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Abstract

It is an open problem to characterize those spaces X for which Ck(X), the space of real-

valued continuous functions on X with the compact-open topology, has various completeness

properties, in particular, the Baire property. It has been conjectured that the Ck(X) is Baire

if and only if X has the moving off property. We show that this is the case for a special

class of fans with topologies intermediate to the sequential and metric fans. Furthermore we

show that the moving off property on X characterizes Baireness of Ck(X) on other classes of

spaces, including: closed images of locally compact paracompact spaces, Lašnev spaces, and

special types of collapsed spaces. We also introduce a new completeness property motivated

by the Čech complete property.
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Chapter 1

Introduction

1.1 Basic Definitions

If X is a topological space, we will use C(X) to denote the set of all continuous real-

valued functions from X into R. There are several natural topologies that can be placed on

C(X). The primary focus of this paper will be on the Compact-Open Topology.

Suppose X is a topological space. For every compact set K ⊆ X and every open set

U ⊆ R define the set [K,U ] = {f ∈ C(X) : f(K) ⊆ U}. Recall that the Compact-Open

Topology, denoted Ck(X), is the topology on C(X) generated by {[K,U ] : K ⊆ X compact,

U ⊆ R} as a subbase. In many cases, instead of using this subbase it is more convenient to

use the following well known basis for Ck(X).

Proposition 1.1. Suppose X is a topological space. For each f ∈ Ck(X), K ⊆ X compact,

and ε > 0 let B(f,K, ε) = {g ∈ Ck(X) : for all x ∈ K |g(x)−f(x)| < ε}. Then the collection

B = {B(f,K, ε) : f ∈ Ck(X), K ⊆ X compact, ε > 0} forms a basis for Ck(X).

It is natural to be interested in the following type of questions when we are given a

method to generate a new topological space from an old one, such as the case with the

Compact-Open Topology. For example, we will look at questions as follows:

a) Given a property Q on Ck(X) is there a property P such that X has property P if and

only if Ck(X) has property Q?

b) Which properties are equivalent in Ck(X)?

c) What are examples of Compact-Open topologies which distinguish between topological

properties?
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Our particular focus in this paper will be on a certain class of properties known as com-

pleteness properties. The definitions of several of these properties will be given in Chapter

2. However we now give the definitions of the strongest and weakest completeness properties

which will be interested in.

Suppose (X, d) is a metric space. Recall that a Cauchy sequence (si : i ∈ ω) in X

is a sequence of points in X such that for every ε > 0 there exists an N ∈ ω such that

if m,n ∈ ω, m > N and n > N then d(sn, sm) < ε. A metric d : X × X → R on X

is said to be a complete metric, or simply complete, if every Cauchy sequence in X

converges. A topological space X is completely metrizable if there exists a complete

metric d on X such that d generates the same topology on X, i.e. the collection of all open

balls B(x, ε) = {y ∈ X : d(x, y) < ε} forms a base for the topology on X.

Complete metrizability is the strongest of the completeness properties; if X is completely

metrizable then X will have every other completeness property. The Baire Property is the

weakest of the completeness properties.

A topological X is said to be second category if whenever {Ui : i ∈ ω} is a sequence

of dense open sets in X then
⋂
{Ui : i ∈ ω} 6= ∅, and X is said to be first category if it

is not second category. X is a Baire space, or simply Baire, if whenever {Ui : i ∈ ω} is a

family of dense open sets in X then
⋂
{Ui : i ∈ ω} is dense. And X is hereditarily Baire

if every closed subset of X is Baire. Clearly if X is a Baire space then X is also second

category. The following is a well-known result.

Theorem 1.2. Suppose X is a homogeneous topological space. Then X is a Baire space iff

X is second category.

Corollary 1.3. Suppose X is a topological space. If Ck(X) is second category then Ck(X)

is a Baire space.

Proof. The result follows immediately since Ck(X) is homogeneous.
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1.2 Further Definitions and Known Results

There are many known results pertaining to completeness properties and function spaces

that will be useful for our investigation. Since the construction of the subbase for Ck(X)

depends on the compact subsets of X, it natural to expect that many of the properties of

Ck(X) are inherited from the structure of the family of compact subsets of X. Before we

get to some main results we will review a few such structures.

Recall that a family K of compact subsets of a a space X is said to dominate the

compact subsets of X, or to be a dominating family of compact sets, if given any

compact set H ⊆ X there exists a K ∈ K such that H ⊆ K. A space X is said to be

hemicompact if there is a countable dominating family of compact subsets of X.

Note that hemicompactness implies σ-compactness, since if {Ki : i ∈ ω} were a dom-

inating family of compact sets then for any x ∈ X the singleton {x} would necessarily be

a subset of at least one Kj, and thus X =
⋃
{Ki : i ∈ ω}. However the converse is not

true. While any countable space, being the countable union of its singletons, is σ-compact,

countable spaces need not be hemicompact. In particular, the family of rationals Q is an

example of a σ-compact space that is not hemicompact. The metric fan M (see Chapter 3)

is another example of a countable non-hemicompact space.

Another common notion is that of a k-space. Recall a space X is said to be a k-space

or compactly generated if whenever a subset A ⊆ X has the property that A ∩ K is

closed in K for all compact K, then A is closed in X. The k-space property simultaneously

generalizes local compactness and first countability. So a first countable space (or a locally

compact space) is necessarily a k-space. However the converse is not necessarily true. The

sequential fan Sω defined in Chapter 3 is a k-space which is neither locally compact nor first

countable. The following well-known theorem is another characterization of k-spaces.

Theorem 1.4. X is a k-space if and only if X is the quotient image of a locally compact

space.

3



The following two results are due to Arens and Warner, respectively. They illustrate

how structures on the compact sets, such as hemicompactness, influence the structure on

the compact-open topology.1

Theorem 1.5. [Ar] In a completely regular space X the following are equivalent:

a) X is a hemicompact

b) Ck(X) is metrizable

c) Ck(X) is first countable

Theorem 1.6. [Wa] A completely regular topological space X is a hemicompact k-space if

and only if Ck(X) is completely metrizable.

It is still an open question if there is a property P such that X has property P if and

only if Ck(X) is Baire. To motivate the definition of a candidate property we will look at

the analogous case in the function space with the point-open topology.

Suppose X is a topological space. For each x ∈ X, f ∈ C(X) and ε > 0 let 〈f, x, ε〉 =

{g ∈ C(X) : |g(x)− f(x)| < ε}. Then the topology generated by the subbase {〈f, x, ε〉 : f ∈

C(X), x ∈ X, ε > 0} is called the point-open topology on C(X) and is denoted Cp(X).

The point-open topology is another well studied topology on the collection of continuous

real-valued functions on a space. To see how our knowledge of the point-open topology

might help us with the compact-open topology, a few more definitions are convenient.

Suppose A and B are collections of non-empty subsets of a topological space X. It is

said that A moves off B if for any B ∈ B there exists an A ∈ A such that A ∩ B = ∅. A

collection of subsets A of a topological space X is said to be discrete if for any x ∈ X there

exists an open set U such that x ∈ U and U ∩A 6= ∅ for at most one A ∈ A. The collection

A is said to be strongly discrete if there exists a discrete collection {UA : A ∈ A} of open

sets such that A ⊆ UA for each A ∈ A.

1For a survey paper on many similar results see [MN]
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A necessary and sufficient condition on X for Cp(X) to be Baire was was given inde-

pendently by E. K. van Douwen (unpublished; see page 34 in [vD]), E.G. Pytkeev [Py], and

V.V. Tkachuk [Tk1, Tk2]. It is equivalent to the following theorem.

Theorem 1.7. Suppose X is completely regular. Then Cp(X) is Baire if and only if every

collection of finite subsets F of X that moves off the set of all finite subsets of X has a

strongly discrete infinite subcollection F ′ ⊆ F .

The above characterization discusses a structure on the finite subsets of X. This is

reasonable since the topology on Cp(X) uses basic open sets defined using finite subsets of

X. To determine a candidate property on X which is a necessary and sufficient condition for

Ck(X) to be Baire, it is natural to consider an equivalent structure on the compact subsets

of X. The following, due to Gruenhage and Ma in [GM], is such a generalization. It is said

that a completely regular space X has the moving off property (or MOP, for short) if

every collection K of compact sets that move off the set of all compact sets has an infinite

strongly discrete subcollection.

Recall that a space is a q-space if each x ∈ X has a sequence of neighborhoods U0, U1, . . .

such that if xn ∈ Un for all n ∈ ω then the set {xn : n ∈ ω} has a cluster point. Note, every

first countable, and therefore every metric space is a q-space.

Theorem 1.8. [GM]

(i) If Ck(X) is Baire then X has the moving off property.

(ii) Suppose X is a q-space then X has moving off property if and only if Ck(X) is Baire.

(iii) If X is a q-space which has the moving off property, then X must be locally compact.

It was also conjectured that this result holds for all completely regular spaces.

Conjecture 1.9. Suppose X is a completely regular space. X has the moving off property

if and only if Ck(X) is Baire.
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In Chapters 3 and 4 we will show the that the conjecture holds for other specific classes

of topological spaces.

1.3 Topological Games and Notation

Since the compact-open topology is often difficult to study directly, we commonly use

other techniques to investigate specific properties of Ck(X). Topological games are sometimes

a very useful tool for this purpose. In particular the existence (or non-existence) of winning

strategies for players in topological games can characterize common topological properties

on the space. A game theoretic characterization of the Baire property is well known and

discussed below.

The topological game Ch(X), known as the Choquet game2, on a space X has two

players E and NE. On move 0, E plays a non-empty open subset U0 ⊆ X. NE responds

with a non-empty open subset V0 ⊆ U0. If U0, V0, . . . , Un−1, Vn−1 have been defined and are

a partial play of Ch(X), then on move n, E plays a non-empty open set Un ⊆ Vn−1 and NE

responds with a non-empty open set Vn ⊆ Un. E wins if
⋂
{Vi : i ∈ ω} = ∅.

The following result is due to Oxtoby in [Ox], we include a proof to illustrate how

topological games can be used to characterize topological properties.

Theorem 1.10. A space X is a Baire space iff E does not have a winning strategy in Ch(X).

Proof. Suppose X is not Baire. Let {Wi : i ∈ ω} be a family of dense open sets such that⋂
{Wi : i ∈ ω} is not dense. Say U is an open set such that U ∩

⋂
{Wi : i ∈ ω} = ∅.

Then define the strategy σ for E in Ch(X) as follows. Let U0 = σ(∅) = W0 ∩ U. And if

U0, V0, . . . , Un−1, Vn−1 is a partial play of Ch(X), then define Un = σ(U0, V0, . . . , Un−1, Vn−1) =

Wn ∩Vn−1. This intersection is a non-empty since Wn is open dense and Vn−1 is open. Then⋂
{Vi : i ∈ ω} ⊆

⋂
{Wi : i ∈ ω} ∩U = ∅. Hence σ is a winning strategy for E.

2This is also known as the Banach-Mazur game with players β and α taking the roles of E and NE,
respectively.
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On the other hand, suppose X is Baire, and σ is a strategy for E in Ch(X). We

will show that σ is not a winning strategy. Let U∅ = σ(∅). Let {Uα : α ∈ κ0} be a

maximal pairwise disjoint family of open sets such that for each α ∈ κ0 there is an open set

Vα ⊆ U∅ such that σ(U∅, Vα) = Uα. Suppose for every finite sequence s such that |s| ≤ n

we have defined κ|s|, Us and Vs. Let {Us_α : α ∈ κn+1} be a maximal pairwise disjoint

family of open sets such that for each α ∈ κn+1 there exists an open set Vs_α ⊆ Us such

that σ(U∅, Vs�0, . . . , Us, Vs_α) = Us_α. This inductively defines Uτ and Vτ for all sequences

τ : ω →
⋃
{κi : i ∈ ω}, where τ(i) ∈ κi. For each i > 0 let Wi =

⋃
{Us : |s| = i}, which is a

disjoint union of open sets.

We claim that each Wi is dense in U∅. Suppose not. Let n ∈ ω be the smallest positive

integer such that Wn is not dense and let V ⊆ U∅ be open such that V ∩Wn = ∅. Then there

exists a Us for |s| = n− 1 such that Us ∩ V 6= ∅ since Wn−1 =
⋃
{Us : |s| = n− 1} is dense

in U∅. Let U = σ(U∅, Vs�0, . . . , Us�n−1, V ∩ Us�n−1). Note U ⊆ V and thus U ∩ Us_α = ∅ for

all α ∈ κn. But this is a contradiction to the maximality of {Us_α : α ∈ κn}. Hence Wi is

dense in U∅ for all i ∈ ω.

Since X is Baire, and U∅ is an open subset of X it follows that U∅ is Baire, and hence

of second category. Let x ∈
⋂
{Wi : i ∈ ω}. Let α0 be the (unique) element in κ0 such that

x ∈ Uα0 . If αi has been defined for all i < n such that x ∈ Uα0α1···αn−1 let αn be the (unique)

element in κn such that x ∈ Uα0α1···αn . This defines a sequence α such that x ∈ Uα�n for each

n ∈ ω. Consequently the play of the game U∅, Vα�0, Uα�0, Vα�1, . . . is not winning for E. Hence

σ is not a winning strategy. Consequently E has no winning strategy in Ch(X).

This game-theoretic characterization of the Baire space property will be used extensively

during our investigation of the compact-open topology. We trade in the absoluteness of an

internal characterization involving dense open sets for the ability to work with simpler subsets

in a game environment. The difficulty that naturally comes in working with proofs involving

the existences of specific strategies is often preferable to considering the more complicated

subsets in Ck(X), such as dense open sets. For example, in Chapter 3, we consider countable
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spaces with only one non-isolated point. However, even in this relatively simple scenario,

the compact-open topology on such spaces can still be difficult to conceptualize. But in such

spaces, individual continuous functions and basic open subsets of the compact-open topology,

which are used game-theoretic characterization of the Baire property, are relatively trivial

to consider.

There is also a topological game which characterizes the moving off property discussed

by Gruenhage and Ma. The game G◦K,L(X) on the space X, is a topological game with

players K and L, defined as follows. On move 0, K chooses a compact set K0. L responds

with a compact set L0 such that L0 ∩K0 = ∅. On move 1, K chooses compact set K1 and L

responds with compact set L1 such that L1∩ (K0∪K1) = ∅. Suppose K0, L0, . . . , Kn−1, Ln−1

have been chosen such that Li ∩
⋂
{Kj : j ≤ i} = ∅ for each i ≤ n − 1. On move n, K

plays compact Kn and L responds with compact Ln such that Ln ∩
⋂
{Ki : i ≤ n} = ∅. L

wins if {Li : i ∈ ω} is not strongly discrete. The game GK,L(X) is defined similarly with the

exception that L wins if {Li : i ∈ ω} is not discrete.

Theorem 1.11. [GM] X has the moving off property if and only if L does not have a winning

strategy in G◦K,L(X).

With the game-theoretic equivalent conditions defined, it is possible to reword Conjec-

ture 1.9 in the follow way.

Conjecture 1.12. Suppose X is a completely regular topological space. Then L has a win-

ning strategy in G◦K,L(X) if and only if E has a winning strategy in Ch(Ck(X)).

1.4 Chapter Overviews

In Chapter 2 we will recall several more important and well-studied completeness prop-

erties, as well as define a few completeness properties through topological games based off

of a characterization of Čech completeness. In the second half of the chapter we investigate

the implications of these properties such as determining which completeness properties are
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implied by them, and how these properties are inherited under different kinds of subsets and

products.

In Chapter 3 we will define a class of fans with intermediate topologies to the well-

known metric and sequential fans, utilizing filters on ω. We will show that the compact-

open topology on such fans can not have certain completeness properties such as the Choquet

property or hereditarily Bairness. We will also show that Ck(X) for a fan X is only Baire if

it is also metrizable. Furthermore we give internal filter-based characterizations for various

completeness and metrizability properties on the compact-open topology on these fans. We

will conclude the section by demonstrating that Conjecture 1.9 holds for this class of spaces.

In Chapter 4 we consider a variety of different classes of spaces. Most notably we will

show that if X is the finite product of closed images of locally compact paracompact spaces

then Ck(X) is neccesarily Choquet. We will show that Conjecture 1.9 holds for the class of

Lǎsnev spaces and for quotient images obtained by collapsing the non-isolated points of a

suitably nice topological space to a single point.

9



Chapter 2

Completeness Properties

Completeness properties are those properties which simultaneously generalize both com-

pactness and complete metrizability. In section 2.1 we will define some well known complete-

ness properties, namely: Čech completeness, the Choquet property, psuedocompleteness, and

subcompactness. In particular, an internal characterization of Čech completness will moti-

vate us to define the topological games Γ(X) and Γ̂(X). In secion 2.2 we investigate the

notion of γ-completeness and γ̂-completeness, as well as weak versions of these propeties,

which are defined based off of the existence or non-existence of winning strategies for players

in the games Γ(X) and Γ̂(X).

2.1 Overview of Completeness Properties

We will begin by reviewing completeness properties.

2.1.1 Čech completeness

Recall that a completely regular space X is Čech Complete if X is Gδ in any com-

pletely regular space in which it is densely embedded. In particular, X is Čech complete if

it is Gδ in its Stone-Čech compactification.

An immediate consequence of the above definition is that if X is a Hausdorff non-

compact locally compact space then X is Čech complete, since X is Gδ in its one-point

compactification. Also, any completely metrizable space is Čech complete. One of the

primary motivations behind the definition of Čech completeness is that for metric spaces

Čech completeness is equivalent to complete metrizability.
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Theorem 2.1. Suppose X is a metric space. Then X is completely metrizable if and only

if X is Čech complete.

Recall that a collection A of subsets of a space X is said to have the finite intersection

property if A 6= ∅ and the intersection of any finite number of sets in A is non-empty, i.e if

|A′| < ω and A′ ⊆ A then
⋂
A′ 6= ∅. The following is an important internal characterization

of Čech completeness given independently by Frolik [Fr] and Archangelskii [Arh3].

Theorem 2.2. A space X is Čech complete iff there exists a sequence {Ui : i ∈ ω} of open

covers of X with the property that if F is a family of closed subsets of X with the finite

intersection property and for each i ∈ ω there exists a U ∈ Ui and F ∈ F with F ⊆ U , then⋂
F 6= ∅.

Recall that a space X is compact if and only if whenever F is a collection of closed

subsets with the finite intersection property, then
⋂
F 6= ∅. The above characterization

shows that for Čech complete spaces we have to consider a more restricted family of collection

of closed sets with the finite intersection property for the intersection of a such a collection to

necessarily be non-empty. We are motivated by this characterization of Čech completeness

to define the following two topological games, which spread out the creation of the family of

open covers and closed sets between plays in the game:

Definition 2.3. Define a game Γ(X) (resp. Γ̂(X)) on the topological space X with two

players, P1 and P2 as follows. On move 0, P1 chooses an open cover U0, and P2 chooses

closed set F0 (resp. a regular closed set F0) such that F0 ⊆ U0 for some U0 ∈ U0. On move

1, P1 plays an open cover U1 of U0, and P2 chooses a closed set F1 (resp. regular closed set

F1) such that F1 ⊆ U1 for some U1 ∈ U1 and F1 ⊆ F0. On move n suppose the open covers

U0, . . . ,Un−1, and the sets F0, U0, F1, U1, . . . , Fn−1, Un−1 have been defined such that Ui is an

open cover of Ui−1, Fi is a closed subset (resp. regular closed subset) of Ui, Ui ∈ Ui, and

(Fi : i < k) is a decreasing sequence. Then P1 will choose an open cover Uk of Uk−1 and P2
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will choose a closed subset (resp. regular closed subset) Fk ⊆ Uk for some Uk ∈ Uk. P1 wins

if
⋂
{Fi : i ∈ ω} 6= ∅. P2 wins otherwise.

The next result is immediate

Theorem 2.4. If X is Čech complete then P1 has a winning strategy in Γ(X).

Proof. Suppose X is Čech complete. Let {Ui : i ∈ ω} be a sequence of open covers of X

that witness the internal characterization of Čech completeness for X. Then we define the

strategy σ for P1 as follows: σ(∅) = U0. If σ(s) has been defined for the partial play s, and

P2 responds to σ(s) by choosing a closed set Fk ⊆ Uk ∈ σ(s). Then define P1 response to

be {V ∩Uk : V ∈ Uk+1}. Then the sets {Fi : i ∈ ω} have the finite intersection property and

Fi ⊆ Ui for some Ui ∈ Ui, hence ∩{Fi : i ∈ ω} 6= ∅ and consequently σ is a winning strategy

for P1 in Γ(X).

We will return to investigate the implications of various winning strategies in these two

games after the introduction of other completeness properties.

2.1.2 Choquet Spaces

We introduced the Choquet game Ch(X) in Chapter 1. Recall that player E does not

having a winning strategy in Ch(X) if and only if X is Baire. We will also consider spaces

X, such that NE has a winning strategy. A space X is said to be a Choquet space1 if NE

has a winning strategy in Ch(X). Clearly if NE has a winning strategy in Ch(X) then E has

no winning strategy in Ch(X). It follows that every Choquet space is a Baire space. Recall

that Theorem 1.11 states that if Ck(X) is Baire then L has no winning strategy in G◦K,L(X).

We can relate Ck(X) being Choquet to the game G◦K,L(X) in the following theorem.

Theorem 2.5. [GM] If Ck(X) is Choquet then K has a winning strategy in G◦K,L(X).

Much in the same nature as our main conjecture (Conjecture 1.9), it is unknown if the

converse of the above statement holds.
1This property is also known as weakly α-favorable.
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There is also well studied variation on the Choquet game, which gives the first player E

more control of the open sets NE can respond with. The Strong Choquet Game, Ch∗(X),

is a game with two players E and NE. On move 0, E picks an open set U0 and a point x0 ∈ U0

and NE responds with an open set V0 such that x0 ∈ V0 ⊆ U0. On move 1, E picks and

open set U1 ⊆ V0 and a point x1 ∈ U1 and NE responds with an open set V1 such that

x1 ∈ V1 ⊆ U1. On move n, after xi, Vi, and Ui have been defined for all i ≤ n such that

xi ∈ Vi ⊆ Ui ⊆ Vi−1, E picks an open set Un+1 and a point xn+1 ∈ Un+1 and NE responds

with an open set Vn+1 such that xn+1 ∈ Vn+1 ⊆ Un+1. NE wins if
⋂
{Vi : i ∈ ω} = ∅. E

wins otherwise. A space X is said to be strongly Choquet if NE has a winning strategy

in Ch∗(X)2.

Clearly, if a space X is strongly Choquet then X is also Choquet. In metric spaces

strongly Choquet is equivalent to Čech completeness. The following result is due to Choquet.

Theorem 2.6. [Ch] If X is a metric space, then X is strongly Choquet if and only if X is

completely metrizable (resp. Čech complete).

2.1.3 Psuedocompleteness

Recall that a π-base for a topological space X is a collection of non-empty open sets

U such that if V is a non-empty open set in X then there exists a U ∈ U such that U ⊆ V

The space X is quasi-regular if there exists a π-base U such that if V is a non-empty open

set then there exists a U ∈ U such that U ⊆ V . Recall that a quasi-regular space X is

psuedocomplete if there exits a sequence {Bi : i ∈ ω} of π-bases such that if {Ui : i ∈ ω}

is a sequence such that for all i ∈ ω we have Ui ∈ Bi and U i+1 ⊆ Ui, then
⋂
{Ui : i ∈ ω} 6= ∅.

In metric spaces this notion is closely linked to the Čech complete property. The fol-

lowing result is due to J.M. Aarts and David Lutzer.

2If NE has a winning tactic in Ch∗(X), that is a winning strategy that only relies on E’s last move, then
X is said to be strongly α-favorable. In metric spaces, strongly Choquet is equivalent to strongly α-favorable
(see [Ch]).
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Theorem 2.7. [AL] Suppose X is a metric space. Then X is psuedocomplete if and only

if it contains a dense completely metrizable subspace (resp. contains a dense Čech complete

subspace3).

2.1.4 Subcompactness

De Groot in [dG] introduced a class of completeness properties which are stronger than

psuedocompleteness. These properties were later termed the Amsterdam Properties. We

will focus mostly on one of these properties know as subcompactness.

A collection F of non-empty open subsets of a topological space X is called a regular

filter base if for any W,V ∈ F there exists U ∈ F such that U ⊆ W ∩ V . A regular space

X is said to be subcompact (resp. countably subcompact) if there exists a base B such

that if F ⊆ B is a regular filter base (resp. F ⊆ B is a regular filter base such that |F| ≤ ω)

then
⋂
F 6= ∅.

The following is a basic well known characterization of countable subcompactness. We

include a proof.

Theorem 2.8. A regular space X is countably subcompact if and only if there exists a base

B such that if (Ui : i ∈ ω) is a strongly decreasing sequence of non-empty open sets from B

then
⋂
{Ui : i ∈ ω} 6= ∅.

Proof. Suppose X is countably subcompact. Let B be a base that witnesses X is countably

subcompact. Suppose (Ui : i ∈ ω) is a strongly decreasing sequence of non-empty open sets

in B. Set F = {Ui : i ∈ ω}. We claim that this is a countable regular filter base. Suppose

Uk, Uj ∈ F . Without loss we may assume that j > k. Since the sequence is strongly

decreasing, it follows that Uj+1 ⊆ Uj = Uj ∩Uk. Hence F is indeed a countable regular filter

base. Thus
⋂
F 6= ∅.

On the other hand, suppose X satisfies the strongly decreasing sequence condition,

with B being a base that witnesses it. Suppose F is a countable filter base of elements in B.

3Spaces X for which X contains a dense Čech complete subspace are known as almost Čech complete
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Enumerate F = {V0, V1, . . .}. We will recursively define Ui for each i ∈ ω. Let U0 = V0. Let

U1 ∈ F such that U1 ⊆ U0 ∩ V1. Let U2 ∈ F such that U2 ⊆ U1 ∩ V2. If Ui has been defined

for all i < k such that Ui ⊆ Ui−1 ∩ Vi, then choose Uk ∈ F such that Uk ⊆ Uk−1 ∩ Vk. Then

(Ui : i ∈ ω) is a strongly decreasing collection of non-empty sets such of elements from B.

Hence ∅ 6=
⋂
{Ui : i ∈ ω} ⊆

⋂
{Vi : i ∈ ω} =

⋂
F . It follows that B witnesses that X is

countably subcompact.

2.2 Γ(X) and Γ̂(X)

We now investigate the properties of the previously defined games Γ(X) and Γ̂(X).

For convenience, we will use the following terminology when referring to the existence or

non-existence of winning strategies for the games.

Definition 2.9. If P1 has a winning strategy in Γ(X) then we say X is γ-complete. If

P2 does not have a winning strategy in Γ(X) then we say X is weakly γ-complete. If

there exists a base B of X such that P1 has a winning strategy in Γ̂(X) when P2’s moves

are restricted to closures of sets in B then we say that X is γ̂-complete. If there exists a

base B such that P2 doesn’t have a winning strategy in Γ̂(X) when P2 is restricted to playing

closures of sets in B, then we say that X is weakly γ̂-complete.

We have already seen that if X is Čech complete then X is γ-complete. However the

converse isn’t true.

Proposition 2.10. The Sorgenfrey Line is γ-complete but not Čech-complete.

Proof. Let X be the Sorgenfrey Line. Throughout this proof we will use clRF to denote the

Euclidean closure of F as opposed to the closure in X. We will define a winning strategy

σ for P1 in the game Γ(X). Let U0 = σ(∅) = {[n, n + 1) : n ∈ Z}. Suppose P2 chooses an

open set [a0, b0) ∈ U0 and a closed set F0 ⊆ [a0, b0). Let L0 = clRF0 \ F0.

We claim that no point of L0 is a limit point of L0, in X. Suppose, to the contrary that

y ∈ L0 were a limit point of L0. Let ε > 0 and consider the basic open set [y, y+ ε). Since y
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is a limit point of L0 it follows that there exists x ∈ L0∩(y, y+ε). And since x is a Euclidean

limit point of F0 it follows that there exists a z ∈ F0 ∩ (y, y+ ε) ⊆ [y, y+ ε). Therefore every

open set that contains y contains a point from F0. Hence y ∈ F0 ∩ L0, contrary to the fact

that F0 ∩ L0 = ∅.

L0 is Lindelöf since X is hereditarily Lindelöf. Suppose towards a contradiction that L0

were uncountable, say L0 = {xα : i ∈ κ} where κ > ω. Then since L0 has no limit points in

itself, we can choose pairwise disjoint basic open sets {[xα, yα) : α ∈ κ}, which will produce

an uncountable open cover of L0 with no countable subcover, contrary to the fact that L0 is

Lindelöf. Hence L0 is countable.

Let L0 = {x0i : i ∈ ω}. Let A0 = {x00}. Let (si)i∈ω be an increasing sequence in

[a0, b0) such that s0 = a0 and (si)i∈ω converges to x00 in the Euclidean topology. Define

U1 = σ(U0, ([a0, b0), F0)) = {[si, si+1) : i ∈ ω} ∪ {[x00, b0)}

Suppose P2 picks [a1, b1) ∈ U1 and a closed set F1 ⊆ F0 ∩ [a1, b1). By our definition of

U1, it will follow that x00 is not in the Euclidian closure of F1; i.e. no point in A0 is in the

Euclidean closure of F1. Let L1 = clRF1\F1. By the same argument as above L1 is countable.

Let L1 = {x1i : i ∈ ω}. Let A1 = {x10, x01}. Without loss of generality assume x10 < x01. Let

(s0i )i∈ω and (s1i )i∈ω be increasing sequences such that s1j < s0k for all j, k ∈ ω, s10 = a1,

s00 = x10, (s1i )i∈ω converges to x10 and (s0i )i∈ω converges to x01 in the Euclidean topology. If

x01 /∈ [a1, b1] define U2 = σ(U0, ([a0, b0), F0),U1, ([a1, b1), F1)) = {[s1i , s1i+1) : i ∈ ω} ∪ {[x10, b1)}

otherwise define U2 = σ(U0, ([a0, b0), F0),U1, ([a1, b1), F1)) = {[s1i , s1i+1) : i ∈ ω} ∪ {[s0i , s0i+1) :

i ∈ ω} ∪ {[x01, b1)}. Note if P2 responds with an open set [a2, b2) ∈ U2 and F2 ⊆ F1 ∩ [a2, b2)

then no point in A1 is in the Euclidean closure of F2.

Suppose S = U0, ([a0, b0), F0), . . . ,Uk is a legal partial play of the game and for all

n < k, Ln = {xni : i ∈ ω} defined as above, An = {xji : i + j = n}. Also assume that for

each i < k − 1 and each p ∈ Ai that p is not in the Euclidean closure of Fi+1. Suppose

P2 responds with [ak, bk) ∈ Uk and closed Fk ⊆ Fk−1 ∩ [ak, bk). Let Lk = clRFk \ Fk.

Denumerate Lk = {xki : i ∈ ω}. Let Ak = {xji : i + j = k}. Let {c0, c1, . . . , cm} denote
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points in Ak ∩ [ak, bk], such that c0 < c1 < · · · < cm. Let (s0i ) be an increasing sequence

such that s00 = ak and (soi ) converges to c0. For j > 0 let (sji ) be an increasing sequence

such that sj0 = cj−1 and (sji ) converges to cj in the Euclidean topology. Define Uk+1 =

σ(S, ([ak, bk), Fk)) =
⋃
{{[sji , s

j
i+1) : i ∈ ω} : j ≤ m} ∪ {[cm, bk)}. Then if Fk+1 is the closed

set in a response by P2, then no point in Ak is in the Euclidean closure of Fk+1.

We will show that
⋂
{Fk : k ∈ ω} 6= ∅. Suppose it is empty. Note

⋂
{clRFk : k ∈ ω} 6= ∅

since it is the intersection of compact sets. Let p ∈
⋂
{clRFk : k ∈ ω}. Let n ∈ ω be the

smallest such that p /∈ Fn. Then p ∈ Ln, say p = xnj . Then p is not clRFj+n+1. But this is

contrary to the the way p was chosen. It follows that
⋂
{Fk : k ∈ ω} 6= ∅ and hence σ is a

winning strategy for P1 in Γ(X). Thus the Sorgenfrey line is γ-complete.

It is helpful to consider strategies which have additional properties. The next definition

and following lemma indicate that existence of a winning strategy for P1 in Γ(X) guarantees

that there is winning strategy for P1 with properties which will be helpful to prove later

results.

Definition 2.11. Suppose σ is a strategy for P1 in Γ(X). Then a regular refinement of

σ is a strategy σ̂ with the following properties:

1. For every U ∈ σ̂(∅) there exists a U ′ ∈ σ(∅) such that clX(U) ⊆ U ′.

2. If S = U0, (C0, U0),U1, (C1, U1), . . . ,Un, (Cn, Un) is a partial play using σ̂ with cor-

rosponding play S ′ = U ′0, (C0, U
′
0),U ′1, (C1, U

′
1), . . . ,U ′n, (Cn, U ′n). Then Un+1 = σ̂(S) is

an open cover of Un with the property that if U ∈ Un+1 then there exists a U ′ ∈ U ′n+1 =

σ(S ′) such that clX(U) ⊆ U ′.

Lemma 2.12. Suppose X is regular and σ is a winning strategy for P1 in the game Γ(X).

There exists a regular refinement σ̂ of σ which is a winning strategy for P1

Proof. Define V0 = σ̂(∅) to be any regular refinement of the open cover σ(∅) = U0. Suppose

P2 plays C0 ⊆ U0 ∈ V0 in response to P1 who is using σ̂. Then there is a U ′0 ∈ σ(∅) such
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that cl(U0) ⊆ U ′0. Therefore (C0, U
′
0) is a legal move for P2 in response to σ(∅). We have

that U1 = σ(U0, (C0, U
′
0)) is an open cover of U ′0 and consequently an open cover of U0. We

can define V1 = σ̂(V0, (C0, U0)) to be any open refinement of U1.

Continue in this process to define σ̂. Since every closed set Ci in a repones by P2 to a

partial play S in the game with P1 using σ̂ is also a legal move using the closed set Ci to

the partial play S in the game with P1 using σ, it follows that
⋂
Ci 6= ∅ and therefore σ̂ is

a winning strategy for P1.

A regular refinement σ̂ of a strategy σ ensures that the closures of an open set used in

σ̂ is a subset of an open set in the corresponding play using σ. It will be useful to extend

this idea further by ensuring that the closures of open sets used in subsequent open covers

are also subsets of a fixed sequence of open sets.

Definition 2.13. We say that the strategy σ for P1 refines the decreasing sequence of

open sets {Wi : i ∈ ω} if whenever S is a partial play of Γ(X) such that |S| = 2n and

S(2n− 1) = (Cn, Un) with Cn ⊆ Un ∩Wn then σ(S) has the property that if U ∈ σ(S) then

U ∩ C = ∅ or clX(U) ⊆ Wn ∩ Un.

Lemma 2.14. Suppose X is a regular space, σ is a winning strategy of P1 in Γ(X), and

{Wi : i ∈ ω} is a decreasing sequence of open subsets of X. Then there is a regular refinement

σ̂ of σ which refines {Wi : i ∈ ω} and is a winning strategy for P1.

Proof. Proceed as in Lemma 2.12 to define a regular refinement σ̂, with the following ad-

ditional condition. If (Cn, Un) is a response to σ̂(S) with Un ⊆ U ′n ∈ σ(S ′) (where S ′ is

the corresponding play by using σ) and if Cn ⊆ Wn, then let σ̂(S _ (Cn, Un)) be an open

refinement of σ(S ′ _ (Cn, U
′
n)) such that if V ∈ σ̂(S _ (Cn, Un)) then either V ⊆ Wn ∩ U ′n

or V ⊆ (X \ Cn) ∩ U ′n.

We will look at the relationship with the other completeness properties, as well as how

γ-completeness is preserved under various subsets, unions, and mappings.
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Theorem 2.15. The property of being γ-complete is hereditary under closed sets.

Proof. Suppose σ witnesses γ-completeness for X. Let C be a closed subset of X. We will

define a winning strategy τ for P1 in Γ(C) using the strategy σ. Let U0 = σ(∅). Define

τ(∅) = {V ∩C : V ∈ U0} = U ′0.

Suppose P2 responds in Γ(U) with (V0∩C, C0) where V0∩C ∈ U ′0, V0 ∈ U0, and C0 ⊆ V0∩C

is closed in C. It follows that C0 is closed in X. Hence (V0, C0) is a legal response by P2 in

Γ(X) to the partial play U0. Let U1 = σ(U0, (V0, C0)) which is an open cover of V0. Define

τ(U ′0, (V0 ∩C, C0)) = {V ∩ (V0 ∩C) : V ∈ U1} = U ′1.

Since U ′1 is an open cover of V0 ∩C, it is therefore a legal play by P1. Suppose P2 responds

with (V1∩(V0∩C), C1) where V1 ∈ U1 (thus V1∩(V0∩C) ∈ U ′1), and C1 ⊆ V1∩V0∩C is closed.

Then C1 is a closed subset of V1 in X, hence (V1, C1) is a legal response by P2 in the game

Γ(X) in response to the partial play: U0, (V0, C0),U1. Let U2 = σ(U0, (V0, C0),U1, (V1, C1),

which is an open cover of V1. Define

τ(U ′0, (V0 ∩C, C0),U ′1, (V0 ∩ V1 ∩ U,C1)) = {V ∩ (V0 ∩ V1 ∩C) : V ∈ U2} = U ′2.

Suppose for a k > 0 that the partial play U0, (V0, C0), . . . ,Uk−1, (Vk−1, Ck−1),Uk is a

legal partial play in the game Γ(X) using the strategy σ, and suppose the associated partial

play U ′0, (V0 ∩C, C0), . . . ,U ′k−1, (V0 ∩V1 ∩ · · · ∩Vk−1 ∩C, Ck−1),U ′k using the partially defined

strategy τ .

Note U ′k is an open cover for V0 ∩ V1 ∩ · · · ∩ Vk−1 ∩ C. Suppose P2 responds with

(V0 ∩ V1 ∩ · · ·Vk−1 ∩ Vk ∩C, Ck) where Vk ∈ Uk and Ck is a closed subset of V0 ∩ V1 ∩ · · ·Vk

and hence a closed subset of Vk in X. Hence (Vk, Ck) is a legal response by P2 in Γ(X) to
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the partial play: U0, (V0, C0), . . . ,Uk−1, (Vk−1, Ck−1),Uk. Let

Uk+1 = σ(U0, (V0, C0), . . . ,Uk−1, (Vk−1, Ck−1),Uk, (Vk, Ck))

and define

τ(U ′0, (V0 ∩C, C0), . . . ,U ′k, (V0 ∩ · · ·Vk ∩C, Ck)) = U ′k+1.

This inductively defines a strategy τ for P1 in the game Γ(C). Since σ is a winning

strategy for P1 in Γ(X) it follows that
⋂
{Ci : i ∈ ω} 6= ∅, and hence τ is a winning strategy

for P1 in Γ(C). Therefore C is γ-complete.

Theorem 2.16. For quasi-regular X, weak γ-completeness is hereditary under closed sets.

Proof. Suppose P2 has a winning strategy in Γ̂(C) for some closed subspace C of quasi-

regular X, let τ be such a strategy. We will use τ to construct a winning strategy σ for P2

in Γ(X). Suppose P1 plays U0 in the game Γ(X). Then U ′0 = {U ∩ C : U ∈ U0} is an open

cover of C. Let (U0 ∩ C,F0) be P2’s response to U ′0, using τ . Note: F0 is a closed subset of

C, hence F0 is closed in X. Furthermore, F0 ⊆ U0 ∈ U0. Define σ(U ′0) = (U0, F0). Suppose

P1 responds with U1, then U ′1 = {U ∩ C : U ∈ U1} is an open cover of C. Let (U1 ∩ C,F1)

be P2’s response using τ to the moves: U ′0, (U0 ∩ C,F0),U ′1. Then F1 ⊆ U1 ∈ U1 and F1 is

also closed in X. Define σ(U0, (U0, F0),U1) = (U1, F1). Continue in this process. Since τ is

a winning strategy for P2 in Γ(C) it follows that
⋂
{Fi : i ∈ ω} = ∅. Hence σ is a winning

strategy for P2 in Γ(X).

Theorem 2.17. For regular X the property of being γ-complete is hereditary under Gδ sets.

Proof. Suppose A =
⋂
Wi is a Gδ set where Wn+1 ⊆ Wn, and σ witnesses γ-completeness

for a regular space X. By Lemma 2.14 we may assume that σ refines {Wi : i ∈ ω}. Let
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σ̂(X) be a regular refinement of σ(X). Define a strategy τ for P1 in Γ(A) as follows:

Γ(X) Γ(A)

U0 = σ(∅) V0 = τ(∅) = σ̂(∅) � A

(clX(C0), U
′
0) (C0, U0 ∩ A)

U1 = σ(U0, (clX(C0), U
′
0)) V0 = τ(V0, (C0, U0 ∩ A)) = σ̂(U0, (clX(C0), U

′
0)) � A ∩ U0

... (C1, U1 ∩ A)

An explanation: P1 plays τ(∅) = σ̂(∅) � A = {U ∩ A : U ∈ σ̂(∅)}. Suppose P2 responds

with (C0, U0 ∩A) where C0 is closed in A ⊆ W0. Let U ′0 ∈ U0 such that clX(U0) ⊆ U ′0. Thus

clX(C) ⊆ clX(U0) ⊂ U ′0. Therefore (clX(C0), U
′
0) is a legal play by P2 in repsonse to U0 in

Γ(X). Let U1 be the response by P1 in Γ(X) to the partial play: U0, (clX(C0), U0). Also,

clX(C0) ⊆ W0 since σ refines {Wi : i ∈ ω}. Define the response by P1 in Γ(A) to the partial

play: V0, (C0, U0 ∩ A) by the open cover σ̂(U0, (clX(C0), U
′
0)) � A ∩ U0.

Continuing this process defines the strategy τ . Since σ is a winning strategy for P1

in Γ(X) it follows that
⋂
{clX(Ci) : i ∈ ω} 6= ∅. Let x ∈

⋂
{clX(Ci) : i ∈ ω}. Since

clX(Cn) ⊆ Wn for each n ∈ ω it follows that x ∈ A. Therefore x ∈
⋂
{Ci : i ∈ ω}. Hence τ

is a winning strategy for P1 in Γ(A), and A is γ-complete.

Theorem 2.18. For regular X, if X is γ̂-complete then X is strongly Choquet.

Proof. Suppose σ witnesses γ̂-completeness with NE restricted to closures of open sets in the

base B. We will define a strategy τ for NE in the game Ch∗(X). Suppose E plays (U0, x0)

on move 0. Define U0 = σ(∅), which is an open cover of X. Let V0 ∈ U0 such that x0 ∈ V0.

Let W0 ∈ B such that x0 ∈ W0 ⊆ W 0 ⊆ U0 ∩ V0 ⊆ V0 ∈ U0. Hence (V0,W 0) is a legal move

for P2 in response to U0 in the game Γ̂(X). Define τ((U0, x0)) = W0.

Let U1 = σ(U0, (V0,W 0)), which is an open cover of V0. Suppose E plays (U1, x1) in

Ch∗(X) in response to the partial play (U0, x0),W0. Let V1 ∈ U1 such that x1 ∈ V1. let
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W1 ∈ B such that x1 ∈ W1 ⊆ W 1 ⊆ V1 ∩U1 ⊆ V1 ∈ U1. Hence (V1,W 1) is a legal play by P2

in response to U0,W 0,U1. Define τ((U0, x0),W0, (U1, x1)) = W1.

Suppose for k > 0 that U0, (V0,W 0),U1, (V1,W 1), . . . ,Uk−1, (Vk−1,W k−1) is a legal par-

tial play of Γ̂(X) using the strategy σ, and suppose (U0, x0),W0, (U1, x1),W1, . . . , (Uk−1, xk−1),Wk−1

is the associated partial play in the game Ch∗(X) using τ , i.e. xi ∈ Wi ⊆ W i ⊆ Ui ∩ Vi ⊆

Vi ∈ Ui and Wi ∈ B for all i ≤ k − 1. Suppose E responds to the partial play with (Uk, xk).

Let

Uk = σ(U0, (V0,W 0),U1, (V1,W 1), . . . ,Uk−1, (Vk−1,W k−1))

which is an open cover of Vk−1. Let Vk ∈ Uk such that xk ∈ Vk. Choose Wk ∈ B such

that xk ∈ Wk ⊆ W k ⊆ Vk ∩Uk ⊆ Vk ∈ Uk. It follows that (Vk,W k) is a legal response by P2

to the partial play: U0, (V0,W 0),U1, (V1,W 1), . . . ,Uk−1, (Vk−1,W k−1),Uk. Define

τ((U0, x0),W0, (U1, x1),W1, . . . , (Uk−1, xk−1),Wk−1, (Uk, xk)) = Wk

This defines a strategy τ for NE in Ch∗(X). Note: W i+1 ⊆ Wi for all i ∈ ω. Hence⋂
{W i : i ≥ 1} ⊆

⋂
{Wi : i ∈ ω}. Since σ is a winning strategy for P1 in Γ̂(X) it follows

that
⋂
{W i : i ∈ ω} 6= ∅. Hence

⋂
{Wi : i ∈ ω} 6= ∅. It follows that τ is a winning strategy

for NE in Ch∗(X). Thus X is strongly Choquet.

Theorem 2.19. For quasi-regular X, if X is γ̂-complete then X is Choquet.

Proof. Suppose σ witnesses γ̂-completeness for X when P2 is restricted to using closures

of open sets in the base B. We will proceed similarly to the previous result by defining a

winning strategy for NE in Ch(X). Suppose E plays U0 on move 0 in Ch(X). Let U0 = σ(∅),

and let V0 ∈ U0 such that V0 ∩ U0 6= ∅. Let W0 ∈ B such that W0 ⊆ V0 ∩ U0. Then (V0,W0)

is a legal response to U0 by P2 in Γ̂(X). Define τ(U0) = W0.

Suppose for k > 0 that U0, (V0,W 0),U1, (V1,W 1), . . . ,Uk−1, (Vk−1,W k−1) is a legal par-

tial play of Γ̂(X) using the strategy σ, and suppose U0,W0, U1,W1, . . . , Uk−1,Wk−1 is the
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associated partial play in the game Ch(X) using τ , i.e. Wi ⊆ W i ⊆ Ui ∩ Vi ⊆ Vi ∈ Ui and

Wi ∈ B for all i ≤ k − 1. Suppose E responds with the to this partial play in Ch(X) with

Uk. Let

Uk = σ(U0, (V0,W 0),U1, (V1,W 1), . . . ,Uk−1, (Vk−1,W k−1))

which is necessarily an open cover of Vk−1. Let Vk ∈ Uk such that Vk ∩ Uk 6= ∅. Let Wk ∈ B

such that W k ⊆ Vk ∩ Uk. Then (Vk,W k) is a legal response for P2. Define

τ(U0, V0, . . . , Uk−1,Wk−1, Uk) = Wk.

Then this defines a strategy τ for NE. For all i ∈ ω we have W i+1 ⊆ Ui ⊆ Wi. Therefore⋂
{W i : i ∈ ω} =

⋂
{Wi : i ∈ ω}. Since σ witnessed γ̂-completeness it follows that⋂

{W i : i ∈ ω} 6= ∅. Hence τ is a winning strategy for NE in Ch(X).

Lemma 2.20. If a quasi-regular space X is weakly γ-complete then X is Baire.

Proof. We will show the contrapositive. Suppose σ is a winning strategy for E in Ch(X).

We will define a strategy winning strategy τ for P2 in the game Γ(X). Suppose P1 plays U0.

Let V ′0 = σ(∅). Let U0 ∈ U0 and V0 open such that V0 ⊆ U0 ∩ V ′0 . Define

τ(U0) = (U0, V0).

Suppose P1 responds with U1. Let U1 ∈ U1 such that U1 ∩ V0 6= ∅. Then U1 is a valid play

by NE in Ch(X) to the move: V ′0 . Let V ′1 = σ(V ′0 , U1). Let V1 open such that V1 ⊆ V ′1 ⊆ V ′0 .

Define:

τ(U0, (U0, V0),U1) = (U1, V1)

Continue this process. Note that for all i ∈ ω we have Vi+1 ⊆ V i ⊆ V ′i . It follows from

the fact that σ is a winning strategy for E in Ch(X) that
⋂
{V ′i : i ∈ ω} = ∅. Hence⋂

{V i : i ∈ ω} = ∅. Therefore τ is a winning strategy for P2 in Γ(X).
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Corollary 2.21. If quasi-regular X is weakly γ-complete then X is hereditarily Baire.

Proof. Suppose X is weakly γ-complete. Let C ⊆ X be closed. Then C is weakly γ-complete

and hence Baire. Thus X is hereditarily Baire.

Proposition 2.22. The space X = (ω1 +1)× [0, 1]\ ({ω1} × P), where P are the irrationals,

is a space that is γ̂-complete but not hereditarily Baire.

Proof. Since {ω1} × (Q ∩ [0, 1]) is a closed copy of the rationals, it follows that X is not

hereditarily Baire. Let σ be the strategy for P1 in Γ̂(X) defined by σ(S) = {X} for all

partial plays S. We will show that S is a winning strategy. Let (V i : i ∈ ω) be a sequence

that represents a play by P2 in response to P1 using σ.

Suppose that there exists a j ∈ ω such that π1(V j) is bounded in ω1. Then V j is a

compact set. And it follows that
⋂
{V i : i ≥ j} 6= ∅ since it would be the intersection of a

nested sequence of compact sets. Since {V i : i ∈ ω} has the finite intersection property, it

would follow that
⋂
{V i : i ∈ ω} 6= ∅.

On the other hand suppose that for all j ∈ ω that π1(V j) is unbounded in ω1. We will

show that π1(V i) is closed for all i. Towards a contradiction, suppose π1(V k) is not closed.

Let α ∈ π1(V k) \ π1(V k). Let (αi : i ∈ ω) be a increasing sequence of points in π1(V k) that

converges to α. For each i ∈ ω let xi ∈ [0, 1] such that (αi, xi) ∈ V j. Let x ∈ [0, 1] be a limit

point of {xi : i ∈ ω}. We claim that (α, x) ∈ V i. Let U ×W be a basic open set in X that

contains (α, x). Let n0 ∈ ω such that if i > n0 then αi ∈ U . Let n1 ∈ ω such that if i > n1

then xi ∈ W . Let n = max{n0, n1}. Note (αn+1, xn+1) ∈ U ×W . Hence (α, x) ∈ V k. But

that would imply that α ∈ π1(V k), contrary to the way we picked α. It follows that π1(V i)

is closed and unbounded in ω1.

Since the intersection of countably many closed unbounded subsets of ω1 is non-empty,

we can choose a β ∈ ω1 such that β ∈
⋂
{π1(V i) : i ∈ ω}. Then the sequence {V i∩π−11 (β)} :
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i ∈ ω is a nested sequence of compact sets. Hence ∅ 6=
⋂
{V i ∩ π−11 (β) : i ∈ ω} ⊆

⋂
{V i : i ∈

ω}.

It follows that σ is a winning strategy for P1 in Γ̂(X). Hence X is γ̂-complete.

Corollary 2.23. γ̂-completeness does not imply γ-completeness.
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Chapter 3

Fan Spaces

Throughout this section we will look at the set (ω×ω)∪{∞} where points in ω×ω are

isolated and for each a ∈ ω the set ({a}×ω)∪{∞} is homeomorphic to a convergent sequence.

We will call such a space a fan. Suppose A ⊆ ω, we will denote the set PA = {(i, j) : i ∈ A}.

When there is no confusion we will use the notation Pn for the set P{n}.

Two well known fans are the metric fan M and sequential fan Sω, defined in the next

section. In this chapter we will be particularly interested in fans with intermediate topologies

between the metric and sequential fans. To get such topologies, given a free filter u on ω we

can define a fan Su which we will call a filter-fan.

Fans are relatively simple spaces as they only have one non-isolated point. However

the class of fans is diverse enough to isolate the different completeness properties on the

compact-open topologies. We will show that for filter fans Su, if Ck(Su) is Baire then it is

metrizable. Also Ck(Su) is never hereditarily Baire or Choquet.

We will also classify different completeness properties on Ck(Su) by properties of the

filter u, and show that the class of fans do not serve as a counter example to the main

conjecture.

3.1 The Metric Fan and the Sequential Fan

Recall that the metric fan is the space M = (ω×ω)∪{∞} with the following topology

Points in (ω× ω) are isolated and a basic open set around ∞ is of the form U(n) = {(a, b) :

b ≥ n}∪{∞}. The metric fan has the coarsest topology that we will consider in this chapter.

The following is a well known result.

Theorem 3.1. M is not hemicompact.
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Proof. Suppose {Ki : i ∈ ω} is a countable family of compact sets. For each n ∈ ω let

Rn = {(i, n) : i ∈ ω}. For each i ∈ ω let xi ∈ Ri such that xi /∈ Ki; this is possible because

Ri is a collection of isolated points, hence Ri∩Ki must be finite. Let K = {xi : i ∈ ω}∪{∞}.

Then K is not a subset of Ki for any i ∈ ω. However K is compact since any open set

containing ∞ will contain all but a finite subset of K. It follows that {Ki : i ∈ ω} is not a

dominating family of compact sets. Hence the metric fan is not hemicompact.

Corollary 3.2. The space Ck(M) is not metrizable.

It will be shown, in a more general context that M doesn’t have the Moving Off Property.

This will show, in particular, that Ck(M) is neither Baire nor metrizable. However, there is

another common fan whose compact open topology is completely metrizable.

Recall that the Sequential Fan is the fan Sω = (ω × ω) ∪ {∞} with the following

topology. For every f ∈ ωω let U(f) = {(i, j) ∈ ω × ω : j > f(i)} ∪ {∞}. A local basis for

∞ is {U(f) : f ∈ ωω}.

There is a more common and natural way to view the sequential fan in terms of a

quotient space.

Theorem 3.3. For each i ∈ ω let Si = (sin : n ∈ ω) ∪ {si∗} be a convergent sequence with

limit point si∗. Let X =
⊕
{Si : i ∈ ω}. Consider the map q : X → (ω × ω) ∪ {∞} defined

by q(sij) = (i, j) and q(si∗) =∞. Then the quotient topology generated by q is homeomorphic

to Sω.

That is to say, Sω can be generated by taking a countable collection of pairwise disjoint

sequences with their limit points and identifying the limit points. The following is a well

known and simple result.

Theorem 3.4. The sequential fan is a hemicompact k-space.

Proof. By the above theorem we know that Sω is the quotient image of a locally compact

space, hence it is a k-space. We claim that K = {PF : F ⊆ ω, |F | < ω} witnesses hemi-

compactness. Suppose A ⊆ Sω such that A * PF for any finite F ⊆ ω. We will show
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that A is not compact. For each i ∈ ω let (ai, bi) ∈ A such that ai > i; note if no such

(ai, bi) existed then A ⊆ K{0, 1, . . . , i}. Let B = {(ai, bi) : i ∈ ω} ∪ {∞}. B is closed since

∞ ∈ B and ∞ is the only non isolated point in Sω. We claim that B is a noncompact

closed subset of A, and hence A is not compact. Consider the following open cover of B:

U = {{(ai, bi)} : i ∈ ω} ∪ {U(f)} where f : ω → ω is defined by f(i) = bi + 1. Then

U(f) ∩ {(ai, bi) : i ∈ ω} = ∅. So U is an open cover of B with no finite subcover. It follows

that A is not compact and K witnesses that Sω is hemicompact.

Corollary 3.5. Ck(Sω) is completely metrizable.

3.2 Filter Fans

We will now look at fans whose topologies are finer than the metric fan but coarser than

the sequential fan. But first we will recall a couple definitions.

Suppose X is a set. A filter F on X is a collection of subsets of X such that:

1. If A,B ∈ F then A ∩B ∈ F

2. If A ∈ F and B ⊇ A then B ∈ F

3. ∅ /∈ F .

A filter which is maximal with respect to inclusion is called an ultrafilter. If F is a filter

on X and
⋂
F = ∅ then F is said to be a free filter.

We will use the concept of a filter construct a topology on a fan.

Definition 3.6. Suppose u is a free filter on ω. For each f ∈ ωω and A ∈ u and n ∈ ω let

〈f, A, n〉 = {∞} ∪ {(i, j) : i /∈ A, j ≥ f(i)} ∪ {(i, j) : i ∈ A, j ≥ n}. We will show below that

B = {〈f, A, n〉 : f ∈ ωω, n ∈ ω,A ∈ u} is a local base for ∞. Let Su be the fan with B as a

local base for ∞. We call Su the u-fan or simply a filter-fan. If F is a free ultrafilter on ω

then we call the fan SF an ultrafilter fan.
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It is worth noting that the sequential fan and the metric fan are special cases of filter-

fans. If u is the co-finite filter on ω then Su is the metric fan, and if u is a fixed filter then

Su = Sω.

3.2.1 Hemicompactness of Ck(Su)

We have noted that the metric fan is not hemicompact while Sω is hemicompact, and

that the family K = {PF : F ⊆ ω, |F | < ω} is a dominating family of compact subsets of

Sω. The result below shows that a filter-fan is hemicompact if and only if it doesn’t contain

a copy of the metric fan, and furthermore, if a filter-fan is hemicompact then the above

set K of compact sets is a dominating family. Hemicompactness of the filter-fan Su is also

characterized by an internal property of the filter u, and by the space ω ∪ {u}, where ω is

the set of isolated points and a neighborhood of u has the form F ∪ {u}, where F ∈ u.

Recall that, given a filter u on ω, a subset A ⊆ ω is called u-positive if A ∩ F 6= ∅ for

all F ∈ u. Equivalently, A is u-positive if and only if ω \ A /∈ u.

Proposition 3.7. Let u be a free filter on ω. Then the following are equivalent

(i) Su is hemicompact.

(ii) Su doesn’t contain a copy of the metric fan.

(iii) There is no infinite A ⊆ ω such that A is almost contained in every filter member; i.e.

there is no infinite A ⊆ ω such that |A \ F | < ω for all F ∈ u.

(iv) For all infinite J ⊆ ω there is an infinite subset A ⊆ J such that A is not u-positive.

(v) The space ω ∪ {u} has no non-trivial convergent sequences.

(vi) The family {PF : F ⊆ ω finite} is a dominating family of compact sets.

(vii) Ck(Su) is metrizable.
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Proof. Statement (vi) immediately implies (i). According to Theorem 1.5 statements (i)

and (vii) are equivalent.

We show (i) implies (ii). Suppose Su is hemicompact but contains a copy Y of the metric

fan. Since ∞ ∈ Y it follows that Y is closed and therefore Y is hemicompact, contrary to

the fact that the metric fan is not hemicompact. Therefore (i) implies (ii).

To show that (ii) implies (iii), suppose that there is an infinite J ⊆ ω such that J

is almost contained in every filter member. Consider the set Y = PJ with the subspace

topology. We claim that Y is a copy of the metric fan. Suppose 〈f, A, n〉 ∩ PJ is a basic

open set around ∞ in Y . Then J \ A = J ′ is finite. Let m = max{f(a) : a ∈ J ′} ∪ {n}.

Then 〈f, A, n〉 ∩ SJ ⊆ {(j, k) ∈ J × ω : k ≥ m}. It follows that each open set in Y contains

a metric-fan open set. The converse is clear.

To show (iii) implies (iv). Suppose the negation of (iv), i.e. assume that there is an

infinite J ⊆ ω such that all infinite A ⊆ J are u-positive. We will show that J is almost

contained in every filter element. Suppose towards a contradiction that F ∈ u such that

|J \ F | < ω. Then A = J ∩ F is infinite and therefore is u-positive. However A misses the

filter element F , i.e. A ∩ F = ∅. This is a contradiction. Hence J is almost contained in

every filter element.

To show (iv) implies (v). Suppose the negation of (v). Let S = (si : i ∈ ω) be a non-

trivial sequence converging to u in the single-filter space ω ∪ {u}. Define J = {si : i ∈ ω}.

We claim that every infinite subset of J is u-positive. Let A ⊆ J be infinite. Then A is

cofinal in ω and corresponds to a subseteq of S, i.e. A = {sni
: i ∈ ω} which as a sequence

converges to u. Therefore if F ∈ u it follows that F contains a tail of the sequence A. In

particular F ∩ A 6= ∅. Consequently A is u-positive.

To show (v) implies (vi). Suppose K = {PF : F ⊆ ω, |F | < ω} is not a dominating

family of compact sets. Let K be a compact set which is not contained in PF for any finite

F ⊆ ω. Let K ′ = {(xn, yn) ∈ K : n ∈ ω} be a subset of K such that xn > n for all n. Since
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K ′ is an infinite subset of K and K is compact, it follows that K ′ is not discrete. Hence

∞ ∈ cl(K ′). This implies that (xn : n ∈ ω) is a non-trivial convergent sequence in ω ∪ {u}.

3.2.2 Fréchetness of Ck(Su)

Recall that a space X is Fréchet if given any A ⊆ X we have that if x ∈ cl(A) \A then

there is a sequence of points in A converging to X. A space is said to be Strongly Fréchet

if for any sequence A0 ⊇ A1 ⊇ · · · and for any x ∈
⋂
{cl(Ai) : i ∈ ω} there exists a sequence

(ai : i ∈ ω) converging to x such that ai ∈ Ai for each i ∈ ω.

We will give a internal characterization on the filter of when Su is a Fréchet (or equiva-

lently a k-space). This will lead us to conclude that Ck(Su) is not completely metrizable for

any free filter u.

Proposition 3.8. Suppose u is a free filter on ω. Su is Fréchet (or a k-space) if and only if

ω ∪ {u} is strongly Fréchet.

Proof. Suppose Su is Fréchet. We need to check that ω ∪ {u} is strongly Fréchet at u. Let

A0 ⊇ A1 ⊇ A2 ⊇ · · · be a sequence such that u ∈
⋂
{Ai : i ∈ ω}. This implies that each

Ai is u-positive. For each i ∈ ω let Di = Ai × {i}. Let D =
⋃
{Di : i ∈ ω}. Then ∞ ∈ D.

Let ((ni,mi)) be a sequence of points in D that converge to∞. We may assume mi < mi+1.

For each j ∈ ω let aj = min{ni : mi ≥ j}. It is easy to chech that aj ∈ Aj for each j ∈ ω

and (aj) limits to u. Therefore ω ∪ {u} is strongly Fréchet.

To show the converse suppose that ω ∪ {u} is strongly Fréchet. Aiming to show that

Su is a Fréchet, suppose D ⊆ Su and ∞ ∈ D. Let A0 = π(D). For all i > 0 let Ai =

π(D \ ω×{0, 1, · · · , i− 1}). Then A0, A1, A2, · · · is a decreasing sequence of u-positive sets.

Let (ai) be a sequence that converges to u such that ai ∈ Ai for each i ∈ ω. For each i ∈ ω

let bi ∈ ω such that bi ≥ i and (ai, bi) ∈ D. Then the sequence ((ai, bi)) converges to ∞,

hence Su is Fréchet.
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Corollary 3.9. Suppose u is a free filter on ω. If Su is a k-space then Su is not hemicompact

and Ck(Su) is not metrizable.

Corollary 3.10. Suppose u is a free filter on ω. Then Ck(Su) is not completely metrizable.

Proof. This follows immediately by Theorem 1.5 and from the fact that Su can not be both

a k-space and hemicompact.

3.2.3 Baireness of Ck(Su)

We will make use of the following game to show an equivalence of when Ck(Su) is Baire.

Definition 3.11. If u is a filter on ω define a game G(u) with two players P1 and P2 as

follows. P1 chooses a finite subset A0 ⊆ ω and then P2 chooses a finite subset B0 ⊆ ω. On

play n > 0, P1 choose a finite subset An such that An∩Ai = ∅ and An∩Bi = ∅ for all i < n,

and P2 chooses a finite subset Bn ⊆ ω (with no restrictions). P1 wins if
⋃
{Ai : i ∈ ω} is

u-positive. P2 wins otherwise.

Proposition 3.12. Let u be a free filter on ω. Then P2 has no winning strategy in G(u),

and if u is an ultrafilter, then G(u) is undetermined.

Proof. It is easy to show that G(u) is equivalent, in terms of the existence of winning strate-

gies, to the game G′(u) in which P2 has to play by the same rules as P1, i.e., Bn ∩ Ai = ∅

for all i ≤ n, and Bn ∩ Bi = ∅ for all i < n. Then it follows that neither player can have a

winning strategy in which the union of his chosen sets lies in the filter u; for if he did, his

opponent could essentially employ the same strategy to also force the union of his chosen

sets to also be in u, yielding a pair of disjoint filter members. Also, in either game, P1 or P2

can always guarantee that
⋃
n∈ω An ∪ Bn = ω by adding {n} to his/her play in round n if

{n} hasn’t already been covered.

Now to prove the proposition. By the above comment, a winning strategy for P2 in G′(u)

would give one in which the union of P2’s sets are in u; hence P2 has no winning strategy in
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either game. For ultrafilters, u-positive sets are in u, so we get a similar contradiction if we

assume a winning strategy for P1.

Lemma 3.13. Suppose u is a free filter. If P1 has no winning strategy in G(u) then Su is

hemicompact.

Proof. Suppose Su is not hemicompact. We will show that P1 has a winning strategy in

G(u). By Proposition 3.7 there is an infinite set A ⊆ ω which is almost contained in every

filter element. If P1 chooses points from A, then P1 will win the game G(u).

Lemma 3.14. Suppose u is a free filter on ω. If Su has the Moving Off Property then Su is

hemicompact.

Proof. Suppose Su is not hemicompact. Then by Proposition 3.7, Su contains a closed copy

M of the metric fan. Since the metric fan is a non-locally compact metric space, it follows

that M doesn’t have the Moving Off Property by Theorem 1.8(iii). Since the Moving Off

Property is hereditary under closed sets it follows that Su doesn’t have the Moving Off

Property.

Corollary 3.15. Suppose u is a free filter on ω. If Ck(Su) is Baire, then Su is hemicompact

and Ck(Su) is metrizable.

Proof. Suppose Ck(Su) is Baire. It follows from Theorem 1.8(a) that Su has the Moving

Off Property. By Lemma 3.14 Su is hemicompact. Therefore by Theorem 1.5, Ck(Su) is

metrizable.

The converse of the above corollary is not true, as is shown by Example 3.24 in the next

section.

We now show that there is a strong connection between the games G(u) and GK,L(Su).

Proposition 3.16. Suppose u is a free filter.

(i) P1 has a winning strategy in G(u) if and only if L has a winning strategy in GK,L(Su).
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(ii) P2 has a winning strategy in G(u) if and only if K has a winnings strategy in GK,L(Su).

Proof. We will begin by showing (i). Suppose σ is a winning strategy for P1 in G(u) but

L doesn’t have a winning strategy in GK,L(Su). This implies by Lemma 3.14 that Su is

hemicompact. Define a strategy τ for L in GK,L(Su) as follows.

G(u) GK,L(Su)

A0 = σ(∅) K0

B0 = π(K0) L0 = τ(K0) = A1 × {0}

A1 = σ(B0) K1

B1 = π(K1) L1 = τ(K0, K1) = A2 × {1}

A2 = σ(B0, B1)
...

To interpret the chart: A0 is P1’s first play using σ in G(u), and K0 is K’s first play in

GK,L(Su). Then we let B0 = π(K0) be P2’s response, which is finite since Su is hemicompact,

and consider P1’s reply A1 to this play. Then let τ(K0) = L0 = A1 × {0} be L’s response to

K0, etc.

Since σ is a winning strategy for P1 it follows that
⋃
{Ai : i ∈ ω} is u-positive. Hence

if F ∈ u then {i ∈ ω : Ai ∩ F 6= ∅} is infinite. Suppose U = 〈f, F, n〉 is a basic open set

around ∞ in Su. By the previous observation {i > n : Ai ∩ F 6= ∅} is infinite. Therefore

{i : Li ∩ U 6= ∅} is infinite. It follows that {Li : i ∈ ω} is not a strongly discrete family.

Therefore τ is a winning strategy for L in GK,L(Su), a contradiction.
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On the other hand suppose σ is a winning strategy for L in GK,L(Su). By Lemma 3.13,

Su is hemicompact. Define a strategy τ for P1 in G(u) as follows.

G(u) GK,L(Su)

A0 = τ(∅) = {0} K0 = PB0∪A0

B0 L0 = σ(K0)

A1 = τ(B0) = π(L0) K1 = PB1∪A1

B1 L1 = σ(K0, K1)

A2 = τ(B0, B1) = π(L1) K2 = PB2∪A2

B2
...

That is, start with τ(∅) = {0} = A0, let B0 be P2’s response, then let K0 = PB0∪A0 be

K’s first play in GK,L(Su), and if L responds with L0, let τ(B0) be A1 = π(L0), etc.

We claim that τ is a winning strategy. Assume towards a contradiction that
⋃
{Ai : i ∈

ω} is not u-positive. Let F ∈ u such that F ∩ Ai = ∅ for all i ∈ ω. Since ∞ /∈ Li for any

i ∈ ω, it follows that each Li is a finite subset of ω × ω. Furthermore Pπ(Li) ∩ Pπ(Lj) = ∅ if

i 6= j. Therefore we can pick a function f : ω → ω that dominates
⋃
{Li : i ∈ ω} in the sense

that, for any k ∈ ω, f(k) > max{j : (k, j) ∈
⋃
i∈ω Li} . Then the open set U = 〈f, F, 0〉 is

a basic open set around ∞ that misses each Li. It follows that {Li : i ∈ ω} is a (strongly)

discrete family, contrary to the fact that σ is winning for L. This completes the proof of

statement (i).

We will now show (ii). Suppose K has a winning strategy σ in GK,L(Su). We may

assume ∞ ∈ σ(∅). Since L doesn’t have a winning strategy in GK,L(Su) it follows that Su

has the Moving Off Property and is hemicompact by Lemma 3.14. Construct a winning
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strategy τ for P2 in G(u) as follows.

G(u) GK,L(Su)

A0 K0 = σ(∅)

B0 = τ(A0) = π(K0) L0 = A1 × {0}

A1 K1 = σ(K0, L0)

B1 = τ(A0, A1) = σ(K1) A2 × {1}

A2
...

Since σ is a winning strategy for K in GK,L(Su) it follows that there is a basic open set

U = 〈f, F, k〉 around∞ such that U ∩Li = ∅ for all i ∈ ω. Therefore {i ∈ ω : F ∩Ai 6= ∅} ⊆

{0, 1, . . . , k} is finite. So
⋃
{Ai : i ∈ ω} is not u-positive.

On the other hand suppose σ is a winning strategy for P2. Since P1 doesn’t have a

winning strategy it follows that Su is hemicompact by Lemma 3.13. Define a strategy τ for

K in GK,L(Su) as follows.

G(u) GK,L(Su)

A0 = π(L0) K0 = τ(∅) = P0

B0 = σ(A0) L0

A1 = π(L1) K1 = τ(L0) = PB0∪A0

B0 = σ(A0, A1) L1

A2 = π(L2) K2 = τ(L0, L1) = PB1∪A1

B1 = σ(A0, A1, A2) L2

... τ(L0, L1, L2) = PB2∪A2

Since σ is a winning strategy for P2 in G(u) it follows that
⋃
{Ai : i ∈ ω} is not u-

positive. Let F ∈ u such that F ∩ Ai = ∅ for all i ∈ ω. By similar observations as above

we can find a function f : ω → ω that dominates
⋃
{Li : i ∈ ω}. Let U = 〈f, F, 0〉. Then
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U ∩Li = ∅ for all i ∈ ω. It follows that {Li : i ∈ ω} is strongly discrete. Hence τ is a winning

strategy for K in GK,L(Su).

Corollary 3.17. Suppose u is a free filter on ω. Then Ck(Su) is not Choquet.

Proof. By Proposition 3.12, P2 does not have a winning strategy in G(u). Consequently by

Proposition 3.16, K does not have a winning strategy in G◦K,L(Su), and so by Theorem 2.5,

Ck(Su) is not Choquet.

The next corollary, which is immediate from Corollaries 3.15 and 3.17, shows that Sω is

the only space among those we are considering whose function space is completely metrizable.

Corollary 3.18. Let u be a free filter. If Ck(Su) is Baire, then Ck(Su) is metrizable but not

Choquet.

We proceed to characterize when Ck(Su) is Baire. First, we give a characterization on

the filter u for P1 not having a winning strategy in G(u). By Lemma 3.13 and Proposition

3.7, we know if P1 has no winning strategy in G(u) then for all infinite J ⊆ ω there is an

infinite subset A ⊆ J such that A is not u-positive. A strengthening of this will give us our

characterization.

Proposition 3.19. Suppose u is a free filter on ω. The following are equivalent.

(i) P1 has no winning strategy in G(u).

(ii) If F is a collection of finite subsets of ω that moves off the finite sets, then there exists

an infinite F ′ ⊆ F such that
⋃
F ′ is not u-positive.

Proof. We will show (ii)→ (i) by contrapositive. Suppose σ is a winning strategy for P1 in

G(u). Let {B0, B1, . . .} denote the finite subsets of ω. Let A∅ = σ(∅). For each i ∈ ω let

Ai = σ(A∅, Bi). If As has been defined for all s ∈ ω<ω such that |s| = n then for each i ∈ ω

let:

Asai = σ(A∅, Bs(0), As(0), Bs(1), A(s(0),s(1)), . . . , Bs(i), As�i+1, . . . , Bs(n−1), As, Bi)
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This defines a tree whose branches correspond to plays of the game G(u). Note if s ∈ ωω then⋃
{As�n : n ∈ ω} is u-positive. We will create a collection F of finite sets which moves off the

finite sets such that if F ′ ⊆ F is infinite, then
⋃
F ′ contains the union of {As � n : n ∈ ω}

for some sequence s ∈ ωω; consequently
⋃
F ′ is u-positive.

Let K0 = {(0)} and F0 =
⋃
{A0}. Let K1 = {(1), (0, 1)} and F1 =

⋃
{A1, A(0,1)}. In

general let Kn = {s : s is a finite increasing sequence in ω whose last term is n} and let

Fn =
⋃
{As : s ∈ Kn}. Note if s ∈ Kn then since s(n− 1) = n it follows that As is a play in

response to P2 playing Bn, hence As∩Bn = ∅. Therefore Bn∩Fn = ∅. Thus F = {Fi : i ∈ ω}

moves off the finite sets.

Suppose F ′ ⊆ F is infinite. Then write F ′ = {Fn0 , Fn1 , . . .} where s = (ni)i∈ω is an

increasing sequence. The sequence s � (i + 1) ∈ Kni
since s � (i + 1) is increasing and

s(i) = ni. Hence As�(i+1) ⊆ Fni
for all i ∈ ω. Therefore

⋃
{As�i : i ∈ ω} ⊆

⋃
F ′, and

consequently
⋃
F ′ is u-positive.

Thus we have shown that there exists a collection F of finite sets that move off the

finite sets that has the property that if F ′ ⊆ F is infinite then
⋃
F ′ is u-positive. This is

the negation of statement (ii).

On the other hand, to show (i)→ (ii), suppose P1 does not have a winning strategy in

G(u), and suppose F is a collection of finite subsets of ω that move off the finite subsets of ω.

Clearly there is a strategy σ for P1 such that P1 always plays a member of F . Since σ can’t

be winning, there must be a sequence F ′ = {F0, F1, . . . } of members of F corresponding to

plays by P1 using σ whose union is not u-positive.

Lemma 3.20. Suppose u is a free filter on ω. If P1 has no winning strategy in G(u), then

Ck(Su) is Baire.

Proof. Suppose P1 has no winning strategy in G(u). Then Su is hemicompact by Lemma

3.13. By Proposition 3.7 we have that K = {PF : F ⊆ ω, |F | < ω} dominates the compact

subsets of Su. We will show that E has no winning strategy in Ch(Ck(Su)).
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Recall that a basic open set in Ck(X) has the form B(f,K, ε) = {g ∈ Ck(X) : |g(x) −

f(x)| < ε for all x ∈ K}, where f ∈ Ck(X) and K is compact. This is still a base if

the compact sets are restricted to members of a dominating family. So in the play of the

game, we may assume the players are restricted to choosing basic open sets B(f,K, ε) where

K ∈ K.

Aiming towards a contradiction, suppose that Ck(Su) is not Baire. Then E has a winning

strategy σ in Ch(Ck(Su)). Let NE choose finite sets G0, G1, . . . as follows. Suppose A0 =

σ(∅) = B(f0, PF0 , ε0) is E’s first play in the Choquet game. Let G0 be any finite set such

that G0 ∩ F0 = ∅ and {0} ⊆ G0 ∪ F0. Define B0 = B(g0, PF0∪G0 , ε0/4) as NE’s first play,

where g0 � PF0 = f0 and g0 � SF c
0

= f0(∞). Then B0 ⊆ A0, and it therefore legal play by

NE. Suppose A0, F0, f0, B0, G0, g0, . . . , An−1, Fn−1, fn−1, Bn−1, Gn−1, gn−1 have been defined

as above, then let

An = σ(A0, B0, . . . , An−1, Bn−1) = B(fn, PF0∪G0∪···∪Fn−1∪Gn−1∪Fn , εn)

where Fn is disjoint from all previous Gi’s and Fi’s. Let NE pick a finite set Gn disjoint from

all previous Fi’s and Gi’s such that {0, . . . , n} ⊆
⋃
{Gi ∪Fi : i ≤ n} and define NE’s play at

round n as:

Bn = B(gn, PF0∪G0∪···∪Fn∪Gn , εn/4)

where gn � PF0∪G0∪···∪Fn = fn and gn � (PF0∪G0∪···∪Fn)c = fn(∞).

We claim that if σ is winning strategy, then
⋃
{Fi : i ∈ ω} is u-positive. Suppose⋃

{Fi : i ∈ ω} is not u-positive. We will show that there is a continuous function in⋂
{Bi : i ∈ ω}. Let F =

⋃
{Fi : i ∈ ω} and H = ω \ F . Note H ∈ F . Define a function

g : SF → R by g(x) = lim
i→∞

gi(x). We will show that g is continuous.

Let ε > 0. Let n ∈ ω such that εn < ε/3. Then for all x ∈ SH we have

|gn(x)− g(x)| ≤
∞∑
i=0

|gn+i(x)− gn+i+1(x)| <
∞∑
i=0

εn/2
i = εn < ε/3.
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Let A =
⋃
{Gi : i ≤ n} which is finite. By definition, for all b ∈ H \ A and for all

i ∈ ω we have gn(b, i) = fn(∞). For each a ∈ A let Na ∈ ω such that if i > Na then

|gn(a, i) − gn(∞)| < ε/3. Let N = max{Na : a ∈ A}. Then for all h ∈ H and all i > N it

follows that |gn(h, i)− gn(∞)| < ε/3. Consequently for all h ∈ H and all i > N we have

|g(h, i)− g(∞)| ≤ |g(h, i)− gn(h, i)|+ |gn(h, i)− gn(∞)|+ |(gn(∞)− g(∞)| < ε

For all i ∈ F we have that g � Pi is continuous, since Pi is compact and the gi’s uniformly

converge to g. For each i ∈ F let ni ∈ ω such that if m > ni then |g(i,m) − g(∞)| < ε.

Define a function f : ω → ω by f(i) = ni if i ∈ F and f(i) = 0 otherwise. Then for all

x ∈ 〈f,H,N〉 we have |g(x)− g(∞)| < ε.

It follows that g is continuous and g ∈
⋂
{Bi : i ∈ ω}. Therefore σ isn’t a winning

strategy. In summary, if σ is a winning strategy for E then
⋃
{Fi : i ∈ ω} is u-positive.

Therefore if σ is a winning strategy there will be a corresponding winning strategy for P1 in

G(u), which is a contradiction. Hence E has no winning strategy. It follows that Ck(Su) is

Baire.

We can summarize the above results by proving the following equivalent conditions for

Ck(Su) being Baire.

Theorem 3.21. Suppose u is a free filter on ω. The following are equivalent.

(i) Su has the Moving Off Property.

(ii) L has no winning strategy in GK,L(Su).

(iii) P1 has no winning strategy in G(u).

(iv) For any collection F of finite subsets of ω that moves off the finite sets, there exists an

infinite F ′ ⊆ F such that
⋃
F ′ is not u-positive.

(v) Ck(Su) is Baire.
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Proof. (i) implies (ii) by Theorem 1.11. (ii) implies (iii) by Proposition 3.16. Proposition

3.19 shows (iii) and (iv) are equivalent. Proposition 3.20 shows (iii) implies (v). And

Theorem 1.8 shows (v) implies (i).

We will now show for a free filter u that Ck(Su) is not hereditarily Baire. While the

Choquet game Ch(X) characterizes Baireness of X, Debs shows in [De] the strong Choquet

game Ch∗(X) characterizes hereditary Baireness for many spaces.

Theorem 3.22. [De] Let X be a regular first-countable space in which every closed set is a

Gδ-set. Then the following are equivalent:

(i) X is hereditarily Baire;

(ii) E has no winning strategy in Ch∗(X).

Proposition 3.23. Suppose u is a free filter on ω. Ck(Su) is not hereditarily Baire.

Proof. If Ck(Su) is not Baire, then of course it is not hereditarily so, thus we may suppose

Ck(Su) is Baire. Then by Corollary 3.15, Ck(Su) is metrizable.

We will show that E has a winning strategy in Ch∗(Ck(Su)). By Corollary 3.15 and

Proposition 3.7, {PF : |F | < ω} is a dominating family of compact subsets of Su. Thus if

E plays the non-empty open set U and the point f ∈ U , we may assume U is of the form

B(f, PF , ε). If NE responds with the basic open set V , then f ∈ V so we may assume V has

the form B(f, PF∪G, δ), where G ∩ F = ∅ and δ ≤ ε.

Define the strategy σ for E in Ch∗(X) as follows. Let F0 = {0}, ε0 = 1, and

f0(x) =

 1 : x = (i, j), i ∈ ω, j = 0

0 : otherwise
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Let σ(∅) = U0 = B(f0, PF0 , ε0〉). Suppose NE responds with V0 = 〈f0, PF0∪G0 , δ0〉. Let

F1 = {min{i ∈ ω : i /∈ F0 ∪G0}}, ε1 = δ0/2, and

f1(x) =


f0(x) : x ∈ PF0∪G0

1 : x = (i, j),x /∈ PF0∪G0 , i ∈ ω, j ≤ 1

0 : otherwise

Let σ(U0, V0) = U1 = B(f1, PF0∪G0∪F1 , ε1).

Suppose Ui, Vi, fi, Fi, Gi, εi, and δi have been defined for all i ≤ k. Let Fk+1 = {min{i ∈

ω : i /∈ F0 ∪G0 ∪ · · · ∪ Fk ∪Gk}}, εk+1 = δk/2 and

fk+1(x) =


fk(x) : x ∈ PF0∪G0∪···∪Fk∪Gk

1 : x = (i, j),x /∈ PF0∪G0···∪Fk∪Gk
, i ∈ ω, j ≤ k + 1

0 : otherwise

Let σ(U0, V0, U1, V1, · · · , Uk, Vk) = B(fk+1, PF0∪G0∪···∪Fk∪Gk∪Fk+1
, εk+1).

We will show that
⋂
Ui = ∅. Let f = lim fi, where the limit is the pointwise limit. Since

lim εi = 0 and ω =
⋃

(Fi ∪Gi) it follows that f is the only candidate for a point in
⋂
Ui. We

will show that f is not continuous at ∞. Note that f(∞) = 0.

Let 〈g, A, n〉 be a basic open set around ∞. Since u is free, the filter element A is

infinite. Let k ∈ A such that k /∈ F0 ∪ G0 ∪ · · · ∪ Fn ∪ Gn. Then (k, n) ∈ 〈g, A, n〉 and

|f(∞) − f(k, n)| = |0 − 1| = 1. It follows that f is not continuous and
⋂
Ui = ∅. We have

constructed a winning strategy σ for E in Ch∗(Ck(Su)). Since Ck(Su) is metrizable, it follows

from Theorem 3.22 that Ck(Su) is not hereditarily Baire.

3.2.4 Examples of Fans

We will now look at several examples of fan spaces whose compact-open topology have

various completeness properties. As we have seen, for the metric fan M the space Ck(M)

is not Baire nor metrizable. And for the sequential fan Sω the space Ck(Sω) is completely
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metrizable. We have show that if Ck(Su) is Baire then it is metrizable. However, the next

example shows that the converse is not true.

Example 3.24. Suppose u is isomorphic to the co-nowhere-dense filter n on the rationals

Q; i.e. A ∈ n iff Q \A is nowhere-dense. Then Su is hemicompact and Ck(Su) is metrizable,

but Ck(Su) is not Baire.

Proof. It is easy to see that every infinite subset A of Q contains an infinite nowhere-sense

subset. E.g., if no point of A is a limit point of A, then A is nowhere-dense, while if some

point x of A is a limit point of A, then any sequence in A converging to x is nowhere-dense.

Thus Su is hemicompact and Ck(Su) is metrizable by Proposition 3.7.

It is also easy to see that P1 has a winning strategy in the game G(n): in round n, he

simply has to choose a rational within 1/2n of qn, where Q = {qi}i∈ω. It now follows from

Theorem 3.21((v)⇒(ii)) that Ck(Su) is not Baire.

Example 3.25. Suppose u is a free ultrafilter on ω. Then Ck(Su) is Baire and metrizable

but not hereditarily Baire or Choquet, hence not completely metrizable.

Proof. By Proposition 3.12, P1 has no winning strategy in G(u), hence Ck(Su) is Baire by

Theorem 3.21((i)⇐⇒ (iii)). The rest is immediate from Corollary 3.18 and Proposition 3.23.

Our final example shows that a free filter u need not be an ultrafilter for Ck(Su) to be

Baire.

Example 3.26. There is a free filter v on ω which is not an ultrafilter such that Ck(Sv) is

Baire.

Proof. Let u be a free ultrafilter on ω. Let u2 be the filter on two disjoint copies of ω such

that F ∈ u2 iff F meets each copy in a member of u. Then u2 is not an ultrafilter because the

disjoint copies of ω are both u2-positive. It is easy to see that if P1 had a winning strategy in

G(u2), then he would have one in G(u) too, a contradiction. (The idea is that if F is a play
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of P1 in G(u2) using a winning strategy, then the union of the traces of F on the two copies

should win for P1 in G(u).) So P1 has no winning strategy in G(u2). Hence if v is a filter on

ω isomorphic to u2, then v is not an ultrafilter and Ck(Sv) is Baire by Theorem 3.21.
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Chapter 4

Special Classes of Spaces

In this chapter we will consider a few more special classes of spaces, and show that

Conjecture 1.9 holds in each of these cases. In section 4.1 we consider another class of spaces

with only one non-isolated point. In particular we investigate the quotient image of collapsing

all non-isolated points of a certain topological spaces to a single point. In section 4.2 we will

consider closed images of locally compact paracompact spaces. Daniel Ma in [Ma] showed

that such spaces have the moving off property. We will show that the compact-open topology

on these spaces are not only Baire, but necessarily Choquet. In section 4.3, we consider the

family of closed images of first countable paracompact spaces. We will show that the closed

image Y of a first countable paracompact space X has the moving off property only in the

case that X is also locally compact. A corollary to this result, and the results from section

4.2, shows that the class of Lašnev spaces satisfy Conjecture 1.9. In section 4.4, we define

another topological game which characterizes a structure of the compact subsets of a space,

after a few preliminary results, we conclude that Conjecture 1.9 holds for spaces which are

the finite product of closed images of locally compact paracompact spaces.

4.1 Collapsed Spaces

We will see that under certain weak conditions if we consider the quotient space obtained

by collapsing all non-isolated points of a space to a point, then the resultant space would

have the moving off property if and only if its compact open topology is Baire.

The following property was defined by Vaughan in [Va]. A space X is said to be a

wD-space if given any collection D of discrete points in X there exists an infinite strongly

discrete subset D′ ⊆ D. This is a large class of topological spaces. Any submetrizable space
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and any realcompact space is a wD space. In the realm of T3 spaces any paracompact or

countably compact space is wD. Furthermore, any T4 space is wD.

Throughout the rest of this section let X be a locally compact completely regular wD-

space and A ⊆ X be the collection of non-isolated points, and let B = X \A. Suppose A is

paracompact. Let Y = B ∪ {∞} and q : X → Y be the map defined by q(x) = x if x ∈ B

and q(x) =∞ if x ∈ A. Give Y the topology generated by q.

For each x ∈ A let Kx be a compact neighborhood of x. For each finite subset F ⊆ B

and finite set G ⊆ A let K(G,F ) =
⋃
{q(Kx) : x ∈ G} ∪ F .

Lemma 4.1. The family K = {K(G,F ) : G ⊆ A,F ⊆ B, |G| < ω, |F | < ω} dominates the

compact subsets of Y .

Proof. Suppose K ⊆ Y is compact. Let A′ = clX(q−1(K)) ∩ A and B′ = q−1(K) ∩ B. Note

if B′ is finite then we can choose any a ∈ A and it would follow that K ⊆ K({a}, B′). So

assume B′ is infinite.

In the case that A′ is compact, there would exist a finite subset G ⊆ A′ such that U =⋃
{Kx : x ∈ G} would cover A′. Note that B′\U must be finite, otherwise {{x} : x ∈ B′\U}

is a infinite discrete subset of q−1(K) and since q is closed it would follow that K contains

an infinite discrete subset, contrary to the fact that it is compact. Hence B′ \U is finite, call

it F . It would follow then that K ⊆ K(G,F ).

On the other hand if A′ is not compact, then it isn’t countably compact. Let D be an

infinite discrete set of points in A′. Since X is wD and D is discrete in X it follows that

there exists and infinite subset D′ ⊆ D with a discrete open expansion {Ud : d ∈ D′}. For

each d ∈ D′ let xd ∈ B′ ∩ Ud. Note: Ud ∩ B′ = {xd} for each d ∈ D′. And {xd : d ∈ D′} is

therefore an infinite discrete subset of q−1(K), and since q is closed it would follow that K

has an infinite discrete subset contrary to the fact that it is compact. It follows that A′ has

to be compact and hence K ⊆ K(G,F ) for some K(G,F ) ∈ K.

Proposition 4.2. If Y has the moving off property then Ck(Y ) is Baire.
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Proof. Suppose Ck(Y ) is not Baire. Let σ be a winning strategy for E in the game Ch(Ck(Y )).

We will create a winning strategy τ for L in the game GK,L(Y ). We may assume all players

are using basic open sets constructed from K.

Let U0 = σ(∅) = 〈f0, A0 = K(G0, F0), ε0〉. Suppose K plays the compact set K0 =

K(H0, J0). Let NE play the move V0 = 〈g0, A0 ∪K0,min{ε0, 1
20
}〉 where g0 � A0 = f0 � A0

and g0(x) = f0(∞) for all x /∈ A0. Let U1 = 〈f1, A1 = K(G1, F1), ε1〉. Define L0 = τ(K0) =

K(∅, F1) \ (K(G1, ∅) ∪ A0 ∪K0).

Continue in this fashion to define τ .

Claim 1:
⋃
{Ai : i ∈ ω} =

⋃
{K(Gi, 0) : i ∈ ω} ∪

⋃
{Li : i ∈ ω} ∪

⋃
{Ki \

⋃
{Aj : j ≤

i} : i ∈ ω} ∪ A0

Proof of Claim 1: We only need to show ⊆. Suppose the left hand side is not a subset

of the right hand side. Let x ∈
⋃
{Ai : i ∈ ω} but x /∈

⋃
{K(Fi, 0) : i ∈ ω} ∪

⋃
{Li : i ∈

ω} ∪
⋃
{Ki \

⋃
{Aj : j ≤ i} : i ∈ ω} ∪ A0. Let j be the smallest natural number such that

x ∈ Aj. (Note: j > 0). So x ∈ K(Gj, Fj) but x /∈ K(Gj, ∅), thus x ∈ K(∅, Fj). However,

since x /∈ Lj−1 = K(∅, Fj) \ (K(G1, ∅)∪Aj−1 ∪Kj−1) it would have to follow that x ∈ Kj−1.

But this would imply that x ∈ Kj−1 \
⋃
{Ai : i ≤ j − 1} contrary to our assumption. The

above equality holds.

Let f :
⋃
{Ai : i ∈ ω} → R be defined by f = lim (fi �

⋃
{Ai : i ∈ ω}). Note: since σ is

a winning strategy the function f can’t be continuous (otherwise it could be simply extended

to a function f ∈
⋂
{Ui : i ∈ ω}).

Claim 2: If {Li : i ∈ ω} is a discrete family then f is continuous.

Proof of Claim 2: Suppose {Li : i ∈ ω} is discrete. Let ε > 0. Let U be an open

set around ∞ such that U ∩ Li = ∅ for all i ∈ ω. Since for each i ∈ ω the sequence

(fn � K(Fi, ∅) : n ∈ ω) converges uniformally to the function f � K(Fi, ∅) we can find for

any x ∈ Fi an open set Vx such that Vx ⊆ U ∩K(Fi, ∅) and if y ∈ Vx then |f(y)−f(∞)| < ε.

Let W =
⋃
{Vx : x ∈ Fi, i ∈ ω}. So W is open in

⋃
{Ai : i ∈ ω}.
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Suppose x ∈ W ∩
⋃
{Ai : i ∈ ω}. Then x ∈ U and thus x /∈

⋃
{Li : i ∈ ω}. If

x ∈ K(Fi, ∅) for some i ∈ ω then |f(x) − f(∞)| < ε. If x /∈
⋃
{Li : i ∈ ω} ∪

⋃
{K(Fi, ∅) :

i ∈ ω} then x ∈ Kj \
⋃
{Ai : i ≤ j} by Claim 1. Let N > i such that 1/2N < ε/2. Note

gN(x) = fN(∞) and gk(x) = fk(x) for all k > N . Hence |f(x)− f(∞)| ≤ |f(x)− gN(x)| +

|gN(x) − fN(∞)| + |fN(∞) − f(∞)| < ε. Hence for all x ∈ W ∩
⋃
{Ai : i ∈ ω} we have

|f(x)− f(∞)| < ε. Hence f is continuous.

It follows that {Li : i ∈ ω} is not discrete. Hence τ is a winning strategy for L in

GK,L(Y ).

4.2 Closed Images of Locally Compact Paracompact Spaces

We will show that the the compact open topology of closed images of locally compact

paracompact spaces are Choquet, and hence Baire. Daniel Ma showed that all such spaces

have the Moving Off Property. The current result will show that none of these spaces can

serve as a counter example to the main conjecture: if X has the moving off property then

Ck(X) is Baire. Recall that any locally compact paracompact space can be written as a

topological sum of locally compact σ-compact spaces.

Lemma 4.3. If X is a locally compact Lindelöf space, then X is hemicompact.

Proof. Suppose X is a locally compact and Lindelöf. For each x ∈ X let Kx ⊆ X be a

compact subset such that x ∈ int(Kx). Then K = {int(Kx) : x ∈ X} is an open cover of

X. Let x1, x2, . . . ∈ X such that K′ = {int(Kxi) : i ∈ ω} covers X. For each F ⊆ ω with F

finite, let KF =
⋃
{Kxi : i ∈ F}. Let H = {KF : F ⊆ ω, |F | < ω}. We will show that H

witnesses hemicompactness. Let C ⊆ X be compact. Then K′ is an open cover of C. Let

F ⊆ ω be finite such that C ⊆ {int(Hxi) : i ∈ F} covers C. It follows that C ⊆ KF ∈ H.

Proposition 4.4. Suppose κ is an ordinal, and for each i ∈ κ that Hi is a locally compact

σ-compact space. Let X =
⊕
{Hα : α ∈ κ} and f : X → Y a closed continuous surjective

map. Then Ck(Y ) is Choquet.
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Proof. By the above proposition each Hα is a hemicompact k-space. For each α ∈ κ let

{K(α, j) : j ∈ ω} be an increasing family of compact spaces which witness hemicompactness

for Hα. For each σ ∈ Fn(κ, ω) let Kσ =
⋃
{f(K(α, j)) : (α, j) ∈ σ}. Then K = {Kσ : σ ∈

Fn(κ, ω)} is a family of |κ| many compact sets which dominate the compact subsets of Y .

Consider the Banach-Mazur game on Ck(Y ) using these compact sets.

We will construct a winning strategy for NE. Two things to note:

(1) Once a compact set Kσ has been played as part of a basic open set in Ck(Y ), the next

play of the game must include a compact set, Kσ′ which is a superset Kσ. We can

assume then, without loss of generality, that σ′ extends σ.

(2) In the way we construct the strategy for NE, it is important that NE forces the game

to be played using basic open sets which consist of certain compact sets. In particular,

once α ∈ dom(σ), for some Kσ used in a basic open set in the game, NE wants to force

the game to be played on all of f(Kα).

Towards satisfying (2) above, for each σ ∈ Fn(κ, ω) let σ + 1 denote the function

defined by (σ+1)(α) = σ(α)+1. Suppose E plays U0 = B(f0, Kσ0 , ε0), then NE should play

V0 = B(f0, Kσ0+1, ε0/2). If on the nth play E plays Un = B(fn, Kσn , εn), then NE should

play Vn = B(fn, Kσn+1, εn/2). This defines a stationary strategy for NE. We claim that this

strategy is winning. Let D = {α ∈ κ : (∃i ∈ ω)(α ∈ dom(σi)}. Note: |D| ≤ ω.

Let A =
⋃
{Kσi : i ∈ ω} =

⋃
{f(Kα) : α ∈ D} = f

(⋃
α∈DKα

)
. A is the closed image

of a hemicompact k-space, so it is a hemicompact k-space. Since A is a k-space it follows

that A is a kR space. Furthermore, A is closed, since it’s the image of a closed set.

Define a function f : A→ R as follows:

f(x) = lim
n→∞

fn � A

To see that this is continuous, suppose H ⊆ A is compact, and let m ∈ ω such that H ⊆ Kσm .

Then {fn � H : n ∈ ω} converges uniformly to f � H. Consequently f � H is continuous.
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Since A is a kR space, this is enough to show that f is continuous on A. By the Tietze

Extension Theorem we can do the following: Let f̂ : Y → R be a continuous extension of f .

Such an f̂ is in
⋂
{Vi : i ∈ ω}.

Thus NE has a winning strategy, and Ck(Y ) is Choquet.

Corollary 4.5. If Y is the closed image of a locally compact paracompact space, then Ck(Y )

is Baire.

4.3 Lašnev Spaces and Closed Images of First Countable Paracompact Spaces

We use results from the previous section to investigate closed images of first countable

paracompact spaces. We will include that in the class of Lašnev spaces, X has the moving

off property if and only if Ck(X) is Choquet.

A closed surjective map f : X → Y is said to be irreducible if there does not exist a

closed proper subset C of X such that f � C is onto. A closed surjective map f : X → Y is

said to be inductively irreducible if there exists a closed set C ⊆ X such that f : C → Y

is irreducible.

It has been shown that in many types of spaces every closed map is inductively irre-

ducible. We will make use of the following result by Lašnev.

Lemma 4.6. [La] If X is a first countable paracompact space and f : X → Y is a closed

surjection, then f is inductively irreducible.

Fibers of irreducible maps have some well known properties which we will use in the

upcoming result.

Lemma 4.7. If f : X → Y is a closed irreducible surjection and y ∈ Y , then the following

are equivalent:

a.) The fiber f−1({y}) is open

b.) The fiber f−1({y}) is an isolated point.
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c.) y is an isolated point.

Proof. Suppose f−1({y}) is open, but not an isolated point. Suppose x ∈ f−1({y}). Then

A = (X \ f−1({y})) ∪ {x} is a proper closed subset of X and f � A is a surjection, contrary

to the fact that f is irreducible. Therefore if f−1({y}) is open then it is an isolated point.

The converse is immediate.

Since f is a quotient map we also have that {y} is open, and therefore an isolated point,

if and only if f−1({y}) is open.

Lemma 4.8. If f : X → Y is a closed irreducible surjection and the fiber f−1({y}) is not

an isolated point, then f−1({y}) has non-empty interior.

Proof. Suppose the fiber f−1({y}) is not an isolated point but has non-empty interior. Then

by the previous lemma there would be a proper open set contained in f−1({y}), say U ⊆

f−1({y}). Then A = X \ U is a proper closed subset of X and f � A would be a surjection

onto Y , contrary to the fact that f is irreducible. We can conclude that if a fiber is not an

isolated point then it has non-empty interior.

We now turn to the main result in this section.

Proposition 4.9. Suppose X is a first countable paracompact space and f : X → Y is a

closed surjective map. If Y has the moving off property then X is locally compact.

Proof. Since closed surjections on first countable paracompact spaces are inductively irre-

ducible and being first countable paracompact is hereditary under closed sets, we may assume

that f is irreducible. Suppose X is not locally compact. We will show that Y contains a

copy of the metric fan and therefore doesn’t have the moving off property. Let x∗ ∈ X have

no compact neighborhood. Let {Wi : i ∈ ω} be a strongly decreasing local base at x∗, let

y∗ = f(x∗), for each x ∈ X let C(x) = f−1({f(x)}) be the fiber of f that contains x.

Define V0 = W0. Since clX(V0) is a neighborhood of x∗ it is not compact. Furthermore,

since in paracompact spaces all countably compact subsets are compact, it follows that
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clX(V0) is not countably compact. We can choose a discrete collection {xi : i ∈ ω} ⊆ clX(V0).

We may assume that {xi : i ∈ ω} is strongly discrete since X is paracompact and therefore

collectionwise normal. Let {Ui : i ∈ ω} be a discrete open expansion of {xi : i ∈ ω} such

that xi ∈ Ui for each i ∈ ω. Since f is irreducible by the previous lemmas, it follows that the

fibers of f have empty interiors or they are isolated points. We may define a new discrete

collection of points as follows. Let p00 ∈ U0 \ C(x∗). Let p01 ∈ U1 \ (C(x∗) ∪ C(p00)). Suppose

p0i has been defined for each i ≤ k such that p0i ∈ Ui and p0i is not in a fiber with x∗ or any

pj0 for j < i. Let p0k+1 ∈ Uk+1 \ (C(x∗) ∪
⋃
{C(p0i ) : i ≤ k}). This inductively defines the set

P0 = {p0i : i ∈ ω}. Then P0 is closed discrete and since each element in P0 is in a different

fiber it follows that f(P0) is an infinite closed discrete set with y∗ /∈ f(P0).

Let n ∈ ω be the smallest such that clX(Wn) ⊆ f−1 (Y \ f(P0)). Define V1 be an open

set such that x∗ ∈ Vk ⊆ clX(V1) ⊆ Wn. Since clX(V1) is a neighborhood of x∗ we can find

a discrete collection {xi : i ∈ ω} ⊆ clX(V1), which we may assume is strongly discrete. Let

{Ui : i ∈ ω} be a discrete open expansion of {xi : i ∈ ω} such that Ui ⊆ Wk for all i ∈ ω.

We may proceed as in the previous case to create a discrete family P1 = {p1i : i ∈ ω}, such

that for all i ∈ ω the point p1i is not in a fiber with x∗ or any p1j for j 6= i. Then f(P1) will

be a closed infinite discete set.

Suppose that Vi and Pi = {pij : j ∈ ω} have been defined for all i < k, such f(Pi) is

an infinite closed discrete set, y∗ /∈ f(Pi) and f(Pj) ∩ f(Pi) = ∅ for j 6= i. Let n ∈ ω be

the smallest such that clX(Wn) ⊆ f−1(Pk−1). Let Vk be an open set such that x∗ ∈ Vk ⊆

clX(Vk) ⊆ Wn. Since clX(Vk) is a neighborhood of x∗, it is not compact and hence we can find

a closed discrete set {xi : i ∈ ω} ⊆ clX(Vk). We may assume that {xi : i ∈ ω} is strongly

discrete with the family of open sets {Ui : i ∈ ω} being an discrete open expansion. By

selecting points in Ui as we did previously we can define a discrete family Pk = {pki : i ∈ ω}

such that each point is in a unique fiber and no point is in a fiber with x∗.

This inductively defines the family {Pi : i ∈ ω}. Let M = {y∗} ∪
⋃
{f(Pi) : i ∈ ω}.

We claim that M is a copy of the metric fan where y∗ is the non-isolated point and each
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f(Pi) is a ring in the fan. If n ∈ ω then the set {y∗} ∪
⋃
{f(Pi) : i ≥ n} is open in M

since
⋃
{f(Pi : i < n} is either empty or is the finite union of closed discrete sets and is thus

closed.

Corollary 4.10. Suppose Y is the closed image of a first countable paracompact space X

under the map f . The following are equivallent:

a. Y has the moving off property.

b. Ck(Y ) is Choquet

c. Ck(Y ) is Baire

d. K has a winning strategy in G◦K,L(Y )

e. L has no winning strategy in G◦K,L(Y )

Proof. b⇒ c⇒ a and b⇒ d⇒ e and a⇔ e follow directly from previous results. Suppose

Y has the moving off property. Then by the above lemma X is locally compact. Hence

Ck(Y ) is Choquet since Y is the closed image of a locally compact paracompact space. Thus

a⇒ b.

There is a well-known better class of spaces that is a subclass of the closed images of

first countable paracompact spaces. Recall that a Lašnev space is a space that is the closed

image of a metric space.

Since each metric space is first countable and paracompact it follows that the above

corollary will hold for the class of Lašnev spaces as well. In particular, a weakening of the

above result is the following corollary.

Corollary 4.11. Suppose Y is a Lašnev space. Then Y has the moving off property if and

only if Ck(Y ) is Baire.
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4.4 Normal kR-spaces and a game

The definition for the following games are motivated by the above proof to proposition

4.5. Recall that each basic open set in Ck(Y ) has an underlying compact subset of Y . A

critical component of the proof was the ability of NE in the game Ch(Ck(Y )) could create

a play of basic open sets in Ck(Y ) whose underlying compact sets would union to a closed

hemicompact k-space.

Definition 4.12. Define the game GC(X) on a topological space X, with two players P1

and P2, as follows: On move 0, P1 plays compact set K0 and P2 responds with compact

H0 ⊇ K0. On move n, P1 plays compact Kn ⊇ Hn−1 and P2 plays Hn ⊇ Kn. Player P2 wins

if
⋃
{Hi : i ∈ ω} is closed and {Hi : i ∈ ω} is a dominating family of compact subsets of H,

otherwise P1. Let GCK denote the similar game, where P2 must also have H as a k-space.

Proposition 4.13. If Y is the closed image of a locally compact paracompact space then P2

has a winning strategy in GCK(Y ).

Proposition 4.14. Suppose X is a normal kR space. Then if P2 has a winning strategy in

GCK. Then Ck(X) is Choquet

Proof. Suppose P2 has a winning strategy σ in the above defined game. Define a strategy

NE in the Choquet game on Ck(X) as follows: If E’s first play is E0 = B(f0, K0, ε0) then

NE plays N0 = B(f0, H0, ε0/2), where H0 = σ(K0). If Ni and Ei have been defined for all

i ≤ n ∈ ω, and E plays En = B(fn, Kn, εn) then NE plays Nn = B(fn, Hn, εn/2), where

Nn = σ(K0, H0, K1, H1, . . . , Kn−1, Hn−1, Kn). Since σ is a winning strategy, it follows that

H :=
⋃
{Hi : i ∈ ω} is closed.

Define f : H → R as follows:

f(x) = lim
n→∞

fn(x)
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Let K ⊆ H be any compact set. Since H is closed it follows that K is a compact subset of

X. Since f � K is a uniform limit of continuous functions on a compact set it is continuous

on K. Since being a kR space is hereditary it follows that f is continuous on H. By the

Tietze Extension Theorem we can extend f to a continuous function f̂ : X → R, and

f̂ ∈
⋂
{B(f,Hi, εi/2) : i ∈ ω}. Thus NE has a winning strategy in the Choquet game on

Ck(X). Hence Ck(X) is Choquet.

Proposition 4.15. Suppose X is a normal and P1 doesn’t have a winning strategy in

GCK(X). Then Ck(X) is Baire.

Proof. Suppose P1 doesn’t have a winning strategy in G(X). Let σ be a strategy for E in the

game Ch(Ck(X)). We will show that σ is not a winning strategy. Define a strategy τ for P1 in

G(X) as follows. Suppose U0 = σ(∅) = B(f0, K0, ε0). Define τ(∅) = K0. Suppose H0 ⊇ K0

is compact. Let U1 = σ(U0, V0 = B(f0, H0, ε0/2)) = B(f1, K1, ε1). Define τ(K0, H0) = K1.

Suppose τ(K0, H0, K1, H1, . . . , Ki, Hi) = Ki+1, Ui, fi and εi have been defined for all i <

n, and Vi has been defined for all i < n−1. LetHn ⊇ Kn. Let Uk = σ(U0, V0, U1, . . . , Un−1, Vn−1 =

B(fn−1, Hn, εn−1/2)) = B(fn+1, Kn+1, εn+1). Define τ(K0, H0, K1, H1, . . . , Kn, Hn) = Kn+1.

This inductively defines the strategy τ for P1 in G(X). Since τ is not a winning strategy,

P2 can pick a sequence of compact sets (Hi : i ∈ ω) which will witness that τ is not winning.

Hence H =
⋃
{Hi : i ∈ ω} is closed. We show that the corrosponding moves (Vi : i ∈ ω) for

P2 in Ch(Ck(X)) will witness that σ is not winning for E.

Define f : H → R as follows:

f(x) = lim
n→∞

fn(x)

As in the above proposition, f is continuous on H which is closed and hence can be extended

to a continuous function f̂ on all of X. And f̂ ∈
⋂
{Vi : i ∈ ω}. Hence σ is not a winning

strategy.
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We will use the following simple results, to conclude that Player 2 having a winning

strategy in the above defined game GCK(X) is finitely productive.

Lemma 4.16. If K0 and K1 are dominating families of compact subsets of X0 and X1,

respectively, then K = {K0 × K1 : K0 ∈ K0, K1 ∈ K1} is a dominating family of compact

subsets of X0 ×X1.

Lemma 4.17. If {Hi : i ∈ ω} witnesses hemicompactness in X0 and {Ki : i ∈ ω} witnesses

hemicompactness in X1, then {Hi ×Ki : i ∈ ω} witnesses hemicompactness in X0 ×X1.

Proposition 4.18. P2 having a winning strategy in GCK(X) is finitely productive.

Proof. Suppose P2 has a winning strategy σ0 in X0 and a winning strategy σ1 in X1. Define

a strategy τ for P2 in the game GC(X0 × X1) in the following manner. Define τ(K0) =

H0 × J0 where H0 = σ0(π0(K0)) and J0 = σ1(π1(K0)). Continue in this fashion. Then

H =
⋃
{Hi × Ji : i ∈ ω} is closed k-space and {Hi × Ji : i ∈ ω} witnesses hemicompactnes

for H.

Corollary 4.19. Suppose X0, X1, . . . , Xn are closed images of locally compact paracompact

spaces. Then Ck (
∏
{Xi : i ≤ n}) is Choquet.

Proof. Since P2 has a winning strategy in GCK(X) for each Xi, by the above lemma it

follows that P2 has a winning strategy in
∏
{Xi : i ∈ ω}. Therefore Ck (

∏
{Xi : i ∈ ω}) is

Choquet.
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