
Finding Optimum Clock Frequencies for Aperiodic Test

by

Sindhu Gunasekar

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 4, 2014

Keywords: Aperiodic clock, Test time reduction, Automatic Test Equipment

Copyright 2014 by Sindhu Gunasekar

Approved by

Vishwani D. Agrawal, Chair, James J. Danaher Professor of Electrical & Computer Eng.
Victor P. Nelson, Professor of Electrical & Computer Engineering

Adit D. Singh, James B. Davis Professor of Electrical & Computer Engineering

Abstract

With scale down in technology, size and complexity of integrated circuits increase. The

scan method is the most popular technique of testing sequential circuits today. In this

method, flip-flops functionally form one or more shift registers in the test mode. Faults

in the combinational logic can be tested by shifting test patterns in and out of the shift

register. Larger circuits these days consist of many flip-flops and the scan design has large

shift registers, which require many clock cycles for loading and unloading. An ATE is

used to test these scan circuits for faults after fabrication. The testing cost of using an

ATE increases directly with the time spent in testing the chip and adds to the final cost

of the chip. In general, power constraints do not allow speeding up of the clock during

test. For the complex integrated circuits today, long test times are a concern. A recently

proposed methodology [37] reduces the test time on ATE using an aperiodic clock with many

different frequencies. In practice, the ATE generates only a limited number of frequencies

and determining an optimum set of frequencies is a discrete optimization problem. This work

discusses an algorithm to obtain the optimum set of frequencies for test time reduction. The

algorithm is implemented by simulating ISCAS ’89 benchmark circuits and verified on the

Advantest T2000GS ATE located at Auburn University, Alabama. It is observed that by

using just four optimum frequencies, that the tester allows, test time reductions of up to

52% can be obtained in some benchmark circuits.

ii

Acknowledgments

I am grateful to Prof. Vishwani D. Agrawal for all his support and patience throughout.

I am thankful to Prof. Adit D. Singh and Prof. Victor P. Nelson for being on my advisory

committee. I had been enrolled in almost all classes of the three of them and Prof. Charles E.

Stroud, and I definitely enjoyed learning in the classes of these great teachers. I am indebted

to them. These four people never stop inspiring me and I would be glad if I would grow up

to be at least half as passionate, knowledgeable, intelligent, wise and patient as they are.

It is an honor to be a part of Auburn University and a privilege to learn from its

professors. My work was supported by the National Science Foundation Grant CCF-1116213,

for which I am grateful.

I am thankful to Dr. I. M. Arockiasamy (Salem, India), my high school teacher for

the motivation and emotional support over all these years. I would like to thank all my

friends for enduring me, Praveen especially, for all the help throughout my thesis, and my

roommates Kavyashree and Sowmya for the wonderful people they are. I thank my parents

for all their sacrifices over my overseas travel and their support.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . viii

List of Abbreviations . ix

1 Introduction . 1

1.0.1 Organization of Thesis . 2

2 Background . 3

2.1 Scan Design . 3

2.2 Testing with an ATE . 3

2.3 ATPG . 4

2.4 Static Timing Analysis . 4

2.5 Power Dissipation . 5

2.6 Optimization problem . 5

2.7 Global Search . 5

2.8 Local Search . 5

2.9 Greedy Algorithm . 6

2.10 Directed Search . 6

2.11 Computational Complexity . 6

2.12 NP-Completeness . 7

3 Prior Work . 8

4 Algorithms . 10

4.1 Greedy Algorithm . 10

iv

4.2 Iterated Local Search Optimization . 11

4.3 Directed Search Optimization . 13

4.4 Simulated Annealing Optimization . 14

5 Simulation and Experiment . 17

5.1 Results . 20

6 Conclusion . 33

6.1 Future Work . 33

Bibliography . 34

v

List of Figures

2.1 Sequential circuit . 4

5.1 Normalized test time of s1238 ISCAS ’89 benchmark circuit by the greedy algo-

rithm for k optimum clock frequencies. 18

5.2 Periodic clock test - ATE result for 540-cycle scan test of s298 benchmark circuit

showing test cycles 15 to 45 with a clock of 500ns. 19

5.3 Aperiodic clock test - ATE result for 540-cycle scan test of s298 benchmark circuit

showing test cycles 15 to 66 with a clock periods of 219ns, 274ns, 342ns and 500ns. 19

5.4 Normalized test time of s1238 ISCAS ’89 benchmark circuit by different algo-

rithms for k optimum frequencies. 23

5.5 CPU times of different algorithms for s1238 benchmark circuit on an Intel Core

i3 CPU, 2.27GHz 4GB RAM. 24

5.6 CPU times of greedy algorithm and iterated local search for s1238 benchmark

circuit on an Intel Core i3 CPU, 2.27GHz 4GB RAM. 25

5.7 Normalized test time of s298 ISCAS ’89 benchmark circuit by the greedy algo-

rithm for k optimum frequencies. 25

5.8 Normalized test time of s400 ISCAS ’89 benchmark circuit by the greedy algo-

rithm for k optimum frequencies. 26

vi

5.9 Normalized test time of s713 ISCAS ’89 benchmark circuit by the greedy algo-

rithm for k optimum frequencies. 26

5.10 Normalized test time of s1423 ISCAS ’89 benchmark circuit by the greedy algo-

rithm for k optimum frequencies. 27

5.11 Normalized test time of s13207 ISCAS ’89 benchmark circuit by the greedy al-

gorithm for k optimum frequencies. 27

5.12 Normalized test time of s15850 ISCAS ’89 benchmark circuit by the greedy al-

gorithm for k optimum frequencies. 28

5.13 Normalized test time of s38584 ISCAS ’89 benchmark circuit by the greedy al-

gorithm for k optimum frequencies. 28

vii

List of Tables

5.1 Circuit s298 tested on the ATE T2000GS which allows 4 different frequencies . 20

5.2 Reduction in test time obtained with aperiodic clocks using the greedy algorithm
by simulating ISCAS ’89 benchmark circuits, calculated from the test set. . . . 21

5.3 Percentage of reduction in test time of s298 benchmark circuit obtained by dif-
ferent algorithms. 22

5.4 Percentage of reduction in test time of s713 benchmark circuit obtained by dif-
ferent algorithms. 29

5.5 Percentage of reduction in test time of s400 benchmark circuit obtained by dif-
ferent algorithms. 29

5.6 Percentage of reduction in test time of s1238 benchmark circuit obtained by
different algorithms. 30

5.7 Percentage of reduction in test time of s1423 benchmark circuit obtained by
different algorithms. 30

5.8 Percentage of reduction in test time of s13207 benchmark circuit obtained by
different algorithms. 31

5.9 Percentage of reduction in test time of s15850 benchmark circuit obtained by
different algorithms. 31

5.10 Percentage of reduction in test time of s38584 benchmark circuit obtained by
different algorithms. 32

viii

List of Abbreviations

ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generator

DFT Design for Testability

ix

Chapter 1

Introduction

The VLSI manufacturing process goes through a series of steps and once fabricated, the

devices have to be tested. An ATE is used to apply test patterns to an integrated circuit,

and analyze the responses from the integrated circuit, and decide if the chip is either good

or bad. The ATE is expensive and testing cost of an ATE increases with the time spent in

testing the integrated circuit and it adds a significant fraction to the final cost of the chip.

Tests cannot always be applied at a faster rate, not even as fast as the functional clock of

the integrated circuit allows, because the power dissipation during testing is significant. The

test vectors applied for manufacturing testing are different from the functional vectors used

for verification. As a result, there is higher activity in the circuit and the power dissipation

is not bounded. For proper functioning of the chip, it is inevitable that power dissipation

during test not exceed the rated power.

Techniques have been proposed by Venkataramani and Agrawal [36, 37] to reduce test

time on the ATE without exceeding the rated power. The activity of the circuit in each

clock interval is different and hence the energy consumed in each cycle is not usually the

same, and hence the power consumed is different too. A few cycles consume more power

than the others, but we are confined to slow down the clock of the entire testing process to

accommodate the power concern in these cycles. These authors propose a methodology to

reduce test time by dynamically changing the clock interval at every cycle. This would need

clocks of more than one frequency to be generated. Ideally, the test time is the minimum

when as many clock periods as the number of test cycles, can be generated. But it is seen

later in this work that as few as four clock periods can reduce the test time by 52%. When the

minimum allowed clock interval depends on the energy consumed, and is different at every

1

cycle, selecting only a few of the many clock intervals that would decide the frequencies of the

clocks to be generated is an optimization problem. This optimization problem is discussed

in this thesis.

1.0.1 Organization of Thesis

Chapter 2 of the thesis introduces various concepts that are significant in understanding

the proposed work. Chapter 3 gives detailed information about previous work done to reduce

test time. Chapter 4 details the algorithm proposed in this work. Chapter 5 discusses the

simulation and experimental results obtained when the work was implemented on different

ISCAS ’89 benchmark circuits. Chapter 6 gives the conclusion of the proposed work and

proposes relevant future work.

2

Chapter 2

Background

This chapter deals with the theory behind the topics analyzed in this thesis.

2.1 Scan Design

The size of integrated circuits has increased from a few thousands to billions of transis-

tors in the last few decades. As the complexity of the circuit increases, the internal nodes

become harder to test. Circuits are therefore designed with redundant logic to improve ob-

servability and controllability [10]. Such techniques are called Design for Testability (DFT)

techniques. One such DFT technique is scan design. In a scan circuit all flip-flops are

chained to form one or more shift registers. In the test mode, the necessary logic states in

all flip-flops can be set to the desired states by shifting in patterns.

2.2 Testing with an ATE

After a circuit is fabricated it is tested for manufacturing defects on an automatic

test equipment (ATE). The patterns required are generated with an automatic test pattern

generator (ATPG). The ATPG provides the inputs to be applied and the expected output

responses of a fault free circuit. A test program that specifies the patterns, voltage levels

and timing information is programmed on the ATE. The fabricated chips are mounted on

the tester and the patterns are applied to the primary inputs of the circuit. The responses

from the primary outputs are analyzed and compared with the expected responses from the

ATPG and if the responses match, the chip is considered a good one.

3

Figure 2.1: Sequential circuit

2.3 ATPG

Automatic Test-Pattern Generators generate patterns by injecting a fault into a circuit

model, activating the fault and propagating the fault through the circuit to the output. A

fault is activated by establishing at the fault site, a signal value that is opposite of the value

produced by the fault model. If the output of the circuit is different from the value expected

for the fault-free circuit, the fault is detected.

2.4 Static Timing Analysis

The design of VLSI chips is verified by timing analysis. Static timing analysis [10] anal-

yses combinational paths in the circuit without taking into account if the path is sensitizable

or not. The gate delays and interconnect delays are obtained from the technology library.

4

2.5 Power Dissipation

Power dissipated in a CMOS integrated circuit can be categorized as static and dynamic

power. Leakage power is drawn continuously from the power supply and is called static

power dissipation. Signal transitions at the nodes that occur due to logic activity or glitches

comprise dynamic power dissipation. Because of high toggling activity in the circuit during

testing, dynamic power dissipation is higher. Power dissipation in a CMOS circuit is given

by

P =
1

2
αfCV 2 (2.1)

where α is the activity factor given by the fraction of the gates switching in the circuit, f is

the clock frequency, C is the capacitance at the output node and V is the voltage.

2.6 Optimization problem

Optimization implies selecting the best result from a set of available alternatives under

the circumstances. Optimization problems are common in many disciplines and various

domains. It consists of maximizing or minimizing a function called the objective function by

systematically choosing values from within an allowed set and computing the value of the

function. Solutions need to be optimal or near-optimal with respect to some goals.

2.7 Global Search

Global search algorithms systematically search the entire space to determine the optimal

solution.

2.8 Local Search

If the search space is small, there are algorithms that will systematically search the

entire space to determine the solution. If the search space is too big for systematic search,

5

meaningful solutions cannot be found in a reasonable time, because systematic search fails

to consider enough of the search space [21]. Local search algorithms work on the current

state and generally transcend only to neighbors of the current state in the search space by

applying local changes until an optimal solution is found. Such algorithms are not systematic

but have two major advantages: They use very little memory and usually converge sooner.

2.9 Greedy Algorithm

A greedy algorithm makes the locally optimal choice that looks best at each stage. The

greedy heuristic does not always yield optimal solutions, but nonetheless it may yield locally

optimal solutions that approximate a global optimal solution. The time taken to run a

greedy algorithm is reasonable compared to global search algorithms.

2.10 Directed Search

Directed search optimization can be used in problems where the objective function is

not differentiable, or not continuous. It does not explicitly use any information about the

derivative of the objective function [18]. Directed search involves sequential examination of

trial solutions by comparing each trial solution with the best solution obtained up to that

time. The trial solution is a function of earlier results. Different directed search algorithms

employ different strategies to determine the next trial solution [16].

2.11 Computational Complexity

Computational complexity theory classifies computational problems according to their

difficulty. P is the class of problems that are solvable in polynomial time. NP is the class of

problems which can be solved in non deterministic polynomial time, but can be verified in

polynomial time. NP-hard problems are at least as hard as the hardest problems in NP.

6

2.12 NP-Completeness

A problem is NP-complete if it is in the set of NP problems and also in the set of

NP-hard problems. NP-complete problems are very common in various domains.

It is efficient to recognize the class of the problems early and formulate heuristic methods

for solving them. NP-complete problems need to be solved approximately instead of exactly.

7

Chapter 3

Prior Work

This chapter discusses previous work done that relates to the problems solved in this

research work.

The scan based method is the most popular for testing sequential circuits. An ATE is

used for manufacturing testing of scan circuits. An integrated circuit is packaged to handle

the power dissipated during the intended function of the circuit. The ATPG vectors used

for testing are generated for high fault coverages. They are functionally irrelevant signals

and hence produce very high toggling activity in scan circuits. The high toggling activity

leads to higher power dissipation. Hence test power is almost always higher than functional

power dissipation. The integrated circuit is not designed to handle test power and testing

the circuit at functional speeds might damage the circuit, or in the least lead to malfunction

in the circuit during test resulting in yield loss. Test power minimization is hence a widely

recognized problem and many techniques have been proposed to solve it [14, 11].

Recent works [36, 37, 40] propose a methodology for minimizing test time of scan based

test using an aperiodic clock. When using a conventional periodic clock, the dynamic power

dissipation for a given set of test vector patterns varies throughout the test, depending on

the toggling activity in each clock cycle. It has been suggested [36] that if the clock interval

in every cycle can be modified in a way that the dynamic power dissipation remains constant

throughout the test, within allowable limits, test time can be significantly reduced. Thus,

an aperiodic clock can be used, where the period of each cycle can be different from the

period of its neighboring cycle. In the aperiodic clock test, every clock interval is either

power constrained or structure constrained. The minimum clock interval for each test cycle

8

is given by,

Ttest(i) = max

{
Tstructure,

Ei

PMAX(func)

}
(3.1)

where Ttest(i) is the minimum clock interval for the ith clock cycle, Tstructure is the structure

constrained clock period, Ei is the total energy consumed during the ith cycle, and

PMAX(rated) is the maximum rated power of the circuit, given by the specification of the

circuit. This equation holds good for calculating the clock interval of scan shift cycles as

well as capture cycles. The total test time of the aperiodic clock test is given by,

TTaperiodic =
n∑

i=1

max

{
Tstructure,

Ei

PMAX(func)

}
(3.2)

where TTaperiodic is the aperiodic test time for a test with n cycles.

The average power consumed in such an aperiodic test is higher than the conventional

method, but test time is reduced significantly. Since energy consumed in each cycle is

different, this aperiodic test methodology to reduce test time may, in the worst case, require

up to n different frequencies for a circuit that has a test comprising n vectors. The ATE

cannot be configured for generating as many as n different frequencies. Nevertheless, it can

be seen from the later chapters that considerable reduction in test time can be obtained with

fewer than n frequencies. Only a selected subset of clock periods K of the n different clock

intervals can be generated and finding the optimum subset of clock periods for minimum

test time is a discrete optimization problem. This work proposes an algorithm for selection

of the optimum subset of clock periods for maximum reduction in test time.

9

Chapter 4

Algorithms

Suppose T is the set {t1, t2, ...tn} of the n clock intervals for each of the n test cycles

of the scan based circuit obtained from simulation. ti gives the minimum allowed duration

of clock interval of each cycle. If the ATE allows only k different clock frequencies to be

generated, finding a subset K of T , where K is the set {k1, k2, ...kk} consisting of k optimum

clock periods for minimum test time, is a combinatorial optimization problem in the dis-

crete domain. This problem, like many other optimization problems, is NP-complete. Using

metaheuristics, this NP-complete problem is solved in polynomial-time to find near-optimal

solutions. The proposed metaheuristics are verified by simulating the ISCAS ’89 sequential

benchmark circuits and experimentally on the Advantest T2000GS ATE at Auburn Univer-

sity. The total test time is given by

Total Test T ime =
k∑

i=1

niki (4.1)

where ni number of cycles at the period ki.

4.1 Greedy Algorithm

In the greedy algorithm for the optimization problem at hand, at each stage, one opti-

mum clock period is found by one iteration over all the n different clock intervals. Suppose

T is the set of all the n different clock intervals arranged in descending order. Initially, one

optimum clock period k1 is selected and this is the largest clock interval t1 of the set T . The

optimum set K now has one element. In the first stage, another clock period k2 is picked

from T and this is determined by performing one iteration over all the remaining n − 1

10

clock intervals to see which one gives maximum reduction in the total test time. Instead

of computing the total test time at each iteration, computation time can be significantly

reduced by calculating the amount of test time saved when each clock interval of the set T

is added to K. At each stage, ki is determined by that clock interval x ∈ ti,∀ i which gives

a maximum saving in the test time, given by

Sx = (kj − x)×R (4.2)

where,

Sx= saving in test time when x is added to an existing set K

kj = clock period in the already existing set K which is just greater than x

kh = clock period in the already existing set K which is just lower than x

R = number of test vectors in T with clock intervals less than x but greater than kh

At each stage, the set of optimal clock periods K found in the previous stages are

unchanged and one optimum value is appended to K. This is repeated until the test time

reaches the lower bound, the lower bound given by the sum of all ti, because ti defines the

minimum length of the clock interval of each cycle and the test time cannot get shorter than

the summation of ti for all cycles. The optimal value of k is then found when the test time

reaches the lower bound, which from simulations is seen to be much smaller than n. The

computation time of the greedy algorithm increases linearly with the number of allowed ATE

frequencies k and the number of test cycles n for testing the circuit and the time complexity

is given by O(nk).

4.2 Iterated Local Search Optimization

Iterated local search is when a local search is performed to find a local optimum and

then the solution is perturbed to help it escape the local optimum and restart the local search

11

again, in the hope of finding the global optimum or better local optima [9]. The problem of

finding k optimum clock-periods has a k-dimensional symmetrical search space and this is

quite large even for smaller circuits. The local search method does not systematically search

the whole search space but for the problem at hand it helps find a local minimum quickly.

And since the search space of the objective function at hand is symmetrical, a local search

has a higher probability of converging to the global optimum.

The method initially selects frequencies similar to the greedy algorithm, dynamically

one at a time, but then perturbs the current selection and iteratively improves the solution

at each step. Initially, one optimum clock period k1 is selected and this is the largest clock

interval t1 of the set T . The optimum set K now has one element. In the first stage, another

clock period k2 is picked from T and this is determined by performing one iteration over

all the remaining n − 1 clock intervals to see which one gives maximum reduction in the

total test time. The third clock k3 is found similarly and then k2 is changed to find a better

value in the neighborhood that minimizes the objective function further. Then k3 is again

varied to search in the neighborhood for an improvement and so on. This way the algorithm

searches a set of neighbors of the current assignment and selects one to be the next current

assignment K. The neighbors of the current assignment are those assignments that differ

in the assignment of a single variable. The neighborhood is where k − 1 clock periods in

the assignment K are unchanged and the kth clock period takes all the values in between

the unchanged values on its either side. The value in the neighborhood that minimizes the

objective function is then replaced in the current assignment K. It is analogous to making

the k − 1 dimensions of the search space unchanged and finding the optimum value in the

kth dimension that would minimize the objective function, not forgetting the symmetry of

the objective function in the k-dimensional space. The assignments are iteratively improved

by varying k1 to kk, one by one, until the assignments no longer change.

Computing the value of the objective function (test time) at each assignment to find

the optimum kth clock period is time-consuming. Instead of computing the total test time

12

at each iteration, computation time can be significantly reduced by calculating the amount

of test time saved by the addition of the kth clock when the k − 1 clocks are unchanged, as

given by eq. (4.2). The computation time of local search increases linearly with the number

of test cycles n and the time complexity is experimentally found to be O(nk).

4.3 Directed Search Optimization

Pattern Search Optimization is a directed search optimization technique. A pattern

search algorithm uses one such strategy where one parameter is varied at any time by steps

of the same magnitude, and when such increase or decrease did not improve the objective

function, the step size is halved and repeated until the steps become sufficiently small.

MATLAB [23] has an inbuilt function implementing the pattern search algorithm.

Suppose T is the set of the n clock intervals for each of the n test cycles of the scan

based circuit obtained from simulation. If the ATE allows only k distinct frequencies to be

configured, the pattern search algorithm is used to find a subset K of T , K being the set of

k optimum clock periods which should be implemented for minimum test time. Treplaced is a

set that is obtained by replacing x ∈ T,∀ i with a value y ∈ K where y is the smallest value

in the set K, that is greater than x. The objective function with k independent variables is

minimize
n∑

i=1

Treplaced (4.3)

Treplaced is the set of the aperiodic clock periods for n test cycles of the scan based circuit.

It has n elements of only k different variables. The objective function has k independent

variables and hence the problem at hand is k-dimensional. The algorithm finds set K that

would minimize
∑n

i=1 Treplaced.

The generalized pattern search algorithm uses a set of vectors pi called a pattern which

determines which point is to be searched in each iteration. It has 2k vectors, where k is the

number of frequencies allowed by the ATE to be configured. pi consists of k unit vectors in

13

each of the k dimensions and the negative of these k unit vectors. A set of vectors mi is

formed by multiplying the pattern vectors pi by a scalar m called the mesh size.

The algorithm initially starts with a random starting point. The vector mi is added

to this point and this forms a mesh. The objective function is evaluated at each point in

the mesh and the algorithm proceeds with the point that has the lowest objective function

value. This point is made the current point. If the objective function at the current point

is lower than the value of the objective function at the previous point, the mesh size is 2. If

the objective function at the current point is higher than the value of the objective function

at the previous point, the mesh size is changed to 0.5. The mesh sizes can be manipulated

to improve the speed or accuracy. This process is repeated until the change in the objective

function is less than the tolerance. The time complexity of pattern search optimization is

given by O(nk). The computation time increases linearly with the number of allowed ATE

frequencies k and the number of test cycles n for testing the circuit.

4.4 Simulated Annealing Optimization

Simulated Annealing is a probabilistic metaheuristic for a global optimization problem.

It only needs a single initial starting point and a unary search operation [42] [21]. It is inspired

by the process of annealing in metallurgy. Annealing is a heat treatment that can improve the

strength of a material. It is the process of closely controlling the temperature when cooling

a material to ensure that it reaches an optimal state. Metal crystals have small defects

and dislocations of ions which weaken the overall structure. When the metal is heated, the

energy of the ions increases and they are allowed to move freely. The dislocations can then be

removed and the structure of the crystal is reformed as the material cools down to approach

an equilibrium state. The slow cooling schedule allows a new low-energy configuration to

be discovered [9]. When annealing the metal, the initial temperature must not be too low

and the cooling must be done sufficiently slowly so as to avoid the system getting stuck in a

meta-stable, non-crystalline, state representing a local minimum of energy.

14

A simulated annealing algorithm uses this annealing process to solve an optimization

problem. MATLAB [23] has an inbuilt function to perform the simulated annealing algo-

rithm. The objective function eq. (4.3) is to be minimized by the algorithm and the set of

optimum clock periods K is to be obtained. The algorithm uses a temperature parameter

that starts off high and is slowly lowered in every iteration, storing the best point found so

far. An exponential temperature function is used, given by

T = T0 × 0.95r (4.4)

where r is the annealing parameter. The annealing parameter is the same as the iteration

number. The algorithm starts with a random trial point. At each iteration a new trial point

is randomly generated and its distance from the current point is based on a probability

distribution, proportional to the temperature. The probability distribution is such that

the step length of each trial point is equal to the current temperature and the direction is

random. If the objective function has a lower value at the new point than the current value,

it replaces the current point and the iteration is continued. If the objective function has a

higher value at the new point than the current value, it is still accommodated in the search

space with a lower probability, which is dependent on the temperature, determined by the

simulated annealing acceptance function. This avoids the search getting trapped in a local

minimum and helps explore more possible solutions globally. The probability of acceptance

used is

1

1 + exp(∆
max(T)

)
(4.5)

where

∆ = new objective− old objective

T = current temperature

15

This acceptance function is put to use when the value of the objective at the new trial point

is larger than the old objective value. Hence ∆ is positive. T is also positive and the prob-

ability of the acceptance function lies between 0 and 0.5. An annealing schedule is selected

to systematically decrease the temperature as the algorithm proceeds. As the temperature

decreases, the algorithm reduces the extent of its search to converge to a minimum. Re-

annealing helps the algorithm to escape a local minimum, where the temperature is raised

after the algorithm accepts a certain number of points and the search is started again at a

higher temperature. The algorithm exits when the change in the objective function is lesser

than a specified tolerance. The time complexity of the simulated annealing algorithm varies

from problem to problem. It is determined experimentally to be O(nk) for our problem.

The computation time increases linearly with the number of allowed ATE frequencies k and

the number of test cycles n for testing the circuit.

16

Chapter 5

Simulation and Experiment

The proposed methodology was implemented using ISCAS ’89 sequential benchmark

circuits. The behavioral models of the benchmark circuits were synthesized using Mentor

Graphics Leonardo Spectrum [4] in TSMC 180nm technology. Leonardo Spectrum gives the

critical path delay through Static Timing Analysis of the circuit. Using Mentor Graphics

DFT Advisor, all the flip-flops in the circuit were daisy chained to form a full scan chain.

A set of ATPG test vector patterns for stuck-at faults was generated for the scan circuit

using Mentor Graphics Tessent Fastscan [2]. The transistor level description of the netlist

was generated using Mentor graphics Design Architect and a SPICE file was generated.

Synopsys Nanosim [1] was used to read the SPICE netlist and perform a transistor level

simulation at a nominal voltage of 1.8V to measure the energy dissipated per each cycle

of the test. Based on these simulations, the minimum clock interval for each cycle was

determined, as given by eq. (5.1).

Ttest(i) = max

{
Tstructure,

Ei

PMAX(func)

}
(5.1)

The clock interval of each cycle would be constrained by the structure and maximum rated

power.

The critical path delay was found from Static Timing Analysis using Leonardo Spec-

trum. The maximum rated power for the ISCAS ’89 benchmark circuits is not available.

So, the circuits were simulated in functional mode for 1000 random vectors and the average

power dissipated during these simulations was measured and considered the maximum rated

power. The set of the clock intervals T for each of the n test cycles of the scan based circuit

17

10
0

10
1

10
2

10
3

10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Time of s1238 obtained by the Greedy algorithm

Normalized Test Time obtained by the Greedy algorithm

Lower bound of test time (when the number of clocks are not restricted)

Figure 5.1: Normalized test time of s1238 ISCAS ’89 benchmark circuit by the greedy
algorithm for k optimum clock frequencies.

were obtained from this simulation. The proposed algorithm was used to find the set of op-

timum clock periods K from T . Figure 5.1 shows the normalized test time of circuit s1238,

obtained by simulation of the greedy algorithm for k optimum frequencies, in a semilog plot.

The upper bound in test time is the test time when a conventional periodic clock is used,

given by the largest clock interval calculated by eq. (5.1), multiplied by the number of scan

test clock cycles. The optimum clock periods were implemented on the Advantest T2000GS

ATE which allows four different clock frequencies. The testplan was programmed using the

Open architecture Test system Programming Language(OTPL). The s298 benchmark circuit

was tested on the ATE with four clock frequencies, and a Xilinx Spartan 3 FPGA XC3S50

18

Figure 5.2: Periodic clock test - ATE result for 540-cycle scan test of s298 benchmark circuit
showing test cycles 15 to 45 with a clock of 500ns.

Figure 5.3: Aperiodic clock test - ATE result for 540-cycle scan test of s298 benchmark
circuit showing test cycles 15 to 66 with a clock periods of 219ns, 274ns, 342ns and 500ns.

19

Table 5.1: Circuit s298 tested on the ATE T2000GS which allows 4 different frequencies

Periodic clock Aperiodic clock Aperiodic clock

with arbitrary with frequencies computed

frequencies by the greedy algorithm

Test Time (µs) 270 184 158

Percentage of reduction 0 31.85 41.48

in test time

soldered on a printed circuit board was used. The s298 benchmark circuit with full scan de-

sign was configured on the FPGA. The FPGA was configured on the run by the ATE using

the configuration file generated by the Xilinx ISE tool [22]. The testplan was programmed

and the test was performed on the ATE accommodating the delay overhead caused due to

the analog measurement module. Figures 5.2 and 5.3 show the waveforms of the periodic

and aperiodic tests from the Logic Analyzer of the Advantest T2000GS. The two figures have

the same time scale. The periodic clock test is run at 500ns. The aperiodic clock test is run

at 219ns, 274ns, 342ns and 500ns, the clock periods determined by the greedy algorithm.

The periodic test runs for only 30 cycles (cycles 15 to 45), but the aperiodic test runs 51

clock cycles (cycles 15 to 66) in the same time of 15µs. Table 5.1 shows the percentage of

reduction in test time obtained when the greedy algorithm was used to compute the ape-

riodic clocks, in comparison to choosing arbitrary clock periods to test the circuit on the

ATE. 41.48% reduction in test time was obtained for the aperiodic test of s298 benchmark

circuit with four clock periods computed by the greedy algorithm, as opposed to 31.85%

with arbitrary aperiodic clocks tested on the ATE.

5.1 Results

Table 5.2 shows the reduction in test times of the ISCAS ’89 benchmark circuits obtained

from the greedy algorithm with k optimum frequencies. The optimum number of frequencies

k required to achieve the lower bound in test time is computed using the greedy algorithm

and tabulated in Table 5.2. The lower bound is calculated by the sum of all ti, because ti

20

Table 5.2: Reduction in test time obtained with aperiodic clocks using the greedy algorithm
by simulating ISCAS ’89 benchmark circuits, calculated from the test set.

Total scan Number of optimum Periodic Aperiodic Percentage

Benchmark test clock frequencies test time test time of reduction

circuit cycles, required to (µs) (µs) in

n achieve lower bound Test Time

in test time, k (%)

s298 540 41 2.64 1.39 47.33

s713 773 47 3.41 2.18 36.09

s400 1076 45 4.3 2.99 31.25

s1238 3361 77 22.14 9.37 57.65

s1423 6975 66 15.41 11.11 27.89

s13207 62237 63 52.4 44.24 15.6

s15850 101707 48 241.68 174.06 27.98

s38584 224112 40 759.33 629.8 17.05

defines the minimum length of the aperiodic clock interval of each cycle and the test time

cannot get shorter than the summation of ti for all cycles. The lower bound calculations

for different ISCAS ’89 benchmark circuits are represented in Figures 5.1, 5.7, 5.8, 5.9,

5.10, 5.11, 5.12 and 5.13. In all of the examples shown in this work, the test time obtained

equals the lower bound for k less than 80. Hence, for a test that is n cycles long, n different

frequencies are not needed to achieve maximum reduction in test time with aperiodic test.

It can be emphasized that as few as four different frequencies can help achieve up to

52% reduction in test time in a few circuits. The s1238 circuit gives a reduction of 52%, 55%

and 57% when four, ten and 77 different frequencies are used, respectively with the greedy

algorithm as seen in Figure 5.1. When the number of optimum frequencies k is increased

from 10 to 77, or even up to 3361, the test time only reduces by an additional 2%.

The different algorithms detailed in Chapter 4 were implemented on the ISCAS ’89

benchmark circuits and compared. The percentage of test time reduction obtained with the

algorithms are tabulated in Tables 5.6, 5.3, 5.4, 5.5, 5.7, 5.8, 5.9 and 5.10 for the benchmark

circuits for clocks k ranging from 3 to 15. Figure 5.4 shows the normalized test time obtained

21

through different algorithms for the s1238 benchmark circuit. It can be seen that the results

of the Iterated Local Search, Directed Search and Simulated Annealing coincide exactly and

the greedy algorithm gives a negligibly larger test time for k less than 6. Nevertheless, all

four algorithms coincide for k greater than 6. The greedy algorithm is the quickest and, from

the comparison, it can be seen that it is as good as any of the other algorithms. This result

can also be generalized over the other benchmark circuits simulated in this work.

CPU times for the greedy algorithm were on the order of ms for the smaller circuits

and up to 11 seconds for the largest circuit s38584 with 224,112 clock cycles on a computer

with Intel Core i3 CPU, 2.27GHz 4GB RAM. The CPU times for computing the discussed

algorithms are compared in Figure 5.5 for the s1238 benchmark circuit. All four algorithms

slow down linearly with k. The greedy algorithm is the quickest and the simulated annealing

is the slowest. Figure 5.6 shows the CPU times of the greedy algorithm and iterated local

search again, because they weren’t apparent in figure 5.5.

Table 5.3: Percentage of reduction in test time of s298 benchmark circuit obtained by dif-
ferent algorithms.

Benchmark Number of Percentage of reduction in test time (%)

circuit optimum Greedy Iterated Direct Simulated

clocks k Algorithm Local Search Search Annealing

3 36.77 37.33 37.31 37.32

4 39.79 39.84 40.09 39.89

5 41.69 42.04 42.04 41.78

6 43.01 43.02 43.01 42.92

7 43.64 43.72 43.70 43.65

8 44.12 44.21 44.25 44.19

s298 9 44.55 44.61 44.64 44.53

10 44.91 44.97 44.96 44.60

11 45.16 45.17 45.20 44.93

12 45.38 45.43 45.40 45.03

13 45.55 45.60 45.56 45.20

14 45.69 45.74 45.72 45.10

15 45.80 45.82 45.80 45.67

22

10
0

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Times of s1238

Greedy algorithm

Simulated Annealing

Iterated Local Search

Direct Search

Figure 5.4: Normalized test time of s1238 ISCAS ’89 benchmark circuit by different algo-
rithms for k optimum frequencies.

23

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Number of allowed frequencies k

C
P

U
 T

im
e

(s
ec

on
ds

)

CPU times of different algorithms for s1238 benchmark circuit

Simulated Annealing Optimization

Direct Search Optimization

Iterated Local Search

Greedy Algorithm

Figure 5.5: CPU times of different algorithms for s1238 benchmark circuit on an Intel Core
i3 CPU, 2.27GHz 4GB RAM.

24

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of allowed frequencies k

C
P

U
 T

im
e

(s
ec

on
ds

)

CPU times of Greedy algorithm and Iterated Local Search for s1238 benchmark cicuit

Iterated Local Search

Greedy Algorithm

Figure 5.6: CPU times of greedy algorithm and iterated local search for s1238 benchmark
circuit on an Intel Core i3 CPU, 2.27GHz 4GB RAM.

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Time of s298 obtained by the Greedy algorithm

Normalized Test Time obtained by the Greedy algorithm

Lower bound of test time (when the number
 of clocks are not restricted)

Figure 5.7: Normalized test time of s298 ISCAS ’89 benchmark circuit by the greedy algo-
rithm for k optimum frequencies.

25

10
0

10
1

10
2

10
3

10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Time of s400 obtained by the Greedy algorithm

Normalized Test Time obtained by the Greedy algorithm

Lower bound of test time (when the number
of clocks are not restricted)

Figure 5.8: Normalized test time of s400 ISCAS ’89 benchmark circuit by the greedy algo-
rithm for k optimum frequencies.

10
0

10
1

10
2

10
3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Time of s713 obtained by the Greedy algorithm

Normalized Test Time obtained by the Greedy algorithm

Lower bound of test time (when the
number of clocks are not restricted)

Figure 5.9: Normalized test time of s713 ISCAS ’89 benchmark circuit by the greedy algo-
rithm for k optimum frequencies.

26

10
0

10
1

10
2

10
3

10
4

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Time of s1423 obtained by the Greedy algorithm

Normalized Test Time obtained by the Greedy algorithm

Lower bound of test time (when the
number of clocks are not restricted)

Figure 5.10: Normalized test time of s1423 ISCAS ’89 benchmark circuit by the greedy
algorithm for k optimum frequencies.

10
0

10
1

10
2

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Time of s13207 obtained by the Greedy algorithm

Normalized Test Time obtained by the Greedy algorithm

Lower bound of test time (when the
number of clocks are not restricted)

Figure 5.11: Normalized test time of s13207 ISCAS ’89 benchmark circuit by the greedy
algorithm for k optimum frequencies.

27

10
0

10
1

10
2

10
3

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Time of s15850 obtained by the Greedy algorithm

Normalized Test Time obtained by the Greedy algorithm

Lower bound of test time (when the
 number of clocks are not restricted)

Figure 5.12: Normalized test time of s15850 ISCAS ’89 benchmark circuit by the greedy
algorithm for k optimum frequencies.

10
0

10
1

10
2

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of allowed frequencies k

T
es

t T
im

e
(N

or
m

al
iz

ed
)

Normalized Test Time of s38584 obtained by the Greedy algorithm

Normalized Test Time obtained by the Greedy algorithm

Lower bound of test time (when the number
 of clocks are not restricted)

Figure 5.13: Normalized test time of s38584 ISCAS ’89 benchmark circuit by the greedy
algorithm for k optimum frequencies.

28

Table 5.4: Percentage of reduction in test time of s713 benchmark circuit obtained by dif-
ferent algorithms.

Benchmark Number of Percentage of reduction in test time (%)

circuit optimum Greedy Iterated Direct Simulated

clocks k Algorithm Local Search Search Annealing

3 27.10 27.90 27.89 27.90

4 30.20 30.27 30.25 30.27

5 31.53 31.89 31.87 31.85

6 32.47 32.49 32.38 32.37

7 32.98 33.08 33.02 32.91

8 33.40 33.43 33.50 33.45

s713 9 33.72 33.77 33.79 33.64

10 34.04 34.06 34.05 33.76

11 34.27 34.32 34.23 34.00

12 34.48 34.51 34.49 34.24

13 34.61 34.67 34.64 34.38

14 34.73 34.78 34.73 34.35

15 34.83 34.89 34.80 34.64

Table 5.5: Percentage of reduction in test time of s400 benchmark circuit obtained by dif-
ferent algorithms.

Benchmark Number of Percentage of reduction in test time (%)

circuit optimum Greedy Iterated Direct Simulated

clocks k Algorithm Local Search Search Annealing

3 22.57 22.82 23.10 23.13

4 25.62 25.66 25.62 25.65

5 26.66 26.89 26.75 26.82

6 27.52 27.61 27.51 27.58

7 28.08 28.08 28.08 27.94

8 28.43 28.50 28.52 28.35

s400 9 28.77 28.84 28.74 28.68

10 29.06 29.13 29.01 28.87

11 29.35 29.38 29.23 29.12

12 29.48 29.56 29.42 29.22

13 29.62 29.68 29.68 29.31

14 29.74 29.75 29.78 29.27

15 29.84 29.89 29.89 29.56

29

Table 5.6: Percentage of reduction in test time of s1238 benchmark circuit obtained by
different algorithms.

Benchmark Number of Percentage of reduction in test time (%)

circuit optimum Greedy Iterated Direct Simulated

clocks k Algorithm Local Search Search Annealing

3 49.67 50.43 50.43 50.39

4 51.85 52.37 52.37 52.34

5 53.02 53.49 53.49 53.43

6 54.11 54.11 54.22 54.01

7 54.81 54.81 54.85 54.36

8 55.14 55.23 55.23 55.23

s1238 9 55.44 55.50 55.53 55.56

10 55.67 55.75 55.75 55.73

11 55.89 55.92 55.92 55.89

12 56.07 56.16 56.13 56.18

13 56.22 56.27 56.29 56.27

14 56.35 56.36 56.38 56.37

15 56.46 56.48 56.50 56.48

Table 5.7: Percentage of reduction in test time of s1423 benchmark circuit obtained by
different algorithms.

Benchmark Number of Percentage of reduction in test time (%)

circuit optimum Greedy Iterated Direct Simulated

clocks k Algorithm Local Search Search Annealing

3 21.21 21.65 21.65 21.64

4 23.36 23.51 23.51 23.51

5 24.33 24.50 24.50 24.48

6 25.08 25.10 25.10 25.08

7 25.40 25.44 25.49 25.45

8 25.69 25.80 25.81 25.75

s1423 9 25.94 26.04 26.04 25.84

10 26.13 26.23 26.22 26.16

11 26.31 26.39 26.38 26.31

12 26.48 26.50 26.52 26.50

13 26.58 26.63 26.63 26.63

14 26.68 26.71 26.70 26.71

15 26.76 26.79 26.78 26.79

30

Table 5.8: Percentage of reduction in test time of s13207 benchmark circuit obtained by
different algorithms.

Benchmark Number of Percentage of reduction in test time (%)

circuit optimum Greedy Iterated Direct Simulated

clocks k Algorithm Local Search Search Annealing

3 12.97 13.23 13.23 13.23

4 13.81 13.94 13.94 13.94

5 14.21 14.31 14.30 14.31

6 14.54 14.54 14.54 14.54

7 14.66 14.70 14.70 14.67

8 14.78 14.82 14.82 14.82

s13207 9 14.87 14.90 14.92 14.90

10 14.94 14.98 14.99 14.98

11 15.01 15.05 15.05 15.06

12 15.07 15.08 15.10 15.10

13 15.11 15.13 15.14 15.12

14 15.15 15.15 15.17 15.16

15 15.19 15.17 15.17 15.16

Table 5.9: Percentage of reduction in test time of s15850 benchmark circuit obtained by
different algorithms.

Benchmark Number of Percentage of reduction in test time (%)

circuit optimum Greedy Iterated Direct Simulated

clocks k Algorithm Local Search Search Annealing

3 21.73 22.78 22.83 22.83

4 24.32 24.32 24.33 24.33

5 24.94 25.11 25.18 25.18

6 25.45 25.45 25.71 25.71

7 25.94 25.94 26.06 26.06

8 26.26 26.31 26.32 26.31

s15850 9 26.44 26.47 26.51 26.50

10 26.61 26.70 26.81 26.70

11 26.73 26.80 26.90 26.80

12 26.84 26.85 27.00 26.95

13 26.95 26.97 27.01 27.01

14 27.04 27.07 27.09 27.07

15 27.10 27.11 27.10 27.11

31

Table 5.10: Percentage of reduction in test time of s38584 benchmark circuit obtained by
different algorithms.

Benchmark Number of Percentage of reduction in test time (%)

circuit optimum Greedy Iterated Direct

clocks k Algorithm Local Search Search

3 15.02 15.19 14.90

4 15.58 15.76 15.59

5 15.92 16.07 15.93

6 16.24 16.25 16.08

7 16.35 16.38 16.26

8 16.35 16.47 16.37

s38584 9 16.44 16.54 16.47

10 16.52 16.60 16.51

11 16.58 16.64 16.58

12 16.62 16.67 16.62

13 16.66 16.71 16.66

14 16.69 16.73 16.69

15 16.71 16.75 16.70

32

Chapter 6

Conclusion

A greedy algorithm to find optimum clock frequencies for an aperiodic test was proposed

and compared with other local search and global search algorithms and was proved to be

as good as any of them. The greedy algorithm was found to be faster than all of the other

algorithms. The greedy algorithm is also efficient in that it dynamically adds one frequency

at each step and can be stopped whenever the required reduction in test time is obtained,

or can be monitored for the test time to reach the lower bound. As few as four frequencies

can give a test time reduction up to 52% in a few circuits, and the computation could be

completed in a time of the order of milliseconds. Ten clock frequencies are optimum for test

time reduction for most of the benchmark circuits simulated in this work, beyond which the

test time reduction is negligible. The aperiodic test was also experimentally verified on the

ATE.

6.1 Future Work

The high costs of automatic test equipment (ATE) and the growing clock frequencies

bring about the need to study on-chip clock generation circuitry for generation of aperiodic

clocks, which can be implemented in BIST circuits where the test patterns are generated

on-chip.

33

Bibliography

[1] Nanosim User Guide. Synopsys, San Jose, CA, 2008.

[2] ATPG and Failure Diagnosis Tools. Mentor Graphics Corp., Wilsonville, OR, 2009.

[3] EZWAVE User Guide. Mentor Graphics Corp., Wilsonville, OR, 2011.

[4] Leonardo Spectrum User Guide. Mentor Graphics Corp, Wilsonville, OR, 2011.

[5] N. N. Abdelmalek, “An Efficient Method for the Discrete Linear Approximation Problem,”
Mathematics of Computation, vol. 29, no. 131, pp. 844–850, 1975.

[6] V. D. Agrawal, “Pre-Computed Asynchronous Scan (Invited Talk),” in 13th IEEE Latin Amer-
ican Test Workshop, Quito, Ecuador, Apr. 2012.

[7] V. D. Agrawal, S. K. Jain, and D. M. Singer, “Automation in Design for Testability,” in Proc.
Custom Integrated Circuits Conf., (Rochester, N.Y.), May 1984, pp. 159–163.

[8] N. Badereddine, P. Girard, S. Pravossoudovitch, C. Landrault, and A. Virazel, “Minimiz-
ing Peak Power Consumption during Scan Testing: Test Pattern Modification with X Filling
Heuristics,” in Proc. Int. Conf. on Design and Test of Integrated Systems in Nanoscale Tech-
nology, Sept. 2006, pp. 359–364.

[9] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipe. lulu.com, first edition,
2012.

[10] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits. Springer, 2000.

[11] K. M. Butler, J. Saxena, A. Jain, T. Fryars, J. Lewis, and G. Hetherington, “Minimizing
Power Consumption in Scan Testing: Pattern Generation and DFT Techniques,” in Proc.
International Test Conference, 2004, pp. 355–364.

[12] R. M. Chou, K. K. Saluja, and V. D. Agrawal, “Scheduling Tests for VLSI Systems Under
Power Constraints,” IEEE Trans. VLSI Systems, vol. 5, no. 2, pp. 175–185, June 1997.

[13] R. W. Eglese, “Simulated Annealing: A Tool for Operational Research,” European Journal of
Operational Research, vol. 46, no. 3, pp. 271–281, 1990.

[14] P. Girard, “Survey of Low-Power Testing of VLSI Circuits,” in IEEE Design and Test of Com-
puters, May-June 2002, pp. 80–90.

[15] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization. SIAM, 2009.

[16] R. Hooke and T. A. Jeeves, “”Direct Search” Solution of Numerical and Statistical Problems,”
in Journal of the Association for Computing Machinery, volume 8, 1961, pp. 212–229.

[17] J. Kleinberg and É. Tardos, Algorithm Design. Pearson Education India, 2006.

34

[18] T. Kolda, R. Lewis, and V. Torczon, “Optimization by Direct Search: New Perspectives on
Some Classical and Modern Methods,” SIAM Review, vol. 45, no. 3, pp. 385–482, 2003.

[19] B. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial Optimization, volume 1. Springer,
2002.

[20] H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated Local Search. Springer, 2003.

[21] S. Luke, Essentials of Metaheuristics. Lulu, second edition, 2013. Available at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[22] P. Mangilipally and V. P. Nelson, “Emulation of Slave Serial Mode to Configure the Xil-
inx Spartan 3 XC3S50 FPGA Using Advantest T2000 Tester,” in Technical report, Auburn
University, 2011.

[23] MATLAB, version 7.14.0.739 (R2012a). Natick, Massachusetts: The MathWorks Inc., 2012.

[24] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complex-
ity. Courier Dover Publications, 1998.

[25] T. Pavlidis, “Waveform Segmentation Through Functional Approximation,” IEEE Transac-
tions on Computers, vol. 10, no. 7, pp. 689–697, 1973.

[26] J. R. Rice and K. H. Usow, “The Lawson Algorithm and Extensions,” Mathematics of Com-
putation, pp. 118–127, 1968.

[27] G. H. Sasaki and B. Hajek, “The Time Complexity of Maximum Matching by Simulated
Annealing,” Journal of the ACM (JACM), vol. 35, no. 2, pp. 387–403, 1988.

[28] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, volume 24. Springer,
2003.

[29] P. Shanmugasundaram, “Test time optimization in scan circuits,” Master’s thesis, Auburn
University, Auburn, Alabama, USA, 2010.

[30] P. Shanmugasundaram and V. D. Agrawal, “Dynamic Scan Clock Control for Test Time
Reduction Maintaining Peak Power Limit,” in Proc. 29th IEEE VLSI Test Symposium, May
2011, pp. 248–253.

[31] P. Shanmugasundaram and V. D. Agrawal, “Externally Tested Scan Circuit with Built-In
Activity Monitor and Adaptive Test Clock,” in Proc. 25th International Conf. VLSI Design,
Jan. 2012, pp. 448–453.

[32] V. Sheshadri, V. D. Agrawal, and P. Agrawal, “Optimal Power-Constrained SoC Test Sched-
ules With Customizable Clock Rates,” in Proc. 25th IEEE International System-on-Chip
Conf., Sept. 2012, pp. 271–276.

[33] V. Sheshadri, V. D. Agrawal, and P. Agrawal, “Optimum Test Schedule for SoC with Specified
Clock Frequencies and Supply Voltages,” in Proc. 26th International Conf. VLSI Design,
(Pune), Jan. 2013, pp. 267–272.

[34] C. Stroud, A Designer’s Guide to Built-In Self-Test. Springer, 2002.

[35] V. V. Vazirani, Approximation Algorithms. Springer, 2001.

[36] P. Venkataramani, Reducing ATE Test Time by Voltage and Frequency Scaling. PhD thesis,
Auburn University, Auburn, Alabama, USA, May 2014.

35

[37] P. Venkataramani and V. D. Agrawal, “ATE Test Time Reduction Using Asynchronous Clock-
ing,” in Proc. International Test Conf., Sept. 2013. Paper 15.3.

[38] P. Venkataramani and V. D. Agrawal, “Reducing Test Time of Power Constrained Test by
Optimal Selecction of Supply Voltage,” in Proc. 26th International Conf. VLSI Design, Jan.
2013, pp. 273–278.

[39] P. Venkataramani and V. D. Agrawal, “Test-Time Reduction in ATE Using Asynchronous
Clocking,” in Proc. 6th IEEE International Workshop on Design for Manufacturability and
Yield, June 2013. Poster.

[40] P. Venkataramani, S. Sindia, and V. D. Agrawal, “A Test Time Theorem and Its Applications,”
in Proc. 14th IEEE Latin-American Test Workshop, Apr. 2013.

[41] P. Venkataramani, S. Sindia, and V. D. Agrawal, “Finding Best Voltage and Frequency to
Shorten Power-Constrained Test Time,” in Proc. 31st IEEE VLSI Test Symp., Apr. 2013, pp.
19–24.

[42] T. Weise, Global Optimization Algorithms - Theory and Application. Self Published, 2009-06-
26 edition, 2007.

36

