

A Framework for Universal Problem Resolution with Continuous Improvement

by

Robert Leithiser

A dissertation submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama

May 3, 2014

Keywords: Autonomous Learning Systems; Continuous Improvement Frameworks; Relational

State Sequence; Problem Solving; Machine Learning; Sequences;

Copyright 2014 by Robert Leithiser

Approved by

John A. Hamilton, Jr., Committee Chair, Alumni Professor of Computer Science and Software

Engineering

Kai H. Chang, Department Chair, Computer Science and Software Engineering

David A. Umphress, Associate Professor of Computer Science and Software Engineering

Alvin Lim, Associate Professor of Computer Science and Software Engineering

 ii

Abstract

 This dissertation outlines a universal problem resolution framework implementing reasoning

and improvement capabilities exhibited by human beings. The work reviews literature concerning

major differentiations of human learning compared to contemporary artificial intelligence (A/I)

systems. Deductions from the body of knowledge in mathematics, computer science, and human

learning quantify the human capability for continuous and recursive self-reflection as a central

differentiator. Analysis of capabilities of computational systems establishes that structural

differences between the human brain and computational devices do not preclude computational

implementation of human self-reflective capability. The work establishes self-reflective capability

as an enabler for a co-recursive and recursive paradigm operable with unlimited depth and breadth

for the problem of optimizing problem solving itself.

Discovering the general algorithm for the Tower of Hanoi is the base case used to show how

simulation outputs can transform to higher order pattern recognition problems. The Tower of

Hanoi provides a model that is common for any problem in that it includes an initial state, a desired

outcome state, and an allowed transition state (where states allow multiple combinations of sub-

states). This model is representable in the system and thus enabled for solution discovery. Detailed

examples wherein the system pursues problem search spaces in a manner enabling autonomous

self-improvement as a natural result of encountering new types of problems validate the thesis.

Cooperating agents analyze solution path determinations for problems including those concerning

 iii

their own optimization. This spawns state transition rules generalizable to higher layers of

abstraction resulting in new knowledge enabling self-optimization.

Major outcomes include:

1) Proof by example that a continuous improvement universal problem resolution framework

is constructible using currently available software and hardware,

2) Production of a prototype that meets the thesis for a continuous improvement system – non-

domain specific, extensible without reprogramming of the core system, lacking need of subject

matter expert intervention; and executing within polynomial time complexity,

3) Rationale that the framework coupled with technology advancements generate optimal

solutions using fewer resources than possible without such a framework.

 iv

Acknowledgments

I am grateful for many people for their help on this dissertation including my committee and

faculty from Auburn, friends, family, and professional associates. Among these are:

My advisor and committee chair Doctor Hamilton for his practical expertise in simulation and

software architecture as well as never-ending support, knowledge in encouragement and direction;

Other committee members: Dr. Umphress, Dr. Chang, and Dr. Lim for the benefits received

from expertise in areas of software design, quality assurance, and distributed systems, as well as

their consistent support for the my studies;

Other Auburn faculty: Dr. Levant Yilmaz whose class provided me foundational knowledge

for modelling of relational states; Dr. Cheryl Seals who encouraged me to think outside of the box

for modelling multi-agent gaming problems; JoAnn Lauraitis for all her help in administrative

areas;

Friends and associates: Drew Minkin who spent many hours helping me with conceptual

understanding and practical applications of machine learning and predictive analytics as well as

providing feedback on the overall concept and design; Jordan Martz for his encouragement, brain-

storming and insights; Robert McGraw for his feedback on readability; My personal and business

counselor John Bowers, and friends that share my faith who upheld me in prayer including James

and David Frederick.

 v

My wife Elaine who has supported me for nearly 30 years in not only this pursuit but in all

my work and academic pursuits and helped in the organization of the literature review;

My daughter Brooke who tirelessly searched the body of literature to find anything of

relevance and helped extensively with grammar and style proofing;

My son Blake, a premier software engineer in his own right who provided me feedback on

many of the implementation ideas.

Finally, I thank God through Jesus Christ my Savior for the grace and strength to enable me

to finish this work and the wonders of His creation including the marvel of human learning that is

the example and the inspiration behind the dissertation concept.

 vi

Table of Contents

A Framework for Universal Problem Resolution with Continuous Improvement i

Abstract .. ii

Acknowledgments... iv

Table of Contents .. vi

List of Tables .. xi

List of Figures ... xiii

1. INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Research Goal .. 2

1.3 Research Questions .. 3

1.4 Methodology .. 4

1.5 Chapter Summary ... 5

2. LITERATURE REVIEW .. 8

2.1 Maslow and Technology .. 8

 vii

2.2 Technology and Computer Systems ... 8

2.3 Universality of Computational Frameworks .. 9

2.4 The Universality Gap Pertaining to Problem Solving 10

2.5 The Case for Universal Problem Solving ... 11

2.6 Must P=NP for a Universal Problem Solver to be Possible or Useful? 14

2.7 Problem Solving and Complexity .. 16

2.7.1 What is Problem Solving? .. 18

2.7.2 Trends in Data Science and Machine Learning 19

2.7.3 Recursion .. 21

2.7.4 The Tower of Hanoi as a Typical Problem .. 22

2.8 The Role of Feedback in Problem Solving .. 22

2.9 Relational Models and Neural Networks ... 23

2.10 Domain Crossover and Associated Limitations ... 24

2.11 Association, Pattern Matching, and Prediction .. 27

2.12 Fuzzy Logic, Probability, and Statistics ... 28

2.13 Holistic A/I or “Authentic Intelligence” .. 28

2.14 Self-Organizing and Diminishing Returns ... 29

2.14.1 The Infinite Recursion Problem ... 30

2.14.2 The Equilibrium Paradigm ... 32

2.14.3 Managing Time and Storage Complexity .. 35

 viii

2.15 Towards a Generic Schema for Problems .. 36

2.15.1 Rationale for using a Relational Schema ... 37

2.16 Rationale for the Possibility of UPRF .. 38

2.16.1 Attributes of Intelligent Systems .. 39

2.17 Chapter Summary ... 46

3. SYSTEM FRAMEWORK ... 47

3.1 Framework Foundations ... 47

3.2 Base Use Case .. 48

3.3 Core Architecture ... 49

3.4 Data Architecture ... 54

3.5 Agent Topology .. 57

3.6 Problem Schematization ... 62

3.7 Database Implementation ... 69

3.8 Simulation .. 77

3.9 Transformation ... 80

3.10 Chapter Summary ... 82

4. OPERATIONAL PROOF .. 83

4.1 Inductive Proof for Feasibility ... 83

4.1.1 Generic Problem Definition and Simulation Capability 83

 ix

4.1.2 Reflexive Property of Problem Solving ... 100

4.1.3 Postulates of the Predictive Solving Framework 102

4.1.4 Claims based on the Postulates including 1.2.1 and 1.2.2 102

4.1.5 Transformative Property of a Problem Solution 103

4.2 Proof by Example – the Tower of Hanoi ... 105

4.2.1 Methodology .. 106

4.2.2 Proof from the Data .. 107

4.2.3 Summary .. 111

4.2.4 Sequence Reversal .. 131

4.3 Universal Problem Representation ... 139

4.4 Chapter Summary ... 145

5. PRACTICALITY ... 146

5.1 Scalability for Other Problems ... 147

5.1.1 Increasing Complexity – K-Peg Tower of Hanoi 149

5.1.2 Multi-agent Scenario – Two Player Tic-Tac-Toe 158

5.1.3 Advanced Multiple-Agent Scenarios ... 171

5.1.4 Non-deterministic and highly complex type problems including NP-

complete ... 172

5.2 Implementation Feasibility ... 197

5.2.1 Efficiency ... 197

 x

5.2.2 Architectural Scalability ... 201

5.3 Chapter Summary ... 202

6. CONCLUSION AND FURTHER RESEARCH ... 204

6.1 Results .. 205

6.1.1 Feasibility ... 205

6.1.2 Construction ... 207

6.1.3 Practicality .. 207

6.2 Further Research .. 209

6.2.1 Machine Learning .. 209

6.2.2 Problem Domain Research ... 209

6.2.3 Construction of UPRF .. 210

6.3 Chapter Summary ... 211

7. REFERENCES .. 212

 xi

List of Tables

Table 4-1: Sequence Patterns from Hanoi by Disc and Peg .. 107

Table 4-2: State Sequence by Disc .. 108

Table 4-3: State Sequence by Peg ... 108

Table 4-4: Solution State Sequences for Disc-Count = 2 and Disc-Count=3 116

Table 4-5: Transformation for New Instance Using a Prior Instance (Count=3) 119

Table 4-6: Solution State Sequences with Disc-Count = 3 and Disc-Count=4 122

Table 4-7: Transformation for New Hanoi Instance Using a Prior Instance (Count=4) 123

Table 4-8: Sequence Comparison T1 to T2 ... 123

Table 4-9: Operation Transform Sequence (T1->T2) .. 125

Table 4-10: State Sequences for Solved Simulations - Disc-Count = 4 and Disc-Count=5 127

Table 4-11: Transformation for New Instance from Prior Instance (Count=5) 128

Table 4-12: Entity Sequence Comparison from Transformation T2 to T3 128

Table 4-13 –Sequence for Transforming a Transform Sequence (T1->T2 – Entities) 130

Table 4-14: Sequence Generation for Generating Transform Solution 130

Table 4-15: State Sequences for S1 ... 134

Table 4-16: Translating attribute sequences to unique entity/attribute values 135

Table 4-17: Transform Sequence Steps ... 136

Table 4-18: Reversibility Matrix for Transform Sequence ... 137

 xii

Table 5-1: Sample Solution Sequences for K-Peg (peg count = disc count)....................... 154

Table 5-2: Sample Disc Sequences for K-Peg Hanoi (disc count = peg count) 155

Table 5-3: Sample Peg Sequences for K-Peg Hanoi (disc-count = peg-count) 155

Table 5-4: Total Sequence Values for Pegs or Discs .. 157

Table 5-5: Solution Symmetries in Tic-Tac-Toe ... 165

Table 5-6: Tic-Tac-Toe Square Numbering .. 166

Table 5-7 Tic-Tac-Toe Base Use Case for Simulation 1 (S1) ... 168

Table 5-8 Tic-Tac-Toe Base Use Case for Simulation 2 (S2) ... 168

Table 5-9 Tic-Tac-Toe Base Use Case for Simulation 3 (S3) ... 168

Table 5-10: Sample Solution Sequences for Tic-Tac-Toe .. 170

Table 5-11: Sample Zero-subset Solutions .. 180

Table 5-12: Identical Solve Sequence for Different Subset Problems 180

Table 5-13 Solution Complexity ... 198

 xiii

List of Figures

Figure 2-1: Block diagram of cognitive radar closed loop system (Taken from Haykin []) . 13

Figure 2-2: Feedback loop (from Haykin) ... 14

Figure 3-1: Continuous Improvement Cycle ... 50

Figure 3-2: Simulation Process .. 51

Figure 3-3: Attribute overflow in Hanoi Simulation ... 53

Figure 3-4: High Level Data Architecture ... 55

Figure 3-5: General Data Flow .. 57

Figure 3-6: Agent Architecture .. 59

Figure 3-7: Automation Framework .. 61

Figure 3-8: Web Mining Scenario with Feedback ... 62

Figure 3-9: UPDL Schema .. 64

Figure 3-10: Sample Problem Definition - Tower of Hanoi .. 66

Figure 3-11: High-level Problem Load Process .. 68

Figure 3-12: Detailed UPDL Flow into Database ... 69

Figure 3-13: Staging Schema... 71

Figure 3-14: Data Schema ... 73

Figure 3-15: Engine Schema ... 75

Figure 3-16: Ref Schema ... 76

 xiv

Figure 3-17: Simulation State Flow ... 78

Figure 3-18: State Expression Flow .. 79

Figure 3-19: State Generation from Queries ... 80

Figure 3-20: Problem Transformation Process .. 81

Figure 4-1: Problem Definition Flow .. 91

Figure 4-2: XML Schema .. 94

Figure 4-3 - Hanoi Problem Definition - Part 1 ... 94

Figure 4-4 - Hanoi Problem Definition Part 2 ... 96

Figure 4-5 - Example Matrix for Tower of Hanoi ... 97

Figure 4-6: Three Disc Tower of Hanoi .. 106

Figure 4-7: Simulation Graph .. 114

Figure 4-8: Reversibility Operation to Generate Solution Instances 115

Figure 4-9: Transformative Reversal Process .. 133

Figure 4-10: Universal Discovery Problem ... 144

Figure 5-1: Hanoi K-Peg Definition .. 151

Figure 5-2: Hanoi K-Peg SQL View based on UPRF Schema ... 152

Figure 5-3: SQL Function for Next Move States for K-Peg ... 153

Figure 5-4: Sample Tic-Tac-Toe Problem Schema – Initial Relations 160

Figure 5-5: Tic-Tac-Toe Query Rules ... 161

Figure 5-6: Tic-Tac-Toe Simulation Transform Map ... 166

Figure 5-7: Tic-Tac-Toe Simulation Map with Sequence Generation 167

Figure 5-8: Chinese checkers... 172

 xv

Figure 5-9: Zero-Subset Sum Problem Schema .. 176

Figure 5-10: Updated UPRF Schema (v13)... 177

Figure 5-11: Incremental Trading Strategy Improvement ... 184

Figure 5-12: Stock-Trading Schema .. 185

Figure 5-13: Stock-Trading Schema (Continued) ... 186

Figure 5-14: Stock-Trading Schema (Continued) ... 187

Figure 5-15: Stock-Trading Schema (Continued) ... 188

Figure 5-16: Stock-Trading Schema (Continued) ... 189

Figure 5-17: Stock-Trading Schema (Continued) ... 190

Figure 5-18: CapGen-specific Schema (Variables) ... 191

Figure 5-19: CapGen-specific Schema (Values and workflow) .. 192

Figure 5-20: Trading System with Feedback Loop and Dynamic Web Data Collection 193

Figure 5-21: Automated Data Capture Scheme ... 194

Figure 5-22: Stock Trading Report Showing Impact of AutoLearn for Timing 195

Figure 5-23: Graph showing Predictive Analysis from Simulations 196

Figure 5-24 Solution Complexity .. 199

Figure 5-25: Scalability Model for UPRF ... 202

 1

1. INTRODUCTION

1.1 Motivation

The motivation for this dissertation comes from a desire to advance computational processing

in the area of problem solving from a domain-centric orientation to a general-purpose orientation

[1], universal in nature with intrinsic support for automated continuous improvement. This

motivation concerns not only the generic capability to model and represent problems within a

system, but also the ability to generically discover and optimize solutions to computational

problems. A key assertion of this dissertation is that the ability to resolve problems universally in

terms of their optimal solutions will provide an automated improvement mechanism in the problem

solving system itself and minimize the interaction requirements of domain-specific subject matter

experts (SMEs). This dissertation substantiates the underlying assumption that problem solving

itself is an NP-complete problem and therefore benefits from and provides benefits to other

problems in the NP-class due to the effectiveness of approximation techniques and ever-increasing

computational capabilities, even if the optimal solution never achieves polynomial time.

A second motivation is to model the remarkable self-reflective component at work early on in

human development whereby the mind intrinsically reflects on each experience in order to

evaluate: (1) the success of varying approaches used to solve a problem; and (2) the methods of

evaluation useful for success [2]. In addition, present at youth is a form of creativity that involves

utilizing a solution from a prior domain and applying it in new ways to a completely different

domain seems [3]. This capability appears to be part of the predictive aspect of human learning

 2

and behavior whereby humans are able to quickly generalize and correlate current events with past

experiences, learn to effectively filter vast amounts of sensory inputs, and make predictions [4].

The results of these predictions then help guide the process for filtering input data, analyzing events

and, ultimately spawn creativity to realize efficiency improvements. Similar benefits should be

realizable in a software framework that leverages self-reflection effectively.

A third motivation comes from the desire to simulate the human learning processes within a

computational framework [5]. Even children at very young ages possess the ability to differentiate

themselves from the rest of the animal kingdom through mastery of complex language. Language

learning remains a puzzling issue for the fields of both neuroscience and psychology [6]. This

unique ability to evolve from virtually no language competency to highly sophisticated

communication in the space of just a few short years surpasses the achievements by even the most

adventurous artificial intelligence experiments. One hope is that a continuously improving

problem solving system may lead to insights in the language-learning process.

1.2 Research Goal

These motivations inspire the goal for a universal problem solving system. However, not all

problems are solvable, so the term “resolution” better supports the concept of searching for the

outcome to a problem. In addition, the term “system” implies a self-contained product but the

dynamic nature of problems indicate a need for extensibility and evolvability indicating a

framework. Based on this, the dissertation targets a feasibility proof of a universal problem

resolution framework (UPRF) as an outcome of prototyping the concept.

 3

1.3 Research Questions

These motivations raise four research questions:

1) Is it possible to build a universal problem resolution framework that continuously improves

and learns from its own execution including automatically cross-applying concepts learned

in other domains in the most optimal method possible given the information available?

2) What is the design of such a universal problem resolution framework (UPRF)? What are

the constraints and requirements for a design that fully supports generic representation of

problems, generic pursuit of problem solutions and continuous improvement utilizing an

overarching set of processing components without the need for modifications of the actual

components for the solving system? The specific subordinate questions under this are:

a. How can UPRF generically encode problems from any domain without the need

for redesign of the problem representation process? What is the level of effort

required to represent various types of problems?

b. How can it utilize the generic representation of a problem to explore possible

solutions?

c. How can it support a continuous improvement paradigm?

3) Is UPRF practical for various types of problems?

a. How would UPRF model, solve, and improve with various types of problems?

b. Can it scale beyond the Tower of Hanoi base case to more advanced scenarios

including scenarios representing real-world industry problems?

c. What Subject-Matter-Expert (SME) interactions are required? What aspects of the

framework help minimize these interactions?

 4

d. Does the architecture support scaling to large scenarios and provide capability to

leverage emerging technologies?

1.4 Methodology

The dissertation addresses the research questions through the following chapters:

 Chapter 2 – Literature Review: This chapter reviews the literature covering concepts that

form the foundations and provide impetus for a UPRF. Problem representation,

simulation, complexity, human learning theory, recursion, co-recursion, relational

algebra, and reflectivity are among the topics reviewed. The section concludes with a

review of the research and the implications to feasibility for the UPRF concept.

 Chapter 3 – System Framework: This chapter outlines the basic design of UPRF. The goal

of this chapter is to lay the groundwork to support a processing infrastructure for problem

representation. This chapter shows the feasibility for the framework to support the data

and processes associated with problem representation, simulation, and learning. It also

provides insights into how a UPRF can be constructed, prescribing a set of constructs for

relational problem representation that support simulation and solution discovery including

higher order problem transformation.

 Chapter 4 – Operational Proof: This chapter targets the first research question (regarding

feasibility) from the perspective of proving that problems can be generically represented,

simulated, and analyzed for solution patterns to generate higher order problems within the

framework that learn how to solve the lower order problems. Whereas the system design

chapter focuses on structure, this chapter focuses on operation. It postulates constructs,

provides an informal semantic proof and concludes with a proof-by-example scenario

 5

using the Tower of Hanoi. The goal of the chapter is to demonstrate how multiple

simulative solving instances generate knowledge within a system for solving higher order

pattern recognition to find a general solution.

 Chapter 5 – Practicality: This chapter targets the third research question concerning

operation of the framework for various applications. It provides additional use cases

beyond the Tower of Hanoi to show how UPRF extends to other types of problems. It

explore more complex scenarios including:

a. K-peg variations of the Tower of Hanoi illustrating the ability to scale from a

lower-level problem domain to higher-level domains.

b. Multi-agent/deterministic/exclusively competitive or collaborative including an

example with Tic-Tac-Toe.

c. Single-agent/non-deterministic/random influencer including an example involving

stock market trading.

 Chapter 6 – Conclusion and Further Research: This chapter summarizes the findings, the

significance of the work, and provides insights for the fourth research question involving

the practicality of UPRF. It explores enabling technologies that can make the massive

amount of data tracking practical. This includes high-speed storage technology, distributed

problem solving, and high-performance computing.

1.5 Chapter Summary

This chapter introduced the motivation and research goals associated with the objective of this

dissertation, a universal problem-solving framework (UPRF). The motivation derives from

drawing parallels between the factors driving humankind’s advancements over time and software

 6

frameworks leveraging a universal, continually improving model. Research goals associated with

answering questions of feasibility, constructability, and practicality arise from this motivation and

form the basis for the work of the dissertation.

 7

 8

2. LITERATURE REVIEW

2.1 Maslow and Technology

The technological progress of human civilization focuses on the improvement of solutions to

problems facing the human species. A key differentiator between humans and other species is the

ability to identify non-optimal aspects of our existence and utilize nature in the creation of

continually improving remedies to challenges that detract from the human experience [7]. These

remedies span across all of the aspects of human life and encompass all of the needs associated

with motivation of human behavior.

Maslow provides a hierarchy of needs for human motivation [8]. This hierarchy depicts a

pyramid with basic physiological survival at the base of the hierarchy and self-actualization at the

top. The respective intermediate levels moving up the pyramid are safety, love/belonging, and

esteem. Through history, human civilization has evolved by continuously devising improving

methods to meet these needs. Invention is the cornerstone of the human existence and significantly

differentiates us from all other species. Throughout history, no other species has shown such

significant capability for progression as humans. While all species evolve to adapt to changing

conditions, rarely does a species achieve a higher level of existence using technology.

2.2 Technology and Computer Systems

Technology is often thought of as an advent of the 20th century, however the word

“technology” comes from Greek τεχνολογία (technología); from τέχνη (téchnē), meaning “art,

http://en.wiktionary.org/wiki/%CF%84%CE%B5%CF%87%CE%BD%CE%BF%CE%BB%CE%BF%CE%B3%CE%AF%CE%B1
http://en.wiktionary.org/wiki/%CF%84%CE%AD%CF%87%CE%BD%CE%B7

 9

skill, craft,” and -λογία (-logía), meaning “study of” [9]. Technology marks the beginning of

human civilization. Technological progress ultimately involves enabling progression within a

system from an initial state to a goal state where the initial state is less than desirable and the goal

state is the desired improvement. At the bottom of the Maslow’s hierarchy, the invention of the

wheel (epitomizing the beginning of civilization) optimizes the scenario of reducing the resistance

between an object and its surface to minimize the effort required to move the object. At the top of

the pyramid, the printing press facilitates the populace to enter into satisfaction associated with

literary works.

In the modern era of computer software, higher level programming provides the ability to

create automated information management systems that help humans across all the layers of

Maslow’s hierarchy – from scheduling flights to tracking finances to social media interaction –

and everything in between [10]. Algorithms, improvements, and innovations within hardware and

software continue to improve the capabilities of computer systems. A unique aspect of

computational devices is the orientation toward solving problems across all domains. Computer

systems are no longer only informational devices providing an answer to some sort of computation

problem, but are bidirectional in nature [11] exerting control over systems such as financial

markets, power grids, medical aids, and weapon systems. Computer systems solve problems that

directly affect everything from human survival itself to geo-political stability.

2.3 Universality of Computational Frameworks

Modern computer hardware and operating system software platforms are able to run

applications encompassing multiple domains without any pre-knowledge of the specific domain

[12]. The same computational device using the same operating system that can run an accounting

http://en.wiktionary.org/wiki/logia

 10

package can also run word processing software, engineering simulations and data mining software.

Programming languages provide support for creating application software that runs the full gamut

of computational requirements and represents a universality class in the overall computer system

framework.

Relational database management systems [13] using Structured Query Language (SQL) [14]

provide a generic capability to represent a wide variety of data. Any information that can be

understood in terms of values related to other values, including those related through functions,

can be represented in a relational schema [15]. Relational databases have evolved to support

object-oriented storage, another class of universality in the area of information representation.

More recently, data mining [16] software supporting business intelligence [17] and predictive

analytics [18] such as MicroStrategy™ and ‘R’ have emerged with increasingly considerable

capabilities that are further enhanced by hardware developments such as solid-state storage,

parallel processing and by evolution of distributed computing networks. Similar to programming

languages and operating systems, data mining has become increasingly generic [19] with the same

data mining software supporting analysis of different domains.

2.4 The Universality Gap Pertaining to Problem Solving

Despite the universality of operating systems, programming languages, databases, and data

mining software, domain-specific limitations persist when endeavoring to discover solutions to

computational problems [20]. For example, data mining software may provide a generic platform

for analyzing pattern data, but, for many scenarios, subject matter expertise is heavily needed in

not only the problem definition aspect, but also in evaluating results and formulating actions from

those results [21].

 11

It is natural that problem solving tends to be domain-specific since problems that we encounter

are by their very nature varied across the entire sphere of existence. For example, the solution for

calculating a flight trajectory is vastly different from the solution for determining customer

preferences based on prior purchases. Another example of domain-specificity is the Deep Blue

system for playing chess [22]. While this system was able to defeat the best grandmaster in the

world, it was not able to play any other games – even a game as simple as tic-tac-toe – without

extensive re-programming [23].

The domain specificity not only concerns algebra, and correlative analysis, but also entails the

algorithmic aspect for determining optimal solutions. Typically software designed to find the

optimal solution for a problem focuses on the use of a specific algorithmic approach or a

combination of approaches whether it be neural networks [24] dynamic programming [25],

heuristic-based [26], genetic algorithms [27], simulation-based [28] approximation-oriented [29]

or some other method. Without a doubt, certain types of problems benefit more from specific

algorithmic approaches. Therefore, feedback mechanisms commonly found in problem

optimization research are typically limited to merely evaluating the success of the algorithm and

parameters [30] rather than a holistic approach that encompasses any algorithm and endeavors to

determine the most optimal set of algorithms or the most optimal patterns for applying the

algorithms.

2.5 The Case for Universal Problem Solving

While it is true that using even the highest-level programming languages (including those

oriented towards problem solving such as PROLOG [31] and Python [32]) will yield different

approaches to achieve optimality, this dissertation asserts there is a central issue that exists in

 12

problem solving itself that accommodates universality. The evidence for this comes from the large

family of NP-complete problems. An NP-complete problem is a problem that does not have an

exact solution in polynomial time and is thus NP-hard in execution, but is in the class of P

regarding verification since NP-Complete problem solutions are verifiable within polynomial time

[33].

All NP-complete problems – some of which seem very different on the surface such as the

zero subset problem, the traveling salesman problem (TSP) [34] and theorem proving are

fundamentally reducible to each other through mathematical transformations. It has been shown

that if one can find a polynomial-time solution to one NP-complete problem, then all NP problems

would be solvable and thus that P=NP would be proven true [35]. The discovery that P=NP has

incredible repercussions and, in fact, most mathematicians and computer scientists do not believe

that P=NP is even possible. However, P!=NP also persists as an open question.

The ability to transform problems into a generic format is not limited to variations of NP-

complete problems. Relational databases provide another example of the extensibility for

modeling a problem within a common framework under the umbrella schema of the relational

model, particularly through application of associative data modelling [36] and key/value pair

approaches such as “noSQL” [37] that support generic representations. The best evidence for

generic problem representation comes from the representation of knowledge in the human mind.

Humans are able to link memories together without limitation even where the schematic attributes

of the knowledge is completely different. Images, emotions, facts, and events are all seamlessly

related together suggesting the concept of generic schema in the infrastructure of the human mind

that is able to represent all information such that any piece of datum can be related to another [38].

 13

Cognitive machines that utilize varying technologies with the ability to learn new information

and improve themselves are yet another example supporting the concept of universal problem

resolution. Such machines function in their environments for a particular purpose but integrate

with the environment and receive feedback to improve in their operations [39]. Cognitive machines

are often used for surveillance and sensing of events in the environment and share the following

similarities:

 They have embedded (i.e., software-defined) signal processing for flexibility.

 They perform learning in real-time through continuous interactions with the outside

environment.

 They utilize closed-loop feedback.

Figure 2-1: Block diagram of cognitive radar closed loop system (Taken from Haykin [40])

 14

Figure 2-2: Feedback loop (from Haykin)

2.6 Must P=NP for a Universal Problem Solver to be Possible or Useful?

Turing’s “imitation game”, also known as the Turing Test probes the issue of whether a

computational device can become so sophisticated that it can respond indistinguishably from a

human to a series of questions [41]. The question precludes that the machine would need to have

access to the typical data that a human being possess. However, even if such a machine possessed

all this information, could it respond in a manner that reflected human cognitive abilities? Could

such a machine learn from the dialogues intended to test the machine and apply feedback

ultimately to evolve itself to pass the Turing test?

Some think of the Turing problem as intractable or NP-complete even if a system had all of

the data embodied in a human mind [42]. However, this dissertation asserts that P=NP is not a

requirement for the design or the useful execution of a universal problem resolution framework

 15

and is not a constraint preventing continuous improvement of the system. There are three main

rationales for this assertion:

1) Many optimizations to NP-complete problems derive from observation of data patterns

that provide the basis for generalizations implemented via dynamic programming.

Examples of this include cutting algorithms and branch-and-bound algorithms that make

optimization decisions based on dynamic evaluation of the data associated to an instance

of a problem. UPRF naturally promotes optimizations for NP-complete problems by

tracking details of all state sequences related to all data inputs. This provides a mechanism

to learn from data and ultimately assert rules into the transition state queries that optimize

the solutions [43].

2) Approximate solutions to NP-complete problems continue to improve to be effective

enough for practical purposes for very large problem instances [44]. For example, a

validated-optimal Traveling Sales Problem (TSP) tour for visiting 24,978 cities in Sweden

by means of approximation techniques was found in 2004 [45]. Humans demonstrate the

use of approximation rather than rote calculation when faced with complex problems. This

is evident since a human can accurately guess complex routes to a TSP problem within a

small margin of error [46]. Most of the “real-world” problems commonly found in human

life are probabilistic and do not lend themselves to direct computation but approximation

techniques.

3) By embedding a cost-benefits problem into UPRF and instantiating this as a constraining

problem on the system, the framework is able to maintain equilibrium in terms of effort to

guarantee maximal effectiveness.

 16

2.7 Problem Solving and Complexity

For many years, computer scientists have wrestled with the Turing test [47] trying to devise

methods based on the field of Artificial Intelligence to address the functional capabilities

represented by this test. However, all attempts to this point have failed not only in meeting the

test [48] (not surprising given the fact that the test requires the computer to be in possession of all

of the knowledge associated with a typical human persona), but in demonstrating the type of

learning capability needed to achieve that of a human persona. To develop highly complex

algorithms, researchers invested great amounts of time to anticipate the wide range of human

behavior necessary to meet the Turing test. There have been applications and platforms developed

that perform human-like behaviors and able to defeat human opponents in some very complex

game scenarios that span beyond typical A/I algorithms including Chess. Deep Thought

exemplifies such a pattern, however as is typical of many A/I systems, it is domain-specific, highly

dependent on subject matter expertise for training, and computationally optimized for the

particular domain thus representing a very narrow scope of human behavior [49].

Despite the advances in A/I, this dissertation asserts that the human learning model is the best

software model to achieve the Turing test and that automated machine learning approaches based

on the human mind have been inadequate to this point. Nature reveals that the human mind already

contains the entire problem solving ability needed to not only potentially solve any solvable

problem given adequate data, time and computational resource, but to develop more advanced

problem solving automatically through the use of simulation, self-examination and domain cross-

over. One only needs to ponder the miracle of human language to realize this. By the age of four,

a child has mastered all that one needs in human language to communicate and be understood by

 17

their family without any deliberate attempts to train the child in human language speech and

recognition [50].

The focus of AI has traditionally been on the development of specific algorithms or targeting

specific domains rather than on the holistic process of learning and problem solving. A holistic

process can function across all domains and is not limited to particular algorithms or applications.

In the last several years, some noteworthy efforts address the holistic issue of automated machine

learning. The basis of these efforts is on study of the brain from both a physical operational

perspective as well as a functional aspect.

This dissertation proves by induction and through example that it is possible to model

information about problems and the solution paths for problems in a framework to enable eventual

achievement of the Turing test. This is accomplished through ongoing pattern recognition that

continually analyzes solution paths to generate new patterns which themselves become new

problems in an optimal path problem continuum that is domain agnostic. Using a problem

definition alone can determine not only the optimal solution paths for a problem, but the optimal

solution path technique or algorithm associated with the problem. Such solution path techniques

are then employable to optimize the solution for variations of not only the same but also similar

problems, as well as for cross training into other domains. The exercise of the solution path

techniques become part of the knowledge of the system.

A key issue for such a problem system is the issue of computational complexity. Even if a

universal problem resolution framework is constructible, will it be able to operate in polynomial

time on P type problems only, or will it be able to achieve polynomial time complexity even within

the class of NP-complete? This is a very significant question relative to whether or not the problem

 18

solving apparatus is useful for discovering algorithms for NP-complete problems. This dissertation

uses the Tower of Hanoi, an NP-hard problem with exponential complexity having a generalized

solution as the base use case. Although the system does not address NP-complete problems

specifically, this dissertation asserts that eventually the system will determine the optimal solution

path for discovering the optimal algorithm for an NP-complete problem. The system will

eventually also improve itself within polynomial time constraints. The problem solver itself

represents a variation of the traveling salesperson in that it is seeking out the most optimal path

from start state to the end state for its own operation. Even if the optimal path utilizes

approximation and the derivation is not deterministic, this does not defeat the utility of the system

for generic problem solving and solution optimization.

2.7.1 What is Problem Solving?

For the purposes of this dissertation, problem solving is considered a process for achieving a

goal state, given an initial state, including a set of rules providing constraints on how the state may

be changed in transitioning from the initial state to the goal state [51]. This definition provides a

universal basis for pursuing problem solving in any context that supports state definition and state

testing, including mathematics, formal specifications, and even psychology. Within the realm of

computational problem solving, a state transition system representable by a Kripke structure [52]

provides support for pursuing a solution for a problem. Since states in finite state automata

represent values of objects relative to a point in time without specifying the types of objects, this

provides unlimited flexibility for defining a state system.

This definition provides the basis for a state machine that can support any arrangement of

items in terms of their semantic values related to other objects. Such a definition provides for a

 19

state machine that, for example, could represent a particular equation relative to the variables of

the equation or even more significantly the arrangement of a particular problem state relative to

other problem states in terms of solution paths. For purpose of this work, solution paths indicate

a sequence of state changes representing the truth of a conditional state for a problem at each state

transition in the transition from the initial state of a problem to its goal state. Another term utilized

in the undertaking of solving problem systems in terms of state is relational state tracking [53].

Relational state tracking allows a complete history of all state changes within a system. This

enables reversibility to a prior state and also supports reproducible reversibility so long as the

underlying functions that change state are deterministic and the functional relations projecting the

values associated to the states are stored along with the overall data state [54].

2.7.2 Trends in Data Science and Machine Learning

“Big data” has become a buzzword in today’s technological world and, although the entire

field is buzzing about it, there is no true definition of “big data” at this point. In fact, it seems that

everyone has a different definition for it. There are however five key characteristics attributed to

this kind of data – whether separately or combined. The first is a volume of data that is large

enough to require special considerations in order for storage and analysis. The next is a variety of

data that consists of many different types of data possibly also from multiple different sources.

Third is a velocity of data production that warrants special consideration – usually in this case the

use of old or “stale” data production is not valuable. Fourth is the value of the data produced – i.e.

data that has perceived benefit to certain organizations or initiatives. Lastly is the veracity of data

– i.e. being able to verify the accuracy of the data [55].

 20

Today’s technology news focuses on “big data” and systems that work with such big data.

Use cases for forecasting events based on copious amounts of data are increasingly prevalent.

Along with this, data science and machine learning are now becoming industry focuses. These

trends are all relevant to autonomous problem solving. However, the focus of this dissertation is

on a framework that can integrate research from machine learning, data science, and predictive

analytics in a holistic fashion. Machine learning systems learn from data for different types of

scenarios including supervised and unsupervised learning [56]. The systems serve a useful

framework for problem solving by identifying patterns and predicting solutions. However, the

emphasis of this dissertation is that no currently implemented systems provide a model for

continuous reflection in order to reflect on their own performance and generate higher and higher-

level machine learning scenarios that implement improvements into the machine learning systems.

The process for injecting feedback and integrating feedback as higher order problems is not a

machine-learning problem but a software design challenge involving recursion, data modeling,

and a re-entrant methodology for turning each level of problem solving into an optimization

problem [57]. Therefore, this work does not concern itself with machine learning, but rather the

framework that can host machine-learning algorithms, inspect their success, and utilize machine-

learning algorithms to learn about the process of problem solving. The outcome of this is the

enabling pattern matching of higher and higher order problems instantiated into the framework.

For purposes of the dissertation, machine-learning algorithms are black boxes evaluated in terms

of success and relevance correlated to their outputs and input data from problem spaces, with the

algorithms themselves treated as data points in sequences converging to higher levels of learning.

 21

2.7.3 Recursion

Recursion solves problems that are either too large or too complex to solve through traditional

methods. Recursive algorithms work by deconstructing problems into manageable fragments,

solving these smaller or less complex problems, and then combining the results in order to solve

the overall problem. Recursion involves the use of a function that calls itself in a step having a

termination condition so that repetitions are processed up to the point where the condition is met

with remaining repetitions from the last one to the first [58].

Mathematical induction proves recursion. The definition of primitive recursion is [59]:

I-algebra (X, in) admits simple primitive recursion if for any B Є B and morphisms

d; : F;(X x B) -+ B, there exists a S : X -+ B such that the f. d. c. for i Є I.

Corecursion then is the dual form of structural recursion. While recursion defines functions

that utilize lists, corecursion defines functions that produce new lists. Thus, with corecursion,

output rather than input propels analysis and is able to express functions that involve co-inductive

types. Corecursion originally came from the theoretic notion of co-algebra with practical

implications for higher order problem solving needed in a continuous learning framework [60].

Four primary methods prove corecursion: These are fixpoint induction, approximation lemma,

co-induction, and fusion. Fixpoint induction is the lowest-level method, primarily meant to be a

foundation tool. Approximation lemma allows the use of induction on natural numbers. Co-

induction looks directly at the structure of the programs. Fusion is the highest-level of these four

methods and allows for purely equational proofs rather than relying on induction or coinduction

[61]. This dissertation utilizes both coinduction and fusion with the Tower of Hanoi to prove that

the system supports corecursion in order to achieve continuous improvement.

 22

2.7.4 The Tower of Hanoi as a Typical Problem

The Tower of Hanoi [62] meets the requirements for a recursion problem, although it can be

solved through iteration as well. The Tower of Hanoi represents a simple problem that contains a

definitive solution pattern for the optimal number of steps. As the number of discs increase, the

same solution approach applies in a recursive fashion. While it is trivial to implement an algorithm

to solve the Tower of Hanoi, it is not so trivial to discover the algorithm in a generic fashion using

simulation alone without pre-knowledge of the algorithm. As a typical recursion problem, the

patterns that emerge from the solution model for discovering an algorithm relates similarly to any

other recursive problem. Thus, the Tower of Hanoi provides a useful example for an exercise in

algorithm discovery. The complexity of Tower of Hanoi also provides an example for incremental

domain learning by means of increasing the complexity through adding another peg or by making

the number of pegs a variable.

2.8 The Role of Feedback in Problem Solving

It is becoming increasingly more common for computing systems to incorporate feedback in

order to provide improvement to software. A simple example that Microsoft Windows™ users are

familiar with is the feature that prompts the user if they wish to communicate information about

an event causing an error back to Microsoft. By gathering, the information related to the error,

Microsoft is then able to try to diagnose a root cause and potentially provide an improvement to

resolve the issue back into the software through a service pack. Feedback is a fundamental tenant

of evolutionary theory in that it provides a means to incentivize an organism to change its behavior

if the feedback is adverse to the organism’s survival [63]. Humans regularly employ feedback in

their thought processes and it is a fundamental concept for motivational learning theory. Software

 23

evolution based on a feedback loop is a key aspect for continuous improvement within a software

process [64].

2.9 Relational Models and Neural Networks

State Sequencing involves the capture of state changes occurring to an object or the attributes

of an object. Through the capture of all object and attributes related to other objects and attributes

in a system, relational state descriptions are obtained that represent the state changes and their

relationships to changes of other attributes within the system. Capturing these relational state

sequences allows a complete representation of a functioning system including the ability to replay

the model and analyze sequences derived from execution of one model to that of another model.

Relational state sequencing is a key enabler for representing Bayesian networks in both

probabilistic and deterministic problems [65]. Storing these sequences into a repository and

correlating them back to the source endeavors foster both unsupervised and supervised learning

for intelligent analytic systems [66]. Functional programming supports lambda calculus and

pattern matching to integrate relational state descriptions in an evolutionary manner to solve

problems [67].

Neural networks [68] and relational models have different approaches, but are compatible for

information representation. A neural network can be represented relationally and a relational

model represented in a network model [69], [70]. This allows the use of a relational model to store

the concepts associated with a network learning exercise. Integration of functional programming

outputs into relational state sequences that represent the complete behavior of a system allow

convergence to recursive relations to generalize behavior of systems [71].

 24

The integration of neural network information into relational sequences within the context of

a descriptive relational model enables the relational state tracking approach alluded to earlier in

this chapter. Through relational state tracking, the capture of complete information about a system

behavior occurs which then enables the complete analysis of the correlations within the system.

Through a recursive framework, actions used to analyze the relational sequences become enablers

for higher and higher order problem transformations that optimize not only the base problem but

the higher order problems of how the framework itself can achieve new capabilities through its

own introspection [72]. These new capabilities form the basis for the generation of new algorithms

that provide further improvement within a software framework [73].

2.10 Domain Crossover and Associated Limitations

One limitation of many A/I systems is that their orientation is focused to solving a problem in

a particular domain such that the formulas, functions, data structures, and other aspects of the

software application are optimized for the domain and may have limited utility outside the domain.

For example, while neural network architectures for single-layer nets have shown relevance to

certain domains, neural networks for multi-layer domains suffer from interaction complexity [74].

An algorithm applied effectively in one problem domain may be completely ineffective for

another domain. This is because problems vary significantly in terms of their initial state

configurations, types of objects involved, transition state constraints, and final goal states. Each of

these has an impact on what technique is optimal for the particular domain.

The lack of automated algorithm selection depending on the problem type is a common

problem encountered by novice users using sophisticated data mining software. Many data mining

packages prompt the user as to the type of mining model to use, whether it be associative,

 25

clustering, structural, pattern-based, time-series, etc. Often the users of this system lack the

subject-matter expertise or experience in the domain to make a well-informed decision. Some

systems now try to predict the model that will be most effective by sampling the data and

evaluating the effectiveness of a model, thus incorporating feedback as part of the problem solving

approach.

One approach commonly used for problem solving in traditional A/I is the use of genetic

algorithms [75]. NP-complete problems domains commonly use such algorithms as well as other

domains with some success. Genetic algorithms can have utility for cross-domain learning as a

means to optimize a solution approach rapidly [76]. However because genetic algorithms focus

on energy functions for a specific domain and follow an evolutionary model that optimizes toward

a particular goal state in a random fashion, their usefulness for finding the best solution that can

map from one domain to another is limited, particularly if genetic drift accommodation is lacking

[77]. Through an approach that utilizes machine-learning algorithms, including genetic algorithms

as black boxes inside of the holistic framework, the genetic algorithms themselves along with their

limitations and correlations to problem types become an area of continuous learning within the

framework.

Domain crossover for the context of this dissertation indicates a deliberate effort on the behalf

of a system to apply a solution technique to another domain in order to determine the usefulness

of the technique to the newly targeted domain. A simple way to determine this is to actually test

the technique in the targeted domain and evaluate effectiveness relative to other techniques.

However, this technique imposes potential inefficiencies – one of which being the difficulty in

determining an effective sample size that adequately tests the technique since the data values may

 26

be skewed for certain attribute values for entities subjected to the technique. In addition, even if a

technique applied to a particular problem in a domain is effective, how does one know that it will

be effective to other problems in the domain? For example, what are the criteria that cause a

technique to be effective that may vary even within the same domain for different problems?

Making decisions without all the information on a system is a challenge for decision systems

and expert systems. Often subject matter experts (SMEs) train these systems to orient data mining

techniques based on certain conditions in the data or types of problems; however, this is a tedious

and error-prone process. UPRF’s ability to automate the trivialities of inspecting data results

against a goal reduces SME interaction.

When contemplating the various obstacles of domain-crossover, it may seem that attempts to

utilize proven techniques from another domain or from dissimilar problems have such a low

likelihood of success as to be virtually no improvement over random selection -- perhaps even

worse considering the addition effort of applying techniques likely to fail. However, this assertion

is proven false by examining systems that are effective and do utilize domain-crossover. A good

example of such a system lies in the area of human learning and problem solving. In human

problem solving endeavors, people often successfully apply a solution technique from a seemingly

unrelated domain onto another domain.

How do humans accomplish domain-cross-over and can the same techniques apply to

software-based problem solving? For example, how is it that a child who gets bit by a dog as a by-

product of harassing it make the decision to be careful in treating other types of animals with no

resemblance to a dog? In this case the answer lies within the question of whether the child is able

to recognize that there are commonalities between animals such that a dog and a cat are both related

 27

closely enough that the cost/benefit of restraining their impulse has a positive return [78]. For

example, a young child who is bit by a dog because of treating it roughly, with limited knowledge

of machine commonality from dogs to self-propelled vacuum cleaners (i.e. a Roomba iRobot™)

may hesitate before treating a vacuum cleaner roughly. These examples indicate correlation is the

enabler for human achievement of domain crossover. In the same way, problem-solving systems

should also be capable of domain crossover by linking attribute commonality (either directly or

indirectly) among problem domains.

2.11 Association, Pattern Matching, and Prediction

Based on the concept of associative correlation and commonality [79], an equation can be

constructed to avoid an adverse response wherein the initial state involves an object that relates to

another object belonging to a problem that has already been solved. Combining the concept of

feedback with association enables prediction generation. In “The Two-Second Advantage” the

authors postulates that humans make decisions based on attempting predictions and monitoring

the success rate in response to associative patterns [80] and thus optimize their effectiveness to

adjust to new circumstances. Without this ability, humans would not be able to function because

the amount of sensory input received by the brain is too much to analyze completely in time to

respond effectively. Consider the millions of neurons that are fired every 40 milliseconds or so

from images transmitted by the retina in comparison to the number of computations that a person

can perform in one second [81].

 28

2.12 Fuzzy Logic, Probability, and Statistics

A study of predictive learning links to the concept of “fuzziness”. Computation commonly

focuses on binary absolutes wherein a logical expression yields either true or false with some

systems including the concept of undefined/unknown. However, decision-making as done by

organisms, particularly human is not strictly binary, it is based on probability. Probability is a key

aspect of data mining in order to determine correlations. Probabilistic data mining systems estimate

likely correlations. The more robust data mining systems calculate confidence intervals that

accompany the correlational findings. Utilizing “fuzzy logic”, programs are often able to achieve

higher efficiency while retaining high reliability for the targeted problem [82]. Recommendations

result from probability models, which while not guaranteed to be correct, are likely enough to

justify acting upon probability calculation. A good example is a high-frequency trading application

that does not have time to examine all of the data, but has enough time to identify significant

deviations to anticipate a market risk and perform a mitigation action. This concept is useful for

mathematical models including Fourier Transformations to reduce problems of unsolvable scope

via estimation or division to probability problems that reflect the accuracy of the fully constituted

problem accurately enough to be useful while not being too slow to be practical [83].

2.13 Holistic A/I or “Authentic Intelligence”

At this point, it is apparent that the optimal combination of logical techniques performed in

an optimal sequence is greater than the sum of its parts. That is, each of these techniques taken to

an extreme without integration to other techniques has less value than the intelligent combination

of the techniques. Pure prediction is nothing more than guessing with limited utility. Calculating

statistical likelihoods is a waste of resources for a simple problem. Constantly changing a solution

 29

technique due to occasional unexpected feedback is worse than relying on one that is usually

correct. Associating items that have similarity into the same problem class is not useful if the

similarity does not relate in some way to determining the outcome of a solution technique. Even

reliance on pattern recognition and relational state tracking may lead to false solution paths if the

relational state sequences form the same pattern for a certain grouping of initial configurations.

For example if Tower of Hanoi is instantiated only having an odd number of disks, pattern

recognition will yield a technique that dictates always moving to the third peg on the first move.

This solution pattern will prove faulty once the initial state is set for the game to have an even

number of disks. Until a suitable variety of test cases establishes a causality relationship between

the number of discs and the required first peg move, the apparently universal truth condition arising

from a preponderance of test cases will be in a state of failure.

Based on the above, the optimal problem-solving model does not confine itself to a singular

approach, but is combinatorial in the selection and sequencing of application of various techniques

to a problem. This brings the focus to intelligence. In order for all these techniques to work

together, the techniques must integrate in the most optimal fashion. In this sense, traditional A/I

work is mainly too narrow in scope. The emphasis tends to be on particular techniques such as

neural networks, Bayesian-based, symbolic logic, pattern matching, etc. (all of which work well

when paired to the suitable problem types) rather than on the problem of identifying how to find

the optimal combination of techniques for a problem solution.

2.14 Self-Organizing and Diminishing Returns

The concept of searching for solutions to problems in a symbiotic fashion that benefits the

overall system manifests in the principle of self-organization [84]. Self-organization is a

 30

requirement of UPRF in order to improve itself without external modification. To be effective,

self-organizing systems must possess the following attributes [85]:

 Autonomy: The system needs no external controls.

 Emergence: Local interactions induce creation of globally coherent patterns.

 Adaptability: Changes in the environment have only a small influence on the behavior of

the system.

 Decentralization: The control of the system not done by a single entity or by just a small

group of entities but by all entities of the system.

 Merely finding the optimal way to combine techniques for a particular problem and then

using them is of little utility given the myriad types of problems and techniques available. Such an

approach if done randomly is undoubtedly worse than using any one technique exclusively.

Therefore, a more important problem is discovering how to find the optimal solution combination

technique. However, even if one solves the second order problem of discovering an optimal

solution combination that finds the optimal combination for the lower order problem, can the

second higher order problem for finding the optimal combination also be optimized? One answer

is to transform the second order problem to a higher-level problem targeting the goal state as being

the optimal way to find the optimal way to find the optimal way to solve the original problem.

2.14.1 The Infinite Recursion Problem

The dissertation asserts that any problem whereby complete state tracking of all the steps

utilized to solve the problem including capturing all of the function calls, assertion tests, and

outcomes can be transformed to a higher level problem that is representable in a generic state

machine. However, even with implementation of such a means for recursive problem optimization,

 31

the perfect solution path will never be determinable since each level of solution path optimization

leads to a higher order problem. The outcome is that each higher order problem targeting the

optimization of the lower order problem provides additional benefit albeit with diminishing returns

at some point. Another problem is that if the recursion loop fails to unwind, none of the problems

in the optimization hierarchy ever receives any optimization. Constructing such a system for

solving problems would in fact never solve any problem because it would never exit the recursion

loop; this is known as the infinite recursion problem [86].

2.14.1.1 The Recursion Exit Dilemma

For recursion problems that involve potentially infinite recursion, a constant or type of

expression serves as an exit condition to cause the unwinding of the recursion [87]. This technique

has application to the recursive problem solving machine construction outlined earlier. This seems

the best option with UPRF since infinite recursion is of no use and the framework can provide

another optimization problem that concerns the exit condition for the recursion itself.

Depending on the problem complexity and effectiveness measured at each iteration of solver

recursion, the optimal exit point is highly variable. Therefore, use of a constant to control this is

inadequate. A better approach is to unwind the recursion in parallel spawning sub-problems until

exploration of the solution space for the lower order problem completes or reaches some threshold.

In this model, co-recursion occurs with recursion such that the new high order problems derive

from lower-level instance solving and optimize the lower level problems. In this scenario, the

optimization techniques are passed down to the lower level problem immediately or deferred by a

recursion gap representing a threshold of hierarchy levels that triggers the application of the

techniques back to the lower level problem. One advantage of the co-recursive/recursive approach

 32

is that the system can infinitely attempt to optimize higher and higher order problems while

providing utility and continually improving.

From the above, continuous improvement capability is possible provided the constraints of

generic problem representation, complete relational state representation, and a base set of functions

have sufficient robustness to accommodate analysis and problem solving. Sufficient robustness in

solving and analytical functions is achievable through at least three different means:

1) The functions contained in the baseline of the system provide a high enough coverage for

pattern matching, probability functions, data mining functions, condition assertion functions, and

condition testing functions such that the exercise of the functions in concert and tracking of their

invocation patterns is better than random choice;

2) There exists an extensibility function such that the system is able to incorporate new

functions autonomously in response to dead-ends for solutions using some type of dynamic

function execution model combined with dynamic search or an ability for a SME to add functions

dynamically (however, this is a violation of the principle that SME intervention should not be

needed);

3) The system is able to write its own functions, track the primitive operations used for writing

the functions in terms of relational state sequences relative to the optimization and dynamically

execute them by combining primitive functions in different combinations in order to accelerate the

effectiveness rate of function application relative to optimal solution paths.

2.14.2 The Equilibrium Paradigm

Equilibrium within a system manifests when the system reaches a steady state or ranged state

such that a balance between different functions exists [88]. This result is typical of systems that

 33

act upon themselves; the reactions in the system arise from actions and have a counter effect on

the initiating actions over a sequence of states. Financial markets to a certain degree exhibit

equilibrium since money inflows, money supply expansion, and money redistribution act upon the

overall system [89] (Pareto Principle [90]). Equilibrium generally indicates that a system has

reached a level of optimization whereby alterations do not provide benefit if the system is

achieving the desired goal state.

Multi-agent reinforcement learning can facilitate equilibrium in machine learning systems

[91]. These systems utilize cooperating agents to converge to a desired equilibrium that spawns

actions that contribute in actions that optimize reaching of the goal. Due to the recursive nature of

UPRF and the possibility for endless iterations, equilibrium is a key aspect to accommodate in the

framework as a continuous operational problem. Utilizing the framework to host this equilibrium

problem allows UPRF to leverage the same infrastructure as that used for other problems and reap

the same benefits of cross-domain learning and continuous improvement.

2.14.2.1 Targeting equilibrium as the goal state

Based on the above, the master problem for a universal problem solver is to achieve and

maintain equilibrium where equilibrium represents the optimal ratio of computational processing

utilized for optimizing the system relative to computational processing utilized for solving

problems. Herein lies a central tenant of this work; the optimal solution to a problem is able to be

defined in terms of reaching equilibrium in a co-recursive/recursive problem solving system across

all depths of the hierarchical problem space including the optimal method for arriving at optimal

equilibrium. By targeting equilibrium, the framework avoids arbitrary recursion exits and is able

to manage its recursion.

 34

The concept of self-reflection was alluded to earlier in the context of a feedback loop and as

a differentiator of UPRF compared to existing problem solving frameworks. This self-reflective

process ensures that measurement of all actions is relative to prior results for correlated actions. In

some cases, the correlations may be distant but still relevant. For example, one may consult the

Internet to obtain directions and a time estimate to travel to a specific location but the time estimate

is only accurate given the current traffic. The estimate may not be accurate for a later time when

some event may occur that adds to the traffic. A person may mistakenly not factor in the occurrence

of an event and assume the travel time to be exactly as prescribed on the web site. It is only later

when the person arrives late due to some large event occurring along the traffic route such as a

sporting game that the person learns to not only search for the directions and estimated time, but

also for nearby events related to the destination. This type of learning affects our processes even

across domains to the point that the experience may remind of the need to be cautionary in a

seemingly unrelated endeavor such as finishing a group collaborative document. The experience

of lateness due to an unexpected event may heighten the fear of being late on a project involving

multiple individuals where the factoring of the commitment level of all individuals is not included.

This process of self-reflection ultimately leads to more complex and interrelated schema from a

human perspective [92] as well as when implemented in software.

The targeting of equilibrium is a natural goal state postulated by evolutionary theory and

exemplified in human learning. The human mind is capable of endlessly exhausting computation

cycles in self-reflection to a point that the individual takes no action resulting in a paralyzed state.

Yet, without this model of reflection, there is the risk of an impulse decision that does not leverage

experiential knowledge leading to a disastrous error in judgment. Exclusivity to either extreme is

 35

disastrous to self-preservation and prevents survival. Based on this, it is evident that the human

organism through decision-making driven by learning and problem solving experience is in a

constant search for equilibrium. Thus, a system that targets equilibrium in self-reflection and

optimization (self-organizing) in terms of higher order problems to generate optimality patterns

for lower order problems and continually probe cross-domain problem solving improvement as a

relation onto its exercise of computation for direct problem solving should be achievable. It is also

arguable that such a system emulates human creativity since creativity appears to arise out of

pattern recognition between distantly related problems triggered by a commonality relation that if

true would drastically improve the solution for the problem. The concept of creativity in this

context represents the outcome from pursuing an optimization goal driven by the probability that

a decision with potentially low likelihood to succeed is worth attempting based on the metrics of

prior forays.

2.14.3 Managing Time and Storage Complexity

The time and storage complexity of a problem solving system is exponential for NP-complete

problems until optimizations are found, since the problem space must be explored as a search

problem that exponentially increases in size for trying out all possible state sequences [93].

However, the equilibrium goal places a constraint on the system for optimality that requires the

system to retain polynomial time complexity. This allows the system to constraint itself to finding

optimizations that may not be exact but are justified based on a return-on-investment principle

where a “good-enough” solution is better than no solution at all.

 36

2.15 Towards a Generic Schema for Problems

For a problem solving system to function generically across different problem types, the

system must be able to interact generically with all types of problems. This implies the need for a

general-purpose schema for representing information about any problem. Historically, problem

domains rely on semantics and schemas specifically targeting the domain rather than on generic

constructs. Various models have been put forth to try to make schemas for problems generic [94],

but without a unified model from that can represent knowledge from all problems, integration of

knowledge across problem space requires custom agents that can interpret the information specific

to a problem domain. Case-based reasoning (CBR) systems provide a model for such a generic

database for general purpose problem solving. CBR functionality is dependent on a path and

pattern database that stores the all problem and solution states [95].

Proof that such a schema also enables autonomous improvement arises through a simple

Tower of Hanoi scenario where multiple variations of the game play out using different instances.

The next chapter illustrates this by instantiating two through five discs to generate relational state

sequences intersecting different conditions of specific attribute values to conditions defining other

attribute values in the system. The relational state sequences incorporate derivative states to

provide recognition sequences that reflect problems that project into functions based on change

frequencies. Many NP-hard problems exhibit symmetrical patterns when interrogating the problem

space related to the solution space including Tower of Hanoi.

In the Tower of Hanoi scenario, analysis of discs two through five reveals symmetrical

patterns allowing simple pattern recognition using bit functions to generate functions that

generalize conditional expressions relative to the number of discs for setting the peg number. The

 37

conditional expressions that prove as valid transition state optimizations to add to the rule states

are able to generate the prediction state sequences by the time that the count of discs reaches six,

providing linear time complexity for the solution path identification after the first four test cases.

Generalizations spawned from optimizing the higher order problem for finding the optimal

solution serve as optimization conditions to add to the lower level problems. The framework

revisits the lower level problems and applies the generalizations. As more variations are tested,

pruning the set of candidate generalizations becomes possible. Using the tested conditions as

optimization expressions starting with a count of discs equal to six, the conditional expressions

that prove as valid transition state optimizations provide linear time complexity for arriving to the

solution path for all future attempts regardless of the number of discs.

2.15.1 Rationale for using a Relational Schema

Relational algebra provides [96] finitary relations that allow objects to be organized relative

to other objects in terms of existence dependencies as well as enabling object values to be

associated to the parent object containers. This allows a relational database schema to represent

semantically how collections of objects relate in terms of dependencies as well as values. Such a

schema provides utility for UPRF since full state representation is dependent on object values

relative to each other at each sequence in a problem solving exercise. Since the values are able to

provide the linkage between the objects and this information is part of the information schema of

the model, this effectively supports neural-network constructs of associating an object to another

object. Metrics regarding the relative strength of a connection can be determined in terms of the

number of intervening nodes as well as in terms of numbers of physical connections based on

cardinality between the nodes.

 38

Value change state relative to other values in the model over a sequence of states yield binary

strings indicating truth or falsity between every object in the system for every state. Through

application of transform operators successfully predicting the outcome of one instance from other

instances, a progression of transformation operator sequences results. The UPRF schema thus

demonstrates an effective modelling of a neural network within a relational construct with all

objects in the endeavor linked together.

Since the relational model provides for information about itself within the same model containing

the information, it supports self-representation and a recursive data structure, which are both

foundational to provide generic semantics to agents interacting with the structure. This is a key

component for supporting the recursive processing identified earlier associated with a problem

solving system that can interact with itself.

2.16 Rationale for the Possibility of UPRF

The human mind is vastly different from current computer systems in terms of structure and

operation; however, computer systems and the mind share many similar attributes. These attributes

allow computer systems as well as humans to fulfil the requirements of an “Intelligent System”

[97]. Intelligent System implies the ability not only to solve problems but also to learn and improve

in a continuous fashion with minimal outside intervention. This section examines evidence

supporting the thesis that capability for autonomous continual learning present in humans is

possible for a computational device through appropriately designed software.

Many have attempted at distilling human problem solving into software frameworks. Among

these attempts include the use of cognitive primitives [98], evolutionary multi-agent systems [99],

and algorithm pools [100]. UPRF is novel in this regard since rather than choosing a particular

 39

machine learning strategy, it resides at a layer above the A/I realm to act as a holistic consumer

and benefactor from the underlying algorithms.

2.16.1 Attributes of Intelligent Systems

This section explores the attributes that support the processes of general problem solving and

ongoing improvement or optimization of the solution-discovery process. Four attributes surface as

possible cornerstones for understanding a problem, discovering solutions, and profiting from the

exercise to enable improvement of the overall problem solving framework so that additional

problems incrementally benefit from the problem solving experiences [101]. These attributes link

to the processes outlined in Figure 3-1. They are:

1) Problem Representation [102]: A system cannot endeavor to solve a problem unless the

problem can be schematically represented such that a solving agent can understand the

starting state, desired state, and allow intermediate states that are traversable in order to

find solution discovery paths.

2) Solution Space Probing: A solution to a problem is undiscoverable unless there is a process

for exploring possible solutions to determine the arrangement of steps needed to achieve

the solution.

3) Performance Metric Collection: For a system to be able to improve it must have a

mechanism to collect metrics about how well it is performing so that these metrics can be

analyzed to determine the relative effectiveness of actions carried out by the system for

problem solving.

4) Performance Analysis: There must exist a process that correlate the effectiveness of a

system to meet its goals with the steps taken to obtain the goals.

 40

2.16.1.1 Problem Representation

A generic solving system is only possible if the organization of problem information is in a

structure that supports generic evaluation. Problems that can occur in wide varieties of domains

involve a wide variety of different types of objects. It is impossible to anticipate beforehand all of

the different types of problems that can occur. Therefore, self-improvement and continuous

learning require that the problem-recording structure is robust and extensible enough to store

information about a problem even without knowing the manner of it solution.

In humans, children exemplify this paradigm in language learning. Children receive language

information well before the time they are able to use language to express themselves. Despite the

inability of an infant to understand spoken language or use it in early infancy, the capability to

decipher speech and learn to use it develops autonomously through experience without deliberate

instruction. Research suggests that the child is able to schematize information about language even

before it is able to decipher the meaning and semantics necessary to employ language [REF].

How humans are able to schematize problem information such that a solution discovery

process can understand the meaning of the problem and work toward a solution is a mystery. One

theory is that neurons and synapses form a neural network in the brain through connections that

represent information about a problem [103]. Neural networks provide a method for representing

information through connections. The arrangement of a set of objects perceived can thus map into

a network that contains the information about how the objects inter-relate to each other. An

unanswered question regarding human thought concerns how the mind is able to map particular

types of connections to thought processes associated with thinking about and solving the problem.

 41

Software applications provide a caricature of problem understanding and solving for specific

domains using a variety of different methods for representing information and then processing the

information to meet the goals of the system [104]. For example, a flight reservation system stores

information about flights, routes, and scheduling constraints such as airplane seating capacity, and

factors affecting efficiency and performance of the aircraft including speed, range, fuel usage, etc.

Advanced flight dispatching systems not only allow the flights to be scheduled, but optimize the

scheduling to meet some target goals such as clustering flights toward a particular hub, minimize

under-utilization of seats, and maximizing the likelihood for on-time arrivals. An intelligent flight

reservation system is only intelligent because the software has been oriented to pursue goals

defined as part of the data.

Operating systems also provide an example of software that attempts to optimize its own

performance through heuristics [105] and rules that define the goal behavior [106]. Operating

systems seek to minimize resource deadlocks, assure maximum throughput, and maintain optimal

equilibrium in the use of memory, storage, and computational resources. Relational databases also

include mechanisms such as I/O cost evaluation in order to attempt to optimize queries for

maximum throughput [107].

These examples provide evidence that it is possible to build intelligent systems within

particular domains. Combining data structures that represent the state constraints of a problem with

processes that interact with the states to perform simulation and correlational analysis provides a

problem resolution framework. This evokes the question of whether or not it is possible to abstract

the domain-specific details of computational problems in such a way as to promote a general-

purpose problem-solving framework.

 42

The traditional approach for solving problems by focusing on aspects of the domain does not

promote generic problem solving and modeling, thus compelling the need for another approach to

achieve optimality without domain-targeted programming. Is it possible to model domain-specific

information concerning goals purely declaratively as the data relates to functions over a sequence

of time rather than in imperatively terms of procedural code? A key to finding these answers lies

in distinguishing declarative and imperative program definition. Imperative programming

approaches utilize a sequence of steps to solve a particular problem. Declarative programming

implies that computational logic follows as a derivative from rules that define the inter-

relationships of structural and relational data objects. Relational databases are a form of declarative

programming in that much information about the computational requirements for a set of entities

can be defined through the relationships specified in a relational database [108]. For example, a

database relation can enforce the requirement for a customer to exist before creation of an order.

The relational approach of UPRF promotes a declarative model wherein the data does not only

include the details of a particular system, but information about how the data within the system

works together to define it. Data that provides information about a system’s information constitutes

metadata. Comprehensive metadata is a key foundation for enabling generalizing information

about problems such that solutions can be data-derived rather than procedurally prescribed.

 A second key enabler for generalized processing that extends beyond domain specificity is

the use of polymorphism. Polymorphism allows management of different types of objects through

the same interfaces [109]. In the case of the flight scheduling system and an operating system, a

polymorphic system can implement common functions for optimizing performance and efficiency

 43

despite the differences in the data structures. Polymorphism allows for abstraction of functionality

from structural data implementation details.

 Generalization is a third aspect for enabling information representation that facilitates the

abstraction of data from processes [110]. Generalization allows for aggregation of multiple aspects

of information to in terms of a higher-level concept. Object-oriented semantics such as

generalization and abstraction, as well as relational representation, are information storage and

processing mechanisms that undergird problem representation and solving in human thought

processes, also existing as well-defined software design patterns.

 Using object-oriented and relational constructs along with state representation for declarative

programming ensures that information about problems lends itself to a generic representation

structure through multiple levels of abstraction. UPRF provides semantics for generalizing

problems in terms of their objects in a relational manner relative to the pertinent states associated

with object configurations needed to navigate from a problem definition through intermediary

steps to meet a goal state. The dissertation outlines implementation of these constructs through a

relational database schema exposed through XML schemas that demonstrate the utility to support

universality.

2.16.1.2 Solution Space Probing

Assuming a common semantic model defines a problem based on relational representation,

will the resulting problem definition support generic solution approaches? Probing of solution

paths associated to multiple instance of a problem and transforming correlations learned asserts

this attribute of human problem solving is available to a software framework. As the framework

 44

catalogues higher layers of problem solving abstraction, progress toward solving increasingly

complex problems occurs.

Functions that control the possible solution paths provide the constraints for solving any

problem. Possible solution paths derive from the outputs of functions underlying the rules for the

solution space. Together the functions that define the potential solution possibilities along with the

ranges materialize the potential states of a problem related to its solution. Turning back to the

generic representation concept, if a problem has been defined in terms of initial state, goal state,

and allowed intermediate states in the context of encapsulating functions, then it follows that a

generic solution probing process can explore the potential states and branch the problem states

until ultimately achieving the goal state. Chapter 4 provides a walkthrough of how this is

accomplished.

2.16.1.3 Performance Metric Collection

A system that can generically represent problems and automatically probe for solution paths

may be useful but it cannot allow for intelligence without a mechanism for optimization.

Optimization requires metrics [111]. Improvement requires a baseline and a target. Optimization

is in fact a problem in and of itself with the initial state being a brute-force solution discovery to

meet a goal for a computational problem and the goal state being the optimal sequence to find the

steps for solving the problem. The intermediate steps are the rules that the system can follow to

attempt to achieve the optimal path. For UPRF to be able to accomplish this, capture of all actions

performed by the framework must occur to support correlation of the actions to the effectiveness

of reaching any particular problem’s goal state.

 45

The aspect of collecting and analyzing information related to a process is an area of knowledge

management in data mining increasingly implemented in more and more software applications and

business processes. Examples of such systems today include applications for counter-terrorism,

insurance actuarial analysis, online shopping-basket customer sales prediction, and financial risk

management. Therefore standard data mining, including collection, analysis, and interpretation of

data related to operation of UPRF is a fundamental component to enable the continuously

improvement mechanism. A weak point in most data mining implementations is the requirement

for a subject matter expert (SME) to examine the results and provide interpretation. However, by

transforming the analysis process into just another problem with a baseline state and a goal state

as is done for all other problems, the optimization process itself can be enabled for automatic

improvement.

2.16.1.4 Continuous Improvement

Continuous improvement [112] is a differentiating aspect of UPRF achieved by transforming

the problem of solving a problem to be a problem in and of itself. This is where the recursive aspect

of the system comes into full force; it allows the system to view the problem of its own

performance as just another problem within the same framework as any other problem. This design

ensures the system is unlimited and not bound by any pre-determined abstraction definition. The

functioning of continuous improvement is the most advanced aspect of UPRF. The continuous

learning aspect functions in an autopoietic method capable of self-enhancement without

enforcement from a supervisory external force [113]. This is in contrast to allopoietic systems that

are inherently fragile and require continuous intervention to maintain operation and implement

improvements.

 46

2.17 Chapter Summary

This section reviewed the literature associated with computational problem solving across a

variety of disciplines including Neuroscience, Artificial Intelligence, Machine Learning, Software

Architecture, and Information Theory. This detailed study drives not only the requirements for a

universal problem-solving framework (UPRF) but also points the way to key principles and

concepts needed to support such a framework. From this detailed exploration of these areas,

several key requirements emerge that UPRF must address. These requirements include:

1) A generic representation of a problem including the queries that associate functions and

data attributes to generate objects that map to its initial, goal, and allowed transition states;

2) A system that can probe the solution space based on the problem states in a general fashion

without knowledge of the problem domain;

3) A mechanism to learn from the solving of related instances in order to create higher and

higher level abstraction problems that yield higher level instances, which generate higher

order assertions that can ultimately generate solution paths without simulation.

 47

3. SYSTEM FRAMEWORK

3.1 Framework Foundations

Computational problems may be in various types and forms, but there are qualitative aspects

and attributes common to all problems. This section identifies these common attributes and

establishes constructs and semantics for the generic definition and solution of problems. These

constructs then guide the design for UPRF. This section provides an informal proof augmented by

examples to establish credibility for the feasibility of a universal problem resolution system that

continually learns.

Before construction and design of any software framework, one must define the entities that

constitute the actors, objects, interactions, and boundaries. In addition, the designer must identify

the use cases that include scenarios of operation to define the interactions and rules that the

framework must support. Finally, the designer must determine the critical success factors that

include the goals and non-goals to ensure the framework meets the design requirements.

Frameworks are not applications in and of themselves but rather provide the infrastructure for

hosting applications to achieve a purpose [114].

UPRF’s goal is to support problem probing, solution discovery, and solution optimization in

a general fashion. The framework is able to represent any computational problem in terms of its

objects with queries mapped to functions to identify starting state, allowed transition states, and a

goal state. The states may be complex and involve combinations of sub-states. There may also be

 48

states to represent constraints about the solution process including those that limit resources or

associate to some condition in the solution process governing the extent of effort for pursuing the

goal state. The framework allows for simulation problems that do not include an explicit goal state

in which case the goal state is simply to exhaust all possibilities in the scenario.

Various components work together with a schema to achieve UPRF goals that support both

generic schematization and resolution of problems. This section provides the basic framework

design that enables operation. The focus of the work is not on the framework construction in and

of itself but only as it pertains to enabling operation of the problem solving process. Therefore,

this section prescribes the high-level components only. Chapter five on practicality delves into

more detail regarding implementation scenarios and maps the framework to technological trends.

3.2 Base Use Case

Tower of Hanoi serves as the main use-case for this dissertation. Hanoi provides a good use

case because it is possible to pursue multiple solution paths for multiple instances of Hanoi

generated from the number of discs used. Tower of Hanoi only has a single optimal solution for

each instance that simplifies the presentation of the concepts. It is important to recognize that the

choice of Tower of Hanoi does not limit the design of UPRF; the framework supports any type of

problem regardless of the specific features of Hanoi. Chapter 5 explores the ability for UPRF to

scale beyond Tower of Hanoi to other problems.

Tower of Hanoi itself is NP-hard, but the process for discovering a general solution for all

instances to this – or any other problem (the theorem proof problem [115]) is actually NP-

complete. In other words, even though it takes exponential time to solve an instance of Hanoi

related to the inputs, finding the solution for a general case is still NP-complete. After the

 49

transformation process yields a generic solution, application of the general algorithm discovered

proceeds within polynomial time. The assertion from this is that the NP-complete process for

discovering optimal algorithms stands to improve through monitoring and learning from all steps

involved in the optimization. Since solution discovery is in the family of NP-complete, then all

NP-complete scenarios stand to benefit and should be helpful for any solving endeavor whether

the algorithm for the problem itself is NP-complete, NP-hard, or P.

3.3 Core Architecture

UPRF must support a problem transformation paradigm where each solution sequence

becomes the target of a higher order problem transform in order to generate increasingly

generalized transformation sequences in search of general solutions to lower instances. Figure 3-

1 illustrates this concept - each solution determination spawns a higher order optimization problem

to generalize the steps required for multiple instances of a lower level problem. In the case of the

Tower of Hanoi, each circle represents the higher order problems targeting the instances of the

lower order problem. At the lowest level, multiple solutions target different disc-counts. The

solution process generates sequences that an inspection process uses to determine how to transform

from a simpler instance to a more complex instance. Chapter 4 iterates through this process in

detail.

 50

Problem

Definition

Problem

Definition

Solution

Optimization

Optimization

Problem

Generation

Solution

Determination
Solution

Determination

Solution

Optimization

Optimization

Problem

Generation

Problem

Definition

Solution

Determination

Figure 3-1: Continuous Improvement Cycle

In Figure 3-1, each solution determination step transforms to a higher-level optimization

problem with the target of determining the optimal steps needed to generate the steps for the lower

level problem. The lowest level of problem solving is pure simulation using search based on the

heuristics of the problem that govern the valid states. When there are multiple instances for a

particular problem, as in Hanoi, UPRF spawns a transformation problem to attempt calculation of

the sequence of steps for one instance based on one or more other instances.

 51

Root Problem

Problem
Instance

Problem Instance Generation

Solving Branch 1

Instance 1.1.2Instance 1.1.1 Instance 1.1.N

Entity State
Overflow

Solver Instance 1

Problem Instance
with Entities/

Base Attributes

Entity/Attribute
Instantiator 1

Attribute Value
Overflow

Solver Instance
1.1

Solving Branch N

Solver Instance
1.N

Problem
Instance N

Entity State
Overflow

Problem Instance
with Entities/

Base Attributes

Entity/Attribute
Instantiation N

Solver Instance
2

Figure 3-2: Simulation Process

Figure 3-2 illustrates the approach for exploring possible solutions to a problem. UPRF

queries for the allowed setup states when first initializing a problem. If there is more than one

instance, the additional instances are branched from the main instance for parallel solving by the

engine. This is the case with the Tower of Hanoi as shown in Figure 3-3; different branches develop

as the simulator tries to work through the solutions for a particular number of discs. The variable

number of discs overflow the problem instance space creating problem state overflow in Figure 3-

2 generating the required instances.

 52

Problem state overflow also occurs when multiple outputs arise at some level in the

simulation. This when multiple attribute values are available for a single attribute linked to a single

entity instance at some point in a problem state transition such as when there are multiple pegs

available for a disc. UPRF defines an entity as an item having an imputable unique key that is

associated to a set of attributes that vary in values between instances. Multiple entities result in the

entity state overflow within the diagram that then generates the separate entities required for a

particular problem instance. For example, in a three-disc Hanoi scenario, the simulator creates

three entities. Figure 3-3 starts from the point of a particular instance after the entities creation and

illustrates the attribute overflow state that occurs when there are multiple solution paths available

to test. Each attribute overflow leads to a new branch since an attribute may only contain a single

value within an entity instance within a problem instance.

 53

TOH-Play-
Instance-1

Create Instance
Assign Disc-Count

= 2

Perform State
Changes until

Final-State
Reached and all
paths exhausted

meeting rules

Disc-1-To-Peg-2 Disc-1-to-Peg-3

Disc-2-to-Peg-3 Disc-2-to-Peg-2

Disc-1-to-Peg-3 Disc-1-to-Peg-2 Disc-1-to-Peg-1

Paths Exausted

Figure 3-3: Attribute overflow in Hanoi Simulation

 54

3.4 Data Architecture

UPRF is highly dependent on data and follows the case-based reasoning model alluded to in

the literature review section outlining the generic schema approach. The framework records every

operation endeavored to solve a problem in the database including the algorithms and functions

used to carry out the operation and all of the parameters associated to the operation. Every step of

the simulation, problem transformation, and problem solving process is traceable back to every

attribute value modified. For the Tower of Hanoi, this means the framework captures every single

move for every instance. The literature review for this dissertation was able to find only scant

examples of systems with tracking at this level of detail. One reason for this may be practicality

considerations associated with such massive data tracking requirements; however, newer

technology is mitigating this.

Figure 3-4 illustrates the high-level data entities. The actual physical database design varies

from this in order to achieve normalization. The relational design support representation of entities,

attributes, and expressions that govern behavior or a problem solution endeavor as well as tracking

of all operations that occur within the simulation and solving process including the transformation

process described earlier.

 55

Entity

Attribute

Problem

Query Expression

Expression Operator

State Output

Item

Attribute Value

Join Operator

State

Operator

Query

Action Operator

Type Operator

Operator Argument

Filter

Conditional Expression

Figure 3-4: High Level Data Architecture

 Data flows shown in Figure 3-5 show the outward flow from base level items. These items

define constants or fixed attribute values through expressions transformed by operators. These

operators then generate problem states that reflect the output of queries based on the allowed states.

Ultimately, solution states are generated which capture the sequence of operations and the entities

with their attributes and values that are affected throughout each step of a simulation process

constrained by the state rules. The system endeavors to discover optimizations that generalize the

 56

pursuit of solutions to higher order problems that return sequences of operations to perform

transformations that generate solution paths avoiding the branching associated with brute-force

simulation. For example, in the Tower of Hanoi, an optimization might be that the first move

should always be to the second peg when the number of discs is even, but to the third peg when

the number of discs is odd. In the operational proof, transform sequencing is utilized to identify

patterns so that not only the correct starting move in Hanoi is calculated for any instance, but the

entire solution pattern.

 57

Item

Variable

Operator (Function)

Expression

Problem State

Problem

Solution State

Figure 3-5: General Data Flow

3.5 Agent Topology

A common attribute of problem solving frameworks is an agent-based architecture. UPRF

implements this type of architecture in the form of an agent topology. The idea of topology is that

the agents themselves are independent and the framework easily supports the addition of agents.

Stateless data architecture and task-oriented processing promote the use of independent processes

 58

that may be distributed. UPRF’s agent topology framework meets the goals outlined by the

literature for agent-based modelling and simulation [116] which include the following:

 An agent is identifiable with discrete sets of characteristics and self-contained.

 An agent lives in an environment that it interacts with other agent with the capability

to respond to the environment.

 An agent is goal-directed having goals to achieve with respect to its behaviors

 An agent is autonomous and self-directed.

 An agent is flexible, and has the ability to learn and adapt its behaviors over time

based on experience. An agent may have rules that modify its rules of behavior.

Multiple agents collaborate to support problem definition, simulation, and higher order

transformations. Figure 3-6 show the main agents and their interactions with a broker agent that

dispatches tasks. The design model follows that of a “smart environment” [117] which promotes

an environment where the behaviors of each object assist each other to reach the goals of the

framework. This design provides scalability across parallel processes across any number of

machines. Chapter 5 discusses some of the deployment options that UPRF can leverage to take

advantage of distributed high-performance computing frameworks. The agent architecture is a

very important concept in intelligent systems. Frameworks that can seamlessly integrate

independent agents that focus on solving a specific task provides an environment that heuristics

can be seamlessly added, which enhance the other agents. Lifelong machine learning systems

provide a model of this approach wherein a heuristics generator operates independently and

autonomously against the problem stream [118]. This behavior occurs in UPRF through separation

 59

of the various tasks for assimilation of knowledge from those of simulation and transformation of

problems.

Simulator - Mover

Assimilator

Broker

Problem
Definitions/Solver

Instances

Data Helper

Schematizer

TransformerSource
Problem

Definition

Goal Checker

Simulator – Setup

Problem Definition

Figure 3-6: Agent Architecture

Figure 3-6 illustrates the relationships between the major agents with their roles listed below:

 Schematizer: Listens for problem definitions and injects into the database

 60

 Simulator-Setup: Instantiates the starting instances for a problem. For example, this allows

dispatching of tasks to create instances for disc count of two to ten given these as the

minimum and maximum number of discs.

 Simulator-Mover: Performs depth/breadth exploration of simulation solution space based

on the transition query for the problem for instances in the initial or checked-state still

requiring transitions.

 Goal-Checker: Checks the simulation instance against the goal for instances that have just

completed a transition state.

 Transformer: Checks for existence of combinations of at least two solved instances to

escalate to the next higher order problem to identify the transformation sequence needed

to derive a solved instance from another solved instance within a problem space.

 Assimilator: Generates transformation problem instances for the transformer problem.

 Broker: Looks for tasks in the database that are relevant to the particular agents and

dispatches the tasks to the agent.

 Data Helper: Provides the data interface layer between the broker and various agents to

the problem definition and problem instances.

The architecture supports knowledge discovery with a feedback loop. In Figure 3-3, a web

discovery agent integrates into the framework to engage a continuous improvement model that

integrates semantic web search with unstructured text mining. Potential interactions depicted in

Figure 3-7 as part of an overall learning framework.

 61

SIMULATOR
Simulate Actions
based on known

rules

SCHEMATIZER
Schematize Rules

Objectives,
Collection Actions

CORRELATOR
Generate

Correlations

Repository

ANALYZER
Find Pattern for

the N1 Test Cases

COLLECTOR
Collect Results
from Historic/

Simulated
Scenarios

Actions

DISCOVERER
Identify

Actionable Data
Collection Items

Collection Sources

(Internet, Historical Data,

Legacy Systems, Databases, etc.)

NOTE: A Relational State is the matrix of outcomes correlated to

actions for a specific Entity. State Patterns are Relational States

Correlated to Relational States for other Entities including the Time

entity as well as other State Patterns.

PERMUATATOR
Generate Variable

Permutations Relevant
for

Scenario Schema

A Framework for Automating the Discovery of Optimal Solutions to Complex and non-

Deterministic Systems

Figure 3-7: Automation Framework

 62

Data

Update List

XML Problem
Definition

Problem/
Solution Space

State Expressor

Loader Instance
Simulator
(Player)

Instance Creator
(Solver)

Problem
Optimization

Branch
(Intelligent
Solution)

Original
Problem

Problem
Branch

(Simulation
Solution

Path)

Pattern
Recognizer
(Asserter)

Optimization
State Expressor

Relational
State

Sequences

State Sequence
Builder

(Tracker)

Knowledge
Discovery
Problem

Cloud

Web Scraper

Solution Analyzer
(Generalizer)

Discovered
Knowledge

Instance State
Updater

(Checker)

Figure 3-8: Web Mining Scenario with Feedback

3.6 Problem Schematization

UPRF includes a universal problem definition language (UPDL) component. UPDL provides

an XML format that works with a listener process that imports problem definitions into the system

as illustrated in Figure 3-8. Figure 3-9 depicts the UPDL schema. Figure 3-10 shows an example

with Tower of Hanoi that adheres to the schema. The schema supports defining problems in a

structure that is compatible with the core relational database storage design. During the course of

 63

the dissertation, the schema has evolved. Utilizing a technique based on normalizing OML storage

in relations [119], a mapping layer provides transformation from the schema to the actual database.

The schema is thus extensible and changeable to better accommodate problem definitions.

Therefore, UPRF may evolve to support additional schemas focused on particular problem

domains that may provide greater abstraction on top of the core schema or support lower level

functions and external data interfaces. The mapping layer ensures that different schemas can still

populate the core database entities defined in the data architecture section.

 64

Figure 3-9: UPDL Schema

 65

 66

Figure 3-10: Sample Problem Definition - Tower of Hanoi

Figure 3-10 shows the Tower of Hanoi in UPDL format with entities, attributes, expressions,

and queries to govern the state. This provides the information needed for the framework to define

 67

the problem so that a simulation process can explore the valid solutions. The next chapter

containing the operational proof explains how the items interact to provide queries that associate

to states and determine whether a simulation instance completes successfully or fails.

UPRF provides an import process for the problems written according to the UPDL

specification. This process loads the problems into a staging area and then normalizes the data

from the schema into the database. The relational database design also provides support for

historical tracking of imports and lineage to higher order problem transformations. Figures 3-10

and 3-11 show the process for importing problems written in UPDL format into UPRF.

 68

Drop Folder

Done Folder

XML
Problem
Definition

XML
Problem
Definition

XML
Problem
Definition

Figure 3-11: High-level Problem Load Process

 69

Figure 3-12: Detailed UPDL Flow into Database

3.7 Database Implementation

The relational database consists of four main schemas:

1. Staging: Defines the area for loading UPDL problems from XML. This area receives

problems schematized from the UPDL XML node structure that the framework transforms

into the Data schema after validation finishes (Figure 3-12).

2. Data: Defines the problem (Figure 3-13).

 70

3. Engine: Tracks all entities and attribute values over a solution instance (Figure 3-14).

4. Reference: Defines the operators (functions) utilizable for all operation along with their

parameters (Figure 3-15). Expressions in the Data schema utilize operators in the

Reference schema for problem instances, which enables tracking all operator usages

correlated to problem instances.

 71

Figure 3-13: Staging Schema

QueryExtractCriteria (Staging)
QueryExtract_Id

LoadId

ImportId

Extract

Attribute

CompareOperator

JunctionGroup

StepNumber

ItemId

QueryExtract (Staging)
QueryExtract_Id

LoadId

ImportId

ItemId

Expression

JoinOperator

JunctionType

OutputAttribute

Query_Id

Id

QueryFilter (Staging)
Query_Id

LoadId

ImportId

ItemId

Extract1

Operator

Extract2

JunctionGroup

Id

Query (Staging)
Query_Id

Id

Problem_Id

LoadId

ImportId

ItemId

JunctionType

Problem (Staging)
Problem_Id

Id

LoadId

ImportId

ItemId

Version

DeriveStepFrom

GoalQuery

FailQuery

TransitionQuery

SetupQuery

QuitQuery

DeriveFrom

ProblemAttribute (Staging)
Id

Value

Problem_Id

LoadId

Expression

ImportId

ItemId

ValueList

TextValue

ExpressionArgument (Staging)
Expression_Id

LoadId

ImportId

ItemId

Attribute

Parameter

Expression (Staging)
Expression_Id

Id

Problem_Id

LoadId

ImportId

ItemId

NullExpression

ExpressionOperator

Step

EntityAttribute (Staging)
Id

Entity_Id

LoadId

ImportId

ItemId

Domain

DefaultAttribute

Entity (Staging)
Entity_Id

Id

Problem_Id

LoadId

ImportId

ItemId

DeriveFrom

 72

The staging schema stores problem definitions that come through the UPDL loading process

and potentially support other import formats as well. This schema allows verifying the integrity of

problem schemas before presentation for solving in UPRF. Staging provides the area to persist the

XML definition and then validate the definition before transforming it into the Data schema.

 73

Figure 3-14: Data Schema

Attribute (Data)
AttributeId

IsNullable

TypeOperatorId

MaxSize

Precision

DefaultValue

SequenceNumber

ExpressionId

AttributeValue (Data)
AttributeValueId

AttributeId

NumericValue

IsDefaultValue

Entity (Data)
EntityId

DeriveFromExpressionId

EntityAttribute (Data)
EntityAttributeId

ProblemEntityId

AttributeId

SequenceNumber

DomainAttributeId

Expression (Data)
ExpressionId

ExpressionOperatorId

StepNumber

ProblemId

DependencyLevel

ExpressionArgument (Data)
ExpressionArgumentId

ExpressionId

OperatorArgumentId

EntityAttributeId

Problem (Data)
ProblemId

DefinitionState

SolutionState

GoalQueryId

TransitionQueryId

SetupQueryId

FailQueryId

StepExpressionId

ProblemEntity (Data)
ProblemEntityId

ProblemId

EntityId

Query (Data)
QueryId

JunctionType

LearningMap (Data)
LearningMapId

SourceProblemId

LearningProblemId

QueryFilter (Data)
QueryFilterId

ComparisonOperatorId

QueryExtractId1

QueryExtractId2

JunctionGroup

QueryExtract (Data)
QueryExtractId

ExpressionId

SequenceNumber

QueryId

OutputEntityAttributeId

JoinType

DependencyLevel

QueryExtractCriteria (Data)
QueryExtractCriteriaId

QueryExtractId

EntityAttributeId

ComparisonOperatorId

CriteriaExtractId

JunctionGroup

StepNumber

 74

The Data schema defines the database objects required to model a problem

definition including entities, attributes, expressions, and queries to represent the initial

state, valid transition states, failure/abort states, and goal state for a problem. It also

provides a mapping (LearningMap table) for linking instances of one problem to a learning

(transformation) problem for higher order generalization of the simulation instance

solutions. It correlates loosely to the schema defined by UPDL and normalizes the

incoming problem definition.

 75

Figure 3-15: Engine Schema

 The Engine schema stores all of the instances of a problem so that the simulator can carry out

solution attempts. It includes a mapping mechanism for parallelizing tasks to carry out via the

ChangeDataTask and ChangeDataTaskDetail. This schema integrates with the problem definition

EntityInstance (Engine)
EntityInstanceId

ProblemInstanceId

BranchEntityInstanceId

ProblemEntityId

KeyValue

ActivationTaskDetailId

LastStepNumber

ProblemInstance (Engine)
ProblemInstanceId

ProblemId

CurrentStepNumber

SolutionState

BranchProblemInstanceId

BranchStepNumber

OutcomeReason

DefinitionState

ActivationTaskDetailId

ProblemInstanceState (Engine)
ProblemInstanceStateId

ProblemInstanceId

StepNumber

StateValue

StateHash

ValueSequence (Engine)
ValueSequenceId

EntityAttributeId

NumericValue

StartStepNumber

EndStepNumber

EntityInstanceId

IsChanged

ProblemInstanceId

Problem (Data)
ProblemId

DefinitionState

SolutionState

GoalQueryId

TransitionQueryId

SetupQueryId

FailQueryId

StepExpressionId

ProblemEntity (Data)
ProblemEntityId

ProblemId

EntityId

EntityAttribute (Data)
EntityAttributeId

ProblemEntityId

AttributeId

SequenceNumber

DomainAttributeId

ActivationSequence (Engine)
ActivationSequenceId

EntityInstanceId

ReferenceEntityInsta...

EntityAttributeId

NumericValue

ActivationSequence

ChangeDataTask (Engine)
TaskId

TaskType

RowsInserted

RowsUpdated

ProblemInstanceId

EntityAttributeId

TaskCreationDateTime

TaskCompletionDateTime

ProblemStepNumber

TaskStatus

ChangeDataTaskDetail (Engine)
TaskDetailId

TaskId

EntityInstanceId

NumericValue

SequenceNumber

 76

schema to enable a problem to spawn solution instances. This mechanism supports distributed and

parallel execution of solution instantiations at the instance state level. The Engine schema also

stores the relational state sequences associated with all attribute value changes including the state

activations for all recorded values for an attribute over a solution state sequence.

Figure 3-16: Ref Schema

The Reference (Ref) schema supports extensibility for all types of operators (functions)

utilized for simulation and solution discovery. It defines the operators that are available to the

system and loads operators dynamically. This provides extensibility to add new operators to the

ExpressionOperator (Ref)
ExpressionOperatorId

ComparisonOperator (Ref)
ComparisonOperatorId

QueryExtract (Data)
QueryExtractId

ExpressionId

SequenceNumber

QueryId

OutputEntityAttributeId

JoinType

DependencyLevel

QueryExtractCriteria (Data)
QueryExtractCriteriaId

QueryExtractId

EntityAttributeId

ComparisonOperatorId

CriteriaExtractId

JunctionGroup

StepNumber

QueryFilter (Data)
QueryFilterId

ComparisonOperatorId

QueryExtractId1

QueryExtractId2

JunctionGroup

Operator (Ref)
OperatorId

Definition

OperatorName

FunctionSchema

FunctionName

ExecFunctionSchemaN...

FunctionSchemaName

ReturnsTable

SystemDefinition

OperatorArgument (Ref)
OperatorArgumentId

SequenceNumber

ExpressionOperatorId

AttributeId

Expression (Data)
ExpressionId

ExpressionOperatorId

StepNumber

ProblemId

DependencyLevel

ExpressionArgument (Data)
ExpressionArgumentId

ExpressionId

OperatorArgumentId

EntityAttributeId

 77

system by simply importing the function into the engine schema and then referencing the function

from the problem definition.

Operators are enumerable based on type and then executed in a higher order simulation to

search for the operators that can generate a solution path for one instance of a problem using data

from another instance of a problem. In this way, the framework tracks the sequences of selected

operators correlated to a solution path associated to a problem instance. These operators include

conditional operators to compare values as well as expression operators that can generate scalar or

tabular result sets. Expression operators include transformation operators that can host machine-

learning algorithms in order to generate prediction sequences from source sequences.

3.8 Simulation

By default, the simulator utilizes depth-first search to explore solution spaces for each

problem’s instances. Each problem instance is independent allowing UPRF to explore the solution

space separately and branch instances to generate new instances. The new instances branch off in

the same fashion as the originating instances for parallel execution. Problem queries that define

the candidate result sets drive the exploration of the solution space. The search is not strictly depth-

first if the problem itself exposes queries that lead to a different type of search including breadth.

As the search proceeds, the framework catalogues the candidate solutions. Simulation instances

terminate upon reaching a certain resource threshold if a “quit query” specifies to stop execution.

(Figure 3-1) shows the process for assigning tasks through state inspection as illustrated in Figure

3-17.

 78

Branched Sub

Problem

Definition State =

3

Solution State = 0

Sub-Problem

Definition State = 1,

Solution State =-2

Register Sub-Problem

Setup Task

(Task Type=0)

Root Problem

(Definition State = 0)

Execute

Problem Setup

Task

(Task Type=0)

Sub Problem

Definition State

=1

Solution State = 0

Register Entity

Setup Task

(Task Type = 1)

Sub Problem

Definition State =

2

Solution State = -

2

Execute Entity

Setup Task

(Task Type = 1)

Register

Solution Task

(Task Type=2)

Sub Problem

Definition State = 2

Solution State = -2

Execute Solution

Task

(Task Type=2)
Sub Problem

Definition State =

3

Solution State = 0

Update Definition State

(Check if solved, failed, or

pending)

(Task Type = 3)

Sub Problem Solved

Definition State = 2

Solution State = 1

Sub Problem Failed

Definition State = 2

Solution State = -1

Root Problem

Definition State = 1

Sub Problem

Definition State = 2

Solution State = 0

Figure 3-17: Simulation State Flow

Figure 3-17 shows the problem-instance state flow in terms of color shading to indicate

transition for execution by various processes. When a problem instance enters the light-green type

of state, this indicates it is ready for some sort of execution. The dark green tasks register instances

for the next task while the yellow tasks execute. The end state shown by the double-circle green

object indicates termination due to success in reaching the goal state while the red state indicates

termination due to failure. As each task in the cycle is executed, the definition and/or solution

state (depending upon the task) is updated which then qualifies the next task to be executed for the

 79

problem instance. Figure 3-18 illustrates the creation of new states for a problem based on results

from queries and Figure 3-19 depicts the query processing that generates potential states.

State Expression Flow

Join Operator

Item Id Item Value

Expression Operator

Item Id Item Value

U
n
io

n
 O

p
e

ra
to

rs

N
e
w

 S
ta

te
s

Expression Operator

T
a

b
u
la

r
R

e
s
u

lt
s

S
c
a

la
r

o
r

T
a

b
u

la
r

F
u

n
c
ti
o

n

T
ra

n
s
fo

rm
a

ti
o

n

Figure 3-18: State Expression Flow

 80

Expression operators interact with entities and attributes to return results through query

extractions. Query extractions are joined together to form results and then filtered. UPRF spawns

new states when more than one result returns from a transition query and creates an overflow

condition. The query-processing engine generates results through the extraction and filters with

logical conjunctions that represent Boolean and/or groupings (Figure 3-19).

State

Enumerate Query
Expressions

Enumerate
Columns

Enumerate
Queries

Query

Query Expression

Query Column

Enumerate
Expression

Enumerate Query
Expression

Enumerate Entity
Attribute

Expression Expression
Operator

Entity Attribute

Instantiate
Attribute

Value List

Attribute Value
List

Filter
Enumerate
Junctions

Junction
Enumerate
Conditions

Condition
Instantiate

Filter
Expression

Filter Expression

Apply Filter to
Attribute

Value List

State Output
Specifier

Extract State
Output

Value List
available for

Filter?

Yes

Expression
Expansion
Complete?

Yes

Enumerate
Arguments

Expression
Argument

Attribute Value
List Complete?

Query
Expansion
Complete?

Yes

Enumerate State
Outputs

State Result List

Apply List to
Database
Problem
Instance

Result List
Complete?

Yes

Apply
Operator to
Arguments

Figure 3-19: State Generation from Queries

3.9 Transformation

UPRF performs transformation automatically upon solution sequence completion upon

solution path discovery for a second instance of a problem. The transformation results in a new

 81

instance of the Universal Discovery Problem (UDP) (elaborated on in chapter 4). The UDP defines

the goal state as the sequence of operators required to transform one instance to another instance.

For example in the Tower of Hanoi, when a four-disc problem instance is solved after a three-disc

instance has also been solved, then a transformation problem is generated whose goal is to generate

the operations required to utilize solution sequence paths from the three-disc simulation to generate

the solution for the four-disc instance. Chapter 5 delves into the 4-peg Hanoi or variable-peg (K-

peg) scenario to show how UPRF can scale problem learning a simple base case to more advanced

solutions. Figure 3-20 depicts the flow for transforming simulations into higher order problems.

Sn+1

TSn

Tn

Sn

S1 - Simulation
Solution (discs=2)

S2 – Simulation
Solution (discs=3)

S3 – Simulation
Solution (discs=4)

S4 – Simulation
Solution (discs=5)

T1 - Transform
Solution (S1->S2)

T2 - Transform
Solution (S2->S3)

T3 - Transform
Solution (S3->S4)

TS1 – Transform
Sequence

Solution (T1->T2)

TS2 – Transform
Sequence

Solution (T2->T3)

SG1 - Sequence
Generation

Solution

Capture object state sequences

Predict Generation Steps

S5 - Unsolved
Simulation
(discs=6)

TS3 – Generated
Transform

Solution (T3->T4)

T4 – Generated
Transform

Solution (S4->S5)

Figure 3-20: Problem Transformation Process

 82

3.10 Chapter Summary

This chapter provided a high-level software architecture for a universal problem resolution

framework (UPRF). It did not delve into implementation details, but did provide a general design

for critical components. Chapter 4 builds upon this architectural foundation and utilizes these

components in order to demonstrate an operational proof. Chapter 3 outlined the Tower of Hanoi

problem as the base use case for UPRF validation and established key constructs for UPRF

architecture, which include:

1) A core architecture that provides a continuous improvement cycle to support transforming

learning achieved at a lower level to increasingly higher levels in the search for a general

solution or problem optimization;

2) A data architecture that supports generic representation of problem information including

the various states of a problem from instantiation through solution;

3) An agent topology that shows the integration of various agents working together within

the framework to enable continuous improvement;

In addition, the chapter outlined the functionality for problem schematization, simulation, and

transformation and delved into the actual database implementation undergirding the framework.

 83

4. OPERATIONAL PROOF

4.1 Inductive Proof for Feasibility

A primary goal of this work is to construct a framework that utilizes scenarios of adequate

variation and sufficient complexity such that it achieves the goal of continuous improvement. To

validate the following proof, the dissertation provides scenarios that demonstrate how to

schematize problems and then pursue solution paths through simulation, which result in higher-

order transformation problems. The transformation problem fits within the same schema as the

underlying problem, enabling a simulative process that focuses on optimization of solution paths

at increasingly higher order degrees, which can target and benefit from the entire breadth of

problems presented to the framework.

4.1.1 Generic Problem Definition and Simulation Capability

4.1.1.1 Postulates

1. Let P be a Problem having initial state PI, allowed transition states PT, and goal state PG and

optional state for failure (PF) and quitting (PQ)

 84

Problem P

Initial State PI

Transition State PT

Goal State PG

Fail State PF

Quit State PQ

2. Define P in terms of one or more entities E including itself having one or more attributes A.

Represent entity E by a key attribute K that uniquely identifies it and does not change in value.

Let an entity E map to an attribute A as EA such that EA derives from the domain or expression

of attribute A.

 85

3. Let A be defined by an expression X which utilizes an expression operator EO that executes

as a function on another attribute A` or references a constant value V, a list of values L, or

another expression and returns a set of attributes with one specific attribute identified as a result

and the other as associated attributes.

Expression X

Expression Operator

EO

Expression X'

Attribute A

Attribute A2Constant

4. Let X specify a list of mapping M that links an expression operator (EO) parameter to an entity

EA. Let each mapping retrieve values from entity attributes such that if M belongs to the same

entity, the values correlate together for each entity instance based on the entity key and, if from

different entities, they cross such that each combination is used.

 86

Operator

Parameter 1

Expression X

Entity Attribute 1

Entity Attribute N

Expression Operator

EO

Operator

Parameter N

Mapping 1

(M1)

Mapping N

(Mn)

5. Let X be reflexive to EA – that is X may reference any EA and any EA may reference any X

so long as the dependencies do not form a closed cycle.

6. Let X and EA return either a single value or a sequence of values of the same type. Let X return

a hidden set called XH of all A associated with entity E for attribute XA representing the

attributed returned by A

Expression X

Value 1

Return Type

Value N
Value

7. Let X optionally define a null expression N that references another expression returning a

single value to substitute for each value instance X that is null.

 87

8. Let X optionally utilize a state S to reference a step that defines the values those present at the

state S of the problem P.

Expression X

Value at State S

State S (Step)

Problem P

9. Let the expression operator (EO) reference any data stored within this schema as well as any

data generated through operations in the system or utilize an interface to reference datasets

external to the system.

UPRF Data

Expression
Operator EO

Problems Entities Expressions

10. Let Q be a query that contains expressions that can reference each other and apply compare

operators upon each other as criteria C to filter results from the expression. Combine each

filtered expression with other filtered expressions through a join operator JO and be known as

 88

an extract for the query QE. Let the extract define the output attribute OA that maps to a State

S.

10.1. For the join operator, allow the following operations:

10.1.1. INNER retrieves values from QE passing the compare test for each attribute value

from QC and drops values from a second QE where there is no match found.

10.1.2. OUTER preserves all values from both sets with null values specified for all non-

matches

10.1.3. LEFT preserves all values from the expression associated to QE and only those

matching to a second QE.

10.1.4. RIGHT preserves all values from the expression associated to the second QE and

only those matching to QE

Expression (X)

Join Operator
(JO)

Query (Q)
Query Extract 1

(QE)

Query Extract (QEn)

Comarison Expression
(CO)

Compare
Operator CO

Criteria (C)

Column Results
(QC)

11. Let Q further contain a list of Filter F that uses a compare operator CO to compare any query

column QC to any other column QC.

12. Let each filter F provide a junction to the output of any other filter in either or both an OR

conjunction or an AND conjunction filter. Let this conjunction occur within the Filter F

 89

definition such that a parent-child relationship exists to support any type of AND/OR

conjunction between filters.

Query Q

Filter F (F1)

Filter F (FN)

Compare Operator
CO

Filter Expression
 f x X

Junction J

13. Let Problem P identify queries for projecting possible values to the following special sets that

map to the required states:

13.1. Setup Query – Query which instantiates a problem into multiple instance PI that reflect

all possible starting combinations of values for the entities associated to the problem. This

maps to the problem initial state PI.

13.2. Transition Query – Query that defines all outputs that are valid for a transitive state in a

problem-solving endeavor. This maps to problem transition state PT.

13.3. Goal Query – Query that returns a status indicating achievement of a goal for an instance

or overall problem and what the next action should be related to the instance or problem.

A status of one indicates a solved instance that no longer requires processing; two indicates

 90

the solution of a particular instance in scenario that calls for the continued checking of

other branched problem instances. This maps to the problem goal state PG.

13.4. Fail Query – Query that returns a status indicating if a failure condition has been met for

the instance (status value one). This maps to the problem Fail State PF.

13.5. Quit Query – Query that returns a status indicating the aborting of further solving efforts

for any instances within the problem (status value -1). This maps to the problem quit state

PQ.

Figure 4-1 depicts the overall flow in constructing a problem definition that includes queries

that reference operators and attributes in order to generate the required states. The progression

consists of:

1) Define a Problem P.

2) Define Attributes for problem P (A).

3) Define Entities for problem P (E).

4) Define Entity attributes (EA) based on the problem attributes linked to the entities (A).

5) Define an Expression Operator (EO) and its associated parameters (OP)

6) Define an Expression X relative to an expression operator and parameter mappings to entity

attributes (EA)

7) Define a Query Extract (QE) that joins an expression to a query to contribute output

attributes (OA).

8) Define a Query (Q) that integrates the Query Extracts together

 91

9) Define a Filter consisting of Junctions (J) and Conditions (C) that filters the Query Extracts

within the Query to output Query Column (QC) results that satisfy states (S) associated to

the Problem P.

Problem States (P x S)

P

A (P x A)
E (P x E)

EO

OP

XEA (E x A)

M (X x EA x OP)

Q

QE (Q x X)

J

F (J X C)

C

PI

PG

PT

PF

PQ

Legend
A: Attribute
C: Criteria
E: Entity
F: Filter

J: Junction
M: Mapping
X: Expression

EO: Expression Operator
OP: Operator Parameter
PI: Problem Initial State
PF: Problem Fail State

PG: Problem Goal State
PQ: Problem Quit State

PT: Problem Transition Query
QE: Query Extract

Figure 4-1: Problem Definition Flow

Figure 4-2 shows an XML problem schema that supports the problem definition. This schema

originates in the database design already discussed in Chapter 3. The NullExpression refers back

 92

to another expression, DataEntity, or attribute. DataEntity and attribute items automatically imply

an expression. The expression within an extract is a reference to other expressions in a definition.

JunctionGroup provides the means to associate a junction of multiple filter or extract items. Each

filter or extract criteria is joined together in a Boolean fashion using the JunctionType of AND,

OR, NAND, NOR, or XOR. CompareOperator supports the use of any comparison function to

apply an extract result to an attribute associated with an expression. DeriveFrom provides a means

to link an expression to a DataEntity or attribute to generate the range of values for the DataEntity

or attribute. The Tower of Hanoi example in section 4.2 provides an illustration of how the schema

applies to a problem.

 93

 94

Figure 4-2: XML Schema

Figure 4-3 - Hanoi Problem Definition - Part 1

 95

Figure 4-3 represents the Tower of Hanoi problem using attributes to define the initial peg,

goal peg, minimum number of discs for a simulation, maximum number of discs for a simulation.

An entity (DataEntity) represents the disc identified by the size. The DeriveFrom method uniquely

identifies each problem instance in terms of the number of discs for the instance. Each disc then

has a peg attribute associated with it that varies from one to three (derived from the Peg-List

ValueList definition). Although the Tower of Hanoi only requires a single entity and single

attribute, a problem definition could have any number of entities with any number of attributes so

long as each entity derives from a unique key.

 96

Figure 4-4 - Hanoi Problem Definition Part 2

 97

Figure 4-5 - Example Matrix for Tower of Hanoi

Figure 4-4 shows the remainder of the problem definition starting from the expression that

generates the size range from which the disc entity derives. The query “Play-Game” contains the

extracts and filters needed to generate a result set for any particular configuration of a simulation.

The query filters the data as follows:

1) Extract next disc (Next-Disc) using the Candidate-Disc expression (defined in Figure 4-

4) The Candidate-Disc expression uses the function “SELECT_NONUSED” which

selects any entity not selected on the prior state change. This adheres to the Hanoi rule not

to move the same disc twice in a row. The selected disc is stored in the output attribute

“Disc.”

2) Extract next peg (Next-Peg) using the expression “Peg-List” (defined in Figure 4-3). Peg-

List returns a list from one to three. This value is stored in the output attribute “Peg.”

3) Identify candidate pegs for a disc by filtering out the peg it is currently on in the “Next-

Peg” extract. This extract utilizes the “Peg-List” expression and filters using a comparison

operator of “NOT_EQUAL” to eliminate the current peg.

 98

4) Extract the minimum disc for the peg (“Min-Disc-For-Disc-Peg”). This utilizes the

expression “Min-Disc-For-Peg” which finds the smallest disc on a peg. A comparison

operator of “EQUAL” provides the filter for output from “Peg-List” results. This generates

a result set identifying the minimum sized disc on each peg into a matrix. As each extract

adds values to the query, intersection of prior values occurs based on the comparison

operator and join operator. (The default join operator is an intersection or inner join, but

supports all standard join types – (see # 10 under the Postulates).) Figure 4-5 shows a

sample result matrix.

5) Extract the minimum disc for the peg a second time, but this time utilize the “Next-Peg”

as the criteria for filtering. This determines the minimum-sized disc on only the candidate

pegs (not the current peg of the disc) which ultimately determines if it possible for the disc

to be moved to the peg by the filter. Note that the Min-Disc-For-Peg includes a

NullExpression construct that forces the value to the max-sized disc (Disc-Count) if no

discs are on the peg.

6) As shown in the matrix in Figure 4-5, this query provides a matrix with rows and columns,

which allows further filtering.

7) The expression extracts have at this point reduced the results to eliminate the following:

a. Exclude the peg that the disc is currently on in the Next-Peg column.

b. Exclude any disc that moved on the last move.

8) The result set still contains invalid moves without an additional filter to ensure that no

larger disc moves on top of a smaller disc. The filter “Filter-Disc-Too-Large-For-Peg”

eliminates any disc that is not less than the smallest disc on the candidate next peg with

 99

the empty peg condition. This ensures that the result for an empty peg returns a disc

number higher than the highest due to the NullExpression construct thus permitting the

peg to receive any disc.

9) Given the above, the Play-Query provides only valid next moves for the simulator.

10) The final step is to define the queries that define if the simulation is in a lost or won state

so that the simulation instance does not go on forever and to provide a goal for the

simulator to pursue in the solution. The lost query (“Check-If-Lost”) verifies that the

maximum number of state changes (moves) has been exceeded which is defined by the

Max-Move-Count expression as the number two raised to the number of discs. For

example in a three-disc scenario, the solution is achievable within seven moves, for a four-

disc scenario, fifteen moves, etc. The goal step defined as “Check-If-Won”. Check-If-Won

utilizes the expression ‘Disc-Count-On-Peg” to compare if the number of discs on a peg

is equal to the Disc-Count associated to the problem for the peg equal to the value “Final-

Peg” which has a value of three. In other words, the simulation is successful if the number

of discs on peg three is equal to the total number of discs. The return value of “1” indicates

to the simulator that the simulation can be marked as successful for the problem instance.

At this point, there is no need for further simulation activity for the problem instance.

Additional return values provide support for other problems that may have multiple

solutions by allowing “2” as a return attribute. Return attribute “2” directs the simulator

to mark a simulation instance as complete but to continue searching for additional

solutions. For the Tower of Hanoi, there is only one optimal solution path for any

 100

configuration of discs, so the simulation stops for each instance as soon as it finds the

solution.

4.1.1.2 Claims from Postulates

1. Based on the dynamicity of the expression operators and the ability of the expressions to

operate against any set of attributes, defining the appropriate functions can derive any set

of values associated with a problem.

2. Any problem state where state is the result of a query that relate behaviors of objects within

a problem is feasible based on the unlimited join structure that supports all set operations

and filtering constructs combined with the ability for any expression operators to be loaded

into the framework. This derivation is context sensitive, related to other states using the

state sequence qualifier for expressions or when referencing expressions.

3. This definition supports the ability to generically define any problem using the same

schema and utilize a generic simulation approach to apply the functions in order to

generate states in the pursuit of a goal query defined for the problem.

4.1.2 Reflexive Property of Problem Solving

The reflexive property of problem solving allows the solution to a problem to be query-able

within the constructs of the same schema that defined the problem. This provides the foundation

for transforming a problem that has associated solution instances into a higher order problem that

attempts to augment the base problem with a prediction (transform) operator. The prediction

operator then generates additional expressions and queries to reduce the number of simulations

and predict the solution path for additional instances of the problem. The property conforms to the

following two constructs:

 101

1. Any problem P that the framework presents for solution by the system generates multiple

outputs for entities along a state sequence. The capture of states representing all values of

all entities throughout solution endeavors can be stored generically through the same

entity/attribute structure as that used to represent the problem. This means that the entire

solution endeavor is visible to a higher order problem using the same schema.

2. All problems are solved using a generic process such that the output actions taken in regard

to each problem are stored generically within the same entity/attribute structure which is

represented by:

a. Problem Instance

i. Problem-Identifier

ii. Instance-Identifier

iii. Result-State

iv. Instance-Step

b. Entity Instance

i. Instance-Identifier

ii. Instance-Step

iii. Entity-Key

iv. Entity-Attribute

v. Value

Based on these constructs, UPRF captures all of the states of each entity instance associated

with a problem for each entity attribute. The next step is to define a method for querying the

 102

problem information and the solution paths such that instances solved via simulation provide the

basis to predict values for additional instantiations of the same or related problems.

4.1.3 Postulates of the Predictive Solving Framework

14. Let VS be a set of values over a series of steps that represent the truth or falsity for an activation

of a particular value for the entity at a given state. The simulation system that operates against

the schema from 1.2.1 for every entity instance value generates the VS utilized in a problem.

15. Let PTO be a prediction transform operator defined as a function that receives parameters from

a problem P, an entity-instance attribute-value sequence (PVS) to predict. The PVS is the last

value of the prediction for this operator for the target VS (TVS) and a source entity-instance-

attribute-value sequence (SVS) to use as a source. Let the output of the PTO be a value

sequence and let each instantiation operate upon the prior value of the PVS

16. Let PTO reference only the information passed to it by the problem definition, that is, source

instances containing entity-attribute-value sequences for earlier instances of the problem.

Require that PTO record all sources and targets utilized to derive a VS.

17. Let the application of each PTO result in a new step to be accomplished in the same way as

any problem simulation and the combination of values based on the selection of values be

captured as another value sequence

4.1.4 Claims based on the Postulates including 1.2.1 and 1.2.2

1. The higher order problem is representable in the same problem schema that represented the

lower level problem without loss of any fidelity since it uses the same entities as those of the lower

order problem. The prediction operator belongs to a type of expression operator, but the particular

operator selection materializes as an attribute value in a standard entity-attribute structure. This

 103

allows for the correlation of one operator sequence from one solving instance to operator sequences

from another solving instance enabling creation of a transformation problem for detecting a higher-

order sequence for transforming the lower level instances.

2. The higher order solution requires the same solving approach as the lower level instance

meaning the process is recursive and allows continually higher-order use of the same techniques

that the system found successful in pursuit of a lower order problem.

4.1.5 Transformative Property of a Problem Solution

Based on 4.1.4, there is a transformation available to generate a higher order problem from

any lower order problem. This includes generating higher order problems from the second-level

higher order problems without limit. This means that the problem solver is able to use simulation

to optimize the solution discovery phase for not only a base problem but also for the process of

optimizing solution discovery. This recursive model can scale up infinitely. The transformative

property concerns the transposition for utilizing the known solution states of a problem and

transforming this to a higher order problem with the goal of testing the prediction operator’s

success at predicting the outcome based on prior instances. If the transformation process works for

a lower order problem using the same simulation model for solution discovery then it must also be

transformative to a higher order problem. This section provides proof that the second-order

transformative problem is identical to the third-order problem and all higher order problems. The

proof accomplishes this outcome by pivoting of the problem upon the steps involved for finding

the optimal application of prediction operators against combinations of input sequences over a

sequence of application. This application generates sequences for each higher and higher order

 104

problem that follow the same simulation model and use the exact same schema definition. From

this:

 The information about the solution path for each instance thus presents as a higher order

problem with the goal of learning from the solution pattern for prior instances in order to

predict the solution pattern to apply to additional instances. The higher order problem for

any lower order problem incorporates the entity/attribute structure representing

information about the problem instance and adds the following for each entity instance

(defined by instance-identifier, instance-step, entity-key, and entity-attribute):

o Entity-Instance-Prediction

 Predicted Instance-Entity-Attribute

 Predicted Value

 Instance-Step

 Prediction Operator from the domain of possible predictors

o Entity-Instance-Prediction-Sources

 Source Instance-Entity-Identifier-Attribute from the domain of all

instances earlier than the targeted instance.

 Source-Step from the domain of steps

o Predictor-Operator-Query-Addition - Incorporates additional filtering to reduce

the size of possible solutions

o Predictor-Operator-Expression-Additions – Additional expressions to support the

updated query.

 105

 The above then provides for a higher order simulation that generates branches for each

prediction-operator and the combinations of source instances associated with source steps.

The predictor operator itself is an entity-attribute and generates a value sequence. The goal

of the higher order problem then becomes selecting from the same set of prediction

operators from the lower order problem that accurately predict the value sequences that

reflect the optimal sequencing of the prediction operators against the source instances.

 The solution goal for the higher order problem is to identify the prediction-operator that

most effectively predicted the values. This is modeled as a goal of the higher order

problem in terms of the following query constructs:

o Find the sequence of prediction operators that generated the query additions that

filtered the solution path and resulted in the fewest steps to achieve the goal state

of the underlying problem.

o Map this sequence of prediction operators as the higher level goal for the higher

order problem such that prediction of lower instances derive by the solution

sequence of the higher order problem. Once again, the selected sequence of

prediction operators that resulted in the selection of the lower order prediction

operators can generate the correct solution path.

4.2 Proof by Example – the Tower of Hanoi

This section examines the solution sequences of various instances with different numbers of

discs for the Tower of Hanoi and the transformation process for pivoting a solution sequence to

become a higher order problem. The transformative process itself models itself as higher and

 106

higher order sequence problem. Ultimately, the framework converges to a generic solution

sequence.

Figure 4-6: Three Disc Tower of Hanoi

4.2.1 Methodology

1. Define the Tower of Hanoi problem as illustrated by Figure 4-6 using the generic problem-

solving schema (Figure 4-2).

2. Generate instantiations based on the setup query for the range of discs defined for

simulation.

3. Utilize simulation to process the outputs of the transition query until achieving success for

four instances of Hanoi (two to five discs). Table 4-1 illustrates results of the entity-

attribute value sequences.

4. Using the higher order problem (Figure 4-10), apply prediction operators that evaluate the

solution sequences, generate additions to the lower level problem queries, execute the

queries, and measure the success. This process runs as a simulation and results in

identifying the sequence of prediction operators necessary to solve each larger instance

from the smaller instances.

 107

5. The entity-attribute value sequences for the optimal solution evolve from instances three

and four. The higher order problem for instances three and four finds the causative

predictive operator that involves a transformation based on even or odd discs. Instance

five applies this transformation to predict the sequencing of instance six.

4.2.2 Proof from the Data

Table 4-1: Sequence Patterns from Hanoi by Disc and Peg

Discs Disc Peg Move States

2 1 1 ---

2 1 2 1--

2 1 3 --1

2 2 1 ---

2 2 2 ---

2 2 3 -1-

3 1 1 ----1--

3 1 2 --1----

3 1 3 1-----1

3 2 1 -------

3 2 2 -1-----

3 2 3 -----1-

3 3 1 -------

3 3 2 -------

3 3 3 ---1---

4 1 1 ----1-----1----

4 1 2 1-----1-----1--

4 1 3 --1-----1-----1

4 2 1 ---------1-----

4 2 2 -----1---------

4 2 3 -1-----------1-

4 3 1 ---------------

4 3 2 ---1-----------

4 3 3 -----------1---

4 4 1 ---------------

4 4 2 ---------------

4 4 3 -------1-------

5 1 1 ----1-----1-----1-----1-----1--

5 1 2 --1-----1-----1-----1-----1----

5 1 3 1-----1-----1-----1-----1-----1

5 2 1 ---------1-----------1---------

5 2 2 -1-----------1-----------1-----

5 2 3 -----1-----------------------1-

5 3 1 -------------------1-----------

5 3 2 -----------1-------------------

 108

5 3 3 ---1-----------------------1---

5 4 1 -------------------------------

5 4 2 -------1-----------------------

5 4 3 -----------------------1-------

5 5 1 -------------------------------

5 5 2 -------------------------------

5 5 3 ---------------1---------------

In the above chart, each disc has a relationship to the peg affected on a particular move. A

sophisticated learning algorithm should be able to find the patterns between the discs and pegs,

but a simpler method emerges using aggregation. Rather than analyzing the detailed patterns for

each combination, the result of simply aggregating all the states across the sequence for each

distinct value for the entity (disc) and for the attribute (peg) without regard to the intersection of

the entity and attribute provides more concise insights as shown below:

Table 4-2: State Sequence by Disc

Discs Disc State Change Sequence

2 1 1-1

2 2 -1-

3 1 1-1-1-1

3 2 -1---1-

3 3 ---1---

4 1 1-1-1-1-1-1-1-1

4 2 -1---1---1---1-

4 3 ---1-------1---

4 4 -------1-------

5 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

5 2 -1---1---1---1---1---1---1---1-

5 3 ---1-------1-------1-------1---

5 4 -------1---------------1-------

5 5 ---------------1---------------

Table 4-3: State Sequence by Peg

Discs Peg State Change Sequence

2 1 ---

2 2 1--

2 3 -11

 109

3 1 ----1--

3 2 -11----

3 3 1--1-11

4 1 ----1----11----

4 2 1--1-11-----1--

4 3 -11----11--1-11

5 1 ----1----11-----1--1-11-----1--

5 2 -11----11--1-11-----1----11----

5 3 1--1-11-----1--1-11----11--1-11

A simple sequence recognition algorithm can spot that that the pattern for the smallest disc is

to change state every other move, for the next largest disc to change every fourth move, the third

every eighth interval and so on. When the peg states are also examined for patterns in disc counts

three to six, only a few of the patterns need to be identified and the rest can be deduced due to the

standard rules of play. This effectively generates a rule that only allows one choice so that the

sequence can generate instantly. From there, all that is necessary is a reversal process to generate

the query criteria that reflects the relational sequences.

To prove that the transformative property works, the framework must show the following

three things:

1. The learning problem process for finding a sequence of machine learning algorithm

operations can be defined schematically using the same schema and operations associated

with the base problem;

2. There is a problem definition P’ which represents the problem of searching for patterns to

find the optimal solution;

3. The process for the generating and solving the learning problem P’ spawns a P’’ to

optimize the learning problem P’ and that P’’’ is generated in the same way as P’. This

indicates that there is no limit to the learning depth obtainable from higher order problems.

 110

An additional consideration is that if the system truly generates higher and higher order

problems, there must exist an energy function to govern the levels of problem solving at which the

diminishing returns of the computation outweigh the benefits of reflection. A human reflective

analogy of this is that one may think about how well they performed a particular task to try to

identify improvement and about how to think about the mechanism for evaluating such

performance – a process that can go on indefinitely. At some point the human mind implicitly

imposes a restriction on reflection in order to permit functionality and not spend all of one’s time

simply reflecting upon reflecting. Therefore an additional constraint to govern system behavior is:

4. There is an equilibrium process for the efficiency problem to determine the number of

levels is definable in terms of an overriding problem in the system governed by a least-

energy function EF.

Figure 4-10 illustrates a schema for recursive self-examination of problem solving to support

the continuous-learning goal. The key to the functionality lies in the expression operators’

extensibility to select data from within the schema without requiring explicit redefinition of the

optimization problem in terms of a new entity. Referencing existing data generated from the

simulation solution paths provides the optimization problem with the information necessary to

execute operations to try to meet the goal.

However, allowing the optimization problem to self-reference data within the system schema

that targets optimal discovery of the solution creates a problem if such an optimization problem

does not adhere to the constraints of the framework as far as generating solution data for the higher

order problem. To resolve this, the framework uses the same simulation process to find the optimal

solution path for a problem as that for probing a solution to a base problem (founded on the given

 111

constraints). This means that the effort of solving the optimization problem generates data about

the optimization problem such that the solution steps for the lower level optimization problem now

become the inputs for the higher order solution problems. Once the frameworks shows that the

same process used to generate the first-order higher-level solving problem is the same as the

process used for generating the higher-order problems, there is proof that the learning process is

recursive. The process of finding each higher order problem generates optimizations back to the

lower level problem such that new instances of the lower level problem are solved using the

optimizations generated from the higher order problem. In the case of Hanoi, this manifests itself

through the generation of the learning problem map that enables the new instances of the problem

to benefit from the optimization query generated by the higher order problem.

4.2.3 Summary

Based on this, the following steps emerge for problem resolution:

1) Identify a problem P that has multiple instances each increasing in size such as the Tower

of Hanoi with more and more discs added.

2) Represent the overall problem using relational algebra to define unique entities with their

attributes that define the problem.

3) Define expressional functions to return possible domains of values including aggregates and

queries that follow a relational model that joins the expressions and filters the results with Boolean

and/or conjunctions to represent the valid states for entities/attributes which create an instance,

define the valid transitions, and attain a goal state.

 112

4) Solve the instances of increasing size in order using a generic simulator. Generate a

relational state sequence corresponding to each attribute within the problem instance and all

possible values and the sequence at the activated value.

5) Within each simulation instance, generate instances of a prediction problem based on the

same schema as that for the base problem. Reference as entities the state sequences from within

the instances and transform operators for application of each state sequence to predict future values

of the state sequence. For example, given Hanoi simulation instance S1 with two discs, select

operators for each branch of the instance in a prediction problem that predicts the next value in the

state sequence for each state sequence change within the instance. Allow the prediction operators

(also known as transform operators) to be visible not only to the sequences associated with the

current instance but also to the sequences from prior solved instances. This means that while

framework solves simulation instance S2 with three discs, the prediction operators can reference

solved sequences from S1 and apply the prediction operators against the earlier sequence to

generate the expected sequence values for S2. Allow each subsequent instance to reference the

solved sequences of the prediction problem associated with each instance. Further, allow

prediction operators that may generate portions or the entire section of the state sequences rather

than just one value at a time. Set the goal for each of these prediction instances to generate the

solution instance in the fewest number of steps.

7) Once there are two solved instances of the first-order prediction problem, generate a

prediction problem that references the lower-level prediction problem-state sequences as entities

in the same way as process five above. Continue to generate more high-level prediction problems

while creating the lower-level generation instances. Expand the scope of the higher level prediction

 113

to include instances from other problems since at this point the focus is on improving the higher

order solution selection process.

8) Continue processes five through seven with higher and higher transformations until

reaching a point of diminishing returns in terms of effort and success. This problem is an ongoing

problem that checks the number of operations against the success ratio and dynamically injects

constraints that prevent problem escalation to the point of diminishing returns. This is the

equilibrium problem.

 Figure 4-6 illustrates increasing problem transformation depth as the framework solves more

simulation instances for the Tower of Hanoi. The first-order problem is to determine the

transformation operators that vary the sequences of a source instance so that they match a

prediction instance (target). Once there are two solved transformation solutions, a sequencing

problem arises that determines the sequencing operators to act upon one transformation instance

to create the transformation operations in a prediction instance. Once there are two solved

sequencing solutions, a sequence generation problem learns the operators needed to generate the

sequencing operations in a predicted instance from a source instance.

 114

S1 - Simulation
Solution (discs=2)

S2 – Simulation
Solution (discs=3)

S3 – Simulation
Solution (discs=4)

S4 – Simulation
Solution (discs=5)

T1 - Transform
Solution (S1->S2)

T2 - Transform
Solution (S2->S3)

T3 - Transform
Solution (S3->S4)

TS1 – Transform
Sequence Solution

(T1->T2)

TS2 – Transform
Sequence Solution

(T2->T3)

SG1 - Sequence
Generation

Solution

Capture transform operations

Predict Transforms

Figure 4-7: Simulation Graph

 At this point in the Tower of Hanoi, a repeating sequence becomes evident and the sequence

generation operators are able to generate the solution to a higher instance. The framework

accomplishes this using the lower solved instance without requiring the use of simulation to

increase the breadth or depth of the established solution space. Rather than relying on simulation,

the tree can be co-recursively visited, creating a new transformation sequence problem instance to

leverage the last transformation solution as input to generate a transformation instance, which then

generates the simulation output result without re-simulating. This process repeats using the output

simulation of each instance with higher disc-counts until solving the desired disc-count. Figure 4-

7 illustrates the solution generation process wherein the sequence generation solution is able to

 115

generate the next transform sequence solution. This in turns generates the next transform solution,

which then generates the output that would have come from simulation. To verify that the

generated solution is correct, the framework can execute further simulations. Each simulation adds

further depth of learning such that the generational sequence solution evolves into higher-level

generational sequence solutions. As the learning depth increases, it becomes more and more likely

that a general case solution will evolve for a deterministic scenario. For the Tower of Hanoi, four

simulations that spawn three levels of solution generation are adequate for the transform operators

to identify a pattern that works for all instances of disc counts.

Sn+1

TSn

Tn

Sn

S1 - Simulation
Solution (discs=2)

S2 – Simulation
Solution (discs=3)

S3 – Simulation
Solution (discs=4)

S4 – Simulation
Solution (discs=5)

T1 - Transform
Solution (S1->S2)

T2 - Transform
Solution (S2->S3)

T3 - Transform
Solution (S3->S4)

TS1 – Transform
Sequence

Solution (T1->T2)

TS2 – Transform
Sequence

Solution (T2->T3)

SG1 - Sequence
Generation

Solution

Capture object state sequences

Predict Generation Steps

S5 - Unsolved
Simulation
(discs=6)

TS3 – Generated
Transform

Solution (T3->T4)

T4 – Generated
Transform

Solution (S4->S5)

Figure 4-8: Reversibility Operation to Generate Solution Instances

 116

Table 4-4 illustrates the generation of sequences associated with activation states from solved

simulation instances. The framework exposes these sequences for solving using transformation

operators to calculate the sequence of one instance from a lower instance. The framework actually

identifies the transformation needed for the discs and pegs on the very first transformation solution

using the first two instances. The complexity here comes from the fact that each instance introduces

an additional instance of the disc entity based on the disc-count for the instance. In order to

generate a transformational sequence solution that incorporates this additional entity, sequence

results must be utilized that are then aggregated and correlated so that the copying of the prior

entities as well as the creation of the entities are flattened as distinct sequences.

Table 4-4: Solution State Sequences for Disc-Count = 2 and Disc-Count=3

Attrib. Value/Expression Sequence/ Transform

Results

S1 - Solution path from simulation for Disc-Count=2

Disc --1 (1) 1-1

Disc Min-Disc 1-1

Disc Min-Disc+1 -1-

Disc -1- (2) -1-

Disc Disc-Count -1-

Peg --1 (1) ---

Peg -1- (2) 1--

Peg -11 (3) -11

S2 - Solution path from simulation for Disc-Count=3

Disc --1 (1) 1-1-1-1

Disc Min-Disc 1-1-1-1

Disc Min-Disc+1 -1---1-

Disc -1- (2) -1---1-

Disc Min-Disc+2 ---1---

Disc -11 (3) ---1---

Disc Disc-Count ---1---

Peg --1 (1) ----1--

Peg -1- (2) -11----

Peg -11 (3) 1--1-11

 117

Table 4-4 illustrates the relational state sequences from two instances of a Hanoi solution

capturing the entities (discs) and attributes correlated to the activation of particular values in a

solution sequence. For example, in the two-disc simulation, the disc with the smallest size (one)

activates on the first and third move of the solution while activating the larger disc on the second

move. Likewise, each peg correlated to a value is activated at different points, with peg two

activated on the first move (disc one moves to peg two) and then peg three activated for the

remaining two moves. Within UPRF, relational state sequences should be fully reversible; the

combination of all captured states for any instance of a problem can be reversed to replay all of

the actions involved in a simulation.

The second simulation on Table 4-4 shows the relationship between the state sequences

associated to a second instance with an additional disc. The color-coding illustrates how the

sequences from the first simulation constitute sequences in the second simulation solution. For

example, the smallest disc inherits the pattern of moving every other move; the next largest disc

moves every fourth move; and the new disc takes on the same pattern as the largest disc in the first

simulation within the extended sequence.

The peg sequences also show a relationship that maps sequences from multiple pegs to

generate new relationships. For example, the peg one sequence of the second instance derives from

the sequence for peg one followed by a zero bit and appended with the sequence for peg two from

the first instance. This pattern continues for the other pegs serially with each peg instance and the

second peg of instance two derivable from the instance-one peg-three sequence plus a zero bit and

then rotating back to append the peg one sequence. The framework can create these

transformations using a bit function as shown in Table 4-5.

 118

In Table 4-5, the attribute sequenced is a transform operator. The transform operator

represents an algorithm for generating or updating a target sequence from a source sequence. For

example, the sequence for the smallest disc from the two-disc simulation initializes with a Copy-

Segment operation to copy the sequence to the smallest disc in the three-disc instantiation. The

framework applies the Copy-Segment operation twice to the target disc with an intervening zero

bit insertion. These operations together generate the required relational state sequence for the first

disc. The process repeats for each disc with the new disc utilizing a different set of operations

taken from the largest disc in the first instance.

The transform operators themselves become relational state sequences that identify which

operators the framework utilizes across the entire solution sequences rather than only for the

source/target instances. De-coupling the source object activations used by the sequence into

separate sequences provides traceability of these sequences to enable reversibility. Relational

sequences of type “sequence” represent both the operator sequences and the entity/attribute

activations associated to the operator sequences.

Note that the purpose of the framework is not to inherently provide the logical functions

needed to achieve the transformations but to provide an environment for hosting machine-learning

algorithms that serve as transform operators. The framework provides the same simulation

problem solving approach for finding the learning operations as that for playing out a simulation

through brute force. The goal is to find some function that accomplishes the pattern recognition

using one or more source instances. These source instances predict the correct relational state

sequence in an unsolved instance. The framework also ensures that each algorithm executes with

traceability back to the parameters used by the algorithm to make the prediction. This ensures that

 119

the execution of all algorithms is constrained within a measurement framework so that the

operation of the algorithms themselves make themselves visible as higher-level optimization

problems. This also provides the potential to analyze algorithms for correlation to rank the

selection processes which the process thereof continually improves as the system solves more

problems. The algorithms themselves are stored as data entities in the framework to allow

extensibility. The framework can register any algorithm for use as a transform operator within the

framework utilizing the prescribed interface for the algorithm to search the source values exposed

for a problem instance and record the sequences of operations utilized to achieve a target sequence.

Table 4-5: Transformation for New Instance Using a Prior Instance (Count=3)

Attrib. Value/Expression Sequence/ Transform Results

T1 - Solution path for pattern for disc-count=2 to solution for disc-

count=3 (S1->S2)

E-Operation Copy-Segment 1-11-1-

E-Operation Insert-Bit -1--1--

New-E-

Operation

Binary-Expand ------1

E-Source Instance-1:Disc-1 1-1----

E-Source Instance-1:Disc-2 ---1-11

E-Source Instance-1:Max-Steps

(Power(2, Disc-Count) -1

------1

E-Target Instance-2:Disc-1 111----

E-Target Instance-2:Disc-2 ---111-

E-Target Instance-2:Disc-3 ------1

E-Source 0 -1--1--

Attribute Operations

A-Operation Copy-Segment 1-11-11-1

A-Operation Insert-Bit -1--1--1-

A-Source Instance-1:Peg-1 1--1-----

A-Source Instance-1:Peg-2 --1--1---

A-Source Instance-1:Peg-3 ------1-1

A-Source 0 -1--1----

A-Source 1 -------1-

A-Target Instance-1:Peg-1 111------

A-Target Instance-2:Peg-2 ---111---

A-Target Instance-3:Peg-3 ------111

 120

Table 4-5 shows the three different types of operations and how they correlate to source/target

entities and attributes. The three operations are:

1. E-Operation: Carries out a transformation that uses source entities and affects a target

entity.

2. New-E-Operation: Carries out a transformation that uses sources entities and creates a

new target entity.

3. A-Operation: Carries out a transformation that relates to source and target attribute

values.

In the above example, the Copy-Segment operation utilizes Instance 1/Disc 1 on steps one

and three while the Copy-Segment affects Instance 1/Disc 1. Intervening between the uses of the

source Instance 1/Disc 1 is the use of the Insert-Bit function which is active at step two to insert

an intermediate bit in the target Instance 2/Disc 1 sequence. The peg sequence population follows

the pattern required to generate the peg two sequence for the second instance from the first instance

by first activating the peg one sequence, then inserting a zero bit, and finally adding the sequence

from peg two, also from the first instance. This repeats for the second peg on the second instance.

However, the third peg involves the insertion of a one bit between the two sequences. There is also

an exception to the source entity handle outlined in the New-E-Operation. This operation utilizes

a binary expansion to generate the sequence for the new disc both appending and prepending the

source sequence by enough bits to fill out the required sequence length. The required sequence

length is understood in terms of the expression that calculates the maximum move count. For

example, applying the move count as the number of bits expands the sequence for the largest disc

two in a two-disc scenario from 010 to the large disc three sequence for a three-disc scenario of

 121

000100 since the number of moves in a two-disc scenario is three and for a three-disc scenario it

is seven (Power (2, Disc-Count) – 1). In both cases, the number of total bits to expand

symmetrically with zero fill is the number of maximum moves.

The transformation sequence applies to additional instances (as shown in Table 4-6) wherein

the simulation pattern from an instance of three discs can predict the pattern for a four-disc

solution. Note that the transformation operations are the same except for the addition of further

operations to support the creation of the new disc associated with the instance for the disc-count

of four. It is clear with the third simulation that a solution pattern exists which involves simply

using the prior transformations and adding in the new transform for the new disc. This creates a

temptation to stop the process and simply implement a programmatic solution. However, the goal

of UPRF is not only to identify the solution pattern, but also to generate a pattern that implements

the solution transformation. Therefore, the framework continues onto the next level of identifying

the transformations for creating the transformation sequences for the original problem.

To complete the next step, a new simulation for S5 is necessary in order to spawn another

Transformation instance T3 so that a second instance of the transform solution (TS2) wherein the

pivot that includes the operation type is incorporated. Having TS1 and TS2 transform solution

paths enables the highest order of problem solving which handles transform operation sequences

generically shown as SG. The transformation sequence for TS1 and TS2 incorporates the base

expressions that reflect data about the instance itself, specifically the disc count in order to

calculate the number of offset operations required to achieve the transform from TSN to TS-N+1.

The generic solution is thus de-coupled from the specific instances and able to operate on any

simulation instances in an identical fashion. This allows execution of the higher order transform

 122

even where no supporting simulation exists. The capability represents the pivot point in the

recursion, such that co-recursion reverses back down the tree and ultimately generates the next

simulation solution instance without the need to carry out simulation, but only to implement the

transformations. Thus, instead of requiring exponential complexity to explore the solution space,

the complexity is linear with respect to finding the solution approach based on the number of discs.

This does not mean that the problem itself reduces to linear complexity, as the size complexity still

must increase with larger simulations to reflect the need for an exponential increase in moves for

each added disc.

Table 4-6: Solution State Sequences with Disc-Count = 3 and Disc-Count=4

S2 - Solution path from simulation for Disc-Count=3

Attrib. Value/Expression Sequence/ Transform Results

Disc --1 (1) 1-1-1-1

Disc Min-Disc 1-1-1-1

Disc Min-Disc+1 -1---1-

Disc -1- (2) -1---1-

Disc Min-Disc+2 ---1---

Disc -11 (3) ---1---

Disc Disc-Count ---1---

Peg --1 (1) ----1--

Peg -1- (2) -11----

Peg -11 (3) 1--1-11

S3 -Solution path from simulation for Disc-Count=4

Disc Min-Disc 1-1-1-1-1-1-1-1

Disc Min-Disc+1 -1---1---1---1-

Disc Min-Disc+2 ---1-------1---

Disc Disc-Count -------1-------

Peg --1 (1) ----1----11----

Peg -1- (2) 1--1-11-----1--

Peg -11 (3) -11----11--1-11

Table 4-6 illustrates the transformation of the sequence associated with the disc and peg states

from a three-disc simulation to a four-disc simulation. Note that the transformation pattern is

identical duplicating the disc sequences with the new sequence introduced with a mid-point state

 123

set and the copying peg sequences serially to combine pegs one and two to form target peg one

sequence, three and one to form target peg two, and two and three to form target peg three.

Table 4-7: Transformation for New Hanoi Instance Using a Prior Instance (Count=4)

Attrib. Value/Expression Sequence/ Transform Results

T2 - Solution path for pattern for disc-count=3 to solution for disc-

count=4 (S2->S3)

E-Operation Copy-Segment 1-11-11-1-

E-Operation Insert-Bit -1--1--1--

New-E-

Operation

Binary-Expand ---------1

E-Source Instance-1:Disc-1 1-1-------

E-Source Instance-1:Disc-2 ---1-1----

E-Source Instance-1:Disc-3 ------1-11

E-Source Instance-1:Max-

Steps (Power(2,

Disc-Count) -1

---------1

E-Target Instance-2:Disc-1 111-------

E-Target Instance-2:Disc-2 ---111----

E-Target Instance-1:Disc-3 ------111-

E-Target Instance-2:Disc-4 ---------1

E-Source 0 -1--1--1--

Attribute Operations

A-Operation Copy-Segment 1-11-11-1

A-Operation Insert-Bit -1--1--1-

A-Source Instance-1:Peg-1 1--1-----

A-Source Instance-1:Peg-2 --1--1---

A-Source Instance-1:Peg-3 ------1-1

A-Source 0 -1--1----

A-Source 1 -------1-

A-Target Instance-1:Peg-1 111------

A-Target Instance-2:Peg-2 ---111---

A-Target Instance-3:Peg-3 ------111

Table 4-7 shows the sources, targets, and operations that represent the state sequences to

generate the simulation solution for a disc count of four from an instance with a disc count of three.

Table 4-8: Sequence Comparison T1 to T2

Trans-

form

Attrib. Value/

Expression

Sequence

T1 E-Operation Copy-Segment 1-11-1-

T2 E-Operation Copy-Segment 1-11-11-1-

T1 E-Operation Insert-Bit -1-1---

 124

T2 E-Operation Insert-Bit -1-1-1----

T1 New-E-Operation Binary-Expand ------1

T2 New-E-Operation Binary-Expand ---------1

T1 E-Source Instance-S1:Disc-1 1-1----

T2 E-Source Instance-S1:Disc-1 1-1-------

T1 E-Source Instance-S1:Disc-2 ---1-11

T2 E-Source Instance-S1:Disc-2 ---1-1----

T2 E-Source Instance-S2:Disc-3 ------1-11

T1 E-Source Instance-S2:Max-Steps

(Power(2, Disc-Count) -1

------1

T2 E-Source Instance-S3:Max-Steps

(Power(2, Disc-Count) -1

---------1

T1 E-Target Instance-1:Disc-1 111----

T2 E-Target Instance-S3:Disc-1 111-------

T1 E-Target Instance-S2:Disc-2 ---111-

T2 E-Target Instance-S3:Disc-2 ---111----

T1 E-Target Instance-S2:Disc-3 ------1---

T2 E-Target Instance-S3:Disc-3 ------111-

T2 E-Target Instance-S3:Disc-4 ---------1

T1 E-Source 0 -1--1—1

T2 E-Source 0 -1--1--1--1

Attribute Operations

T1, T2 A-Operation Copy-Segment 1-11-11-1

T1, T2 A-Operation Insert-Bit -1--1--1-

T1, T2 A-Operation Insert-Bit -1--1--1-

T1, T2 A-Source Instance-1&2:Peg-1 1--1-----

T1, T2 A-Source Instance-1&2:Peg-2 --1--1---

T1, T2 A-Source Instance-1&2:Peg-3 ------1-1

T1,T2 A-Source 0 -1--1----

T1,T2 A-Source 1 -------1-

T1 A-Target Instance-1:Peg-1 111------

T1 A-Target Instance-2:Peg-2 ---111---

T2 A-Target Instance-3:Peg-3 ------111

In Table 4-8, the source sequences map from the transformation-solution instance one to

transformation solution instance two. The sequences are targeting the problem of generating the

sequence of operations needed to solve the Tower of Hanoi rather than the Tower of Hanoi itself.

The transform column identifies the transform instance with the instance qualifier within the

transform shown in the expression column of the chart. This is the first higher order problem

transformation problem. Since there are no new attributes and the pattern for copying the

sequences are the same, the attribute solution path is simply an exact duplication of the prior

instance.

 125

Table 4-9: Operation Transform Sequence (T1->T2)

TS1 - Solution path for generating sequence to transform from T1 to T2

E-Operation Prepend-Bit 111 111 --- 111 ---

E-Operation New-Sequence --- --- --- 1-- ---

E-Operation Append-Bit --- --- -11 --- ---

E-Operation Copy-Segment --- --- 1-- --- ---

E-Source T1:Insert-Bit --- 111 --- --- ---

E-Source T1:Copy-Segment 111 --- --- --- ---

E-Source T1:Binary-Expand --- --- --- --- 111

E-Source T1:Source-Entity --- --- 1-- --- ---

E-Source T1:New-Entity (Disc=3) --- --- -11 1-- ---

E-Source T2:Target-Entity --- --- 1-- --- ---

E-Source T2:New-Entity(Disc =Disc-Count) --- --- --- 111 ---

E-Source 0 1-1 -1- --- 111 111

E-Source 1 -1- 1-1 -11 --- ---

Attribute Operations

A-Operation Copy-Segment 1-11-11-1

A-Source Copy-Segment 1--1-----, --1--1---, -----

-1-1

A-Target Copy-Segment 111------, ---111---, -----

-111

Legend:

Yellow: Copy-Segment alteration via bit-prepending

Green: Insert-Bit alteration via bit-prepending

Blue: Cloning of entities through segment copying

Olive: Creating of new entity sequence via bit-appending

Red: Offsetting binary expansion operation via bit-prepending

 Table 4-9 examines the problem of generating the transformation sequence. This second-order

transformation generates the sequences to convert the lower level transformation T1 to predict the

sequences required for T2. TS1 generalizes all the source discs associated with T1 into a single

operation and creates a new operation linked to the disc-count. Carrying out the operations in Table

4-9 transforms the source instance T1 to T2. For example in Table 4-8, T2’s copy segment

sequence requires an additional 101 at the start. The framework accomplishes this by referencing

the copy-segment source along with a prepend-bit operator referencing 1, 0, 1 in steps one through

three of the sequence as highlighted in yellow. The green highlight shows the sequences required

to generate the T2 Insert-Bit operation sequence from the T1 Insert-Bit sequence operation that

 126

also operate against the target entities but not the source. The blue highlight shows the copy-

segment applied to all the entities of the source. The green highlight shows the operation sequences

that transform the sequence for creating a new entity in T1 to create the new disc entity in T2. In

T2, the binary expand operation is executed three steps later so prepend of bit zero is applied to

that operation highlighted in red. Attribute operations are resolved as simply a duplication of the

prior instance of the operation, source, and targets. The generation of a solution that transforms a

transformation sequence set of operations from one instance to another moves up the abstraction

level and gets closer to a generic solution for generating T-n+1 from T-n.

Table 4-10 shows an additional simulation instance with the following tables going through

the same process for the earlier solution instances to derive a transformation sequence solution in

Table 4-13. The attribute operations for the peg values are the same in these tables because TS1

was able to identify an exact copy operation for both T1 and T2 thus the generic solution is already

in place for the attributes. The final higher order problem in Table 4-14 targets the higher order

transformation-sequencing instance using the prior transformation-sequencing instance in order to

generate a generic method for generating the transformation-sequencing instance. This then maps

back to a problem attribute to define a repetition operation as well as an insertion operation based

on this attribute. The insertion operation inserts a bit zero or bit one in the sequence depending

upon the reference sequence/prediction target while the repetition operator (repeat-last-operation)

repeats the insertion relative to the offset of the targeted instance, based on the disc-count from the

source. The solution generation in Table 4-14 instance reflects the derivative operations of the

lower level transforms to discover that the transform pattern between the two instances is simply

a copy operation. Thus, no additional higher order transformations are necessary.

 127

In this case, the disc count problem attribute becomes part of the sequence generation rule

such that transformation-sequencing solutions can be generated for yet non-simulated problem

instances. This capability allows the problem solver to predict the solution path incrementally for

each lower level transformative property in a co-recursive fashion until the instance for the desired

number of discs. In the last set of transformation operators, the prediction targets replace the

original sources. This allows the solution to be repeatedly instantiated using its own predictions as

the input until achieving the desired target instance.

The only capability needed for this is a reversal process that maps the relational state

sequences to generate the actual state changes in the entity/attribute combinations from start to

finish, performing an actual solution of an instance. Since the state capture process is complete in

terms of all items necessary to reproduce a solution, a simple enumeration approach, covered in

the next section, accomplishes this.

Table 4-10: State Sequences for Solved Simulations - Disc-Count = 4 and Disc-Count=5

S3 - Solution path from simulation for Disc-Count=4

Attrib. Value/Expression Sequence/ Transform Results

Disc Min-Disc 1-1-1-1-1-1-1-1

Disc Min-Disc+1 -1---1---1---1-

Disc Min-Disc+2 ---1-------1---

Disc Disc-Count -------1-------

Peg --1 (1) ----1----11----

Peg -1- (2) 1--1-11-----1--

Peg -11 (3) (3) -11----11--1-11

S4 -Solution path from simulation for Disc-Count=5

Disc Min-Disc (1) 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

Disc Min-Disc+1 (2) -1---1---1---1---1---1---1---1-

Disc Min-Disc+2 (3) ---1-------1-------1-------1---

Disc Min-Disc+3 (4 -------1---------------1-------

Disc Disc-Count (5) ---------------1---------------

Peg --1 (1) ----1----11-----1--1-11-----1--

Peg -1- (2) -11----11--1-11-----1----11----

Peg -11 (3) (3) 1--1-11-----1--1-11----11--1-11

 128

Table 4-11: Transformation for New Instance from Prior Instance (Count=5)

Attrib. Value/Expression Sequence/ Transform Results

T3 - Solution path for pattern for disc-count=4 to solution for disc-

count=5 (S3->S4)

E-Operation Copy-Segment 1-11-11-11-1-

E-Operation Insert-Bit -1--1--1--1--

New-E-

Operation

Binary-Expand ------------1

E-Source Instance-1:Disc-1 1-1----------

E-Source Instance-1:Disc-2 ---1-1-------

E-Source Instance-1:Disc-3 ------1-1----

E-Source Instance-1:Disc-4 ---------1-1-

E-Source Instance-1:Max-

Steps (Power(2,

Disc-Count) -1

------------1

E-Target Instance-2:Disc-1 111----------

E-Target Instance-2:Disc-2 ---111-------

E-Target Instance-1:Disc-3 ------111----

E-Target Instance-2:Disc-4 ---------111-

E-Target Instance-2:Disc-5 ------------1

E-Source 0 -1--1--1--1--

Attribute Operations

A-Operation Copy-Segment 1-11-11-1

A-Operation Insert-Bit -1--1--1-

A-Source Instance-1:Peg-1 1--1-----

A-Source Instance-1:Peg-2 --1--1---

A-Source Instance-1:Peg-3 ------1-1

A-Source 0 -1--1----

A-Source 1 -------1-

A-Target Instance-1:Peg-1 111------

A-Target Instance-2:Peg-2 ---111---

A-Target Instance-3:Peg-3 ------111

Table 4-11 shows the sources, targets, and operations that represent the state sequences to

generate the simulation solution for a disc count of five from an instance with a disc count of four.

This follows the identical pattern as for a transformation from three to four discs except the

additional operations and the lengthening of the sequences.

Table 4-12: Entity Sequence Comparison from Transformation T2 to T3

Trans-

form

Attrib. Value/

Expression

Sequence

T2 E-Operation Copy-Segment 1-11-11-1-

 129

T3 E-Operation Copy-Segment 1-11-11-11-1-

T2 E-Operation Insert-Bit -1-1-1---

T3 E-Operation Insert-Bit -1-1-1-1----

T2 New-E-

Operation

Binary-Expand ---------1

T3 New-E-

Operation

Binary-Expand ------------1

T2 E-Source Instance-S3:Disc-1 1-1-------

T3 E-Source Instance-S3:Disc-1 1-1----------

T2 E-Source Instance-S3:Disc-2 ---1-1---

T3 E-Source Instance-S3:Disc-2 ---1-1----

T2 E-Source Instance-S3:Disc-3 ------1-1---

T3 E-Source Instance-S3:Disc-3 ------1-1----

T3 E-Source Instance-S4:Disc-4 ---------1-11

T2 E-Source Instance-S4:Max-Steps

(Power(2, Disc-Count)

-1

---------1

T3 E-Source Instance-S5:Max-Steps

(Power(2, Disc-Count)

-1

------------1

T2 E-Target Instance-1:Disc-1 111----

T3 E-Target Instance-S5:Disc-1 111-------

T2 E-Target Instance-S4:Disc-2 ---111-

T3 E-Target Instance-S5:Disc-2 ---111----

T2 E-Target Instance-S4:Disc-2 ------111-

T3 E-Target Instance-S5:Disc-2 ------111----

T2 E-Target Instance-S4:Disc-3 ---------1---

T3 E-Target Instance-S5:Disc-3 ---------111-

T3 E-Target Instance-S5:Disc-4 ------------1

T2 E-Source 0 -1--1--1-1

T3 E-Source 0 -1--1--1--1—1

In Table 4-12, the source entity sequences map from the transformation solution instance two

to transformation solution instance three. Again, the sequences are targeting the problem of

generating the sequence of operations needed to solve the Tower of Hanoi and not the Tower of

Hanoi itself. This is the second instance of the higher-order problem transformation problem. The

next problem is to generate a sequence generation problem that can generate the sequence of

instructions to create the transformation required to transform the simulation instances (TS1 ^ TS2

-> SG1). The sequence of operations for T3 is identical to T2; therefore, there is now a general

solution by simply using the copy segment operation from the prior instance.

 130

Table 4-13 –Sequence for Transforming a Transform Sequence (T1->T2 – Entities)

TS2 - Solution path for generating sequence to transform from T2 to T3

E-Operation Prepend-Bit 111 111 --- 111 ---

E-Operation New-Sequence --- --- --- 1-- ---

E-Operation Append-Bit --- --- -11 --- ---

E-Operation Copy-Segment --- --- 1-- --- ---

E-Source T1:Insert-Bit --- 111 --- --- ---

E-Source T1:Copy-Segment 111 --- --- --- ---

E-Source T1:Binary-Expand --- --- --- --- 111

E-Source T1:Source-Entity --- --- 1-- --- ---

E-Source T1:New-Entity (Disc=3) --- --- -11 1-- ---

E-Source T2:Target-Entity --- --- 1-- --- ---

E-Source T2:New-Entity(Disc =Disc-Count) --- --- --- 111 ---

E-Source 0 1-1 -1- --- 111 111

E-Source 1 -1- 1-1 -11 --- ---

Attribute Operations

A-Operation Copy-Segment 1-11-11-1

A-Source Copy-Segment 1--1-----, --1--1---, -----

-1-1

A-Target Copy-Segment 111------, ---111---, -----

-111

Legend:

Yellow: Copy-Segment alteration via bit-prepending

Green: Insert-Bit alteration via bit-prepending

Blue: Cloning of entities through segment copying

Olive: Creating of new entity sequence via bit-appending

Red: Offsetting binary expansion operation via bit-prepending

Table 4-14: Sequence Generation for Generating Transform Solution

SG1 - Solution path for generating sequence to transform from TS2 to TS3

E-Operation Copy-Sequence 1

E-Source TS(n+1) 1

E-Target TS(n) 1

Table 4-14 meets the goal to generate a TS2 operational sequence from TS1 through a simple

copy sequence. This ultimately provides the general solution to generate the solution directly

without the need for simulation for further instances of Hanoi. This is because SG1 can generate

the TS(n) Transform generation by copying TS(n-1) sequence. When reversing TS(n) from state

sequences back to entity and attribute values, it generates Tn+1. When reversing T(n+1)

 131

sequences, it generates entity and attribute values for simulation Sn+1. When S(n+1) is provided

to T(n+1), the framework generates Sn+1. Generation of T(n+1) enables TSn+1 and the process

repeats until S(n) meets the criteria for the number of discs. That is, if there is a request for the

solution to a disc number of eight and UPRF has solved four instances in order to generate SG1,

then simulation instances five through seven generate through the reversal process without any

simulation in order to provide the criteria to generate the solution sequence for a simulation with

eight discs.

4.2.4 Sequence Reversal

The prior section illustrated the process for transforming solution paths into higher order

problems. In these higher order problems, the goal transitions to finding the technique for

predicting the solution paths for the lower order problem for one instance from another instance –

possibly multiple instances. This section will demonstrate how the state sequences transform into

actual values in the database entities and attributes associated with the instance. This capability is

necessary in order to generate a solution instance for a problem directly without the need for

simulation. The purpose of this elaboration is to prove that the state capture associated with

solution-path problem transformations is adequate to reproduce an actual solution.

In the final transformation, the disc count for the new problem instance is the reference

variable. The framework simply needs to execute the problem setup, creating the initial instance

in order to access this variable. In order to generate the targeted simulation, the framework must

perform all of the transformations upon which the targeted simulation depends. This co-recursive

process is the unwinding of the recursive problem solving process. As the framework performs

 132

each higher order transformation, it generates the lower order solution instance until finally

achieving the targeted simulation. This process is best illustrated by flipping the problem

transformation process upside down and depicting the leading edge of the transformation

generation associated with new instances as shown in Figure 4-9. In this process, the only required

inputs are the predicted solution paths from the prior transformations. The source transformation

instances are not necessary because the predicted instances are now the sources. In the diagram,

the dashed connectors represent the inputs and the solid connectors represent the instances that

will generate through the predictive transform operations.

Starting at the solution generator node, the process requires moving incrementally through

each lower level instance until reaching the target instance for the problem variable. Therefore,

even with this requirement to build out the number of instances incrementally, the actual time

complexity increase is less than two times the complexity for a direct solution. There is also an

overhead for building out the intermediate nodes, but this is a constant factor of three since the

framework must perform only the leading edge of the transformations for each additional instance.

Therefore, the number of operations is the number of operations in the target solution plus a

constant factor for reversing from the solution generator back to the steps. Based on this, the time

complexity of generating a solved instance is simply the addition of a linear constant in respect to

the actual solution sequence. For example, it takes 31 steps to solve a Tower of Hanoi problem

with five discs (25 – 1) using the most efficient set of moves. The solution generator is able simply

to copy the sequences from the prior instance to generate the transformation sequence, which then

generates the simulation sequences.

 133

S6

TS4

T5

SG1 - Sequence
Generation

Solution

S5 - Unsolved
Simulation
(discs=6)

TS3 – Generated
Transform

Solution (T3->T4)

T4 – Generated
Transform

Solution (S4->S5)

TSn

SG2

Tn

Sn

SGn

Figure 4-9: Transformative Reversal Process

The reversal process starts at SG1, which utilizes TS3 as the input to generate TS4. TS4 uses

the prior predicted instance of T4 as the input in order to generate T5. T5 then uses the last

simulation S5 as the input to generate the prediction solution sequence for S6. This process is

repeatable for incrementally increasing the number of instances until solving the target instance.

Table 4-17 illustrates how the output of the sequence states are transformed into attribute value

sequences that represent the specific state changes. State sequences that define the entity and

attribute values intersect in order to define the specific values for the entity attribute combinations.

 134

The framework must examine the sequence reversal process starting at the highest order and

working backwards since only the highest order transformation is able to create the dependent

instance. This dependent instance is necessary to generate the solution path tree for a new solution

instance to the simulation problem. For example, given S5 as the last simulation instance, only T5

can create S6 and only TS4, which does not exist, can create T5. However, SG1 can create TS4 by

using the output of SG1 as the input for the next instance of SG1 as defined by the Replace-Source

operation in the final transforms of the SG1 instance. Once the framework creates TS4, it can then

generate the required instances to predict S6.

Although the reversal process must start at the highest order transformation level, the process

is easier to understand at the lower level transformation so before embarking on the full process,

let us examine a lower level process. Table 4-17 shows how a sequence is implemented into the

value sequence data table from the activation sequences in Table 4-16. The value sequence is

query-able to define the exact solution steps because it identifies the specific attribute value to

assign to an attribute value for a specific entity instance over a sequence range. If the value

sequence populates accurately from the state activation sequences, then it is easy to replicate the

exact solution to a problem instance.

Table 4-15: State Sequences for S1

Instance Ref. Attrib. Binary

Value/Expression

Sequence/ Transform Results

S1 - Solution path from simulation for Disc-Count=2

1 1 Disc 001 (1) 1-1

1 2 Disc 010 (2) -1-

1 3 Peg 001 (1) ---

1 4 Peg 010 (2) 1--

1 5 Peg 011 (3) -11

 135

Table 4-16: Translating attribute sequences to unique entity/attribute values

Value Sequences for S1

Entity

Value

Attribute Value Start

Step

End

Step

Source

Seq. Refs

Source Sequence

Intersection

Disc=1 Peg=1 1

Disc=1 Peg=2 1 2 1,4 1-1,1--

Disc=1 Peg=3 3 3 1,5 1-1,-11

Disc=2 Peg=1 2

Disc=2 Peg=2 2

Disc=3 Peg=3 2 3 2,5 -1-, -1-

An intersection of an entity with a specific value, an attribute with a specific value, and a

sequence must join in order to define a definitive value to assign to an entity for an attribute at any

given point. For example, the entity value Disc=1 is supported by the activation sequence that

shows disc one is active at step one and step three, but Peg=1 is not active at either of these steps.

Therefore no causative sequence intersection exists to indicate a value for Disc=1 and Peg=1 for

any of the steps. However, Peg=2 is activated at step one as well as Disc=1, therefore an

intersection exists resulting in a value sequence active at step one. Value sequences retain their

values throughout the sequence until a change occurs. Since Disc=1 does not have an activation

on step two, its sequence remains intact for the current value. Thus the value sequence for Disc=1,

Peg=1 is true from step one to step two. On step three, Disc=1 is once again activated, but the

activated attribute is Peg=3. Therefore the value sequence for Disc=1/Peg=2 terminates and a new

value sequence starts with Disc=1/Peg=3. The framework can easily query these value sequences

to display the move sequence by displaying all of the points where the value sequence changes as

illustrated in Figure Table 4-17.

For the transformation to be valid, the higher-level activation sequences must be able to

generate the sequence of operations used to attain the predictive sequence at each lower level. The

 136

process for generating the transformation solution-sequence paths is the same as that for the base

simulation instance. Table 4-18 shows the transformation sequence for the problem T1 along with

the steps at which the attribute is set to the associated value based on the sequence. The reversibility

mechanism in this instance needs to generate the steps utilized in T2 from the transform operators.

The prior section already demonstrated that the transformation operators are able to produce the

predicted solutions. At the higher-level transformation, it is important to show that the sequences

and usages which will be used for the next higher order transformation are correct for replicating

the transformation operations against the lower level activation sequences of the base simulation.

Table 4-19 shows how the framework reverses state sequences to replicate the operations at the

specific steps in the solution.

Table 4-17: Transform Sequence Steps

Attrib. Value/Expression Sequence/ Transform Results Steps

T1 - Solution path for pattern for disc-count=2 to solution for disc-count=3

(S1->S2)

E-

Operation

Copy-Segment 1-11-1- 1,3-4,6

E-

Operation

Insert-Bit -1--1-- 2,5

New-E-

Operation

Binary-Expand ------1 7

E-Source Instance-1:Disc-1 1-1---- 1,3

E-Source Instance-1:Disc-2 ---1-11 4,6,7

E-Source Instance-1:Max-Steps

(Power(2, Disc-Count)

-1

------1 7

E-Source 0 -1--1-- 2,5

E-Target Instance-2:Disc-1 111---- 1-3

E-Target Instance-2:Disc-2 ---111- 4-6

E-Target Instance-2:Disc-3 ------1 7

Attribute Operations

A-

Operation

Copy-Segment 1-11-11-1 1,3-4,6-7,9

A-

Operation

Insert-Bit -1--1--1- 2,5,8

A-Source Instance-1:Peg-1 1--1----- 1,4

A-Source Instance-1:Peg-2 --1--1--- 3,6

 137

A-Source Instance-1:Peg-3 ------1-1 2,5

A-Source 0 -1--1---- 2,5

A-Source 1 -------1- 8

A-Target Instance-1:Peg-1 111------ 1-3

A-Target Instance-2:Peg-2 ---111--- 4-6

A-Target Instance-3:Peg-3 ------111 7-9

Table 4-18: Reversibility Matrix for Transform Sequence

Entity/Attribute. Value Start Step End Step

E-Operation Copy-Segment 1 1

3 4

6 6

Insert-Bit 2 2

 5 5

New-E-Operation Binary-Expand 7 7

E-Source Instance-1:Disc-1 1 1

3 3

Instance-1:Disc-2 4 4

6 7

Instance-1:Max-Steps (Power(2,

Disc-Count) -1

7 7

0 2 2

5 5

E-Target Instance-2:Disc-1 1 3

Instance-2:Disc-2 4 6

Instance-2:Disc-3 7 7

A-Operation Copy-Segment 1 1

 3 4

 6 7

 9 9

 Insert-Bit 2 2

 5 5

 8 8

A-Source Instance-1:Peg-1 1 1

 4 4

Instance-1:Peg-2 2 2

5 5

Instance-1:Peg-3 3 3

6 6

0 2 2

5 5

1 8 8

A-Target Instance-1:Peg-1 1 3

 Instance-2:Peg-2 4 6

 Instance-3:Peg-3 7 9

 138

In Table 4-19, the attributes are stored in multiple entities each uniquely identified by the

problem step where step represents a discrete state in the solution sequence. The framework

defines each sequence entity in terms of the attribute that stores a pointer to the value sequence

from the lower level problem. In the first-level transformation, the values reflect the sequences

from the simulation instances. As the problem progresses to higher order transformations, the

source values point to the underlying sequences for the transformation problems themselves.

These activation sequences are reversible to generate the value sequences that reflect the

required transformations. The framework understands this process in terms of TS1, which predicts

T2. The value sequences from the TS1 instance map to the attributes for the higher order problem,

which follow the same pattern as T1. Since TS1 can generate T2 successfully in the same format

at T1 and T1 generates S2 successfully, then T2 will generate S3 successfully. It now only remains

for SG1 to generate TS2 successfully. Since SG1 can generate TS2 value sequences that implement

the T3 transform successfully, SG1 is correct for generating a new instance of TS. This new

instance cascades down to new solved instances of S because T1 was reversible and all higher

order transformations follow the same model of referencing the lower level transformation

sequences. Therefore, the following recursive/co-recursive sequence exists:

Recursive Discovery:

S1, S2, S1 ^ S2->T1

S3, S2 ^ S3->T2

T1 ^ T2->TS1

S4, S3 ^ S4 -> T3

 139

T2 ^ T3 -> TS2

TS1 ^ TS2 -> SG1

Recursivity Pivot Point:

TS2 ^ SG -> TS3

Co-recursive Cascade

T3 ^ TS3 -> T4

S4 ^ T4 -> S5

TS3 ^ SG -> TS4

T4 ^ TS4 - > T5

S5 ^ T5 -> S6

Co-recursive Relation:

TS(n) ^ SG -> TS(n+1)

T(n) ^ TS(n+1) -> T(n+1)

S(n) ^ T(n+1) -> S(n+1)

4.3 Universal Problem Representation

In the prior section, the Tower of Hanoi was modeled to show the UPRF process for generating

solution simulations, transforming solution sequences as the goal state for a higher order problem,

and generating the solution sequences associated to each level of higher order problem (until

reaching an equilibrium point where the sequence was generic regardless of the instance). At that

point, the process was reversible to generate the sequences back into the database to model the

steps accurately. This section focuses on the problem of problem solving itself. The earlier section

 140

made the assertion that the same process utilized to discover solution patterns via simulative search

could search for pattern sequences by testing transform operators. This section provides the

problem definition of the universal optimization problem that is associated with the sequence

discovery and is fully recursive and co-recursive.

Figure 4-8 shows the schema for UPRF sequence discovery problem or the universal

discovery problem (UDP). The goal of the problem is to discover the operators that generate the

targeted sequence. This aligns with the prior section wherein the solution state sequence of each

entity/attribute combination became the target of a higher order problem. UDP utilizes the same

schema as the base case problem including Hanoi. This means that UDP fits into the same

framework for simulation as any other problem and helps validate that the problem definition

language (UPDL) is robust enough to handle complex problems. In the next chapter on practicality,

further examples help validate the extensibility of UPDL as well as the framework (UPRF) to

model and solve a variety of problems.

A distinguishing aspect of the UDP from other problems is that the problem is that the

simulation relies on a special operator (“TEST_TRANSFORM”) to actually generate the

sequences from the operators and test them. However, this aspect does not prevent UDP from

operating within the self-same framework and it meets the criteria for the continuous improvement

model by exposing all the attributes, expressions, and queries back to the framework that are

utilized to meet the goal defined by the problem in the schema.

A second distinguishing aspect is the use of the “SELECT_ INTERNAL”. This provides a

means for the UDP to query objects within the database without the need for them to replicate to

the standard entity/attribute tables. This ensures access to the lower level problem data without the

 141

need to replicate this back into the structure. The difference in implementation does not

compromise the rule for the system requiring all operations to be traceable back to problem states

so long as views insulate the underlying implementation and provide uniform representation of

problems regardless of height in the solving hierarchy. The actual implementation of the learning

solution is done through the standard entities/attributes persisted back into the database. This data

is accessible then through the higher order transformations without any limit, since every

instantiation of the UDP utilizes the same definition. Triggering a UDP problem occurs when

solution of more than one instance at the same level in a problem. For example in Hanoi, solving

a three-disc simulation after solving a two-disc simulation generates a UDP transformation

problem whose goal is to discover the sequence of operations to generate a three-disc solution

from a two-disc solution using the relational state sequences.

Figure 4-6 depicts the UDP definition. The definition obfuscates much of the delineation from

the prior operational proof through highly encompassing functions for testing the transformations.

The definition could provide more detail to support lower granularity, but there is little value in

this since the transformation operation generates the information needed for traceability back to

the correlations associated with the transform operator used and the sequences. The goal of the

UDP problem is simply to execute a broad query, which filters using the transform testing function

that then returns all valid instances of source and target entities along while iterating through each

transform operator. This forms the output of the query. When the full sequence generates

successfully for all sequences, the process is complete. At this point, the transformation sequence

forms the first instance of the transformation problem. When UPRF finishes the simulation for a

third lower level instance such as for a disc count of five, then the framework will detect an

 142

untransformed instance. It will then attempt to find the method for generating the transform

sequence to transform the transform operations performed on the simulation for three discs to

achieve operations to solve four discs in order to generate the operations needed to transform the

simulation for four discs to solve five discs. This becomes a third-level problem when encountering

more simulations until reaching generalization as described earlier.

 143

 144

Figure 4-10: Universal Discovery Problem

 145

4.4 Chapter Summary

This chapter provided an operational proof for the feasibility of a universal problem resolution

framework (UPRF). It enumerated an inductive proof showing how the proposed UPRF design

met the key requirements for generic problem definition, solution space probing, and higher-order

transformation. The chapter concluded with a proof-by-example using the Tower of Hanoi in

which the solution path, through simulation and transformation to higher levels of abstraction,

evolves from brute-force exploration to generating a generic transformation that reduces

identification of the solution path of further instances of the puzzle to a linear process.

 146

5. PRACTICALITY

To this point, the dissertation has focused on the use of Hanoi to demonstrate UPRF. The

Tower of Hanoi is an NP-hard problem, but it has commonality with virtually all types of

computational problems; it possesses an initial state, manifests in multiple instances, and has a

generalized solution adaptable for any instance to meet a goal state. Wide varieties of problems

share these attributes including NP-complete problems such as the traveling salesman problem

(TSP). The TSP also has an initial state, goal state and is configurable as different instances.

General solutions exist that require exponential complexity as well as approximation solutions that

attempt to optimize the solution discovery at the risk of not being perfect. A wide variety of

problems fall into the NP-complete domain and every NP problem is reducible to another NP

problem. The problem of discovering an algorithm is actually an NP-complete problem. To be

practical, UPRF must be able to leverage current technology or at least the technology being

developed to solve problems in practical time limits within reasonable resource constraints.

Discussions around practicality involve the concept of scalability. This chapter examines

scalability in terms of both UPRF functionality across problem types as well as in terms of

implementation of the system within technological constraints. This chapter provides answers to

the following questions:

1. Scalability for other problems: How does UPRF handle other problems including non-

deterministic or probabilistic scenarios? Is it able to scale for problems that are more

 147

complex or for different types of problems? Does the UPRF sequence recognition model

scale to higher-order complexity for the base Tower of Hanoi scenario when the number

of pegs is a variable as well as the number of discs? Can it optimize solutions for NP-

complete problems including finding an even larger TSP route than currently possible

through approximation optimizations? Can UPRF support collaborative or cooperative

multi-agent scenarios? For example, could it continually play itself in a game such as

Chess and improve itself without input from a SME?

2. Implementation Feasibility: Is UPRF practical for implementation? How can it scale to

leverage technology innovations?

5.1 Scalability for Other Problems

Scalability includes supporting expanding capacity without the need for extensive

modification of the system. The schematization model of UPRF supports this by providing a

generic representation of any relational state through functions. UPRF supports external

referencing as well as self-referencing through comprehensive polymorphism data structures. In

UPRF, a problem may manifest itself as an entity that another problem can reference. Items within

the data structure are also bi-directional within the context of constraints that prevent endless

reference loops while using dependency detection to iterate through scenarios in dependency

sequence. In this chapter, UPRF uses this capability to support competitive and collaborative

scenarios including an example from Tic-Tac-Toe and discussions of Chinese checkers and

Canasta. The Tic-Tac-Toe example delves into the variations imposed by multi-agent scenarios

and iterates through a solution scenario from start to finish for an application of symmetry to

replicate a solution path. This chapter discusses feasibility for the implementation of Chinese

 148

checkers and Canasta scenarios based on the multi-agent paradigm established in the Tic-Tac-Toe

example.

An additional area of scalability provided by UPRF concerns the types of solutions that are

pursuable. The Tower of Hanoi illustrated the pursuit of a definitive deterministic goal; the goal

specified an exact solution to the problem. However, because the goal state derives from functions

against the relational state and such functions may be aggregate in nature rather than exact, UPRF

can work towards solutions that are not exact and based on an energy function. In this chapter, the

zero-sum subset problem, a manifestation of the NP-complete problem type, serves as an example.

NP Problems include scenarios such as the TSP. This example shows all such problems are

reducible to each other and the subset problem is easy to represent in queries. In the zero subset

problem, the goal defined involves minimizing steps rather than finding the solution in a specific

number of steps. This allows UPRF to attempt solutions to NP-complete problems and utilize the

transformational learning process to identify optimizations toward the problem. While the

dissertation does not attempt to show the reduction through successive optimizations to polynomial

time of an NP-complete problem, it does show that the maximum degree of optimization is a

natural outcome of the UPRF approach.

Another example of scalability related to problem types are probabilistic scenarios. This

chapter provides an example of a probabilistic scenario for optimizing trades in the stock market.

In this scenario, UPRF attempts to find the optimal method for making profitable trades with the

transformations involving different instances of time to identify repeatable patterns. Some research

asserts the stock market is an efficient system and therefore not providing any repeatable

optimization technique that is better than chance. This dissertation does not attempt to prove this

 149

either way, but it does show how UPRF can help to test such a hypothesis through the simulation

and transformation process.

5.1.1 Increasing Complexity – K-Peg Tower of Hanoi

In the k-peg Tower of Hanoi, the number of pegs themselves become a variable rather than

fixed at three pegs only. This section explores the background of the k-peg Hanoi, models a k-peg

problem, utilizes simulation to generate the sequences, examines the patterns that emerge from

this exercise, and analyzes how the UPRF process ultimately identifies the transformation

sequence to extend the 3-peg solution to any number of pegs. Although this section does not go

into the degree of depth as Chapter 3 did regarding the transformation sequence recognition

process, it does provide proof from inspection that the same technique used to derive the general

formula for 3-peg, k-disc variations will yield a general formula aligning to Reve’s [120] and

solving the puzzle in the minimum steps. The number of optimal steps for different variations with

pegs and discs is a complex formula [121]. UPRF does not need to know the optimal number in

order to pursue a simulative solution, as it is able to exhaust all possible paths until finding the

minimum. Providing the number of steps is an optimization to reduce the amount of simulation

work.

Debate regarding the proof for an optimal solution approach for k-peg Hanoi persists but

brute-force simulation achieves the minimum number of steps for scenarios where k is sufficiently

small. Using the same approach as with the standard Tower of Hanoi, UPRF is able to model the

problem very simply for presentation to the simulator (Figure 5-1). This example illustrates an

alternative definition method using standard Structured Query Language (SQL) to define views

and functions based on views from the generic UPRF schema. Figures 5-2 and 5-3 contain the

 150

SQL code for modelling the detailed K-peg tower problem and then returning the rows associated

with the next possible moves at any point in the simulation process.

 151

Figure 5-1: Hanoi K-Peg Definition

 152

Figure 5-2: Hanoi K-Peg SQL View based on UPRF Schema

 153

Figure 5-3: SQL Function for Next Move States for K-Peg

As the simulation finds solution paths, the framework captures the sequences associated to the

solution (Table X). A unique feature of adding more pegs is that multiple optimal solutions arise,

which is not the case for the 3-peg version. This requires UPRF to search across multiple solution

instances in order to find a solution pattern and then cross-search within the k-peg solution space

to correlate sequences for the variations. This represents a similar scenario but with multiple

instantiations as the 3-peg variation. Table 5-1 provides sample move sequences and Table 5-2

provides example solution sequences that map closely to the 3-peg and from 4-peg to 5-peg as

well as providing two diverse solution sequences.

 154

Table 5-1: Sample Solution Sequences for K-Peg (peg count = disc count)

Hanoi_Disc_Count Step Disc Peg

3 1 1 3

3 2 2 2

3 3 1 2

3 4 3 3

3 5 1 1

3 6 2 3

3 7 1 3

4 1 1 4

4 2 2 2

4 3 3 3

4 4 1 2

4 5 4 4

4 6 3 4

4 7 1 1

4 8 2 4

4 9 1 4

5 1 1 5

5 2 2 3

5 3 3 4

5 4 1 3

5 5 4 2

5 6 5 5

5 7 4 5

5 8 3 5

5 9 1 1

5 10 2 5

5 11 1 5

 155

Table 5-2: Sample Disc Sequences for K-Peg Hanoi (disc count = peg count)

Discs/Pegs Disc Sequence Value

3 1 ---1-1-1-1 85

3 2 --1---1- 34

3 3 --1--- 8

4 1 ---1-1--1--1 329

4 2 --1-----1- 130

4 3 --1--1-- 36

4 4 ---1---- 16

5 1 ---1-1----1--1 1289

5 2 --1-------1- 514

5 3 --1----1-- 132

5 4 ---1-1---- 80

5 5 --1----- 32

6 1 ---1-1-----1---1 5137

6 2 --1---------1- 2050

6 3 --1------1-- 516

6 4 ---1----1--- 264

6 5 --1-1----- 160

6 6 ---1------ 64

Table 5-3: Sample Peg Sequences for K-Peg Hanoi (disc-count = peg-count)

Discs/Pegs Peg Sequence Value

3 1 ---1---- 16

3 2 ---11- 6

3 3 ---11-1--1 105

4 1 ---1------ 64

4 2 --1-1- 10

4 3 ---1-- 4

4 4 ---11-11---1 433

 156

5 1 ---1-------- 256

5 2 ---1---- 16

5 3 --1-1- 10

5 4 ---1-- 4

5 5 ---11-111----1 1761

3 1 ---1---- 16

 Alternate peg sequences

3 1 ---1---- 16

3 2 ---11- 6

3 3 ---11-1--1 105

4 1 ---1------ 64

4 2 ---1-- 4

4 3 --1-1- 10

4 4 ---11-11---1 433

5 1 ---1-------- 256

5 2 ---1---- 16

5 3 ---1-- 4

5 4 --1-1- 10

5 5 ---11-111----1 1761

6 1 ---1---------- 1024

6 2 --1----- 32

6 3 --1--- 8

6 4 ---1-- 4

6 5 ---1--1- 18

6 6 ---11-1111-----1 7105

Basic inspection shows that there is a definitive pattern for at least some cases of the 4-peg

and 5-peg back to the 3-peg. Table 5-2 highlights the similarities. An area of further verification

and research for UPRF would be to apply the same technique used in Chapter 4 for identifying the

operator transform sequencing to progress from 3-peg to 4-peg, from 4-peg to 5-peg, and then

from 5-peg to 6-peg. This provides data needed to generate the sequence transformation involved

in generating the 4-peg prediction from the 3-peg prediction. The outcome should be a successful

 157

prediction of a 7-peg solution sequence. With sufficient transformation learning, a general solution

should arise just as with the 3-peg scenario.

The k-peg scenario tables include the binary values from the sequences. The work in Chapter

3 did not include this, but the principle is applicable to all sequencing solution scenarios. Their use

here calls out a potential area of research for utilizing learning operators to correlate the values

associated to the binary sequences rather than the sequences. There is an algebraic relationship

between the numbers as Table 5-4 illustrates that the total number of state changes add up to the

total number of state changes mandated by the goal. A learning operator could deduce the sequence

of operations for a missing peg or missing disc once the other peg or disc sequences were

determined by subtracting the values of the determined sequences from the value of the total

sequences. For example Table 5-4 shows that the total value of all sequences for the 4-peg scenario

is 29– 1 (511). If the sequence values for pegs 1, 2, and 4 were determined for the first sequence

example (64, 10, 433), then one can derive the third sequence by subtracting (501 (64 + 10 + 433)

from the total required for the overall sequence (511) and arrive to 10 as the sequence value for

Peg 3 which expands to the binary sequence 1010.

Table 5-4: Total Sequence Values for Pegs or Discs

Discs/Pegs Sequence Value

3 ---1111111 127

4 ---111111111 511

5 ---11111111111 2047

The patterns in Table 5-2 clearly show a pattern relationship as the number of pegs increase

for the same number of discs. In this case, the pattern for the discs is easy to derive, as it is merely

the widening of the bit strings in a symmetrical fashion. A pattern that predicts the cascading of

 158

the pegs also emerges in Table 5-3. The test case was for using an equal number of discs as pegs.

Undoubtedly, similar patterns emerge from adding additional discs for the same number of pegs.

This example provides support for the concept of extending the learning capability of UPRF

by expanding the variability of a problem. The same sequencing problem arises from the k-peg as

the 3-peg scenario. A similar learning scenario for sequence inspection with higher-level

transformation operator sequencing emerges as that associated with the automated general solution

discovery of the 3-peg scenario.

5.1.2 Multi-agent Scenario – Two Player Tic-Tac-Toe

The bi-direction allows the framework to incorporate other problems as entities within larger

problems to support virtually any type of problem scenarios. The architecture of UPRF finds

solutions through seeking to meet a goal. In Hanoi, the goal was deterministic and absolute in

terms of either failure or success. However, there is nothing in the structure preventing UPRF from

seeking solutions and transforming such solutions into higher order problems in the same way as

pursuing the Hanoi transformational sequence. This section models Tic-Tac-Toe as an example of

a multi-agent scenario.

For the purposes of this chapter, a multi-agent scenario refers to a problem that is either

collaborative, competitive, or a combination of the two. A collaborative scenario involves multiple

agents working toward a single goal. A competitive scenario involves one or more agents

competing against each other to reach a goal and includes the scenario of multiple agents working

together against another team of multiple agents. The polymorphic database design of UPRF

provides the support needed for all of these scenarios.

 159

Figure 5-1 illustrates a sample schema for Tic-Tac-Toe. In the Tic-Tac-Toe scenario, the goal

is to find the optimal solution path from both player’s perspective. Once the transformational

sequence processing done, the goal is for the simulation to perform the optimal moves for each

player from learning the brute-force simulations. In Tic-Tac-Toe, the significant patterns are all

within only three significant squares for the start – the center square, a corner square, and a mid-

point square along a row. Therefore, a simulation process that explores paths for these three

different squares should yield the transformation sequence to automatically find the optimal

solution path for the other six starting squares and ultimately identify the correct responses to avoid

the failure state and maximize achievement of the goal state. The schema in Figure 5-1 provides

enough information to instantiate all of the possible simulations including redundant ones by

varying the row range from one to three as well as the column range. In addition, the concept of a

player is added which varies from one to two. This allows the problem to vary by player creating

separate simulations from the perspective of the different players with the goal being relative to

the player number of the simulation. Figure 5-2 identifies the constraints of the move, goal, and

failure states so that the simulation can proceed similar to Hanoi.

 160

Figure 5-4: Sample Tic-Tac-Toe Problem Schema – Initial Relations

 161

Figure 5-5: Tic-Tac-Toe Query Rules

In the Tower of Hanoi, there was an exhaustive review of multiple simulations including the

state sequences. All simulations within UPRF follow the same model of depth-first solution space

exploration, so it is not necessary to examine Tic-Tac-Toe exhaustively, but it is useful to explore

 162

a sample showing the interaction from both the starting player and responding player perspective.

This example represents an evolution of the schema to support the constructs of Tic-Tac-Toe more

easily. However, this evolution is not a reflection that the Hanoi schema is lacking, but rather an

improvement more relevant to helping for this scenario. The actual data structure utilized to store

the schema is identical in each version. This section explores the progression in terms of the

following phases from both player perspectives:

1. Instantiation Phase: Generates the initial scenario for placement of the first square

for the first player for all the possible first set of moves.

2. Play Phase: Generates the response moves from perspective of both players as

separate simulations. Sequences for the relational states are captured in this phase.

3. Transformation Phase: Maps the sequences of operations to the higher order

transformation problem.

5.1.2.1 Instantiation Phase

The instantiation phase creates the following instances by nature of the expressions embedded

in the problem definition using the attribute overflow concept explained earlier in the dissertation.

The attribute overflow principle means that whenever more a query or expression generates more

than one row of data, generation of a new simulation instance arises that represents that unique

path. Based on this, the output is a combination of the following values:

 Players: 1 or 2 (Generated by the Range construct for the Player Number attribute)

 Player Move

o Player (Derived from Player Number)

o Row: 1 through 3 (Derived from Square-Range rule)

 163

o Column: 1 through 3 (Derived from Square-Range rule)

5.1.2.2 Play Phase

In the play phase, the simulation applies the goal context based on the player role associated

to the simulator against the grid of square representing the plays made including the coordinates

as well as the player associated to the move. The Player-Move entity thus includes not only the

coordinates but also the player that made the particular move. The rule accomplishes this through

the Play-Game query, which looks for a non-used square and non-used column to assign the next

move. The outputs of Play-Game are thus:

 Player Number making the move based on a lookup that forces the player number to

alternate on each move.

 Square selected

 Column selected

The framework thus generates overflow situation necessary for branching multiple instances

for every possible move for each player. This generates the relational state sequences that represent

the relationship of each variable values relative to the sequence at which the value changes.

5.1.2.3 Transformation Phase

The transformation phase occurs after achieving solutions to two distinct instances. This phase

regenerates the problem of deriving an instance solution from another instance solution. The

problem is modeled executing transform operators to try to generate a sequence of operators that

successfully transform the first instance operations to create the operations used to solve the second

instance.

 164

In the case of Hanoi, the solving of the solution path for different instances was simplified

since each solution path ultimately derives from the same recursive algorithmic solution with only

a slight variation based on whether the count of discs for the instance was even or odd. With Tic-

Tac-Toe, some paths are more successful than others are. For example placing a square in the

center peg ensures at least a tie-game (“Cat’s game”) for the first player and results in several

scenarios where the first player is victorious. However, placing a square in a diagonal square, while

still effective to ensure at least a tie, does not generate as many victorious paths and the sequence

to success is different.

The outcome of multiple-solution path instances is that the transformation operators should

eventually find a sequence that converges on common variables in the same way as Hanoi.

Ultimately, with Hanoi, the transformations become more and more abstract such that by the third

transformation, a very simple set of operators are able to generate the lower level solution to posit

the higher order problem – solving it generically. The same approach works for Tic-Tac-Toe with

the caveat that there is “noise” which serves to invalidate some instance as not related to other

instances. For example, Player 1 responses to Player 2 placing a mark in a corner square on the

first move indicate a different solution path than if Player 2 places a mark in a middle row or

column. However, if the response of Player 2 is simply a transformation of another response across

a different axis, the solution patterns should be convergent. For example, if Player 2 response to

Player 1’s first move in the center with an adjacent square rather than a square diagonal, the

solution paths are deterministic relevant to symmetry. Table 5-5 illustrates the concept of related

instances with solution paths whose variance is purely a function of symmetry as opposed to other

instances whose solution path is not attributable to symmetry.

 165

Table 5-5: Solution Symmetries in Tic-Tac-Toe

O X X O

O O

 X X

In the above chart, the olive-shaded instances have symmetric optimal solution paths separate

from the solution patterns for the beige-shaded instances.

To examine all the potential solution paths exhaustively using combinations of Player 1 and

Player 2 would take hundreds of lines of relational state sequence captures. A single base pattern

with different symmetries illustrates the relational state sequence chapter and how the

transformation problems evolve to converge on a solution transformation sequence that solves

multiple instances across symmetries. Based on this, the framework targets four instances initiated

by Player 1 moving to the center but with asymmetrical responses from Player 2. This is a subset

of the possible paths, but it illustrates the learning transformation process. By the end of the

simulation, UPRF is able to generate the solution to the fourth sequence from transformation

without the use of simulation. Table 5-6 shows the square labeling convention. These instances

are:

 P1: R2,C2; P2: R2,C1

 P1: R2,C2; P2: R2,C3

 P1: R2,C2; P2: R1,C2

 166

 P1: R2,C2; P2: R3,C2

Table 5-6: Tic-Tac-Toe Square Numbering

R1, C1 R1, C2 R1, C3

R2, C1 R2, C2 R2, C3

R3, C1 R3, C2 R3, C3

 Figure 5-6 illustrates the transformation process relative to the Player 2 response. This

diagram is very similar to the approach from Hanoi. The difference is that only two levels of

transformations are necessary to solve the fourth instance given the constraints outlined for a

similar solution path with different symmetries.

S1 - Simulation
Solution (R2, C1)

S2 – Simulation
Solution (R2,C3)

S3 – Simulation
Solution (R1, C2)

T1 - Transform
Solution (S1->S2)

T2 - Transform
Solution (S2->S3)

TS1 – Transform
Sequence Solution

(T1->T2)

Capture transform operations

Predict Transforms

Figure 5-6: Tic-Tac-Toe Simulation Transform Map

The generic solution for the symmetrical sequence used to achieve victory in S1 derives from

the transformations as follows:

 167

 S1, S2 -> T1

 S2, S3 -> T2

 T1, T2 -> TS1

TS1 will contain the generic operators to generate T2 that transforms S3 to S4 without the

need for simulation. The goal is that by solving three instances through simulation, the

framework learns the fourth instance transformation generating the solution sequence without

simulation. Figure 5-7 shows the generation of simulation four from the learned sequence

from the third transform generated by the generic transform sequence solution. The model

will increase in depth to support more advanced transformations including how to determine

the method for determining the correct response to different variations as instances are added

with non-symmetric responses. This was examined in detail in Hanoi and follows for Tic-Tac-

Toe and all other problem scenarios.

S1 - Simulation
Solution (R2, C1)

S2 – Simulation
Solution (R2,C3)

S3 – Simulation
Solution (R1, C2)

S4 – Simulation
Solution (R1, C3)

T1 - Transform
Solution (S1->S2)

T2 - Transform
Solution (S2->S3)

T3 - Transform
Solution (S3->S4)

TS1 – Transform
Sequence Solution

(T1->T2)

Capture transform operations

Figure 5-7: Tic-Tac-Toe Simulation Map with Sequence Generation

 168

The base scenario is the forced victory that comes from Player 2 moving to an adjacent square

rather than the corner. Table 5-7 shows the move sequence pattern for the first three scenarios

that provide the information ultimately needed to generate the fourth scenario solution.

Table 5-7 Tic-Tac-Toe Base Use Case for Simulation 1 (S1)

R1, C1

3

R1, C2

5

R1, C3

6

R2, C1

2

R2, C2

1

R2, C3

R3, C1

R3, C2

7

R3, C3

4

Tables 5-8 and 5-9 depict the transformations as simple rotations of the first simulation:

Table 5-8 Tic-Tac-Toe Base Use Case for Simulation 2 (S2)

R1, C1

R1, C2

2

R1, C3

3

R2, C1

7

R2, C2

1

R2, C3

5

R3, C1

4

R3, C2

R3, C3

6

Table 5-9 Tic-Tac-Toe Base Use Case for Simulation 3 (S3)

R1, C1

4

R1, C2

7

R1, C3

 169

R2, C1

R2, C2

1

R2, C3

2

R3, C1

6

R3, C2

5

R3, C3

3

Using Table 5-10 and applying symmetric transformations yields relational state sequences

for the first three scenarios that mirror one another. The table shows that each pattern repeats in

the other instances by varying the square and column that reuses the sequence. All that is necessary

to generate a transform sequence is to identify the variation that drives the transformation. The

following transforms occur for S1 - > S2:

 Row 1 -> Column 3

 Row 2 -> Column 2

 Row 3 -> Column 1

 Column 1-> Row 1

 Column 2 -> Row 2

 Column 3 -> Row 3

Thus, an operation sequence that transforms Rows to Columns and adjusts the column

numbers inverse to the row numbers generates the solution sequence for S2.

For S2 -> S3:

 Row 1 -> Column 3

 Row 2 -> Column 2

 Row 3 -> Column 1

 Column 1-> Row 1

 Column 2 -> Row 2

 Column 3 -> Row 3

 170

The same approach works for S2 to S3. Therefore, the same sequence of transform operators

can predict S4 and the solution is generic for the symmetry. The simulator can then apply this

learned knowledge to generate higher order transforms for other symmetries. Ultimately, the

symmetries feed up such that the framework generates a solution that defines the operations

required for each sequence of moves to transform to the optimal solution.

Table 5-10: Sample Solution Sequences for Tic-Tac-Toe

Attribute Value State Change Sequence

S1

Player P1 1-1-1-1

Player P2 -1-1-1-

Row 1 --1-11-

Row 2 11-----

Row 3 ---1--1

Column 1 -11----

Column 2 1---1-1

Column 3 ---1-1-

S2

Player P1 1-1-1-1

Player P2 -1-1-1-

Row 1 -11-----

Row 2 1---1-1

Row 3 ---1-1-

Column 1 ---1--1

Column 2 11-----

Column 3 --1-11-

S3

Player P1 1-1-1-1

Player P2 -1-1-1

Row 1 ---1--1

Row 2 11-----

Row 3 --1-11-

Column 1 ---1-1-

Column 2 1---1-1

Column 3 -11----

From the above, S4 with an initial move of R1, C3 by Player 2 follows directly from sequence

transformation if the playing pattern is the same in regard to symmetry.

 171

5.1.3 Advanced Multiple-Agent Scenarios

The Tic-Tac-Toe example illustrated the exploration of a solution path that involves multiple

agents being the players. Each player is simply another variable with an associated state sequence

mapped against a minimal energy efficiency goal to obtain success. In this way, an exhaustive

simulation with upper level transformations will yield the ideal move patterns for both players.

However many multi-agent scenarios are far more complex and not deterministic. Can the

same concepts be applied to games or problem scenarios that include more than one antagonist?

What is the impact on the usability of the framework if multiple agents collaborating against

another team is introduced? For these questions, this section considers two simple games that

involve more than two agents: Chinese checkers and Canasta.

Chinese checkers may have more than one player whose goal is to change the state of their

objects to be within the opposing player’s square prior to other players. However, the pursuit of

the goal is more complicated because of the interaction with other players. Interaction with other

player moves may both benefit and hurt the changes of a player meeting the goal state. In the Tic-

Tac-Toe scenario, players were modeled as variables. This is one approach to multi-agent, but

there is another approach that works within UPRF that allows the perspective of each player to be

the actual problem. This allows the UPRF to model the optimization problem for each player as a

separate problem from the perspective of the particular player achieving the goal. The polymorphic

database design of UPRF provides the role-perspective ability. In UPRF, every object may be

polymorphic. This allows the framework to represent a problem in one scenario as an entity inside

of another problem. For example, the framework can represent the interactions occurring on one

 172

simulation involving a separate player as an entity state sequence within another problem. This

allows simulation to occur in parallel on behalf of each player.

Figure 5-8: Chinese checkers

The team version of the card game Canasta is an example of a multi-player scenario where

two members of the same team collaborate against another team. This use case benefits from

UPRF’s ability to instantiate a problem in terms of multiple players as entities on the same team

pursuing a goal in parallel to solving the same problem for a different team that interacts as an

opposing entity. In this approach the schematization of entities include both players on the same

team to monitor state sequences that contribute towards the goal while defining the paths derived

from the actions of another simulation mirroring the opponents’ actions as a separate entity

attribute sequence. The framework can use the same technique for any collaborative/competitive

scenario.

5.1.4 Non-deterministic and highly complex type problems including NP-complete

This section examines scenarios where no deterministic path may be found or the most optimal

solution remains undiscovered. This section also reviews probabilistic problems that may not have

any optimal solution. This section examines the following problem scenarios:

 173

 Zero-subset sum problem – This is an NP-complete problem that is easy to model in

UPRF. This problem is chosen because all NP-complete problems are reducible to

other manifestations. The optimal solution to zero-subset thus can benefit not only

zero-subset but also other NP-complete problems including the TSP.

 Stock market trade optimization – This probabilistic scenario investigates how

UPRF can schematize problems that closely model real-world non-deterministic

scenarios. This problem endeavors not only to identify optimal parameter and

parameter value selection to maximize profitability for a given window of time, but

also to identify an autonomous learning process whose execution resides above the

profit-making simulation process over time periods. The problem does this in order to

identify the optimal methods to discover parameters and parameter value variation

methods to obtain maximum benefit over the lifetime of a trading strategy.

5.1.4.1 Zero-Subset Sum Problem

In the zero-subset sum problem, the goal is to find a subset of integers within a set whose sum

is zero. Modelling the zero subset sum problem as a binary problem allows for representation in

UPRF [122]. The number of steps required to find the integers is exponential even though the

solution can be determined in polynomial time. The inability to solve a problem in polynomial

time even though validation of the solution is possible in polynomial time is a distinguishing

attribute of NP-complete problems [123]. In this section, the framework represents the zero-subset

problem schematically so that simulation can generate possible instances of the problem within a

range and then attempt to determine through simulation the optimal adding sequence to add the

numbers for all possible number sets within a test range. The learning transformation problem is

 174

the same as in prior scenarios. As the framework solves each subsequent instance, it generates a

transformation problem to determine the transform operators that can generate the sequence of

solving steps from one instance using another instance. The framework transforms each successful

transformation solution into a higher order transformation problem to generate the transformation

sequence for one instance from another instance.

The modelling of zero-subset here does not intend to resolve the issue of P=NP, but shows

how the process contributes toward optimizations for the problem. For the purposes of illustrating

the approach, the transformation process is limited and does not involve many instances. A

potential contribution of an exhaustive problem solving exercise in this area is a proof relevant to

P=NP. If it can be shown that, with sufficient instances of problem configurations, the problem

solver converges to all of the known optimizations and the complexity remains non-polynomial,

this is a compelling argument for P!=NP. On the other hand if some point of equilibrium is reached

based on discovery and application of optimizations into the transformation sequences such that

the complexity becomes less than polynomial, this establishes P=NP. It is not the purpose of this

exercise to answer the question or to provide a proof, but to outline how UPRF can pursue an NP-

complete problem such as zero-subset sum to seek the optimal solution.

As in prior scenarios, the first step is to schematize the problem. Figure 5-9 illustrates the

schematization using a version of the problem schema that works well with modelling this problem

but still maps to the generic database structure proposed earlier. Figure 5-10 depicts the schema

used. Not all features of the schema are used. The “Play” query is not needed because the initial

setup query already generate all of the solved instances so these are immediately ready for

transformation to a higher order correlation problem. Due to the polymorphic nature of a problem

 175

persisted as a problem entity within itself, the framework can model even a problem that has no

sub-entity steps for transformation in terms of its setup query outputs. The problem definition

including its attributes are stored polymorphically in the schema as an entity which allows

visibility in the engine to any attributes related to the problem in the same method as sub-problem

entities. Another feature of this schema is the concept of a junction that contains criteria applying

to expressions separately. This functionality supports nested conjunction such as having a set of

AND operators within a set of OR operators. This simplifies the use of Boolean expressions with

conjunctions to support any type of extraction from the query and underlying expressions.

 176

Figure 5-9: Zero-Subset Sum Problem Schema

 177

Figure 5-10: Updated UPRF Schema (v13)

 178

The baseline problem definition thus generates not only all possible test values for a domain

of numbers but all of the sequences that might be used to solve the problem. The problem could

have been defined in the playing query to integrate known optimizations such as that from

Horowitz and Sahni [124] which reduces the time to O(2N/2) rather than using brute force.

However, schematizing the problem in the current manner provides an opportunity to validate

UPRF’s optimization process. The framework ultimately converges to the most optimal method to

solve the problem as successful simulation sequences from different instances promote to

transformational problems.

Applying the concepts from the prior solving exercise shows that UPRF will converge to the

optimal transformational sequence. The progression for achieving this is:

1. Solution instances will all have at least one negative number and one positive number

in order to generate the zero subset. The framework identifies this by correlation of

the engine to the factors relevant to the solution instances. This is a feature not exposed

by prior exercise, but is clearly easy to implement into the framework by modelling a

problem whose goal is to eliminate sequences that do not generate a solution and

correlate the data values to the failed instances. The framework can then assert this

optimization back into the original problem as a failure query to speed up the

simulation process.

2. Positing a higher order problem against the base problem applies operators to

transform successful instances to one another. A set of transform operators provides

the domain for which to register selection of an algorithm given the inputs. There are

 179

definitive correlations associated with optimizations involving the order of numbers

tested within a range.

3. The higher order problem identifies a pattern for testing the sequences from the

sequence of numbers flagged for inclusion in the subset problem that correlates across

instances. This becomes a third order higher problem and once this is resolved, the

framework will establish the optimal way to sequence the testing of the numbers for

inclusion in the subset calculation. Utilizing different functions for selecting the

sequence provide the candidate transformational operators.

UPRF can utilize a transformation problem that correlates solved instances incrementally

where different functions define the sequencing of the numbers for testing. UPRF is limited to

transform operations that provided to the framework. This is an efficiency issue and not a

functionality issue. After enough iterations, the framework will establish a variable relationship

that replicates the partitioning function through a sequence of more primitive operations so long

as the primitive operations are sufficient to construct the higher-level function. This assertion

comes from the postulate that UPRF converges to complete correlation relevant to the transform

operators available.

Examination of the outputs of the problem instantiation in Table 5-11 shows the correlation

to the sequencing utilized to reach the goal. The combination of the number set and the solution

sequence generates a unique sequence. The framework can then use this sequence as a base

instance for transform operators to recognize the operators that converts one sequence to another.

Table 5-1 shows the state sequences for two different instances. The two instances reveal the same

optimal solution sequence for different numbers in the solution. This provides information to the

 180

learning algorithm in the transformation problem to identify the correlating factors between the

two simulations. In this case, the major correlating factor is that the numbers at both extremes of

the second sequence are respectively decremented and incremented by the same amount. The

information learned from this allows UPRF to solve a new problem instance that has this variation

instantly without the need for simulation.

Table 5-11: Sample Zero-subset Solutions

Numbers Count -

Sum

+

Sum

Solve

Sequence

Observation

2,-1,1,2 4 3 3 1,2,3,4 A: Positive Sum =

Negative Sum -> Add

all numbers

 1,4 B: All numbers

symmetrical domain

-> Choose equal

offset from mid

points

C: Choose opposites

for immediate match

2,3

-2,-1,1,2 2 2 1,2,3,4 A

 1,4 B

 4 2,3 B

-2,-1,1,3 -3 4 1,2,4

 4 2,3 C

-2,-1,2,3 -3 5 1,2,4

 4 1,3 C

-2,1,2,3 4 -2 6 1,3 C

-1,1,2,3 4 -1 6 1,2

-2,1,2 3 -2 3 1,3 C

-2,-1,1 3 -3 1 2,3 C

-3,2,3 3 -3 5 1,3

-1,1,2 3 -1 3 1,2 C

-2,2,3 3 -2 5 1,2 C

Table 5-12: Identical Solve Sequence for Different Subset Problems

Attribute Value State Change Sequence

Set: -3, -1, 2, 4 Representation

Solve

Sequence

1,2,4

Index 1 100

 181

Index 2 010

Index 3 000

Index 4 001

Value -3 100

Value -1 010

Value +2 000

Value +4 001

Set: -4, -1, 3, 5 Representation

Solve

Sequence

1,2,4

Index 1 100

Index 2 010

Index 3 000

Index 4 001

Value -4 100

Value -2 010

Value +3 000

Value +5 001

5.1.4.2 Stock Market Trading Optimization

The stock market profitability scenario represents a probabilistic use case that is not of

definitive determinism. Some research cites the efficient market theory that over a long enough

period of time, there is no actual algorithmic approach that can fare better than simple guessing

[125]. The goal in modelling stock-market trading as a problem to UPRF is not to determine if that

is the case, although this could be a special type of problem for the system to solve. The goal is to

determine if UPRF provides a framework for optimizing performance of a stock trading portfolio

through the optimization process.

Modelling the stock market trading scenario represents a use case where data already defined

in a format conducive to analyzing and reporting on the stock market. For this scenario, UPRF

executes in an external fashion to integrate existing data against the rules to seek for the simulation.

Implementing UPRF for this scenario requires considerable software infrastructure development

 182

that is not present at this time in the project. However, using a system that conceptually implements

UPRF helps demonstrate the feasibility of the optimization process.

Modelling of the stock market trading scenario occurs at two levels. The first level is simply

to test various parameters with variable values in a brute force method to generate different

portfolios and test their performance. This represents the brute force simulation exercise of UPRF

that gathers data so that the upper level problem transformation can occur. This scenario

incorporates the concept of autonomous learning (“auto-learning”) to demonstrate problem

transformation of lower level instances. This is a variation from the sequencing approach in order

to add another variable for applying the solution from the lower level instances to the higher order

problem of identifying the most relevant profitability trend.

In the auto-learning approach, the system calculates profitability window based on parameter

ranges for time to look back and number of days in the evaluation period. Based on this, a higher

order problem implements this as the measurement mechanism to test for a trend change. At a yet

higher level, a simulation occurs which applies various profitability windows to how to determine

the profitability window. Figure 5-11 illustrates the progression that feed the results of the lower

level simulations as inputs for higher-level simulations that utilize parameters for trending

profitability. Figures 5-12 and 5-13 depict schemas to enable integration with the simulation

process as well as for the auto-learn. Figure 5-14 shows an additional schema oriented particularly

towards modelling a behavior. This system is still in development but provides an opportunity to

integrate an analytic application with UPRF.

Initial test results of UPRF concepts with the stock trading application known as “CapGen”

show promise. The CapGen database currently stores over 3 billion records downloading over 2

 183

million quote rows daily for both intraday and end-of-day. In addition, the system generates several

million technical indicator values in a key/value store. The system provides a generic external data

collection interface that includes web-scraping functionality to access sentiment data including

social media feeds and macro data (Figure 5-20). Collected indicators as well as strategies

themselves persist into the system as index instruments along with trade-able equities allowing

correlation to occur among not only assets but also indicators. This abundance of data provides an

excellent foundation for UPRF to operate against in simulative and learning processes. Strategies

are loaded into the system using a schema specific to CapGen (Figures 5-18 and 5-19) to represent

the concept of triggering instruments with parameters as well as the trade execution instruments

and parameters. This structure is transformable to the UPRF schema to represent queries for the

overall problem solving of optimizing asset purchase and sales. Initial results are promising.

Figure 5-22 shows the impact of optimizing an existing strategy based on auto-learning of cycle

data to improve the results significantly higher than that of a buy-and-hold strategy on the

instruments. In this case, the Auto-learn varied parameter values correlated to greed and fear by

setting exit and stop limits that align with volatility changes in the market over the testing period

running from 1992 through most of 2013. The approach shows how the higher-order learning

approach of UPRF learns and adapts to avoid over-fitting data from previously learned intervals.

 184

Figure 5-11: Incremental Trading Strategy Improvement

 185

Figure 5-12: Stock-Trading Schema

 186

Figure 5-13: Stock-Trading Schema (Continued)

 187

Figure 5-14: Stock-Trading Schema (Continued)

 188

Figure 5-15: Stock-Trading Schema (Continued)

 189

Figure 5-16: Stock-Trading Schema (Continued)

 190

Figure 5-17: Stock-Trading Schema (Continued)

 191

Figure 5-18: CapGen-specific Schema (Variables)

 192

Figure 5-19: CapGen-specific Schema (Values and workflow)

 193

Figure 5-20: Trading System with Feedback Loop and Dynamic Web Data Collection

Methods

Results

Result Metrics

New Methods

Method Metrics

Internet

Metrics

Trader

 194

Figure 5-21: Automated Data Capture Scheme

Source Data

Fact Data

(Measures)

Reference

Data

(Dimensions)

Internet

Analytic Data

Metadata

Client App

3) How? (Criteria)

1) Red KPI

2) Why?

Web

Scraper

Query Driver

Request (Search Criteria)

Response

Filter Criteria

Structured

Result

 195

Figure 5-22: Stock Trading Report Showing Impact of AutoLearn for Timing

 196

Figure 5-23: Graph showing Predictive Analysis from Simulations

0

20

40

60

80

100

120

1
/1

/1
9

9
2

1
0

/1
/1

9
9

2

7
/1

/1
9

9
3

4
/1

/1
9

9
4

1
/1

/1
9

9
5

1
0

/1
/1

9
9

5

7
/1

/1
9

9
6

4
/1

/1
9

9
7

1
/1

/1
9

9
8

1
0

/1
/1

9
9

8

7
/1

/1
9

9
9

4
/1

/2
0

0
0

1
/1

/2
0

0
1

1
0

/1
/2

0
0

1

7
/1

/2
0

0
2

4
/1

/2
0

0
3

1
/1

/2
0

0
4

1
0

/1
/2

0
0

4

7
/1

/2
0

0
5

4
/1

/2
0

0
6

1
/1

/2
0

0
7

1
0

/1
/2

0
0

7

7
/1

/2
0

0
8

4
/1

/2
0

0
9

1
/1

/2
0

1
0

1
0

/1
/2

0
1

0

7
/1

/2
0

1
1

4
/1

/2
0

1
2

1
/1

/2
0

1
3

1
0

/1
/2

0
1

3

Sum of RiskAvg

Sum of SpyAdj

 197

5.2 Implementation Feasibility

Implementation feasibility revolves around multiple aspects of scalability. In this section, the

following aspects are considered:

1. Efficiency – What level of efficiency occurs with UPRF? Do the costs support the

benefits? Does the learning speed up the solving process at a faster pace than the

complexity of the solving endeavors?

2. Architectural Scalability – Does the solution support scaling data and processes? This

examines questions such as:

a. Can the data utilized by the system be distributed and shared among multiple

processes?

b. Can separate processes be instantiated to operate on sub-aspects of a problem-

solving endeavor? Can the simulation and exploration of transformation

sequences be distributed effectively and coordinated?

5.2.1 Efficiency

Efficiency is an attribute of systems to ensure achieving the maximum functionality with the

minimum amount of overhead. The degree that a system can be efficient is highly correlated to not

only the overall system architecture, but the sophistication of the algorithms used to carry out the

tasks [126]. Both the internal infrastructure for problem solving and the executed operators in

problem solving endeavors to recognize transformational patterns determine the efficiency of

UPRF. The internal architecture for UPRF is agent-based and distributable while the hosting

architecture is extensible to support executing functions as part of the transformation process. In

the second regard, this might seem to make UPRF limited in performance to the given algorithms;

 198

however, the internal architecture of the system supports the concept of equilibrium and of

schematizing any problem for optimization. This includes the performance of UPRF itself.

Therefore, the system promotes efficiency improvement while still allowing extensibility.

The Tower of Hanoi provides a good example of the benefit for the continued optimization

through transformation of lower level instances into higher order problems that seek the generic

solution patterns. When the framework obtains the generic solution pattern, it drastically reduces

the effort for solving further instances in the domain. Although the Tower of Hanoi is itself NP-

hard, the solution effort does not need to be brute-force. Although the number of steps to represent

the solution increases exponential, once the solution pattern is identified, the number of steps

required to find the solution path can be linear. Table 5-13 shows the number of operations

associated with both the simulation and transformation instances for Hanoi. Figure 5-24 shows the

outcome in numbers of operations. Note that as the transformation increases to higher levels, the

number of operations decreases and the exponential correlation to the number of discs disappears.

Once the generic solution path is in place, the system only needs to reverse through the

transformation process to generate the solution steps directly.

Table 5-13 Solution Complexity

Problem Instance Objects Solve Steps

S1 - Simulation Solution (discs =2) 2 5

S2 - Simulation Solution (discs = 3) 3 39

S3 - Simulation Solution (discs = 4) 4 221

S4 - Simulation Solution (discs = 5) 5 1975

T1 - Transformation Solution (S1>S2) 3 232

T2 - Transformation Solution (S2>S3) 4 495

T3 - Transformation Solution (S3>S4) 5 1055

TS1 - Transformation Sequence Solution (T1>T2) 6 2239

TS2 - Transformation Sequence Solution (T2>T3) 6 2239

 199

SG1 - Sequence Generation Solution 3 3

Figure 5-24 Solution Complexity

The identification of the simulation solution for S5 with five discs is therefore reduced to the

three steps from the solution generation path which directly generates TS2 which then generates

T4 which generates the S5 solution path such that the number of steps is only five to perform the

transformation. The identification steps only rely on the prior instance being in place, which the

framework generates through the five-step process. Therefore, even though the number of

operations required to generate the steps into a representation are exponential with regard to the

discs, the time complexity for identifying the transformation and generating the sequence is linear.

This achieves the same level of performance as if predesigning an algorithm to determine the

S1
S2

S3
S4

T1
T2

T3

TS
1

TS
2

SG
1

0

500

1000

1500

2000

2500

Solve
Steps

Objects

5 2

39 3

221
4

1975

5

232
3

495

4

1055

5

2239

6

2239

6

231
3

Solution Complexity

S1 S2 S3 S4 T1 T2 T3 TS1 TS2 SG1

 200

correct moves. This use case demonstrates that, with no pre-knowledge and exclusively dependent

on simulation and transformation, UPRF is ultimately able to achieve equivalent performance to

an algorithm specifically designed for the problem.

By storing all problem descriptions within a generic structure along with queries that represent

the relational states required for the initial state, transitive state, and goal state, UPRF is able to

utilize a general-purpose simulation engine and transformer without the need for custom

applications for different domains. This provides the ability for autonomous agents to play out the

simulations. This, along with the state capture framework, provides complete solution sequences

for all problem instances to the transformation engine. This promotes scalability since each agent

has the data needed in order to accomplish their task as well as allowing agents to execute on

independent nodes. This ability to distribute tasks and utilize independent agents that are task-

oriented rather than domain-oriented promotes not only scalability but also higher efficiency [127].

Another area of efficiency concerns minimizing the number of operations required to find the

correct sequencing of operations to perform the transformation. The number of possible sequences

grows exponentially related to the number of possible operators. This indicates the important of

the cross-domain learning aspect in order to weight the testing of operators more likely to be of

use in a particular domain based on learning in another domain. The solving engine performance

will slow significantly if an abundance of operators requires testing. Transformational operators

can perform operations that transform the entire sequence as well as just portions. If a

transformational operator emerges that can generate an instance solution from another instance

solution in a single operation, this mitigates the exponential nature of the exercise. This dissertation

 201

does not investigate this in detail and this topic along with machine learning optimization in

general represents an area for further research.

5.2.2 Architectural Scalability

UPRF scales in multiple directions involving process, data, and tasks. The independent agent

architecture supports using different nodes to target specific aspects of the framework such as

schematization, simulation, and transformation. The only requirement is that each node have

access to the data. Scaling of data is achievable through partitioning of the relational data across

nodes. The framework achieves task scalability through the instantiation method whereby each

simulation or transformation endeavor relates to a particular instance of a problem and is self-

contained. Once again, the only requirement is that all operations are able to register with a central

data store and receive information from the data store. Even within each problem-solving instance,

each operation is step is a new instance and interacted with by each agent at the step level. Figure

5-25 illustrates the method in which UPRF scales out across agents, data, and tasks with sub-

instances.

 202

.

Agents

Servers

Simulator

Transformer

Schematizer

Task Instances

Servers

Data

Data

Data

Data

Servers

Figure 5-25: Scalability Model for UPRF

5.3 Chapter Summary

This chapter focused on the practicality of a universal problem resolution framework (UPRF).

To be of relevance for further study, the framework must show some promise to be usable within

a foreseeable time horizon given current and emerging computational capabilities. This chapter

dealt with concerns related to problem solving, since it is the same type of challenge as that

presented by automated theorem proving. Therefore, problem solving is NP-Complete in nature

and exponential, which implies limited utility. The chapter introduced other problems of different

types, potentially much larger and more complex than the Tower of Hanoi base use case including

 203

a demonstration of the extensibility of UPRF to handle increasing complexity for an existing

scenario (transposing the 3-peg Tower of Hanoi to a K-peg problem). Despite these challenges,

UPRF promises to be practical because of its ability to scale both the scope of problems and the

use of computational resources efficiently. The key driving force is the inherent capability within

the framework to model its own performance and continually learn from it in order to achieve the

equilibrium goal of maximum benefit within cost constraints.

 204

6. CONCLUSION AND FURTHER RESEARCH

This section evaluates the results of the operational proof as well as contributions from the

other chapters that outline the supporting literature, design approach, and practicality for

applications against the research questions and goals. In order to answer the research goals, the

following outcomes were indicated:

1) Proof by example that a continuous improvement universal problem resolution framework

can be constructed using currently available software and hardware;

2) Production of a prototype that meets the thesis for a continuous improvement system – i.e.

non-domain specific, extensible without reprogramming of the core system, lacking need of

subject matter expert intervention; and executing within polynomial time complexity;

3) Rationale that the framework coupled with technology advancements generates optimal

solutions using fewer resources than possible without such a framework.

The following research questions were posited in the introduction and evaluated in terms of

the outcomes.

1) Feasibility: Is it possible to build a universal problem resolution system that continuously

improves and learns from its own execution including automatically cross applying

concepts learned to other domains in the most optimal method possible given the

information available to the system?

 205

2) Construction: What is the design of such a universal problem resolution framework

(UPRF) described above? What are the constraints and requirements for a design that fully

supports generic representation of problems, generic pursuit of problem solutions and

continuous improvement utilizing an overarching set of processing components without

the need for modifications of the actual components for the solving system? The specific

subordinate questions under this were:

a. How can UPRF generically encode problems from any domain without the need

for redesign of the problem representation process? What is the level of effort

required to represent various types of problems?

b. How can UPRF utilize the generic representation of a problem to explore possible

solutions?

c. How can UPRF support a continuous improvement paradigm?

3) Practicality: How would UPRF model, solve, and improve various types of problems?

What Subject-Matter-Expert (SME) interactions are required? How are these interactions

minimized? Is UPRF practical given current and potential technology?

6.1 Results

6.1.1 Feasibility

Chapter 3 provided a framework for storing problems generically while chapter four provided

an operational proof of UPRF using the NP-hard problem the Tower of Hanoi as the use case. The

operational proof demonstrated that the framework could transform sequences for different

instances generated from a deterministic problem to a more generalized problem for finding the

sequences. Through proof-by-example, the framework created higher order transformations while

 206

solving more instances up to four levels, at which time a generalized pattern materialized that

reversed to generate the input for the lower level problem transformation. This shows that it is

possible not only to generate higher order problems into a common schema but also to probe for

solutions to the higher order problems and recursively apply the solution sequences back to the

lower order problems. The dissertation thoroughly addressed the challenge of representing a

problem through a schema through a relational schema using not only the Tower of Hanoi, but

also the transformation problem itself. Chapter 5 on practicality provided additional examples of

problem schemas that the same generic schema could represent.

An assertion from the research question concerned the NP-complete challenge. In using an

NP-hard scenario, it was obviously impossible to solve a problem in polynomial time even with

discovery of the optimal solution. However, the goal of the NP scenario was to demonstrate that

the process of solution discovery could be constrained to polynomial time through an equilibrium

construct and that the endeavors of the solution discovery could make progress toward

optimization of NP problems. While the dissertation did not thoroughly explore this, testing proved

that the process of applying the higher order transformation in order to generate a solution instance

without the need to explore the full problem space in a simulative fashion contributed only a linear

constant to the overall problem solving process.

Another assertion involved cross-domain learning. Although not proven directly, it is possible

to infer that, since the framework captures all of the correlations in one problem-solving endeavor,

the framework could treat a problem in another domain as an additional instance for a transform

operator such that a correlation leads to an optimization across the domains. A K-peg Hanoi

problem, which included simulating solutions to four and five pegs, provided an example to

 207

demonstrate this potential capability. This example verified how learning of the transform

sequence for the three-peg solution contributes toward an optimal solution for four pegs. Other

examples include executing the learning process against different scenarios to see how

optimizations learned in checkers apply to chess. These type of scenarios are useful for

understanding the problem crossover capabilities of UPRF and validate its utility for general

problem solving.

6.1.2 Construction

Chapter 4 demonstrated the construction of UPRF. Much of the construction utilizes actual

working code, although at the time of this work only the simulation and sequence generation were

fully working. The UPD problem was not fully implemented and operational for generating

transformations and the operational proof required manual calculation to perform the

transformations. However, given the ability to manually generate the transformations and verify

their correctness through the reversal process, it is feasible to create UPRF. Although UPRF was

incomplete in this work, enough of it was prototyped to verify the concepts and establish the key

design principles. The three main sub-questions concerned (1) the ability to represent problems

generically, (2) the ability to generically search for solutions, and (3) the ability to learn

continuously – all of which the operational proof of Chapter 4 verified.

6.1.3 Practicality

The dissertation successfully modeled other applications including collaborative and

cooperative involving multiple players or agents for UPRF in Chapter 5. It also discussed the

handling of multi-agent scenarios with multiple competing as well as collaborative scenarios. The

dissertation examined the problem of modelling and optimizing NP-complete problems. It also

 208

modelled non-deterministic problems such as stock market trading. In all cases, state change

capture of individual values across attributes was practical in order to generate higher order

transformation problems as candidates for sequence recognition by higher order transformation

analysis.

The massive data tracking requirements for UPRF are realizable given the technological

trends. What was once thought impossible is now enabled through PCIE SSD [128]; very fast

high-speed storage scales into the hundreds of terabytes and distributed computing enables

memory to be treated as storage, allowing a network of computers to scale over high-speed

networks into the petabytes of storage operating at the speed of memory. Trends in data mining,

and predictive analytics using high-speed clusters and technologies such as Hadoop and H-Base

are also supportive of the high-performance computing requirements needed by this solution [129].

UPRF’s agent-based and task-oriented architecture is able to leverage current and emerging

technologies. This includes distributed problem solving techniques such as MapReduce [130]

whereby a network of computers supports distributed problem solving through reduction into sub-

problems that map onto computational nodes. PCIE SSD or in-memory databases have the

potential to support the large amount of data needed for the state representations.

GPU technologies also enable high-speed distributed processing [131]. Chapter 3 provided a

system framework based on a scalable broker architecture to allow dispatching of tasks for parallel

execution at a very low granularity. The simulation architecture leveraging parallel branching

scales very well to make UPRF practical.

 209

6.2 Further Research

This dissertation focused mainly on the modelling, simulation, sequence capture, and

transformational mechanism to generate higher order transformation problems from related

instances. The work focused on the software framework to support this, rather than the

implementation of the system. Many unanswered questions and future endeavors spawn from the

framework concepts. This includes areas of machine learning research, in-depth research into

specific types of problem domains, and the actual work of constructing the system.

6.2.1 Machine Learning

This work did not address the construction and evolution of the transformation operator

functions required to interpret solution sequences associated with one instance and generate a

related instance solution through correlation and machine learning. Machine learning was touched

upon briefly as a black box that receives the sequence from one instance and then attempts to find

the correlations needed to predict the sequence for another instance related through some

difference in variable value between the instances. The framework design supports the dynamic

addition of functions (transform operators) that perform transformational inspection to generate a

target sequence from a source sequence. The integration of machine learning systems as black

boxes will enhance the advancement of UPRF for practical solving of real world problems. An

interesting possibility enabled by this research is the transposition of UPRF as an actual machine-

learning algorithm in and of itself.

6.2.2 Problem Domain Research

This work covered multiple domains but did not go into depth regarding any problem domains

other than the Tower of Hanoi example. The work showed through diverse varieties of problems

 210

including NP-complete, it is possible to schematize non-deterministic, probabilistic, and multi-

agent and combinations of problems with these attributes for a simulatory approach to solve

instances and generate higher order transformational problems to converge instance solutions.

Deeper studies into these other realms will enhance the area of automated problem solving and

automated solution optimization. This research could result in greater optimizations of all types of

problems as well as advance the feasibility for the all-encompassing generic problem system

envisioned by this work. Additionally, deep endeavors into automatic optimization of various

problem domains have the potential to generate cross-domain knowledge that is applicable to

various and diverse problem domains that are only remotely correlated.

6.2.3 Construction of UPRF

This dissertation provided a prototype of the software and code involved in building the

framework. Although the dissertation provided code only for the database modelling and schema,

it did put forth sufficient design to build the functional code and provided a manual walk-through

of the procedural code requirements. The work resulted in code for functions sufficient to automate

the simulation and sequence generation, but there was insufficient time to finish development and

testing of the code for the transformational aspect. The work did however put forward extensive

design concepts for UPRF. For the framework to become a reality, it must implement the design

concepts in code within the context of a software development effort. The framework outlined for

autonomous problem solving supports an iterative approach so that it is possible to add

functionality incrementally in specific problem domains. There is also the potential to bridge

existing systems such as that depicted with the stock market optimization scenario to provide

immediate benefit to already developed problem solving or optimization applications.

 211

6.3 Chapter Summary

This chapter provides the conclusion to the dissertation, outlining results and further research.

The results demonstrate that a universal problem resolution framework (UPRF) is feasible,

constructible, and practical. Through the Tower of Hanoi operational proof and the discussion of

applications to other problems, UPRF emerges as a novel approach and paradigm shift affecting

machine learning and artificial intelligence. The dissertation has shown that UPRF is a viable

approach for a problem resolution framework that supports autonomous continuous improvement

with minimal external interactions and without the need for ongoing modification of the overall

architecture. Further, this work provides an impetus and foundation for other areas of research that

can contribute to the domain of generic problem solving systems and be the catalyst for major

innovations in future A/I and machine learning frameworks.

 212

7. REFERENCES

[1] F. Buschmann, “On Architecture Styles and Paradigms,” Software, IEEE , vol.27, no.5, pp.

92-94, Sept. 2010.

[2] A. L. Brown and J. S. De Loache, “Skills, plans, and self-regulation,” in Children’s Thinking:

What Develops?, R. S. Siegler, Ed.,. Hillsdale, NJ: Lawrence Erlbaum Assoc., 1978, ch.

1, pp. 3-35.

[3] E. B. Bonawitz et. al, “Modeling cross-domain causal learning in preschoolers as Bayesian

inference” in Proc. 28th Annu. Conf. Cognitive Science Society, Mahwah, NJ, 2006, pp.

89-94.

[4] D. A. Williams et. al, “Configural and elemental strategies in predictive learning,” J.

Experimental Psychology: Learning, Memory, and Cognition, vol. 20, no. 3, pp. 694-709,

May 1994.

[5] M. Minsky, “ACM Turing Lectures: Form and Content in Computer Science,” J. of the

Assoc. for Computing Machinery, vol. 17, No. 2, pp. 197-215, Apr. 1970.

[6] A. Wray, “The puzzle of language learning: From child's play to ‘linguaphobia,’” Language

Teaching, vol. 41, no. 2, pp. 253-271, Apr. 2008.

[7] M. C. Corballis, The Recursive Mind: The Origins of Human Language,. Princeton, NJ:

Princeton University Press, 2011.

[8] A. H. Maslow, “A theory of human motivation,” Psychological Review, Vol. 50, No. 4, pp.

370-96, 1943.

[9] Merriam-Webster. (2012, November 20). Technology – Definition and More [Online].

Available: http://mw1.merriam-webster.com/dictionary/technology.

[10] J. K. Ousterhout, “Scripting: Higher level Programming for the 21st Century,” IEEE

Computer, vol. 31, no. 3, pp. 23-30, Mar. 1998.

[11] J. N. Foster, “Bidirectional Programming Languages,” Ph.D. dissertation, Dept. Comp. and

Inf. Science, Univ. of Pennsylvania, Philadelphia, PA, 2009.

[12] J. I. Hungate, et al., “Application Portability Profile and Open System Environment User's

Forum,” J. of Research – Nat. Inst. of Standards and Technology, vol. 100, no. 6, pp.

699-710, Nov. 1995.

 213

[13] M. Rys, “XML and relational database management systems: inside Microsoft® SQL

Server™ 2005,” in Proc. 2005 ACM SIGMOD Int. Conf. Management of Data, New

York, NY, 2005, pp. 958-962.

[14] A. Beaulieu, “A Little Background,” in Learning SQL, 2nd ed. Sebastapol, CA: O’Reilly,

2009, ch. 1, pp. 1-11.

 [15] S. Dězeroski, “Data mining in a nutshell,” in Relational Data Mining. New York: Springer-

Verlag New York, 2001, ch. 1, pp. 3-27.

[16] Encyclopædia Britannica. (2012, November 20). Data mining [Online]. Available:

http://www.britannica.com/EBchecked/topic/1056150/data-mining.

[17] R. Battiti and M. Brunato, “Reactive Business Intelligence: From Data to Models to

Insight.” Trento, Italy: Srl, 2011.

[18] J. Yue et al., “Predictive Analytics Using a Blackboard-Based Reasoning Agent,” in Int.

Conf. Web Intelligence and Intelligent Agent Technology, 2010, pp.97-100.

[19] X. Chen and I. Petrounias, “A framework for temporal data mining,” in Database and

Expert Systems Applications, Heidelberg, Germany: Springer, 1998, pp. 796-805.

[20] M. E. Toplak and K. E. Stanovich, “The domain specificity and generality of disjunctive

reasoning: Searching for a generalizable critical thinking skill,” J. of Educational

Psychology, vol. 94, no. 1, pp. 197-209, Mar. 2002.

[21] J. T. Lanman, “A Governance Reference Model for Service-oriented Architecture-based

Common Data Initialization: A Case Study of Military Simulation Federation Systems,”

Ph.D. dissertation, Dept. of Modeling and Simulation, Univ. of Central Florida, Orlando,

FL, 2010.

[22] A. M. Campbell, et al., “Deep blue,” Artificial Intell., vol. 134, no. 1, pp. 57-83, Jan. 2002.

[23] J. McCarthy, “AI as Sport,” Science, vol. 276 no. 5318, pp. 1518-1519, Jun. 1997.

[24] R.S. Hartati, M.E. El-Hawary, “Optimal active power flow solutions using a modified

Hopfield neural network,” in Canadian Conf. Elect. and Comput. Eng., 2001, pp.189-

194.

[25] Chin-Chen Chang et al., “Using Dynamic Programming Strategy to Find an Optimal

Solution to Exploiting Modification Direction Embedding Method,” in 3rd Int. Conf.

Intelligent Inform. Hiding and Multimedia Signal Process., 2007, pp. 26-28, 489-492.

[26] E.T. Chu, et al., “An Optimal Solution for the Heterogeneous Multiprocessor Single-Level

Voltage-Setup Problem,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 28,

no. 11, pp. 1705-1718, Nov. 2009.

[27] S.O. Orero, M.R. Irving, “A genetic algorithm modelling framework and solution technique

for short term optimal hydrothermal scheduling,” IEEE Trans. Power Syst., vol. 13, no. 2,

pp. 501-518, May 1998.

 214

[28] C.V. Peroni, et al., “Optimal control of a fed-batch bioreactor using simulation-based

approximate dynamic programming,” IEEE Trans. Control Syst. Technol., vol. 13, no. 5,

pp. 786- 790, Sept. 2005.

[29] H. Rotstein and B. Shklyar, “Optimal solution and approximation to the l1/H∞ control

problem,” IEEE Trans. Autom. Control, vol. 44, no. 6, pp. 1240-1243, Jun. 1999.

[30] D. M. Smith, “Overcoming the challenges to feedback-directed optimization (Keynote

Talk),” in Proc. ACM SIGPLAN Workshop Dynamic and Adaptive Compilation and

Optimization, New York, NY, 2000, pp. 1-11.

[31] 1995. Book review: The Implementation of Prolog By Patrice Boizumault Translated from

the original French by Ara M. Djamboulian and Jamal Fattouh (Princeton University Press,

1993). SIGART Bull. 6, 4 (October 1995), 17-. DOI=10.1145/222267.1065836

[32] Sanner, Michel F. "Python: a programming language for software integration and development." J Mol

Graph Model 17, no. 1 (1999): 57-61.

[33] O. Goldreich, “On Teaching the Basics of Complexity Theory,” in Lecture Notes in

Comput. Sci., vol. 3895. Heidelberg, Germany: Springer-Verlag, 2006, pp. 348-374.

[34] G. Gutin and A.P. Punnen, The Traveling Salesman Problem and Its Variations, New York,

NY: Springer, 2002.

[35] O. Goldreich, “On Teaching the Basics of Complexity Theory,” in Lecture Notes in

Comput. Sci., vol. 3895. Heidelberg, Germany: Springer, 2006, pp. 348-374.

[36] S. Williams, The Associative Model of Data, 2nd ed., Great Britain: Lazy Software, 2000.

[37] E. Meijer and G. Bierman, “A co-Relational Model of Data for Large Shared Data

Banks,” Queue, vol. 9, no. 3, pp. 30-49, Mar. 2011.

[38] B. Whitworth, “Some Implications of Comparing Brain and Computer Processing,” Proc.

41st Annual Hawaii Int. Conf. Syst. Sci., Waikoloa, HI, 2008, p. 38

[39] S. Haykin, “Cognitive machines,” in Proc. IEEE Int. Workshop on Mach. Intell. & Signal

Process, Mystic, CT, 2005, pp. 1-20.

[40] S. Haykin, “Cognitive Radar: a way of the future,” Signal Processing Magazine, IEEE, vol.

23, no.1, pp.30-40, Jan. 2006.

[41] A. M. Turing, “Computing Machinery and Intelligence,” Mind, vol. 59, no. 236, pp. 433-

460, Oct. 1950.

[42] M. Conrad and A. Rosenthal, “Limits on the computing power of biological systems."

Bulletin of Mathematical Biology,” Bulleting of Math. Biology, vol. 43, no. 1, pp. 59-67,

1981.

[43] S. Tschoke, et al., “Solving the traveling salesman problem with a distributed branch-and-

bound algorithm on a 1024 processor network,” in 9th Int. Proc. Parallel Process. Symp.,

1995., Shanghai, China, 1995, pp. 182-189.

 215

[44] C.P. Gomes and R. Williams, “Approximation algorithms,” in Search Methodologies, 1st

ed. New York: Springer, 2005, ch. 18, pp. 557-585.

[45] D. L. Applegate, et al., The Traveling Salesman Problem: A Computational Study.

Princeton, NJ: Princeton Univ. Pr., 2006.

[46] J. N. MacGregor and T. Ormerod, “Human performance on the traveling salesman

problem,” Perception & Psychophysics, vol. 58, no. 4, pp. 527-539, 1996.

[47] A.M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236, pp. 433-460,

Oct. 1950.

[48] A. P. Saygin, et al., “Turing test: 50 years later,” Minds and Machines, vol. 10, no. 4, pp.

463-518, Nov. 2000.

[49] Y. Seirawan, et al., “The implications of Kasparov vs. Deep Blue,” Commun. of ACM, vol.

40, no. 8, , pp. 21-25, Aug. 1997.

[50] K. L. Sakai, “Language acquisition and brain development,” Science, vol. 310, no. 5749, pp.

815-819, Nov. 2005.

[51] S. I. Robertson, “Introduction to the study of problem solving” in Problem Solving. East

Sussex, England: Psychology Press, 2001, ch. 1, pp. 2-14.

[52] S. A. Kripke, “Semantical Considerations on Modal Logic,” Acta Philosophica Fennica,

vol. 16, pp. 83-94, 1963.

[53] R. M. Leithiser, “A relational database model for representation of formal specifications,” in

Proc. 44th Annu. ACM Southeast Regional Conf., New York, NY, 2006, pp. 209-217.

[54] C. H. Bennett, "Logical reversibility of computation," IBM J. of Research and Develop.,

vol. 17, no. 6, pp. 525-532, 1973.

[55] K. Gordon, “What is Big Data?” ITNOW, vol. 55, no. 3, pp. 12-13, 2013.

[56] M. Mohri, et al., Foundations of Machine Learning. Cambridge, MA: MIT Press, 2012.

[57] B. Boehm and L. G. Huang, "Value-based software engineering: a case study," Computer,

vol.36, no.3, pp.33,41, Mar 2003.

[58] SparkNotes Editors. (2013, September 1). SparkNote on What is Recursion? [Online].

Available: http://www.sparknotes.com/cs/recursion/whatisrecursion/

[59] U. Hensel, and B. Jacobs, “Proof principles for datatypes with iterated recursion,” in

Category Theory and Computer Science. Berlin, Germany: Springer, 1997, pp. 220-241.

[60] L.C. Paulson, “Co-induction and co-recursion in higher order logic,” Univ. of Cambridge

Comput. Laboratory, Cambridge, United Kingdom, Rep. 304, 1993.

[61] J. Gibbons and G. Hutton, “Proof methods for corecursive programs,” Fundamenta

Informaticae, vol. 66, no. 4, pp. 353-366, 2005.

http://www.sparknotes.com/cs/recursion/whatisrecursion/

 216

[62] S. Maniccam, “Towers of Hanoi related problems,” J. Comput. Sci. in Colleges, vol. 27, no.

5, pp. 205-213, May 2012.

[63] D. S. Robertson, “Feedback theory and Darwinian evolution,” J. Theoretical Biology, vol.

152, no. 4, pp. 469-484, Oct. 1991.

[64] M.M. Lehman, “Feedback in the software evolution process,” Inform. and Software

Technology, vol. 38, no 11, pp. 681-686, Nov. 1996.

[65] I. Thon, et al., “A simple model for sequences of relational state descriptions,” in Machine

Learning and Knowledge Discovery in Databases, Berlin, Germany: Springer, 2008, pp.

506-521

 [66] W. Shen and B. Leng, “A metapattern-based automated discovery loop for integrated data

mining-unsupervised learning of relational patterns,” IEEE Trans. Knowl. Data Eng., vol.

8, no. 6, pp. 898-910, Dec. 1996.

[67] D. A. Naumann, “Ideal models for pointwise relational and state-free imperative

programming, in Proc. 3rd ACM SIGPLAN Int. Conf. Principles and Practice of

Declarative Programming, Florence, Italy, 2001, pp. 4-15.

[68] L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approaches in Engineering, 1st ed.New

York, NY: John Wiley & Sons, Inc., 1996.

[69] E. Schikuta, et al., “A Relational Neural Network Database Model,” in Int. ICSC/IFAC Symp.

Neural Computation, Vienna, Austria, 1998, pp. 937-943.

[70] W. Uwents and H. Blockeel, “Classifying relational data with neural networks,” in Inductive

Logic Programming, Berlin, Germany: Springer, 2005, pp. 384-396.

[71] E. Kitzelmann, Emanuel and U. Schmid, “Inductive synthesis of functional programs: An

explanation based generalization approach,” J. Mach. Learning Research, vol. 7, pp. 429-

454, Dec. 2006.

[72] P. Langley and D. Choi, “Learning recursive control programs from problem solving,” J.

Mach. Learning Research, vol. 7, pp. 493-518, Dec. 2006.

[73] C. C. McGeoch, “Feature Article-Toward an Experimental Method for Algorithm

Simulation,” INFORMS J. Computing, vol. 8, no. 1, pp. 1-15, Jan. 1996.

[74] A. G. Hoffmann, “On computational limitations of neural network architectures,” in Proc.

IEEE Symp. Parallel and Distributed Process, Dallas, TX, 1990, pp. 818-825.

[75] M. Mitchell, An Introduction to Genetic Algorithms, Cambridge, MA: MIT Press, 2006.

[76] D. Sharma, et. al., “A domain-specific crossover and a helper objective for generating

minimum weight compliant mechanisms,” in Proc. 10th Annu. Conf. Genetic and Evol.

Computation, New York, NY, 2008, pp. 1723-1724.

[77] A. Rogers and A. Prügel-Bennett, “Genetic drift in genetic algorithm selection

schemes,” IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 298-303, Nov. 1999.

 217

[78] E. B. Bonawitz, et. al., “Modeling cross-domain causal learning in preschoolers as Bayesian

inference,” in Proc. 28th Annu. Conf. Cognitive Sci. Soc., Mahwahe, NJ, 2006, pp. 89-94.

[79] Vasant Dhar. 2013. Data science and prediction. Commun. ACM 56, 12 (December 2013),

64-73. DOI=10.1145/2500499 http://doi.acm.org/10.1145/2500499

[80] V. Ranadivé and K. Maney, The Two-Second Advantage: How We Succeed by Anticipating

the Future--Just Enough. New York: Random House, Inc., 2011.

[81] I. H. Brivanlou, et al., “Mechanisms of Concerted Firing among Retinal Ganglion Cells,”

Neuron, vol. 20, no. 3, pp. 527-539, Mar. 1998.

[82] G. Moreno and V. Pascual, “Programming with fuzzy logic and mathematical functions,” in

Proc. 6th Int. Conf. Fuzzy Logic and Applications, Crema, Italy, 2005, pp. 89-98.

[83]Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012. Simple and practical

algorithm for sparse Fourier transform. In Proceedings of the Twenty-Third Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA '12). SIAM 1183-1194

[84] L. Zhang, et al., “Self-organization simulation and output analysis,” 2000 IEEE Int. Conf.

Syst., Man, and Cybern., Nashville, TN, 2000, pp. 603-608

[85] R. Holzer and H. de Meer, “On modeling of self-organizing systems,” in Proc. 2nd Int. Conf.

Autonomic Computing and Commun. Syst., Turin, Italy, 2008, pp. 1-6.

[86] M. F. Salmi and S. Parsa, “Automatic Detection of Infinite Recursion in AspectJ Programs”

in Future Generation Inform. Technology. 1st Int. Conf., Jeju Island, Korea, 2009, pp.

190-197.

[87] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012. Simple and practical

algorithm for sparse Fourier transform. In Proceedings of the Twenty-Third Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA '12). SIAM 1183-1194

[88] E. Romanelli and M. L. Tushman. "Organizational transformation as punctuated

equilibrium: An empirical test." Academy of Manage. J, vol. 37, no. 5, pp. 1141-1166,

Oct. 1994.

[89] A. R. Admati, et. al., “Large shareholder activism, risk sharing, and financial market

equilibrium,” J. Political Econ., vol. 102, no. 6, pp. 1097-1130, 1997.

[90] Y.S. Chen, et. al., “Mathematical and computer modelling of the Pareto principle,” Math.

and Comp. Modelling, vol. 19, no. 9, pp. 61-80, May 1994.

[91] G. Chalkiadakis and C. Boutilier, “Coordination in multiagent reinforcement learning: a

Bayesian approach,” in Proc. 2nd Int. Joint Conf. Autonomous Agents and Multiagent

Syst., Melbourne, VIC, 2003, pp. 709-716.

[92] J. Moon, “Learning through reflection,” in Early Professional Development for

Teachers, London, England: David Fulton Pub., 2001, ch. 28, pp. 364-378.

 218

[93] L. J. Stockmeyer, “The polynomial-time hierarchy,” Theoretical Comp. Sci., vol. 3, no. 1, pp.

1-22, Oct. 1976.

[94] G.F. Smith, “Defining real world problems: a conceptual language,” IEEE Trans. Syst. Man

Cybern., vol. 23, no. 5, pp. 1220-1234, Sep./Oct. 1993.

[95] A. Chatterjee, “Case Based Reasoning with State Transition Mechanism for Problem-Solving

in AI,” in IMECS, 2006, pp. 346-352.

[96] E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM, vol. 13,

no. 6, pp. 377-387, Jun. 1970.

[97] I. J. Rudas and J. Fodor, “Intelligent systems,” Int. J. Comput., Commun. & Control, vol. 3,

pp. 132-138, 2008.

[98] S. Iyengar, “Cognitive Primitives for Automated Learning,” in Proc. 1st AGI Conf. Artificial

General Intell., Memphis, TN, 2008, pp. 409-413

[99] D. Hanna, “Combinatory adaptive optimization with multi-agent systems,” Ph.D. dissertation,

Dept. Mech. Eng., Carnegie Mellon Univ., Pittsburgh, PA, 2010.

[100] G. Smith, et al., “Problem Solving System and Method,” U.S. Patent 7 885 906, Feb. 8, 2011

[101] A. J. Ramsbotham, “Collective intelligence: toward classifying systems of systems,” in Proc.

9th Workshop Performance Metrics for Intell. Syst., New York, NY, 2009, pp. 268-273.

[102] J. Maes, et. al., “Multilevel capacitated lotsizing complexity and LP-based heuristics,”

European J. Operational Research, vol. 53, no. 2, pp. 131-148, Jul. 1991.

[103] A. Newell, et. al., “Elements of a theory of human problem solving,” Psychological Review,

vol. 65, no. 3 pp. 151-166, May 1958.

[104] D. Garlan and M. Shaw, “An introduction to software architecture,” Advances in Software

Eng. and Knowledge Eng., vol. 1, pp. 1-40, Jan 1994.

[105] P. Winker and M. Gilli, “Applications of optimization heuristics to estimation and modelling

problems,” Computational Stat. & Data Anal., vol. 47, no. 2, pp. 211-223, Sept. 2004.

[106] L. B. Hales, et. al., “Adaptive object-oriented optimization software system,” U.S. Patent 6

112 126, Aug. 29, 2000.

[107] Surajit Chaudhuri. 1998. An overview of query optimization in relational systems. In

Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems (PODS '98). ACM, New York, NY, USA, 34-43.

DOI=10.1145/275487.275492

[108] M. Wallace, “Practical applications of constraint programming,” Constraints, vol. 1, no. 1-

2, pp. 139-168, Sept. 1996.

[109] L. Cardelli and P. Wegner,” On understanding types, data abstraction, and polymorphism,”

ACM Computing Surveys, vol. 17, no. 4, pp. 471-523, Dec. 1985.

 219

[110] J. M. Smith and D. C. P. Smith, “Database abstractions: aggregation and generalization,”

ACM Trans. on Database Syst., vol. 2, no. 2, pp. 105-133, Jun. 1977.

[111] E. Duesterwald, et. al., “Characterizing and predicting program behavior and its variability,”

in Proc. 12th Int. Conf. Parallel Architectures and Compilation Techniques, 2003,

Washington, DC, pp. 220-231.

[112] J. Leon and A. Lori, “Continuous self-evaluation for the self-improvement of software,” in

Self-Adaptive Software. Berlin, Germany: Springer, 2001, pp. 27-39.

[113] R. P. Gabriel and R. Goldman, “Conscientious software,” in Proc. 21st Annu. ACM

SIGPLAN Conf. Object-oriented Programming Syst., Languages, and Applicat., Portland,

OR, 2006, pp. 433-450.

[114] K. Cwalina, and B. Abrams. Framework Design Guidelines: Conventions, Idioms, and

Patterns for Reusable. Net Libraries. Boston: Addison-Wesley Professional, 2008.

[115] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of

the third annual ACM symposium on Theory of computing (STOC '71). ACM, New York,

NY, USA, 151-158. DOI=10.1145/800157.805047

[116] C. M. Macal and M. J. North, “Tutorial on agent-based modeling and simulation,” in Proc.

37th Conf. Winter Simulation, Orlando, FL, 2005, pp. 2-15.

[117] S. K. Das and D. J. Cook, “Designing and modeling smart environments,” in Proc. 2006 Int.

Symp. World of Wireless, Mobile and Multimedia Networks, Buffalo, NY, 2006, pp. 490-

494.

[118] E. Hart and K. Sim. (2013, Aug. 1). Lifelong Machine Learning Systems & Optimisation

[Online]. Available: http://rollproject.org/lifelong-machine-learning-systems-

optimisation/

[119] Z. Tan, et al., “Storing Normalized XML Documents in Normalized Relations,” in 5th Int.

Conf. Comput. and Inform. Technology, Shanghai, China, 2005, pp. 123-129.

[120] B. R. Arif. (2011). On the Footsteps to Generalized Tower of Hanoi Strategy [Online].

Available FTP:arxiv.org Directory: papers/1112 File: 1112.0631.pdf

[121] M. Szegedy, “In how many steps the k peg version of the towers of Hanoi game can be

solved?” in Proc. 16th Annu. Conf. Theoretical Aspects of Computer Sci., Trier, Germany,

1999, pp. 356-361.

[122] Zhengya Sun, Wei Jin, and Jue Wang. 2012. Generic subset ranking using binary

classifiers.Theor. Comput. Sci. 456 (October 2012), 89-99.

DOI=10.1016/j.tcs.2012.05.026 http://dx.doi.org/10.1016/j.tcs.2012.05.026

[123] O. Goldreich, “On Teaching the Basics of Complexity Theory,” in Lecture Notes in Comput.

Sci., vol. 3895. Heidelberg, Germany: Springer, 2006, pp. 348-374.

http://rollproject.org/lifelong-machine-learning-systems-optimisation/
http://rollproject.org/lifelong-machine-learning-systems-optimisation/

 220

[124] E. Horowitz and S. Sahni, “Computing partitions with applications to the knapsack

problem,” J. Association for Computing Mach., vol. 21, pp. 277–292, 1974.

[125] B. G. Malkiel, “The Efficient Market Hypothesis and Its Critics,” J. Econ. Perspectives, vol.

17, no. 1, pp. 59-82, Winter 2003.

[126] M. Huskins, et al. (2013, Aug. 27). Enhancing the efficiency and effectiveness of

application development [Online]. Available:

http://www.mckinsey.com/insights/business_technology/enhancing_the_efficiency_and_

effectiveness_of_application_development

[127] D. M. Kaiser, “Automatic feature extraction for autonomous general game playing agents,”

in Proc. 6th Int. Joint Conf. Autonomous Agents and Multiagent Syst., Honolulu, HI, 2007,

pp. 655-661.

[128] E. Seppanen, et al., “High performance solid state storage under Linux,” in 2010 IEEE 26th

Symp. Mass Storage Syst. and Technologies, Incline Village, NV, 2010 pp. 1-12.

[129] X. Yu, “Estimating language models using Hadoop and HBase,” M.S. thesis, School of

Informatics, Univ. of Edinburgh, Edinburgh, Scotland, 2008.

[130] J. Lin, “Mapreduce is Good Enough? If All You Have is a Hammer, Throw Away Everything

That's Not a Nail!,” Big Data, vol. 1, no. 1, pp. 28-37, Mar. 2013.

[131] W. Fang, et al., “Parallel data mining on graphics processors,” Hong Kong Univ. Sci. and

Technology, Hong Kong, China, Tech. Rep. HKUST-CS08-07, Oct. 2008.

http://www.mckinsey.com/insights/business_technology/enhancing_the_efficiency_and_effectiveness_of_application_development
http://www.mckinsey.com/insights/business_technology/enhancing_the_efficiency_and_effectiveness_of_application_development

