depth topic in probability theory we will only mention it and
give reference for further study. Lastly, we proceed to prove the main result of the
chapter, that is, an arbitrary simple point process to change it into a Poisson process.
In our last chapter, we will look at an application of some of our previous results
to stochastic di erential equations (SDEs). We began the chapter by discussing what
stochastic di erential equations are and the type of stochastic di erential equations
we are interested in. We then discuss the challenging topic of Brownian local time and
continuous additive functionals. Lastly we prove a necessary and su cient conditions
for a solution to certain stochastic di erential equations by constructing solutions to
the SDEs using random time change.
1.2 De nitions and Primary Concepts
Let ( ;A;P) be a probability space and T be a subset of  R = [ 1;1]. A
non-decreasing family F = (Ft) of  - elds such that Ft  A for t2T is called a
 ltration on T. A process X is said to be adapted to a  ltration F = (Ft) if Xt is
Ft-measurable for every t 2 T. Given a process X, the smallest  ltration F such
that X is adapted to F is the  ltration generated by X, that is Ft =  fXs; s tg.
Also de ne F1 =  (St 0Ft). If F is a  ltration on T = R+ we can de ne another
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 ltrationF+t = Th>0Ft+h. We call a  ltrationF on R+ right-continuous ifF =F+.
Note that F+ = (F+)+ so F+ itself is right-continuous. Unless stated otherwise,
 ltrations on R+ are assumed to be right-continuous. Let Ft =  (Xt) for some
process X and let Nt =fF   ;F  G;G2Ft;P(G) = 0g, N1 is the collection of
all null sets. Then the  ltration H de ned by Ht =  (Ft[Nt) for all t 0 is called
the completion of the  ltration. Any  ltration that has the above properties is called
a complete  ltration.
A random time  is a measurable mapping  :  !  T, where  T is the closure
of T. Given a  ltration F on T, a random time  is called an optional time if
f!; (!) tg2Ft for every t2T. Further we call a random time  weakly optional
if f!; (!) < tg2Ft for every t2T. We de ne the  - eld F associated with an
optional time  by
F =fA2A; A\f  tg2Ft; t2Tg:
The  rst lemma shows that weakly optional and optional are the same on a  ltration
that is right-continuous.
Lemma 1.2.1 If F is any  ltration and  is F-optional time then it is F weakly
optional. If F is a right-continuous  ltration and  is a F-weakly optional time then
 is F-optional.
Proof. Let  be an F-optional time. Now
f <tg=
[
n
f  1 (1=n)g2Ft;
and so  is an F weakly optional time.
3
Let F be right-continuous and  be an F weakly optional time, then
f  tg=
\
h>0
f <t+hg2Ft+h:
Thus  is F+-optional. But F is right-continuous, so F = F+, which means that  
is F-optional. 2
The following lemma expresses a closure property of optional times and their
associated  - elds.
Lemma 1.2.2 If F is a right-continuous  ltration and  n are F-optional times,
then  = infn n is an optional time and F = TnF n.
Proof. Since
f <tg=
[
nf n <tg2Ft; t 0;
 is weakly optional and thus optional, by the right continuity of F.
To prove the second part we note that, again, since F is right-continuous,
(F+) =F . Let A2TnF n. Then
A\f <tg = A\
[
nf n <tg
=
[
n(A\f n <tg)2Ft;
and so, TnF n  F . To get the reverse inclusion, let A2F . Then for any n,
A\f n tg= A\f  tg\f n tg:
Since this is true for all n, we have TnF n  F . Thus TnF n =F . 2
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For any random variable  with distribution  we de ne the characteristic func-
tion  of  to be
 (t) = Eeit =
Z
eitx (dx); t2R:
Characteristic functions uniquely determine the distribution of a random variable. We
will need to know that the characteristic function for a normally distributed random
variable  with mean  and variance  2 is
 (t) = ei t  2t2=2; t2R:
1.3 Martingales and Brownian Motion
A process M in Rd is called a martingale with respect to a  ltration F, or an
F-martingale, if Mt is integrable for each t, M is adapted to F, and
E[MtjFs] = Ms a.s.; s t:
A martingale is called square-integrable if EM2t <1 for all t 0. A process X is
said to be uniformly integrable if
limr!1sup
t2T
E[jXtj; jXtj>r] = 0:
First we prove a general result about uniformly integrable processes.
Lemma 1.3.1 For p> 1, every Lp-bounded process is uniformly integrable.
Proof. Assume X is bounded in Lp, then E(jXtjp) <1. Let p and q be such that
1
p +
1
q = 1 then, from H older?s inequality, we get for u 0
E(jXtj 1jXj>u) (E(jXjp))1=p (E(j1jXj>ujq)1=q:
5
Thus X is uniformly integrable. 2
A process M is called a local martingale if it is adapted to a  ltration F and
there exist optional times  n such that  n"1 and the process M0t = M n^t M0 is
a martingale for every n.
A Brownian motion is a continuous process B in R with independent increments,
B0 = 0, and, for all t 0, EBt = 0 and Var(Bt) = t. This de nition implies that
Bt is normally distributed with mean 0 and variance t. A process B in Rd is called
a Brownian motion if its components are independent Brownian motions in R. A
Brownian motion B adapted to a general  ltration F on R+ such that the process
Bs+t Bs is independent of Fs for all s 0 is said to be an F-Brownian motion.
A process X on R+ is said to be right-continuous if Xt = Xt+ for all t  0,
and X has left limits if the left limits Xt exist and are  nite for all t  0. The
regularization theorem of martingales allows us to assume all martingales to be right-
continuous with left limits, here abbreviated as rcll. We state, without proof, the more
general version of this theorem for submartingales. We follow with a result relating
uniform integrability to the convergence of a martingale to a random variable. These
are classical results in the study of martingales we refer to [3] for the proofs and more
detailed discussion.
Theorem 1.3.1 Let X be an F-submartingale. Then X has a rcll version if and
only if EX is right-continuous.
Theorem 1.3.2 Let M be a right-continuousF-martingale on an unbounded index
set T and de ne u = supT. Then the following conditions are equivalent:
i) M is uniformly integrable,
ii) Mt converges in L1 to some Mu as t!1,
iii) M can be extended to a martingale on T[fug.
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The next result, the optional sampling theorem, shows that, under certain con-
ditions, the martingale property is preserved under a random time change.
Theorem 1.3.3 Let M be an F-martingale on R+, where M is right-continuous,
and consider two optional times  and  , where  is bounded. Then M is integrable,
and
M ^ = E[M jF ] a.s.
The statement extends to unbounded times  if and only if M is uniformly integrable.
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Chapter 2
Time Change of Filtrations
In this section, we begin by showing how we can use an increasing process X
adapted to a  ltrationF to transform the time scale and the  ltration. We will then
apply this result in chapter 3 to the case where X, the increasing process, is the
quadratic variation process of a continuous local martingale, and in chapter 4 when
the increasing process is the compensator of a increasing process related to a point
process.
2.1 Time Change of Filtrations
We now state our main result using increasing process X adapted to a  ltration
F that will transform the time scale and the  ltration.
Theorem 2.1.1 Let X 0 be a non-decreasing right-continuous process adapted
to some right-continuous  ltration F, and de ne
 s = infft> 0;Xt >sg; s 0:
Then
i) ( s) is a right-continuous process of optional times, generating a right-continuous
 ltration G de ned by Gs =F s for s 0,
ii) if X is also continuous and  is F-optional, X is G-optional and F  GX .
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Note that, when composing the process X with an optional time  , we get a
random variable X . Thus it makes sense to consider X as an optional time.
Proof. (i) Since X is right-continuous, the process ( s) is right-continuous as well.
We want to show that  s is an optional time for every s. By de nition of  s,
f s <tg 
[
r2Q\(0;t)
fXr >sg; t> 0:
To prove the inclusion in the opposite direction,  x an !2f s <tg. Then for some
t0  0, we have t0 =  s(!) and Xt0(!) > s. Since (s;1) is an open set containing
Xt0(!), there exists a neighborhood around Xt0(!) that remains in the set (s;1). If
t0 is rational we have proved the inclusion. If not, since X is right-continuous and Q
is dense in R, there exists an r2Q such that t0 < r < t and Xr(!) 2 (s;1). So
!2fXr >sg, and
f s <tg 
[
r2Q\(0;t)
fXr >sg; t> 0:
Therefore,
f s <tg=
[
r2Q\(0;t)
fXr >sg2Ft; t> 0;
which means that  s is weakly optional hence  s is optional.
Since  s is a process of optional times, Gs = F s is a  ltration and we need to
show that it is right-continuous. Now
G+s =
\
u>s
Gu =
\
u>s
F u =
\
u>s
F+ u =F+ s =F s =Gs
where the second and last equality come from the fact that Gs = F s. The third
equality holds because F is right-continuous, and the fourth equality holds since
 u# s.
9
(ii) Let X be continuous and let  > 0 be anF-optional time. By the de nition
of  s and the fact that X is non-decreasing, we see that fX  sg=f   sg. Since
 and  s are both optional times, f  tgandf s tgareFt-measurable, and since
Ft is a  - eld, we have
f   sg=f  tg\f s tgc2Ft:
Sof   sg2F s by de nition ofF s. Thus X is aG-optional time. We can extend
to any   0 by Lemma 1.2.2.
Since X is an optional time,GX is a  - eld. If we let A2F be arbitrary, the
above arguments give
A\fX  sg= A\f   sg2F s 2Gs:
This shows that, for any A2F , we also have A2GX , and so F  GX . 2
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Chapter 3
Time Change of Continuous Martingales
In order to change an arbitrary continuous local martingale into a Brownian
motion, we will use a process of optional times such as in Theorem 2.1.1, except that
our non-decreasing process will be the quadratic variation process of the continuous
local martingale. Before getting to this result, we de ne the quadratic variation
process and state some lemmas pertaining to it. Then we will prove L evy?s theorem,
which characterizes Brownian motion as a martingale. This will be used in our proof
of the main result.
3.1 Quadratic Variation
For local martingales M and N, the process [M;N] is called the covariation of M
and N, and the process [M;M] is called the quadratic variation. It is often denoted
by [M]. The quadratic variation process can be constructed as a limit of the sum
of squares of the original process; however, we will de ne the process based on a
martingale characterization. We state, without proof, the existence theorem of the
process [M;N] for continuous local martingales M and N.
Theorem 3.1.1 For continuous local martingales M and N there exists an a.s.
unique continuous process [M;N] of locally  nite variation, with [M;N]0 = 0 and
such that MN [M;N] is a local martingale.
The next lemma lists, without proof, several properties of the covariation process.
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Theorem 3.1.2 Let M and N be continuous local martingales, and let [M;N]
be the covariation process de ned in Theorem 3.1.1. Then [M;N] is a.s. bilinear,
symmetric, and satis es
[M;N] = [M M0;N N0]:
Further, [M] is a.s. non-decreasing and, for any optional time  ,
[M ;N] = [M ;N ] = [M;N] a.s.
The next result shows that a local martingale has the same intervals of constancy
as its quadratic variation process.
Lemma 3.1.1 Let M be a continuous localF-martingale, and  x any s<t. Then
[M]s = [M]t if and only if a.s. Mu = Mt for all u2[s;t).
Proof. First assume that [M]s = [M]t. Then [M]s = [M]u for all s < u  t
since quadratic variation is nondecreasing. Then  = inffw >s; [M]w > [M]sg is an
F-optional time. Also,
Nr = M ^(s+r) Ms; r 0;
is a continuous local martingale with respect to the  ltration ^Fr =F(s+r); r 0. By
the de nition of  ,
[N]r = [M] ^(s+r) [M]s = 0; r 0:
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Since N is a local martingale, there exists a sequence of optional times  n such that
 n"1 a.s. and each process N n^t is a true martingale. Now [N] n^r = 0 a.s. and
E(N2 n^r [N] n^r) = E(N2 n^r):
Since N2 n^r [N] n^r is a martingale,
E(N2 n^r [N] n^r) = 0:
So E(N2 n^r) = 0, and thus N n^r = 0 a.s. Letting  n"1, we get N = 0 a.s. Thus
M ^(s+r) = Ms, and so Mu = Mt for any u2[s;t].
To prove the converse, assume Mu = Mt for all s u < t. Then  = inffw >
s;Ms < Mwg is an optional time. Now Nr = M ^(s+r) Ms is a continuous local
martingale with respect to ^F, de ned by ^Fr =Fs+r. By de nition of  ,
Nr = M ^(s+r) Ms = 0:
Let  n be a sequence of optional times such that  n"1 and Nr^ n is a martingale.
Then N2r^ n  [N]r^ n is a martingale and E[N2r^ n  [N]r^ n] = 0. Since Nr = 0,
we have E[N]r^ n = 0. Letting  n ! 1, we have E[N]r = 0, which gives us
[M ^(s+r) Ms] = 0 a.s. And so we have [M]s = [M]t. 2
3.2 Stochastic Integration
We now introduce the concept of stochastic integration. We will start by de ning
an elementary stochastic integral as a sum of random variables. Let  n be optional
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times and  k be bounded F k-measurable random variables, and de ne
Vt =
X
k n
 k1ft> kg; t 0:
Then for any process X, we may de ne the integral process V  X by
(V  X)t =
Z t
0
VsdXs =
X
k n
 k(Xt Xt^ k):
We call the process V  X an elementary stochastic integral.
A process V on R is said to be progressively measurable, or simply progressive,
if its restriction to   [0;t] is Ft B[0;t] - measurable for every t 0. Originally
stochastic integrals were extended to progressive processes using an approximation of
the elementary stochastic integrals de ned above. However in the following theorem
we extend the notion of stochastic integrals by a martingale characterization.
Theorem 3.2.1 Let M be a continuous local martingales and V a progressive
process such that (V2 [M])t < 1 a.s. for every t > 0. Then there exists an a.s.
unique continuous local martingale V  M with (V  M)0 = 0 and such that
[V  M;N] = V  [M;N] a.s.
for every continuous local martingale N.
Since covariation has locally  nite variation, the integral V [M;N] is a Lebesgue-
Steljes integral. This allows us to uniquely characterize the stochastic integral in terms
of a Lebesgue-Steljes integral. We omit the proof of this theorem but refer to [3] for
the proof and a more detailed discussion of stochastic integrals.
14
A continuous process X is said to be a semi-martingale if it can be represented as
a sum M+A, where M is a continuous local martingale and A is a continuous, adapted
process with locally  nite variation and A0 = 0. If X is a semi-martingale and f is a
su ciently smooth function then f(X) is also a semi-martingale. The following result
gives a useful representation of semi-martingales that are images of smooth functions.
We state, without proof, It^o?s formula for continuous semi-martingales. Here f0i and
f00ij represent  rst and second partial derivatives of f.
Theorem 3.2.2 If X = (X1;:::;Xd) is a continuous semi-martingales in Rd and
f is a function that is twice continuously di erentiable in Rd. Then
f(X) = f(X0) +
X
i
f0i(X) Xi + 12
X
i
X
j
f00ij(X) [Xi;Xj] a.s.
We can extend It^o?s formula to analytic functions.
Theorem 3.2.3 If f is an analytic function on D C. Then
f(Z) = f(Z0) +
X
i
f0i(Z) Zi + 12
X
i
X
j
f00ij(Z) [Zi;Zj] a.s.
holds for any D-valued semi-martingale Z.
3.3 Brownian Motion as a Martingale
In this section we show the following result, due to L evy, which characterizes
Brownian Motion as a martingale.
Theorem 3.3.1 Let B be a continuous process in R with B0 = 0. Then B is a
local F-martingale with [B]t = t a.s. if and only if B is an F-Brownian motion.
Before we begin the proof of the theorem we prove a needed result.
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Lemma 3.3.1 Let M be a continuous local martingale starting at 0 with [M]t = t
a.s. Then M is a square integrable martingale.
Proof. Let  n be optional times such that  n"1 and M n^t is a true martingale
for every n. Then Nt = M2 n^t [M] n^t is a martingale for every n and
EM2 n^t = E[M] n^t = E( n^t):
Using dominated and monotone convergence, we can let  n!1 to get
EM2t = t:
Thus M2t  [M]t is a true martingale and M is a square integrable martingale. 2
Now we move on to the proof of Theorem 3.3.1.
Proof. First assume that B is a continuous local F-martingale with [B]t = t a.s.
and B0 = 0. Recalling the de nition of Brownian motion and the characteristic
function for a random variable with normal distribution, it is enough to prove for a
 xed set A2Fs
E[eiv(Bt Bs)jA] = e v2(t s)=2 a.s.
for v2R and t>s 0.
Let f(x) = eivx then, applying Theorem 3.2.3, we get
eivBt eivBs =
Z t
s
iveiBudBu 12
Z t
s
v2eicBudu: (3.1)
Now [B]t = t implies that B is a true martingale by Lemma 3.3.1, and so
E
 Z t
s
eivBudBujFs
 
= 0 a.s. (3.2)
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Let A2Fs and multiply equation (3.1) by e ivBs1A on both sides to obtain
1Aeiv(Bt Bs) 1A =
Z t
s
iv1Aeic(Bu Bs)dBu 12
Z t
s
v21Aeic(Bu Bs)du:
Taking the expectation of both sides and recalling (3.2), we have
E(1Aeiv(Bt Bs)) P(A) = 12v2E
Z t
s
1Aeiv(Bu Bs)du:
This is a Volterra integral equation of the second kind for the deterministic function
t7!Eeiv(Bt Bs). Solving this integral equation we have
Eeiv(Bt Bs) = e v2=2(t s):
To prove the converse, we assume that B is an F-Brownian motion. To show B
is a martingale, let s t,
E[BtjFs] = E[Bs +Bt BsjFs] = E[Bs +Bt sjFs] = Bs:
2
3.4 Time Change of Continuous Martingales
We now show how we can use a process of optional times to change an arbitrary
continuous local martingale into a Brownian motion. To do this in the general case,
we consider extensions of probability space and extensions of  ltrations.
Let X be a process adapted to the  ltration F on probability space ( ;A;P).
Now we wish to  nd a Brownian motion B independent of X. In order to guarantee
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that the processes in question are independent and still retain any original adapted-
ness properties we extended the probability space to a new probability space. Let
^ =   [0;1], ^A = A B[0;1], and ^P = P  [0;1] then (^ ; ^A; ^P) is an extension
of the probability space. We can de ne X(!;t;0) = X(!;t) and B(!;t;1) = B(!;t)
then X and B are trivially independent.
A subtler way to achieve the same goal is to take a standard extension of a
 ltration. We call the  ltration G a standard extension of F if Ft Gt for all t 0
and if Gt and F are conditionally independent given Ft for all t 0.
Now we state the main theorem.
Theorem 3.4.1 Let M be a continuous localF-martingale in R with M0 = 0, and
de ne
 s = infft 0; [M]t >sg; Gs =F s; s 0:
Then there exists in R a Brownian motion B with respect to a standard extension of
G, such that a.s. B = M  on [0;[M]1) and M = B [M].
We will break the proof into two cases,  rst the case when [M]1 = 1 and
secondly when [M]1 is  nite. If [M]1 =1 we do not require a standard extension
of the  ltration for M  to be a Brownian motion.
Proof. First assume that [M]1 = 1. By Theorem 2:1:1,  s is a right-continuous
process of optional times andGs =F s is a right-continuous  ltration. To prove that
B = M  is a Brownian motion, we will use L evy?s characterization of Brownian mo-
tion, Theorem 3.3.1. Thus we need to show that B is a continuous square-integrable
martingale and [B]t = t a.s.
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First we prove that B is a continuous square integrable martingale. For  xed
s 0, ( ^Mt) = (M s^t) is a true martingale, and
[ ^M]t [M] s = s; t 0;
by the de nition of  s. Because E ^M2t = E[ ^M]t  s we can apply 1.3.1 to get ^M
and ^M2 [ ^M] are uniformly integrable. This allows us to use the optional sampling
theorem, Theorem 1.3.3. Fix 0 r s. Then
E(M s M rjF r) = E( ^M s ^M rjF r)
= ^M r ^M r = 0:
Recall that ^M is a true martingale starting at zero. Hence ^M2t  [ ^M]t = 0, which
gives ^M2t = [ ^M]t. Now
E((M s M r)2jF r) = E(( ^M s ^M r)2jF r)
= E( ^M2 s ^M2 rjF r) = s r:
Now B is a square-integrable martingale with [B]s = s. Next we want to prove that
B is continuous. Referring to Lemma 3.1.1, we see that, for any s<t, [M]s = [M]t
implies Mu = Mt for all u 2 [s;t]. This property, along with the fact B is right-
continuous, proves that B is continuous. We have now shown that B is a square
integrable, continuous martingale with [B]t = ta.s., and so, by L evy?s characterization
of Brownian motion, B is a Brownian motion.
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To prove the second assertion, Mt = B[M]t, we use the fact that B = M  and
 [M]t = t, by the de nition of  s. Therefore, we can conclude that
Mt = M [M]t = B[M]t:
Now we allow [M]1 to be  nite. De ne [M]1 = Q<1. Letting s be  xed and
^Mt = M 
s^t, we have
[ ^M]t [M] s = s^Q:
This allows us to use Lemma 1.3.1 and the optional sampling theorem, just as efore, to
conclude thatM  is a continuous martingale. LetX a Brownian motion independent
ofF with induced  ltrationX. Now letH=  fG;XgthenHis a standard extension
of bothX andG. And so M s is aH-martingale and X is aH-Brownian motion and
they are independent. De ne
Bs = M s +
Z s
0
1f r =1gdXr; s 0:
Let
Ns =
Z s
0
1f r =1gdXr; s 0:
Since [M] is non-decreasing,  s is non-decreasing. Now  r <1 for 0  r Q and
so 1f r = 1g = 0. This means that [N]r = 0 for all 0  r  Q. Letting s > Q,
1f r =1g= 1 for all r2[Q;s]. And so for every s>Q
[N]s = [X]s [X]Q = s Q = s [M]1:
So if s<Q, we have
[B]s = [M] s = s;
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and if s Q, we have
[B]s = [M] s + [N]s
= Q+ [X]s [X]Q = Q+s Q = s:
Therefore [B]s = s. We conclude again that B is a Brownian motion and Bs = M s
for all s<Q = [M]1.
Now we show that M = B [M]. If for t <1 [M]t = [M]1, then by Lemma
3.1.1 Ms = M1 for s t. Thus we can use the same argument as before to obtain
Mt = M [M]t = B[M]t:
2
3.5 Time Change of Continuous Martingales in Higher Dimensions
To extend our result to higher dimensions we discuss two approaches. Firstly we
de ne a continuous local martingale M = (M1;:::;Md) to be isotropic if [Mi] = [Mj]
a.s. for all i;j2f1:::dg and if [Mi;Mj] = 0 a.s. for all i;j2f1:::dg with i6= j. Now
we have a similar result for isotropic local martingales.
Theorem 3.5.1 Let M be an isotropic, continuous local F- martingale starting
at 0. De ne
 s = infft 0; [M1]t >sg; F s =Gs; s 0:
Then there exists a Brownian motion B such that B = M  a.s. on [0;[M1]1) with
respect to a standard extension of G and M = B  a.s.
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We omit the proof. However, the isotropic condition leads to a very similar proof
to that of the one-dimensional case. It is important to note that in this case we only
needed a single time change process to transform our local martingale. Our next
result will use a weaker assumption but will also have a weaker assertion.
Our next result gives another way to extend the result of Theorem 3.4.1 to
higher dimensions. We de ne a continuous local martingales M1;:::;Md to be strongly
orthogonal if [Mi;Mj] = 0 a.s. for all i;j 2f1:::dg with i 6= j. Under the weaker
assumption of strong orthogonality, we must use individual processes of optional times
to transform each component of the local martingale into a Brownian motion.
Theorem 3.5.2 Let M1;:::;Md be strongly orthogonal continuous local martin-
gales starting at zero, then de ne
 is = infft 0; [Mi]t >sg; s 0; 1 i d;
where  is an optional time, for each i and s. Then the processes
Bis = Mi is; s 0; 1 i d;
are independent one-dimensional Brownian motions.
Obviously the individual components are transformed to Brownian motions from
our proof of the one-dimensional case. However we need these one-dimensional Brow-
nian motions to be independent in order to combine them into a Brownian motion in
Rd. This can be achieved through looking at the  ltrations induced by the Brownian
motions but not the  ltrations F is. We will omit the proof of Theorem 3.5.2 but a
full proof can be found in [4].
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Chapter 4
Time Change of Point Processes
The main result of this section, similar to Theorem 3.4.1, shows that a random
time change can be used to transform a point process into a Poisson process. To do
this, we introduce some more notation and de nitions.
4.1 Random Measures and Point Processes
Let ( ;A) be a probability space and (S;S) a measurable space. A random
measure  on S is de ned as a mapping  :   S!  R+ such that  (!;B) is an
A-measurable random variable for  xed B2S and a locally  nite measure for  xed
! 2  . We de ne a point process as a random measure  on Rd such that  B is
integer-valued for every bounded Borel set B. For a stationary random measure  on
R, E = c , where 0 c 1 and  is the Lebesgue measure, is called the intensity
measure of  and c the rate. De ne M(S) to be the space of all  - nite measures
on a measurable space S. A Poisson process  with intensity  2M(Rd) is de ned
to be point process with independent increments such that  B is a Poisson random
variable with mean  B whenever  B <1. A point process  with  fsg 1 for all
s2Rd outside a  xed P-null set is called simple. And a Poisson process is of unit
rate if it has rate equal to a one.
We now assume that the underlying probability space has a  ltration that is
not only right-continuous but also complete, and let (S;S) be a Borel space. The
predictable  - eld P in the product space   R+ is de ned as the  - eld generated
by all continuous, adapted processes on R+. A process V on R+ S is predictable if it
23
isP S-measurable whereP denotes the predictable  - eld in R+  . We mention,
without proof the fact that the predictable  - eld is generated by all left-continuous
adapted processes and that every predictable process is progressive.
4.2 Doob-Meyer Decomposition
Another new concept of this section needed for our main result is the compensator
process. First we de ne compensators in relation to the Doob-Meyer decomposition
of submartingales and then extend the notion to random measures.
Theorem 4.2.1 (Doob-Meyer Decomposition) Any local submartingale X has an
a.s. unique decomposition X = M + A, where M is a local martingale and A is a
locally integrable, nondecreasing, predictable process starting at 0.
The proof is omitted since it is very involved and would distract from the main
topic of time change, we refer to [3] for a detailed proof. The process A in the above
theorem is called the compensator of the submartingale X.
We want to extend compensators to random measures. Let  be a random mea-
sure on R+ and introduce the associated cumulative process Nt(!) =  ((0;t];!). The
process N has right-continuous, a.s. nondecreasing paths and N is a submartingale.
Now we can apply the Doob-Meyer decomposition to N to get its compensator A
which will also be the cumulative process of a random measure.
We will use compensators similarly to the way the quadratic variation process
was used in Theorem 3.4.1 to de ne our process of optional times.
4.3 Time Change of Point Processes
We now move on to prove our main result, that a process of optional times can
be used to transform a point process into a Poisson process. Before stating the main
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result, we need several important theorems. This approach is from [1]. The  rst of
those uses only some basic analysis; however, we will soon relate it to probability.
Theorem 4.3.1 Let f(x) be an increasing, right-continuous function on R with
f(0) = 0, and let u(x) be a measurable function with Rt0ju(x)jdf(x) < 1 for each
t> 0. Let
 f(t) = f(t) f(t )
and
fc(t) = f(t) 
X
s t
 f(s):
Then the integral equation
h(t) = h(0) +
Z t
0
h(s )u(s)df(s)
has the unique solution
h(t) = h(0)
Y
0<s t
(1 +u(s) f(s)) exp
 Z t
0
u(s)dfc(s)
 
; t 0
satisfying sup0 s tjh(s)j<1 for each t 0.
Proof. Let
g1(t) = h(0)
Y
0<s t
(1 +u(s) f(s))
and
g2(t) = exp
 Z t
0
u(s)dfc(s)
 
:
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Now g1 and g2 are right-continuous and have bounded variation so we can use
integration by parts to get
h(t) = g1(t)g2(t) = g1(0)g2(0) +
Z t
0
g1(s )dg2(s) +
Z t
0
g2(s)dg1(s):
By de nition of g2 we have,
Z t
0
g1(s )dg2(s) =
Z t
0
g1(s )d
 
exp
 Z t
0
u(s)dfc(s)
  
=
Z t
0
g1(s )exp
 Z t
0
u(s)dfc(s)
 
u(s)dfc(s)
=
Z t
0
g1(s )g2(s)u(s)dfc(s):
If there is no jump in f at point s then  f(s) = 0. If at time s there is a jump in f
then
 g1(s) = g1(s) g1(s ) = (1 +u(s) f(s))(g1(s ) g1(s )
= u(s) f(s)g1(s ):
And so, we have
Z t
0
g2(s)dg1(s) =
X
0<s t
g2(s)u(s)g1(s ) f(s):
Putting this together,
h(t) = g1(0)g2(0) +
Z t
0
g1(s )dg2(s) +
Z t
0
g2(s)dg1(s)
= h(0) +
Z t
0
h(s )u(s)df(s):
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So h(t) is a solution to the given integral equation. 2
Now we apply this theorem to our next result, giving conditions for a simple
point process to be Poisson. Recall that by the cumulative process N of a random
measure  on R+ we mean Nt =  (0;t].
Theorem 4.3.2 Let N be the cumulative process of a simple point process with
compensator At =  (0;t] where  is a  - nite measure. Then N is the cumulative
process of a Poisson process with rate  .
Proof. Let  be  xed. De ne
Mt = expfi Nt + (1 ei )Atg
Referring to Theorem 4.3.1, we see that this is the solution of the integral equation
Mt = 1 +
Z t
0
Ms (ei  1)d[Ns As]
The integrand on the right is left-continuous and adapted hence predictable. Since
N A is a martingale Lemma 3.2.1 shows that the integral is a martingale. Now we
take the conditional expectation of both sides with respect to Fr
E[MtjFr] = E
h
1 +
Z t
0
Ms (ei  1)d[Ns As]jFr
i
= 1
Replacing Mt with its de nition and using the fact that A is assumed to be deter-
ministic, we have
E[expfi Nt + (1 ei )AtgjFr]
= expf(1 ei )AtgE[ei NtjFr] = 1:
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Dividing by the exponential function of A, we get
E[ei NtjFr] = expf(ei  1)Atg
which is the characteristic function of a Poisson distribution.
Repeating the argument, we can gain that, for 0 <r<t,
E[ei (Nt Nr)jFr] = expf(ei  1)(At Ar);g
which shows that N has independent increments and is therefore the cumulative
process associated with a Poisson process. 2
We state the main result of the section showing that a time changed cumulative
process of a point process is the cumulative process of a Poisson process.
Theorem 4.3.3 Let  be an F-adapted simple point process and Nt =  (0;t]. Let
A be the compensator of N. Assume A is continuous and a.s. unbounded. De ne
 s = infft 0;At >sg. Then the re-scaled process N s =  (0;t] where  is a unit-rate
Poisson process.
Proof. Referring back to Theorem 2.1.1, we see that  s is right-continuous, and
N s isF s-adapted. Further by continuity of A,  s can only have jumps at countably
many t  0. By de nition of N and A, N s can only increase by integer-valued
jumps. Since  s is right-continuous with left limits, the only jumps in  s are when A
is constant. Assume A is constant over the interval (a;b] by the martingale property
of compensators,
E[Nb NajFa] = Ab Aa = 0:
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So givenFa Nb Na = 0 a.s. Thus there are no jumps in N s when  s is discontinuous
or has a jump. Since N is simple, when  s is continuous N s can only increase by unit
jumps. Therefore N s is simple.
Referring to Theorem 4.3.2, we only need to show N s that has compensator s.
By de nition A s = s for all s 0. Recalling  s is an optional time for each s 0,
we can apply the optional sampling theorem, for 0 s t,
E[N t tjF s] = E[N t A tjF s] = N s A s = N s s:
So, N s s is a F s-martingale, and by the uniqueness of the compensator, s is the
compensator of N s. 2
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Chapter 5
Application of Time Change to Stochastic Di erential Equations
In this last chapter we discuss an application of the previous ideas on random
time change to the area of stochastic di erential equations (SDEs). First we de ne
stochastic di erential equations and some basic related concepts. Then we discuss
the concept of Brownian local time. Lastly we create solutions to certain SDEs using
optional times to prove Engelbert and Schmidt?s necessary and su cient conditions
for solutions to certain SDEs.
5.1 Stochastic Di erential Equations
Our theorems involving stochastic di erential equations, abbreviated SDEs, are
of the basic form
dXt =  (Xt)dBt +b(Xt)dt (5.1)
where B is a one-dimensional Brownian motion, and  and b are measurable functions
on R. For our purposes we only de ne stochastic di erential equations in the one
dimensional case, but the concept can extend to higher dimensions. We refer to [2]
for more information on general SDEs. We de ne a weak solution of the stochastic
di erential equation with initial distribution  to be a process X, a probability space
( ;F;P) a Brownian motion B, and a random variable  withL( ) =  , such that X
satis es (1) for ( ;F;P), B, and X0 =  . Further weak existence holds for a stochastic
di erential equation provided there is a weak solution to the SDE. Uniqueness in
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law means that any two weak solutions with initial distribution  have the same
distribution.
It is also often possible to remove the drift term from the above SDE by either a
change in the underlying probability measure or a change in the state space. In this
way we can reduce our SDE to
dXt =  (Xt)dBt:
Using this SDE without a drift-term it is possible to construct weak solutions
using random time change. We will discuss this after we introduce Brownian local
time. For further discussion and proofs on removing the drift term we refer to [2].
5.2 Brownian Local Time
Let B be a Brownian motion and x2R. To gain information about the time
a path of B spends near x we would look at the set ft  0; Bt(!) = xg however
this set has Lebesgue measure zero. So in order to gain information about the time
a Brownian path spends around a point x, we introduce the process L.
Theorem 5.2.1 Let B be a Brownian motion then there exists an a.s. jointly
continuous process Lxt on R+ R, such that for every Borel set A of R and t 0,
Z t
0
1fBs2Agds =
Z
A
Lxtdx:
The process L de ned in the theorem above is called the local time of the Brow-
nian motion B. We can also represent the local time at some point x2 R of any
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semi-martingale X by the following formula, due to Tanaka,
Lxt =jXt xj jX0 xj 
Z t
0
sgn(Xs x)dXs; t 0;
where
sgn(x) =
8>
<
>:
1 x> 0
 1 x 0:
Next we de ne a nondecreasing, measurable, adapted process A in R to be a
continuous additive functional if, for every x2R,
At+s = As +At  s a.s., s;t 0;
where  s is a shift operator for s 0.
Now we state without proof the relationship between continuous additive func-
tionals of Brownian motion and local time of Brownian motion
Theorem 5.2.2 For Brownian motion X in R with local time L a process A is a
continuous additive functional of X i it has a.s. representation
At =
Z 1
 1
Lxt (dx); t 0;
for some locally  nite measure  on R.
Refer to [3] for more information about continuous additive functionals and local
time of Brownian motion.
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5.3 Application of Time Change to SDEs
In this section we use random time change to create weak solutions to SDEs in
the one-dimensional case,
dXt =  (Xt)dBt; (5.2)
with initial distribution  . We now give the informal construction of weak solutions
to 5.2. To do this,  rst let Y be a Brownian motion with respect to some  ltrationF
and X0 be aF0-measurable random variable with distribution  . Now we look at the
continuous process Zt = X0 + Yt for t 0. Using Z we create a process of optional
times
 t =
Z t
0
  2(Zs)ds; t 0:
Now we create the inverse process,
 s = infft 0; t >sg; s 0:
Referring to Theorem 2:1:1 we see that  s is also a process of optional times. Now for
Xs = Z s with  ltration Gs =F s we can  nd a Brownian motion B with respect to
G such that they form a weak solution to
dXt =  (Xt)dBt
with initial distribution  .
Problems with this construction could occur depending on the measurable func-
tion  . Also we have not described how the Brownian motion B is found. To an-
swer these questions we will use this construction formally to prove Engelbert and
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Schmidt?s theorem which gives the exact conditions  must satisfy for a weak solution
to exist. In the following proofs we will remove the condition that a Brownian motion
B must have B0 = 0. This allows us to let our Brownian motion have initial distri-
bution  and removes our need for a random variable X0 in the above construction.
Theorem 5.3.1 The SDE dXt =  (Xt)dBt has a weak solution for every initial
distribution  if and only if I( ) Z( ) where,
I( ) =fx2R; lim !0
Z x+ 
x  
dy
 2(y) =1g; (5.3)
and
Z( ) =fx2R; (x) = 0g: (5.4)
First we prove a lemma relating the additive functional of local time of Brownian
motion to a real measure of the interval around a point of a Brownian process.
Lemma 5.3.1 Let L be the local time of Brownian motion B with arbitrary initial
distribution, and let  be some measure on R. De ne
At =
Z
Lt(x) (dx); t 0;
and
S =fx2R; lim !1 (x  ;x+ ) =1g:
Then a.s.
inffs 0; As =1g= inffs 0; Bs2S g:
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Proof. Let t > 0, and R be the event where Bs =2S on [0;t]. Now Lxt = 0 a.s.
outside of the range of B on [0;t]. Then we get, a.s. on R
At =
Z 1
 1
Lxt (dx)  (B[0;t]) sup
x
Lxt <1;
since the range of B on [0;t] is compact as the continuous image of a compact set
and Lxt is a.s. continuous and hence bounded on a closed interval.
Conversely assume that Bs2S for some s<t. If  = inffs 0;Bs2S gthen
B 2S . By the strong Markov property, the shifted process B0 = B +t for t 0
with B00 = B is a Brownian motion in S . We can then reduce to the case when
B0 = a in S . Then Lat > 0 by Tanaka?s formula, so then by the continuity of L with
respect to x we get for some  > 0
At =
Z 1
 1
Lxt (dx)  (a+ ;a  ) inf
jx aj< 
Lxt =1:
2
We also need the following lemma, which shows that every continuous local
martingale M can be represented as a stochastic integral with respect to a Brownian
motion B.
Lemma 5.3.2 Let M be a continuous local F-martingale with M0 = 0 and [M] =
V2  a.s. for some F-progressive process V. Then there exists a Brownian motion
B with respect to a standard extension of F such that M = V  B. a.s.
Proof. De ne B = V 1  M where V 1 = 1=V and V 1 = 0 if V = 0. As a
stochastic integral with respect to a continuous local martingale B is a continuous
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local martingale and
[B]t = [V 1 M]t =
Z t
0
(V 1s )2d[M]s =
Z t
0
(V 1s )2V2s ds = t
So B is a Brownian motion by Theorem 3.3.1 and M = V  B a.s.
However this only works if V does not become zero. If V should vanish, de ne
Z to be a Brownian motion independent of F with induced  ltration Z then G =
 fF;Zgis a standard extension of bothF andZ. Therefore V isG-progressive and
M is a G-local martingale and X is a G-Brownian motion. Let
B = V 1 M +U Z
where U = 1fV = 0g. Now B is a Brownian motion. To see M = V B, we note that
VU = 0
(V  B)t =
Z t
0
VsV 1s dMs +
Z t
0
VsUsdZr = Mt + 0 = Mt
2
We proceed to prove Theorem 5.3.1.
Proof. Assume I( )  Z( ). Let Y be a Brownian motion with respect to a
 ltration G and with initial distribution  . De ne
As =
Z s
0
  2(Yu)du; s 0:
Also de ne
 t = inffs 0;As >tg; t 0;
and
 1 = inffs 0; As =1g:
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Now let R = inffs 0; Ys2I( )g. By Lemma 5.3.1, R =  1.
The processAs is continuous and strictly increasing fors<R. Then, by Theorem
2.1.1,  t is a continuous process of optional times which is strictly increasing for
t<AR. Further we have,
A t = t; t<AR;
and
 As = s; s<R:
Therefore, we conclude As = infft 0;  t >sg a.s. for s 0.
By the optional sampling theorem, we have for 0 t1 t2 <1,
E[Y t2^ AnjGt1] = E[Y t2^njGt1] = Y t1^n = Y t1 ^ An:
Since An !1 as n!1, Y t is a continuous local martingale. Also Y2 t  t is a
continuous local martingale, and by the uniqueness of quadratic variation we have
[Y] t =  t for t 0. De ne Xt = Y t, then [X]t =  t.
For t AR,
 t =
Z  t
0
 2(Yu)d
 Z u
0
  2(Yr)dr
 
=
Z  t
0
 2(Yu)dAu:
Then, by a change of variables,
Z t
0
 2(Y u)dA u =
Z t
0
 2(Xu)du:
Thus we get
 t =
Z t
0
 2(Xu)du; t AR:
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To show that equality holds for all t 0,  rst we note that At =1 for all t R by
Lemma 5.3.1. Now,
 t =  1 = R; t AR:
To see that Rt0  2(Xu)du is also equal to R for t AR, we  rst note that
Xt = XAR = Y AR = YR; t AR:
Recalling that R = inffs 0;Ys2I( )g and the original assumption I( )  Z( ),
we see that
 (Xt) =  (YR) = 0 t AR:
Thus Rt0  2(Xu)du =  t = R for t AR, which means that  t = [X]t = Rt0  2(Xu)du
for all t 0. By Lemma 5:3:2, there exists a Brownian motion B such that Xt =
Rt
0  (Xu)dBu. So X is a weak solution to the stochastic di erential equation dXt =
 (Xt)dBt with initial distribution  .
To prove the converse, let x 2 I( ) and let X be a solution to the stochastic
di erential equation dXt =  (Xt)dBt with X0 = x. By the de nition of stochastic
integrals, X is a continuous local martingale, and by Theorem 3:4:1 we haveXt = Y[X]t
for some Brownian motion Y. Also,
[X]t = [ (X) B]t =
Z t
0
 2(Xu)d[B]u =
Z t
0
 2(Xu)du:
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Let  t = [X]t. For s 0, de ne As = Rs0   2(Yr)dr. Then, for t 0,
A t =
Z  t
0
  2(Yr)dr =
Z t
0
  2(Xs)d s (5.5)
=
Z t
0
  2(Xs)d(
Z s
0
 2(Xu)du) (5.6)
=
Z t
0
1f 2(Xs) > 0gds t: (5.7)
Since X0 = x2I( ), Lemma 5.3.1 gives As = 1 for s > 0, so  t = 0 a.s. which
implies Xt = x a.s. Further,  t = Rt0  2(Xs)ds = 0 a.s. and so x2Z( ). 2
In Theorem 5.3.1 we have just proved that a stochastic di erential equation
dXt =  (Xt)dBt has a necessary and su cient condition for weak existence. We now
prove a necessary and su cient condition for uniqueness in law.
Theorem 5.3.2 For every initial distribution  , the stochastic di erential equa-
tion dXt =  (Xt)dBt has a solution which is unique in law i I( ) = Z( ), where
I( ) is given by (5.3) and Z( ) by (5.4) in Theorem 5.3.1.
Proof. By Theorem 5.3.1, I( ) Z( ) is the su cient condition for a solution to
exist. So we must assume I( )  Z( ) in order to have a solution. To show that
I( ) = Z( ) is necessary for uniqueness in law, we will prove the contraposition which
is that if I( ) is a proper subset of Z( ) we can create solutions that are not unique
in law. To this end, let I( )  Z( ) and x2Z( )nI( ). We can create a solution,
as we did in Theorem 5.3.1, X = Y t where Y is a Brownian motion starting at x.
And  t = inffs> 0;As >tg for t 0 with As = Rs0   2(Yr)dr for s 0.
To create another solution to the SDE, we let ^Xt x, which is a solution since
x2Z( ).
Both solutions X and ^X have the same initial distribution  . However they are
not equal in distribution. The solution ^X is constant. For the solution X, since
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x =2I( ) we have As <1 a.s. for s> 0 by Lemma 5.3.1. So by de nition  t > 0 a.s.
for t> 0. So X as a time-changed Brownian motion is a.s. not constant. So X and
^X are not unique in law.
Now we show that I( ) = Z( ) is a su cient condition for uniqueness in law.
Once again, since Theorem 5.3.1 requires I( ) Z( ) for the existence of a solution,
we only need to show I( ) Z( ) is su cient for uniqueness in law.
Let I( )  Z( ) and let X be a solution to the SDE with initial distribution
 . Again Xt = Y t, where Y is a Brownian motion with initial distribution  and
 t = Rt0  2(Xs)ds for t  0. De ne again As = Rs0   2(Yr)dr for s  0, and S =
infft 0;Xt2I( )g. Now  S = R = inffr 0;Yr2I( )g. Since S is the  rst time
Xt is in I( ) and since I( ) Z( ), then before time S, X is not in either set, and
so, referring back to our argument (5.5), we have for t S
A t =
Z  t
0
  2(Yr)dr
=
Z t
0
1f 2(Xs) > 0gds = t:
We also know that As = 1 for s R by Lemma 5.3.1, and so the argument (5.5)
implies  t  R a.s. for all t. So  is constant after time S. Now we can once again
de ne  t = inffs> 0;As >tg for t 0. This shows that  is a measurable function
of Y. Furthermore, since Xt = Y t, X is a measurable function of Y. Since Y is a
Brownian motion with initial distribution  , we know the distribution of Y. Since we
can do the same thing for any solution X, they all must have distributions determined
by  . This proves uniqueness in law. 2
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