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Abstract 

 

 

 This dissertation outlines a universal problem resolution framework implementing reasoning 

and improvement capabilities exhibited by human beings. The work reviews literature concerning 

major differentiations of human learning compared to contemporary artificial intelligence (A/I) 

systems. Deductions from the body of knowledge in mathematics, computer science, and human 

learning quantify the human capability for continuous and recursive self-reflection as a central 

differentiator. Analysis of capabilities of computational systems establishes that structural 

differences between the human brain and computational devices do not preclude computational 

implementation of human self-reflective capability.  The work establishes self-reflective capability 

as an enabler for a co-recursive and recursive paradigm operable with unlimited depth and breadth 

for the problem of optimizing problem solving itself. 

Discovering the general algorithm for the Tower of Hanoi is the base case used to show how 

simulation outputs can transform to higher order pattern recognition problems. The Tower of 

Hanoi provides a model that is common for any problem in that it includes an initial state, a desired 

outcome state, and an allowed transition state (where states allow multiple combinations of sub-

states). This model is representable in the system and thus enabled for solution discovery. Detailed 

examples wherein the system pursues problem search spaces in a manner enabling autonomous 

self-improvement as a natural result of encountering new types of problems validate the thesis. 

Cooperating agents analyze solution path determinations for problems including those concerning 
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their own optimization. This spawns state transition rules generalizable to higher layers of 

abstraction resulting in new knowledge enabling self-optimization. 

Major outcomes include:  

1) Proof by example that a continuous improvement universal problem resolution framework 

is constructible using currently available software and hardware, 

2) Production of a prototype that meets the thesis for a continuous improvement system – non-

domain specific, extensible without reprogramming of the core system, lacking need of subject 

matter expert intervention; and executing within polynomial time complexity, 

3) Rationale that the framework coupled with technology advancements generate optimal 

solutions using fewer resources than possible without such a framework. 
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1. INTRODUCTION 

1.1 Motivation 

The motivation for this dissertation comes from a desire to advance computational processing 

in the area of problem solving from a domain-centric orientation to a general-purpose orientation 

[1], universal in nature with intrinsic support for automated continuous improvement. This 

motivation concerns not only the generic capability to model and represent problems within a 

system, but also the ability to generically discover and optimize solutions to computational 

problems. A key assertion of this dissertation is that the ability to resolve problems universally in 

terms of their optimal solutions will provide an automated improvement mechanism in the problem 

solving system itself and minimize the interaction requirements of domain-specific subject matter 

experts (SMEs). This dissertation substantiates the underlying assumption that problem solving 

itself is an NP-complete problem and therefore benefits from and provides benefits to other 

problems in the NP-class due to the effectiveness of approximation techniques and ever-increasing 

computational capabilities, even if the optimal solution never achieves polynomial time. 

A second motivation is to model the remarkable self-reflective component at work early on in 

human development whereby the mind intrinsically reflects on each experience in order to 

evaluate: (1) the success of varying approaches used to solve a problem; and (2) the methods of 

evaluation useful for success [2]. In addition, present at youth is a form of creativity that involves 

utilizing a solution from a prior domain and applying it in new ways to a completely different 

domain seems [3]. This capability appears to be part of the predictive aspect of human learning 
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and behavior whereby humans are able to quickly generalize and correlate current events with past 

experiences, learn to effectively filter vast amounts of sensory inputs, and make predictions [4]. 

The results of these predictions then help guide the process for filtering input data, analyzing events 

and, ultimately spawn creativity to realize efficiency improvements. Similar benefits should be 

realizable in a software framework that leverages self-reflection effectively.  

A third motivation comes from the desire to simulate the human learning processes within a 

computational framework [5]. Even children at very young ages possess the ability to differentiate 

themselves from the rest of the animal kingdom through mastery of complex language. Language 

learning remains a puzzling issue for the fields of both neuroscience and psychology [6]. This 

unique ability to evolve from virtually no language competency to highly sophisticated 

communication in the space of just a few short years surpasses the achievements by even the most 

adventurous artificial intelligence experiments. One hope is that a continuously improving 

problem solving system may lead to insights in the language-learning process.  

1.2 Research Goal 

These motivations inspire the goal for a universal problem solving system. However, not all 

problems are solvable, so the term “resolution” better supports the concept of searching for the 

outcome to a problem. In addition, the term “system” implies a self-contained product but the 

dynamic nature of problems indicate a need for extensibility and evolvability indicating a 

framework. Based on this, the dissertation targets a feasibility proof of a universal problem 

resolution framework (UPRF) as an outcome of prototyping the concept. 
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1.3 Research Questions 

These motivations raise four research questions: 

1) Is it possible to build a universal problem resolution framework that continuously improves 

and learns from its own execution including automatically cross-applying concepts learned 

in other domains in the most optimal method possible given the information available?  

2) What is the design of such a universal problem resolution framework (UPRF)? What are 

the constraints and requirements for a design that fully supports generic representation of 

problems, generic pursuit of problem solutions and continuous improvement utilizing an 

overarching set of processing components without the need for modifications of the actual 

components for the solving system? The specific subordinate questions under this are: 

a. How can UPRF generically encode problems from any domain without the need 

for redesign of the problem representation process? What is the level of effort 

required to represent various types of problems? 

b. How can it utilize the generic representation of a problem to explore possible 

solutions? 

c. How can it support a continuous improvement paradigm? 

3) Is UPRF practical for various types of problems?  

a. How would UPRF model, solve, and improve with various types of problems?  

b. Can it scale beyond the Tower of Hanoi base case to more advanced scenarios 

including scenarios representing real-world industry problems?  

c. What Subject-Matter-Expert (SME) interactions are required? What aspects of the 

framework help minimize these interactions?  
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d. Does the architecture support scaling to large scenarios and provide capability to 

leverage emerging technologies? 

1.4 Methodology 

The dissertation addresses the research questions through the following chapters: 

 Chapter 2 – Literature Review: This chapter reviews the literature covering concepts that 

form the foundations and provide impetus for a UPRF. Problem representation, 

simulation, complexity, human learning theory, recursion, co-recursion, relational 

algebra, and reflectivity are among the topics reviewed. The section concludes with a 

review of the research and the implications to feasibility for the UPRF concept. 

 Chapter 3 – System Framework: This chapter outlines the basic design of UPRF. The goal 

of this chapter is to lay the groundwork to support a processing infrastructure for problem 

representation. This chapter shows the feasibility for the framework to support the data 

and processes associated with problem representation, simulation, and learning. It also 

provides insights into how a UPRF can be constructed, prescribing a set of constructs for 

relational problem representation that support simulation and solution discovery including 

higher order problem transformation. 

 Chapter 4 – Operational Proof: This chapter targets the first research question (regarding 

feasibility) from the perspective of proving that problems can be generically represented, 

simulated, and analyzed for solution patterns to generate higher order problems within the 

framework that learn how to solve the lower order problems. Whereas the system design 

chapter focuses on structure, this chapter focuses on operation. It postulates constructs, 

provides an informal semantic proof and concludes with a proof-by-example scenario 
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using the Tower of Hanoi. The goal of the chapter is to demonstrate how multiple 

simulative solving instances generate knowledge within a system for solving higher order 

pattern recognition to find a general solution. 

 Chapter 5 – Practicality: This chapter targets the third research question concerning 

operation of the framework for various applications. It provides additional use cases 

beyond the Tower of Hanoi to show how UPRF extends to other types of problems. It 

explore more complex scenarios including: 

a. K-peg variations of the Tower of Hanoi illustrating the ability to scale from a 

lower-level problem domain to higher-level domains. 

b. Multi-agent/deterministic/exclusively competitive or collaborative including an 

example with Tic-Tac-Toe. 

c. Single-agent/non-deterministic/random influencer including an example involving 

stock market trading. 

 Chapter 6 – Conclusion and Further Research: This chapter summarizes the findings, the 

significance of the work, and provides insights for the fourth research question involving 

the practicality of UPRF. It explores enabling technologies that can make the massive 

amount of data tracking practical. This includes high-speed storage technology, distributed 

problem solving, and high-performance computing. 

1.5 Chapter Summary 

This chapter introduced the motivation and research goals associated with the objective of this 

dissertation, a universal problem-solving framework (UPRF). The motivation derives from 

drawing parallels between the factors driving humankind’s advancements over time and software 
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frameworks leveraging a universal, continually improving model. Research goals associated with 

answering questions of feasibility, constructability, and practicality arise from this motivation and 

form the basis for the work of the dissertation.  
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2. LITERATURE REVIEW 

2.1 Maslow and Technology 

The technological progress of human civilization focuses on the improvement of solutions to 

problems facing the human species. A key differentiator between humans and other species is the 

ability to identify non-optimal aspects of our existence and utilize nature in the creation of 

continually improving remedies to challenges that detract from the human experience [7]. These 

remedies span across all of the aspects of human life and encompass all of the needs associated 

with motivation of human behavior.  

Maslow provides a hierarchy of needs for human motivation [8]. This hierarchy depicts a 

pyramid with basic physiological survival at the base of the hierarchy and self-actualization at the 

top. The respective intermediate levels moving up the pyramid are safety, love/belonging, and 

esteem. Through history, human civilization has evolved by continuously devising improving 

methods to meet these needs. Invention is the cornerstone of the human existence and significantly 

differentiates us from all other species. Throughout history, no other species has shown such 

significant capability for progression as humans. While all species evolve to adapt to changing 

conditions, rarely does a species achieve a higher level of existence using technology.  

2.2 Technology and Computer Systems 

Technology is often thought of as an advent of the 20th century, however the word 

“technology” comes from Greek τεχνολογία (technología); from τέχνη (téchnē), meaning “art, 

http://en.wiktionary.org/wiki/%CF%84%CE%B5%CF%87%CE%BD%CE%BF%CE%BB%CE%BF%CE%B3%CE%AF%CE%B1
http://en.wiktionary.org/wiki/%CF%84%CE%AD%CF%87%CE%BD%CE%B7
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skill, craft,” and -λογία (-logía), meaning “study of” [9]. Technology marks the beginning of 

human civilization. Technological progress ultimately involves enabling progression within a 

system from an initial state to a goal state where the initial state is less than desirable and the goal 

state is the desired improvement. At the bottom of the Maslow’s hierarchy, the invention of the 

wheel (epitomizing the beginning of civilization) optimizes the scenario of reducing the resistance 

between an object and its surface to minimize the effort required to move the object. At the top of 

the pyramid, the printing press facilitates the populace to enter into satisfaction associated with 

literary works.  

In the modern era of computer software, higher level programming provides the ability to 

create automated information management systems that help humans across all the layers of 

Maslow’s hierarchy – from scheduling flights to tracking finances to social media interaction – 

and everything in between [10]. Algorithms, improvements, and innovations within hardware and 

software continue to improve the capabilities of computer systems. A unique aspect of 

computational devices is the orientation toward solving problems across all domains. Computer 

systems are no longer only informational devices providing an answer to some sort of computation 

problem, but are bidirectional in nature [11] exerting control over systems such as financial 

markets, power grids, medical aids, and weapon systems. Computer systems solve problems that 

directly affect everything from human survival itself to geo-political stability.  

2.3 Universality of Computational Frameworks 

Modern computer hardware and operating system software platforms are able to run 

applications encompassing multiple domains without any pre-knowledge of the specific domain 

[12]. The same computational device using the same operating system that can run an accounting 

http://en.wiktionary.org/wiki/logia
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package can also run word processing software, engineering simulations and data mining software.  

Programming languages provide support for creating application software that runs the full gamut 

of computational requirements and represents a universality class in the overall computer system 

framework. 

Relational database management systems [13] using Structured Query Language (SQL) [14] 

provide a generic capability to represent a wide variety of data. Any information that can be 

understood in terms of values related to other values, including those related through functions, 

can be represented in a relational schema [15]. Relational databases have evolved to support 

object-oriented storage, another class of universality in the area of information representation.  

More recently, data mining [16] software supporting business intelligence [17] and predictive 

analytics [18] such as MicroStrategy™ and ‘R’ have emerged with increasingly considerable 

capabilities that are further enhanced by hardware developments such as solid-state storage, 

parallel processing and by evolution of distributed computing networks. Similar to programming 

languages and operating systems, data mining has become increasingly generic [19] with the same 

data mining software supporting analysis of different domains. 

2.4 The Universality Gap Pertaining to Problem Solving 

Despite the universality of operating systems, programming languages, databases, and data 

mining software, domain-specific limitations persist when endeavoring to discover solutions to 

computational problems [20]. For example, data mining software may provide a generic platform 

for analyzing pattern data, but, for many scenarios, subject matter expertise is heavily needed in 

not only the problem definition aspect, but also in evaluating results and formulating actions from 

those results [21].  



  

 

     

 11 

 

 

It is natural that problem solving tends to be domain-specific since problems that we encounter 

are by their very nature varied across the entire sphere of existence. For example, the solution for 

calculating a flight trajectory is vastly different from the solution for determining customer 

preferences based on prior purchases. Another example of domain-specificity is the Deep Blue 

system for playing chess [22]. While this system was able to defeat the best grandmaster in the 

world, it was not able to play any other games – even a game as simple as tic-tac-toe – without 

extensive re-programming [23]. 

The domain specificity not only concerns algebra, and correlative analysis, but also entails the 

algorithmic aspect for determining optimal solutions. Typically software designed to find the 

optimal solution for a problem focuses on the use of a specific algorithmic approach or a 

combination of approaches whether it be neural networks [24] dynamic programming [25], 

heuristic-based [26], genetic algorithms [27], simulation-based [28] approximation-oriented [29] 

or some other method. Without a doubt, certain types of problems benefit more from specific 

algorithmic approaches. Therefore, feedback mechanisms commonly found in problem 

optimization research are typically limited to merely evaluating the success of the algorithm and 

parameters [30] rather than a holistic approach that encompasses any algorithm and endeavors to 

determine the most optimal set of algorithms or the most optimal patterns for applying the 

algorithms.  

2.5 The Case for Universal Problem Solving 

While it is true that using even the highest-level programming languages (including those 

oriented towards problem solving such as PROLOG [31] and Python [32]) will yield different 

approaches to achieve optimality, this dissertation asserts there is a central issue that exists in 
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problem solving itself that accommodates universality. The evidence for this comes from the large 

family of NP-complete problems. An NP-complete problem is a problem that does not have an 

exact solution in polynomial time and is thus NP-hard in execution, but is in the class of P 

regarding verification since NP-Complete problem solutions are verifiable within polynomial time 

[33]. 

All NP-complete problems – some of which seem very different on the surface such as the 

zero subset problem, the traveling salesman problem (TSP) [34] and theorem proving are 

fundamentally reducible to each other through mathematical transformations. It has been shown 

that if one can find a polynomial-time solution to one NP-complete problem, then all NP problems 

would be solvable and thus that P=NP would be proven true [35]. The discovery that P=NP has 

incredible repercussions and, in fact, most mathematicians and computer scientists do not believe 

that P=NP is even possible. However, P!=NP also persists as an open question. 

The ability to transform problems into a generic format is not limited to variations of NP-

complete problems. Relational databases provide another example of the extensibility for 

modeling a problem within a common framework under the umbrella schema of the relational 

model, particularly through application of associative data modelling [36] and key/value pair 

approaches such as “noSQL” [37] that support generic representations. The best evidence for 

generic problem representation comes from the representation of knowledge in the human mind. 

Humans are able to link memories together without limitation even where the schematic attributes 

of the knowledge is completely different. Images, emotions, facts, and events are all seamlessly 

related together suggesting the concept of generic schema in the infrastructure of the human mind 

that is able to represent all information such that any piece of datum can be related to another [38]. 
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Cognitive machines that utilize varying technologies with the ability to learn new information 

and improve themselves are yet another example supporting the concept of universal problem 

resolution.  Such machines function in their environments for a particular purpose but integrate 

with the environment and receive feedback to improve in their operations [39]. Cognitive machines 

are often used for surveillance and sensing of events in the environment and share the following 

similarities: 

 They have embedded (i.e., software-defined) signal processing for flexibility. 

 They perform learning in real-time through continuous interactions with the outside 

environment. 

 They utilize closed-loop feedback. 

 

Figure 2-1: Block diagram of cognitive radar closed loop system (Taken from Haykin [40]) 
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Figure 2-2: Feedback loop (from Haykin) 

 

2.6 Must P=NP for a Universal Problem Solver to be Possible or Useful? 

Turing’s “imitation game”, also known as the Turing Test probes the issue of whether a 

computational device can become so sophisticated that it can respond indistinguishably from a 

human to a series of questions [41]. The question precludes that the machine would need to have 

access to the typical data that a human being possess. However, even if such a machine possessed 

all this information, could it respond in a manner that reflected human cognitive abilities?  Could 

such a machine learn from the dialogues intended to test the machine and apply feedback 

ultimately to evolve itself to pass the Turing test? 

Some think of the Turing problem as intractable or NP-complete even if a system had all of 

the data embodied in a human mind [42]. However, this dissertation asserts that P=NP is not a 

requirement for the design or the useful execution of a universal problem resolution framework 
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and is not a constraint preventing continuous improvement of the system. There are three main 

rationales for this assertion: 

1) Many optimizations to NP-complete problems derive from observation of data patterns 

that provide the basis for generalizations implemented via dynamic programming. 

Examples of this include cutting algorithms and branch-and-bound algorithms that make 

optimization decisions based on dynamic evaluation of the data associated to an instance 

of a problem. UPRF naturally promotes optimizations for NP-complete problems by 

tracking details of all state sequences related to all data inputs. This provides a mechanism 

to learn from data and ultimately assert rules into the transition state queries that optimize 

the solutions [43]. 

2) Approximate solutions to NP-complete problems continue to improve to be effective 

enough for practical purposes for very large problem instances [44]. For example, a 

validated-optimal Traveling Sales Problem (TSP) tour for visiting 24,978 cities in Sweden 

by means of approximation techniques was found in 2004 [45]. Humans demonstrate the 

use of approximation rather than rote calculation when faced with complex problems. This 

is evident since a human can accurately guess complex routes to a TSP problem within a 

small margin of error [46]. Most of the “real-world” problems commonly found in human 

life are probabilistic and do not lend themselves to direct computation but approximation 

techniques. 

3) By embedding a cost-benefits problem into UPRF and instantiating this as a constraining 

problem on the system, the framework is able to maintain equilibrium in terms of effort to 

guarantee maximal effectiveness. 
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2.7 Problem Solving and Complexity 

For many years, computer scientists have wrestled with the Turing test [47] trying to devise 

methods based on the field of Artificial Intelligence to address the functional capabilities 

represented by this test. However, all attempts to this point have failed  not only in meeting the 

test [48] (not surprising given the fact that the test requires the computer to be in possession of all 

of the knowledge associated with a typical human persona), but in demonstrating the type of 

learning capability needed to achieve that of a human persona. To develop highly complex 

algorithms, researchers invested great amounts of time to anticipate the wide range of human 

behavior necessary to meet the Turing test. There have been applications and platforms developed 

that perform human-like behaviors and able to defeat human opponents in some very complex 

game scenarios that span beyond typical A/I algorithms including Chess. Deep Thought 

exemplifies such a pattern, however as is typical of many A/I systems, it is domain-specific, highly 

dependent on subject matter expertise for training, and computationally optimized for the 

particular domain thus representing a very narrow scope of human behavior [49]. 

Despite the advances in A/I, this dissertation asserts that the human learning model is the best 

software model to achieve the Turing test and that automated machine learning approaches based 

on the human mind have been inadequate to this point. Nature reveals that the human mind already 

contains the entire problem solving ability needed to not only potentially solve any solvable 

problem given adequate data, time and computational resource, but to develop more advanced 

problem solving automatically through the use of simulation, self-examination and domain cross-

over. One only needs to ponder the miracle of human language to realize this. By the age of four, 

a child has mastered all that one needs in human language to communicate and be understood by 
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their family without any deliberate attempts to train the child in human language speech and 

recognition [50]. 

The focus of AI has traditionally been on the development of specific algorithms or targeting 

specific domains rather than on the holistic process of learning and problem solving. A holistic 

process can function across all domains and is not limited to particular algorithms or applications. 

In the last several years, some noteworthy efforts address the holistic issue of automated machine 

learning. The basis of these efforts is on study of the brain from both a physical operational 

perspective as well as a functional aspect. 

This dissertation proves by induction and through example that it is possible to model 

information about problems and the solution paths for problems in a framework to enable eventual 

achievement of the Turing test. This is accomplished through ongoing pattern recognition that 

continually analyzes solution paths to generate new patterns which themselves become new 

problems in an optimal path problem continuum that is domain agnostic. Using a problem 

definition alone can determine not only the optimal solution paths for a problem, but the optimal 

solution path technique or algorithm associated with the problem. Such solution path techniques 

are then employable to optimize the solution for variations of not only the same but also similar 

problems, as well as for cross training into other domains. The exercise of the solution path 

techniques become part of the knowledge of the system. 

A key issue for such a problem system is the issue of computational complexity. Even if a 

universal problem resolution framework is constructible, will it be able to operate in polynomial 

time on P type problems only, or will it be able to achieve polynomial time complexity even within 

the class of NP-complete? This is a very significant question relative to whether or not the problem 
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solving apparatus is useful for discovering algorithms for NP-complete problems. This dissertation 

uses the Tower of Hanoi, an NP-hard problem with exponential complexity having a generalized 

solution as the base use case. Although the system does not address NP-complete problems 

specifically, this dissertation asserts that eventually the system will determine the optimal solution 

path for discovering the optimal algorithm for an NP-complete problem. The system will 

eventually also improve itself within polynomial time constraints. The problem solver itself 

represents a variation of the traveling salesperson in that it is seeking out the most optimal path 

from start state to the end state for its own operation. Even if the optimal path utilizes 

approximation and the derivation is not deterministic, this does not defeat the utility of the system 

for generic problem solving and solution optimization. 

2.7.1 What is Problem Solving? 

For the purposes of this dissertation, problem solving is considered a process for achieving a 

goal state, given an initial state, including a set of rules providing constraints on how the state may 

be changed in transitioning from the initial state to the goal state [51].  This definition provides a 

universal basis for pursuing problem solving in any context that supports state definition and state 

testing, including mathematics, formal specifications, and even psychology. Within the realm of 

computational problem solving, a state transition system representable by a Kripke structure [52] 

provides support for pursuing a solution for a problem.  Since states in finite state automata 

represent values of objects relative to a point in time without specifying the types of objects, this 

provides unlimited flexibility for defining a state system.   

This definition provides the basis for a state machine that can support any arrangement of 

items in terms of their semantic values related to other objects.  Such a definition provides for a 
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state machine that, for example, could represent a particular equation relative to the variables of 

the equation or even more significantly the arrangement of a particular problem state relative to 

other problem states in terms of solution paths.  For purpose of this work, solution paths indicate 

a sequence of state changes representing the truth of a conditional state for a problem at each state 

transition in the transition from the initial state of a problem to its goal state. Another term utilized 

in the undertaking of solving problem systems in terms of state is relational state tracking [53].  

Relational state tracking allows a complete history of all state changes within a system. This 

enables reversibility to a prior state and also supports reproducible reversibility so long as the 

underlying functions that change state are deterministic and the functional relations projecting the 

values associated to the states are stored along with the overall data state [54].  

2.7.2 Trends in Data Science and Machine Learning 

“Big data” has become a buzzword in today’s technological world and, although the entire 

field is buzzing about it, there is no true definition of “big data” at this point. In fact, it seems that 

everyone has a different definition for it. There are however five key characteristics attributed to 

this kind of data – whether separately or combined. The first is a volume of data that is large 

enough to require special considerations in order for storage and analysis. The next is a variety of 

data that consists of many different types of data possibly also from multiple different sources. 

Third is a velocity of data production that warrants special consideration – usually in this case the 

use of old or “stale” data production is not valuable. Fourth is the value of the data produced – i.e. 

data that has perceived benefit to certain organizations or initiatives. Lastly is the veracity of data 

– i.e. being able to verify the accuracy of the data [55].  
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Today’s technology news focuses on “big data” and systems that work with such big data. 

Use cases for forecasting events based on copious amounts of data are increasingly prevalent. 

Along with this, data science and machine learning are now becoming industry focuses. These 

trends are all relevant to autonomous problem solving. However, the focus of this dissertation is 

on a framework that can integrate research from machine learning, data science, and predictive 

analytics in a holistic fashion. Machine learning systems learn from data for different types of 

scenarios including supervised and unsupervised learning [56]. The systems serve a useful 

framework for problem solving by identifying patterns and predicting solutions. However, the 

emphasis of this dissertation is that no currently implemented systems provide a model for 

continuous reflection in order to reflect on their own performance and generate higher and higher-

level machine learning scenarios that implement improvements into the machine learning systems.  

The process for injecting feedback and integrating feedback as higher order problems is not a 

machine-learning problem but a software design challenge involving recursion, data modeling, 

and a re-entrant methodology for turning each level of problem solving into an optimization 

problem [57]. Therefore, this work does not concern itself with machine learning, but rather the 

framework that can host machine-learning algorithms, inspect their success, and utilize machine-

learning algorithms to learn about the process of problem solving. The outcome of this is the 

enabling pattern matching of higher and higher order problems instantiated into the framework. 

For purposes of the dissertation, machine-learning algorithms are black boxes evaluated in terms 

of success and relevance correlated to their outputs and input data from problem spaces, with the 

algorithms themselves treated as data points in sequences converging to higher levels of learning. 
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2.7.3 Recursion  

Recursion solves problems that are either too large or too complex to solve through traditional 

methods. Recursive algorithms work by deconstructing problems into manageable fragments, 

solving these smaller or less complex problems, and then combining the results in order to solve 

the overall problem. Recursion involves the use of a function that calls itself in a step having a 

termination condition so that repetitions are processed up to the point where the condition is met 

with remaining repetitions from the last one to the first [58]. 

Mathematical induction proves recursion. The definition of primitive recursion is [59]: 

I-algebra (X, in) admits simple primitive recursion if for any B Є B and morphisms 

d; : F;(X x B) -+ B, there exists a S : X -+ B such that the f. d. c. for i Є I.  

Corecursion then is the dual form of structural recursion. While recursion defines functions 

that utilize lists, corecursion defines functions that produce new lists. Thus, with corecursion, 

output rather than input propels analysis and is able to express functions that involve co-inductive 

types. Corecursion originally came from the theoretic notion of co-algebra with practical 

implications for higher order problem solving needed in a continuous learning framework [60]. 

Four primary methods prove corecursion: These are fixpoint induction, approximation lemma, 

co-induction, and fusion. Fixpoint induction is the lowest-level method, primarily meant to be a 

foundation tool. Approximation lemma allows the use of induction on natural numbers. Co-

induction looks directly at the structure of the programs. Fusion is the highest-level of these four 

methods and allows for purely equational proofs rather than relying on induction or coinduction 

[61].  This dissertation utilizes both coinduction and fusion with the Tower of Hanoi to prove that 

the system supports corecursion in order to achieve continuous improvement. 
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2.7.4 The Tower of Hanoi as a Typical Problem 

The Tower of Hanoi [62] meets the requirements for a recursion problem, although it can be 

solved through iteration as well. The Tower of Hanoi represents a simple problem that contains a 

definitive solution pattern for the optimal number of steps. As the number of discs increase, the 

same solution approach applies in a recursive fashion. While it is trivial to implement an algorithm 

to solve the Tower of Hanoi, it is not so trivial to discover the algorithm in a generic fashion using 

simulation alone without pre-knowledge of the algorithm. As a typical recursion problem, the 

patterns that emerge from the solution model for discovering an algorithm relates similarly to any 

other recursive problem. Thus, the Tower of Hanoi provides a useful example for an exercise in 

algorithm discovery. The complexity of Tower of Hanoi also provides an example for incremental 

domain learning by means of increasing the complexity through adding another peg or by making 

the number of pegs a variable. 

2.8 The Role of Feedback in Problem Solving 

It is becoming increasingly more common for computing systems to incorporate feedback in 

order to provide improvement to software. A simple example that Microsoft Windows™ users are 

familiar with is the feature that prompts the user if they wish to communicate information about 

an event causing an error back to Microsoft. By gathering, the information related to the error, 

Microsoft is then able to try to diagnose a root cause and potentially provide an improvement to 

resolve the issue back into the software through a service pack. Feedback is a fundamental tenant 

of evolutionary theory in that it provides a means to incentivize an organism to change its behavior 

if the feedback is adverse to the organism’s survival [63].  Humans regularly employ feedback in 

their thought processes and it is a fundamental concept for motivational learning theory. Software 
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evolution based on a feedback loop is a key aspect for continuous improvement within a software 

process [64].  

2.9 Relational Models and Neural Networks 

State Sequencing involves the capture of state changes occurring to an object or the attributes 

of an object. Through the capture of all object and attributes related to other objects and attributes 

in a system, relational state descriptions are obtained that represent the state changes and their 

relationships to changes of other attributes within the system. Capturing these relational state 

sequences allows a complete representation of a functioning system including the ability to replay 

the model and analyze sequences derived from execution of one model to that of another model.  

Relational state sequencing is a key enabler for representing Bayesian networks in both 

probabilistic and deterministic problems [65]. Storing these sequences into a repository and 

correlating them back to the source endeavors foster both unsupervised and supervised learning 

for intelligent analytic systems [66]. Functional programming supports lambda calculus and 

pattern matching to integrate relational state descriptions in an evolutionary manner to solve 

problems [67]. 

Neural networks [68] and relational models have different approaches, but are compatible for 

information representation. A neural network can be represented relationally and a relational 

model represented in a network model [69], [70]. This allows the use of a relational model to store 

the concepts associated with a network learning exercise. Integration of functional programming 

outputs into relational state sequences that represent the complete behavior of a system allow 

convergence to recursive relations to generalize behavior of systems [71]. 
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The integration of neural network information into relational sequences within the context of 

a descriptive relational model enables the relational state tracking approach alluded to earlier in 

this chapter. Through relational state tracking, the capture of complete information about a system 

behavior occurs which then enables the complete analysis of the correlations within the system. 

Through a recursive framework, actions used to analyze the relational sequences become enablers 

for higher and higher order problem transformations that optimize not only the base problem but 

the higher order problems of how the framework itself can achieve new capabilities through its 

own introspection [72]. These new capabilities form the basis for the generation of new algorithms 

that provide further improvement within a software framework [73]. 

2.10 Domain Crossover and Associated Limitations 

One limitation of many A/I systems is that their orientation is focused to solving a problem in 

a particular domain such that the formulas, functions, data structures, and other aspects of the 

software application are optimized for the domain and may have limited utility outside the domain. 

For example, while neural network architectures for single-layer nets have shown relevance to 

certain domains, neural networks for multi-layer domains suffer from interaction complexity [74].  

An algorithm applied effectively in one problem domain   may be completely ineffective for 

another domain. This is because problems vary significantly in terms of their initial state 

configurations, types of objects involved, transition state constraints, and final goal states. Each of 

these has an impact on what technique is optimal for the particular domain.  

The lack of automated algorithm selection depending on the problem type is a common 

problem encountered by novice users using sophisticated data mining software. Many data mining 

packages prompt the user as to the type of mining model to use, whether it be associative, 
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clustering,  structural, pattern-based, time-series, etc.  Often the users of this system lack the 

subject-matter expertise or experience in the domain to make a well-informed decision. Some 

systems now try to predict the model that will be most effective by sampling the data and 

evaluating the effectiveness of a model, thus incorporating feedback as part of the problem solving 

approach.  

One approach commonly used for problem solving in traditional A/I is the use of genetic 

algorithms [75]. NP-complete problems domains commonly use such algorithms as well as other 

domains with some success. Genetic algorithms can have utility for cross-domain learning as a 

means to optimize a solution approach rapidly [76].  However because genetic algorithms focus 

on energy functions for a specific domain and follow an evolutionary model that optimizes toward 

a particular goal state in a random fashion, their usefulness for finding the best solution that can 

map from one domain to another is limited, particularly if genetic drift accommodation is lacking 

[77]. Through an approach that utilizes machine-learning algorithms, including genetic algorithms 

as black boxes inside of the holistic framework, the genetic algorithms themselves along with their 

limitations and correlations to problem types become an area of continuous learning within the 

framework. 

Domain crossover for the context of this dissertation indicates a deliberate effort on the behalf 

of a system to apply a solution technique to another domain in order to determine the usefulness 

of the technique to the newly targeted domain. A simple way to determine this is to actually test 

the technique in the targeted domain and evaluate effectiveness relative to other techniques. 

However, this technique imposes potential inefficiencies – one of which being the difficulty in 

determining an effective sample size that adequately tests the technique since the data values may 
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be skewed for certain attribute values for entities subjected to the technique. In addition, even if a 

technique applied to a particular problem in a domain is effective, how does one know that it will 

be effective to other problems in the domain? For example, what are the criteria that cause a 

technique to be effective that may vary even within the same domain for different problems? 

Making decisions without all the information on a system is a challenge for decision systems 

and expert systems. Often subject matter experts (SMEs) train these systems to orient data mining 

techniques based on certain conditions in the data or types of problems; however, this is a tedious 

and error-prone process. UPRF’s ability to automate the trivialities of inspecting data results 

against a goal reduces SME interaction. 

When contemplating the various obstacles of domain-crossover, it may seem that attempts to 

utilize proven techniques from another domain or from dissimilar problems have such a low 

likelihood of success as to be virtually no improvement over random selection -- perhaps even 

worse considering the addition effort of applying techniques likely to fail. However, this assertion 

is proven false by examining systems that are effective and do utilize domain-crossover. A good 

example of such a system lies in the area of human learning and problem solving. In human 

problem solving endeavors, people often successfully apply a solution technique from a seemingly 

unrelated domain onto another domain.  

How do humans accomplish domain-cross-over and can the same techniques apply to 

software-based problem solving? For example, how is it that a child who gets bit by a dog as a by-

product of harassing it make the decision to be careful in treating other types of animals with no 

resemblance to a dog? In this case the answer lies within the question of whether the child is able 

to recognize that there are commonalities between animals such that a dog and a cat are both related 
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closely enough that the cost/benefit of restraining their impulse has a positive return [78].  For 

example, a young child who is bit by a dog because of treating it roughly, with limited knowledge 

of machine commonality from dogs to self-propelled vacuum cleaners (i.e. a Roomba iRobot™) 

may hesitate before treating a vacuum cleaner roughly. These examples indicate correlation is the 

enabler for human achievement of domain crossover. In the same way, problem-solving systems 

should also be capable of domain crossover by linking attribute commonality (either directly or 

indirectly) among problem domains. 

2.11 Association, Pattern Matching, and Prediction 

Based on the concept of associative correlation and commonality [79], an equation can be 

constructed to avoid an adverse response wherein the initial state involves an object that relates to 

another object belonging to a problem that has already been solved. Combining the concept of 

feedback with association enables prediction generation. In “The Two-Second Advantage” the 

authors postulates that humans make decisions based on attempting predictions and monitoring 

the success rate in response to associative patterns [80] and thus optimize their effectiveness to 

adjust to new circumstances. Without this ability, humans would not be able to function because 

the amount of sensory input received by the brain is too much to analyze completely in time to 

respond effectively. Consider the millions of neurons that are fired every 40 milliseconds or so 

from images transmitted by the retina in comparison to the number of computations that a person 

can perform in one second [81].  
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2.12 Fuzzy Logic, Probability, and Statistics 

A study of predictive learning links to the concept of “fuzziness”. Computation commonly 

focuses on binary absolutes wherein a logical expression yields either true or false with some 

systems including the concept of undefined/unknown. However, decision-making as done by 

organisms, particularly human is not strictly binary, it is based on probability.  Probability is a key 

aspect of data mining in order to determine correlations. Probabilistic data mining systems estimate 

likely correlations. The more robust data mining systems calculate confidence intervals that 

accompany the correlational findings.  Utilizing “fuzzy logic”, programs are often able to achieve 

higher efficiency while retaining high reliability for the targeted problem [82]. Recommendations 

result from probability models, which while not guaranteed to be correct, are likely enough to 

justify acting upon probability calculation. A good example is a high-frequency trading application 

that does not have time to examine all of the data, but has enough time to identify significant 

deviations to anticipate a market risk and perform a mitigation action. This concept is useful for 

mathematical models including Fourier Transformations to reduce problems of unsolvable scope 

via estimation or division to probability problems that reflect the accuracy of the fully constituted 

problem accurately enough to be useful while not being too slow to be practical [83]. 

2.13 Holistic A/I or “Authentic Intelligence” 

At this point, it is apparent that the optimal combination of logical techniques performed in 

an optimal sequence is greater than the sum of its parts. That is, each of these techniques taken to 

an extreme without integration to other techniques has less value than the intelligent combination 

of the techniques.  Pure prediction is nothing more than guessing with limited utility. Calculating 

statistical likelihoods is a waste of resources for a simple problem. Constantly changing a solution 
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technique due to occasional unexpected feedback is worse than relying on one that is usually 

correct. Associating items that have similarity into the same problem class is not useful if the 

similarity does not relate in some way to determining the outcome of a solution technique. Even 

reliance on pattern recognition and relational state tracking may lead to false solution paths if the 

relational state sequences form the same pattern for a certain grouping of initial configurations. 

For example if Tower of Hanoi is instantiated only having an odd number of disks, pattern 

recognition will yield a technique that dictates always moving to the third peg on the first move. 

This solution pattern will prove faulty once the initial state is set for the game to have an even 

number of disks. Until a suitable variety of test cases establishes a causality relationship between 

the number of discs and the required first peg move, the apparently universal truth condition arising 

from a preponderance of test cases will be in a state of failure. 

Based on the above, the optimal problem-solving model does not confine itself to a singular 

approach, but is combinatorial in the selection and sequencing of application of various techniques 

to a problem.  This brings the focus to intelligence. In order for all these techniques to work 

together, the techniques must integrate in the most optimal fashion. In this sense, traditional A/I 

work is mainly too narrow in scope. The emphasis tends to be on particular techniques such as 

neural networks, Bayesian-based, symbolic logic, pattern matching, etc. (all of which work well 

when paired to the suitable problem types) rather than on the problem of identifying how to find 

the optimal combination of techniques for a problem solution.  

2.14 Self-Organizing and Diminishing Returns 

The concept of searching for solutions to problems in a symbiotic fashion that benefits the 

overall system manifests in the principle of self-organization [84].  Self-organization is a 
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requirement of UPRF in order to improve itself without external modification. To be effective, 

self-organizing systems must possess the following attributes [85]: 

 Autonomy: The system needs no external controls. 

 Emergence: Local interactions induce creation of globally coherent patterns. 

 Adaptability: Changes in the environment have only a small influence on the behavior of 

the system. 

 Decentralization: The control of the system not done by a single entity or by just a small 

group of entities but by all entities of the system. 

 Merely finding the optimal way to combine techniques for a particular problem and then 

using them is of little utility given the myriad types of problems and techniques available. Such an 

approach if done randomly is undoubtedly worse than using any one technique exclusively.  

Therefore, a more important problem is discovering how to find the optimal solution combination 

technique.  However, even if one solves the second order problem of discovering an optimal 

solution combination that finds the optimal combination for the lower order problem, can the 

second higher order problem for finding the optimal combination also be optimized?  One answer 

is to transform the second order problem to a higher-level problem targeting the goal state as being 

the optimal way to find the optimal way to find the optimal way to solve the original problem. 

2.14.1 The Infinite Recursion Problem 

The dissertation asserts that any problem whereby complete state tracking of all the steps 

utilized to solve the problem including capturing all of the function calls, assertion tests, and 

outcomes can be transformed to a higher level problem that is representable in a generic state 

machine. However, even with implementation of such a means for recursive problem optimization, 
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the perfect solution path will never be determinable since each level of solution path optimization 

leads to a higher order problem.  The outcome is that each higher order problem targeting the 

optimization of the lower order problem provides additional benefit albeit with diminishing returns 

at some point. Another problem is that if the recursion loop fails to unwind, none of the problems 

in the optimization hierarchy ever receives any optimization. Constructing such a system for 

solving problems would in fact never solve any problem because it would never exit the recursion 

loop; this is known as the infinite recursion problem [86]. 

2.14.1.1 The Recursion Exit Dilemma 

For recursion problems that involve potentially infinite recursion, a constant or type of 

expression serves as an exit condition to cause the unwinding of the recursion [87]. This technique 

has application to the recursive problem solving machine construction outlined earlier.  This seems 

the best option with UPRF since infinite recursion is of no use and the framework can provide 

another optimization problem that concerns the exit condition for the recursion itself.  

Depending on the problem complexity and effectiveness measured at each iteration of solver 

recursion, the optimal exit point is highly variable. Therefore, use of a constant to control this is 

inadequate. A better approach is to unwind the recursion in parallel spawning sub-problems until 

exploration of the solution space for the lower order problem completes or reaches some threshold. 

In this model, co-recursion occurs with recursion such that the new high order problems derive 

from lower-level instance solving and optimize the lower level problems. In this scenario, the 

optimization techniques are passed down to the lower level problem immediately or deferred by a 

recursion gap representing a threshold of hierarchy levels that triggers the application of the 

techniques back to the lower level problem. One advantage of the co-recursive/recursive approach 
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is that the system can infinitely attempt to optimize higher and higher order problems while 

providing utility and continually improving.  

From the above, continuous improvement capability is possible provided the constraints of 

generic problem representation, complete relational state representation, and a base set of functions 

have sufficient robustness to accommodate analysis and problem solving. Sufficient robustness in 

solving and analytical functions is achievable through at least three different means:  

1) The functions contained in the baseline of the system provide a high enough coverage for 

pattern matching, probability functions, data mining functions, condition assertion functions, and 

condition testing functions such that the exercise of the functions in concert and tracking of their 

invocation patterns is better than random choice;  

2) There exists an extensibility function such that the system is able to incorporate new 

functions autonomously in response to dead-ends for solutions using some type of dynamic 

function execution model combined with dynamic search or an ability for a SME to add functions 

dynamically (however, this is a violation of the principle that SME intervention should not be 

needed);  

3) The system is able to write its own functions, track the primitive operations used for writing 

the functions in terms of relational state sequences relative to the optimization and dynamically 

execute them by combining primitive functions in different combinations in order to accelerate the 

effectiveness rate of function application relative to optimal solution paths. 

2.14.2 The Equilibrium Paradigm 

Equilibrium within a system manifests when the system reaches a steady state or ranged state 

such that a balance between different functions exists [88]. This result is typical of systems that 
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act upon themselves; the reactions in the system arise from actions and have a counter effect on 

the initiating actions over a sequence of states. Financial markets to a certain degree exhibit 

equilibrium since money inflows, money supply expansion, and money redistribution act upon the 

overall system [89] (Pareto Principle [90]). Equilibrium generally indicates that a system has 

reached a level of optimization whereby alterations do not provide benefit if the system is 

achieving the desired goal state. 

Multi-agent reinforcement learning can facilitate equilibrium in machine learning systems 

[91]. These systems utilize cooperating agents to converge to a desired equilibrium that spawns 

actions that contribute in actions that optimize reaching of the goal. Due to the recursive nature of 

UPRF and the possibility for endless iterations, equilibrium is a key aspect to accommodate in the 

framework as a continuous operational problem. Utilizing the framework to host this equilibrium 

problem allows UPRF to leverage the same infrastructure as that used for other problems and reap 

the same benefits of cross-domain learning and continuous improvement.  

2.14.2.1 Targeting equilibrium as the goal state 

Based on the above, the master problem for a universal problem solver is to achieve and 

maintain equilibrium where equilibrium represents the optimal ratio of computational processing 

utilized for optimizing the system relative to computational processing utilized for solving 

problems. Herein lies a central tenant of this work; the optimal solution to a problem is able to be 

defined in terms of reaching equilibrium in a co-recursive/recursive problem solving system across 

all depths of the hierarchical problem space including the optimal method for arriving at optimal 

equilibrium. By targeting equilibrium, the framework avoids arbitrary recursion exits and is able 

to manage its recursion.  
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The concept of self-reflection was alluded to earlier in the context of a feedback loop and as 

a differentiator of UPRF compared to existing problem solving frameworks. This self-reflective 

process ensures that measurement of all actions is relative to prior results for correlated actions. In 

some cases, the correlations may be distant but still relevant. For example, one may consult the 

Internet to obtain directions and a time estimate to travel to a specific location but the time estimate 

is only accurate given the current traffic. The estimate may not be accurate for a later time when 

some event may occur that adds to the traffic. A person may mistakenly not factor in the occurrence 

of an event and assume the travel time to be exactly as prescribed on the web site. It is only later 

when the person arrives late due to some large event occurring along the traffic route such as a 

sporting game that the person learns to not only search for the directions and estimated time, but 

also for nearby events related to the destination. This type of learning affects our processes even 

across domains to the point that the experience may remind of the need to be cautionary in a 

seemingly unrelated endeavor such as finishing a group collaborative document. The experience 

of lateness due to an unexpected event may heighten the fear of being late on a project involving 

multiple individuals where the factoring of the commitment level of all individuals is not included. 

This process of self-reflection ultimately leads to more complex and interrelated schema from a 

human perspective [92] as well as when implemented in software. 

The targeting of equilibrium is a natural goal state postulated by evolutionary theory and 

exemplified in human learning. The human mind is capable of endlessly exhausting computation 

cycles in self-reflection to a point that the individual takes no action resulting in a paralyzed state. 

Yet, without this model of reflection, there is the risk of an impulse decision that does not leverage 

experiential knowledge leading to a disastrous error in judgment. Exclusivity to either extreme is 
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disastrous to self-preservation and prevents survival. Based on this, it is evident that the human 

organism through decision-making driven by learning and problem solving experience is in a 

constant search for equilibrium. Thus, a system that targets equilibrium in self-reflection and 

optimization (self-organizing) in terms of higher order problems to generate optimality patterns 

for lower order problems and continually probe cross-domain problem solving improvement as a 

relation onto its exercise of computation for direct problem solving should be achievable. It is also 

arguable that such a system emulates human creativity since creativity appears to arise out of 

pattern recognition between distantly related problems triggered by a commonality relation that if 

true would drastically improve the solution for the problem. The concept of creativity in this 

context represents the outcome from pursuing an optimization goal driven by the probability that 

a decision with potentially low likelihood to succeed is worth attempting based on the metrics of 

prior forays. 

2.14.3 Managing Time and Storage Complexity  

The time and storage complexity of a problem solving system is exponential for NP-complete 

problems until optimizations are found, since the problem space must be explored as a search 

problem that exponentially increases in size for trying out all possible state sequences [93]. 

However, the equilibrium goal places a constraint on the system for optimality that requires the 

system to retain polynomial time complexity. This allows the system to constraint itself to finding 

optimizations that may not be exact but are justified based on a return-on-investment principle 

where a “good-enough” solution is better than no solution at all. 
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2.15 Towards a Generic Schema for Problems 

For a problem solving system to function generically across different problem types, the 

system must be able to interact generically with all types of problems. This implies the need for a 

general-purpose schema for representing information about any problem. Historically, problem 

domains rely on semantics and schemas specifically targeting the domain rather than on generic 

constructs. Various models have been put forth to try to make schemas for problems generic [94], 

but without a unified model from that can represent knowledge from all problems, integration of 

knowledge across problem space requires custom agents that can interpret the information specific 

to a problem domain. Case-based reasoning (CBR) systems provide a model for such a generic 

database for general purpose problem solving. CBR functionality is dependent on a path and 

pattern database that stores the all problem and solution states [95]. 

Proof that such a schema also enables autonomous improvement arises through a simple 

Tower of Hanoi scenario where multiple variations of the game play out using different instances. 

The next chapter illustrates this by instantiating two through five discs to generate relational state 

sequences intersecting different conditions of specific attribute values to conditions defining other 

attribute values in the system.  The relational state sequences incorporate derivative states to 

provide recognition sequences that reflect problems that project into functions based on change 

frequencies. Many NP-hard problems exhibit symmetrical patterns when interrogating the problem 

space related to the solution space including Tower of Hanoi.  

In the Tower of Hanoi scenario, analysis of discs two through five reveals symmetrical 

patterns allowing simple pattern recognition using bit functions to generate functions that 

generalize conditional expressions relative to the number of discs for setting the peg number. The 
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conditional expressions that prove as valid transition state optimizations to add to the rule states 

are able to generate the prediction state sequences by the time that the count of discs reaches six, 

providing linear time complexity for the solution path identification after the first four test cases. 

Generalizations spawned from optimizing the higher order problem for finding the optimal 

solution serve as optimization conditions to add to the lower level problems. The framework 

revisits the lower level problems and applies the generalizations. As more variations are tested, 

pruning the set of candidate generalizations becomes possible. Using the tested conditions as 

optimization expressions starting with a count of discs equal to six, the conditional expressions 

that prove as valid transition state optimizations provide linear time complexity for arriving to the 

solution path for all future attempts regardless of the number of discs. 

2.15.1 Rationale for using a Relational Schema 

Relational algebra provides [96] finitary relations that allow objects to be organized relative 

to other objects in terms of existence dependencies as well as enabling object values to be 

associated to the parent object containers. This allows a relational database schema to represent 

semantically how collections of objects relate in terms of dependencies as well as values. Such a 

schema provides utility for UPRF since full state representation is dependent on object values 

relative to each other at each sequence in a problem solving exercise. Since the values are able to 

provide the linkage between the objects and this information is part of the information schema of 

the model, this effectively supports neural-network constructs of associating an object to another 

object. Metrics regarding the relative strength of a connection can be determined in terms of the 

number of intervening nodes as well as in terms of numbers of physical connections based on 

cardinality between the nodes. 
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Value change state relative to other values in the model over a sequence of states yield binary 

strings indicating truth or falsity between every object in the system for every state. Through 

application of transform operators successfully predicting the outcome of one instance from other 

instances, a progression of transformation operator sequences results. The UPRF schema thus 

demonstrates an effective modelling of a neural network within a relational construct with all 

objects in the endeavor linked together. 

Since the relational model provides for information about itself within the same model containing 

the information, it supports self-representation and a recursive data structure, which are both 

foundational to provide generic semantics to agents interacting with the structure. This is a key 

component for supporting the recursive processing identified earlier associated with a problem 

solving system that can interact with itself.  

2.16 Rationale for the Possibility of UPRF 

The human mind is vastly different from current computer systems in terms of structure and 

operation; however, computer systems and the mind share many similar attributes. These attributes 

allow computer systems as well as humans to fulfil the requirements of an “Intelligent System” 

[97]. Intelligent System implies the ability not only to solve problems but also to learn and improve 

in a continuous fashion with minimal outside intervention. This section examines evidence 

supporting the thesis that capability for autonomous continual learning present in humans is 

possible for a computational device through appropriately designed software. 

Many have attempted at distilling human problem solving into software frameworks. Among 

these attempts include the use of cognitive primitives [98], evolutionary multi-agent systems [99], 

and algorithm pools [100]. UPRF is novel in this regard since rather than choosing a particular 



  

 

     

 39 

 

 

machine learning strategy, it resides at a layer above the A/I realm to act as a holistic consumer 

and benefactor from the underlying algorithms. 

2.16.1 Attributes of Intelligent Systems 

This section explores the attributes that support the processes of general problem solving and 

ongoing improvement or optimization of the solution-discovery process. Four attributes surface as 

possible cornerstones for understanding a problem, discovering solutions, and profiting from the 

exercise to enable improvement of the overall problem solving framework so that additional 

problems incrementally benefit from the problem solving experiences [101]. These attributes link 

to the processes outlined in Figure 3-1. They are: 

1) Problem Representation [102]: A system cannot endeavor to solve a problem unless the 

problem can be schematically represented such that a solving agent can understand the 

starting state, desired state, and allow intermediate states that are traversable in order to 

find solution discovery paths. 

2) Solution Space Probing: A solution to a problem is undiscoverable unless there is a process 

for exploring possible solutions to determine the arrangement of steps needed to achieve 

the solution. 

3) Performance Metric Collection: For a system to be able to improve it must have a 

mechanism to collect metrics about how well it is performing so that these metrics can be 

analyzed to determine the relative effectiveness of actions carried out by the system for 

problem solving.  

4) Performance Analysis: There must exist a process that correlate the effectiveness of a 

system to meet its goals with the steps taken to obtain the goals.  
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2.16.1.1 Problem Representation 

A generic solving system is only possible if the organization of problem information is in a 

structure that supports generic evaluation.  Problems that can occur in wide varieties of domains 

involve a wide variety of different types of objects. It is impossible to anticipate beforehand all of 

the different types of problems that can occur. Therefore, self-improvement and continuous 

learning require that the problem-recording structure is robust and extensible enough to store 

information about a problem even without knowing the manner of it solution.  

In humans, children exemplify this paradigm in language learning. Children receive language 

information well before the time they are able to use language to express themselves. Despite the 

inability of an infant to understand spoken language or use it in early infancy, the capability to 

decipher speech and learn to use it develops autonomously through experience without deliberate 

instruction. Research suggests that the child is able to schematize information about language even 

before it is able to decipher the meaning and semantics necessary to employ language [REF]. 

How humans are able to schematize problem information such that a solution discovery 

process can understand the meaning of the problem and work toward a solution is a mystery. One 

theory is that neurons and synapses form a neural network in the brain through connections that 

represent information about a problem [103]. Neural networks provide a method for representing 

information through connections. The arrangement of a set of objects perceived can thus map into 

a network that contains the information about how the objects inter-relate to each other. An 

unanswered question regarding human thought concerns how the mind is able to map particular 

types of connections to thought processes associated with thinking about and solving the problem.  
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Software applications provide a caricature of problem understanding and solving for specific 

domains using a variety of different methods for representing information and then processing the 

information to meet the goals of the system [104]. For example, a flight reservation system stores 

information about flights, routes, and scheduling constraints such as airplane seating capacity, and 

factors affecting efficiency and performance of the aircraft including speed, range, fuel usage, etc. 

Advanced flight dispatching systems not only allow the flights to be scheduled, but optimize the 

scheduling to meet some target goals such as clustering flights toward a particular hub, minimize 

under-utilization of seats, and maximizing the likelihood for on-time arrivals. An intelligent flight 

reservation system is only intelligent because the software has been oriented to pursue goals 

defined as part of the data. 

Operating systems also provide an example of software that attempts to optimize its own 

performance through heuristics [105] and rules that define the goal behavior [106]. Operating 

systems seek to minimize resource deadlocks, assure maximum throughput, and maintain optimal 

equilibrium in the use of memory, storage, and computational resources. Relational databases also 

include mechanisms such as I/O cost evaluation in order to attempt to optimize queries for 

maximum throughput [107]. 

These examples provide evidence that it is possible to build intelligent systems within 

particular domains. Combining data structures that represent the state constraints of a problem with 

processes that interact with the states to perform simulation and correlational analysis provides a 

problem resolution framework. This evokes the question of whether or not it is possible to abstract 

the domain-specific details of computational problems in such a way as to promote a general-

purpose problem-solving framework. 
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The traditional approach for solving problems by focusing on aspects of the domain does not 

promote generic problem solving and modeling, thus compelling the need for another approach to 

achieve optimality without domain-targeted programming. Is it possible to model domain-specific 

information concerning goals purely declaratively as the data relates to functions over a sequence 

of time rather than in imperatively terms of procedural code? A key to finding these answers lies 

in distinguishing declarative and imperative program definition. Imperative programming 

approaches utilize a sequence of steps to solve a particular problem. Declarative programming 

implies that computational logic follows as a derivative from rules that define the inter-

relationships of structural and relational data objects. Relational databases are a form of declarative 

programming in that much information about the computational requirements for a set of entities 

can be defined through the relationships specified in a relational database [108]. For example, a 

database relation can enforce the requirement for a customer to exist before creation of an order. 

The relational approach of UPRF promotes a declarative model wherein the data does not only 

include the details of a particular system, but information about how the data within the system 

works together to define it. Data that provides information about a system’s information constitutes 

metadata. Comprehensive metadata is a key foundation for enabling generalizing information 

about problems such that solutions can be data-derived rather than procedurally prescribed.  

 A second key enabler for generalized processing that extends beyond domain specificity is 

the use of polymorphism. Polymorphism allows management of different types of objects through 

the same interfaces [109]. In the case of the flight scheduling system and an operating system, a 

polymorphic system can implement common functions for optimizing performance and efficiency 
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despite the differences in the data structures. Polymorphism allows for abstraction of functionality 

from structural data implementation details.  

 Generalization is a third aspect for enabling information representation that facilitates the 

abstraction of data from processes [110]. Generalization allows for aggregation of multiple aspects 

of information to in terms of a higher-level concept. Object-oriented semantics such as 

generalization and abstraction, as well as relational representation, are information storage and 

processing mechanisms that undergird problem representation and solving in human thought 

processes, also existing as well-defined software design patterns.  

 Using object-oriented and relational constructs along with state representation for declarative 

programming ensures that information about problems lends itself to a generic representation 

structure through multiple levels of abstraction. UPRF provides semantics for generalizing 

problems in terms of their objects in a relational manner relative to the pertinent states associated 

with object configurations needed to navigate from a problem definition through intermediary 

steps to meet a goal state. The dissertation outlines implementation of these constructs through a 

relational database schema exposed through XML schemas that demonstrate the utility to support 

universality. 

2.16.1.2 Solution Space Probing 

Assuming a common semantic model defines a problem based on relational representation, 

will the resulting problem definition support generic solution approaches? Probing of solution 

paths associated to multiple instance of a problem and transforming correlations learned asserts 

this attribute of human problem solving is available to a software framework. As the framework 
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catalogues higher layers of problem solving abstraction, progress toward solving increasingly 

complex problems occurs. 

Functions that control the possible solution paths provide the constraints for solving any 

problem. Possible solution paths derive from the outputs of functions underlying the rules for the 

solution space. Together the functions that define the potential solution possibilities along with the 

ranges materialize the potential states of a problem related to its solution. Turning back to the 

generic representation concept, if a problem has been defined in terms of initial state, goal state, 

and allowed intermediate states in the context of encapsulating functions, then it follows that a 

generic solution probing process can explore the potential states and branch the problem states 

until ultimately achieving the goal state. Chapter 4 provides a walkthrough of how this is 

accomplished. 

2.16.1.3 Performance Metric Collection 

A system that can generically represent problems and automatically probe for solution paths 

may be useful but it cannot allow for intelligence without a mechanism for optimization. 

Optimization requires metrics [111]. Improvement requires a baseline and a target. Optimization 

is in fact a problem in and of itself with the initial state being a brute-force solution discovery to 

meet a goal for a computational problem and the goal state being the optimal sequence to find the 

steps for solving the problem. The intermediate steps are the rules that the system can follow to 

attempt to achieve the optimal path. For UPRF to be able to accomplish this, capture of all actions 

performed by the framework must occur to support correlation of the actions to the effectiveness 

of reaching any particular problem’s goal state.  
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The aspect of collecting and analyzing information related to a process is an area of knowledge 

management in data mining increasingly implemented in more and more software applications and 

business processes. Examples of such systems today include applications for counter-terrorism, 

insurance actuarial analysis, online shopping-basket customer sales prediction, and financial risk 

management. Therefore standard data mining, including collection, analysis, and interpretation of 

data related to operation of UPRF is a fundamental component to enable the continuously 

improvement mechanism. A weak point in most data mining implementations is the requirement 

for a subject matter expert (SME) to examine the results and provide interpretation. However, by 

transforming the analysis process into just another problem with a baseline state and a goal state 

as is done for all other problems, the optimization process itself can be enabled for automatic 

improvement.  

2.16.1.4 Continuous Improvement 

Continuous improvement [112] is a differentiating aspect of UPRF achieved by transforming 

the problem of solving a problem to be a problem in and of itself. This is where the recursive aspect 

of the system comes into full force; it allows the system to view the problem of its own 

performance as just another problem within the same framework as any other problem. This design 

ensures the system is unlimited and not bound by any pre-determined abstraction definition. The 

functioning of continuous improvement is the most advanced aspect of UPRF. The continuous 

learning aspect functions in an autopoietic method capable of self-enhancement without 

enforcement from a supervisory external force [113]. This is in contrast to allopoietic systems that 

are inherently fragile and require continuous intervention to maintain operation and implement 

improvements. 
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2.17 Chapter Summary 

This section reviewed the literature associated with computational problem solving across a 

variety of disciplines including Neuroscience, Artificial Intelligence, Machine Learning, Software 

Architecture, and Information Theory. This detailed study drives not only the requirements for a 

universal problem-solving framework (UPRF) but also points the way to key principles and 

concepts needed to support such a framework. From this detailed exploration of these areas, 

several key requirements emerge that UPRF must address. These requirements include: 

1) A generic representation of a problem including the queries that associate functions and 

data attributes to generate objects that map to its initial, goal, and allowed transition states;  

2) A system that can probe the solution space based on the problem states in a general fashion 

without knowledge of the problem domain; 

3) A mechanism to learn from the solving of related instances in order to create higher and 

higher level abstraction problems that yield higher level instances, which generate higher 

order assertions that can ultimately generate solution paths without simulation.  
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3. SYSTEM FRAMEWORK 

3.1 Framework Foundations 

Computational problems may be in various types and forms, but there are qualitative aspects 

and attributes common to all problems.  This section identifies these common attributes and 

establishes constructs and semantics for the generic definition and solution of problems. These 

constructs then guide the design for UPRF. This section provides an informal proof augmented by 

examples to establish credibility for the feasibility of a universal problem resolution system that 

continually learns.  

Before construction and design of any software framework, one must define the entities that 

constitute the actors, objects, interactions, and boundaries. In addition, the designer must identify 

the use cases that include scenarios of operation to define the interactions and rules that the 

framework must support. Finally, the designer must determine the critical success factors that 

include the goals and non-goals to ensure the framework meets the design requirements. 

Frameworks are not applications in and of themselves but rather provide the infrastructure for 

hosting applications to achieve a purpose [114].  

UPRF’s goal is to support problem probing, solution discovery, and solution optimization in 

a general fashion.  The framework is able to represent any computational problem in terms of its 

objects with queries mapped to functions to identify starting state, allowed transition states, and a 

goal state. The states may be complex and involve combinations of sub-states. There may also be 
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states to represent constraints about the solution process including those that limit resources or 

associate to some condition in the solution process governing the extent of effort for pursuing the 

goal state. The framework allows for simulation problems that do not include an explicit goal state 

in which case the goal state is simply to exhaust all possibilities in the scenario. 

Various components work together with a schema to achieve UPRF goals that support both 

generic schematization and resolution of problems.  This section provides the basic framework 

design that enables operation. The focus of the work is not on the framework construction in and 

of itself but only as it pertains to enabling operation of the problem solving process. Therefore, 

this section prescribes the high-level components only. Chapter five on practicality delves into 

more detail regarding implementation scenarios and maps the framework to technological trends. 

3.2 Base Use Case 

Tower of Hanoi serves as the main use-case for this dissertation. Hanoi provides a good use 

case because it is possible to pursue multiple solution paths for multiple instances of Hanoi 

generated from the number of discs used. Tower of Hanoi only has a single optimal solution for 

each instance that simplifies the presentation of the concepts. It is important to recognize that the 

choice of Tower of Hanoi does not limit the design of UPRF; the framework supports any type of 

problem regardless of the specific features of Hanoi. Chapter 5 explores the ability for UPRF to 

scale beyond Tower of Hanoi to other problems. 

Tower of Hanoi itself is NP-hard, but the process for discovering a general solution for all 

instances to this – or any other problem (the theorem proof problem [115]) is actually NP-

complete. In other words, even though it takes exponential time to solve an instance of Hanoi 

related to the inputs, finding the solution for a general case is still NP-complete. After the 
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transformation process yields a generic solution, application of the general algorithm discovered 

proceeds within polynomial time. The assertion from this is that the NP-complete process for 

discovering optimal algorithms stands to improve through monitoring and learning from all steps 

involved in the optimization.  Since solution discovery is in the family of NP-complete, then all 

NP-complete scenarios stand to benefit and should be helpful for any solving endeavor whether 

the algorithm for the problem itself is NP-complete, NP-hard, or P. 

3.3 Core Architecture 

UPRF must support a problem transformation paradigm where each solution sequence 

becomes the target of a higher order problem transform in order to generate increasingly 

generalized transformation sequences in search of general solutions to lower instances. Figure 3-

1 illustrates this concept - each solution determination spawns a higher order optimization problem 

to generalize the steps required for multiple instances of a lower level problem.  In the case of the 

Tower of Hanoi, each circle represents the higher order problems targeting the instances of the 

lower order problem. At the lowest level, multiple solutions target different disc-counts. The 

solution process generates sequences that an inspection process uses to determine how to transform 

from a simpler instance to a more complex instance. Chapter 4 iterates through this process in 

detail. 
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Figure 3-1: Continuous Improvement Cycle 

In Figure 3-1, each solution determination step transforms to a higher-level optimization 

problem with the target of determining the optimal steps needed to generate the steps for the lower 

level problem. The lowest level of problem solving is pure simulation using search based on the 

heuristics of the problem that govern the valid states. When there are multiple instances for a 

particular problem, as in Hanoi, UPRF spawns a transformation problem to attempt calculation of 

the sequence of steps for one instance based on one or more other instances. 
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Figure 3-2: Simulation Process 

Figure 3-2 illustrates the approach for exploring possible solutions to a problem. UPRF 

queries for the allowed setup states when first initializing a problem. If there is more than one 

instance, the additional instances are branched from the main instance for parallel solving by the 

engine. This is the case with the Tower of Hanoi as shown in Figure 3-3; different branches develop 

as the simulator tries to work through the solutions for a particular number of discs. The variable 

number of discs overflow the problem instance space creating problem state overflow in Figure 3-

2 generating the required instances. 
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Problem state overflow also occurs when multiple outputs arise at some level in the 

simulation. This when multiple attribute values are available for a single attribute linked to a single 

entity instance at some point in a problem state transition such as when there are multiple pegs 

available for a disc. UPRF defines an entity as an item having an imputable unique key that is 

associated to a set of attributes that vary in values between instances. Multiple entities result in the 

entity state overflow within the diagram that then generates the separate entities required for a 

particular problem instance. For example, in a three-disc Hanoi scenario, the simulator creates 

three entities. Figure 3-3 starts from the point of a particular instance after the entities creation and 

illustrates the attribute overflow state that occurs when there are multiple solution paths available 

to test. Each attribute overflow leads to a new branch since an attribute may only contain a single 

value within an entity instance within a problem instance. 
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Figure 3-3: Attribute overflow in Hanoi Simulation 
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3.4 Data Architecture 

UPRF is highly dependent on data and follows the case-based reasoning model alluded to in 

the literature review section outlining the generic schema approach. The framework records every 

operation endeavored to solve a problem in the database including the algorithms and functions 

used to carry out the operation and all of the parameters associated to the operation. Every step of 

the simulation, problem transformation, and problem solving process is traceable back to every 

attribute value modified. For the Tower of Hanoi, this means the framework captures every single 

move for every instance. The literature review for this dissertation was able to find only scant 

examples of systems with tracking at this level of detail. One reason for this may be practicality 

considerations associated with such massive data tracking requirements; however, newer 

technology is mitigating this.  

Figure 3-4 illustrates the high-level data entities. The actual physical database design varies 

from this in order to achieve normalization. The relational design support representation of entities, 

attributes, and expressions that govern behavior or a problem solution endeavor as well as tracking 

of all operations that occur within the simulation and solving process including the transformation 

process described earlier. 
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Figure 3-4: High Level Data Architecture 

 Data flows shown in Figure 3-5 show the outward flow from base level items. These items 

define constants or fixed attribute values through expressions transformed by operators. These 

operators then generate problem states that reflect the output of queries based on the allowed states. 

Ultimately, solution states are generated which capture the sequence of operations and the entities 

with their attributes and values that are affected throughout each step of a simulation process 

constrained by the state rules. The system endeavors to discover optimizations that generalize the 
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pursuit of solutions to higher order problems that return sequences of operations to perform 

transformations that generate solution paths avoiding the branching associated with brute-force 

simulation. For example, in the Tower of Hanoi, an optimization might be that the first move 

should always be to the second peg when the number of discs is even, but to the third peg when 

the number of discs is odd. In the operational proof, transform sequencing is utilized to identify 

patterns so that not only the correct starting move in Hanoi is calculated for any instance, but the 

entire solution pattern. 
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Figure 3-5: General Data Flow 

3.5 Agent Topology 

A common attribute of problem solving frameworks is an agent-based architecture. UPRF 

implements this type of architecture in the form of an agent topology. The idea of topology is that 

the agents themselves are independent and the framework easily supports the addition of agents. 

Stateless data architecture and task-oriented processing promote the use of independent processes 
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that may be distributed. UPRF’s agent topology framework meets the goals outlined by the 

literature for agent-based modelling and simulation [116] which include the following:  

 An agent is identifiable with discrete sets of characteristics and self-contained. 

 An agent lives in an environment that it interacts with other agent with the capability 

to respond to the environment.  

 An agent is goal-directed having goals to achieve with respect to its behaviors 

 An agent is autonomous and self-directed.  

 An agent is flexible, and has the ability to learn and adapt its behaviors over time 

based on experience. An agent may have rules that modify its rules of behavior. 

Multiple agents collaborate to support problem definition, simulation, and higher order 

transformations. Figure 3-6 show the main agents and their interactions with a broker agent that 

dispatches tasks. The design model follows that of a “smart environment” [117] which promotes 

an environment where the behaviors of each object assist each other to reach the goals of the 

framework. This design provides scalability across parallel processes across any number of 

machines. Chapter 5 discusses some of the deployment options that UPRF can leverage to take 

advantage of distributed high-performance computing frameworks. The agent architecture is a 

very important concept in intelligent systems. Frameworks that can seamlessly integrate 

independent agents that focus on solving a specific task provides an environment that heuristics 

can be seamlessly added, which enhance the other agents. Lifelong machine learning systems 

provide a model of this approach wherein a heuristics generator operates independently and 

autonomously against the problem stream [118]. This behavior occurs in UPRF through separation 



  

 

     

 59 

 

 

of the various tasks for assimilation of knowledge from those of simulation and transformation of 

problems.  
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Figure 3-6: Agent Architecture 

Figure 3-6 illustrates the relationships between the major agents with their roles listed below: 

 Schematizer: Listens for problem definitions and injects into the database 
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 Simulator-Setup: Instantiates the starting instances for a problem. For example, this allows 

dispatching of tasks to create instances for disc count of two to ten given these as the 

minimum and maximum number of discs. 

 Simulator-Mover: Performs depth/breadth exploration of simulation solution space based 

on the transition query for the problem for instances in the initial or checked-state still 

requiring transitions. 

 Goal-Checker: Checks the simulation instance against the goal for instances that have just 

completed a transition state. 

 Transformer: Checks for existence of combinations of at least two solved instances to 

escalate to the next higher order problem to identify the transformation sequence needed 

to derive a solved instance from another solved instance within a problem space. 

 Assimilator: Generates transformation problem instances for the transformer problem. 

 Broker: Looks for tasks in the database that are relevant to the particular agents and 

dispatches the tasks to the agent. 

 Data Helper: Provides the data interface layer between the broker and various agents to 

the problem definition and problem instances. 

The architecture supports knowledge discovery with a feedback loop. In Figure 3-3, a web 

discovery agent integrates into the framework to engage a continuous improvement model that 

integrates semantic web search with unstructured text mining. Potential interactions depicted in 

Figure 3-7 as part of an overall learning framework. 
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Figure 3-7: Automation Framework 
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Figure 3-8: Web Mining Scenario with Feedback 

3.6 Problem Schematization 

UPRF includes a universal problem definition language (UPDL) component. UPDL provides 

an XML format that works with a listener process that imports problem definitions into the system 

as illustrated in Figure 3-8. Figure 3-9 depicts the UPDL schema. Figure 3-10 shows an example 

with Tower of Hanoi that adheres to the schema. The schema supports defining problems in a 

structure that is compatible with the core relational database storage design. During the course of 
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the dissertation, the schema has evolved. Utilizing a technique based on normalizing OML storage 

in relations [119], a mapping layer provides transformation from the schema to the actual database. 

The schema is thus extensible and changeable to better accommodate problem definitions. 

Therefore, UPRF may evolve to support additional schemas focused on particular problem 

domains that may provide greater abstraction on top of the core schema or support lower level 

functions and external data interfaces. The mapping layer ensures that different schemas can still 

populate the core database entities defined in the data architecture section.  
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Figure 3-9: UPDL Schema 
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Figure 3-10: Sample Problem Definition - Tower of Hanoi 

Figure 3-10 shows the Tower of Hanoi in UPDL format with entities, attributes, expressions, 

and queries to govern the state. This provides the information needed for the framework to define 
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the problem so that a simulation process can explore the valid solutions. The next chapter 

containing the operational proof explains how the items interact to provide queries that associate 

to states and determine whether a simulation instance completes successfully or fails. 

UPRF provides an import process for the problems written according to the UPDL 

specification. This process loads the problems into a staging area and then normalizes the data 

from the schema into the database. The relational database design also provides support for 

historical tracking of imports and lineage to higher order problem transformations. Figures 3-10 

and 3-11 show the process for importing problems written in UPDL format into UPRF. 
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Figure 3-11: High-level Problem Load Process 
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Figure 3-12: Detailed UPDL Flow into Database 

3.7 Database Implementation 

The relational database consists of four main schemas: 

1. Staging: Defines the area for loading UPDL problems from XML. This area receives 

problems schematized from the UPDL XML node structure that the framework transforms 

into the Data schema after validation finishes (Figure 3-12). 

2. Data: Defines the problem (Figure 3-13). 
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3. Engine: Tracks all entities and attribute values over a solution instance (Figure 3-14). 

4. Reference: Defines the operators (functions) utilizable for all operation along with their 

parameters (Figure 3-15). Expressions in the Data schema utilize operators in the 

Reference schema for problem instances, which enables tracking all operator usages 

correlated to problem instances.  
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Figure 3-13: Staging Schema 
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The staging schema stores problem definitions that come through the UPDL loading process 

and potentially support other import formats as well. This schema allows verifying the integrity of 

problem schemas before presentation for solving in UPRF. Staging provides the area to persist the 

XML definition and then validate the definition before transforming it into the Data schema. 
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Figure 3-14: Data Schema 
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The Data schema defines the database objects required to model a problem 

definition including entities, attributes, expressions, and queries to represent the initial 

state, valid transition states, failure/abort states, and goal state for a problem. It also 

provides a mapping (LearningMap table) for linking instances of one problem to a learning 

(transformation) problem for higher order generalization of the simulation instance 

solutions. It correlates loosely to the schema defined by UPDL and normalizes the 

incoming problem definition.  
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Figure 3-15: Engine Schema 
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schema to enable a problem to spawn solution instances. This mechanism supports distributed and 

parallel execution of solution instantiations at the instance state level. The Engine schema also 

stores the relational state sequences associated with all attribute value changes including the state 

activations for all recorded values for an attribute over a solution state sequence. 

 

Figure 3-16: Ref Schema 
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system by simply importing the function into the engine schema and then referencing the function 

from the problem definition.  

Operators are enumerable based on type and then executed in a higher order simulation to 

search for the operators that can generate a solution path for one instance of a problem using data 

from another instance of a problem. In this way, the framework tracks the sequences of selected 

operators correlated to a solution path associated to a problem instance. These operators include 

conditional operators to compare values as well as expression operators that can generate scalar or 

tabular result sets. Expression operators include transformation operators that can host machine-

learning algorithms in order to generate prediction sequences from source sequences. 

3.8 Simulation  

By default, the simulator utilizes depth-first search to explore solution spaces for each 

problem’s instances. Each problem instance is independent allowing UPRF to explore the solution 

space separately and branch instances to generate new instances. The new instances branch off in 

the same fashion as the originating instances for parallel execution. Problem queries that define 

the candidate result sets drive the exploration of the solution space. The search is not strictly depth-

first if the problem itself exposes queries that lead to a different type of search including breadth. 

As the search proceeds, the framework catalogues the candidate solutions. Simulation instances 

terminate upon reaching a certain resource threshold if a “quit query” specifies to stop execution. 

(Figure 3-1) shows the process for assigning tasks through state inspection as illustrated in Figure 

3-17. 
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Figure 3-17: Simulation State Flow 

Figure 3-17 shows the problem-instance state flow in terms of color shading to indicate 

transition for execution by various processes. When a problem instance enters the light-green type 

of state, this indicates it is ready for some sort of execution. The dark green tasks register instances 

for the next task while the yellow tasks execute. The end state shown by the double-circle green 

object indicates termination due to success in reaching the goal state while the red state indicates 

termination due to failure.  As each task in the cycle is executed, the definition and/or solution 

state (depending upon the task) is updated which then qualifies the next task to be executed for the 
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problem instance. Figure 3-18 illustrates the creation of new states for a problem based on results 

from queries and Figure 3-19 depicts the query processing that generates potential states. 
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Figure 3-18: State Expression Flow 
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Expression operators interact with entities and attributes to return results through query 

extractions. Query extractions are joined together to form results and then filtered. UPRF spawns 

new states when more than one result returns from a transition query and creates an overflow 

condition. The query-processing engine generates results through the extraction and filters with 

logical conjunctions that represent Boolean and/or groupings (Figure 3-19). 
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Figure 3-19: State Generation from Queries 

3.9 Transformation 

UPRF performs transformation automatically upon solution sequence completion upon 

solution path discovery for a second instance of a problem. The transformation results in a new 
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instance of the Universal Discovery Problem (UDP) (elaborated on in chapter 4).  The UDP defines 

the goal state as the sequence of operators required to transform one instance to another instance. 

For example in the Tower of Hanoi, when a four-disc problem instance is solved after a three-disc 

instance has also been solved, then a transformation problem is generated whose goal is to generate 

the operations required to utilize solution sequence paths from the three-disc simulation to generate 

the solution for the four-disc instance. Chapter 5 delves into the 4-peg Hanoi or variable-peg (K-

peg) scenario to show how UPRF can scale problem learning a simple base case to more advanced 

solutions.  Figure 3-20 depicts the flow for transforming simulations into higher order problems. 
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Figure 3-20: Problem Transformation Process 
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3.10 Chapter Summary 

This chapter provided a high-level software architecture for a universal problem resolution 

framework (UPRF). It did not delve into implementation details, but did provide a general design 

for critical components. Chapter 4 builds upon this architectural foundation and utilizes these 

components in order to demonstrate an operational proof.  Chapter 3 outlined the Tower of Hanoi 

problem as the base use case for UPRF validation and established key constructs for UPRF 

architecture, which include: 

1) A core architecture that provides a continuous improvement cycle to support transforming 

learning achieved at a lower level to increasingly higher levels in the search for a general 

solution or problem optimization; 

2) A data architecture that supports generic representation of problem information including 

the various states of a problem from instantiation through solution; 

3) An agent topology that shows the integration of various agents working together within 

the framework to enable continuous improvement; 

In addition, the chapter outlined the functionality for problem schematization, simulation, and 

transformation and delved into the actual database implementation undergirding the framework. 
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4. OPERATIONAL PROOF  

4.1 Inductive Proof for Feasibility 

A primary goal of this work is to construct a framework that utilizes scenarios of adequate 

variation and sufficient complexity such that it achieves the goal of continuous improvement. To 

validate the following proof, the dissertation provides scenarios that demonstrate how to 

schematize problems and then pursue solution paths through simulation, which result in higher-

order transformation problems. The transformation problem fits within the same schema as the 

underlying problem, enabling a simulative process that focuses on optimization of solution paths 

at increasingly higher order degrees, which can target and benefit from the entire breadth of 

problems presented to the framework. 

4.1.1 Generic Problem Definition and Simulation Capability 

4.1.1.1 Postulates 

1. Let P be a Problem having initial state PI, allowed transition states PT, and goal state PG and 

optional state for failure (PF) and quitting (PQ) 
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Problem P

Initial State PI

Transition State PT

Goal State PG

Fail State PF

Quit State PQ

 

2. Define P in terms of one or more entities E including itself having one or more attributes A. 

Represent entity E by a key attribute K that uniquely identifies it and does not change in value. 

Let an entity E map to an attribute A as EA such that EA derives from the domain or expression 

of attribute A. 
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3. Let A be defined by an expression X which utilizes an expression operator EO that executes 

as a function on another attribute A` or references a constant value V, a list of values L, or 

another expression and returns a set of attributes with one specific attribute identified as a result 

and the other as associated attributes. 

Expression X

Expression Operator 

EO

Expression X'

Attribute A

Attribute A2Constant

 

4. Let X specify a list of mapping M that links an expression operator (EO) parameter to an entity  

EA.  Let each mapping retrieve values from entity attributes such that if M belongs to the same 

entity, the values correlate together for each entity instance based on the entity key and, if from 

different entities, they cross such that each combination is used. 
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5. Let X be reflexive to EA – that is X may reference any EA and any EA may reference any X 

so long as the dependencies do not form a closed cycle.  

6. Let X and EA return either a single value or a sequence of values of the same type. Let X return 

a hidden set called XH of all A associated with entity E for attribute XA representing the 

attributed returned by A 

Expression X

Value 1

Return Type

Value N
Value

 

7. Let X optionally define a null expression N that references another expression returning a 

single value to substitute for each value instance X that is null. 
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8. Let X optionally utilize a state S to reference a step that defines the values those present at the 

state S of the problem P. 

Expression X

Value at State S

State S (Step)

Problem P

 

9. Let the expression operator (EO) reference any data stored within this schema as well as any 

data generated through operations in the system or utilize an interface to reference datasets 

external to the system. 

UPRF Data

Expression 
Operator EO

Problems Entities Expressions

 

10. Let Q be a query that contains expressions that can reference each other and apply compare 

operators upon each other as criteria C to filter results from the expression. Combine each 

filtered expression with other filtered expressions through a join operator JO and be known as 
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an extract for the query QE. Let the extract define the output attribute OA that maps to a State 

S. 

10.1. For the join operator, allow the following operations: 

10.1.1. INNER retrieves values from QE passing the compare test for each attribute value 

from QC and drops values from a second QE where there is no match found. 

10.1.2. OUTER preserves all values from both sets with null values specified for all non-

matches 

10.1.3. LEFT preserves all values from the expression associated to QE and only those 

matching to a second QE. 

10.1.4. RIGHT preserves all values from the expression associated to the second QE and 

only those matching to QE 

Expression (X)

Join Operator
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Query (Q)
Query Extract 1
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Query Extract (QEn)

Comarison Expression
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Compare 
Operator CO

Criteria (C)

Column Results
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11. Let Q further contain a list of Filter F that uses a compare operator CO to compare any query 

column QC to any other column QC. 

12. Let each filter F provide a junction to the output of any other filter in either or both an OR 

conjunction or an AND conjunction filter. Let this conjunction occur within the Filter F 
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definition such that a parent-child relationship exists to support any type of AND/OR 

conjunction between filters. 

Query Q

Filter F (F1)

Filter F (FN)

Compare Operator 
CO

Filter Expression
 f x X

Junction J

 

 

13. Let Problem P identify queries for projecting possible values to the following special sets that 

map to the required states: 

13.1. Setup Query – Query which instantiates a problem into multiple instance PI that reflect 

all possible starting combinations of values for the entities associated to the problem. This 

maps to the problem initial state PI. 

13.2. Transition Query – Query that defines all outputs that are valid for a transitive state in a 

problem-solving endeavor. This maps to problem transition state PT. 

13.3. Goal Query – Query that returns a status indicating achievement of a goal for an instance 

or overall problem and what the next action should be related to the instance or problem. 

A status of one indicates a solved instance that no longer requires processing; two indicates 
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the solution of a particular instance in scenario that calls for the continued checking of 

other branched problem instances. This maps to the problem goal state PG. 

13.4. Fail Query – Query that returns a status indicating if a failure condition has been met for 

the instance (status value one). This maps to the problem Fail State PF. 

13.5. Quit Query – Query that returns a status indicating the aborting of further solving efforts 

for any instances within the problem (status value -1). This maps to the problem quit state 

PQ. 

Figure 4-1 depicts the overall flow in constructing a problem definition that includes queries 

that reference operators and attributes in order to generate the required states. The progression 

consists of: 

1) Define a Problem P. 

2) Define Attributes for problem P (A). 

3) Define Entities for problem P (E). 

4) Define Entity attributes (EA) based on the problem attributes linked to the entities (A). 

5) Define an Expression Operator (EO) and its associated parameters (OP) 

6) Define an Expression X relative to an expression operator and parameter mappings to entity 

attributes (EA) 

7) Define a Query Extract (QE) that joins an expression to a query to contribute output 

attributes (OA). 

8) Define a Query (Q) that integrates the Query Extracts together 
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9) Define a Filter consisting of Junctions (J) and Conditions (C) that filters the Query Extracts 

within the Query to output Query Column (QC) results that satisfy states (S) associated to 

the Problem P. 

Problem States (P x S)

P

A (P x A)
E (P x E)

EO

OP

XEA (E x A)

M (X x EA x OP)

Q

QE (Q x X)

J

F (J X C)

C

PI

PG

PT

PF

PQ

Legend
A: Attribute
C: Criteria
E: Entity
F: Filter

J: Junction
M: Mapping
X: Expression

EO: Expression Operator
OP: Operator Parameter
PI: Problem Initial State
PF: Problem Fail State

PG: Problem Goal State
PQ: Problem Quit State

PT: Problem Transition Query
QE: Query Extract

 
Figure 4-1: Problem Definition Flow 

 

Figure 4-2 shows an XML problem schema that supports the problem definition. This schema 

originates in the database design already discussed in Chapter 3. The NullExpression refers back 
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to another expression, DataEntity, or attribute. DataEntity and attribute items automatically imply 

an expression. The expression within an extract is a reference to other expressions in a definition. 

JunctionGroup provides the means to associate a junction of multiple filter or extract items. Each 

filter or extract criteria is joined together in a Boolean fashion using the JunctionType of AND, 

OR, NAND, NOR, or XOR. CompareOperator supports the use of any comparison function to 

apply an extract result to an attribute associated with an expression. DeriveFrom provides a means 

to link an expression to a DataEntity or attribute to generate the range of values for the DataEntity 

or attribute. The Tower of Hanoi example in section 4.2 provides an illustration of how the schema 

applies to a problem. 
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Figure 4-2: XML Schema 

 

Figure 4-3 - Hanoi Problem Definition - Part 1 
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Figure 4-3 represents the Tower of Hanoi problem using attributes to define the initial peg, 

goal peg, minimum number of discs for a simulation, maximum number of discs for a simulation. 

An entity (DataEntity) represents the disc identified by the size. The DeriveFrom method uniquely 

identifies each problem instance in terms of the number of discs for the instance. Each disc then 

has a peg attribute associated with it that varies from one to three (derived from the Peg-List 

ValueList definition). Although the Tower of Hanoi only requires a single entity and single 

attribute, a problem definition could have any number of entities with any number of attributes so 

long as each entity derives from a unique key.  
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Figure 4-4 - Hanoi Problem Definition Part 2 
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Figure 4-5 - Example Matrix for Tower of Hanoi 

Figure 4-4 shows the remainder of the problem definition starting from the expression that 

generates the size range from which the disc entity derives. The query “Play-Game” contains the 

extracts and filters needed to generate a result set for any particular configuration of a simulation. 

The query filters the data as follows: 

1) Extract next disc (Next-Disc) using the Candidate-Disc expression (defined in Figure 4-

4) The Candidate-Disc expression uses the function “SELECT_NONUSED” which 

selects any entity not selected on the prior state change. This adheres to the Hanoi rule not 

to move the same disc twice in a row. The selected disc is stored in the output attribute 

“Disc.” 

2) Extract next peg (Next-Peg) using the expression “Peg-List” (defined in Figure 4-3). Peg-

List returns a list from one to three. This value is stored in the output attribute “Peg.” 

3) Identify candidate pegs for a disc by filtering out the peg it is currently on in the “Next-

Peg” extract. This extract utilizes the “Peg-List” expression and filters using a comparison 

operator of “NOT_EQUAL” to eliminate the current peg. 
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4) Extract the minimum disc for the peg (“Min-Disc-For-Disc-Peg”). This utilizes the 

expression “Min-Disc-For-Peg” which finds the smallest disc on a peg. A comparison 

operator of “EQUAL” provides the filter for output from “Peg-List” results. This generates 

a result set identifying the minimum sized disc on each peg into a matrix. As each extract 

adds values to the query, intersection of prior values occurs based on the comparison 

operator and join operator. (The default join operator is an intersection or inner join, but 

supports all standard join types – (see # 10 under the Postulates).) Figure 4-5 shows a 

sample result matrix. 

5) Extract the minimum disc for the peg a second time, but this time utilize the “Next-Peg” 

as the criteria for filtering. This determines the minimum-sized disc on only the candidate 

pegs (not the current peg of the disc) which ultimately determines if it possible for the disc 

to be moved to the peg by the filter. Note that the Min-Disc-For-Peg includes a 

NullExpression construct that forces the value to the max-sized disc (Disc-Count) if no 

discs are on the peg. 

6) As shown in the matrix in Figure 4-5, this query provides a matrix with rows and columns, 

which allows further filtering. 

7) The expression extracts have at this point reduced the results to eliminate the following: 

a. Exclude the peg that the disc is currently on in the Next-Peg column. 

b. Exclude any disc that moved on the last move. 

8) The result set still contains invalid moves without an additional filter to ensure that no 

larger disc moves on top of a smaller disc. The filter “Filter-Disc-Too-Large-For-Peg” 

eliminates any disc that is not less than the smallest disc on the candidate next peg with 
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the empty peg condition. This ensures that the result for an empty peg returns a disc 

number higher than the highest due to the NullExpression construct thus permitting the 

peg to receive any disc. 

9) Given the above, the Play-Query provides only valid next moves for the simulator.  

10) The final step is to define the queries that define if the simulation is in a lost or won state 

so that the simulation instance does not go on forever and to provide a goal for the 

simulator to pursue in the solution. The lost query (“Check-If-Lost” ) verifies that the 

maximum number of state changes (moves) has been exceeded which is defined by the 

Max-Move-Count expression as the number two raised to the number of discs. For 

example in a three-disc scenario, the solution is achievable within seven moves, for a four-

disc scenario, fifteen moves, etc. The goal step defined as “Check-If-Won”. Check-If-Won 

utilizes the expression ‘Disc-Count-On-Peg” to compare if the number of discs on a peg 

is equal to the Disc-Count associated to the problem for the peg equal to the value “Final-

Peg” which has a value of three. In other words, the simulation is successful if the number 

of discs on peg three is equal to the total number of discs. The return value of “1” indicates 

to the simulator that the simulation can be marked as successful for the problem instance. 

At this point, there is no need for further simulation activity for the problem instance.  

Additional return values provide support for other problems that may have multiple 

solutions by allowing “2” as a return attribute. Return attribute “2” directs the simulator 

to mark a simulation instance as complete but to continue searching for additional 

solutions. For the Tower of Hanoi, there is only one optimal solution path for any 
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configuration of discs, so the simulation stops for each instance as soon as it finds the 

solution. 

4.1.1.2 Claims from Postulates 

1. Based on the dynamicity of the expression operators and the ability of the expressions to 

operate against any set of attributes, defining the appropriate functions can derive any set 

of values associated with a problem. 

2. Any problem state where state is the result of a query that relate behaviors of objects within 

a problem is feasible based on the unlimited join structure that supports all set operations 

and filtering constructs combined with the ability for any expression operators to be loaded 

into the framework. This derivation is context sensitive, related to other states using the 

state sequence qualifier for expressions or when referencing expressions. 

3. This definition supports the ability to generically define any problem using the same 

schema and utilize a generic simulation approach to apply the functions in order to 

generate states in the pursuit of a goal query defined for the problem. 

4.1.2 Reflexive Property of Problem Solving 

The reflexive property of problem solving allows the solution to a problem to be query-able 

within the constructs of the same schema that defined the problem. This provides the foundation 

for transforming a problem that has associated solution instances into a higher order problem that 

attempts to augment the base problem with a prediction (transform) operator.  The prediction 

operator then generates additional expressions and queries to reduce the number of simulations 

and predict the solution path for additional instances of the problem. The property conforms to the 

following two constructs: 
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1. Any problem P that the framework presents for solution by the system generates multiple 

outputs for entities along a state sequence. The capture of states representing all values of 

all entities throughout solution endeavors can be stored generically through the same 

entity/attribute structure as that used to represent the problem. This means that the entire 

solution endeavor is visible to a higher order problem using the same schema. 

2. All problems are solved using a generic process such that the output actions taken in regard 

to each problem are stored generically within the same entity/attribute structure which is 

represented by: 

a. Problem Instance 

i. Problem-Identifier 

ii. Instance-Identifier 

iii. Result-State 

iv. Instance-Step 

b. Entity Instance 

i. Instance-Identifier 

ii. Instance-Step 

iii. Entity-Key 

iv. Entity-Attribute 

v. Value 

Based on these constructs, UPRF captures all of the states of each entity instance associated 

with a problem for each entity attribute. The next step is to define a method for querying the 
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problem information and the solution paths such that instances solved via simulation provide the 

basis to predict values for additional instantiations of the same or related problems. 

4.1.3 Postulates of the Predictive Solving Framework 

14. Let VS be a set of values over a series of steps that represent the truth or falsity for an activation 

of a particular value for the entity at a given state. The simulation system that operates against 

the schema from 1.2.1 for every entity instance value generates the VS utilized in a problem. 

15. Let PTO be a prediction transform operator defined as a function that receives parameters from 

a problem P, an entity-instance attribute-value sequence (PVS) to predict.  The PVS is the last 

value of the prediction for this operator for the target VS (TVS) and a source entity-instance-

attribute-value sequence (SVS) to use as a source. Let the output of the PTO be a value 

sequence and let each instantiation operate upon the prior value of the PVS 

16. Let PTO reference only the information passed to it by the problem definition, that is, source 

instances containing entity-attribute-value sequences for earlier instances of the problem. 

Require that PTO record all sources and targets utilized to derive a VS. 

17. Let the application of each PTO result in a new step to be accomplished in the same way as 

any problem simulation and the combination of values based on the selection of values be 

captured as another value sequence  

4.1.4 Claims based on the Postulates including 1.2.1 and 1.2.2  

1. The higher order problem is representable in the same problem schema that represented the 

lower level problem without loss of any fidelity since it uses the same entities as those of the lower 

order problem. The prediction operator belongs to a type of expression operator, but the particular 

operator selection materializes as an attribute value in a standard entity-attribute structure. This 
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allows for the correlation of one operator sequence from one solving instance to operator sequences 

from another solving instance enabling creation of a transformation problem for detecting a higher-

order sequence for transforming the lower level instances. 

2. The higher order solution requires the same solving approach as the lower level instance 

meaning the process is recursive and allows continually higher-order use of the same techniques 

that the system found successful in pursuit of a lower order problem. 

4.1.5 Transformative Property of a Problem Solution 

Based on 4.1.4, there is a transformation available to generate a higher order problem from 

any lower order problem. This includes generating higher order problems from the second-level 

higher order problems without limit. This means that the problem solver is able to use simulation 

to optimize the solution discovery phase for not only a base problem but also for the process of 

optimizing solution discovery. This recursive model can scale up infinitely. The transformative 

property concerns the transposition for utilizing the known solution states of a problem and 

transforming this to a higher order problem with the goal of testing the prediction operator’s 

success at predicting the outcome based on prior instances. If the transformation process works for 

a lower order problem using the same simulation model for solution discovery then it must also be 

transformative to a higher order problem. This section provides proof that the second-order 

transformative problem is identical to the third-order problem and all higher order problems. The 

proof accomplishes this outcome by pivoting of the problem upon the steps involved for finding 

the optimal application of prediction operators against combinations of input sequences over a 

sequence of application. This application generates sequences for each higher and higher order 
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problem that follow the same simulation model and use the exact same schema definition. From 

this: 

 The information about the solution path for each instance thus presents as a higher order 

problem with the goal of learning from the solution pattern for prior instances in order to 

predict the solution pattern to apply to additional instances. The higher order problem for 

any lower order problem incorporates the entity/attribute structure representing 

information about the problem instance and adds the following for each entity instance 

(defined by instance-identifier, instance-step, entity-key, and entity-attribute): 

o Entity-Instance-Prediction 

 Predicted Instance-Entity-Attribute 

 Predicted Value 

 Instance-Step  

 Prediction Operator from the domain of possible predictors 

o Entity-Instance-Prediction-Sources 

 Source Instance-Entity-Identifier-Attribute from the domain of all 

instances earlier than the targeted instance.  

 Source-Step from the domain of steps 

o Predictor-Operator-Query-Addition - Incorporates additional filtering to reduce 

the size of possible solutions 

o Predictor-Operator-Expression-Additions – Additional expressions to support the 

updated query.  
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 The above then provides for a higher order simulation that generates branches for each 

prediction-operator and the combinations of source instances associated with source steps. 

The predictor operator itself is an entity-attribute and generates a value sequence. The goal 

of the higher order problem then becomes selecting from the same set of prediction 

operators from the lower order problem that accurately predict the value sequences that 

reflect the optimal sequencing of the prediction operators against the source instances. 

 The solution goal for the higher order problem is to identify the prediction-operator that 

most effectively predicted the values. This is modeled as a goal of the higher order 

problem in terms of the following query constructs: 

o Find the sequence of prediction operators that generated the query additions that 

filtered the solution path and resulted in the fewest steps to achieve the goal state 

of the underlying problem. 

o Map this sequence of prediction operators as the higher level goal for the higher 

order problem such that prediction of lower instances derive by the solution 

sequence of the higher order problem. Once again, the selected sequence of 

prediction operators that resulted in the selection of the lower order prediction 

operators can generate the correct solution path. 

4.2 Proof by Example – the Tower of Hanoi 

This section examines the solution sequences of various instances with different numbers of 

discs for the Tower of Hanoi and the transformation process for pivoting a solution sequence to 

become a higher order problem. The transformative process itself models itself as higher and 
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higher order sequence problem. Ultimately, the framework converges to a generic solution 

sequence. 

 

Figure 4-6: Three Disc Tower of Hanoi 

4.2.1 Methodology 

1. Define the Tower of Hanoi problem as illustrated by Figure 4-6 using the generic problem-

solving schema (Figure 4-2). 

2. Generate instantiations based on the setup query for the range of discs defined for 

simulation. 

3. Utilize simulation to process the outputs of the transition query until achieving success for 

four instances of Hanoi (two to five discs). Table 4-1 illustrates results of the entity- 

attribute value sequences. 

4. Using the higher order problem (Figure 4-10), apply prediction operators that evaluate the 

solution sequences, generate additions to the lower level problem queries, execute the 

queries, and measure the success. This process runs as a simulation and results in 

identifying the sequence of prediction operators necessary to solve each larger instance 

from the smaller instances.  
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5. The entity-attribute value sequences for the optimal solution evolve from instances three 

and four. The higher order problem for instances three and four finds the causative 

predictive operator that involves a transformation based on even or odd discs. Instance 

five applies this transformation to predict the sequencing of instance six.  

4.2.2 Proof from the Data 

Table 4-1: Sequence Patterns from Hanoi by Disc and Peg 

Discs Disc Peg Move States 

2 1 1 --- 

2 1 2 1-- 

2 1 3 --1 

2 2 1 --- 

2 2 2 --- 

2 2 3 -1- 

3 1 1 ----1-- 

3 1 2 --1---- 

3 1 3 1-----1 

3 2 1 ------- 

3 2 2 -1----- 

3 2 3 -----1- 

3 3 1 ------- 

3 3 2 ------- 

3 3 3 ---1--- 

4 1 1 ----1-----1---- 

4 1 2 1-----1-----1-- 

4 1 3 --1-----1-----1 

4 2 1 ---------1----- 

4 2 2 -----1--------- 

4 2 3 -1-----------1- 

4 3 1 --------------- 

4 3 2 ---1----------- 

4 3 3 -----------1--- 

4 4 1 --------------- 

4 4 2 --------------- 

4 4 3 -------1------- 

5 1 1 ----1-----1-----1-----1-----1-- 

5 1 2 --1-----1-----1-----1-----1---- 

5 1 3 1-----1-----1-----1-----1-----1 

5 2 1 ---------1-----------1--------- 

5 2 2 -1-----------1-----------1----- 

5 2 3 -----1-----------------------1- 

5 3 1 -------------------1----------- 

5 3 2 -----------1------------------- 
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5 3 3 ---1-----------------------1--- 

5 4 1 ------------------------------- 

5 4 2 -------1----------------------- 

5 4 3 -----------------------1------- 

5 5 1 ------------------------------- 

5 5 2 ------------------------------- 

5 5 3 ---------------1--------------- 

 

In the above chart, each disc has a relationship to the peg affected on a particular move. A 

sophisticated learning algorithm should be able to find the patterns between the discs and pegs, 

but a simpler method emerges using aggregation. Rather than analyzing the detailed patterns for 

each combination, the result of simply aggregating all the states across the sequence for each 

distinct value for the entity (disc) and for the attribute (peg) without regard to the intersection of 

the entity and attribute provides more concise insights as shown below: 

Table 4-2: State Sequence by Disc 

Discs Disc State Change Sequence 

2 1 1-1 

2 2 -1- 

3 1 1-1-1-1 

3 2 -1---1- 

3 3 ---1--- 

4 1 1-1-1-1-1-1-1-1 

4 2 -1---1---1---1- 

4 3 ---1-------1--- 

4 4 -------1------- 

5 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 

5 2 -1---1---1---1---1---1---1---1- 

5 3 ---1-------1-------1-------1--- 

5 4 -------1---------------1------- 

5 5 ---------------1--------------- 

  

Table 4-3: State Sequence by Peg 

Discs Peg State Change Sequence 

2 1 --- 

2 2 1-- 

2 3 -11 
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3 1 ----1-- 

3 2 -11---- 

3 3 1--1-11 

4 1 ----1----11---- 

4 2 1--1-11-----1-- 

4 3 -11----11--1-11 

5 1 ----1----11-----1--1-11-----1-- 

5 2 -11----11--1-11-----1----11---- 

5 3 1--1-11-----1--1-11----11--1-11 

 

A simple sequence recognition algorithm can spot that that the pattern for the smallest disc is 

to change state every other move, for the next largest disc to change every fourth move, the third 

every eighth interval and so on. When the peg states are also examined for patterns in disc counts 

three to six, only a few of the patterns need to be identified and the rest can be deduced due to the 

standard rules of play. This effectively generates a rule that only allows one choice so that the 

sequence can generate instantly. From there, all that is necessary is a reversal process to generate 

the query criteria that reflects the relational sequences. 

To prove that the transformative property works, the framework must show the following 

three things:  

1. The learning problem process for finding a sequence of machine learning algorithm 

operations can be defined schematically using the same schema and operations associated 

with the base problem; 

2. There is a problem definition P’ which represents the problem of searching for patterns to 

find the optimal solution; 

3. The process for the generating and solving the learning problem P’ spawns a P’’ to 

optimize the learning problem P’ and that P’’’ is generated in the same way as P’. This 

indicates that there is no limit to the learning depth obtainable from higher order problems.  
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An additional consideration is that if the system truly generates higher and higher order 

problems, there must exist an energy function to govern the levels of problem solving at which the 

diminishing returns of the computation outweigh the benefits of reflection. A human reflective 

analogy of this is that one may think about how well they performed a particular task to try to 

identify improvement and about how to think about the mechanism for evaluating such 

performance – a process that can go on indefinitely. At some point the human mind implicitly 

imposes a restriction on reflection in order to permit functionality and not spend all of one’s time 

simply reflecting upon reflecting. Therefore an additional constraint to govern system behavior is: 

4. There is an equilibrium process for the efficiency problem to determine the number of 

levels is definable in terms of an overriding problem in the system governed by a least-

energy function EF. 

Figure 4-10 illustrates a schema for recursive self-examination of problem solving to support 

the continuous-learning goal. The key to the functionality lies in the expression operators’ 

extensibility to select data from within the schema without requiring explicit redefinition of the 

optimization problem in terms of a new entity. Referencing existing data generated from the 

simulation solution paths provides the optimization problem with the information necessary to 

execute operations to try to meet the goal.  

However, allowing the optimization problem to self-reference data within the system schema 

that targets optimal discovery of the solution creates a problem if such an optimization problem 

does not adhere to the constraints of the framework as far as generating solution data for the higher 

order problem. To resolve this, the framework uses the same simulation process to find the optimal 

solution path for a problem as that for probing a solution to a base problem (founded on the given 
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constraints). This means that the effort of solving the optimization problem generates data about 

the optimization problem such that the solution steps for the lower level optimization problem now 

become the inputs for the higher order solution problems. Once the frameworks shows that the 

same process used to generate the first-order higher-level solving problem is the same as the 

process used for generating the higher-order problems, there is proof that the learning process is 

recursive. The process of finding each higher order problem generates optimizations back to the 

lower level problem such that new instances of the lower level problem are solved using the 

optimizations generated from the higher order problem. In the case of Hanoi, this manifests itself 

through the generation of the learning problem map that enables the new instances of the problem 

to benefit from the optimization query generated by the higher order problem. 

4.2.3 Summary 

Based on this, the following steps emerge for problem resolution: 

1) Identify a problem P that has multiple instances each increasing in size such as the Tower 

of Hanoi with more and more discs added.  

2) Represent the overall problem using relational algebra to define unique entities with their 

attributes that define the problem. 

3) Define expressional functions to return possible domains of values including aggregates and 

queries that follow a relational model that joins the expressions and filters the results with Boolean 

and/or conjunctions to represent the valid states for entities/attributes which create an instance, 

define the valid transitions, and attain a goal state. 
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4) Solve the instances of increasing size in order using a generic simulator. Generate a 

relational state sequence corresponding to each attribute within the problem instance and all 

possible values and the sequence at the activated value. 

5) Within each simulation instance, generate instances of a prediction problem based on the 

same schema as that for the base problem. Reference as entities the state sequences from within 

the instances and transform operators for application of each state sequence to predict future values 

of the state sequence. For example, given Hanoi simulation instance S1 with two discs, select 

operators for each branch of the instance in a prediction problem that predicts the next value in the 

state sequence for each state sequence change within the instance. Allow the prediction operators 

(also known as transform operators) to be visible not only to the sequences associated with the 

current instance but also to the sequences from prior solved instances. This means that while 

framework solves simulation instance S2 with three discs, the prediction operators can reference 

solved sequences from S1 and apply the prediction operators against the earlier sequence to 

generate the expected sequence values for S2. Allow each subsequent instance to reference the 

solved sequences of the prediction problem associated with each instance. Further, allow 

prediction operators that may generate portions or the entire section of the state sequences rather 

than just one value at a time. Set the goal for each of these prediction instances to generate the 

solution instance in the fewest number of steps. 

7) Once there are two solved instances of the first-order prediction problem, generate a 

prediction problem that references the lower-level prediction problem-state sequences as entities 

in the same way as process five above. Continue to generate more high-level prediction problems 

while creating the lower-level generation instances. Expand the scope of the higher level prediction 
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to include instances from other problems since at this point the focus is on improving the higher 

order solution selection process.  

8) Continue processes five through seven with higher and higher transformations until 

reaching a point of diminishing returns in terms of effort and success. This problem is an ongoing 

problem that checks the number of operations against the success ratio and dynamically injects 

constraints that prevent problem escalation to the point of diminishing returns. This is the 

equilibrium problem. 

 Figure 4-6 illustrates increasing problem transformation depth as the framework solves more 

simulation instances for the Tower of Hanoi. The first-order problem is to determine the 

transformation operators that vary the sequences of a source instance so that they match a 

prediction instance (target). Once there are two solved transformation solutions, a sequencing 

problem arises that determines the sequencing operators to act upon one transformation instance 

to create the transformation operations in a prediction instance. Once there are two solved 

sequencing solutions, a sequence generation problem learns the operators needed to generate the 

sequencing operations in a predicted instance from a source instance.  
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S1 - Simulation 
Solution (discs=2)

S2 – Simulation 
Solution (discs=3)

S3 – Simulation 
Solution (discs=4)

S4 – Simulation 
Solution (discs=5)

T1 - Transform 
Solution (S1->S2)

T2 - Transform 
Solution (S2->S3)

T3 - Transform 
Solution (S3->S4)

TS1 – Transform 
Sequence Solution 

(T1->T2)

TS2 – Transform 
Sequence Solution 

(T2->T3)

SG1 - Sequence 
Generation 

Solution

Capture transform operations

Predict Transforms

 

Figure 4-7: Simulation Graph 

 At this point in the Tower of Hanoi, a repeating sequence becomes evident and the sequence 

generation operators are able to generate the solution to a higher instance. The framework 

accomplishes this using the lower solved instance without requiring the use of simulation to 

increase the breadth or depth of the established solution space.  Rather than relying on simulation, 

the tree can be co-recursively visited, creating a new transformation sequence problem instance to 

leverage the last transformation solution as input to generate a transformation instance, which then 

generates the simulation output result without re-simulating.  This process repeats using the output 

simulation of each instance with higher disc-counts until solving the desired disc-count. Figure 4-

7 illustrates the solution generation process wherein the sequence generation solution is able to 
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generate the next transform sequence solution. This in turns generates the next transform solution, 

which then generates the output that would have come from simulation. To verify that the 

generated solution is correct, the framework can execute further simulations. Each simulation adds 

further depth of learning such that the generational sequence solution evolves into higher-level 

generational sequence solutions. As the learning depth increases, it becomes more and more likely 

that a general case solution will evolve for a deterministic scenario. For the Tower of Hanoi, four 

simulations that spawn three levels of solution generation are adequate for the transform operators 

to identify a pattern that works for all instances of disc counts.  

Sn+1

TSn

Tn

Sn

S1 - Simulation 
Solution (discs=2)

S2 – Simulation 
Solution (discs=3)

S3 – Simulation 
Solution (discs=4)

S4 – Simulation 
Solution (discs=5)

T1 - Transform 
Solution (S1->S2)

T2 - Transform 
Solution (S2->S3)

T3 - Transform 
Solution (S3->S4)

TS1 – Transform 
Sequence 

Solution (T1->T2)

TS2 – Transform 
Sequence 

Solution (T2->T3)

SG1 - Sequence 
Generation 

Solution

Capture object state sequences

Predict Generation Steps

S5 - Unsolved 
Simulation 
(discs=6)

TS3 – Generated 
Transform 

Solution (T3->T4)

T4 – Generated 
Transform 

Solution (S4->S5)

 

Figure 4-8: Reversibility Operation to Generate Solution Instances 
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Table 4-4 illustrates the generation of sequences associated with activation states from solved 

simulation instances. The framework exposes these sequences for solving using transformation 

operators to calculate the sequence of one instance from a lower instance. The framework actually 

identifies the transformation needed for the discs and pegs on the very first transformation solution 

using the first two instances. The complexity here comes from the fact that each instance introduces 

an additional instance of the disc entity based on the disc-count for the instance. In order to 

generate a transformational sequence solution that incorporates this additional entity, sequence 

results must be utilized that are then aggregated and correlated so that the copying of the prior 

entities as well as the creation of the entities are flattened as distinct sequences. 

Table 4-4: Solution State Sequences for Disc-Count = 2 and Disc-Count=3 

Attrib. Value/Expression Sequence/ Transform 

Results 

S1 - Solution path from simulation for Disc-Count=2 

Disc --1 (1) 1-1 

Disc Min-Disc 1-1 

Disc Min-Disc+1 -1- 

Disc -1- (2) -1- 

Disc Disc-Count -1- 

Peg --1 (1) --- 

Peg -1- (2) 1-- 

Peg -11 (3) -11  

S2 - Solution path from simulation for Disc-Count=3 

Disc --1 (1) 1-1-1-1 

Disc Min-Disc 1-1-1-1 

Disc Min-Disc+1 -1---1- 

Disc -1- (2) -1---1- 

Disc Min-Disc+2 ---1--- 

Disc -11 (3) ---1--- 

Disc Disc-Count ---1--- 

Peg --1 (1) ----1-- 

Peg -1- (2) -11---- 

Peg -11 (3) 1--1-11  
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Table 4-4 illustrates the relational state sequences from two instances of a Hanoi solution 

capturing the entities (discs) and attributes correlated to the activation of particular values in a 

solution sequence. For example, in the two-disc simulation, the disc with the smallest size (one) 

activates on the first and third move of the solution while activating the larger disc on the second 

move. Likewise, each peg correlated to a value is activated at different points, with peg two 

activated on the first move (disc one moves to peg two) and then peg three activated for the 

remaining two moves. Within UPRF, relational state sequences should be fully reversible; the 

combination of all captured states for any instance of a problem can be reversed to replay all of 

the actions involved in a simulation.  

The second simulation on Table 4-4 shows the relationship between the state sequences 

associated to a second instance with an additional disc. The color-coding illustrates how the 

sequences from the first simulation constitute sequences in the second simulation solution. For 

example, the smallest disc inherits the pattern of moving every other move; the next largest disc 

moves every fourth move; and the new disc takes on the same pattern as the largest disc in the first 

simulation within the extended sequence.  

The peg sequences also show a relationship that maps sequences from multiple pegs to 

generate new relationships. For example, the peg one sequence of the second instance derives from 

the sequence for peg one followed by a zero bit and appended with the sequence for peg two from 

the first instance. This pattern continues for the other pegs serially with each peg instance and the 

second peg of instance two derivable from the instance-one peg-three sequence plus a zero bit and 

then rotating back to append the peg one sequence. The framework can create these 

transformations using a bit function as shown in Table 4-5. 
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In Table 4-5, the attribute sequenced is a transform operator.  The transform operator 

represents an algorithm for generating or updating a target sequence from a source sequence. For 

example, the sequence for the smallest disc from the two-disc simulation initializes with a Copy-

Segment operation to copy the sequence to the smallest disc in the three-disc instantiation. The 

framework applies the Copy-Segment operation twice to the target disc with an intervening zero 

bit insertion. These operations together generate the required relational state sequence for the first 

disc. The process repeats for each disc with the new disc utilizing a different set of operations 

taken from the largest disc in the first instance.  

The transform operators themselves become relational state sequences that identify which 

operators the framework utilizes across the entire solution sequences rather than only for the 

source/target instances. De-coupling the source object activations used by the sequence into 

separate sequences provides traceability of these sequences to enable reversibility. Relational 

sequences of type “sequence” represent both the operator sequences and the entity/attribute 

activations associated to the operator sequences.  

Note that the purpose of the framework is not to inherently provide the logical functions 

needed to achieve the transformations but to provide an environment for hosting machine-learning 

algorithms that serve as transform operators. The framework provides the same simulation 

problem solving approach for finding the learning operations as that for playing out a simulation 

through brute force. The goal is to find some function that accomplishes the pattern recognition 

using one or more source instances. These source instances predict the correct relational state 

sequence in an unsolved instance. The framework also ensures that each algorithm executes with 

traceability back to the parameters used by the algorithm to make the prediction. This ensures that 
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the execution of all algorithms is constrained within a measurement framework so that the 

operation of the algorithms themselves make themselves visible as higher-level optimization 

problems. This also provides the potential to analyze algorithms for correlation to rank the 

selection processes which the process thereof continually improves as the system solves more 

problems. The algorithms themselves are stored as data entities in the framework to allow 

extensibility. The framework can register any algorithm for use as a transform operator within the 

framework utilizing the prescribed interface for the algorithm to search the source values exposed 

for a problem instance and record the sequences of operations utilized to achieve a target sequence.  

Table 4-5: Transformation for New Instance Using a Prior Instance (Count=3) 

Attrib. Value/Expression Sequence/ Transform Results 

T1 - Solution path for pattern for disc-count=2 to solution for disc-

count=3 (S1->S2) 

E-Operation Copy-Segment 1-11-1- 

E-Operation Insert-Bit -1--1-- 

New-E-

Operation 

Binary-Expand ------1 

E-Source Instance-1:Disc-1 1-1---- 

E-Source Instance-1:Disc-2 ---1-11 

E-Source Instance-1:Max-Steps 

(Power(2, Disc-Count) -1  

------1 

E-Target Instance-2:Disc-1 111---- 

E-Target Instance-2:Disc-2 ---111- 

E-Target Instance-2:Disc-3 ------1 

E-Source 0 -1--1-- 

Attribute Operations 

A-Operation Copy-Segment 1-11-11-1 

A-Operation Insert-Bit -1--1--1- 

A-Source Instance-1:Peg-1 1--1----- 

A-Source Instance-1:Peg-2 --1--1--- 

A-Source Instance-1:Peg-3 ------1-1 

A-Source 0 -1--1---- 

A-Source 1 -------1- 

A-Target Instance-1:Peg-1 111------ 

A-Target Instance-2:Peg-2 ---111--- 

A-Target Instance-3:Peg-3 ------111 
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Table 4-5 shows the three different types of operations and how they correlate to source/target 

entities and attributes. The three operations are: 

1. E-Operation: Carries out a transformation that uses source entities and affects a target 

entity. 

2. New-E-Operation: Carries out a transformation that uses sources entities and creates a 

new target entity. 

3. A-Operation: Carries out a transformation that relates to source and target attribute 

values. 

In the above example, the Copy-Segment operation utilizes Instance 1/Disc 1 on steps one 

and three while the Copy-Segment affects Instance 1/Disc 1. Intervening between the uses of the 

source Instance 1/Disc 1 is the use of the Insert-Bit function which is active at step two to insert 

an intermediate bit in the target Instance 2/Disc 1 sequence. The peg sequence population follows 

the pattern required to generate the peg two sequence for the second instance from the first instance 

by first activating the peg one sequence, then inserting a zero bit, and finally adding the sequence 

from peg two, also from the first instance. This repeats for the second peg on the second instance. 

However, the third peg involves the insertion of a one bit between the two sequences. There is also 

an exception to the source entity handle outlined in the New-E-Operation. This operation utilizes 

a binary expansion to generate the sequence for the new disc both appending and prepending the 

source sequence by enough bits to fill out the required sequence length. The required sequence 

length is understood in terms of the expression that calculates the maximum move count. For 

example, applying the move count as the number of bits expands the sequence for the largest disc 

two in a two-disc scenario from 010 to the large disc three sequence for a three-disc scenario of 
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000100 since the number of moves in a two-disc scenario is three and for a three-disc scenario it 

is seven (Power (2, Disc-Count) – 1). In both cases, the number of total bits to expand 

symmetrically with zero fill is the number of maximum moves. 

The transformation sequence applies to additional instances (as shown in Table 4-6) wherein 

the simulation pattern from an instance of three discs can predict the pattern for a four-disc 

solution. Note that the transformation operations are the same except for the addition of further 

operations to support the creation of the new disc associated with the instance for the disc-count 

of four. It is clear with the third simulation that a solution pattern exists which involves simply 

using the prior transformations and adding in the new transform for the new disc. This creates a 

temptation to stop the process and simply implement a programmatic solution. However, the goal 

of UPRF is not only to identify the solution pattern, but also to generate a pattern that implements 

the solution transformation. Therefore, the framework continues onto the next level of identifying 

the transformations for creating the transformation sequences for the original problem. 

To complete the next step, a new simulation for S5 is necessary in order to spawn another 

Transformation instance T3 so that a second instance of the transform solution (TS2) wherein the 

pivot that includes the operation type is incorporated. Having TS1 and TS2 transform solution 

paths enables the highest order of problem solving which handles transform operation sequences 

generically shown as SG. The transformation sequence for TS1 and TS2 incorporates the base 

expressions that reflect data about the instance itself, specifically the disc count in order to 

calculate the number of offset operations required to achieve the transform from TSN to TS-N+1. 

The generic solution is thus de-coupled from the specific instances and able to operate on any 

simulation instances in an identical fashion. This allows execution of the higher order transform 
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even where no supporting simulation exists. The capability represents the pivot point in the 

recursion, such that co-recursion reverses back down the tree and ultimately generates the next 

simulation solution instance without the need to carry out simulation, but only to implement the 

transformations. Thus, instead of requiring exponential complexity to explore the solution space, 

the complexity is linear with respect to finding the solution approach based on the number of discs. 

This does not mean that the problem itself reduces to linear complexity, as the size complexity still 

must increase with larger simulations to reflect the need for an exponential increase in moves for 

each added disc. 

Table 4-6: Solution State Sequences with Disc-Count = 3 and Disc-Count=4 

S2 - Solution path from simulation for Disc-Count=3 

Attrib. Value/Expression Sequence/ Transform Results 

Disc --1 (1) 1-1-1-1 

Disc Min-Disc 1-1-1-1 

Disc Min-Disc+1 -1---1- 

Disc -1- (2) -1---1- 

Disc Min-Disc+2 ---1--- 

Disc -11 (3) ---1--- 

Disc Disc-Count ---1--- 

Peg --1 (1) ----1-- 

Peg -1- (2) -11---- 

Peg -11 (3) 1--1-11  

S3 -Solution path from simulation for Disc-Count=4 

Disc Min-Disc 1-1-1-1-1-1-1-1 

Disc Min-Disc+1 -1---1---1---1- 

Disc Min-Disc+2 ---1-------1--- 

Disc Disc-Count -------1------- 

Peg --1 (1) ----1----11---- 

Peg -1- (2) 1--1-11-----1-- 

Peg -11 (3) -11----11--1-11 

 

Table 4-6 illustrates the transformation of the sequence associated with the disc and peg states 

from a three-disc simulation to a four-disc simulation. Note that the transformation pattern is 

identical duplicating the disc sequences with the new sequence introduced with a mid-point state 
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set and the copying peg sequences serially to combine pegs one and two to form target peg one 

sequence, three and one to form target peg two, and two and three to form target peg three. 

Table 4-7: Transformation for New Hanoi Instance Using a Prior Instance (Count=4) 

Attrib. Value/Expression Sequence/ Transform Results 

T2 - Solution path for pattern for disc-count=3 to solution for disc-

count=4 (S2->S3) 

E-Operation Copy-Segment 1-11-11-1- 

E-Operation Insert-Bit -1--1--1-- 

New-E-

Operation 

Binary-Expand ---------1 

E-Source Instance-1:Disc-1 1-1------- 

E-Source Instance-1:Disc-2 ---1-1---- 

E-Source Instance-1:Disc-3 ------1-11 

E-Source Instance-1:Max-

Steps (Power(2, 

Disc-Count) -1  

---------1 

E-Target Instance-2:Disc-1 111------- 

E-Target Instance-2:Disc-2 ---111---- 

E-Target Instance-1:Disc-3 ------111- 

E-Target Instance-2:Disc-4 ---------1 

E-Source 0 -1--1--1--  

Attribute Operations 

A-Operation Copy-Segment 1-11-11-1 

A-Operation Insert-Bit -1--1--1- 

A-Source Instance-1:Peg-1 1--1----- 

A-Source Instance-1:Peg-2 --1--1--- 

A-Source Instance-1:Peg-3 ------1-1 

A-Source 0 -1--1---- 

A-Source 1 -------1- 

A-Target Instance-1:Peg-1 111------ 

A-Target Instance-2:Peg-2 ---111--- 

A-Target Instance-3:Peg-3 ------111 

 

Table 4-7 shows the sources, targets, and operations that represent the state sequences to 

generate the simulation solution for a disc count of four from an instance with a disc count of three. 

Table 4-8: Sequence Comparison T1 to T2 

Trans-

form 

Attrib. Value/ 

Expression 

Sequence 

T1 E-Operation Copy-Segment 1-11-1- 

T2 E-Operation Copy-Segment 1-11-11-1- 

T1 E-Operation Insert-Bit -1-1--- 
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T2 E-Operation Insert-Bit -1-1-1---- 

T1 New-E-Operation Binary-Expand ------1 

T2 New-E-Operation Binary-Expand ---------1 

T1 E-Source Instance-S1:Disc-1 1-1---- 

T2 E-Source Instance-S1:Disc-1 1-1------- 

T1 E-Source Instance-S1:Disc-2 ---1-11 

T2 E-Source Instance-S1:Disc-2 ---1-1---- 

T2 E-Source Instance-S2:Disc-3 ------1-11 

T1 E-Source Instance-S2:Max-Steps 

(Power(2, Disc-Count) -1  

------1 

T2 E-Source Instance-S3:Max-Steps 

(Power(2, Disc-Count) -1  

---------1 

T1 E-Target Instance-1:Disc-1 111---- 

T2 E-Target Instance-S3:Disc-1 111------- 

T1 E-Target Instance-S2:Disc-2 ---111- 

T2 E-Target Instance-S3:Disc-2 ---111---- 

T1 E-Target Instance-S2:Disc-3 ------1--- 

T2 E-Target Instance-S3:Disc-3 ------111- 

T2 E-Target Instance-S3:Disc-4 ---------1 

T1 E-Source 0 -1--1—1 

T2 E-Source 0 -1--1--1--1 

Attribute Operations 

T1, T2 A-Operation Copy-Segment 1-11-11-1 

T1, T2 A-Operation Insert-Bit -1--1--1- 

T1, T2 A-Operation Insert-Bit -1--1--1- 

T1, T2 A-Source Instance-1&2:Peg-1 1--1----- 

T1, T2 A-Source Instance-1&2:Peg-2 --1--1--- 

T1, T2 A-Source Instance-1&2:Peg-3 ------1-1 

T1,T2 A-Source 0 -1--1---- 

T1,T2 A-Source 1 -------1- 

T1 A-Target Instance-1:Peg-1 111------ 

T1 A-Target Instance-2:Peg-2 ---111--- 

T2 A-Target Instance-3:Peg-3 ------111 

 

In Table 4-8, the source sequences map from the transformation-solution instance one to 

transformation solution instance two. The sequences are targeting the problem of generating the 

sequence of operations needed to solve the Tower of Hanoi rather than the Tower of Hanoi itself. 

The transform column identifies the transform instance with the instance qualifier within the 

transform shown in the expression column of the chart. This is the first higher order problem 

transformation problem. Since there are no new attributes and the pattern for copying the 

sequences are the same, the attribute solution path is simply an exact duplication of the prior 

instance. 
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Table 4-9: Operation Transform Sequence  (T1->T2) 

TS1 - Solution path for generating sequence to transform from T1 to T2 

E-Operation Prepend-Bit 111 111 --- 111 --- 

E-Operation New-Sequence --- --- --- 1-- --- 

E-Operation Append-Bit --- --- -11 --- --- 

E-Operation Copy-Segment --- --- 1-- --- --- 

E-Source T1:Insert-Bit --- 111 --- --- --- 

E-Source T1:Copy-Segment 111 --- --- --- --- 

E-Source T1:Binary-Expand --- --- --- --- 111 

E-Source T1:Source-Entity --- --- 1-- --- --- 

E-Source T1:New-Entity (Disc=3) --- --- -11 1-- --- 

E-Source T2:Target-Entity --- --- 1-- --- --- 

E-Source T2:New-Entity(Disc =Disc-Count) --- --- --- 111 --- 

E-Source 0 1-1 -1- --- 111 111 

E-Source 1 -1- 1-1 -11 --- --- 

Attribute Operations 

A-Operation Copy-Segment 1-11-11-1 

A-Source Copy-Segment 1--1-----, --1--1---, -----

-1-1 

A-Target Copy-Segment 111------, ---111---, -----

-111 

Legend: 

Yellow: Copy-Segment alteration via bit-prepending 

Green:  Insert-Bit alteration via bit-prepending 

Blue: Cloning of entities through segment copying 

Olive: Creating of new entity sequence via bit-appending 

Red: Offsetting binary expansion operation via bit-prepending  

 

 Table 4-9 examines the problem of generating the transformation sequence. This second-order 

transformation generates the sequences to convert the lower level transformation T1 to predict the 

sequences required for T2.  TS1 generalizes all the source discs associated with T1 into a single 

operation and creates a new operation linked to the disc-count. Carrying out the operations in Table 

4-9 transforms the source instance T1 to T2. For example in Table 4-8, T2’s copy segment 

sequence requires an additional 101 at the start. The framework accomplishes this by referencing 

the copy-segment source along with a prepend-bit operator referencing 1, 0, 1 in steps one through 

three of the sequence as highlighted in yellow.  The green highlight shows the sequences required 

to generate the T2 Insert-Bit operation sequence from the T1 Insert-Bit sequence operation that 
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also operate against the target entities but not the source. The blue highlight shows the copy-

segment applied to all the entities of the source. The green highlight shows the operation sequences 

that transform the sequence for creating a new entity in T1 to create the new disc entity in T2.  In 

T2, the binary expand operation is executed three steps later so prepend of bit zero is applied to 

that operation highlighted in red. Attribute operations are resolved as simply a duplication of the 

prior instance of the operation, source, and targets.  The generation of a solution that transforms a 

transformation sequence set of operations from one instance to another moves up the abstraction 

level and gets closer to a generic solution for generating T-n+1 from T-n.   

Table 4-10 shows an additional simulation instance with the following tables going through 

the same process for the earlier solution instances to derive a transformation sequence solution in 

Table 4-13. The attribute operations for the peg values are the same in these tables because TS1 

was able to identify an exact copy operation for both T1 and T2 thus the generic solution is already 

in place for the attributes. The final higher order problem in Table 4-14 targets the higher order 

transformation-sequencing instance using the prior transformation-sequencing instance in order to 

generate a generic method for generating the transformation-sequencing instance. This then maps 

back to a problem attribute to define a repetition operation as well as an insertion operation based 

on this attribute. The insertion operation inserts a bit zero or bit one in the sequence depending 

upon the reference sequence/prediction target while the repetition operator (repeat-last-operation) 

repeats the insertion relative to the offset of the targeted instance, based on the disc-count from the 

source.  The solution generation in Table 4-14 instance reflects the derivative operations of the 

lower level transforms to discover that the transform pattern between the two instances is simply 

a copy operation. Thus, no additional higher order transformations are necessary. 
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In this case, the disc count problem attribute becomes part of the sequence generation rule 

such that transformation-sequencing solutions can be generated for yet non-simulated problem 

instances. This capability allows the problem solver to predict the solution path incrementally for 

each lower level transformative property in a co-recursive fashion until the instance for the desired 

number of discs.  In the last set of transformation operators, the prediction targets replace the 

original sources. This allows the solution to be repeatedly instantiated using its own predictions as 

the input until achieving the desired target instance. 

The only capability needed for this is a reversal process that maps the relational state 

sequences to generate the actual state changes in the entity/attribute combinations from start to 

finish, performing an actual solution of an instance. Since the state capture process is complete in 

terms of all items necessary to reproduce a solution, a simple enumeration approach, covered in 

the next section, accomplishes this. 

Table 4-10: State Sequences for Solved Simulations - Disc-Count = 4 and Disc-Count=5 

S3 - Solution path from simulation for Disc-Count=4 

Attrib. Value/Expression Sequence/ Transform Results 

Disc Min-Disc 1-1-1-1-1-1-1-1 

Disc Min-Disc+1 -1---1---1---1- 

Disc Min-Disc+2 ---1-------1--- 

Disc Disc-Count -------1------- 

Peg --1 (1) ----1----11---- 

Peg -1- (2) 1--1-11-----1-- 

Peg -11 (3) (3) -11----11--1-11 

S4 -Solution path from simulation for Disc-Count=5 

Disc Min-Disc (1) 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 

Disc Min-Disc+1 (2) -1---1---1---1---1---1---1---1- 

Disc Min-Disc+2 (3) ---1-------1-------1-------1--- 

Disc Min-Disc+3 (4 -------1---------------1------- 

Disc Disc-Count (5) ---------------1--------------- 

Peg --1 (1) ----1----11-----1--1-11-----1-- 

Peg -1- (2) -11----11--1-11-----1----11---- 

Peg -11 (3) (3) 1--1-11-----1--1-11----11--1-11 
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Table 4-11: Transformation for New Instance from Prior Instance (Count=5) 

Attrib. Value/Expression Sequence/ Transform Results 

T3 - Solution path for pattern for disc-count=4 to solution for disc-

count=5 (S3->S4) 

E-Operation Copy-Segment 1-11-11-11-1- 

E-Operation Insert-Bit -1--1--1--1-- 

New-E-

Operation 

Binary-Expand ------------1 

E-Source Instance-1:Disc-1 1-1---------- 

E-Source Instance-1:Disc-2 ---1-1------- 

E-Source Instance-1:Disc-3 ------1-1---- 

E-Source Instance-1:Disc-4 ---------1-1- 

E-Source Instance-1:Max-

Steps (Power(2, 

Disc-Count) -1  

------------1 

E-Target Instance-2:Disc-1 111---------- 

E-Target Instance-2:Disc-2 ---111------- 

E-Target Instance-1:Disc-3 ------111---- 

E-Target Instance-2:Disc-4 ---------111- 

E-Target Instance-2:Disc-5 ------------1 

E-Source 0 -1--1--1--1--  

Attribute Operations 

A-Operation Copy-Segment 1-11-11-1 

A-Operation Insert-Bit -1--1--1- 

A-Source Instance-1:Peg-1 1--1----- 

A-Source Instance-1:Peg-2 --1--1--- 

A-Source Instance-1:Peg-3 ------1-1 

A-Source 0 -1--1---- 

A-Source 1 -------1- 

A-Target Instance-1:Peg-1 111------ 

A-Target Instance-2:Peg-2 ---111--- 

A-Target Instance-3:Peg-3 ------111 

 

Table 4-11 shows the sources, targets, and operations that represent the state sequences to 

generate the simulation solution for a disc count of five from an instance with a disc count of four. 

This follows the identical pattern as for a transformation from three to four discs except the 

additional operations and the lengthening of the sequences. 

Table 4-12: Entity Sequence Comparison from Transformation T2 to T3 

Trans-

form 

Attrib. Value/ 

Expression 

Sequence 

T2 E-Operation Copy-Segment 1-11-11-1- 
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T3 E-Operation Copy-Segment 1-11-11-11-1- 

T2 E-Operation Insert-Bit -1-1-1--- 

T3 E-Operation Insert-Bit -1-1-1-1---- 

T2 New-E-

Operation 

Binary-Expand ---------1 

T3 New-E-

Operation 

Binary-Expand ------------1 

T2 E-Source Instance-S3:Disc-1 1-1------- 

T3 E-Source Instance-S3:Disc-1 1-1---------- 

T2 E-Source Instance-S3:Disc-2 ---1-1--- 

T3 E-Source Instance-S3:Disc-2 ---1-1---- 

T2 E-Source Instance-S3:Disc-3 ------1-1--- 

T3 E-Source Instance-S3:Disc-3 ------1-1---- 

T3 E-Source Instance-S4:Disc-4 ---------1-11 

T2 E-Source Instance-S4:Max-Steps 

(Power(2, Disc-Count) 

-1  

---------1 

T3 E-Source Instance-S5:Max-Steps 

(Power(2, Disc-Count) 

-1  

------------1 

T2 E-Target Instance-1:Disc-1 111---- 

T3 E-Target Instance-S5:Disc-1 111------- 

T2 E-Target Instance-S4:Disc-2 ---111- 

T3 E-Target Instance-S5:Disc-2 ---111---- 

T2 E-Target Instance-S4:Disc-2 ------111- 

T3 E-Target Instance-S5:Disc-2 ------111---- 

T2 E-Target Instance-S4:Disc-3 ---------1--- 

T3 E-Target Instance-S5:Disc-3 ---------111- 

T3 E-Target Instance-S5:Disc-4 ------------1 

T2 E-Source 0  -1--1--1-1 

T3 E-Source 0 -1--1--1--1—1 

 

In Table 4-12, the source entity sequences map from the transformation solution instance two 

to transformation solution instance three. Again, the sequences are targeting the problem of 

generating the sequence of operations needed to solve the Tower of Hanoi and not the Tower of 

Hanoi itself. This is the second instance of the higher-order problem transformation problem. The 

next problem is to generate a sequence generation problem that can generate the sequence of 

instructions to create the transformation required to transform the simulation instances (TS1 ^ TS2 

-> SG1). The sequence of operations for T3 is identical to T2; therefore, there is now a general 

solution by simply using the copy segment operation from the prior instance. 
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Table 4-13 –Sequence for Transforming a Transform Sequence (T1->T2 – Entities) 

TS2 - Solution path for generating sequence to transform from T2 to T3 

E-Operation Prepend-Bit 111 111 --- 111 --- 

E-Operation New-Sequence --- --- --- 1-- --- 

E-Operation Append-Bit --- --- -11 --- --- 

E-Operation Copy-Segment --- --- 1-- --- --- 

E-Source T1:Insert-Bit --- 111 --- --- --- 

E-Source T1:Copy-Segment 111 --- --- --- --- 

E-Source T1:Binary-Expand --- --- --- --- 111 

E-Source T1:Source-Entity --- --- 1-- --- --- 

E-Source T1:New-Entity (Disc=3) --- --- -11 1-- --- 

E-Source T2:Target-Entity --- --- 1-- --- --- 

E-Source T2:New-Entity(Disc =Disc-Count) --- --- --- 111 --- 

E-Source 0 1-1 -1- --- 111 111 

E-Source 1 -1- 1-1 -11 --- --- 

Attribute Operations 

A-Operation Copy-Segment 1-11-11-1 

A-Source Copy-Segment 1--1-----, --1--1---, -----

-1-1 

A-Target Copy-Segment 111------, ---111---, -----

-111 

Legend: 

Yellow: Copy-Segment alteration via bit-prepending 

Green:  Insert-Bit alteration via bit-prepending 

Blue: Cloning of entities through segment copying 

Olive: Creating of new entity sequence via bit-appending 

Red: Offsetting binary expansion operation via bit-prepending  

 

 

Table 4-14: Sequence Generation for Generating Transform Solution 

SG1 - Solution path for generating sequence to transform from TS2 to TS3 

E-Operation Copy-Sequence 1 

E-Source TS(n+1) 1 

E-Target TS(n) 1 

 

Table 4-14 meets the goal to generate a TS2 operational sequence from TS1 through a simple 

copy sequence. This ultimately provides the general solution to generate the solution directly 

without the need for simulation for further instances of Hanoi. This is because SG1 can generate 

the TS(n) Transform generation by copying TS(n-1) sequence. When reversing TS(n) from state 

sequences back to entity and attribute values, it generates Tn+1. When reversing T(n+1) 
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sequences, it generates entity and attribute values for simulation Sn+1. When S(n+1) is provided 

to T(n+1), the framework generates Sn+1. Generation of T(n+1) enables TSn+1 and the process 

repeats until S(n) meets the criteria for the number of discs. That is, if there is a request for the 

solution to a disc number of eight and UPRF has solved four instances in order to generate SG1, 

then simulation instances five through seven generate through the reversal process without any 

simulation in order to provide the criteria to generate the solution sequence for a simulation with 

eight discs.  

 

4.2.4 Sequence Reversal  

The prior section illustrated the process for transforming solution paths into higher order 

problems. In these higher order problems, the goal transitions to finding the technique for 

predicting the solution paths for the lower order problem for one instance from another instance – 

possibly multiple instances. This section will demonstrate how the state sequences transform into 

actual values in the database entities and attributes associated with the instance. This capability is 

necessary in order to generate a solution instance for a problem directly without the need for 

simulation. The purpose of this elaboration is to prove that the state capture associated with 

solution-path problem transformations is adequate to reproduce an actual solution. 

In the final transformation, the disc count for the new problem instance is the reference 

variable. The framework simply needs to execute the problem setup, creating the initial instance 

in order to access this variable. In order to generate the targeted simulation, the framework must 

perform all of the transformations upon which the targeted simulation depends. This co-recursive 

process is the unwinding of the recursive problem solving process. As the framework performs 
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each higher order transformation, it generates the lower order solution instance until finally 

achieving the targeted simulation. This process is best illustrated by flipping the problem 

transformation process upside down and depicting the leading edge of the transformation 

generation associated with new instances as shown in Figure 4-9. In this process, the only required 

inputs are the predicted solution paths from the prior transformations. The source transformation 

instances are not necessary because the predicted instances are now the sources. In the diagram, 

the dashed connectors represent the inputs and the solid connectors represent the instances that 

will generate through the predictive transform operations. 

Starting at the solution generator node, the process requires moving incrementally through 

each lower level instance until reaching the target instance for the problem variable. Therefore, 

even with this requirement to build out the number of instances incrementally, the actual time 

complexity increase is less than two times the complexity for a direct solution.  There is also an 

overhead for building out the intermediate nodes, but this is a constant factor of three since the 

framework must perform only the leading edge of the transformations for each additional instance. 

Therefore, the number of operations is the number of operations in the target solution plus a 

constant factor for reversing from the solution generator back to the steps. Based on this, the time 

complexity of generating a solved instance is simply the addition of a linear constant in respect to 

the actual solution sequence. For example, it takes 31 steps to solve a Tower of Hanoi problem 

with five discs (25 – 1) using the most efficient set of moves. The solution generator is able simply 

to copy the sequences from the prior instance to generate the transformation sequence, which then 

generates the simulation sequences. 
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Figure 4-9: Transformative Reversal Process 

The reversal process starts at SG1, which utilizes TS3 as the input to generate TS4. TS4 uses 

the prior predicted instance of T4 as the input in order to generate T5. T5 then uses the last 

simulation S5 as the input to generate the prediction solution sequence for S6. This process is 

repeatable for incrementally increasing the number of instances until solving the target instance. 

Table 4-17 illustrates how the output of the sequence states are transformed into attribute value 

sequences that represent the specific state changes. State sequences that define the entity and 

attribute values intersect in order to define the specific values for the entity attribute combinations. 
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The framework must examine the sequence reversal process starting at the highest order and 

working backwards since only the highest order transformation is able to create the dependent 

instance. This dependent instance is necessary to generate the solution path tree for a new solution 

instance to the simulation problem. For example, given S5 as the last simulation instance, only T5 

can create S6 and only TS4, which does not exist, can create T5. However, SG1 can create TS4 by 

using the output of SG1 as the input for the next instance of SG1 as defined by the Replace-Source 

operation in the final transforms of the SG1 instance. Once the framework creates TS4, it can then 

generate the required instances to predict S6. 

Although the reversal process must start at the highest order transformation level, the process 

is easier to understand at the lower level transformation so before embarking on the full process, 

let us examine a lower level process. Table 4-17 shows how a sequence is implemented into the 

value sequence data table from the activation sequences in Table 4-16. The value sequence is 

query-able to define the exact solution steps because it identifies the specific attribute value to 

assign to an attribute value for a specific entity instance over a sequence range. If the value 

sequence populates accurately from the state activation sequences, then it is easy to replicate the 

exact solution to a problem instance. 

Table 4-15: State Sequences for S1 

Instance Ref. Attrib. Binary 

Value/Expression 

Sequence/ Transform Results 

S1 - Solution path from simulation for Disc-Count=2 

1 1 Disc 001 (1) 1-1 

1 2 Disc 010 (2) -1- 

1 3 Peg 001 (1) --- 

1 4 Peg 010 (2) 1-- 

1 5 Peg 011 (3) -11  
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Table 4-16: Translating attribute sequences to unique entity/attribute values 

Value Sequences for S1 

Entity  

Value 

Attribute Value Start 

Step 

End 

Step 

Source 

Seq. Refs 

Source Sequence 

Intersection 

Disc=1 Peg=1   1  

Disc=1 Peg=2 1 2 1,4 1-1,1-- 

Disc=1 Peg=3 3 3 1,5 1-1,-11 

Disc=2 Peg=1   2  

Disc=2 Peg=2   2  

Disc=3 Peg=3 2 3 2,5 -1-, -1- 

 

An intersection of an entity with a specific value, an attribute with a specific value, and a 

sequence must join in order to define a definitive value to assign to an entity for an attribute at any 

given point. For example, the entity value Disc=1 is supported by the activation sequence that 

shows disc one is active at step one and step three, but Peg=1 is not active at either of these steps. 

Therefore no causative sequence intersection exists to indicate a value for Disc=1 and Peg=1 for 

any of the steps. However, Peg=2 is activated at step one as well as Disc=1, therefore an 

intersection exists resulting in a value sequence active at step one. Value sequences retain their 

values throughout the sequence until a change occurs. Since Disc=1 does not have an activation 

on step two, its sequence remains intact for the current value. Thus the value sequence for Disc=1, 

Peg=1 is true from step one to step two. On step three, Disc=1 is once again activated, but the 

activated attribute is Peg=3. Therefore the value sequence for Disc=1/Peg=2 terminates and a new 

value sequence starts with Disc=1/Peg=3. The framework can easily query these value sequences 

to display the move sequence by displaying all of the points where the value sequence changes as 

illustrated in Figure Table 4-17. 

For the transformation to be valid, the higher-level activation sequences must be able to 

generate the sequence of operations used to attain the predictive sequence at each lower level. The 
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process for generating the transformation solution-sequence paths is the same as that for the base 

simulation instance. Table 4-18 shows the transformation sequence for the problem T1 along with 

the steps at which the attribute is set to the associated value based on the sequence. The reversibility 

mechanism in this instance needs to generate the steps utilized in T2 from the transform operators. 

The prior section already demonstrated that the transformation operators are able to produce the 

predicted solutions. At the higher-level transformation, it is important to show that the sequences 

and usages which will be used for the next higher order transformation are correct for replicating 

the transformation operations against the lower level activation sequences of the base simulation. 

Table 4-19 shows how the framework reverses state sequences to replicate the operations at the 

specific steps in the solution. 

Table 4-17: Transform Sequence Steps 

Attrib. Value/Expression Sequence/ Transform Results Steps 

T1 - Solution path for pattern for disc-count=2 to solution for disc-count=3 

(S1->S2) 

E-

Operation 

Copy-Segment 1-11-1- 1,3-4,6 

E-

Operation 

Insert-Bit -1--1-- 2,5 

New-E-

Operation 

Binary-Expand ------1 7 

E-Source Instance-1:Disc-1 1-1---- 1,3 

E-Source Instance-1:Disc-2 ---1-11 4,6,7 

E-Source Instance-1:Max-Steps 

(Power(2, Disc-Count) 

-1  

------1 7 

E-Source 0 -1--1-- 2,5 

E-Target Instance-2:Disc-1 111---- 1-3 

E-Target Instance-2:Disc-2 ---111- 4-6 

E-Target Instance-2:Disc-3 ------1 7 

Attribute Operations 

A-

Operation 

Copy-Segment 1-11-11-1 1,3-4,6-7,9 

A-

Operation 

Insert-Bit -1--1--1- 2,5,8 

A-Source Instance-1:Peg-1 1--1----- 1,4 

A-Source Instance-1:Peg-2 --1--1--- 3,6 
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A-Source Instance-1:Peg-3 ------1-1 2,5 

A-Source 0 -1--1---- 2,5 

A-Source 1 -------1- 8 

A-Target Instance-1:Peg-1 111------ 1-3 

A-Target Instance-2:Peg-2 ---111--- 4-6 

A-Target Instance-3:Peg-3 ------111 7-9 

 

 

Table 4-18: Reversibility Matrix for Transform Sequence 

Entity/Attribute. Value Start Step End Step 

E-Operation Copy-Segment 1 1 

3 4 

6 6 

Insert-Bit 2 2 

 5 5 

New-E-Operation Binary-Expand 7 7 

E-Source Instance-1:Disc-1 1 1 

3 3 

Instance-1:Disc-2 4 4 

6 7 

Instance-1:Max-Steps (Power(2, 

Disc-Count) -1  

7 7 

0 2 2 

5 5 

E-Target Instance-2:Disc-1 1 3 

Instance-2:Disc-2 4 6 

Instance-2:Disc-3 7 7 

A-Operation Copy-Segment 1 1 

  3 4 

  6 7 

  9 9 

 Insert-Bit 2 2 

  5 5 

  8 8 

A-Source Instance-1:Peg-1 1 1 

 4 4 

Instance-1:Peg-2 2 2 

5 5 

Instance-1:Peg-3 3 3 

6 6 

0 2 2 

5 5 

1 8 8 

A-Target Instance-1:Peg-1 1 3 

 Instance-2:Peg-2 4 6 

 Instance-3:Peg-3 7 9 
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In Table 4-19, the attributes are stored in multiple entities each uniquely identified by the 

problem step where step represents a discrete state in the solution sequence. The framework 

defines each sequence entity in terms of the attribute that stores a pointer to the value sequence 

from the lower level problem. In the first-level transformation, the values reflect the sequences 

from the simulation instances. As the problem progresses to higher order transformations, the 

source values point to the underlying sequences for the transformation problems themselves.  

These activation sequences are reversible to generate the value sequences that reflect the 

required transformations. The framework understands this process in terms of TS1, which predicts 

T2. The value sequences from the TS1 instance map to the attributes for the higher order problem, 

which follow the same pattern as T1. Since TS1 can generate T2 successfully in the same format 

at T1 and T1 generates S2 successfully, then T2 will generate S3 successfully.  It now only remains 

for SG1 to generate TS2 successfully. Since SG1 can generate TS2 value sequences that implement 

the T3 transform successfully, SG1 is correct for generating a new instance of TS. This new 

instance cascades down to new solved instances of S because T1 was reversible and all higher 

order transformations follow the same model of referencing the lower level transformation 

sequences. Therefore, the following recursive/co-recursive sequence exists: 

Recursive Discovery: 

S1, S2, S1 ^ S2->T1 

S3, S2 ^ S3->T2 

T1 ^ T2->TS1 

S4, S3 ^ S4 -> T3 
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T2 ^ T3 -> TS2 

TS1 ^ TS2 -> SG1 

Recursivity Pivot Point: 

TS2 ^ SG -> TS3 

Co-recursive Cascade 

T3 ^ TS3 -> T4 

S4 ^ T4 -> S5 

TS3 ^ SG -> TS4 

T4 ^ TS4 - > T5 

S5 ^ T5 -> S6 

Co-recursive Relation: 

TS(n) ^ SG -> TS(n+1 ) 

T(n) ^ TS(n+1) -> T(n+1) 

S(n) ^ T(n+1) -> S(n+1) 

 

4.3 Universal Problem Representation 

In the prior section, the Tower of Hanoi was modeled to show the UPRF process for generating 

solution simulations, transforming solution sequences as the goal state for a higher order problem, 

and generating the solution sequences associated to each level of higher order problem (until 

reaching an equilibrium point where the sequence was generic regardless of the instance). At that 

point, the process was reversible to generate the sequences back into the database to model the 

steps accurately. This section focuses on the problem of problem solving itself. The earlier section 
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made the assertion that the same process utilized to discover solution patterns via simulative search 

could search for pattern sequences by testing transform operators. This section provides the 

problem definition of the universal optimization problem that is associated with the sequence 

discovery and is fully recursive and co-recursive. 

Figure 4-8 shows the schema for UPRF sequence discovery problem or the universal 

discovery problem (UDP). The goal of the problem is to discover the operators that generate the 

targeted sequence. This aligns with the prior section wherein the solution state sequence of each 

entity/attribute combination became the target of a higher order problem. UDP utilizes the same 

schema as the base case problem including Hanoi. This means that UDP fits into the same 

framework for simulation as any other problem and helps validate that the problem definition 

language (UPDL) is robust enough to handle complex problems. In the next chapter on practicality, 

further examples help validate the extensibility of UPDL as well as the framework (UPRF) to 

model and solve a variety of problems. 

A distinguishing aspect of the UDP from other problems is that the problem is that the 

simulation relies on a special operator (“TEST_TRANSFORM”) to actually generate the 

sequences from the operators and test them.  However, this aspect does not prevent UDP from 

operating within the self-same framework and it meets the criteria for the continuous improvement 

model by exposing all the attributes, expressions, and queries back to the framework that are 

utilized to meet the goal defined by the problem in the schema.  

A second distinguishing aspect is the use of the “SELECT_ INTERNAL”. This provides a 

means for the UDP to query objects within the database without the need for them to replicate to 

the standard entity/attribute tables. This ensures access to the lower level problem data without the 
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need to replicate this back into the structure. The difference in implementation does not 

compromise the rule for the system requiring all operations to be traceable back to problem states 

so long as views insulate the underlying implementation and provide uniform representation of 

problems regardless of height in the solving hierarchy. The actual implementation of the learning 

solution is done through the standard entities/attributes persisted back into the database. This data 

is accessible then through the higher order transformations without any limit, since every 

instantiation of the UDP utilizes the same definition. Triggering a UDP problem occurs when 

solution of more than one instance at the same level in a problem. For example in Hanoi, solving 

a three-disc simulation after solving a two-disc simulation generates a UDP transformation 

problem whose goal is to discover the sequence of operations to generate a three-disc solution 

from a two-disc solution using the relational state sequences.  

Figure 4-6 depicts the UDP definition. The definition obfuscates much of the delineation from 

the prior operational proof through highly encompassing functions for testing the transformations. 

The definition could provide more detail to support lower granularity, but there is little value in 

this since the transformation operation generates the information needed for traceability back to 

the correlations associated with the transform operator used and the sequences. The goal of the 

UDP problem is simply to execute a broad query, which filters using the transform testing function 

that then returns all valid instances of source and target entities along while iterating through each 

transform operator. This forms the output of the query. When the full sequence generates 

successfully for all sequences, the process is complete. At this point, the transformation sequence 

forms the first instance of the transformation problem. When UPRF finishes the simulation for a 

third lower level instance such as for a disc count of five, then the framework will detect an 
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untransformed instance. It will then attempt to find the method for generating the transform 

sequence to transform the transform operations performed on the simulation for three discs to 

achieve operations to solve four discs in order to generate the operations needed to transform the 

simulation for four discs to solve five discs. This becomes a third-level problem when encountering 

more simulations until reaching generalization as described earlier. 
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Figure 4-10: Universal Discovery Problem 
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4.4 Chapter Summary 

This chapter provided an operational proof for the feasibility of a universal problem resolution 

framework (UPRF). It enumerated an inductive proof showing how the proposed UPRF design 

met the key requirements for generic problem definition, solution space probing, and higher-order 

transformation.  The chapter concluded with a proof-by-example using the Tower of Hanoi in 

which the solution path, through simulation and transformation to higher levels of abstraction, 

evolves from brute-force exploration to generating a generic transformation that reduces 

identification of the solution path of further instances of the puzzle to a linear process.  

  



  

 

     

 146 

 

 

 

5. PRACTICALITY 

To this point, the dissertation has focused on the use of Hanoi to demonstrate UPRF. The 

Tower of Hanoi is an NP-hard problem, but it has commonality with virtually all types of 

computational problems; it possesses an initial state, manifests in multiple instances, and has a 

generalized solution adaptable for any instance to meet a goal state. Wide varieties of problems 

share these attributes including NP-complete problems such as the traveling salesman problem 

(TSP).  The TSP also has an initial state, goal state and is configurable as different instances. 

General solutions exist that require exponential complexity as well as approximation solutions that 

attempt to optimize the solution discovery at the risk of not being perfect. A wide variety of 

problems fall into the NP-complete domain and every NP problem is reducible to another NP 

problem. The problem of discovering an algorithm is actually an NP-complete problem. To be 

practical, UPRF must be able to leverage current technology or at least the technology being 

developed to solve problems in practical time limits within reasonable resource constraints.  

Discussions around practicality involve the concept of scalability. This chapter examines 

scalability in terms of both UPRF functionality across problem types as well as in terms of 

implementation of the system within technological constraints. This chapter provides answers to 

the following questions: 

1. Scalability for other problems: How does UPRF handle other problems including non-

deterministic or probabilistic scenarios? Is it able to scale for problems that are more 
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complex or for different types of problems? Does the UPRF sequence recognition model 

scale to higher-order complexity for the base Tower of Hanoi scenario when the number 

of pegs is a variable as well as the number of discs? Can it optimize solutions for NP-

complete problems including finding an even larger TSP route than currently possible 

through approximation optimizations? Can UPRF support collaborative or cooperative 

multi-agent scenarios? For example, could it continually play itself in a game such as 

Chess and improve itself without input from a SME? 

2. Implementation Feasibility: Is UPRF practical for implementation? How can it scale to 

leverage technology innovations?  

5.1 Scalability for Other Problems 

Scalability includes supporting expanding capacity without the need for extensive 

modification of the system. The schematization model of UPRF supports this by providing a 

generic representation of any relational state through functions. UPRF supports external 

referencing as well as self-referencing through comprehensive polymorphism data structures. In 

UPRF, a problem may manifest itself as an entity that another problem can reference. Items within 

the data structure are also bi-directional within the context of constraints that prevent endless 

reference loops while using dependency detection to iterate through scenarios in dependency 

sequence. In this chapter, UPRF uses this capability to support competitive and collaborative 

scenarios including an example from Tic-Tac-Toe and discussions of Chinese checkers and 

Canasta. The Tic-Tac-Toe example delves into the variations imposed by multi-agent scenarios 

and iterates through a solution scenario from start to finish for an application of symmetry to 

replicate a solution path. This chapter discusses feasibility for the implementation of Chinese 
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checkers and Canasta scenarios based on the multi-agent paradigm established in the Tic-Tac-Toe 

example. 

An additional area of scalability provided by UPRF concerns the types of solutions that are 

pursuable. The Tower of Hanoi illustrated the pursuit of a definitive deterministic goal; the goal 

specified an exact solution to the problem. However, because the goal state derives from functions 

against the relational state and such functions may be aggregate in nature rather than exact, UPRF 

can work towards solutions that are not exact and based on an energy function. In this chapter, the 

zero-sum subset problem, a manifestation of the NP-complete problem type, serves as an example.  

NP Problems include scenarios such as the TSP. This example shows all such problems are 

reducible to each other and the subset problem is easy to represent in queries. In the zero subset 

problem, the goal defined involves minimizing steps rather than finding the solution in a specific 

number of steps. This allows UPRF to attempt solutions to NP-complete problems and utilize the 

transformational learning process to identify optimizations toward the problem. While the 

dissertation does not attempt to show the reduction through successive optimizations to polynomial 

time of an NP-complete problem, it does show that the maximum degree of optimization is a 

natural outcome of the UPRF approach.  

Another example of scalability related to problem types are probabilistic scenarios. This 

chapter provides an example of a probabilistic scenario for optimizing trades in the stock market. 

In this scenario, UPRF attempts to find the optimal method for making profitable trades with the 

transformations involving different instances of time to identify repeatable patterns. Some research 

asserts the stock market is an efficient system and therefore not providing any repeatable 

optimization technique that is better than chance. This dissertation does not attempt to prove this 
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either way, but it does show how UPRF can help to test such a hypothesis through the simulation 

and transformation process. 

5.1.1 Increasing Complexity – K-Peg Tower of Hanoi 

In the k-peg Tower of Hanoi, the number of pegs themselves become a variable rather than 

fixed at three pegs only. This section explores the background of the k-peg Hanoi, models a k-peg 

problem, utilizes simulation to generate the sequences, examines the patterns that emerge from 

this exercise, and analyzes how the UPRF process ultimately identifies the transformation 

sequence to extend the 3-peg solution to any number of pegs. Although this section does not go 

into  the degree of depth as Chapter 3 did regarding the transformation sequence recognition 

process, it does provide proof from inspection that the same technique used to derive the general 

formula for 3-peg, k-disc variations will yield a general formula aligning to Reve’s [120] and 

solving the puzzle in the minimum steps. The number of optimal steps for different variations with 

pegs and discs is a complex formula [121]. UPRF does not need to know the optimal number in 

order to pursue a simulative solution, as it is able to exhaust all possible paths until finding the 

minimum.  Providing the number of steps is an optimization to reduce the amount of simulation 

work. 

Debate regarding the proof for an optimal solution approach for k-peg Hanoi persists but 

brute-force simulation achieves the minimum number of steps for scenarios where k is sufficiently 

small. Using the same approach as with the standard Tower of Hanoi, UPRF is able to model the 

problem very simply for presentation to the simulator (Figure 5-1).  This example illustrates an 

alternative definition method using standard Structured Query Language (SQL) to define views 

and functions based on views from the generic UPRF schema. Figures 5-2 and 5-3 contain the 
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SQL code for modelling the detailed K-peg tower problem and then returning the rows associated 

with the next possible moves at any point in the simulation process.  
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Figure 5-1: Hanoi K-Peg Definition 
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Figure 5-2: Hanoi K-Peg SQL View based on UPRF Schema 
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Figure 5-3: SQL Function for Next Move States for K-Peg 

As the simulation finds solution paths, the framework captures the sequences associated to the 

solution (Table X). A unique feature of adding more pegs is that multiple optimal solutions arise, 

which is not the case for the 3-peg version. This requires UPRF to search across multiple solution 

instances in order to find a solution pattern and then cross-search within the k-peg solution space 

to correlate sequences for the variations.  This represents a similar scenario but with multiple 

instantiations as the 3-peg variation. Table 5-1 provides sample move sequences and Table 5-2 

provides example solution sequences that map closely to the 3-peg and from 4-peg to 5-peg as 

well as providing two diverse solution sequences. 
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Table 5-1: Sample Solution Sequences for K-Peg (peg count = disc count) 

Hanoi_Disc_Count Step Disc Peg 

3 1 1 3 

3 2 2 2 

3 3 1 2 

3 4 3 3 

3 5 1 1 

3 6 2 3 

3 7 1 3 

4 1 1 4 

4 2 2 2 

4 3 3 3 

4 4 1 2 

4 5 4 4 

4 6 3 4 

4 7 1 1 

4 8 2 4 

4 9 1 4 

5 1 1 5 

5 2 2 3 

5 3 3 4 

5 4 1 3 

5 5 4 2 

5 6 5 5 

5 7 4 5 

5 8 3 5 

5 9 1 1 

5 10 2 5 

5 11 1 5 
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Table 5-2: Sample Disc Sequences for K-Peg Hanoi (disc count = peg count) 

Discs/Pegs Disc Sequence Value 

3 1 ---------------------------------------------------------1-1-1-1 85 

3 2 ----------------------------------------------------------1---1- 34 

3 3 ------------------------------------------------------------1--- 8 

4 1 -------------------------------------------------------1-1--1--1 329 

4 2 --------------------------------------------------------1-----1- 130 

4 3 ----------------------------------------------------------1--1-- 36 

4 4 -----------------------------------------------------------1---- 16 

5 1 -----------------------------------------------------1-1----1--1 1289 

5 2 ------------------------------------------------------1-------1- 514 

5 3 --------------------------------------------------------1----1-- 132 

5 4 ---------------------------------------------------------1-1---- 80 

5 5 ----------------------------------------------------------1----- 32 

6 1 ---------------------------------------------------1-1-----1---1 5137 

6 2 ----------------------------------------------------1---------1- 2050 

6 3 ------------------------------------------------------1------1-- 516 

6 4 -------------------------------------------------------1----1--- 264 

6 5 --------------------------------------------------------1-1----- 160 

6 6 ---------------------------------------------------------1------ 64 

 

Table 5-3: Sample Peg Sequences for K-Peg Hanoi (disc-count = peg-count) 

Discs/Pegs Peg Sequence Value 

3 1 -----------------------------------------------------------1---- 16 

3 2 -------------------------------------------------------------11- 6 

3 3 ---------------------------------------------------------11-1--1 105 

4 1 ---------------------------------------------------------1------ 64 

4 2 ------------------------------------------------------------1-1- 10 

4 3 -------------------------------------------------------------1-- 4 

4 4 -------------------------------------------------------11-11---1 433 
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5 1 -------------------------------------------------------1-------- 256 

5 2 -----------------------------------------------------------1---- 16 

5 3 ------------------------------------------------------------1-1- 10 

5 4 -------------------------------------------------------------1-- 4 

5 5 -----------------------------------------------------11-111----1 1761 

3 1 -----------------------------------------------------------1---- 16 

  Alternate peg sequences  

3 1 -----------------------------------------------------------1---- 16 

3 2 -------------------------------------------------------------11- 6 

3 3 ---------------------------------------------------------11-1--1 105 

4 1 ---------------------------------------------------------1------ 64 

4 2 -------------------------------------------------------------1-- 4 

4 3 ------------------------------------------------------------1-1- 10 

4 4 -------------------------------------------------------11-11---1 433 

5 1 -------------------------------------------------------1-------- 256 

5 2 -----------------------------------------------------------1---- 16 

5 3 -------------------------------------------------------------1-- 4 

5 4 ------------------------------------------------------------1-1- 10 

5 5 -----------------------------------------------------11-111----1 1761 

6 1 -----------------------------------------------------1---------- 1024 

6 2 ----------------------------------------------------------1----- 32 

6 3 ------------------------------------------------------------1--- 8 

6 4 -------------------------------------------------------------1-- 4 

6 5 -----------------------------------------------------------1--1- 18 

6 6 ---------------------------------------------------11-1111-----1 7105 

 

Basic inspection shows that there is a definitive pattern for at least some cases of the 4-peg 

and 5-peg back to the 3-peg. Table 5-2 highlights the similarities. An area of further verification 

and research for UPRF would be to apply the same technique used in Chapter 4 for identifying the 

operator transform sequencing to progress from 3-peg to 4-peg, from 4-peg to 5-peg, and then 

from 5-peg to 6-peg. This provides data needed to generate the sequence transformation involved 

in generating the 4-peg prediction from the 3-peg prediction. The outcome should be a successful 



  

 

     

 157 

 

 

prediction of a 7-peg solution sequence. With sufficient transformation learning, a general solution 

should arise just as with the 3-peg scenario.  

The k-peg scenario tables include the binary values from the sequences. The work in Chapter 

3 did not include this, but the principle is applicable to all sequencing solution scenarios. Their use 

here calls out a potential area of research for utilizing learning operators to correlate the values 

associated to the binary sequences rather than the sequences. There is an algebraic relationship 

between the numbers as Table 5-4 illustrates that the total number of state changes add up to the 

total number of state changes mandated by the goal. A learning operator could deduce the sequence 

of operations for a missing peg or missing disc once the other peg or disc sequences were 

determined by subtracting the values of the determined sequences from the value of the total 

sequences. For example Table 5-4 shows that the total value of all sequences for the 4-peg scenario 

is 29– 1 (511).  If the sequence values for pegs 1, 2, and 4 were determined for the first sequence 

example (64, 10, 433), then one can derive the third sequence by subtracting (501  (64 + 10 + 433) 

from the total required for the overall sequence (511) and arrive to 10 as the sequence value for 

Peg 3 which expands to the binary sequence 1010. 

Table 5-4: Total Sequence Values for Pegs or Discs 

Discs/Pegs Sequence Value 

3 ---------------------------------------------------------1111111 127 

4 -------------------------------------------------------111111111 511 

5 -----------------------------------------------------11111111111 2047 

 

The patterns in Table 5-2 clearly show a pattern relationship as the number of pegs increase 

for the same number of discs. In this case, the pattern for the discs is easy to derive, as it is merely 

the widening of the bit strings in a symmetrical fashion. A pattern that predicts the cascading of 
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the pegs also emerges in Table 5-3. The test case was for using an equal number of discs as pegs. 

Undoubtedly, similar patterns emerge from adding additional discs for the same number of pegs. 

This example provides support for the concept of extending the learning capability of UPRF 

by expanding the variability of a problem. The same sequencing problem arises from the k-peg as 

the 3-peg scenario. A similar learning scenario for sequence inspection with higher-level 

transformation operator sequencing emerges as that associated with the automated general solution 

discovery of the 3-peg scenario. 

5.1.2 Multi-agent Scenario – Two Player Tic-Tac-Toe 

The bi-direction allows the framework to incorporate other problems as entities within larger 

problems to support virtually any type of problem scenarios. The architecture of UPRF finds 

solutions through seeking to meet a goal. In Hanoi, the goal was deterministic and absolute in 

terms of either failure or success. However, there is nothing in the structure preventing UPRF from 

seeking solutions and transforming such solutions into higher order problems in the same way as 

pursuing the Hanoi transformational sequence. This section models Tic-Tac-Toe as an example of 

a multi-agent scenario. 

For the purposes of this chapter, a multi-agent scenario refers to a problem that is either 

collaborative, competitive, or a combination of the two.  A collaborative scenario involves multiple 

agents working toward a single goal. A competitive scenario involves one or more agents 

competing against each other to reach a goal and includes the scenario of multiple agents working 

together against another team of multiple agents. The polymorphic database design of UPRF 

provides the support needed for all of these scenarios. 
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Figure 5-1 illustrates a sample schema for Tic-Tac-Toe. In the Tic-Tac-Toe scenario, the goal 

is to find the optimal solution path from both player’s perspective. Once the transformational 

sequence processing done, the goal is for the simulation to perform the optimal moves for each 

player from learning the brute-force simulations. In Tic-Tac-Toe, the significant patterns are all 

within only three significant squares for the start – the center square, a corner square, and a mid-

point square along a row. Therefore, a simulation process that explores paths for these three 

different squares should yield the transformation sequence to automatically find the optimal 

solution path for the other six starting squares and ultimately identify the correct responses to avoid 

the failure state and maximize achievement of the goal state. The schema in Figure 5-1 provides 

enough information to instantiate all of the possible simulations including redundant ones by 

varying the row range from one to three as well as the column range. In addition, the concept of a 

player is added which varies from one to two. This allows the problem to vary by player creating 

separate simulations from the perspective of the different players with the goal being relative to 

the player number of the simulation. Figure 5-2 identifies the constraints of the move, goal, and 

failure states so that the simulation can proceed similar to Hanoi. 
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Figure 5-4: Sample Tic-Tac-Toe Problem Schema – Initial Relations 
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Figure 5-5: Tic-Tac-Toe Query Rules 

In the Tower of Hanoi, there was an exhaustive review of multiple simulations including the 

state sequences. All simulations within UPRF follow the same model of depth-first solution space 

exploration, so it is not necessary to examine Tic-Tac-Toe exhaustively, but it is useful to explore 
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a sample showing the interaction from both the starting player and responding player perspective. 

This example represents an evolution of the schema to support the constructs of Tic-Tac-Toe more 

easily. However, this evolution is not a reflection that the Hanoi schema is lacking, but rather an 

improvement more relevant to helping for this scenario. The actual data structure utilized to store 

the schema is identical in each version. This section explores the progression in terms of the 

following phases from both player perspectives: 

1. Instantiation Phase:  Generates the initial scenario for placement of the first square 

for the first player for all the possible first set of moves. 

2. Play Phase: Generates the response moves from perspective of both players as 

separate simulations. Sequences for the relational states are captured in this phase. 

3. Transformation Phase: Maps the sequences of operations to the higher order 

transformation problem. 

5.1.2.1 Instantiation Phase 

The instantiation phase creates the following instances by nature of the expressions embedded 

in the problem definition using the attribute overflow concept explained earlier in the dissertation. 

The attribute overflow principle means that whenever more a query or expression generates more 

than one row of data, generation of a new simulation instance arises that represents that unique 

path. Based on this, the output is a combination of the following values: 

 Players: 1 or 2 (Generated by the Range construct for the Player Number attribute) 

 Player Move 

o Player (Derived from Player Number) 

o Row: 1 through 3 (Derived from Square-Range rule) 
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o Column: 1 through 3 (Derived from Square-Range rule) 

5.1.2.2 Play Phase 

In the play phase, the simulation applies the goal context based on the player role associated 

to the simulator against the grid of square representing the plays made including the coordinates 

as well as the player associated to the move. The Player-Move entity thus includes not only the 

coordinates but also the player that made the particular move. The rule accomplishes this through 

the Play-Game query, which looks for a non-used square and non-used column to assign the next 

move. The outputs of Play-Game are thus: 

 Player Number making the move based on a lookup that forces the player number to 

alternate on each move. 

 Square selected 

 Column selected 

The framework thus generates overflow situation necessary for branching multiple instances 

for every possible move for each player. This generates the relational state sequences that represent 

the relationship of each variable values relative to the sequence at which the value changes.  

5.1.2.3 Transformation Phase 

The transformation phase occurs after achieving solutions to two distinct instances. This phase 

regenerates the problem of deriving an instance solution from another instance solution. The 

problem is modeled executing transform operators to try to generate a sequence of operators that 

successfully transform the first instance operations to create the operations used to solve the second 

instance.  
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In the case of Hanoi, the solving of the solution path for different instances was simplified 

since each solution path ultimately derives from the same recursive algorithmic solution with only 

a slight variation based on whether the count of discs for the instance was even or odd. With Tic-

Tac-Toe, some paths are more successful than others are. For example placing a square in the 

center peg ensures at least a tie-game (“Cat’s game”) for the first player and results in several 

scenarios where the first player is victorious. However, placing a square in a diagonal square, while 

still effective to ensure at least a tie, does not generate as many victorious paths and the sequence 

to success is different. 

The outcome of multiple-solution path instances is that the transformation operators should 

eventually find a sequence that converges on common variables in the same way as Hanoi. 

Ultimately, with Hanoi, the transformations become more and more abstract such that by the third 

transformation, a very simple set of operators are able to generate the lower level solution to posit 

the higher order problem – solving it generically. The same approach works for Tic-Tac-Toe with 

the caveat that there is “noise” which serves to invalidate some instance as not related to other 

instances. For example, Player 1 responses to Player 2 placing a mark in a corner square on the 

first move indicate a different solution path than if Player 2 places a mark in a middle row or 

column. However, if the response of Player 2 is simply a transformation of another response across 

a different axis, the solution patterns should be convergent. For example, if Player 2 response to 

Player 1’s first move in the center with an adjacent square rather than a square diagonal, the 

solution paths are deterministic relevant to symmetry.  Table 5-5 illustrates the concept of related 

instances with solution paths whose variance is purely a function of symmetry as opposed to other 

instances whose solution path is not attributable to symmetry. 
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Table 5-5: Solution Symmetries in Tic-Tac-Toe 

       

O X    X O 

       

       

O      O 

 X    X  

       

In the above chart, the olive-shaded instances have symmetric optimal solution paths separate 

from the solution patterns for the beige-shaded instances. 

To examine all the potential solution paths exhaustively using combinations of Player 1 and 

Player 2 would take hundreds of lines of relational state sequence captures. A single base pattern 

with different symmetries illustrates the relational state sequence chapter and how the 

transformation problems evolve to converge on a solution transformation sequence that solves 

multiple instances across symmetries. Based on this, the framework targets four instances initiated 

by Player 1 moving to the center but with asymmetrical responses from Player 2. This is a subset 

of the possible paths, but it illustrates the learning transformation process. By the end of the 

simulation, UPRF is able to generate the solution to the fourth sequence from transformation 

without the use of simulation. Table 5-6 shows the square labeling convention. These instances 

are: 

 P1: R2,C2; P2: R2,C1 

 P1: R2,C2; P2: R2,C3 

 P1: R2,C2; P2: R1,C2 
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 P1: R2,C2; P2: R3,C2 

Table 5-6: Tic-Tac-Toe Square Numbering 

R1, C1 R1, C2 R1, C3 

R2, C1 R2, C2 R2, C3 

R3, C1 R3, C2 R3, C3 

 

 Figure 5-6 illustrates the transformation process relative to the Player 2 response. This 

diagram is very similar to the approach from Hanoi. The difference is that only two levels of 

transformations are necessary to solve the fourth instance given the constraints outlined for a 

similar solution path with different symmetries.  

S1 - Simulation 
Solution (R2, C1)

S2 – Simulation 
Solution (R2,C3)

S3 – Simulation 
Solution (R1, C2)

T1 - Transform 
Solution (S1->S2)

T2 - Transform 
Solution (S2->S3)

TS1 – Transform 
Sequence Solution 

(T1->T2)

Capture transform operations

Predict Transforms

 

Figure 5-6: Tic-Tac-Toe Simulation Transform Map 

The generic solution for the symmetrical sequence used to achieve victory in S1 derives from 

the transformations as follows: 
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 S1, S2 -> T1 

 S2, S3 -> T2 

 T1, T2 -> TS1 

TS1 will contain the generic operators to generate T2 that transforms S3 to S4 without the 

need for simulation. The goal is that by solving three instances through simulation, the 

framework learns the fourth instance transformation generating the solution sequence without 

simulation. Figure 5-7 shows the generation of simulation four from the learned sequence 

from the third transform generated by the generic transform sequence solution. The model 

will increase in depth to support more advanced transformations including how to determine 

the method for determining the correct response to different variations as instances are added 

with non-symmetric responses. This was examined in detail in Hanoi and follows for Tic-Tac-

Toe and all other problem scenarios.  

S1 - Simulation 
Solution (R2, C1)

S2 – Simulation 
Solution (R2,C3)

S3 – Simulation 
Solution (R1, C2)

S4 – Simulation 
Solution (R1, C3)

T1 - Transform 
Solution (S1->S2)

T2 - Transform 
Solution (S2->S3)

T3 - Transform 
Solution (S3->S4)

TS1 – Transform 
Sequence Solution 

(T1->T2)

Capture transform operations

 

Figure 5-7: Tic-Tac-Toe Simulation Map with Sequence Generation 
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The base scenario is the forced victory that comes from Player 2 moving to an adjacent square 

rather than the corner. Table 5-7 shows the move sequence pattern for the first three scenarios 

that provide the information ultimately needed to generate the fourth scenario solution. 

Table 5-7 Tic-Tac-Toe Base Use Case for Simulation 1 (S1) 

R1, C1 

3 

R1, C2 

5 

R1, C3 

6 

R2, C1 

2 

R2, C2 

1 

R2, C3 

R3, C1 

 

R3, C2 

7 

R3, C3 

4 

 

Tables 5-8 and 5-9 depict the transformations as simple rotations of the first simulation: 

Table 5-8 Tic-Tac-Toe Base Use Case for Simulation 2 (S2) 

R1, C1 

 

R1, C2 

2 

R1, C3 

3 

R2, C1 

7 

R2, C2 

1 

R2, C3 

5 

R3, C1 

4 

R3, C2 

 

R3, C3 

6 

 

Table 5-9 Tic-Tac-Toe Base Use Case for Simulation 3 (S3) 

R1, C1 

4 

R1, C2 

7 

R1, C3 
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R2, C1 

 

R2, C2 

1 

R2, C3 

2 

R3, C1 

6 

R3, C2 

5 

R3, C3 

3 

 

Using Table 5-10 and applying symmetric transformations yields relational state sequences 

for the first three scenarios that mirror one another. The table shows that each pattern repeats in 

the other instances by varying the square and column that reuses the sequence. All that is necessary 

to generate a transform sequence is to identify the variation that drives the transformation. The 

following transforms occur for S1 - > S2: 

 Row 1 -> Column 3 

 Row 2 -> Column 2 

 Row 3 -> Column 1 

 Column 1-> Row 1 

 Column 2 -> Row 2 

 Column 3 -> Row 3 

Thus, an operation sequence that transforms Rows to Columns and adjusts the column 

numbers inverse to the row numbers generates the solution sequence for S2. 

For S2 -> S3: 

 Row 1 -> Column 3 

 Row 2 -> Column 2 

 Row 3 -> Column 1 

 Column 1-> Row 1 

 Column 2 -> Row 2 

 Column 3 -> Row 3 
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The same approach works for S2 to S3. Therefore, the same sequence of transform operators 

can predict S4 and the solution is generic for the symmetry. The simulator can then apply this 

learned knowledge to generate higher order transforms for other symmetries. Ultimately, the 

symmetries feed up such that the framework generates a solution that defines the operations 

required for each sequence of moves to transform to the optimal solution. 

Table 5-10: Sample Solution Sequences for Tic-Tac-Toe 

Attribute Value State Change Sequence 

S1 

Player P1 1-1-1-1 

Player P2 -1-1-1- 

Row 1 --1-11- 

Row 2 11----- 

Row 3 ---1--1 

Column 1 -11---- 

Column 2 1---1-1 

Column 3 ---1-1- 

S2 

Player P1 1-1-1-1 

Player P2 -1-1-1- 

Row 1 -11----- 

Row 2 1---1-1 

Row 3 ---1-1- 

Column 1 ---1--1 

Column 2 11----- 

Column 3 --1-11- 

S3 

Player P1 1-1-1-1 

Player P2 -1-1-1 

Row 1 ---1--1 

Row 2 11----- 

Row 3 --1-11- 

Column 1 ---1-1- 

Column 2 1---1-1 

Column 3 -11---- 

   

From the above, S4 with an initial move of R1, C3 by Player 2 follows directly from sequence 

transformation if the playing pattern is the same in regard to symmetry.  
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5.1.3 Advanced Multiple-Agent Scenarios 

The Tic-Tac-Toe example illustrated the exploration of a solution path that involves multiple 

agents being the players. Each player is simply another variable with an associated state sequence 

mapped against a minimal energy efficiency goal to obtain success. In this way, an exhaustive 

simulation with upper level transformations will yield the ideal move patterns for both players.  

However many multi-agent scenarios are far more complex and not deterministic. Can the 

same concepts be applied to games or problem scenarios that include more than one antagonist? 

What is the impact on the usability of the framework if multiple agents collaborating against 

another team is introduced?  For these questions, this section considers two simple games that 

involve more than two agents: Chinese checkers and Canasta. 

Chinese checkers may have more than one player whose goal is to change the state of their 

objects to be within the opposing player’s square prior to other players. However, the pursuit of 

the goal is more complicated because of the interaction with other players.  Interaction with other 

player moves may both benefit and hurt the changes of a player meeting the goal state. In the Tic-

Tac-Toe scenario, players were modeled as variables. This is one approach to multi-agent, but 

there is another approach that works within UPRF that allows the perspective of each player to be 

the actual problem. This allows the UPRF to model the optimization problem for each player as a 

separate problem from the perspective of the particular player achieving the goal. The polymorphic 

database design of UPRF provides the role-perspective ability. In UPRF, every object may be 

polymorphic. This allows the framework to represent a problem in one scenario as an entity inside 

of another problem. For example, the framework can represent the interactions occurring on one 
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simulation involving a separate player as an entity state sequence within another problem. This 

allows simulation to occur in parallel on behalf of each player.  

 

Figure 5-8: Chinese checkers 

The team version of the card game Canasta is an example of a multi-player scenario where 

two members of the same team collaborate against another team. This use case benefits from 

UPRF’s ability to instantiate a problem in terms of multiple players as entities on the same team 

pursuing a goal in parallel to solving the same problem for a different team that interacts as an 

opposing entity.  In this approach the schematization of entities include both players on the same 

team to monitor state sequences that contribute towards the goal while defining the paths derived 

from the actions of another simulation mirroring the opponents’ actions as a separate entity 

attribute sequence. The framework can use the same technique for any collaborative/competitive 

scenario. 

5.1.4 Non-deterministic and highly complex type problems including NP-complete 

This section examines scenarios where no deterministic path may be found or the most optimal 

solution remains undiscovered. This section also reviews probabilistic problems that may not have 

any optimal solution. This section examines the following problem scenarios: 
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 Zero-subset sum problem – This is an NP-complete problem that is easy to model in 

UPRF. This problem is chosen because all NP-complete problems are reducible to 

other manifestations. The optimal solution to zero-subset thus can benefit not only 

zero-subset but also other NP-complete problems including the TSP. 

 Stock market trade optimization – This probabilistic scenario investigates how 

UPRF can schematize problems that closely model real-world non-deterministic 

scenarios. This problem endeavors not only to identify optimal parameter and 

parameter value selection to maximize profitability for a given window of time, but 

also to identify an autonomous learning process whose execution resides above the 

profit-making simulation process over time periods. The problem does this in order to 

identify the optimal methods to discover parameters and parameter value variation 

methods to obtain maximum benefit over the lifetime of a trading strategy. 

5.1.4.1 Zero-Subset Sum Problem 

In the zero-subset sum problem, the goal is to find a subset of integers within a set whose sum 

is zero. Modelling the zero subset sum problem as a binary problem allows for representation in 

UPRF [122]. The number of steps required to find the integers is exponential even though the 

solution can be determined in polynomial time. The inability to solve a problem in polynomial 

time even though validation of the solution is possible in polynomial time is a distinguishing 

attribute of NP-complete problems [123]. In this section, the framework represents the zero-subset 

problem schematically so that simulation can generate possible instances of the problem within a 

range and then attempt to determine through simulation the optimal adding sequence to add the 

numbers for all possible number sets within a test range. The learning transformation problem is 
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the same as in prior scenarios. As the framework solves each subsequent instance, it generates a 

transformation problem to determine the transform operators that can generate the sequence of 

solving steps from one instance using another instance. The framework transforms each successful 

transformation solution into a higher order transformation problem to generate the transformation 

sequence for one instance from another instance.  

The modelling of zero-subset here does not intend to resolve the issue of P=NP, but shows 

how the process contributes toward optimizations for the problem. For the purposes of illustrating 

the approach, the transformation process is limited and does not involve many instances.  A 

potential contribution of an exhaustive problem solving exercise in this area is a proof relevant to 

P=NP. If it can be shown that, with sufficient instances of problem configurations, the problem 

solver converges to all of the known optimizations and the complexity remains non-polynomial, 

this is a compelling argument for P!=NP. On the other hand if some point of equilibrium is reached 

based on discovery and application of optimizations into the transformation sequences such that 

the complexity becomes less than polynomial, this establishes P=NP. It is not the purpose of this 

exercise to answer the question or to provide a proof, but to outline how UPRF can pursue an NP-

complete problem such as zero-subset sum to seek the optimal solution. 

As in prior scenarios, the first step is to schematize the problem. Figure 5-9 illustrates the 

schematization using a version of the problem schema that works well with modelling this problem 

but still maps to the generic database structure proposed earlier. Figure 5-10 depicts the schema 

used. Not all features of the schema are used. The “Play” query is not needed because the initial 

setup query already generate all of the solved instances so these are immediately ready for 

transformation to a higher order correlation problem. Due to the polymorphic nature of a problem 
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persisted as a problem entity within itself, the framework can model even a problem that has no 

sub-entity steps for transformation in terms of its setup query outputs. The problem definition 

including its attributes are stored polymorphically in the schema as an entity which allows 

visibility in the engine to any attributes related to the problem in the same method as sub-problem 

entities. Another feature of this schema is the concept of a junction that contains criteria applying 

to expressions separately. This functionality supports nested conjunction such as having a set of 

AND operators within a set of OR operators. This simplifies the use of Boolean expressions with 

conjunctions to support any type of extraction from the query and underlying expressions. 



  

 

     

 176 

 

 

 

Figure 5-9: Zero-Subset Sum Problem Schema 
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Figure 5-10: Updated UPRF Schema (v13) 
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The baseline problem definition thus generates not only all possible test values for a domain 

of numbers but all of the sequences that might be used to solve the problem. The problem could 

have been defined in the playing query to integrate known optimizations such as that from 

Horowitz and Sahni [124] which reduces the time to O(2N/2) rather than using brute force. 

However, schematizing the problem in the current manner provides an opportunity to validate 

UPRF’s optimization process. The framework ultimately converges to the most optimal method to 

solve the problem as successful simulation sequences from different instances promote to 

transformational problems. 

Applying the concepts from the prior solving exercise shows that UPRF will converge to the 

optimal transformational sequence. The progression for achieving this is: 

1. Solution instances will all have at least one negative number and one positive number 

in order to generate the zero subset. The framework identifies this by correlation of 

the engine to the factors relevant to the solution instances. This is a feature not exposed 

by prior exercise, but is clearly easy to implement into the framework by modelling a 

problem whose goal is to eliminate sequences that do not generate a solution and 

correlate the data values to the failed instances. The framework can then assert this 

optimization back into the original problem as a failure query to speed up the 

simulation process. 

2. Positing a higher order problem against the base problem applies operators to 

transform successful instances to one another. A set of transform operators provides 

the domain for which to register selection of an algorithm given the inputs. There are 
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definitive correlations associated with optimizations involving the order of numbers 

tested within a range. 

3. The higher order problem identifies a pattern for testing the sequences from the 

sequence of numbers flagged for inclusion in the subset problem that correlates across 

instances. This becomes a third order higher problem and once this is resolved, the 

framework will establish the optimal way to sequence the testing of the numbers for 

inclusion in the subset calculation. Utilizing different functions for selecting the 

sequence provide the candidate transformational operators.  

UPRF can utilize a transformation problem that correlates solved instances incrementally 

where different functions define the sequencing of the numbers for testing. UPRF is limited to 

transform operations that provided to the framework. This is an efficiency issue and not a 

functionality issue. After enough iterations, the framework will establish a variable relationship 

that replicates the partitioning function through a sequence of more primitive operations so long 

as the primitive operations are sufficient to construct the higher-level function. This assertion 

comes from the postulate that UPRF converges to complete correlation relevant to the transform 

operators available.  

Examination of the outputs of the problem instantiation in Table 5-11 shows the correlation 

to the sequencing utilized to reach the goal. The combination of the number set and the solution 

sequence generates a unique sequence. The framework can then use this sequence as a base 

instance for transform operators to recognize the operators that converts one sequence to another. 

Table 5-1 shows the state sequences for two different instances. The two instances reveal the same 

optimal solution sequence for different numbers in the solution. This provides information to the 
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learning algorithm in the transformation problem to identify the correlating factors between the 

two simulations. In this case, the major correlating factor is that the numbers at both extremes of 

the second sequence are respectively decremented and incremented by the same amount. The 

information learned from this allows UPRF to solve a new problem instance that has this variation 

instantly without the need for simulation.   

Table 5-11: Sample Zero-subset Solutions 

Numbers Count - 

Sum 

+ 

Sum 

Solve 

Sequence 

Observation 

2,-1,1,2 4 3 3 1,2,3,4 A: Positive Sum = 

Negative Sum -> Add 

all numbers 

 1,4 B: All numbers 

symmetrical domain 

-> Choose equal 

offset from mid 

points 

C: Choose opposites 

for immediate match 

2,3 

-2,-1,1,2  2 2 1,2,3,4 A 

    1,4 B 

 4   2,3 B 

-2,-1,1,3  -3 4 1,2,4  

 4   2,3 C 

-2,-1,2,3  -3 5 1,2,4  

 4   1,3 C 

-2,1,2,3 4 -2 6 1,3 C 

-1,1,2,3 4 -1 6 1,2  

-2,1,2 3 -2 3 1,3 C 

-2,-1,1 3 -3 1 2,3 C 

-3,2,3 3 -3 5 1,3  

-1,1,2 3 -1 3 1,2 C 

-2,2,3 3 -2 5 1,2 C 

 

Table 5-12: Identical Solve Sequence for Different Subset Problems 

Attribute Value State Change Sequence 

Set: -3, -1, 2, 4 Representation 

Solve 

Sequence 

1,2,4  

Index 1 100 
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Index 2 010 

Index 3 000 

Index  4 001 

Value -3 100 

Value -1 010 

Value +2 000 

Value  +4 001 

Set: -4, -1, 3, 5 Representation 

Solve 

Sequence 

1,2,4  

Index 1 100 

Index 2 010 

Index 3 000 

Index  4 001 

Value -4 100 

Value -2 010 

Value +3 000 

Value  +5 001 

 

5.1.4.2 Stock Market Trading Optimization 

The stock market profitability scenario represents a probabilistic use case that is not of 

definitive determinism. Some research cites the efficient market theory that over a long enough 

period of time, there is no actual algorithmic approach that can fare better than simple guessing 

[125]. The goal in modelling stock-market trading as a problem to UPRF is not to determine if that 

is the case, although this could be a special type of problem for the system to solve. The goal is to 

determine if UPRF provides a framework for optimizing performance of a stock trading portfolio 

through the optimization process.  

Modelling the stock market trading scenario represents a use case where data already defined 

in a format conducive to analyzing and reporting on the stock market. For this scenario, UPRF 

executes in an external fashion to integrate existing data against the rules to seek for the simulation. 

Implementing UPRF for this scenario requires considerable software infrastructure development 
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that is not present at this time in the project. However, using a system that conceptually implements 

UPRF helps demonstrate the feasibility of the optimization process. 

Modelling of the stock market trading scenario occurs at two levels. The first level is simply 

to test various parameters with variable values in a brute force method to generate different 

portfolios and test their performance. This represents the brute force simulation exercise of UPRF 

that gathers data so that the upper level problem transformation can occur. This scenario 

incorporates the concept of autonomous learning (“auto-learning”) to demonstrate problem 

transformation of lower level instances. This is a variation from the sequencing approach in order 

to add another variable for applying the solution from the lower level instances to the higher order 

problem of identifying the most relevant profitability trend.  

In the auto-learning approach, the system calculates profitability window based on parameter 

ranges for time to look back and number of days in the evaluation period. Based on this, a higher 

order problem implements this as the measurement mechanism to test for a trend change. At a yet 

higher level, a simulation occurs which applies various profitability windows to how to determine 

the profitability window. Figure 5-11 illustrates the progression that feed the results of the lower 

level simulations as inputs for higher-level simulations that utilize parameters for trending 

profitability. Figures 5-12 and 5-13 depict schemas to enable integration with the simulation 

process as well as for the auto-learn. Figure 5-14 shows an additional schema oriented particularly 

towards modelling a behavior. This system is still in development but provides an opportunity to 

integrate an analytic application with UPRF.  

Initial test results of UPRF concepts with the stock trading application known as “CapGen” 

show promise. The CapGen database currently stores over 3 billion records downloading over 2 
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million quote rows daily for both intraday and end-of-day. In addition, the system generates several 

million technical indicator values in a key/value store. The system provides a generic external data 

collection interface that includes web-scraping functionality to access sentiment data including 

social media feeds and macro data (Figure 5-20). Collected indicators as well as strategies 

themselves persist into the system as index instruments along with trade-able equities allowing 

correlation to occur among not only assets but also indicators. This abundance of data provides an 

excellent foundation for UPRF to operate against in simulative and learning processes. Strategies 

are loaded into the system using a schema specific to CapGen (Figures 5-18 and 5-19) to represent 

the concept of triggering instruments with parameters as well as the trade execution instruments 

and parameters. This structure is transformable to the UPRF schema to represent queries for the 

overall problem solving of optimizing asset purchase and sales.  Initial results are promising. 

Figure 5-22 shows the impact of optimizing an existing strategy based on auto-learning of cycle 

data to improve the results significantly higher than that of a buy-and-hold strategy on the 

instruments. In this case, the Auto-learn varied parameter values correlated to greed and fear by 

setting exit and stop limits that align with volatility changes in the market over the testing period 

running from 1992 through most of 2013. The approach shows how the higher-order learning 

approach of UPRF learns and adapts to avoid over-fitting data from previously learned intervals. 
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Figure 5-11: Incremental Trading Strategy Improvement 
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Figure 5-12: Stock-Trading Schema 

 



  

 

     

 186 

 

 

 

Figure 5-13: Stock-Trading Schema (Continued) 
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Figure 5-14: Stock-Trading Schema (Continued) 



  

 

     

 188 

 

 

 

 

Figure 5-15: Stock-Trading Schema (Continued) 
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Figure 5-16: Stock-Trading Schema (Continued) 
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Figure 5-17: Stock-Trading Schema (Continued) 
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Figure 5-18: CapGen-specific Schema (Variables) 



  

 

     

 192 

 

 

 

Figure 5-19: CapGen-specific Schema (Values and workflow) 
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Figure 5-20: Trading System with Feedback Loop and Dynamic Web Data Collection 
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Figure 5-21: Automated Data Capture Scheme 
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Figure 5-22: Stock Trading Report Showing Impact of AutoLearn for Timing 
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Figure 5-23: Graph showing Predictive Analysis from Simulations 
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5.2 Implementation Feasibility 

Implementation feasibility revolves around multiple aspects of scalability. In this section, the 

following aspects are considered:  

1. Efficiency – What level of efficiency occurs with UPRF? Do the costs support the 

benefits? Does the learning speed up the solving process at a faster pace than the 

complexity of the solving endeavors? 

2. Architectural Scalability – Does the solution support scaling data and processes? This 

examines questions such as: 

a.  Can the data utilized by the system be distributed and shared among multiple 

processes? 

b. Can separate processes be instantiated to operate on sub-aspects of a problem-

solving endeavor? Can the simulation and exploration of transformation 

sequences be distributed effectively and coordinated? 

5.2.1 Efficiency 

Efficiency is an attribute of systems to ensure achieving the maximum functionality with the 

minimum amount of overhead. The degree that a system can be efficient is highly correlated to not 

only the overall system architecture, but the sophistication of the algorithms used to carry out the 

tasks [126]. Both the internal infrastructure for problem solving and the executed operators in 

problem solving endeavors to recognize transformational patterns determine the efficiency of 

UPRF. The internal architecture for UPRF is agent-based and distributable while the hosting 

architecture is extensible to support executing functions as part of the transformation process. In 

the second regard, this might seem to make UPRF limited in performance to the given algorithms; 
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however, the internal architecture of the system supports the concept of equilibrium and of 

schematizing any problem for optimization. This includes the performance of UPRF itself. 

Therefore, the system promotes efficiency improvement while still allowing extensibility.  

The Tower of Hanoi provides a good example of the benefit for the continued optimization 

through transformation of lower level instances into higher order problems that seek the generic 

solution patterns. When the framework obtains the generic solution pattern, it drastically reduces 

the effort for solving further instances in the domain. Although the Tower of Hanoi is itself NP-

hard, the solution effort does not need to be brute-force. Although the number of steps to represent 

the solution increases exponential, once the solution pattern is identified, the number of steps 

required to find the solution path can be linear. Table 5-13 shows the number of operations 

associated with both the simulation and transformation instances for Hanoi. Figure 5-24 shows the 

outcome in numbers of operations. Note that as the transformation increases to higher levels, the 

number of operations decreases and the exponential correlation to the number of discs disappears. 

Once the generic solution path is in place, the system only needs to reverse through the 

transformation process to generate the solution steps directly. 

Table 5-13 Solution Complexity 

Problem Instance Objects Solve Steps 

S1 - Simulation Solution (discs =2) 2 5 

S2 - Simulation Solution (discs = 3) 3 39 

S3 - Simulation Solution (discs = 4) 4 221 

S4 - Simulation Solution (discs = 5) 5 1975 

T1 - Transformation Solution (S1>S2) 3 232 

T2 - Transformation Solution (S2>S3) 4 495 

T3 - Transformation Solution (S3>S4) 5 1055 

TS1 - Transformation Sequence Solution (T1>T2) 6 2239 

TS2 - Transformation Sequence Solution (T2>T3) 6 2239 
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SG1 - Sequence Generation Solution 3 3 

 

 

Figure 5-24 Solution Complexity 
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framework generates through the five-step process. Therefore, even though the number of 

operations required to generate the steps into a representation are exponential with regard to the 
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correct moves. This use case demonstrates that, with no pre-knowledge and exclusively dependent 

on simulation and transformation, UPRF is ultimately able to achieve equivalent performance to 

an algorithm specifically designed for the problem. 

By storing all problem descriptions within a generic structure along with queries that represent 

the relational states required for the initial state, transitive state, and goal state, UPRF is able to 

utilize a general-purpose simulation engine and transformer without the need for custom 

applications for different domains. This provides the ability for autonomous agents to play out the 

simulations. This, along with the state capture framework, provides complete solution sequences 

for all problem instances to the transformation engine. This promotes scalability since each agent 

has the data needed in order to accomplish their task as well as allowing agents to execute on 

independent nodes. This ability to distribute tasks and utilize independent agents that are task-

oriented rather than domain-oriented promotes not only scalability but also higher efficiency [127]. 

Another area of efficiency concerns minimizing the number of operations required to find the 

correct sequencing of operations to perform the transformation. The number of possible sequences 

grows exponentially related to the number of possible operators. This indicates the important of 

the cross-domain learning aspect in order to weight the testing of operators more likely to be of 

use in a particular domain based on learning in another domain. The solving engine performance 

will slow significantly if an abundance of operators requires testing. Transformational operators 

can perform operations that transform the entire sequence as well as just portions. If a 

transformational operator emerges that can generate an instance solution from another instance 

solution in a single operation, this mitigates the exponential nature of the exercise. This dissertation 
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does not investigate this in detail and this topic along with machine learning optimization in 

general represents an area for further research. 

5.2.2 Architectural Scalability  

UPRF scales in multiple directions involving process, data, and tasks. The independent agent 

architecture supports using different nodes to target specific aspects of the framework such as 

schematization, simulation, and transformation. The only requirement is that each node have 

access to the data. Scaling of data is achievable through partitioning of the relational data across 

nodes. The framework achieves task scalability through the instantiation method whereby each 

simulation or transformation endeavor relates to a particular instance of a problem and is self-

contained. Once again, the only requirement is that all operations are able to register with a central 

data store and receive information from the data store. Even within each problem-solving instance, 

each operation is step is a new instance and interacted with by each agent at the step level. Figure 

5-25 illustrates the method in which UPRF scales out across agents, data, and tasks with sub-

instances.  
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Figure 5-25: Scalability Model for UPRF 

5.3 Chapter Summary 

This chapter focused on the practicality of a universal problem resolution framework (UPRF). 

To be of relevance for further study, the framework must show some promise to be usable within 

a foreseeable time horizon given current and emerging computational capabilities. This chapter 

dealt with concerns related to problem solving, since it is the same type of challenge as that 

presented by automated theorem proving. Therefore, problem solving is NP-Complete in nature 

and exponential, which implies limited utility. The chapter introduced other problems of different 

types, potentially much larger and more complex than the Tower of Hanoi base use case including 
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a demonstration of the extensibility of UPRF to handle increasing complexity for an existing 

scenario (transposing the 3-peg Tower of Hanoi to a K-peg problem).  Despite these challenges, 

UPRF promises to be practical because of its ability to scale both the scope of problems and the 

use of computational resources efficiently. The key driving force is the inherent capability within 

the framework to model its own performance and continually learn from it in order to achieve the 

equilibrium goal of maximum benefit within cost constraints. 
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6. CONCLUSION AND FURTHER RESEARCH 

This section evaluates the results of the operational proof as well as contributions from the 

other chapters that outline the supporting literature, design approach, and practicality for 

applications against the research questions and goals.  In order to answer the research goals, the 

following outcomes were indicated:  

1) Proof by example that a continuous improvement universal problem resolution framework 

can be constructed using currently available software and hardware;  

2) Production of a prototype that meets the thesis for a continuous improvement system – i.e. 

non-domain specific, extensible without reprogramming of the core system, lacking need of 

subject matter expert intervention; and executing within polynomial time complexity;  

3) Rationale that the framework coupled with technology advancements generates optimal 

solutions using fewer resources than possible without such a framework. 

The following research questions were posited in the introduction and evaluated in terms of 

the outcomes.  

1) Feasibility: Is it possible to build a universal problem resolution system that continuously 

improves and learns from its own execution including automatically cross applying 

concepts learned to other domains in the most optimal method possible given the 

information available to the system? 



  

 

     

 205 

 

 

2) Construction: What is the design of such a universal problem resolution framework 

(UPRF) described above? What are the constraints and requirements for a design that fully 

supports generic representation of problems, generic pursuit of problem solutions and 

continuous improvement utilizing an overarching set of processing components without 

the need for modifications of the actual components for the solving system? The specific 

subordinate questions under this were: 

a. How can UPRF generically encode problems from any domain without the need 

for redesign of the problem representation process? What is the level of effort 

required to represent various types of problems? 

b. How can UPRF utilize the generic representation of a problem to explore possible 

solutions? 

c. How can UPRF support a continuous improvement paradigm? 

3) Practicality: How would UPRF model, solve, and improve various types of problems? 

What Subject-Matter-Expert (SME) interactions are required? How are these interactions 

minimized? Is UPRF practical given current and potential technology? 

6.1 Results 

6.1.1 Feasibility 

Chapter 3 provided a framework for storing problems generically while chapter four provided 

an operational proof of UPRF using the NP-hard problem the Tower of Hanoi as the use case. The 

operational proof demonstrated that the framework could transform sequences for different 

instances generated from a deterministic problem to a more generalized problem for finding the 

sequences. Through proof-by-example, the framework created higher order transformations while 
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solving more instances up to four levels, at which time a generalized pattern materialized that 

reversed to generate the input for the lower level problem transformation. This shows that it is 

possible not only to generate higher order problems into a common schema but also to probe for 

solutions to the higher order problems and recursively apply the solution sequences back to the 

lower order problems. The dissertation thoroughly addressed the challenge of representing a 

problem through a schema through a relational schema using not only the Tower of Hanoi, but 

also the transformation problem itself. Chapter 5 on practicality provided additional examples of 

problem schemas that the same generic schema could represent.  

An assertion from the research question concerned the NP-complete challenge. In using an 

NP-hard scenario, it was obviously impossible to solve a problem in polynomial time even with 

discovery of the optimal solution. However, the goal of the NP scenario was to demonstrate that 

the process of solution discovery could be constrained to polynomial time through an equilibrium 

construct and that the endeavors of the solution discovery could make progress toward 

optimization of NP problems. While the dissertation did not thoroughly explore this, testing proved 

that the process of applying the higher order transformation in order to generate a solution instance 

without the need to explore the full problem space in a simulative fashion contributed only a linear 

constant to the overall problem solving process.  

Another assertion involved cross-domain learning. Although not proven directly, it is possible 

to infer that, since the framework captures all of the correlations in one problem-solving endeavor, 

the framework could treat a problem in another domain as an additional instance for a transform 

operator such that a correlation leads to an optimization across the domains. A K-peg Hanoi 

problem, which included simulating solutions to four and five pegs, provided an example to 
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demonstrate this potential capability. This example verified how learning of the transform 

sequence for the three-peg solution contributes toward an optimal solution for four pegs. Other 

examples include executing the learning process against different scenarios to see how 

optimizations learned in checkers apply to chess. These type of scenarios are useful for 

understanding the problem crossover capabilities of UPRF and validate its utility for general 

problem solving. 

6.1.2 Construction 

Chapter 4 demonstrated the construction of UPRF. Much of the construction utilizes actual 

working code, although at the time of this work only the simulation and sequence generation were 

fully working. The UPD problem was not fully implemented and operational for generating 

transformations and the operational proof required manual calculation to perform the 

transformations. However, given the ability to manually generate the transformations and verify 

their correctness through the reversal process, it is feasible to create UPRF. Although UPRF was 

incomplete in this work, enough of it was prototyped to verify the concepts and establish the key 

design principles. The three main sub-questions concerned (1) the ability to represent problems 

generically, (2) the ability to generically search for solutions, and (3) the ability to learn 

continuously – all of which the operational proof of Chapter 4 verified. 

6.1.3 Practicality 

The dissertation successfully modeled other applications including collaborative and 

cooperative involving multiple players or agents for UPRF in Chapter 5. It also discussed the 

handling of multi-agent scenarios with multiple competing as well as collaborative scenarios.  The 

dissertation examined the problem of modelling and optimizing NP-complete problems. It also 
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modelled non-deterministic problems such as stock market trading. In all cases, state change 

capture of individual values across attributes was practical in order to generate higher order 

transformation problems as candidates for sequence recognition by higher order transformation 

analysis. 

The massive data tracking requirements for UPRF are realizable given the technological 

trends. What was once thought impossible is now enabled through PCIE SSD [128]; very fast 

high-speed storage scales into the hundreds of terabytes and distributed computing enables 

memory to be treated as storage, allowing a network of computers to scale over high-speed 

networks into the petabytes of storage operating at the speed of memory.  Trends in data mining, 

and predictive analytics using high-speed clusters and technologies such as Hadoop and H-Base 

are also supportive of the high-performance computing requirements needed by this solution [129]. 

UPRF’s agent-based and task-oriented architecture is able to leverage current and emerging 

technologies. This includes distributed problem solving techniques such as MapReduce [130] 

whereby a network of computers supports distributed problem solving through reduction into sub-

problems that map onto computational nodes. PCIE SSD or in-memory databases have the 

potential to support the large amount of data needed for the state representations.  

GPU technologies also enable high-speed distributed processing [131]. Chapter 3 provided a 

system framework based on a scalable broker architecture to allow dispatching of tasks for parallel 

execution at a very low granularity. The simulation architecture leveraging parallel branching 

scales very well to make UPRF practical. 
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6.2 Further Research 

This dissertation focused mainly on the modelling, simulation, sequence capture, and 

transformational mechanism to generate higher order transformation problems from related 

instances. The work focused on the software framework to support this, rather than the 

implementation of the system. Many unanswered questions and future endeavors spawn from the 

framework concepts. This includes areas of machine learning research, in-depth research into 

specific types of problem domains, and the actual work of constructing the system.  

6.2.1 Machine Learning 

This work did not address the construction and evolution of the transformation operator 

functions required to interpret solution sequences associated with one instance and generate a 

related instance solution through correlation and machine learning. Machine learning was touched 

upon briefly as a black box that receives the sequence from one instance and then attempts to find 

the correlations needed to predict the sequence for another instance related through some 

difference in variable value between the instances. The framework design supports the dynamic 

addition of functions (transform operators) that perform transformational inspection to generate a 

target sequence from a source sequence. The integration of machine learning systems as black 

boxes will enhance the advancement of UPRF for practical solving of real world problems. An 

interesting possibility enabled by this research is the transposition of UPRF as an actual machine-

learning algorithm in and of itself.  

6.2.2 Problem Domain Research 

This work covered multiple domains but did not go into depth regarding any problem domains 

other than the Tower of Hanoi example. The work showed through diverse varieties of problems 
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including NP-complete, it is possible to schematize non-deterministic, probabilistic, and multi-

agent and combinations of problems with these attributes for a simulatory approach to solve 

instances and generate higher order transformational problems to converge instance solutions. 

Deeper studies into these other realms will enhance the area of automated problem solving and 

automated solution optimization. This research could result in greater optimizations of all types of 

problems as well as advance the feasibility for the all-encompassing generic problem system 

envisioned by this work. Additionally, deep endeavors into automatic optimization of various 

problem domains have the potential to generate cross-domain knowledge that is applicable to 

various and diverse problem domains that are only remotely correlated. 

6.2.3 Construction of UPRF 

This dissertation provided a prototype of the software and code involved in building the 

framework. Although the dissertation provided code only for the database modelling and schema, 

it did put forth sufficient design to build the functional code and provided a manual walk-through 

of the procedural code requirements. The work resulted in code for functions sufficient to automate 

the simulation and sequence generation, but there was insufficient time to finish development and 

testing of the code for the transformational aspect. The work did however put forward extensive 

design concepts for UPRF. For the framework to become a reality, it must implement the design 

concepts in code within the context of a software development effort. The framework outlined for 

autonomous problem solving supports an iterative approach so that it is possible to add 

functionality incrementally in specific problem domains. There is also the potential to bridge 

existing systems such as that depicted with the stock market optimization scenario to provide 

immediate benefit to already developed problem solving or optimization applications. 
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6.3 Chapter Summary 

This chapter provides the conclusion to the dissertation, outlining results and further research. 

The results demonstrate that a universal problem resolution framework (UPRF) is feasible, 

constructible, and practical. Through the Tower of Hanoi operational proof and the discussion of 

applications to other problems, UPRF emerges as a novel approach and paradigm shift affecting 

machine learning and artificial intelligence. The dissertation has shown that UPRF is a viable 

approach for a problem resolution framework that supports autonomous continuous improvement 

with minimal external interactions and without the need for ongoing modification of the overall 

architecture. Further, this work provides an impetus and foundation for other areas of research that 

can contribute to the domain of generic problem solving systems and be the catalyst for major 

innovations in future A/I and machine learning frameworks.  
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