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Abstract

All graphs in this paper are finite and simple. Let G = (V,E) be a graph, x ∈ V and

S ⊆ V . Following convention, we let N(x) := {u : ux ∈ E} and N [x] := {x} ∪ N(x). For

S ⊆ V , N(S) := ∪x∈S N(x), and N [S] = N(S) ∪ S. Security in graphs was first defined

by Brigham, Dutton, and Hedetniemi in 2007 (BDH), [1]. Given a graph G = (V,E) an

attack on S = {s1, s2, ..., sk} ⊆ V is defined to be a collection of pairwise disjoint sets

A = {A1, A2, ..., Ak} for which Ai ⊆ N [si] − S, 1 ≤ i ≤ k. A defense of S is a collection of

pairwise disjoint sets D = {D1, D2, ..., Dk} such that Di ⊆ N [si] ∩ S, 1 ≤ i ≤ k. An attack

A is defendable if there is a defense D such that|Di| ≥ |Ai| for 1 ≤ i ≤ k. We say that D

defends against A, in this case. S is secure if there is a defense of S against every attack

on S.

In Chapter 2 we give an efficient algorithm for finding a defense against an attack, when

one exists. In Chapter 3 we give some fundamental results about secure-dominating sets in

graphs, and determine the minimum order of a secure-dominating set in paths, cycles, and

complete multipartite graphs. In Chapter 4 we give efficient tests for the security of S when

G[S], the subgraph of G induced by S, satisfies certain conditions.
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Chapter 1

Introduction

All graphs in this paper are finite and simple. Let G = (V,E) be a graph, x ∈ V and

S ⊆ V . Following convention, we let N(x) := {u : ux ∈ E} and N [x] := {x} ∪ N(x). For

S ⊆ V , N(S) := ∪x∈S N(x), and N [S] = N(S) ∪ S. The graph G may be indicated by the

subscript, NG, if this is not clear by the context.

Security in graphs was first defined by Brigham, Dutton, and Hedetniemi in 2007,

[1]. Given a graph G = (V,E) an attack on S = {s1, s2, ..., sk} ⊆ V is defined to be a

collection of pairwise disjoint sets A = {A1, A2, ..., Ak} for which Ai ⊆ N [si]− S, 1 ≤ i ≤ k.

A defense of S is a collection of pairwise disjoint sets D = {D1, D2, ..., Dk} such that

Di ⊆ N [si] ∩ S, 1 ≤ i ≤ k. An attack A is defendable if there is a defense D such that

|Di| ≥ |Ai| for 1 ≤ i ≤ k. We say that D defends against A, in this case. Thus each vertex

in N [S]−S can attack only one of its neighbors in S, and each vertex in S can defend itself

or one of its neighbors in S. The set S is defined to be secure if for every attack A on S

there exists a defense D of S which defends against A. The following theorem is from the

2007 paper Security in Graphs, by Brigham, Dutton, and Hedetniemi, [1].

Theorem 1.0.1. (Brigham, Dutton, and Hedetniemi 2007; see also [5])- A set S ⊆ V (G)

is secure in G if and only if for any X ⊆ S, |N [X] ∩ S| ≥ |N(X)− S|.

They also define the security number of a graph G as s(G) := min{|S| : S is a secure

set in G}. Some results and unsolved questions about the security of a set S in a graph can

be found in [1], [2], and [6]. In the subsequent chapters we will continue to delve into the

topic of security. In particular, we will, in Chapter 2, be examining how to algorithmically

find a sufficient defense D of S, if one is possible, given an attack A. In Chapter 3, we will
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examine the relationship between ideas found in the fields of graph security and domination

theory. The contents of Chapter 3 are largely the same as the contents of [6]. In Chapter 4,

we will look at efficient tests for security of sets S ⊆ V (G) when G[S], the subgraph of G

induced by S, satisfies certain conditions.
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Chapter 2

Hall’s Theorem and Security

In this chapter we consider cases where the set S ⊆ G is secure. We will consider two

versions of a therorem that was first provided by Pillip Hall in 1935, and determine how

the appliciation of the idea of Hall’s Theorem along with specific algorithms can be used to

successfully find a defense D to a given attack A on the set S, if there exist such a D.

2.1 Definitions

Definition 2.0.2. Given a graph G = (V,E), a matching M in G is a set of pairwise

non-adjacent edges, meaning no two edges in M share a common vertex.

Definition 2.0.3. A vertex v is matched by a matching M , or saturated by M , if it is an

endpoint of an edge contained in the matching M . Otherwise the vertex v is unmatched or

unsaturated by M .

Definition 2.0.4. A bipartite graph G = (V,E) is a graph in which the vertex set V is

partitioned into two disjoint subsets X and Y where every edge e ∈ E has exactly one vertex

in X and one in Y .

Definition 2.0.5. A maximal matching is a matching M in a graph G with the property

that M is not properly contained in another matching in G.

Definition 2.0.6. A maximum matching in a graph is a matching in the graph such that

no other matching in the graph has more edges than M .

Definition 2.0.7. The set S ⊆ V (G) is secure in G if every attack on S is defendable.

Definition 2.0.8. The set S ⊆ V (G) is ultra− secure in G if there exists a single defense

which defends against every attack on S.
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Definition 2.0.9. The security number of a graph G is s(G) := min{|S| : S is a secure

set in G}.

Definition 2.0.10. A system of distinct representatives (SDR) for a sequence of ( not

necessarily distinct) sets S1, S2, ..., Sm is a sequence of distinct elements x1, x2, ..., xm such

that xi ∈ Si for all i = 1, 2, ...,m.

Theorem 2.0.11. (Hall’s Theorem for Bipartite Graphs)- A bipartite graph G with biparti-

tion X,Y (with X finite) has a matching which saturates X iff |N(A)| ≥ |A| for all subsets

A of X.

Theorem 2.0.12. (Hall’s Theorem for an SDR, 1935, [3])-There exists a system of dis-

tinct representatives for a family of sets S := {S1, S2, ..., Sm} iff for every J ⊆ {1, ...,m},

|∪j∈JSj| ≥ |J |.

The second of the two theorems just above is the original theorem of Phillip Hall [3]

and Theorem 2.0.11 is an ”equivalent” version that emerged, we are not sure exactly when.

For the purposes if this chapter it will be useful to understand the connection between

the two forms, because such an understanding will show how to form systems of distinct

representatives by finding maximum matchings in bipartite graphs. We can then exploit

an essential insight in the paper by Isaak, Johnson, and Petrie [5] to see that finding a

defense against an attack, if there is one, can be achieved by finding a system of distinct

representatives. Therefore, finding a defense against an attack (if there is one!) can be

achieved by finding a maximum matching in a bipartite graph, and there are excellent and

efficient algorithms for that task.

On the connection between the two forms of Hall’s Theorem, first note that the ”only

if” statements are both quite clear. If a bipartite graph with bipartition X, Y has a matching

M which saturates X, then for any A ⊆ X, N(A) contains {v ∈ Y |uv ∈M for some u ∈ A},

a set of size |A| because M is a matching which saturates A ⊆ X, and so |N(A)| ≥ |A|. If
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S1, ..., Sm are sets with a system of distinct representatives x1, ..., xm, and J ⊆ {1, ...,m},

then ∪j∈JSj contains {xj|j ∈ J}, a set of size |J | because the xj are distinct, and therefore

|∪j∈JSj| ≥ |J |.

Suppose the ”if” assertion, i.e., the ”backwards” implication, of Theorem 2.0.11 holds.

We will show that the backwards implication of Theorem 2.0.12 holds. This connection is

particularly important for the purpose of this chapter.

Suppose that S1, ..., Sm are sets, and for every J ⊆ {1, ...,m}, |∪j∈JSj| ≥ |J |. Make a

bipartite graph G with bipartition

X = {1, ...,m}

Y = ∪mi=1Si.

Let x ∈ X and y ∈ Y be adjacent in G if and only if y ∈ Sx.

Now, if A ⊆ X then,

|N(A)| = |∪x∈ASx| ≥ |A|,

by the assumption above, with A replacing J . Therefore, by the assumption that

Theorem 2.0.11 holds, there is a matching M in G which saturates X. For x = 1, ...,m

let yx ∈ Y be such that xyx ∈ M . Then becuase M is a matching, y1, ..., ym consitute a

system of distinct representatives of S1, ..., Sm. Thus Theorem 2.0.12 holds.

Now suppose that Theorem 2.0.12 holds. Suppose that G is a bipartite graph with

bipartition X, Y , with |X| < ∞, and suppose that for all A ⊆ X, |N(A)| ≥ |A|. Now take

the view that X is a finite index set, and consider the indexed collection [N(x);x ∈ X].

Because, for any A ⊆ X,

|∪x∈AN(x)| = |N(A)| ≥ |A|,
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by assumption, we see that the condition in Theorem 2.0.12 holds, with X replacing

{1, ...,m} and the sets N(x), x ∈ X, replacing the Sj, j ∈ {1, ...,m}. (The role of the generic

subset J ⊆ {1, ...,m} is played by A ⊆ X.) Therefore, because Theorem 2.0.12 is assumed

to be true, there is an indexed collection [y(x);x ∈ X] such that for all x ∈ X, y(x) ∈ N(x)

and if x, x′ ∈ X, x 6= x′ implies y(x) 6= y(x′). (In other words, the y(x), x ∈ X, are distinct.)

Then M = {xy(x)|x ∈ X} is a matching in G which saturates X. Thus the ”if” assertion in

Theorem 2.0.11 holds. Therefore, Theorems 2.0.11 and 2.0.12 are ”equivalent.”

The next result is a useful generalization of the original version of Hall’s Theorem which

replaces a ”system of distinct representatives” with a ”system of pairwise disjoint subsets”

with prescribed cardinalities. Perhaps first noticed by Rado [6] and then, independently, by

Halmos and Vaughan [3], the result, which we will sometimes refer to as the HRHV theorem,

is an easy consequence of Hall’s Theorem; on the other hand , Hall’s Theorem in its original

form, Theorem 2.0.12, is clearly the special case ki = 1, i = 1, ..., n, of the HRHV theorem.

The proof of Theorem 2.0.13 will be given in detail, since it shows how to reduce the

problem of finding pairwise disjoint subset representatives of given sets to finding a system

of distinct representatives of another list of sets, and that is exactly what we need in order

to algorithmize the contruction of defenses against attacks.

Theorem 2.0.13. (HRHV, [4],[7])- Suppose A1, ..., An are sets, and k1, ..., kn are non-

negative integers. Then ∃ B1, ..., Bn, pairwise disjoint, such that for i = 1, ..., n, Bi ⊆ Ai

and |Bi| = ki , if and only if for each ∅ 6= J ⊆ {1, ..., n}, |∪j∈JAj| ≥
∑

j∈J ki.

Proof. ⇒: Suppose that Bi ⊆ Ai, |Bi| = ki i = 1, ..., n, and B1, ..., Bn are pairwise disjoint.

Suppose that ∅ 6= J ⊆ {1, ..., n}. Then

|∪j∈JAj| ≥ |∪j∈JBj| =
∑

j∈J |Bj| (because the Bj are pairwise disjoint)

=
∑

j∈J kj

⇐: (From Hall’s Theorem)- Make a new list of sets, repeating each Ai, ki times :
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A1, ..., A1, k1 times

A2, ..., A2, k2 times

:

:

An, ..., An, kn times

Assume that for all ∅ 6= J ⊆ {1, ..., n}, |∪j∈JAj| ≥
∑

j∈J kj. By Hall’s Theorem, there

is a system of distinct representatives of the sets in this list if, for each selection of sets from

the list, or array, the number of elements in the union of those sets is at least the number of

selections made.

Take a sub array and let J = {j ∈ {1, ..., n}| at least one Aj has been selected}. Then

the cardinality of the union of the selected sets is equal to |∪j∈JAj| ≥
∑

j∈J kj ≥ number

of places in the sub array. We conclude by Hall’s Theorem that this list admits a system of

distinct representatives.

Collect the k1 representatives of A1 together into a set B1 ⊆ A1, |B1| = k1, collect the

k2 representatives of A2 into B2, etc.

B1, ..., Bn are pairwise disjoint sets satisfying Bj ⊆ Aj, |Bj| = kj, j = 1, ..., n.

Given finite sets A1, ..., An and non-negative integers k1, ..., kn to algorithmically find

B1, ..., Bn satisfying the conclusion of Theorem 2.0.13, if such Bi exist, we make a bipartite

graph, as in Figure 2.1.

A matching in this graph which saturates the left hand side will determine B1, ..., Bn.

Such a matching will be a maximum matching in the graph, and if such a matching exists,

then every maximum matching will saturate the left hand side of the graph.

There are at least two good algorithms for finding a maximum matching in a bipartite

graph. We describe the simplest, the augmenting path algorithm, which can be used to find

maximum matchings in any graph, not only bipartite graphs, in Appendix A.

Now we are ready to decribe an algorithm for finding a defense, when there is one,

aganist an attack on a set S of vertices in a graph G. Suppose S = {s1, ..., sm}, and suppose
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that si is being attacked by ai attackers from N(si)\S, i = 1, ...,m. A defense against this

attack would consist of a list of pairwise disjoint sets D1, ..., Dm

satisfying:

(i) Di ⊆ N [si] ∩ S, i = 1, ...,m, and

(ii) |Di| ≥ ai

A1

A1 ...
A1

A2
...

A2
......

......

...

Ai

An

An

.........

...

...

...

...

x
x ∈ Ai

k1

k2

ki

kn

Figure 2.1: Note that the RHS is the ∪n
i=1Ai

Each Di is the set of vertices to be assigned to defend si, whence (i) and (ii). The Di

must be pairwise disjoint because no vertex in S is allowed to defend more than one vertex

in S.

Clearly, If we can find pairwise disjoint D1, ..., Dm satisfying (i) and (ii) then we can

find such Di satisfying (ii) with equality. So now we are in the situation dealt with in the

HRHV theorem, with the ai here playing the roles of the ki there and the sets N [si] ∩ S

8



playing the roles of the Ai, and with the sought for disjoint subset representatives denoted

D1, ..., Dm rather than B1, ..., Bn.

Now, by the thread of thought that runs from the proof of the HRHV theorem back

through the original (SDR) form of Hall’s Theorem to the ”bipartite graph” equivalent

theorem, we see that we need not pause over the question of whether or not D1, ..., Dm can

be found. We can simply set out to find D1, ..., Dm by finding a maximum matching in a

certain bipartite graph; if a maximum matching in that bipartite graph saturates one side

of the bipartition, then we can read off the Di from the matching. Otherwise, there is no

defense against the attack.

We form a bipartite graph as follows. Let U1, ..., Ut, t =
∑m

i=1 ai, be a list of sets

obtained by repeating each set N [si]∩S ai times, i = 1, ...,m. Let one side of the bipartition

be X = {u1, ..., ut}. The uj are meant to represent, or correspond to, the Uj. Let the other

side be S, but let’s call it Y , for the moment. Now we declare that uj ∈ X and y ∈ Y are

adjacent in this bipartite graph if and only if y ∈ Uj.

There is a defense against the attack if and only if D1, ..., Dm (pairwise disjoint, Dj ⊆

N [sj]∩S, and |Dj| = aj, j = 1, ...,m) exist, and the Dj exist if and only if there is a matching

in this bipartite graph which saturates X; finally, a matching in the bipartite graph can have

no more than |X| edges, and that many only if it saturates X. So the way is clear: run the

algorithm, let it find a maximum matching, and if that maximum matching does not saturate

X, then all is lost. There is no defense against this attack. Otherwise, if X is saturated, then

we can form the Dj using the matching as described in the proof of the HRHV theorem.

Example: Let G be the graph in Figure 2.2, with S = {s1, ..., s11} ⊆ V (G) under

attack, as indicated. (S is, in fact, secure in G, but we do not need to know that to find a

defense against this attack.) By inspection, the numbers a1, ..., a11 of attackers of s1, ..., s11,

repectively, are a1 = 1 = a2 = a3 = a4, a5 = 0, a6 = 2, a7 = 1, a8 = 0, a9 = 2, a10 = 1,

a11 = 0. We form a bipartite graph as prescribed previously, with this convention: when
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s1

s11

s5

s8

s2

s3

s4

s6

s7

s9

s10

G

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 2.2: G = P7�P3

ai = 1, the vertex on the left side associated with N [si]∩ S will be ui, and when ai = 2, the

two vertices associated with N [si] ∩ S will be ui1 and ui2 This graph appears in Figure 2.3.

To find a defense against this attack, we first find a maximal matching in the graph

in Figure 2.3, which happens to be not maximum, and proceed from there to a maximum

matching, using the augmenting path algorithm. In Appendix B we perform this process

on Figure 2.3 resulting in a saturation of the vertex set of left-hand side the graph, and;

therefore, producing a maximum matching in the graph. The successful defense is given in

Appendix B.

An Open Problem

What if there is no successful defense against an attack? In that case, we might wish

to make the best of a bad situation by finding a defense which maximizes the number of

survivors, elements of S that have at least as many defenders as attackers.

10



s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

S

u1

u2

u3

u4

u6,1

u6,2

u7

u9,1

u9,2

u10

Figure 2.3: The bipartite graph produced from G, with a maximal matching chosen greedily.

More generally, the elements of S may be assigned positive weights beforehand, indicat-

ing the importance of their survival to the S tribe, and we would then wish to find a defense

which maximizes the sum of the weights of the survivors. Simply maximizing the number of

survivors corresponds to the weighted problem with all assigned weights the same.

We can solve such a problem, given an attack on S, by forming a bipartite graph as

above and comparing all possible defenses corresponding to all possible maximum matchings

in that graph. But that is not efficient. The sun may go nova before we are done and the

attack will have happened.
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Chapter 3

Secure-dominating sets In Graphs

3.1 Definitions

Definition 3.0.14. In a graph G, a set S ⊆ V (G) is a dominating set in G if every vertex

in G not in S has a neighbor in S.

Definition 3.0.15. The domination number of G is γ(G) := min{|S| : {S is a dominating

set of G}

Definition 3.0.16. A secure−dominating set in G is a set S ⊆ V (G) that is both a secure

set in G and also a dominating set in G.

Definition 3.0.17. The secure − domination number of G is γs(G) := min{|S| : {S is a

secure-dominating set in G}.

Definition 3.0.18. A connected secure − dominating set in a connected graph G is a

secure-dominating set S ⊆ V (G) which induces a connected subgraph of G.

Definition 3.0.19. The connected secure− domination number of a connected graph G is

γcs(G) := min{|S| : {S is a connected secure-dominating set of G}.

Theorem 3.0.20. (Brigham, Dutton, and Hedetniemi 2007; see also [5])- A set S ⊆ V (G)

is secure in G if and only if for any X ⊆ S, |N [X] ∩ S| ≥ |N(X)− S|.

Notation: The n − cube, Qn, is the simple graph whose vertices are the n-tuples with

entries in {0, 1} and whose edges are the pairs of n-tuples that differ in exactly one position.

The path and cycle on n vertices will be denoted Pn and Cn, respectively. These are standard

notations. For other standard notations (Kn, Km,n, etc) see almost any graph theory text;

12



for instance, Introduction to Graph Theory by Douglas West. As in that text, we will let

� denote the Cartesian product.

Proposition 3.0.21. For any G, γs(G) ≥ |V (G)|
2

.

Proof. Suppose that X ⊆ S is a secure-dominating set in G, and let n = |V (G)|. Let X = S

in Theorem 3.0.20:

|S| ≥ |N(S)− S| = |V (G)− S| (because S is dominating)

= |V (G)| − |S|

⇒ 2 |S| ≥ n

⇒ |S| ≥ n
2

Corollary 3.0.22. Suppose that S ⊆ V (G), S is dominating in G, each v ∈ S is adjacent

to at most one vertex in V (G)\S, and |S| = d |V (G)|
2
e. Then S is a secure-dominating set in

G, and γs(G) = d |V (G)|
2
e.

Proof. In view of Proposition 3.0.21, it suffices to show that S is secure. In fact, S is ultra-

secure: let each vertex of S defend itself. This defense will defend against any attack.

Corollary 3.0.23. For n ≥ 2, γs(Qn) = γcs(Qn) = 2n−1.

Proof. The claim clearly holds for n = 2. For n > 2, Qn = Qn−1 � Q2 = Qn−1 � K2, a

graph formed by joining two copies of Qn−1 by a (perfect) matching. Letting S be the vertex

set of either copy of Qn−1, the conclusion follows from Corollary 3.0.22, and the additional

observation that Qn−1 is connected.

Corollary 3.0.24. If G is the Petersen graph then γs(G) = γcs(G) = 5.

Proof. Let S be the vertex set of one of the obvious 5-cycles in the usual drawing of the

Petersen graph.

13



Proposition 3.0.25. γs(Km,n) = γcs(Km,n) = dm+n
2
e.

Proof. Let Km,n have bipartition A and B with |A| = |m| , |B| = |n|. We may as well

suppose that m ≤ n. Since, by Proposition 3.0.21, γs(Km,n) ≥ dm+n
2
e, to prove the claim

of this proposition it suffices to find S ⊆ A ∪ B, secure and dominating, with |S| = dm+n
2
e.

The main idea is to form S by taking about half of the vertices of A, and about half of the

vertices of B.

Cases:

(1) If m and n are both even, take m
2

vertices of A and n
2

vertices of B for S.

(2) If m is even and n is odd, take m
2

vertices of A and dn
2
e vertices of B for S.

(3) If m is odd and n is even, take dm
2
e vertices of A and n

2
vertices of B for S.

(4) If m and n are odd, take dm
2
e vertices of A and bn

2
c vertices of B for S.

In every case, S is dominating and connected. We verify that S is secure by applying

Theorem 3.0.20. Let S1 = S ∩A, S2 = S ∩B. Suppose that ∅ 6= X ⊆ S and let X1 = X ∩A,

X2 = X ∩B. If both X1 and X2 are non-empty then N(X)− S = (A ∪B)\S so,

|N(X)− S| = bm+n
2
c, while

|N [X] ∩ S| = |S| = dm+n
2
e ≥ |N(X)− S|.

If X = X1 then |N(X)− S| = |B − S2|, while |N [X] ∩ S| = |X| + |S2|. Since |S2| ≥

|B − S2| − 1 in every case, and X = X1 6= ∅, it follows that |N [X] ∩ S| ≥ |N(X)− S|. If X

= X2, the conclusion |N [X] ∩ S| ≥ |N(X)\S| is achieved similarly.

Proposition 3.0.26. Suppose that r ≥ 3 and that n1, ..., nr are all positive integers. Then

γs(Kn1,...,nr) = γcs(Kn1,...,nr) = dn1+...+nr

2
e
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Proof. The proof will be on the model of the proof of Proposition 3.0.25. It suffices to

exhibit a connected secure-dominating set S ⊆ V (G), G = Kn1,...,nr with |S| = dn
2
e, where

n = n1 + ... + nr. It will be straightforward to present such a set; showing that it is secure

will use Theorem 3.0.20. It will be obvious that it is connected and dominating.

Let V1, ..., Vr be the parts of G, with |Vi| = ni, i = 1, ..., r. Let I := {i ∈ {1, ..., r} : {ni

is odd} and J = {1, ..., r}\I. Form S as follows; For j ∈ J , put
nj

2
vertices of Vj in S; for

d |I|
2
e values of i ∈ I for which ni is smallest, put dni

2
e vertices of Vi in S, and for the other

values of i ∈ I, put bni

2
c vertices of Vi in S. Then |S| = dn

2
e, and S is clearly connected and

dominating.

Let Si = S ∩ Vi, i = 1, ..., r. Suppose ∅ 6= X ⊆ S. Let Xi = X ∩ Si, i = 1, ..., r. Let

U := {i ∈ {1, ..., r} : Xi = ∅}. If

r − |U | ≥ 2 then

|N [X] ∩ S| = |S|

= dn
2
e ≥ bn

2
c

= |N(X)\S| .

(Noting that N(X) = N [X] = V (G), in this case.)

Otherwise, Xi = ∅ except for one value of i, call it j. Then N(X) = V (G)\Vj, N [X] =

(V (G)\Vj) ∪Xj. Therefore,

|N [X] ∩ S| = |(S\Sj) ∪Xj| =
∑
i 6=j

|Si|+ |Xj| ≥
∑
i 6=j

|Vi\Si| = |N(X)\S|;

the last inequality holds because for each j ∈ {1, ..., r}, ∑
i 6=j

|Si| ≥
∑
i 6=j

|Vi\Si| − 1, and

|Xj| ≥ 1.

Proposition 3.0.27. (a) If n ≥ 1, γs(Pn) = dn
2
e; for n ≤ 5, γcs(Pn) = γs(Pn), and for

n ≥ 6, γcs(Pn) = n− 2.

(b) If n ≥ 3, γs(Cn) = dn
2
e unless n ≡ 2 (mod 4), in which case γs(Cn) = n

2
+1; if 3 ≤ n ≤ 6,

γcs(Cn) = γs(Cn), and if n > 6, γcs(Cn) = n− 2.
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Proof. If a set of vertices on either a path or a cycle contains a vertex with two neighbors,

neither of which are in the set, then the set is not secure. Conversely, if a set of vertices

on either a path or a cycle induces a union of subpaths of lengths ≥ 1, or a union of such

subpaths together with one or both of the end vertices, in the case of a path, then that set

is secure. Finding such a set which is also dominating, with dn
2
e vertices, in either Pn or Cn,

except in the case of Cn when n ≡ 2 (mod 4), is an easy exercise; we illustrate by indicating

a minimum secure-dominating set in P6.

Figure 3.1: Example of a minimum secure-dominating set in P6.

In the case of Cn, n = 6, 10, 14, ..., since n
2

is odd, and a minimum secure-dominating

set in Cn must induce a union of paths of lengths ≥ 1, with at most two vertices between

two successive subpaths, you just cannot find such a set with n
2

vertices, but you can find

such a set with n
2

+ 1 vertices. We leave the verification to the reader. The claims about γcs

are obvious.

Proposition 3.0.28. If G and H are finite simple graphs, then γs(G�H) ≤ γs(G) · |V (H)|.

Proof. Let S ⊆ V (G) be a secure-dominating set in G such that |S| = γs(G), and consider

the set S×V (H) ⊆ V (G�H). Obviously S×V (H) is dominating in G�H, so if it is secure

in G�H, then

γs(G�H) ≤ |S × V (H)| = γs(G) |V (H)|.

Consider an attack in G�H on S×V (H). A vertex (u,w) ∈ S×V (H) has, for neighbors

outside of S × V (H), only vertices (v, w), v ∈ V (G)\S. Consequently, we can think of this

attack as consisting of |V (H)| possibly different attacks on S in G, one for each w ∈ V (H).

For each of these attacks we can defend S with a defense D(w) = [Du(w);u ∈ S]; taking the
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”union” of these defenses, by letting (u,w), u ∈ S, w ∈ V (H), be defended by Du(w)×{w},

gives a defense of S × V (H) against the attack.

Corollary 3.0.29. If γs(G) = |V (G)|
2

, then for every finite simple H, γs(G�H) = |V (G�H)|
2

.

So, in the cases of P2k, K2k, and C4k, the secure-domination number of their Cartesian

products with any other finite simple graph is as small as possible, in accord with Proposi-

tion 3.0.21. We conjecture that for odd m and n,

γs(Pm�Pn) = dmn
2
e, and even that for odd m,n ≥ 3, γcs(Pm�Pn) = dmn

2
e,

but we are not ready to prove this, as yet. And the connected secure domination numbers

of the other Cartesian products among the paths, cycles and complete graphs of odd order

(or of order ≡ 2 (mod 4), for the cycles) we leave as open questions.
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Chapter 4

Tests For the Security of S When G[S] Satisfies Certain Conditions

In this Chapter we will find efficient tests for security of sets S ⊆ V (G) when G[S],

the subgraph of G induced by S, is the complement of a forest. The theorem by Brigham,

Dutton, and Hedetniemi in 2007 (BDH), [1], will assist us in this endeavor, and help us to

provide some interesting results for testing for security of sets S.

We restate Theorem BDH for the reader’s convenience.

Theorem 4.0.30. (Brigham, Dutton, and Hedetniemi 2007; see also [5])- A set S ⊆ V (G)

is secure in G if and only if for any X ⊆ S, |N [X] ∩ S| ≥ |N(X)− S|.

The straightforward test for security in G of a set S ⊆ V (G) given by Theorem BDH

potentially requires the performance of 2|S| − 1 tasks, one task for each non-empty subset

X of S: count the vertices in N [X] ∩ S and count the vertices in N(X) − S, and compare

the counts. Each task is easy to perform if G is described by an adjacency matrix A, form

B = A + I, where I is the V (G) × V (G) identity matrix. Given X ⊆ S ⊆ V (G), to count

N [X] ∩ S, count the columns of B indexed by elements of S which have a 1 in at least on

row indexed by an element of X, and to count N(X)− S, count the columns of B indexed

by V (G)− S which have at least one 1 in a row indexed by an element of X.

4.1 Definitions

Definition 4.0.31. A tree is a simple graph G that satisfies any of the following equivalent

conditions:

(i) G is connected and has no cycles.

(ii) G has no cycles, and a simple cycle is formed if any new edge is added to G.
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(iii) G is connected, but is not connected if any single edge is removed from G.

(iv) Any two vertices in G are connected in G by a unique simple path.

Definition 4.0.32. The degree in G of a vertex v of a graph G is the number of edges of

G which touch v; the degree of v is denoted deg(v) or dG(v).

Definition 4.0.33. A forest is a disjoint union of trees.

Definition 4.0.34. A leaf in a graph is a vertex of degree 1.

Definition 4.0.35. A clique in a simple graph G = (V,E) is a complete subgraph of G, a

subgraph in which any two distinct vertices are adjacent.

Definition 4.0.36. The maximum degree of a graph G is the largest vertex degree of G,

denoted 4(G).

Proposition 4.0.37. Suppose that X ⊆ S ⊆ V (G) and that

(i) |S| ≥ |N(S)− S|, and

(ii) X is dominating in G[S].

Then |N [X] ∩ S| ≥ |N(X)− S|.

Proof. Let H = G[S]. Then N [X] ∩ S = NH [X] = |S|, since X is dominating in H.

Therefore,

|N [X] ∩ S| = |S| ≥ |N(S)− S| ≥ |N(X)− S|.

Corollary 4.0.38. Suppose that ∅ 6= S ⊆ V (G). Then testing S for security in G requires

inspecting, at most, the neighbor sets of S itself and the non-empty subsets of S which are

not dominating in G[S].
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Corollary 4.0.39. Suppose that ∅ 6= S ⊆ V (G), and a is a non-negative integer, a < |S|,

such that all sets X ⊆ S satisfying |X| > a are dominating in G[S]. Then testing S for

security in G requires inspecting, at most, 1 +
∑a

k=1

(|S|
k

)
subsets of S, namely, S itself and

the non-empty subsets of S of cardinality ≤ a.

Corollary 4.0.40. Suppose that ∅ 6= S ⊆ V (G). Then testing S for security in G requires

inspecting, at most, 1+
∑4(G[S])

k=1

(|S|
k

)
subsets of S, namely, S itself and the non-empty subsets

of S of cardinality ≤ 4(G[S]).

Proof. Let H = G[S] and a = 4(H). By the preceding corollary, it suffices to show that

any X ⊆ S satisfying |X| > a is dominating in H. If v ∈ V (H) = S is not in X and is not

adjacent to any x ∈ X, then dH(v) ≥ |X| > a = 4(H), which is impossible. Therefore, any

X ⊆ S satisfying |X| > a is dominating in H = G[S].

For instances: If S ⊆ V (G) and G[S] is a matching plus isolates, then the last corollary

says that the security of S can be checked by verifying the BDH inequality for |S|+1 subsets

of S, S itself and its singleton subsets. And if G(S) is a disjoint union of paths, not all single

edges or isolates, then 4(G(S)) = 2 and the security of S in G can be verified (or falsified)

by checking the BDH inequality for no more than
(|S|

2

)
+ |S|+ 1 subsets of S.

But in these two cases, even though the number of tasks we may have to perform to

certify or disqualify S as a secure set in G is polynomial in |S|, it still may be much more

than we have to do. In the case where G[S] is a matching plus isolates, any vertex in S

not saturated by the matching is dominating in G[S], and so will not have to be checked

for satisfaction of the BDH inequality (assuming that S itself has already passed the BDH

test, |S| ≥ |N(S)− S|). Similarly, when G[S] is a disjoint union of paths, inculding paths of

length 0, those isolates in G[S] will be dominating in G(S), and so will numerous doubleton

subsets of S.

Proposition 4.0.41. Suppose that H is a finite simple graph, u, v ∈ V (H), u 6= v, and

either
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(i) uv ∈ E(H) and NH(u) ∩NH(v) = ∅, or

(ii) distH(u, v) > 2.

Then {u, v} is dominating in H.

Proof. In case (i), since no w ∈ V (H)\{u, v} is adjacent to both u and v in H, then each

such w must be adjacent to at least one of u and v in H. In case (ii), distH(u, v) > 2 again

implies that NH(u) ∩ NH(v) = ∅, and the conclusion that NH [{u, v}] = V (H) follows as in

the first case.

Theorem 4.0.42. Suppose that S ⊆ V (G), and that G[S] is a forest. Then the security of

S in G is implied by the truth of the BDH inequality |N [X] ∩ S| ≥ |N [X]− S| for

(1) X = S;

(2) X = {v} for all v ∈ S which is not isolated in G[S]; and

(3) X = NH(v) for all v ∈ S which is not isolated in G[S].

Proof. Let H = G[S]. Since H is a forest, H is triangle free. Therefore, by Propositioin

4.0.41, if u, v ∈ V (H) = S are adjacent in H, or at distance > 2 from each other in H

(note: if u and v lie in different components of H then distH(u, v) = ∞ > 2), then {u, v}

is dominating in H. Also, if v is isolated in H then v is dominating in H. Therefore, by

Proposition 4.0.37, if X = S satisfies the BDH inequality |N [S] ∩ S| = |S| ≥ |N(S)− S|

(where N = NG), then the only non-empty sets X ⊆ S that might possibly fail to satisfy the

BDH inequality |N [X] ∩ S| ≥ |N(X)− S| are either singleton sets v where v is not isolated

in H or sets X ⊆ S such that |X| ≥ 2 and each pair of distinct vertices in X are at distance

2 from each other in H. Let us call these latter subsets X distance 2 simplices in H.

Suppose that X ⊆ NH(v) for some v ∈ S and |X| ≥ 2. For x, y ∈ X, x 6= y, x cannot

be adjacent in H to y, nor to any other neighbor of y then v, because H contains no cycles.

Therefore, in H, x is adjacent to every vertex of S that y is not adjacent to , and to y itself,

and the same holds with the roles of x and y reversed. Thus

21



S − {v} = NH [{x, y}] ⊆ NH [X] ⊆ NH [NH(v)] ⊆ S − {v}.

Consequently, if Y = NH(v) satisfies the BDH inequality,

|NH [Y ]| = |NG[Y ] ∩ S| ≥ |NG(Y )− S|, then

|S| − 1 = |S − v| = |NH [X]| = |NG[X] ∩ S| = |NH [Y ]| ≥ |NG(Y )− S| ≥ |NG(X)− S|.

Therefore, if Y = NH(v) satisfies the BDH inequality for every v ∈ S which is not isolated in

H, then every X ⊆ NH(v) for some v ∈ S such that |X| ≥ 2 will satisfy the BDH inequality.

Consequently, we can finish the proof by showing that each distance two simplex in H is a

subset of NH(v) for some v ∈ S.

Suppose that X is a distance 2 simplex in H. If x, y ∈ X, x 6= y, then distH(x, y) = 2

implies that x and y have a common neighbor in H, say v. Now, x and y can have no other

common neighbor than v in H, because H contains no cycle. If z ∈ X\{x, y}, then x and z

have a unique common neighbor in H, say u, and y and z have a unique common neighbor

in H say w. If u, v, w are distinct then H contains a 6-cycle , and if two of them are equal

but not equal to the third, then H contains a 4-cycle. Since H contains no cycle, u = v = w.

Then the common neighbor in H, v, of x and y is also the common neighbor in H of x

and any other vertex in X. Consequently, X ⊆ NH(v).

So, if S ⊆ V (G) and G[S] is a forest, the number of sets X ⊆ S to check for satisfaction

of the BDH inequality, to verify the security of S, is no greater than 2 |S|+ 1, considerably

smaller than 2|S| − 1. This is not surprising, since G[S] must be a very edge-dense graph to

have such a sparse complement, but it is still nice to have this reduction in complexity, and

to know exactly which sets X ⊆ S to check.

We owe this simplification of the security check, as well as Corollaries 4.0.38, 4.0.39,

and 4.0.40, to Proposition 4.0.37. In every case, this proposition is telling us to check the

inequality

|S| ≥ |N(S)− S|
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first; if it does not hold then S is not secure, and if it does hold, then we need to check

the inequalities |N [X] ∩ S| ≥ |N(X)− S| only for ∅ 6= X ⊆ S which are not dominating in

G[S], i.e. for which

|N [X] ∩ S| =
∣∣NG[S][X]

∣∣ < |S|.
If S passes its test with strict inequality –passing with honors!– then we can go further.

Proposition 4.0.43. Suppose that S ⊆ V (G) and |S| = |N(S)− S|+ a, a > 0. Then every

X ⊆ S such that |N [X] ∩ S| =
∣∣NG[S](X)

∣∣ ≥ |S| − a satisfies |N [X] ∩ S| ≥ |N(X)− S|.

Proof. Supposing that X ⊆ S and |N [X] ∩ S| ≥ |S| − a, we have

|N [X] ∩ S| ≥ |S| − a = |N(S)− S|+ a− a = |N(S)− S| ≥ |N(X)− S|.

Corollary 4.0.44. If S ⊆ V (G), |S| > |N(S)− S| and G[S] is a forest, then S is secure in

G if and only if

|N [v] ∩ S| ≥ |N(v)− S| for all v ∈ S

such that v is not isolated in G[S].

Proof. The ”only if” claim is part of Theorem BDH. Suppose that |N [v] ∩ S| ≥ |N(v)− S|

for each v ∈ S which is not isolated in G[S]. By Theorem 4.0.42, we can conclude that S is

secure in G if |N [X] ∩ S| ≥ |N(X)− S| for every X which is the open neighborhood in G[S]

of a single vertex of S. But, by the proof of Theorem 4.0.42, for every such X, if |X| ≥ 2

then N [X] ∩ S = NG[S][X] = S\{v}, where v is the vertex with open neighborhood X in

G[S], whence

|N [X] ∩ S| = |S| − 1 ≥ |S| − a, where a = |S| − |N(S)− S| ≥ 1,

whence the inequality |N [X] ∩ S| ≥ |N(X)− S| follows from Proposition 4.0.43; and if

|X| = 1 then X is itself a singleton set whose only element is a vertex which is not isolated

in G[S], so the described inequality holds by hypothesis.
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Corollary 4.0.44 can be sharpened further. If |S| > |N(S)− S| and G[S] is a forest,

then to verify the security of S the inequality |N [v]| ∩ S ≥ |N(v)− S| need be checked only

for all v ∈ S whose degree in G[S] exceeds |S| − |N(S)− S|.
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Appendix A

Augmenting Path Algorithm

Definitions

Definition A.0.45. Given a matching M in a graph G, an M −augmenting path is a path

P in G such that the endpoints of P are M−unsaturated, and the edges of P are alternately

in M and not in M .

Definition A.0.46. Depth−first search (DFS) is an algorithm for traversing or searching

tree or graph data structures. One starts at the root (selecting some arbitrary vertex as

the root in the case of a graph) and explores as far as possible along each branch before

backtracking.

Definition A.0.47. Breadth − first search (BFS) is a strategy for searching in a graph

when search is limited to essentially two operations: (a) visit and inspect a vertex of a graph;

(b) gain access to visit the vertices that neighbor the currently visited vertex. The BFS begins

at a root vertex and inspects all the neighboring vertices. Then for each of those neighbor

vertices in turn, it inspects their neighbor vertices which were unvisited, and so on.

Theorem A.0.48. (Berge’s Theorem, [8])- A matching M is maximum in a graph G if and

only if there exists no M − augmenting path in G.

The ”only if” assertion of Berge’s Theorem is the easier of its two implications to prove,

but the proof is the basis of the augmenting path algorithm, so we give it here. Suppose M

is a matching in G, and P is an M -augmenting path in G with end vertices u and v. Since

neither u nor v is incident to an edge of M , and the edges of P alternate between being in

M , P must be of odd length, with one more edge not in M than in M . See figure A.1.
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u v

edge in M edge not in M

Figure A.1: An M -alternating path of length ≥ 5

Because M is a matching, no vertex of P is incident to an edge of M which is not an

edge of P . Therefore,

M ′ = (M\(M ∩ E(P ))) ∪ (E(P )\M),

the set of edges obtained by exchanging the edges of M which are on P for the other

edges of P is a matching in G with one more edge than M :

|M ′| = |M |+ 1.

In the augmenting path algorithm one starts with a maximal matching M , in G, chosen

greedily – choose any edge to start with, then look for an edge not adjacent to the first,

and so on. When no edge not adjacent to those already chosen can be found, you have a

maximal matching.

If every vertex of G is saturated by M , then M , is a maximum matching. Otherwise, pick

an unsaturated vertex u and do a depth-first search for an M1-augmenting path with u as one

end-vertex. If one is found, use it to produce M2, a matching in G satisfying |M2| = |M1|+1,

and resume the algorithm with M2 replacing M1 and with the supply of unsaturated vertices

reduced by 2. If no M1-augmenting path with u at one end is found, mark u as finished and

repeat the search with another M1-unsaturated vertex. If no M1-augmenting path is found,

then M1 is a maximum matching.

Since any unsaturated vertex marked as finished never need be started from again, and

since any vertex saturated by M1 will be saturated by M2, should there be an M2, it is easy

to see that the augmenting path algorithm reaches a conclusion in no more than a constant

times |V (G)|+ |E(G)| operations.
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If G is bipartite, as is the case in our problems, the search for maximum matchings is

somewhat simplified. One may as well focus on unsaturated vertices on the smaller side of

the bipartition as starting end vertices for an M -augmenting path, where M is the current

maximal matching. If there is no unsaturated vertex on the smaller side, then M is a

maximum matching.
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Appendix B

Running the Augmenting Path Algorithm on Figure 2.3
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Figure B.1: Selection of unmatched vertices Ti and Ri
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Figure B.2: Arbitrarily selecting T1 to begin the first iteration of the augmenting-path
algorithm by locating an M-augmenting path from T1 to R2.

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

S

u1

u2

u3

u4

u6,1

u6,2

u7

u9,1

u9,2

u10

R1

R2

R3

T1

E(P ) ∈ M∗

E(P ) /∈ M∗

T2

Figure B.3:
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Figure B.4: Selection of the new unmatched vertices Ti and Ri after the first iteration of the
augmenting-path algorithm.
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Figure B.5: Arbitrarily selecting the new T1 to begin the second iteration of the augmenting-
path algorithm by locating an M-augmenting path from the new T1 to the new R2.
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Figure B.6: The bipartite graph produced from G.
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Figure B.7:
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Figure B.8: We have now produced a maximum matching saturating the LHS.

34


