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Abstract

Let G be a subgroup of the symmetric group Sn for n ∈ N and let V be an in-

ner product space. Orthogonality properties of the set of standard (decomposable) sym-

metrized tensors in V ⊗n corresponding to G have been studied for more than two decades

[WG91, HT92, Hol95, DP99, BPR03, Hol04, TS12]. The determination of such properties

would be facilitated by an understanding of the more general geometric properties of this set.

Building on fairly isolated insights throughout the relevant literature, we obtain some new

results, and in doing so we begin to weave a coherent narrative for the future exploration of

this geometry.

The space V ⊗n is an orthogonal direct sum of orbital subspaces, so it suffices to study

the sets of standard symmetrized tensors in these subspaces. In order to do so, we investi-

gate for each irreducible character χ of G and each subgroup H of G the set Σ of standard

vectors in what we call the coset space CχH . This coset space is itself a vector space and a

CG-module, and for each (H,χ)-pairing it corresponds to one and only one orbital subspace

of V ⊗n. Hence the coset space serves as a proxy tool for our inquiries into the geometry of

a given orbital subspace.

The structure of CχH as a vector space is easily understood, but for the sake of parallelism

with orbital subspaces, we need also to understand its structure as a CG-module. The first

result furnishes an isomorphism that renders this structure in the well-known terms of the

associated group algebra. The isomorphism may prove useful in the future, as groundwork

for a more module-theoretic approach to these matters.
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In order to generate meaningful conjectures, we then devote considerable effort to the con-

struction of bases for our coset spaces. As it turns out, finding such a basis is itself a far

from trivial problem. After developing sufficient machinery, we obtain bases for coset spaces

associated with the groups S3, S4, and A4, allowing the (H,χ)-pairings to vary. We then

compute the Gram matrices for the basis vectors in each coset space. The first conjectures

arise from these computations. In several cases we find that, possibly after dividing the

entries of the Gram matrix by 2, we obtain the Cartan matrix for a crystallographic root

system of type A2 or A2 × A2. Thus in these cases a basis for the coset space is also a

base for a root system. By reference to the correspondence between coset spaces and or-

bital subspaces, we conclude that certain symmetrized tensor spaces possess the geometry

of crystallographic root systems. The section culminates with a theorem stating that, if a

coset space gives rise to a root system, then that root system has irreducible components of

type A1 or A2, which are simply laced.

In the next section, we examine in depth the geometric properties of CχH when the group is

dihedral, of order a power of 2. It has already been proven that the standard symmetrized

tensors in V ⊗n for this choice of G have an orthogonal basis for every (H,χ)-pairing in the

corresponding coset space. We now deploy more explicitly geometric methods to obtain

the same conclusion. The result is a more intuitive proof, the methodology of which will

hopefully shed light on the orthogonality properties of other sets of standard symmetrized

tensors. Ultimately, one goal of future work is to provide necessary and sufficient conditions

for a finite group to give rise to an orthogonal basis of symmetrized tensors.

Finally, we show how this more geometric approach confirms a result in the literature. Given

an m-dimensional inner product space V , the orbital subspace V χ
γ of V ⊗n is determined by

the irreducible character χ of Sm and the element γ ∈ Γn,m, where we may view Γn,m as the

set of functions α : {1, ..., n} → {1, ...,m}. In [TS12], the authors prove that the standard
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symmetrized tensors in a certain orbital subspace of V ⊗n form a root system of type Am−1.

Again we take a more conceptual avenue to the same result. It is a fitting way to close: The

proof demonstrates how, by bringing the power of representation and character theory to

bear, we can accomplish what was formerly done through combinatorial means.
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Chapter 1

Preliminaries

1.1 Basics of Representation Theory

Let G be a finite group, let K be a field, and let V be a finite-dimensional vector space

over K. Denote by GL(V ) the group of invertible linear transformations of V onto itself.

We define a linear K-representation of G in V to be a group homomorphism ρ : G →

GL(V ). When the field K is understood to be C, as it is throughout this work, we refer to

ρ simply as a representation. A group G usually has multiple representations, and we may

think of the images of these representations informally as different “snapshots” of the group.

By studying the “snapshots,” we indirectly obtain information about the group at hand.

Now, given a representation ρ, and an element g ∈ G, we have that ρ(g) ∈ GL(V ), so

it follows that ρ(g) : V → V can be viewed as a matrix [ρ(g)]B relative to some ordered basis

B. Recall that the trace of a matrix is the sum of its diagonal elements. Although we may

change the basis for V to some other ordered basis, the trace of ρ(g) remains unchanged

relative to this new basis. It makes sense, then, to speak of the trace of ρ(g). Hence the

following notion is well-defined: The character afforded by ρ is the function χ : G → K

given by χ(g) = Tr[ρ(g)]B, where B is some ordered basis for V .

Let W be a subspace of V such that ρ(g)(W ) ⊆ W for all g ∈ G. Then we obtain a

new map G → GL(W ), called the sub-representation of ρ afforded by W . If ρ has no

proper, non-trivial sub-representations, then we say that ρ is irreducible, and the character

it affords is an irreducible character. The set of irreducible characters of a group G,

denoted Irr(G), will play a central role in the ensuing text. Before proceeding, though, we
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must learn to see representations of G as equivalent to what we call KG-modules.

Given a finite group G and a field K, KG is the vector space whose elements are linear

combinations of the form
∑

a∈G αaa, where αa ∈ K. Its basis is the set G, and it gets its

additive structure in a natural way. To give KG multiplicative structure, we define multi-

plication by (∑
a∈G

αaa

)(∑
b∈G

βbb

)
=
∑
a,b∈G

(αaβb)ab.

The element 1e serves as the multiplicative identity of KG, where e is the identity element

of the group G. Now, a K-algebra is a ring A with identity that is also a vector space over

K such that α(ab) = (αa)b = a(αb) for all α ∈ K and all a, b ∈ A. With the above structure,

KG is a K-algebra, and since its basis is G, we refer to KG as a group algebra.

Recall that, for an arbitrary ring R, an R-module is an abelian group M equipped with

a map R×M →M such that for all r, s ∈ R and m,n ∈M,

(i) r(m+ n) = rm+ rn

(ii) (r + s)m = rm+ sm

(iii) r(sm) = (rs)m

(iv) 1m=m

Let V be a vector space over the ring KG, and again let ρ : G→ GL(V ) be a representation

of G. Then V becomes a KG-module by defining gv = ρ(g)(v) (g ∈ G, v ∈ V ) and extending

linearly to KG. In this way, each representation gives rise to a KG-module.

Now let V be a KG-module. Using the embedding K → KG given by α 7→ αe, we view V

as a (finite-dimensional) vector space over K. Define ρ : G→ GL(V ) by ρ(g)(v) = gv. Then

the properties of a KG-module can be used to verify that ρ is a representation of G. Hence
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each KG-module gives rise to a representation of G, so the two objects are equivalent via

this one-to-one correspondence. In this instance, we say that ρ is the representation of G

afforded by V . If χ is the character afforded by ρ, then we may also say that χ is afforded

by V .

Just as a representation has subrepresentations, so too does a KG-module have submod-

ules. If a KG-module V has no non-zero, proper submodules, we call V simple. Simple

KG-modules correspond to irreducible representations of G. Like the latter, these simple

KG-modules afford irreducible characters. We will pass freely between representations

of G and KG-modules throughout, depending on contextual convenience. As mentioned, we

will always take K = C. We now present, for the reader’s convenience, a list of results we

will need.

1.2 Selected Results

Definition 1.1. For a character χ of G, the positive integer χ(e) is the degree of χ. We

say χ is linear if χ(e) = 1.

Theorem 1.2. ([Isa94, p.16]) A group G is abelian if and only if every irreducible char-

acter of G is linear.

Proposition 1.3. Let χ be a linear character of G. Then χ is irreducible.

Proposition 1.4. ([Isa94, p.20]) Let χ be a character of G. Then for all g ∈ G,

(i) |χ(g)| ≤ χ(e), and

(ii) χ(g−1) = χ(g).

Proposition 1.5. ([Isa94, p.16]) The cardinality of the set Irr(G) equals the number of

conjugacy classes of G.
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Theorem 1.6. ([Isa94, p.19]) Generalized Orthogonality Relation. Let χ, ψ ∈

Irr(G). Then the following holds for every h ∈ G:

1

|G|
∑
g∈G

χ(gh)ψ(g−1) = δχψ
χ(h)

χ(e)
,

where δχψ is the Kronecker delta.

The set of all class functions G → C is a vector space over C. Since characters are

constant on conjugacy classes, characters are class functions, and we have the following

definition.

Definition 1.7. Let χ, ψ be characters of G. Then

(χ, ψ) = (χ, ψ)G =
1

|G|
∑
g∈G

χ(g)ψ(g)

is the inner product of χ and ψ.

Proposition 1.8. ([Isa94, p.21]) Let χ be a character of G. Then χ is irreducible iff

(χ, χ) = 1.

Definition 1.9. Let χ be a character of G. The kernel of χ is the subgroup of G defined

by ker χ = {g ∈ G | χ(g) = χ(e)}.

Theorem 1.10. [Isa94, p.81]) Let N � G and let χ ∈ Irr(G) with (χ, 1)N 6= 0. Then

N ⊆ kerχ.

Proposition 1.11. [Isa94, p.24]) Let N �G.

(i) If χ is a character of G and N ⊆ kerχ, then χ is constant on cosets of N in G, and

the function χ̂ on G/N defined by χ̂(gN) = χ(g) is a character of G/N .
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(ii) If χ̂ is a character of G/N , then the function χ defined by χ(g) = χ̂(gN) is a character

of G.

(iii) In both (i) and (ii), χ ∈ Irr(G) iff χ̂ ∈ Irr(G/N).

Theorem 1.12. Let H 6 G and let χ ∈ Irr(G). Then the restriction of χ to H, denoted

χH , is a character of H.

Definition 1.13. ([Isa94, p.17]) Let χi ∈ Irr(G) for each i. If χ =
∑k

i=1 niχi is a character,

then those χi with ni > 0 are called the irreducible constituents of χ.

Definition 1.14. ([Isa94, p.62]) Let H 6 G and let λ be a class function of H. Then λG,

the induced class function on G, is given by

λG(g) =
1

|H|
∑
x∈G

λ◦(xgx−1),

where λ◦ is defined by λ◦(h) = λ(h) if h ∈ H and λ◦(y) = 0 if y /∈ H.

Proposition 1.15. ([Isa94, p.63]) Let H 6 G and suppose λ is a character of H. Then

λG is a character of G. We say that λG is an induced character of G.

Definition 1.16. Let H 6 G, let λ be a character of H, and let g ∈ G. The conjugate

character of λ, denoted gλ, is the character of gH defined by gλ(gh) = λ(h) for all h ∈ H.

Here, gh = ghg−1, and gH = {gh | h ∈ H}.

Proposition 1.17. [CR62, p.323]) Let H be a subgroup of G, let M be a CG-module,

and let L be a submodule of MH . Define LG as the module corresponding to the induced

character λG, where L affords λ. If M =
∑̇

a∈AaL, where A is a set of representatives for

the left cosets of H in G, then M ∼= LG.
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Definition 1.18. [Hun80, p.135] Elements e1, . . . , en in a ring R are orthogonal central

idempotents if eiej = δij, ei ∈ Z(R) for each i, and e2i = ei for each i.

Theorem 1.19. [Isa94] The elements eχ, χ ∈ Irr(G), are orthogonal central idempotents

in the ring CG, where eχ =
χ(e)

|G|
∑
g∈G

χ(g−1)g.

Proposition 1.20. [JL93] If χ is an irreducible character of G, and V is any CG-module,

then eχ · V is equal to the sum of those CG-submodules of V that have character χ.

Proposition 1.21. [Suz82, (3.8),p.23] Let G be a group and let H and K be subgroups of

G. For each x ∈ G, the double coset HxK is a union of right cosets of H and the cardinality

of the set of these cosets is |K : K ∩Hx|.

Theorem 1.22. Frobenius Reciprocity. Let H be a subgroup of G, let χ be a character

of G, and let λ be a character of H. Then (λG, χ) = (λ, χH).

Theorem 1.23. Mackey’s Subgroup Theorem. Let X and Y be subgroups of a group

G. If L is a CX-module, then

(LG)Y ∼=
⊕
a∈A

((aL)aX∩Y )Y ,

where A is a set of representatives for the (Y,X)-double cosets in G.

We will need to refer to the character table of the dihedral group

D2n = 〈a, b | an = e, b2 = e, bab = a−1〉

[Ser77, pp. 37–38]:
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ak bak

ψ0 1 1

ψ1 1 −1

ψ2 (−1)k (−1)k (n even)

ψ3 (−1)k (−1)k+1 (n even)

χj 2 cos(2πkj/n) 0 (1 ≤ j < n/2).

Here, the entries in the left column are the distinct irreducible characters of D2n, and the

entries in the top row are representatives for the conjugacy classes of D2n.

Irreducible characters of the symmetric group can also be viewed from a combinatorial per-

spective. We will draw upon this view in the final chapter. For now, we state the pertinent

results. The following can be found in [Hog07, pp.17-18]. Throughout, we let n denote a

natural number.

Definition 1.24. A tuple α = [α1, ..., αh] of non-negative integers is a (proper) partition

of n, written α ` n, provided

• αi ≥ αi+1 for all 1 ≤ i < h

•
∑h

i=1 αi = n.

Definition 1.25. The conjugate partition of a partition α ` n is the partition α′ ` n with

i-th component α′i equal to the number of indices j for which αj ≥ i.

Definition 1.26. Given two partitions α = [α1, ..., αh] and β = [β1, ..., βk] of n, α majorizes

β if
∑j

i=1 αi ≥
∑j

i=1 βi for each 1 ≤ j ≤ h.
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Definition 1.27. The Young subgroup of the symmetric group Sn corresponding to a

partition α = [α1, . . . , αh] of n is the internal direct product Sα = SA1×· · ·×SAh , where SAi

is the subgroup of Sn consisting of those permutations that fix every integer not in the set

Ai = {1 ≤ k ≤ n |
i−1∑
j=1

αj < k ≤
i∑

j=1

αj},

where an empty sum is interpreted as zero.

Proposition 1.28. Each partition α ` n uniquely determines an irreducible character χα

of Sn. The map α 7→ χα defines a bijection from the set of partitions of n to the set Irr(Sn)

of irreducible characters of Sn.

Proposition 1.29. If α and β are partitions of n, then the irreducible character χα is a

constituent of the induced character (1Sβ)Sn if and only if α majorizes β.

Definition 1.30. The alternating character of the symmetric group Sn is the character εn

given by

εn(σ) =


1 if σ is even,

−1 if σ is odd.

Proposition 1.31. If α is a partition of n, then χα′ = εnχα, where εn is the alternating

character of the group Sn.

1.3 Root Systems

The following definitions and results about root systems can be found in [Hum72, pp.42-

44, 47, 52, 55]. Let E be a finite-dimensional vector space over R endowed with a positive

definite symmetric bilinear form (α, β).
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Definition 1.32. A reflection in E is an invertible linear transformation leaving point-wise

fixed some hyperplane (subspace of co-dimension one) and sending any vector orthogonal to

that hyperplane into its negative.

Definition 1.33. The reflection σα determined by a nonzero vector α is given by

σα(β) = β − 2(β, α)

(α, α)
α.

We abbreviate 2(β,α)
(α,α)

by 〈β, α〉.

Definition 1.34. A subset Φ of the Euclidean space E is called a (crystallographic) root

system in E if the following axioms are satisfied:

(R1) Φ is finite, spans E, and does not contain 0

(R2) If α ∈ Φ, the only multiples of α in Φ are ±α.

(R3) If α ∈ Φ, σα(Φ) = Φ

(R4) If α, β ∈ Φ, then 〈β, α〉 ∈ Z

We call the elements of Φ roots.

Definition 1.35. The rank of the root system Φ is the dimension of E.

Proposition 1.36. We have 〈α, β〉〈β, α〉 = 4cosθ, where θ is the angle between α and β.

Definition 1.37. A subset ∆ of Φ is called a base if

• (B1) ∆ is a basis for E as a vector space

• (B2) Each root β ∈ Φ can be written as β =
∑
kαα (α ∈ ∆) with integral coefficients

kα all nonnegative or nonpositive.

9



Definition 1.38. The root system Φ is irreducible if it cannot be partitioned into the

union of two proper subsets such that each root in one set is orthogonal to each root in the

other.

Definition 1.39. Fix an ordering (α1, ..., αl) of the roots in a base ∆ of the root system Φ.

The matrix (〈αi, αj〉) is then called the Cartan matrix of Φ. The entries of the Cartan

matrix are called Cartan integers.

1.4 Coset Spaces and Symmetrized Tensor Spaces

Here we provide a brief account of the construction of coset spaces. We then present

some fundamental results, and discuss the nature of the correspondence between coset spaces

and orbital subspaces of symmetrized tensor spaces.

Let G be a finite group and let H be a subgroup of G. Denote by G/H the set of (left)

cosets of H in G. We denote by C(G/H) the complex vector space having G/H as basis.

Let Irr(G) denote the set of irreducible characters of G, and let χ ∈ Irr(G). We define a

form Bχ
H on C(G/H) by

Bχ
H(aH, bH) =

χ(e)

|H|
∑
h∈H

χ(b−1ah),

extending linearly in the first component and antilinearly in the second. By [Hol04, p.2],

Bχ
H is a well-defined Hermitian form, and it is G-invariant: For all g, a, b ∈ G, we have that

Bχ
H(gaH, gbH) = Bχ

H(aH, bH).

Now put CχH := C(G/H)/kerBχ
H , where kerBχ

H := {x ∈ C(G/H) : Bχ
H(x, y) = 0 for all

y ∈ C(G/H)}. We call CχH a coset space. The set of vectors Σ = Σχ
H = {aH ∈ CχH | a ∈ G}
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are called the standard vectors in the coset space. The coset space and its standard vec-

tors will play a pivotal role in the sequel. If CχH has a basis consisting of pairwise orthogonal

standard vectors, we say that CχH has an o-basis. We will call G an o-basis group if for

every H 6 G and χ ∈ Irr(G) the vector space CχH has a basis that is orthogonal relative to

Bχ
H (defined below) consisting entirely of standard vectors.

The form Bχ
H induces a well-defined form Bχ

H on CχH given by Bχ
H(x̄, ȳ) = Bχ

H(x, y) (x, y ∈

C(G/H), where x̄ denotes the coset x+ kerBχ
H . From the natural left action of G on C(G/H)

we get a well-defined action of G on CχH , and Bχ
H inherits G-invariance. It is a theorem in

[Hol04, p.2] that, since Bχ
H is positive semidefinite, the form Bχ

H is positive definite. Thus

CχH is an inner product space. Given vectors v1, . . . , vn ∈ CχH , the matrix of inner products

given by (Bχ
H(vi, vj))i,j is the Gram matrix of the vectors v1, ..., vn. Also from [Hol04, p.2],

we have the following formula for the dimension of the complex vector space CχH :

dimC CχH = χ(e)(χ, 1)H =
χ(e)

|H|
∑
h∈H

χ(h).

Before discussing the correspondence between coset spaces and orbital subspaces, we note

the following proposition, which we use in a later chapter. Let N � G, let χ ∈ Irr(G),

and assume that N ⊆ kerχ. Put Ĝ := G/N and denote by â the image of a ∈ G under

the canonical epimorphism G → Ĝ. The function χ̂ : Ĝ → C given by χ̂(â) = χ(a) is a

well-defined irreducible character of Ĝ [Isa94, p.24]. Let H 6 G.

Proposition 1.40. [Hol04, p.4] The map ϕ : CχH → C
χ̂

Ĥ
given by ϕ(aH) = âĤ is a well-

defined linear isometry. In particular, CχH has an o-basis if and only if Cχ̂
Ĥ

has an o-basis.

Let us now explore the notion of a symmetrized tensor space. Fix positive integers n

and m and set Γn,m = {γ ∈ Zn | 1 ≤ γi ≤ m}. Fix a subgroup G of the symmetric group

Sn. A right action of G on the set Γn,m is given by γσ = (γσ(1), . . . , γσ(n)) (γ ∈ Γn,m, σ ∈ G).

The stabilizer of γ ∈ Γn,m is the set Gγ = {σ ∈ G | γσ = γ}.
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Let V be an inner product space of dimension m and let {ei | 1 ≤ i ≤ m} be an orthonormal

basis for V . The inner product on V induces an inner product on V ⊗n (the nth tensor power

of V ) and, with respect to this inner product, the set {eγ | γ ∈ Γn,m} is an orthonormal basis

for V ⊗n, where eγ = eγ1 ⊗ · · · ⊗ eγn .

The space V ⊗n is a (left) CG-module with action given by σeγ = eγσ−1 (σ ∈ G, γ ∈ Γn,m),

extended linearly. The inner product on V ⊗n is G-invariant, which is to say (σv, σw) = (v, w)

for all σ ∈ G and all v, w ∈ V ⊗n.

Let χ ∈ Irr(G). The symmetrizer corresponding to χ is

sχ =
χ(e)

|G|
∑
σ∈G

χ(σ−1)σ ∈ CG,

where e denotes the identity element of G. This element sχ is the central idempotent of CG

corresponding to χ [CR62, 33.8].

Let γ ∈ Γn,m. The standard (decomposable) symmetrized tensor corresponding to χ

and γ is eχγ = sχeγ. The orbital subspace of V ⊗n corresponding to χ and γ, denoted V χ
γ ,

is the span of the set Ψ = Ψχ
γ = {eχγσ |σ ∈ G}. The space V ⊗n is an orthogonal direct sum

of orbital subspaces.

To understand the nature of the correspondence between coset spaces and orbital subspaces,

we rely on the following definition, theorem, and corollary.
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Definition 1.41. Let V and V ′ be inner product spaces, let ϕ : V → V ′ be a linear map,

and let r be a positive real number. Then ϕ is a similarity transformation of ratio r if

‖ϕ(v)‖ = r‖v‖ for all v ∈ V. In this case, we write V ∼ V ′.

A similarity transformation of ratio 1 is commonly known as an isometry. All similarity

transformations, however, preserve angles as well as relative lengths (i.e., ‖ϕ(v)‖/‖ϕ(w)‖ =

‖v‖/‖w‖).

Theorem 1.42. ([HH13]) For γ ∈ Γn,m, we have V χ
γ ∼ C

χ
Gγ

.

Proof. Let γ ∈ Γn,m and put H = Gγ. The map G/H → V χ
γ , given by σH 7→ eχγσ−1 , is

well-defined and it induces a surjective linear map ϕ : C(G/H)→ V χ
γ . For σ, τ ∈ G, we have

(ϕ(σH), ϕ(τH)) = (eχγσ−1 , e
χ
γτ−1) =

χ(e)

|G|
∑
µ∈H

χ(τ−1σµ) (1.1)

= rBχ
H(σH, τH),

where r = |G : H|−1 and where the second equality is from [Fre73, p. 339] (with χ̄ in place

of χ). Using linearity we get (ϕ(x), ϕ(y)) = rBχ
H(x, y) for all x, y ∈ C(G/H), and it follows

that the induced map ϕ̄ : CχH → V χ
γ given by ϕ̄(x̄) = ϕ(x) is a well-defined bijective similarity

transformation of ratio r.

According to Theorem 1.42 and its proof, every orbital subspace can be identified with

a coset space in such a way that the standard symmetrized tensors in the orbital subspace

identify, in an angle-preserving and relative length-preserving manner, with the standard

vectors in the coset space. The following result says that, conversely, every coset space can

be similarly identified with an orbital subspace. The statement requires some explanation:

Let G = {g1, . . . , gn} be a finite group. The Cayley embedding of G in the symmetric

group S|G| is the monomorphism ϕ : G → S|G| given by ϕ(g) = λg, with λg : G → G

defined by λg(a) = ga. Here, we regard λg as an element of S|G| by using the identification

{1, . . . , n} ↔ G, i↔ gi. Using this same identification, we write γgi to mean γi for γ ∈ Γ|G|,m.
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Corollary 1.43. ([HH13]) Assume that m = dimV ≥ 2. Let G be a finite group, let

χ ∈ Irr(G), and let H 6 G. Identifying G as a subgroup of S|G| via the Cayley embedding,

we have CχH ∼ V χ
γ , where γ ∈ Γ|G|,m is defined by putting γg equal to 1 or 2 according as

g ∈ H or g /∈ H.

Proof. We have H = Gγ, so the claim follows from Theorem 1.42.

We will reference this correspondence frequently in the fourth and fifth chapters. Now,

with preliminaries behind us, we present new work.
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Chapter 2

The Module Structure of the Coset Space

The coset space is the fundamental object enabling us to explore the geometry of sym-

metrized tensor spaces. Accordingly, we should familiarize ourselves with its structure as a

CG-module. Although we do not rely heavily on the module-theoretic properties of the coset

space throughout, we might glean future insight from its decomposition as a direct sum of

simple CG-modules. Let G be a finite group, let H 6 G, and let χ ∈ Irr(G).

Theorem 2.1. CχH ∼=
(χ,1)H⊕
j=1

Lχ, where Lχ is the simple CG-module affording χ.

Proof. First, we claim that C(G/H) ∼= (CH)G. Define λ : CG × CH −→ C(G/H) by

λ(r, s) = rsH. Letting r1 =
∑
a∈G

αaa ∈ CG, r2 =
∑
a∈G

βaa ∈ CG, and s ∈ CH , we have that

λ(r1 + r2, s) =
∑
a

(αa + βa)saH =
∑
a

αasaH +
∑
a

βasaH = λ(r1, s) + λ(r2, s).

Another straightforward argument shows that λ is linear in the second slot as well. Now let

r ∈ CG, h ∈ CH, and let s ∈ CH . Then

λ(rh, s) = (rh)sH = s(rh)H = sr(hH) = srH = rsH = r(hs)H = λ(r, hs),

where we have used the fact that s ∈ Z(CG) and the fact that H acts trivially on CH . Thus

λ is a middle-linear map, and so there exists a unique homomorphism λ : CG⊗CH CH −→

C(G/H) such that λ(r⊗ s) = λ(r, s). In fact, λ is a CG-homomorphism: Let a ∈ G. Then

λ(a(r ⊗ s)) = λ(ar ⊗ s) = (ar)sH = a(rs)H = aλ(r ⊗ s).
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Now define µ : C(G/H) −→ CG ⊗CH CH by µ(aH) = a ⊗ 1. Let aH, bH ∈ G/H, and

suppose aH = bH. Then a−1b ∈ H, so a−1b = h−1 for some h ∈ H. Thus

µ(aH) = a⊗ 1 = bh⊗ 1 = b⊗ h · 1 = b⊗ 1 = µ(bH),

so µ is well-defined. We claim µ is the inverse map of λ. For a ∈ G, and r =
∑
g∈G

αggH ∈

C(G/H), extending linearly gives

µ(ar) = µ

(∑
g∈G

αgagH

)
=

(∑
g∈G

αgag

)
⊗ 1 = a

(∑
g∈G

αgg

)
⊗ 1 = aµ(r),

so µ is a CG-homomorphism. Letting r be as above, we then have that

(λ ◦ µ)(r) = λ(µ(r)) = λ

((∑
g

αgg

)
⊗ 1

)
=

(∑
g

αgg

)
H =

∑
g

αggH = r.

Now let m⊗ n ∈ CG⊗CH CH , where m ∈ G and n ∈ CH . Then

(µ ◦ λ)(m⊗ n) = µ(λ(m⊗ n)) = µ(mnH) = mn⊗ 1 = m⊗ n.

Therefore, C(G/H) ∼= CG⊗CH CH = (CH)G, establishing the claim.

By virtue of the above isomorphism, C(G/H) affords the character (1H)G. Thus the number

of times the simple CG-module Lχ appears in the direct sum decomposition of C(G/H) is

((1H)G, χ). By Frobenius Reciprocity, we have ((1H)G, χ) = (1H , χ|H) = (χ, 1)H .

Thus

(χ,1)H⊕
j=1

Lχ is the direct sum of the copies of Lχ appearing in the decomposition of

C(G/H). Therefore, 1.20 gives

(χ,1)H⊕
j=1

Lχ = eχ · C(G/H).

We now prove the theorem. Define πχ : C(G/H) −→ eχ ·C(G/H) in the obvious way. Since
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πχ is an epimorphism, we need only show that kerπχ = kerBχ
H . Let s =

∑
a∈G

αaaH ∈ C(G/H),

and let X be a set of left coset representatives of H in G. Then

s ∈ kerπχ ⇐⇒
χ(e)

|G|
∑
σ∈G

χ(σ−1)σ

(∑
a∈G

αaaH

)
= 0

⇐⇒ 1

|G|
∑
a∈G

∑
σ∈G

αaχ(e)χ(σ−1)σaH = 0

⇐⇒ 1

|G|
∑
x∈X

∑
a∈G

∑
h∈H

αaχ(e)χ(ah−1x−1)xha−1aH = 0

⇐⇒ 1

|G|
∑
x∈X

∑
a∈G

∑
h∈H

( αaχ(e)χ(ahx−1) )xH = 0

⇐⇒
∑
a∈G

∑
h∈H

αaχ(e)χ(ahx−1) = 0 ∀x ∈ X

⇐⇒ 1

|H|
∑
a∈G

∑
h∈H

αaχ(e)χ(x−1ah) = 0 ∀x ∈ X

⇐⇒
∑
a∈G

αa
χ(e)

|H|
∑
h∈H

χ(x−1ah) = 0 ∀x ∈ X

⇐⇒
∑
a∈G

αaB
χ
H(aH, xH) = 0 ∀x ∈ X

⇐⇒ Bχ
H

(∑
a

αaaH, xH

)
= 0 ∀x ∈ X,

⇐⇒ s ∈ kerBχ
H

The proof is complete.
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Chapter 3

Construction of Bases for Coset Spaces and Root System Geometry

We fuel our conjectures by first computing the Gram matrices for CχH in the case where

G is a symmetric group of small order, using various choices for H and χ.

Example 3.1. Let G = S3, let H = {e}, and let χ ∈ Irr(G) of degree 2. We have that

dim CχH = 4, and we obtain the basis {H, (12)H, (13)H, (123)H} by trial and error. After

dividing all entries of the resulting Gram matrix by 2, we get



2 −1 0 0

−1 2 0 0

0 0 2 −1

0 0 −1 2


This is the Cartan matrix for the rank 4 root system A2 × A2.

The construction of bases for coset spaces by trial and error is time-consuming. To

expedite the next example, we use the following.

Proposition 3.2. Let H 6 K 6 G, and let {kiH}ni=1 be a complete set of distinct left cosets

of H in K. Let χ ∈ Irr(G) and let a, b ∈ G. Then Bχ
K(aK, bK) =

|H|
|K|

∑
i

Bχ
H(aH, bkiH).

Proof. Let χ ∈ Irr(G), and let a, b ∈ G. For each k ∈ K, we have that k = kih for some i

and some h ∈ H, and this expression for k is unique, so
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Bχ
K(aK, bK) =

χ(e)

|K|
∑
k∈K

χ(a−1bk)

=
χ(e)

|K|
∑
i

∑
h∈H

χ(a−1bkih)

=
χ(e)

|K|
∑
i

(
|H|
χ(e)

· χ(e)

|H|
∑
h∈H

χ(a−1bkih)

)

=
|H|
|K|

∑
i

Bχ
H(aH, bkiH).

Now we vary only the subgroup, but in doing so, we obtain a result that we later prove

holds generally for a symmetric group of arbitrarily large degree, given a specific subgroup

and a specific degree 2 irreducible character.

Example 3.3. Let G = S3, let K = 〈(12)〉, and let χ be as in the first example. Then

dim CχK = 2, and using 3.2, we quickly obtain a basis for CχK . The Gram matrix corresponds

to the Cartan matrix for the root system A2:

 2 −1

−1 2


Already, with two cases, a pattern has begun to emerge.

As we construct bases for coset spaces of higher dimension, we require more results in

order to make calculations manageable. The next proposition is helpful in this regard.

Proposition 3.4. Let n = dim CχH , let a1, ..., an ∈ G, and let α1, ...αn ∈ C. The following

are equivalent:

(i) B = {aiH}ni=1 is a basis for CχH
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(ii) If Bχ
H

(
n∑
j=1

αjajH, aiH

)
= 0 for all 1 ≤ i ≤ n, then α1 = · · · = αn = 0.

Proof. Assume (i) holds, and suppose that Bχ
H

(
n∑
j=1

αjajH, aiH

)
= 0 for all 1 ≤ i ≤ n.

Fix y ∈ G. Since B is a basis for CχH , we have that yH = β1a1H + · · · + βnanH for some

βi ∈ C, with 1 ≤ i ≤ n. Then

yH + kerBχ
H = ( β1a1H + · · ·+ βnanH ) + kerBχ

H

=⇒ yH − ( β1a1H + · · ·+ βnanH ) ∈ kerBχ
H

=⇒ yH − ( β1a1H + · · ·+ βnanH ) = k,

for some k ∈ kerBχ
H

=⇒ yH = ( β1a1H + · · ·+ βnanH ) + k.

Now, we claim that Bχ
H

(
n∑
i=1

αiaiH, yH

)
= 0, and this will be true if and only if

Bχ
H(α1a1H + · · ·+ αnanH, β1a1H + · · ·+ βnanH + k) = 0

if and only if
n∑
i=1

n∑
l=1

αiβlB
χ
H(aiH, alH) +

n∑
i=1

αiB
χ
H(aiH, k) = 0

if and only if

(1)
n∑
i=1

n∑
l=1

αiβlB
χ
H(aiH, alH) = 0.

By assumption, we have the following system of equations:
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(1) α1B
χ
H(a1H, a1H) + · · ·+ αiB

χ
H(aiH,a1H) + · · ·+ αnB

χ
H(anH, a1H) = 0

·

·

·

(j) α1B
χ
H(a1H, ajH) + · · ·+ αiB

χ
H(aiH,ajH) + · · ·+ αnB

χ
H(anH, ajH) = 0

·

·

·

(n) α1B
χ
H(a1H, anH) + · · ·+ αiB

χ
H(aiH,anH) + · · ·+ αnB

χ
H(anH, anH) = 0

Now, multiply (1) by β1, (2) by β2, and continue in this fashion until finally multiply-

ing (n) by βn. Note that each row remains equal to zero. Summing both sides of the newly

obtained system, we have (1) in the chain of double implications, which establishes the claim.

Since y ∈ G was arbitrary, we have Bχ
H

(
n∑
i=1

αiaiH, yH

)
= 0 for all y ∈ G. Hence(

n∑
i=1

αiaiH

)
∈ kerBχ

H , implying that
n∑
i=1

(αiaiH + kerBχ
H) = kerBχ

H , which implies that

n∑
i=1

αiaiH = 0. Since B is a basis for CχH , we must have α1 = · · · = αn = 0.

Assume (ii) holds. Since the fact that Bχ
H

(
n∑
j=1

αjajH, aiH

)
= 0 for all i is enough to

imply that all the αi are zero, it certainly follows that if Bχ
H

(
n∑
i=1

αiaiH, yH

)
= 0 for all

y ∈ G, then all the αi are zero. By an argument above, this is tantamount to saying that
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α1a1H + · · · + αnanH = 0 implies that all the αi are zero. Hence {aiH}ni=1 is a linearly

independent set of n vectors, which proves the set constitutes a basis for CχH .

Example 3.5. Let G = S4, let H = {e}, and let χ be of degree 2. Then dim CχH = 4, and

using 3.4 we have that the Gram matrix corresponds to the root system A2×A2. This result

is in line with our previous findings.

We would like to calculate the Gram matrix for a coset space of higher dimension in

order to see what patterns emerge. Since S4 has two degree 3 irreducible characters, spaces

with dimension as high as 9 are available for H = {e}. In constructing a basis for such a

space, however, the number of candidates for basis vectors is daunting. A more manageable

task is to find a basis for a 9-dimensional space associated with the subgroup A4. Even for

this, we require two more results. Yet a third result will then be needed to draw a conclusion

for S4. We present those results now.

Proposition 3.6. Let H 6 K 6 G. Let χ ∈ Irr(G), and let a1, ..., an ∈ G. If {aiK}ni=1 is

linearly independent in CχK, then {aiH}ni=1 is linearly independent in CχH .

Proof. Assume that {aiK}ni=1 is linearly independent in CχK , and suppose α1a1H + · · · +

αnanH = 0, where αi ∈ C for all i. Then

α1B
χ
H(a1H, yH) + · · ·+ αnB

χ
H(anH, yH) = 0 ∀y ∈ G.

Let {kjH}mj=1 be a set of distinct left cosets of H in K, and let x ∈ G. Then we have
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α1B
χ
H(a1H, xk1H) + · · ·+ αnB

χ
H(anH, xk1H) = 0

α1B
χ
H(a1H, xk2H) + · · ·+ αnB

χ
H(anH, xk2H) = 0

·

·

·

α1B
χ
H(a1H, xkmH) + · · ·+ αnB

χ
H(anH, xkmH) = 0.

Thus by summing the above system of equations, we have

α1

∑
j

Bχ
H(a1H, xkjH) + · · ·+ αn

∑
j

Bχ
H(anH, xkjH) = 0,

implying by 3.2 that

α1
|K|
|H|

Bχ
K(a1K, xK) + · · ·+ αn

|K|
|H|

Bχ
K(anK, xK) = 0.

Factoring
|K|
|H|

from the left-hand side, we now have that

α1B
χ
K(a1K, xK) + · · ·+ αnB

χ
K(anK, xK) = 0,

which in turn implies that

Bχ
K(α1a1K + · · ·+ αnanK, xK) = 0 ∀x ∈ G.

Hence

α1a1K + · · ·+ αnanK = 0.
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By assumption, the vectors {aiK}ni=1 are linearly independent, so α1 = · · · = αn = 0. We

conclude that {aiH}ni=1 is linearly independent in CχH .

Theorem 3.7. Let H 6 K 6 G, let χ ∈ Irr(G), and assume χ vanishes off K. Let

{kjH}tj=1 (kj ∈ K) be linearly independent in CχH , and let {giK}si=1 be a complete set of

distinct left cosets of K in G. Then {gikjH | 1 ≤ i ≤ s, 1 ≤ j ≤ t} is linearly independent

in CχH .

Proof. First, assume aH and bH are left cosets of H in K such that aH ⊆ cK and bH ⊆ dK,

where cK and dK are distinct left cosets of K in G. Let h ∈ H. We claim that a−1bh /∈ K.

Suppose otherwise. Since a ∈ cK we get aK = cK. Similarly, bK = dK. Thus aK 6= bK.

Then a−1bh ∈ K would give a−1b ∈ Kh−1 = K, a contradiction. Thus a−1bh /∈ K.

Now, since {kjH}tj=1 is linearly independent in CχH , so is the set of translates Ti := {gik1H,

. . . , giktH} for each 1 ≤ i ≤ s. For each i, 〈Ti〉 is a subspace of CχH .

Let 1 ≤ m,n ≤ s with m 6= n, and let 1 ≤ p, q ≤ t. We have that kpH ⊆ K and

kqH ⊆ K, so it follows that gmkpH ⊆ gmK and gnkqH ⊆ gnK. Since gmK 6= gnK, we

get that Bχ
H(gmkpH, gnkqH) =

χ(e)

|H|
∑
h∈H

χ((gmkp)
−1(gnkq)h) = 0 by the first claim of the

proof and the fact that χ vanishes off K.

Now put T = ∪iTi. From the above it follows that, for all 1 ≤ j ≤ s, 〈Tj〉 and
∑
i 6=j

〈Ti〉

are orthogonal, whence 〈T 〉 =
∑̇
i

〈Ti〉, and thus T = {gikjH | 1 ≤ i ≤ s, 1 ≤ j ≤ t} is a

linearly independent set.

Theorem 3.8. Let H 6 K 6 G, and let χ ∈ Irr(G), with ψ = χ|K ∈ Irr(K). Then CψH and

CχH are isometric.
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Proof. Let {aiH}ni=1 be a basis for CψH . Since ψ and χ agree on H, the definition of coset

space dimension gives that

dimC CψH =
ψ(e)

|H|
∑
h∈H

ψ(h) =
χ(e)

|H|
∑
h∈H

χ(h) = dimC CχH .

For each 1 ≤ i ≤ n, aiH ∈ K/H ⊆ G/H, so aiH ∈ CχH . Thus there exists a unique and

well-defined linear map ϕ : CψH −→ C
χ
H such that ϕ(aiH) = aiH for each i. We now show

that the inner products on the two spaces agree. Let aH, bH ∈ CψH . Then

Bψ
H(aH, bH) =

ψ(e)

|H|
∑
h∈H

ψ(b−1ah) =
χ(e)

|H|
∑
h∈H

χ(b−1ah) = Bχ
H(aH, bH) = Bχ

H(ϕ(aH), ϕ(bH)),

so by linearity of ϕ and the inner product, the formula holds when replacing standard

vectors with arbitrary vectors. Now letting v ∈ kerϕ, we have that ϕ(v) = 0, so that

Bχ
H(ϕ(v), ϕ(v)) = 0. Hence Bψ

H(v, v) = 0, implying that v = 0. Thus ϕ is injective, which

proves that the two spaces are isometric.

Example 3.9. Let G = A4, let H = {e}, and let χ be the degree 3 irreducible character

of A4. Then dim CχH = 9. We outline the construction of a basis for CχH . First put K =

〈(12)(34)〉 6 A4, so that dim CχK = 3. Using 3.4, we obtain the basis {K, (12)(34)K, (13)(24)K}

for CχK . Now, by 3.6, replaceK withH to get the linearly independent set {H, (12)(34)H, (13)(24)H}

in CχH . We have that χ vanishes off V = {(1), (12)(34), (13)(24), (14)(23)}. Using a set of left

cosets of V in A4, 3.7 gives for CχH the linearly independent set

{H, (12)(34)H, (13)(24)H, (123)H, (134)H, (243)H, (132)H, (234)H, (124)H}.

These are 9 vectors, so they constitute a basis for CχH . We find, however, that the Gram

matrix corresponds to no Cartan matrix for a crystallographic root system.
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Example 3.10. We have that {e} 6 A4 6 S4, and also that the restriction of one of the

degree 3 irreducible characters of S4 is the degree 3 irreducible character of A4. By 3.8, it

follows that the basis acquired in the last example is also a basis for CχH , where G = S4,

H = {e}, and where χ is the character formerly restricted. Hence we have found a coset

space associated with a symmetric group such that the geometry of this coset space is

not that of a crystallographic root system. The entries of the Gram matrix for the basis

vectors in CχH cannot be adjusted to become the entries for a Cartan matrix. This raises the

question, however, of precisely which of the Cartan integers we can obtain from the inner

product on a coset space. The answer, as we will see shortly, points the way towards a more

general connection between coset spaces and root systems. The next results make clear this

connection.

Proposition 3.11. Let CχH be a coset space and let aH, bH ∈ Σ. Then |Bχ
H(aH, bH)| ≤

dimC CχH .

Proof. Let aH, bH ∈ Σ. By the Cauchy-Schwarz Inequality, we have that |Bχ
H(aH, bH)| ≤

‖aH‖‖bH‖. Note that equality occurs if and only if one vector is a scalar multiple of the

other [Axl97]. Thus we infer that

|Bχ
H(aH, bH)| ≤

√
Bχ
H(aH, aH) ·

√
Bχ
H(bH, bH)

=

√
χ(e)

|H|
∑
h∈H

χ(h) ·
√
χ(e)

|H|
∑
h∈H

χ(h)

=
√

dimC CχH ·
√

dimC CχH

= dimC CχH .

Lemma 3.12. Let H 6 G and let χ ∈ Irr(G). Assume that CχH has a basis consisting of

standard vectors. If this basis forms a base for a crystallographic root system, then for all

distinct basis vectors aH and bH, either Bχ
H(aH, bH) = 0 or |Bχ

H(aH, bH)| = 1
2

dimC CχH .
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Proof. Assume that CχH has a basis consisting of standard vectors, and that this basis forms

a base for a crystallographic root system. Let aH and bH be distinct basis vectors for CχH .

By 3.11, we have the strict inequality

|Bχ
H(aH, bH)| < dimC CχH .

Since the basis vectors for CχH form a base for a root system, we must have that 〈aH, bH〉 ∈ Z

for all aH, bH in the basis. Thus, with (aH, bH) := Bχ
H(aH, bH), we have

2(aH, bH)

(bH, bH)
∈ Z.

By 3.11, this gives

2(aH, bH)

dimC CχH
∈ Z.

Now put |(aH, bH)| = c and dimC CχH = d, so that
2c

d
= k for some k ∈ Z+ ∪ {0}. If k = 0,

then Bχ
H(aH, bH) = c = 0, so suppose k > 0.

By the inequality in 3.11, c < d, so we have k < 2, which forces k = 1. Therefore,

|Bχ
H(aH, bH)| = c =

1

2
d =

1

2
dimC CχH .

This completes the proof.

Theorem 3.13. Let H 6 G and let χ ∈ Irr(G). Assume that CχH has a basis consisting

of standard vectors. If this basis forms a base for a crystallographic root system Φ, each

irreducible component of which has rank at most two, then Φ =
∏n

i=1Ri, where Ri = A1 or

Ri = A2.

Proof. Let {α1, ..., αn} be a basis for CχH consisting of standard vectors. By renumbering the

αi if necesssary, we may assume that the matrix (〈αi, αj〉) is block diagonal with each block
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the Cartan matrix of an irreducible root system. The assumption implies that each block is

of size either 1× 1 or 2× 2. A block of size 1× 1 corresponds to an irreducible component

of type A1. A block of size 2 × 2 corresponds to a rank two irreducible root system. If

α = αi and β = αi+1 correspond to such a block, then 〈α, β〉 6= 0, so the previous lemma

implies that |〈α, β〉| = 1. In this case, we have 4 cos2 θ = 〈α, β〉〈β, α〉 = 1, where θ is the

angle between α and β. Hence θ = 2π/3, and so the block corresponds to an irreducible root

system of type A2. This proves the theorem.

We now see that coset spaces give rise to a very restricted class of root systems with

irreducible components of rank 1 or 2. When we obtain such a root system, either we get

the trivial geometry of A1, or we get the hexagonal geometry of A2. It is notable that these

root systems are the only simply laced rank 1 and 2 root systems: They are the only rank 1

and 2 root systems all of whose vectors have equal length. We conjecture that the standard

vectors in a coset space form a root system isomorphic to a given irreducible root system if

and only if the irreducible root system is simply laced. In our concluding remarks, we will

mention the progress that has been made on this front.
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Chapter 4

The Geometry of Coset Spaces For Certain Dihedral Groups

It was proven in [HT92] that each orbital subspace of a symmetrized tensor space for

a dihedral group has an orthogonal basis consisting of standard symmetrized tensors if and

only if the dihedral group has order a power of 2. Here we present a more conceptual proof of

this result, couched in the terminology of the coset space and its standard vectors. We hope

that reliance on the natural geometry of the dihedral group, acting as a group of symmetries

in the plane, will lead to further insight into the nature of o-basis groups. Before presenting

the new proof, we will require some rather lengthy preliminaries.

Proposition 4.1. Let V be a real inner product space and let C be a cyclic group of order

n that acts on V in such a way that v 7→ cv is a linear map V → V for each c ∈ C and

(cv, cw) = (v, w) for each c ∈ C and v, w ∈ V. Fix v ∈ V and let Cv = {cv : c ∈ C} be the

orbit of v under the action of C. Then Cv is the set of vertices of a regular m-gon for some

divisor m of n.

Proof. We have C = 〈a〉 for some a ∈ C. The stabilizer Cv of v is a subgroup of C. Let

|Cv| = p, and set m := n/p = |C : Cv| = |Cv|. Now, since C is cyclic, so is Cv, and we have

that Cv = 〈am〉. Thus Cv has m distinct cosets, and {a0, a1, ..., am−1} is a set of representa-

tives for these cosets. Hence Cv = {a0v, a1v, ..., am−1v}.

Now put vi = aiv, where 0 ≤ i ≤ m − 1. Let ei be the directed line segment joining vi

and vi+1. Then ei = vi+1 − vi, so

‖ei‖2 = ‖vi+1 − vi‖2
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= 〈vi+1 − vi, vi+1 − vi〉

= 〈vi+1, vi+1〉 − 〈vi, vi+1〉 − 〈vi+1, vi〉+ 〈vi, vi〉

= 〈ai+1v, ai+1v〉 − 〈aiv, ai+1v〉 − 〈ai+1v, aiv〉+ 〈aiv, aiv〉

= 〈v, v〉 − 〈v, av〉 − 〈av, v〉+ 〈v, v〉

= 2〈v, v〉 − 2〈av, v〉.

Since i was arbitrary, we must have that ‖ei‖2 = ‖ej‖2 for all 0 ≤ i, j ≤ m − 1, and hence

that ‖ei‖ = ‖ej‖ for all 0 ≤ i, j ≤ m− 1.

Now let θi be the angle between ei and ei+1. Since ei+1 = vi+1 − vi and ei = vi − vi−1,

we have

〈ei, ei+1〉 = 〈vi − vi−1, vi+1 − vi〉

= 〈vi, vi+1〉 − 〈vi−1, vi+1〉 − 〈vi, vi〉+ 〈vi−1, vi〉

= 〈aiv, ai+1v〉 − 〈ai−1v, ai+1v〉 − 〈aiv, aiv〉+ 〈ai−1v, aiv〉

= 〈v, av〉 − 〈v, a2v〉 − 〈v, v〉+ 〈v, av〉

= 2〈v, av〉 − 〈va2v〉 − 〈v, v〉

Thus the inner product is independent of index. Since ‖ei‖ = ‖ej‖ for all 0 ≤ i, j ≤ m− 1,

it follows that

θi = cos−1
〈ei, ei+1〉
‖ei‖‖ei+1‖

is also independent of index, whence θi = θj for all 0 ≤ i, j ≤ m − 1. This proves the

proposition.
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Let D2n be the dihedral group of order 2n. Fix 1 ≤ j < n/2 and let Cn be the cyclic

subgroup of all rotations in D2n. The map ρ : Cn −→ GL2(C) given by

ρ(ak) =

cos(2πjk/n) − sin(2πjk/n)

sin(2πjk/n) cos(2πjk/n)


is a well-defined homomorphism and hence a representation of Cn. We use this representation

to view C2 as a CCn-module.

Fix H 6 D2n and put η = 2(|H ∩ Cn|/|H|)1/2. For a positive integer m, define

Bm =

{[
η cos

2πk

m
, η sin

2πk

m

]T
| k ∈ Z

}

viewed as a subset of the inner product space C2. Then Bm is a regular m-gon. According

to 4.1, the action of Cn on v0 := (η, 0) ∈ C2 also produces a regular n-gon. Indeed, using

the representation given above, we have that

Cnv0 =

{[
η cos

2πjl

n
, η sin

2πjl

n

]T
| l ∈ Z

}

Put n′ = n/ gcd(n, j).

Lemma 4.2. Bn′ = Cnv0

Proof. Let v ∈ Bn′ . Then v =

[
η cos

2πk

n′
, η sin

2πk

n′

]T
for some k ∈ Z. Define j =

j/ gcd(n, j). Then gcd(n′, j′) = 1, so there exists x, y ∈ Z such that xn′ + yj′ = 1. We

have that

2πk

n′
=

2πk · 1
n′

=
2πk(xn′ + yj′)

n′
= 2πk(x+ y

j′

n′
) = 2πk(x+ y

j

n
) = 2πkx+

2πjky

n
=

2πjky

n

Since ky ∈ Z, v ∈ Cnv0.
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Now let v ∈ Cnv0. Then v =

[
η cos

2πjl

n
, η sin

2πjl

m

]T
for some l ∈ Z. Divide j and n

by gcd(n, j) to get

2πjl

n
=

2πj′l

n′

Since j′l ∈ Z, we have v ∈ Bn′ .

Now put χ = χj and E = {cH | c ∈ Cn} ⊆ CχH .

Theorem 4.3. If (χ, 1)H 6= 0, then there exists an isometric embedding Bn′ −→ E.

Proof. Assume that (χ, 1)H 6= 0. Define f : Bn′ −→ E by f(cv0) = cH. We claim that f is

well-defined and injective. First, let x, y ∈ Bn′ with x = y. Then x =

[
η cos

2πp

n′
, η sin

2πp

n′

]T
and y =

[
η cos

2πq

n′
, η sin

2πq

n′

]T
, where p, q ∈ Z and p ≡ q mod n′. Let g = gcd(n, j). Then

p · g ≡ q · g mod n′ · g, implying that p · g ≡ q · g mod n. Thus

[
η cos

2πjpg

n
, η sin

2πjpg

n

]T
=

[
η cos

2πjqg

n
, η sin

2πjqg

n

]T
.

This establishes a well-defined correspondence between Bn′ and Cnv0. Since Cnv0 is an orbit,

we conclude that f is well-defined.
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Now let αcv0 ∈ CBn′ , and suppose f(αcv0) = 0. Then

αcH = 0

=⇒ αcH + kerBχ
H = kerBχ

H

=⇒ αcH ∈ kerBχ
H

=⇒ αBχ
H(cH, dH) = 0 for all d ∈ Cn

=⇒ αBχ
H(cH,H) = 0

=⇒ α
χ(e)

|H|
∑
h∈H

χ(ch) = 0

=⇒ α
χ(e)

|H|

[ ∑
h∈H∩Cn

χ(ch) +
∑

h∈H∩Cnc
χ(ch)

]
= 0

=⇒ α
χ(e)

|H|
∑

h∈H∩Cn

χ(ch) = 0

=⇒ α · χ(e)

|H|
· |H ∩ Cn| · χ(e) = 0

=⇒ 4α · |H ∩ Cn|
|H|

= 0

=⇒ α = 0

where we have used the fact that χ vanishes on reflections, and the fact that Cn ⊆ kerχ

[Isa94]. Hence f is injective.

We note that f(cx) = cf(x) for each c ∈ Cn and x ∈ Bn′ . Using this, and the fact that

both forms are Cn-invariant, we claim that it is enough to check that (cv0, v0) = Bχ
H(cH,H)

in order to establish the isometry. Let x, y ∈ Bn′ . Then x = αav0 and y = βbv0 for some
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α, β ∈ C and a, b ∈ Cn. Provided the above equality of inner products holds,

(x, y) = (αav0, βbv0) = αβ(av0, bv0)

= αβ(b−1av0, v0)

= αβBχ
H(b−1aH,H)

= αβBχ
H(f(b−1av0), f(v0))

= αβBχ
H(b−1f(av0), f(v0))

= αβBχ
H(f(av0), bf(v0))

= αβBχ
H(f(av0), f(bv0))

= Bχ
H(αf(av0), βf(bv0))

= Bχ
H(f(αav0), f(βbv0))

= Bχ
H(f(x), f(y)).
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Now let c ∈ Cn, noting that c = ak for some k ∈ {0, ..., n− 1}. We have that

(cv0, v0) =

([
η cos

2πjk

n
, η sin

2πjk

n

]
, [η, 0]T

)
= η2 cos

2πjk

n

=
4|H ∩ Cn|
|H|

· cos
2πjk

n

=
χ(e)

|H|
· |H ∩ Cn| · 2 cos

2πjk

n

=
χ(e)

|H|
· |H ∩ Cn| · χ(c)

=
χ(e)

|H|
∑

h∈H∩Cn

χ(ch)

=
χ(e)

|H|
∑

h∈H∩Cn

χ(ch) +
χ(e)

|H|
∑

h∈H∩Cnc
χ(ch)

=
χ(e)

|H|
∑
h∈H

χ(ch)

= Bχ
H(cH,H)

Here we have again used that Cn ⊆ kerχ, and that χ vanishes off Cn. That f is an isometry

now follows.

Lemma 4.4. Let G be a dihedral group, and let χ be an irreducible character of D2n of

degree 2. If Cχ{e} has an o-basis, then n is even.

Proof. Since dimC Cχ{e} = 4, we have a basis { bl1ai1{e}, bl2ai2{e}, bl3ai3{e}, bl4ai4{e} } for

the space, where 0 ≤ lj ≤ 1 and 0 ≤ ij ≤ n. The powers of b cannot all be distinct, so we may

assume that l1 = l = l2. Then we have two basis vectors of the form blai1{e} and blai2{e},

where we may assume i1 > i2. Left multiplying each of these two basis vectors by a−i2bl,

we obtain ai1−i2{e} and {e}. Put k = i1 − i2. Then {e} and ak{e} are a pair of orthogonal

elements of E. By the isometry in 4.3, we have a pair of orthogonal elements in Bn′ as well.
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Thus there exists in G a rotation through an angle of π/2, implying that 4|n and hence that

n is even.

We are now ready to prove the main theorem.

Theorem 4.5. The following are equivalent:

(i) D2n has order a power of 2,

(ii) for each H 6 D2n, χ ∈ Irr(D2n), CχH has an o-basis.

(i ⇒ ii) Assume G is a dihedral group with order a power of 2. Fix H 6 G and

χ ∈ Irr(G). If (χ, 1)H = 0, then dim CχH = 0, so the conclusion follows. Suppose (χ, 1)H 6= 0.

If χ has degree 1, then

dimC CχH =
χ(e)

|H|
∑
h∈H

χ(h) =
1

|H|
∑
h∈H

χ(h) ≤ 1

|H|
∑
h∈H

χ(e) =
1

|H|
· |H| = 1

so again the conclusion follows.

Now put χ = χj for some 1 ≤ j < n/2 and assume (χ, 1)H 6= 0. Since n′ is a power of

2 and n′ > 2, we have that 4|n′. Hence Bn′ has a pair of orthogonal elements, and it follows

from 4.3 that E does as well. Assume that H * Cn. Put A = H ∩ Cn = {ai1 , ..., air}, where

1 ≤ ij ≤ n− 1, and put B = H ∩ Cnc = {ai1b, ..., airb}, where b is the generating reflection

for the dihedral group. Noting that |A| = |B|, and that H = A tB, we have that

dimC CχH =
χ(e)

|H|
∑
h∈H

χ(h) =
χ(e)

|H|
∑
h∈A

χ(h) =
χ(e)

|H|
· |H|

2
· χ(e) = 2,

again using that Cn ⊆ kerχ. Hence the two orthogonal elements of E form an o-basis for

CχH .
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Assume now that H ⊆ Cn. Let cH and dH be the pair of orthogonal elements guaran-

teed by 4.3. Then {cH, dH} is linearly independent in CχH . A complete set of distinct cosets

of Cn in G is {Cn, bCn}, where b is the generating reflection. By 3.7, {cH, dH, bcH, bdH} is

linearly independent in CχH . Since cH and dH are orthogonal, the G-invariance of Bχ
H gives

us that bcH and bdH are orthogonal as well. Consider cH and bcH. We have that

Bχ
H(cH, bcH) =

χ(e)

|H|
∑
h∈H

χ(c(bc)−1h) =
χ(e)

|H|
∑
h∈H

χ(cc−1b−1h) =
χ(e)

|H|
∑
h∈H

χ(bh) = 0,

since b is a reflection. Now consider cH and bdH. We have

Bχ
H(cH, bdH) =

χ(e)

|H|
∑
h∈H

χ(c(bd)−1h) =
χ(e)

|H|
∑
h∈H

χ(cd−1bh) =
χ(e)

|H|
∑
h∈H

χ(cd−1h−1b) = 0,

since cd−1h−1 is a rotation and hence cd−1h−1b is a reflection. Similar arguments show that

dH is orthogonal to both bcH and bdH, whence the set of all four vectors are pairwise

orthogonal. Finally, since H ⊆ kerχ, we have

dimC CχH =
χ(e)

|H|
∑
h∈H

χ(h) =
χ(e)

|H|
· |H| · χ(e) = 4

Therefore, CχH has an o-basis.

(ii ⇒ i) Let G = D2n. Assume CχH has an o-basis for each H 6 G and χ ∈ Irr(G).

Let χ = χ1 and let H = {e}. Then n = n′. Hence for each cH ∈ E, there exists c ∈ Cn

such that f(cv0) = cH, so that f in Theorem 4.3 is surjective and thus bijective. Thus there

exists a pair of orthogonal elements in E and hence in Bn, implying by Lemma 4.4 that n is

even. Thus, if n = 3, then CχH does not have an o-basis for each (H,χ)-pair. If n = 4, then

|G| = 8 = 23.

We now proceed by induction on n. Fix n > 4. Since n is even, we have that an/2 ∈ Cn.
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Let π : G −→ G/〈an/2〉 be the canonical epimorphism, and put Ĝ = G/〈an/2〉. Since the

quotient of a dihedral group is dihedral, we have that Ĝ is a dihedral group of order n. Now

fix Ĥ 6 Ĝ and χ̂ ∈ Irr(Ĝ). Then Ĥ = π(H) for some H 6 G and χ̂ = χ ◦ π for some

χ ∈ Irr(G). We have that 〈an/2〉 ⊆ kerχ, so it follows by 1.40 that CχH and Cχ̂
Ĥ

are isometric.

By assumption, CχH has an o-basis for each (H,χ)-pair. Thus Cχ̂
Ĥ

has an o-basis for each

(Ĥ, χ̂)-pair. By the induction hypothesis, |Ĝ| = n is a power of 2, whence |G| = 2|Ĝ| = 2n

is a power of 2 as well. The proof is complete.
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Chapter 5

Root Systems For A Special Coset Space

We now extend our results on root systems to include a special case. Earlier, we looked

at symmetric groups and their associated coset spaces, and we drew conclusions about the

type of rank 1 and 2 crystallographic root systems embedded in the geometry of these spaces.

If we consider symmetric groups Sm with m arbitrarily large, it turns out that we need not

restrict ourselves to rank 1 and 2. By fixing a particular subgroup and irreducible character

of Sm, we always obtain the root system Am−1. This result agrees with a conclusion found

in [TS12, Theorem 14]. In that paper, however, the authors take a combinatorial approach,

drawing upon substantial graph-theoretic preliminaries. Our proof is much more geometrical.

Put G = Sm. The inner product space Cm = {a = (a1, a2, . . . , am) | ai ∈ C} is a CG-module

with action given by σa = (aσ−1(1), aσ−1(2), . . . , aσ1(m)). This CG-module is an internal direct

sum Cm = T +̇V , where T = C(1, 1, . . . , 1) and V = {a ∈ Cm |
∑

i ai = 0}.

The CG-module T affords the trivial character 1. Let ψ and ν denote the characters of

G afforded by Cm and V , respectively. By the preceding paragraph, we have ψ = ν + 1.

Denote by Cε the vector space C on which G acts according to the formula σx = ε(σ)x,

where ε is the sign character of G. Then Cε is a CG-module affording the character ε.

The CG-module Vε = Cε ⊗ V affords the character χ = εν. We identify the vector space Vε

with V using the map x⊗ v 7→ xv. With this identification we define the action of G on Vε

by the formula σa = ε(σ)(aσ−1(1), aσ−1(2), . . . , aσ1(m)).
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Given a partition α of m, recall that there exists a bijective correspondence α 7→ χα from

the set of partitions of m to the set Irr(Sm) of irreducible characters of Sm.

For each 1 ≤ i ≤ m, let ei ∈ Cm be the m-tuple with jth entry δij. The R-span of

the set Φ = κ{ei − ej | i 6= j} ⊂ Vε is a root system of type Am−1 for κ ∈ R. Put

aκ = κ(1,−1, 0, . . . , 0) ∈ Φ.

Fix H 6 G and χ ∈ Irr(G). Again, let Σ be the standard vectors of CχH .

Theorem 5.1. Assume that H = 〈(12)〉, and χ = χ[2,1m−2]. There exists a CG-isomorphism

ϕ̄ : CχH → Vε satisfying the following:

(i) ϕ̄ is an isometry,

(ii) ϕ̄(σH) = σaκ for all σ ∈ G,

(iii) Φ =


ϕ̄(Σ∪̇ − Σ) if m = 3,

ϕ̄(Σ) if m ≥ 4.

The proof will require several lemmas. After inducing the map ϕ̄ in the statement of

the theorem, we will give the proof of the theorem.

Consider vi ∈ Cm−1, the (m− 1)-tuple with j-th entry δij. We identify vi with ei ∈ Cm, the

m-tuple with the same entries but with a fixed m-th entry of zero. Put v = v1 + · · ·+ vm−1.

Putting L = Cv, we have that L is a submodule of Cm|H , where we define H as the subgroup

of Sm isomorphic to Sm−1 obtained by fixing m. Throughout, we will identify H and Sm−1

for the sake of simplicity.

Lemma 5.2. Cm ∼= LSm
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Proof. Using 5.2, we must show that Cm =
∑̇
a∈A

aL, where A is a set of representatives for

the left cosets of H in G. The CG-isomorphism then follows.

We claim that a complete set of left coset representatives forH inG is A = {(1,m), (2,m), ..., (m−

1,m), (m,m) = e}. Suppose (i,m)H = (j,m)H for some i 6= j, with 1 ≤ i, j < m.

Note that m /∈ σ for any σ ∈ H, and also that (i, j) ∈ H. If (j,m)(i,m)H = H, then

(j,m)(i,m)(i, j) ∈ H, in which case (i,m) ∈ H, a contradiction. Since |G : H| = m, A is a

set of distinct coset representatives of H in G.

We have that aL = Cav for each a ∈ A. Label the elements of A as a1 = (1,m), a2 =

(2,m), ..., am = (m,m). We must show that aiL
⋂

(
∑

j 6=i ajL ) = {0} for each 1 ≤ i ≤ m.

To show this, it suffices to prove that the statement holds for i = 1, since the other cases

are handled similarly.

Let w ∈ a1L
⋂

(
∑
i>1

aiL ). Since w ∈ a1L,

(1) w = α1a1v = α1v2 + α1v3 + · · ·+ α1vm

for some α1 ∈ C. On the other hand, w ∈
∑
i>1

aiL, so w = α2a2v + α3a3v + · · · + αmamv

where αi ∈ C for 2 ≤ i ≤ m. Now, v1 occurs as a summand in the vectors a2v through

amv, so the combined coefficient of v1 as a summand of w is α2 + · · · + αm. Equating this

coefficient of v1 with its coefficient in (1), we have

(2) α2 + · · ·+ αm = 0.

For each vi with i > 1, vi fails to occur as a summand in αiaiv. Hence the combined coefficient

of vi in the expression of w ∈
∑
i>1

aiL is α2 + · · ·+ αi−1 + αi+1 + · · ·+ αm. Equating this
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coefficient with the coefficient of vi in (1) yields

(3) α2 + · · ·+ αi−1 + αi+1 + · · ·+ αm = α1.

Now, taking (2) with each equation of the form (3) corresponding to an i > 1, we have a

system of m equations on whose left side each αi occurs m− 1 times. Summing both sides

of this system, we have (m − 1)
∑
i>1

αi = (m − 1)α1, so that
∑
i>1

αi = α1. But by (2), this

left-hand sum is zero, implying that α1 = 0, and hence that w = 0.

Thus aiL
⋂

(
∑
j 6=i

ajL ) = {0}, as claimed. Since
∑
i

aiL is the sum of m submodules,

we must have Cm =
∑̇
i

aiL. The isomorphism follows.

We continue to view Sm−1 as a subgroup of Sm.

Lemma 5.3. ψ = (1Sm−1)
Sm

Proof. The module L = Cv is one-dimensional, and clearly stable under the action of Sm−1,

so it affords 1Sm−1 . Since Cm affords ψ, the above isomorphism gives the result.

Lemma 5.4. The character ν is irreducible.

Proof. We have that ψ and ν are the characters ofG = Sm afforded by Cm and V, respectively,

and that ψ = ν + 1. Now ν is irreducible if and only if (ν, ν) = (ψ − 1, ψ − 1) = 1. Put

λ = 1H , where again H = Sm−1, so that ψ = λG. Then by using Frobenius Reciprocity twice,

we have
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(λG − 1G, λ
G − 1G) = (λG, λG)− 2(λG, 1G) + (1G, 1G)

= (λ, (λG)H)− 2(λ, (1G)H) + 1

= (λ, (λG)H)− 2(λ, λ) + 1

= (λ, (λG)H)− 1

It remains to determine that the value of (λ, (λG)H) = 2. By Mackey’s Subgroup Theorem,

(λG)H ∼=
⊕
a∈A

( (aλ)aH∩H )H ,

where A is a set of representatives for the (H,H)-double cosets in G. Let A = {e, (m−1,m)}.

Then HeH and H(m− 1,m)H are (H,H)-double cosets of H in G, and since (m− 1,m) ∈

H(m− 1,m)H but (m− 1,m) /∈ H, these cosets are distinct.

Let K 6 H = Sm−1, with K ∼= Sm−2, and now identify K with the subgroup of Sm−1

fixing m− 1. With a = (m− 1,m), we claim that aH ∩H = K. Let let k ∈ K. Then

k = ek = (m− 1,m)(m− 1,m)k = (m− 1,m)k(m− 1,m) ∈ aH,

and we have aH ∩H ⊇ K. Now let aha−1 ∈ aH ∩H. Since aH ∩H ⊆ H, we have m /∈ aha−1.

Assume m − 1 ∈ aha−1. Since conjugation applies a to each entry of h, this implies that

m ∈ H, a contradiction. Hence aH ∩H ⊆ K, and the claim follows.

Since K ∼= Sm−2, we have |aH ∩H| = |K| = (m− 2)!, and thus |H : aH ∩H| = m− 1. Using

1.21, and incorporating the case a = e, we now have that

|Sm| = m! = (m− 1)! + (m− 1)!(m− 1) = |H|+ |H||H : aH ∩H| = |H|+ |H(m− 1,m)H|.
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By reasons of order, we must in fact have a complete set of (H,H)-double cosets in G. Thus

Mackey’s Subgroup Theorem gives

(λG)H = (λH)H + (aλK)H = λ+ (aλK)H .

Then

(λ, (λG)H) = (λ, λ+ (aλK)H) = (λ, λ) + (λ, (aλK)H).

By Frobenius Reciprocity, we have

(λ, (aλK)H) = (λK ,
aλK)

Since λK is trivial, the definition of the conjugate character yields that aλK(ak) = 1 for all

ak ∈ aK, so that aλK is trivial as well. Thus (λK ,
aλK) = 1, and we conclude that

(ν, ν) = (ψ − 1, ψ − 1)

= (λG − 1G, λ
G − 1G)

= (λ, (λG)H)− 1

= (λ, λ) + (λ, (aλK)H)− 1

= (λ, λ) + (λK ,
aλK)− 1

= 2− 1 = 1,

whence ν is irreducible.

Lemma 5.5. The CG-module Vε affords the character χ = χ[2,1m−2].

Proof. We have that ν + 1 = ψ = (1S[m−1,1]
)Sm , after identifying the partition [m− 1, 1] of m

with the partition [m− 1] of m− 1. The only partitions of m that majorize [m− 1,m] must

have m − 1 or m as the first entry, giving [m − 1, 1] and [m]. Thus by 1.29, we have that

(1S[m−1,1]
)Sm = cχ[m−1,1] + dχ[m] for some positive integers c and d. Since ψ = (1S[m−1,1]

)Sm ,
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and 1Sm = χ[m], we must have ν = χ[m−1,1].

Now, the conjugate partition of α = [m − 1, 1] is the partition α′ with i-th component

α′i equal to the number of indices j for which αj ≥ i. Hence α′ = [2, 1m−2]. By 1.31, we have

that χ[2,1m−2] = εmχ[m−1,1], where εm is the sign character of Sm. Since Cε affords εm and V

affords χ[m−1,1], we infer that χ[2,1m−2] is the character afforded by Vε = Cε ⊗ V.

Since H fixes aκ, we get a well-defined linear map ϕ : C(G/H)→ Vε satisfying ϕ(σH) =

σaκ (σ ∈ G). This map is a CG-homomorphism. For the next result, we prove that ϕ

preserves the bilinear forms on C(G/H) and Vε. To this end, we put κ =
√
χ(e)/|H| =√

(m− 1)/2 and we use the character χ = χ[2,1m−2] of degree m− 1 from 5.5. This character

can be defined by

χ(σ) =


|Fix(σ)| − 1 if σ is even,

1− |Fix(σ)| if σ is odd.

where Fix(σ) denotes the subset of elements of {1, ...,m} fixed by σ. For 1 ≤ i ≤ m, we use

the notation i ∈ σ, i /∈ σ to indicate that σ moves or fixes the integer i, respectively.

Lemma 5.6. The map ϕ : C(G/H)→ Vε preserves the bilinear forms.

Proof. Due to the G-invariance of Bχ
H , it suffices to consider products of elements of the

form σH, H. Throughout, k denotes the number of fixed points of σ, and we calculate the

value of χ on an element of G according to the formula above. We proceed by considering

cases.

Case 1: Suppose 1, 2 /∈ σ.

Bχ
H(σH,H) = m−1

2
[χ(σ) + χ(σ(1, 2))] = m−1

2
[(k − 1) + (3 − k)] = m−1

2
· 2 = m − 1 =

κ2〈(1,−1, 0, . . . , 0), (1,−1, 0, . . . , 0)〉 = 〈ϕ(σH), ϕ(H)〉

Case 2: Suppose 1 ∈ σ, 2 /∈ σ. (The reverse case is similar)

We have σ(1, 2) = (1, . . . ) · · · (1, 2) = (1, 2, . . . ) · · · (. . . ).
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Bχ
H(σH,H) = m−1

2
[(k−1)+(2−k)] = m−1

2
= κ2〈(1,−1, 0, . . . , 0), (0,−1, . . . , 1, . . . , 0)〉 =

〈ϕ(σH), ϕ(H)〉

Case 3: Suppose 1, 2 ∈ σ, with 1 and 2 in different cycles.

We have σ(1, 2) = (1, . . . )(2, . . . ) · · · (1, 2) = (1, . . . , 2, . . . ) · · · (. . . ).

Bχ
H(σH,H) = m−1

2
[(k−1)+(1−k)] = 0 = κ2〈(1,−1, 0, . . . , 0), (0, 0, . . . ,−1, . . . , 1, . . . , 0)〉 =

〈ϕ(σH), ϕ(H)〉

Case 4: Suppose 1, 2 ∈ σ, with 1, 2 in same cycle, (1, 2) not a cycle.

Subcase i: 1,2 nonadjacent

We have σ(1, 2) = (1, . . . , 2, . . . ) · · · (1, 2) = (1, . . . )(2, . . . ) · · · (. . . ).

Bχ
H(σH,H) = m−1

2
[(k−1)+(1−k)] = 0 = κ2〈(1,−1, 0, . . . , 0), (0, 0, . . . ,−1, . . . , 1, . . . , 0)〉 =

〈ϕ(σH), ϕ(H)〉

Subcase ii: 1,2 adjacent

We have σ(1, 2) = (1, 2, . . . ) · · · (1, 2) = (1, . . . ) · · · (. . . ).

Bχ
H(σH,H) = m−1

2
[(k−1)+(−k)] = −(m−1

2
) = κ2〈(1,−1, 0, . . . , 0), (0, 1, . . . ,−1, . . . , 0)〉 =

〈ϕ(σH), ϕ(H)〉

Case 5: Suppose 1, 2 /∈ σ, and (1, 2) a cycle.

We have σ(1, 2) = (1, 2)(. . . ) · · · (. . . )(1, 2) = (. . . ) · · · (. . . ).

Bχ
H(σH,H) = m−1

2
[(k−1)+(−k−1)] = −(m−1) = κ2〈(1,−1, 0, . . . , 0), (−1, 1, 0, . . . , 0)〉 =

〈ϕ(σH), ϕ(H)〉

Thus ϕ preserves the bilinear map.
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The last step in getting the induced map ϕ̄ is to realize the kernel of Bχ
H in terms of the

orthogonal idempotent eχ =
χ(e)

|G|
∑
σ∈G

χ(σ−1)σ associated with G and χ.

Lemma 5.7. We have ker Bχ
H = (1− eχ) · R(G/H).

Proof. Let
∑
a

αaaH ∈ kerBχ
H . It is enough to prove that eχ ·

∑
a

αaaH = 0. We have

eχ ·
∑
a

αaaH =
χ(e)

|G|
∑
σ

χ(σ−1)σ
∑
a

αaaH

=
χ(e)

|G|
∑
σ

∑
a

αaχ(σ−1)σaH

=
χ(e)

|G|
∑
g

∑
a

αaχ(ag−1)gH

=
χ(e)

|G|
∑
b

∑
a

∑
h

αaχ(ah−1b−1)bH

=
χ(e)

|G|
∑
b

∑
a

∑
h

αaχ(hb−1a)bH

=
χ(e)

|G|
∑
b

∑
a

αa
∑
h

χ(b−1ah)bH

=
χ(e)

|G|
∑
b

∑
a

αa(
∑
h

χ(b−1ah) )bH

=
χ(e)

|G|
∑
b

∑
a

αa( B
χ
H(aH, bH) )bH

=
χ(e)

|G|
∑
b

Bχ
H(
∑
a

αaaH, bH )bH

= 0

Now let r =
∑
ψ 6=χ

eψ
∑
a

αaaH ∈ (1−eχ)·R(G/H). It suffices to show that
ψ(e)

|G|
∑
σ

ψ(σ−1)σ
∑
a

αaaH ∈

kerBχ
H for a single summand ψ 6= χ, for then r ∈ Bχ

H as well. Then for all b in G, we have
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Bχ
H

(
ψ(e)

|G|
∑
σ

ψ(σ−1)σ
∑
a

αaaH, bH

)
=
ψ(e)

|G|
∑
σ

∑
a

αaψ(σ−1)Bχ
H(σaH, bH)

=
ψ(e)

|G|
∑
σ

∑
a

αaψ(σ−1)
∑
h

χ(b−1σah)

=
ψ(e)

1

∑
a

αa
∑
h

1

|G|
∑
σ

χ(b−1σah)ψ(σ−1)

=
ψ(e)

1

∑
a

αa
∑
h

1

|G|
∑
σ

χ(σahb−1)ψ(σ−1)

= 0

by the Generalized Orthogonality Relation.

We now prove Theorem 5.1.

Proof. First, we claim that kerBχ
H ⊆ kerϕ. Using Lemma 5.7, and the fact that ϕ is a

CG-homomorphism, we have that ϕ((1 − eχ) ·
∑
a∈G

αaaH) = (1 − eχ)ϕ(
∑
a∈G

αaaH ). Now

ϕ(
∑

a∈G αaaH ) ∈ Vε, and since Vε affords χ by Lemma 5.5, eχ acts as the identity map on

Vε. Thus

(1− eχ)ϕ(
∑
a∈G

αaaH ) = ϕ(
∑
a∈G

αaaH )− eχϕ(
∑
a∈G

αaaH )

= ϕ(
∑
a∈G

αaaH )− ϕ(
∑
a∈G

αaaH )

= 0,

and the claim follows.

We now have an induced CG-isomorphism ϕ̄ : CχH −→ Vε with ϕ̄(σH) = ϕ(σH) = σaκ,

proving (ii).
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Since Bχ
H is an inner product, and since Bχ

H(v̄, w̄) = Bχ
H(v, w) = 〈ϕ(v), ϕ(w)〉 for all

v̄, w̄ ∈ CχH , the induced map preserves the inner product. Therefore ϕ̄ is an isometry, yielding

(i).

To establish (iii), first let m = 3. Since (132)H = (23)H and (123)H = (13)H, we have

that Σ = {(132)H, (123)H,H}, after choosing representatives for the left cosets of H in

G. Hence ϕ̄(Σ) = {κ(1,−1, 0), κ(0, 1,−1), κ(1, 0,−1)}. To map onto the remaining roots

(−1, 1, 0), (0,−1, 1), and (−1, 0, 1), we must include −Σ = {−(132)H,−(123)H,−H} in the

domain of ϕ̄. After doing so, we get ϕ̄(Σ∪̇ − Σ) = Φ.

Now let m ≥ 4. We have that ϕ̄(H) = σaκ = ε(e)aκ = κ(1,−1, 0, ..., 0) ∈ Φ. Since

m ≥ 4, Sm contains the element σ = (12)(34), and so ϕ̄(σH) = σaκ = ε(σ)aκ = −aκ =

κ(−1, 1, 0, . . . , 0). By [Hum72, p.53, Lemma C], we have that Sm acts transitively on the set

of those roots having a fixed length, so that the orbit of aκ under Sm is precisely Φ. That

is, ϕ̄(Σ) = Φ. The proof is complete.
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Chapter 6

Conclusions

Originally, the coset space was developed as a tool for deciding whether an orbital

subspace of a symmetrized tensor space had a basis consisting of pairwise orthogonal standard

symmetrized tensors (an o-basis). As we have seen, when G is a dihedral group of order a

power of 2, these orbital subspaces V χ
γ have such a basis for each γ ∈ Γ and χ ∈ Irr(G).

Dihedral groups are distinctive in the sense that all of their irreducible characters have degree

at most 2. Hence for any (H,χ)-pairing, we have that

dimC CχH =
χ(e)

|H|
∑
h∈H

χ(h)1(h) ≤ χ(e)

|H|
∑
h∈H

χ(e) =
χ(e)

|H|
· |H|χ(e) = χ2(e) ≤ 4.

Their relatively small dimension makes the coset spaces for the dihedral group fairly easy

to investigate. With the symmetric group, however, the maximum degree of its irreducible

characters increases with the cardinality of the group. Consequently the maximum dimen-

sions of coset spaces for these groups grow as well. The approach of constructing bases and

computing Gram matrices becomes unwieldy for Sn when n is high, a fact which became

apparent with the concluding example of S4 in Chapter 3.

Still, for the fixed (H,χ)-pairing in Chapter 5, we were able to obtain a geometric description

of CχH for Sn with n arbitrarily large. In this case, the standard vectors Σ ⊆ CχH formed a

root system of type An−1. Considering this alongside our prior results, it is notable that, for

each of the root systems we obtained, all of its irreducible components were of type Am for

some m ∈ N. Thus all of the root systems we obtained have roots of equal length: They are

“simply laced.” Since we arrived at our results, work has been done [HH13] indicating that
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the following is a theorem:

There exists an orbital subspace such that the standard symmetrized tensors in the sub-

space form a root system isomorphic to a given irreducible root system if and only if the

irreducible root system is simply laced.

We saw a glimmer of this already with our concluding result of Chapter 3, which placed

tight constraints on the rank 1 and 2 root systems which could be realized with standard

vectors in a coset space. As we established in 3.12, if CχH has a basis of standard vectors

that forms a base for a root system, then the value of Bχ
H(aH, bH) is either 0 or ±1

2
dimC CχH

for distinct basis vectors aH, bH in the coset space. Naturally, we revisit the question that

arose in the context of research on o-basis groups: Given a finite group G, what conditions

on the group insure that for every H 6 G and χ ∈ Irr(G), the vector space CχH has a basis

that is orthogonal relative to Bχ
H consisting entirely of standard vectors? This is a question

about the structure of a finite group, and about its irreducible characters. Having posed

the question, the formula for the inner product of two vectors in a coset space is itself very

suggestive. We have

Bχ
H(aH, bH) =

χ(e)

|H|
∑
h∈H

χ(b−1ah).

If we could determine the conditions under which an irreducible character vanishes on a

subset of G, this could shed light on the values we obtain from the summation on the right.

Specifically, note that the right-hand side of the equation above is a sum of the elements of

a set of the form χ(cH) = {χ(ch) | h ∈ H}, where cH ∈ G/H. Thus, if we knew when irre-

ducible characters vanish on entire cosets, we could know one way in which this summation

becomes zero.

Much literature on zeros of irreducible characters already exists. For instance, we have

the following theorem in [Nav01]:
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Theorem 6.1. Let G be a finite group and let N C G. Let χ ∈ Irr(G). Then χN is not

irreducible if and only if χ vanishes on some coset Nx of N in G.

To illustrate an easy consequence of this theorem, let N C G and let χ ∈ Irr(G). Sup-

pose χN is not irreducible. By the theorem, χ vanishes on some coset of N in G. Call this

coset xN . Then xN and N are a pair of orthogonal vectors in CχN . Extension of results such

as this theorem might prove very fruitful in generating more orthogonal cosets, and hence

in generating an entire o-basis for a coset space.

We find other results of interest scattered throughout the literature. In [DRB07], the authors

prove that if G is a finite solvable group which has an irreducible character χ which vanishes

on exactly one conjugacy class, then G has a homomorphic image which is a nontrivial 2-

transitive permutation group. Now, Holmes proved in [Hol95] that any 2-transitive subgroup

of Sn (n ≥ 3) is not o-basis. In [Hol04] he proved that the class of o-basis groups is closed

under taking homomorphic images. The above results, taken in concert, imply that if G is

a finite solvable group which has an irreducible character χ which vanishes on exactly one

conjugacy class, then G cannot be o-basis.

Another possible line of inquiry lies in the related notions of a Camina group and the

vanishing-off subgroup. Given a finite group G and the set of nonlinear irreducible char-

acters nl(G) ⊆ Irr(G), we define the vanishing-off subgroup V (G) = 〈g ∈ G | there exists

χ ∈ nl(G) such that χ(g) 6= 0〉 [Isa94]. It turns out that Camina groups can be defined

by the condition that V (G) = G′ [Lew09]. When restricting attention to Camina groups of

prime power order, we find in [DS96] that such groups have nilpotency class at most 3. This

suggests a possible connection with results in [Erv07], wherein the author conjectures that

having nilpotency class no more than 3 may be a necessary condition for a nilpotent group

to be o-basis.
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In working towards a proof that a finite group is o-basis, we will always take cognizance

of the geometric proof methods we have employed throughout this work. These methods

hold promise in furnishing intuitive ways to explore future conjectures in this area.
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