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Abstract

An introduction to the Stone-Cech compactification SX of a Ty completely regular
topological space X is given. The method of invariantly embedding linear orders into ultra-
powers is used to find 2° pairwise nonhomeomorphic continua in SR, under the assumption

that the Continuum Hypothesis fails.
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Chapter 1

Introduction

A continuum is a connected compact Hausdorff space. The Stone-Cech remainder H* =
BH \ H of the half-line H = [0, 00) is a continuum, and every free ultrafilter u on w generates
a subcontinuum I, of H*. The spaces I, resemble the interval I = [0, 1] in several ways, but
unlike intervals of reals the "intervals” I, can vary considerably. Assuming —CH, A. Dow
[1] demonstrated a family of 2¢ free ultrafilters on w such that the corresponding I,’s are

mutually nonhomeomorphic. This proves the following.
Theorem 1.1 (= CH). There exist 2° pairwise nonhomeomorphic subcontinua of H*.

Prior to this result, only a finite number of subcontinua of H* were known to exist in a
given model of ZFC. Note that 2¢ is the maximum possible number because H* has a basis
of size ¢. The main result of [1] is achieved by first noting that each I, is closely related
to the linearly ordered ultrapower R¥/u. The following theorem says that in order to find
2¢ pairwise nonhomeomorphic I,’s, it suffices to find 2¢ pairwise nonisomorphic completions

R« /u of ultrapowers R¥ /u.
Theorem 1.2. If u and v are free ultrafilters on w and I, ~ 1, then R /u =~ R¥ /v.

Finding 2° nonisomorphic completions Rw—/u is no trivial matter. It was first established
in [9] that all ultrapowers R /u are isomorphic under CH. Prior to [3], we only knew of the
existence of ¢ nonisomorphic ultrapowers in certain models of ZFC+—CH. The authors of [3]
show that there are actually 2° nonisomorphic ultrapowers whenever CH fails. A. Dow was

able to modify some of their arguments to prove the following.

Theorem 1.3 (- CH). There exists a family {D, : a < 2°} of free ultrafilters on w such

that R¥/D, % R« /Dg for any a < B < 2°.



The goal of this paper is to develop the tools needed for proving the theorems stated
above. In the next chapter, we will state some relevant definitions and theorems from
introductory topology and set theory. The Stone-Cech compactification is the subject of
Chapter 3, wherein we prove existence and uniqueness results and look at some examples.
In Chapter 4 we introduce the ultrapowers R“ /u and prove the aforementioned CH result. In
Chapter 5 we examine the spaces I, and prove Theorem 1.2. As indicated above, Theorems
1.2 and 1.3 yield a proof of Theorem 1.1. We give a slightly different proof of Theorem 1.1

in Chapter 6 while presenting a series of results from [3]. Finally, we prove Theorem 1.3.



Chapter 2

Some Topology and Set Theory

2.1 Topology

We refer the reader to Topology by J. Munkres [6] for the basics.
Theorem 2.1. FEvery closed subset of a compact space is compact. [
Theorem 2.2. FEvery compact subspace of a Hausdorff space is closed. [

Let X and Y be topological spaces, and let f : X — Y be a function. For A € P(X)
let f[A] ={f(z):x € A} and for B P(Y) let f}[B]=f"'B={z€ X : f(z) € B}.

Theorem 2.3. If f is continuous and X is compact then f[X] is compact. [

Theorem 2.4. Suppose X is compact, Y is Hausdorff, and f is continuous. Then f is
closed, and if f[X] contains a dense subset of Y then f[X] =Y. ]

Theorem 2.5. f is continuous iff flclxA] C cly f[A] for each A € P(X). ]
Theorem 2.6. f is continuous and closed iff flclx Al = cly f[A] for each A € P(X). O

Theorem 2.7. Suppose Y is Hausdorff, D C X is dense in X, and f,g : X — Y are
continuous. If f | D =gqg | D then f =g. O

A collection C of subsets of X is said to have the finite intersection property if every

finite subcollection of C has nonempty intersection.

Theorem 2.8. X is compact iff (\C # @ whenever C is a collection of closed subsets of X

with the finite intersection property. [



Theorem 2.9 (Tychonoft’s Theorem). A product of compact spaces is compact (in the prod-

uct topology). ]

A compactification of X is a compact Hausdorff space containing a dense copy of X.
Every locally compact Hausdorff space has a one point compactification, defined to be the
set X = X U {oo} with the following topology: U C «aX is open if

(i) U is open in X, or

(ii) oo € U and aX \ U is compact.
Theorem 2.10. If A is a connected subspace of X then clx A is connected. ]
A continuum is a connected compact Hausdorff space.

Theorem 2.11. The intersection of a family of continua with the finite intersection property

1s a continuum. That is, if C is a collection of compact connected subspaces of X with the

finite intersection property, then (\C is compact and connected as a subspace of X . 0
Theorem 2.12. Fuvery metrizable space is normal. O
Theorem 2.13. Every compact Hausdorff space is normal. 0

Theorem 2.14. Fvery F, subspace of a normal space is normal.

Proof. Suppose L is a countable union of closed sets in a normal space X, and A and B are
disjoint relatively closed subsets of L. Write A and B as countable unions of closed subsets

of X; A=J,c, Ai and B = J,., Bi-

icw
Fix ¢ € w. Note that A = EN L for some closed £ C X with EN B; = @. Similarly,
B = F N L for some closed FF C X with FF N A; = &. By normality of X, there are disjoint
open sets U' and V' with £ C U’ and B; C V’. Similarly, there are disjoint open sets U”
and V" with A, CU”" and BCV”. Let U; =U'NU" and V; = V' NV"”. Then U; and V; are
disjoint open sets containing A; and B;, repsectively, and U; N B =@ = ANV,.
Let U = U,c, Un \ Uiz, Vi and V = U, ., Vo \ Ui, Ui. Then U N L and V N L are

disjoint open subsets of L containing A and B, respectively. m
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Let C(X) be the ring of continuous real-valued functions on X and let C*(X) be the

subring of C'(X) consisting of the bounded members of C'(X). Let A, B, Z C X.

e Ais C*-embedded in X if every function in C*(A) extends to a function in C*(X).

A and B are completely separated in X if there exists f € C(X) such that f[A] = {0}
and f[B] = {1}.

o X is completely reqular if closed sets and singletons are completely separated in X.
That is, for each closed A C X and p € X \ A there exists f € C(X) with f[A] = {0}
and f(p) = 1. If X is completely regular and T}, then distinct singletons are completely

separated in X.

e 7 is a zero set of X if there exists f € C(X) with Z = f~1{0}. If f € C(X) then we
let Z(f) = f~'{0} denote the zero set of f. Let Z(X) be the collection of all zero sets
of X.

Theorem 2.15. If X is metric then Z(X) equals the collection of closed subsets of X. [

Theorem 2.16. Two sets are completely separated iff they are contained in disjoint zero

sets.

Proof. Let A, B C X. Suppose A and B are completely separated. Let f € C'(X) such that
AC f71({0}) and B C f~1({1}). Then AC Z(f), BC Z(f—1),and Z(f)NZ(f—1) = @.
Conversely, suppose A and B are contained in disjoint zero sets. Let fi, fo € C(X) s.t.
Z(f1) 2 A, Z(f;) 2 B, and Z(f1) N Z(f2) = @. Define f = % Then f is continuous,
fH{0Y) = Z(f1) 2 A, and f7H({1}) = Z(f2) 2 B. O

Theorem 2.17 (Urysohn’s Lemma). Disjoint closed subsets of a normal space are completely

separated. O
Note that Urysohn’s Lemma implies every 77 normal space is completely regular.

Theorem 2.18 (Tietze’s Extension Theorem). Closed subsets of normal spaces are C*-

embedded. ]



A linear order is a pair (L, <), where L is a set and < is a binary relation on L such
that for all a,b,c € L:

(i) either a = b, a < b, or b < a (comparability, antisymmetry),

(i) a £ a (irreflexivity), and

(iii) If @ < b and b < ¢, then a < ¢ (transitivity).

We may refer to a linear order simply by its underlying set when no confusion will
arise. Suppose L is a linear order. L is dense if for all [y < Iy € L there exists 3 € L with
ly <l3 <ly. Lis complete if every subset of L has a least upper bound. If L is a dense linear
order, (M, <) is a completion of L if

(i) M is complete,

(ii) L € M and < extends the ordering < on L, and

(iii) L is dense in M, i.e., for all m; < mg € M there exists [ € L with m; <[ < ma.
Theorem 2.19. Every dense linear order has a unique completion (up to isomorphism). [
Theorem 2.20. If L is dense and compact in the order topology, then L is complete. [

Theorem 2.21 (Intermediate Value Theorem). Suppose L and L' are linear ordered topo-
logical spaces, L is complete, and [ : L — L' is continuous. If a,b € L and r is a point of L’

lying between f(a) and f(b), then there exists a point ¢ of L lying between a and b such that
fle)=r. O

Theorem 2.22. Suppose L and L' are complete linearly ordered topological spaces and h :

L — L' is a homeomorphism. Then h is either order preserving or order reversing. [

Suppose L and L' are linear orders and f: L — L'. f maps L cofinally if for all I’ € L'
there exists [ € L such that I’ < f(l). f maps L coinitially if for all I’ € L’ there exists
[ € L such that f(I) <'. The cofinality of L, denoted cf(L), is the least ordinal « such that
there is a map f : o — L cofinally into L. The coinitiality of L, denoted coi(L), is the least

ordinal a such that there is a map f : @ — L coinitially into L.



2.2 Set Theory

We refer the reader to Set Theory by T. Jech [5] for the basics.

Theorem 2.23. Suppose k is reqular. If X < k and {X¢ : & < A} is a collection with

| Xe| < K for each & < X, then

Ueon Xg‘ <k O

Theorem 2.24. For every infinite cardinal k there exists an increasing sequence {ag : £ <

cf(k)} such that k = SUD, _cf(,) X and lag| < & for each & < cf(k). O
Theorem 2.25. If k is a limit cardinal, then 2" = (2”)Cf(”). O

Theorem 2.26. If \ is an infinite cardinal, and {k; : i < \) is a nondecreasing sequence of

nonzero cardinals, then [],_, ki = (sup;y ki) O

Theorem 2.27. Suppose k is singular. There ezists a set {k; : 1 < cf(k)} of reqular cardinals,

each k; > wy, such that

SUD,; _cf(,) Hi = K and 1_! 2% =28,
1 < CI(k)

Proof. As a limit cardinal, x is the sup of cf(k) regular cardinals x;. We may assume each

k; > wy. By Theorems and [2.26),

Ki K; fn _ K fn _ Ok
[T 27 = (sup,_¢g, 27) 7 = (27)1¢) = 2,

[]

Let k be a regular uncountable cardinal. A set C' C k is a closed unbounded subset
of k if C' is unbounded in x and C' contains all limit ordinals less than x. A set S C k is

stationary if S N C = @ for every closed unbounded subset C' of k.

Theorem 2.28. The intersection of fewer than k closed unbounded subsets of k is closed

unbounded. O]



Theorem 2.29 (Pressing Down Lemma). If £ is regular uncountable, S is a stationary
subset of k, and f : S — Kk such that f(y) <~ for all v € S, then there is a stationary set

S"C S and a < Kk such that f(y) = « for all v € 5. O

Theorem 2.30. Suppose k is reqular uncountable and X\ < k is reqular. Then S = {a <
k: cfla) = A} is stationary in k, and may be partitioned into k pairwise disjoint stationary

sets.

Proof. If C is closed unbounded in x, then the A-th element of C' has cofinality A, thus
SNC # @. So S is stationary in k. For each a € S, let (ag)e<r be an increasing sequence

in k with sup,,a¢ = a. For each n <k and § < A let
Spe={aeS:n<agl

Claim: There exists £ < X such that S, is stationary in « for all n < k. Well, otherwise
for all £ < A there exists ¢ < x and a closed unbounded C¢ such that Ce NS, ¢ = &, so
that each element a@ € C¢ N S has ag < me. Then €' = [, C is closed unbounded and
@ = Supg ¢ < supe 1 < & for each a € C'NS. But C'N S is stationary in x; in particular
it is unbounded in x. Contradiction.

Let £ < X be given by the claim and define f(«) = a¢ for each a € S. Then for each
n <k, f S, is aregressive function on the stationary set S,. For each n < k the Pressing
Down Lemma implies there exists a stationary S} C S, and n < v, with f(a) = v, for all
a € S;. Then v, # v, implies S; NS}, # &. In particular, ‘{57’7 N < /@}} = {vm :n <K}
Since the 7, are unbounded in x and « is regular, this set has cardinality . While it may not

be true that S =J, ., S, we could simply add the deficit S\ [, _,. S;, t one of the S7. [

n<k
Theorem 2.31 (A-system Lemma). IfC is an uncountable collection of finite sets then there

exists an uncountable S C C and a set r such that AN B =71 forany A# B € S. [

Theorem 2.32 (Ramsey’s Theorem). If f is an n-place function on w with finite range then

there is an infinite W C w such that f is constant on all increasing n-tuples in W™. 0



Chapter 3

The Stone-Cech Compactification

In this chapter we will show every T} completely regular space X has a compactification
BX which is unique with respect to certain properties. Note that it is necessary that X be
T completely regular for X to have any compactification. One of the properties of X is
that every continuous map f : X — Y from X into a compact Hausdorff space Y has a
unique continuous extension Sf : X — Y. We will prove some useful results concerning

the the extensions S f, and then we will examine the spaces SH, fw, fwy, and SL.

3.1 Filters and Normal Bases

Suppose A is a collection of sets that is closed under finite intersections. An A-filter is
a nonempty subcollection D of A such that

(i) 2 ¢ D,

(ii) if A, B € D then AN B € D, and

(i) if Ae Dand AC B € Athen B €D.
We will omit reference to A when no confusion will arise. By properties (i) and (ii) filters
have the finite intersection property. On the other hand, given any subcollection & C A with

the finite intersection property, let

(&) ={A € A: Ais asuperset of a finite intersection of members of £} .

Then (€) is a filter containing &, called the filter generated by E.

A filter is called an wultrafilter if no other filter properly includes it.

Theorem 3.1 (Ultrafilter Lemma). Every filter may be extended to an ultrafilter.

9



Proof. Suppose D is a filter. Consider the set P of all filters containing D, partially ordered
by inclusion. The union of a chain of filters containing D is a filter containing D, so every
chain in P has an upper bound. By Zorn’s Lemma P has a maximal element p, an ultrafilter

containing D which no other filter properly includes. O]

Theorem 3.2. p is an ultrafilter iff p is a filter and every set in A which intersects each

member of p is in p.

Proof. Suppose p is an ultrafilter and A € A intersects every element of p. Then p U {A}
has the finite intersection property, so we may consider (p U {A}). By maximality of p,
(pU{A}) Cp, so A € p. Conversely, suppose p is a filter and every set in A which intersects
each member of p is in p. If A € A\ p then A does not intersect every member of p so A

cannot be added to p to generate a larger filter. O
Theorem 3.3. If p is an ultrafilter, A;, As € A, and Ay U Ay € p, then Ay € p or Ay € p.

Proof. Suppose neither is in p. Then by the previous theorem there exist A’, A” € p with
AiNA =@ and Ab,NA” = @. Then AANA” € pand (A3 UA)N (A NA") =g, so
Al U A2 ¢ p. ]

A filter is principal if it consists of all members of A which contain a particular element
of X. That is, a principal filter is a filter of the form {A € A : x € A}. A principal filter
may be an ultrafilter, depending on A. An ultrafilter that is not principal is said to be free.

Suppose X is a set. We refer to a P(X)-filter (P(X)-ultrafilter) as simply a filter on X
(ultrafilter on X).

Theorem 3.4. u is an ultrafilter on X iff u is a filter on X and for each A C X exactly

one of A and X \ A belongs to u.

Proof. (=): Suppose u is an ultrafilter on X. Since AU X \ A = X € u, by the previous
theorem we have A € uw or X \ A € u. Both cannot be in u because AN X\ A=@. («): If

AeP(X)\uthen X\ A€ uso A cannot be added to u to generate a larger filter. O

10



The filter on w consisting of the cofinite subsets of w is the called the cofinite filter.
Theorem 3.5. An ultrafilter on w is free iff it contains the cofinite filter.

Proof. Suppose u is a free ultrafilter on w. Let A C w such that w \ A finite. For a
contradiction suppose A ¢ u. Then w \ A € u. For each n € w\ A there exists A,, € u such
that n ¢ A,. Then (w\ A) N(,c\ 4 4n = @, contradicting the finite intersection property
of u. Conversely, suppose u is an ultrafilter containing the cofinite filter. If n € w, then

w\ {n} € u, so that {n} ¢ u. O

Suppose X is a 17 topological space and L£(X) is a closed lattice base for X. That
is, £(X) is a collection of closed subsets of X that is closed under finite unions and finite
intersections, such that every closed subset of X is an intersection of members of £L(X).
L(X) is a normal base for X if, additionally,

(i) for any closed subset A and « € X \ A there exists a member of £(X) containing

missing A, and

(ii) disjoint members of £(X) are contained in disjoint complements of members of

L(X).

Theorem 3.6.
(1) If X is completely regular then Z(X) is a normal base for X.
(2) If X is normal then the collection of closed subsets of X is a normal base for X.

(3) If X is compact Hausdorff then any closed lattice base is a normal base for X.

Proof of (1). Z(X) is a lattice since Z(f1) N Z(fa) = Z(|f1| + |f2]) and Z(f1) U Z(f2) =
Z(f1 - f2). Now let A be closed in X. Under the assumption X is completely regular, for
each z € X\ Alet f, : X — R be a continuous function with f(z) = 1 and f[A] = {0}.
Then A = (\,cx\a fr {0}, Thus Z(X) is a closed lattice base for X. Next we establish
the normal base properties. (i): A and {z} are completely separated by zero sets Z; and

Zy. The set Zy is as desired. (ii) Suppose Z(f1), Z(f2) € Z(X) are disjoint. By Theorem

11



2.16] Z(f1) and Z(f>) are completely separated. That is, there exists f € C(X) such that
f7H0} = Z(f1) and f~{1} = Z(f,). Then Z(f1) C f~'(—o0,3) and Z(f2) € f~1(5,00).
As [1,00) and (—o0, 3] are zero sets in R, f~![2,00) and f~(—o0, 3] are zero sets in X. We
have Z(f1) € f~(=00,3) = X \ f7![5,00) and Z(f2) C f7(5,00) = X'\ f7}(—00, 3], s0

that Z(f1) and Z(f5) are contained in disjoint complements of zero sets. O
Proof of (2). Trivial. O

Proof of (3). Let L(X) be a closed lattice base for X. (i): Suppose A closed in X and
x € X\ A. Since {z} is closed in X, {z} = ({L € L(X) : z € L}. By compactness of
X there exists L € £(X) such that LN A = @. (ii): Suppose A, B are disjoint members
of £(X). By normality of X there are disjoint open sets U and V such that A C U and
B C V. Since X is compact and £(X) is a closed base for X, there are Ly, Ly € L(X) such
that X \U C L1, X\V C Ly, ANL; =&, and BN Ly =&. Then X \ L; and X \ Ly are
disjoint, A C X \ L1, and B C X \ Ls. O

Note that if X is metric, the bases in (1) and (2) are identical.

3.2 Construction of X

Suppose X is a 17 topological space and £(X) is a normal base for X. Let X (L) be
the set of all £(X)-ultrafilters. For each L € L(X) let

F(L) = Frx(L) ={p € BX(L): L € p}.

Theorem 3.7. F(Ly) N F(Ly) = F(Ly N Ls) for any Ly, Ly € L(X).
Proof. (C) holds by filter property (ii). (2) holds by filter property (iii). O
Theorem 3.8. F'(Ly) U F(Ly) = F(Ly U Ls) for any Ly, Ly € L(X).

Proof. (C) holds by filter property (iii). (2) holds by Theorem ]

12



Let 7ox) = {X \ L: L € L(X)}, and for each O € 17(x) let

B(O) = Bpx)(0) = {u € BX(L) : (AL € u)(L € O)}.

Theorem 3.9. {B(O) : O € 7x)} is a basis for a topology on BX (L) for which {F(L) :
L e L(X)} is a closed lattice base.

Proof. 1t is easy to see that B(X) = X and B(U)NB(V) = B(UNV) for any U,V € 77(x).
So {B(O) : O € 1z(x)} is a basis for a topology. {F(L) : L € L(X)} is a closed lattice base
by the previous two theorems, together with the fact that B(O) = X (£) \ F(X \ O) for

any O € Tz(x). O
Theorem 3.10. X (L) is compact Hausdorff.

Proof. Suppose p; # ps € fX(L). Then there exist L; € p; and Ly € py with L1 N Ly = @.
There exist L] and L} in £(X) such that Ly C X\ L), Ly C X\ L}, and X\ LINX\ Ly = @.
It follows that p; € B(X \ L)), p2 € B(X\ L), and B(X \ L)) N B(X \ L)) = @. This proves
BX (L) is Hausdorff.

To prove BX(L) is compact, it suffices to show that any collection of basic closed
subsets of SX (L) with the finite intersection property has a nonempty intersection. Let
{F(L;) : i € I} be a collection of basic closed subsets of 3X (L) with the finite intersection
property. Then {L; : ¢ € I} also has the finite intersection property. Generate an L£(X)-
filter containing all of the sets L;, and then extend it to an ultrafilter p in SX(L£). Then

peF(L;):iel} 0

Define e : X — X (L) by x — {L € L(X) : x € L}. That is, for x € X let e(x) be the

principal £(X)-filter on z. Normal base property (i) guarantees e(z) is an ultrafilter.

Theorem 3.11. clgxgye[L] = F(L) for any L € L(X).

Proof. Let L € L. Since e[L] C F(L) and F(L) is closed in X (L), we have clgx(rye[L] C

F(L). To show F(L) C clgx(re[L] it suffices to show F(L) is contained in every basic closed

13



set containing e[L]. To that end, suppose Ly € L(X) with e¢[L] C F(Lgy). Then L, € e(l) for

all [ € L, so L C Lg. By the superset property of ultrafilters, we have F'(L) C F(Ly). H
Theorem 3.12. e is a dense embedding.

Proof. First we show e is injective. Let z1 # 25 € X. Then {z;} is closed in X and
xe € X \ {z1}. By normal base property (i) there exists L € L£(X) with z, € L, and
LNn{z,} =@. Thatis, zo € Land x; ¢ L. So L € e(xs) but L ¢ e(xy). Thus e(z1) # e(xq),
proving e is injective. e is continuous since e F (L) ={zr € X :Lee(r)} ={r e X : 1 €
L} = L. The inverse of e defined on e[X] is continuous since e[L] = F(L) N e[X]. Finally
clgx()e[X] = F(X) = BX(L) by Theorem [3.11] so that e[X] is dense in SX(L). O

We will frequently identify X with its copy e[X] in fX (L), viewing points of X as prin-
cipal L£(X)-ultrafilters. For instance, under this identification Theorem says clgx(z)L =
F(L) for any L € £(X). Theorems and yield the following.

Theorem 3.13. X (L) is a compactification of X. ]
Corollary 3.14. If X is compact Hausdorff, then X = X (L).

Proof. Suppose X is compact Hausdorff. Since 5X (L) is Hausdorff, X is closed in 5X(L).
Since X is also dense in X (L), we have X = X (L) O

Theorem 3.15. Clﬁx(£)<L1 N LQ) = ClﬁX(ﬁ)Ll N ClﬁX(g)Lg for any Ly, Ly € ,C(X)

Proof. By Theorems and , ClaxeyLn NclgxoyLe = F(L1) N F(Ly) = F(L1 N Ly) =
ClﬁX(ﬁ)(Ll N LQ) ]

For the remainder of this paper we will assume X is a 77 completely regular space, and

we will write simply X for 5X(Z).
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3.3 Properties and Uniqueness

Suppose vX is a compactification of X and consider the following statements.

(1) clyx(Z1) Nelyx(Z2) = clyx(Z1 N Zy) for any Zy, Zy € Z(X).

(2) Disjoint members of Z(X) have disjoint closures in y.X.

(3) Every continuous function from X into a compact Hausdorff space has a unique
continuous extension to v.X.

(4) X is C*-embedded in y.X.

(5) If aX is any compactification of X, then there is a unique continuous surjection

f:vX — aX which is the identity on X.
Theorem 3.16. (1) = (2), (3) = (4), (3) = (5), and (4) = (2).

Proof. (1) = (2): Trivial. (3) = (4): Given f € C*(X) let Y = clgf[X] and apply the
assumption. (3) = (5): Let f be the continuous extension of the inclusion i : X — aX. By
Theorem f is a surjection. (4) = (2): Suppose 71, Z; € Z(X) are disjoint. By Theorem
[2.16) there exists f € C*(X) such that f(Z1) = {0} and f(Z2) = {1}. Then Bf(cl,x(Z1)) C

f(Z1) = {0}. Similarly, Bf(cl,x(Z2)) C {1}. So clyx(Z1) Nelyx(Zs) = @. O

Say that £X satisfies (n) iff £X is a compactification of X and statement (n) is true

when all instances of v are replaced by &.

Theorem 3.17. 3X satisfies (1),(2).

Proof. Theorems and [3.16] O
Theorem 3.18. X satisfies (3).

Proof. Suppose f is a continuous function from X into a compact Hausdorff space Y. For
each p € BX, the collection {cly f[Z] : Z € p} has the finite intersection property since p

does. By compactness of Y we have (., cly f[Z] # & for each p € SX.
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Define gf : X — Y by
Bf(p) € () ey f12],

Zep

choosing Bf(p) = f(p) when p € X so that 8f extends f. To prove Sf is continuous, we
show (*) S f[clgxA] C cly f[A] for any A € P(X). To that end let A € P(X). To prove (*)
it suffices to show S f[clgxA] C Z for any Z € Z(Y') with f[A] C Z (Y is compact Hausdorff
= Y is Ty completely regular = Z(Y) is a closed base for Y). Well, Let Z € Z(Y') with
fIA] € Z. Then A C f~3Z) and f~Y(Z) is a zero set in X by continuity of f. Suppose
y € Bflclgx A]l. Theny € Bf[clgxf~(Z)]. There exists p € clgx f~1(Z) such that Bf(p) = y.
We have f~1Z € p, so by definition of S f

y=0f(p)ecyflf(Z2)CcyZ =2

Uniqueness now follows from Theorem , and implies each intersection [ zep v f [Z]

is actually a singleton. O
Corollary 3.19. 5X satisfies (4),(5). O
Theorem 3.20. If vX satisfies (5) and £X satisfies (2), then yX ~ £X.

Proof. Let h:vX — £X be the continuous function which is the identity on X. By Theorem
we just need to show that A is injective to prove h is a homeomorphism. To that end,
let p # q € vX. There exists f € C(yX) s.t. f(p) =0and f(¢g) =1. Let Z; = {x € X :
f(x) <3} and Zy = {z € X : f(z) > 2}. Suppose V is an open set 7X containing p. Then
VN f(—oo, %) is a nonempty open set in X (it contains p). Since X is dense in vX, there
exists x € VN f~1(—o0, %) N X. Then x € V N Z;. Thus every open set in 7.X containing
p contains a point of Z;. That is, p € cl,xZ;. Similarly, ¢ € cl,xZ>. By continuity of h
we have h(p) € h(clyxZ1) C clexh(Zy) = clexZ;. Similarly, h(q) € clexZ;. By hypothesis

clngl N CIEXZQ = @, thus h(p) 7£ h(q) ]
Theorem 3.21. If vX satisfies any of (1)-(5) then vX ~ 5X.
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Proof. Suppose v.X satisfies one of (1)-(5). By Theorem [3.16] vX satisfies (2) or (5). X

satisfies (2) and (5), so by the previous theorem vX ~ X. O

Thus X is the unique (up to homeomorphism) compactification of X with any (all)
of the properties (1)-(5). We call it the Stone-Cech compactification of X. The function 3 f

defined in Theorem is called the Stone-Cech extension of f.

3.4 Additional Properties

Theorem 3.22.
(i) If X is normal and L(X) is the collection of closed subsets of X, then 5X ~ X (L).
(ii) If X is compact Hausdorff and C(X) is a closed lattice base for X, then X ~ X(C).

Proof. Suppose X is normal. By Theorem and Urysohn’s Lemma SX (L) is a compactifi-
cation of X satisfying (2). This proves (i). Suppose X is compact Hausdorff. Then C(X) is a
normal base for X by Theorem [3.6] so the conclusion of (ii) follows from Corollary [3.14 [

Theorem 3.23. If A is closed in X then SA ~ clgxA.

Proof. Clearly clgx A is a compactification of A. By Tietze’s Extension Theorem and prop-

erty (4) of X, every function in C*(A) has a continuous extension to clgx A. O

Theorem 3.24. If f : X — Y is a homeomorphism, vX is a compactification of X, and

h:~vX — BY continuously extends f, then h is a homeomorphism.

Proof. Tt suffices to show h is injective. Well, 3(f~!) o h is the identity on X. So in fact

B(f71) o h is the identity on vX, thus h is injective. ]

If vX is a compactification of X, then vX \ X is called the remainder of vX. We will

sometimes write X* for the Stone-Cech remainder X \ X.

Theorem 3.25. If vX is a compactification of X, then fX \ X maps continuously onto

¥X \ X (via the Stone-Cech extension of the identity on X ).
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Proof. Let Bi: BX — X be the Stone-Cech extension of the identity on X. It suffices to
show there is no p € X \ X such that fi(p) € X. For a contradiction, suppose there is
such a p. Then p # Bi(p). Separate p and fi(p) with disjoint open sets Uy, Uiy € BX.
There exists an open V' C X such that V' N X = Upg,,) N X. By continuity of i there
exists an open W C X containing p, mapping into V. There exists z € U, N W N X. But
r ¢ Ugipmy N X =V NX,so Pi(x) =2 ¢ V. Contradiction. O

Theorem 3.26. X s locally compact Hausdorff iff X is open in BX.

Proof. Suppose X is locally compact Hausdorff. Then X has a one-point compactification.
The one-point remainder is the continuous image of X*, so X* is closed in X. Conversely,

open subspaces of (locally) compact spaces are locally compact. O

Theorem 3.27. Suppose X is a Ty locally compact countable union of compact spaces. If

Ais Fy in X \ X, then clgx\x A ~ SA.

Proof. X\ X is closed in X by the previous theorem. So clgx\x A is a compactification of
A. Now we show A is C*-embedded in clgx\xA. Let f € C*(A). The assumption that X is
a countably union of compact spaces implies X is F;, in fX. Since X \ X is closed in SX,
X UAis F, in X and A is closed in X U A. By Theorem [2.14, X U A is normal. Apply
Tietze’s Extension Theorem to extend f to f € C*(X U A). Since X is dense in X U A,

5(f [ X') must extend f. B(f ' X) | clgx\x A is the desired extension of f. ]

Theorem 3.28. If f : X — Y is surjective, f~'{y} is compact for each y € Y, and
Bf : BX — BY is the Stone-Cech extension of f, then Sf[X*] = Y*.

Proof. (C): Suppose p € X*. Let y € Y. Then f~'{y} ¢ p. There exists A € p with
AN 7y} = & Then f[A] N {y} = &. So cloy f[A] N {y} = &. S0 Bf(p) £ . (2): Bf is

surjective because f is surjective. ]

Theorem 3.29. If f : X — Y is a closed mapping into a normal space Y and B f : X — BY
is the Stone-Cech eatension of f, then Bf{q} = Npeq clgx [ (B) for any q € BY .
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Proof. Let q € BY . For each p € X we have

pEclyxf H(B)forall Beq « f'(B)epforall Begq
& fYB)NA#gforal B€gand Acp
BNnf(A)#@forall Begand Aep

f(A)eqgforall Acyp

Bflp)=q & z€Bf({q})

r 0

3.5 Examples

3.5.1 fw

Let w be the countably infinite discrete space. Then fw is just the set of all ultrafilters
on w with a clopen base consisting of the sets B(A) = F(A), A C w. The embedded copy of
w consists of the principal ultrafilters {A C w :n € A}, n € w, while w* consists of the free

ultrafilters.
Lemma 3.30. The product space 2° is separable.

Proof. Let B be a countable basis for the product space 2¥. Let D be the union of all sets

{fe2” (Vie{l,..n)(fI1U;=0VfIU=D)A(fI(2\U1U..UU,) =0))}

over the finite subsets {Uj,...,U,} of B. Note that |D| = w. We will now show that D is

no___1

dense in 2°. Let U be a nonempty basic open set in 22°. Write U = (;_; 7, *{p;}, where each
pi € {0,1} and the a; € 2¥ are distinct. Since 2* is Hausdorff, we may separate the points
Qi, ..., a, with finitely many pairwise disjoint basic open sets Uy, ...,U, € B. Let f € D with

f 1U;=p,; foreach i. Then f € UND. O
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Theorem 3.31. |fw| = 2°.

Proof. Clearly |fw| < 2° (note that in general every separable Hausdorff space has cardinality
< 2°). By the previous lemma there is a map f: w — 2° from w onto a dense subset of the

compact Hausdorff product space 2°. Then [ f witnesses |Sw| > 2°. ]

3.5.2 (R and gH
Let H = [0, 00).
Theorem 3.32. H* =, ., clsu[n, 00).

Proof. If p € BH \ ), clgu[n, c0) then there exists n € w and A € p such that AN
[n,00) = @. Then A is compact and we have (|p # @ so that p € H. This proves
H* C (1),,c., clgr[n, 00). On the other hand, if p € H then there exists n € w with p < n and

we have p ¢ clgu[n, 00). O
Theorem 3.33. H* is a continuum.

Proof. For each n € w, clgg[n, c0) is compact and connected by Theorem [2.10 So H* is the

intersection of a nested collection of continua. By Theorem [2.11], H* is a continuum. O

Using similar arguments to those in the preceding proofs (let (—oo,n| U [n, 00) play the

role of [n,00)),

R* = ﬂ clgr(—00,n] U m clgr[n, 00).

new new

Thus R* is compact but not connected, and has two disjoint copies of H* as its connected

components.

3.5.3 pw; and BL

Let wy be the first uncountable ordinal with the order topology. Let L = w; x [0, 1) with
the lexicographic order topology (the Long Line). Each topological space is locally compact

Hausdorff, and therefore has a one-point compactification aX.
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Theorem 3.34. Every continuous real-valued function on wy is eventually constant.

Proof. Let f € C(wy). Let S be the stationary set {0 < w; : 0 is a limit ordinal}. For each
n € N we define a,, < wy such that f varies by less than % on (ay,,w). Fix n € N. Using the
continuity of f, for each § € S let g,(0) < & such that f varies by less than < on (g,(6), 4].
By the Pressing Down Lemma, there exists a stationary set S,, C S and «, < w; such that
gn(8) = v, for all § € S,,. So f varies by less than % on (a,,d] for all § € S,. Since S, is
unbounded, f varies by less than % on (o, wr). Since wy is regular, sup, .y, < wy. Clearly

f must be constant on the final segment (sup,,cyon,wi) of wy. O

Theorem implies wy is C*-embedded in its one-point compactification aw; = w; +1.
Corollary 3.35. fw; = aw;. O

Another way of proving Sw; = aw; is to simply show that the remainder of Sw; cannot
have more than one point (use the fact that any two closed unbounded subsets of w; have

nonempty intersection).
Theorem 3.36. Fuvery continuous real-valued function on L is eventually constant.

Proof. Let f € C(L). Note that any subspace of L of the form {{a,z,) : @ < wy} is
homeomorphic to wy in the order topology. By Theorem f is eventually constant on
any set of the form {(a,x,) : @ < w}. In particular, for each ¢ € QN [0,1) there exists
Yy < wi and 4 € R such that f({a, q)) = 7, for all @ > v,. Letting v = sup,eqrio,1) Vg < w1,
we have f({(«a,q)) = r, for each @ > v and ¢ € QN [0,1). Since Q N[0, 1) is dense in [0, 1),
we have f({a} x[0,1)) = f({8} x [0,1)) for all o, 3 > 7. Suppose for a contradiction that
[ is not constant on J,.,{a} x [0,1). Since {a} x [0,1) is connected and f is continuous,
f({a} x]0,1)) is connected in R. So there exists a nonempty interval (a,b) C R such that
(a,b) C f({a} x[0,1)) for all & > ~. As |(a,b)| > w;, there exists {r, : 7 < a < w1} C (a,b)
such that r, # rg for any v < a < f < w;. For each a > 7y let (o, z,) € {a} x[0,1) such that

f({a,z4)) = 7. Then f is not eventually constant on {(c, x,) : @ > 7}, a contradiction. [J

Corollary 3.37. SL = alL. [
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Chapter 4

Ultrapowers
4.1 Definition

Suppose X is a set and wu is an ultrafilter on w. Define a relation on X*“ by

f~ge{necw: f(n)=gn)} € u.

It is easily checked that ~ is an equivalence relation: symmetry is obvious, reflexivity follows
from the fact that X € wu, and transitivity follows from the fact that u is closed under finite
intersections and supersets. The ultrapower X“ /u is the set of corresponding equivalence

classes f/u. If X is a linearly ordered set then we may define a relation on X*“/u by

flu<g/ues{ncw: f(n) <gn)} e u.

Theorem 4.1. X¥/u is linearly ordered by <.

Proof. Trreflexivity: {n € w: f(n) < f(n)} =@ ¢ uso f/u £ f/u. Antisymmetry:

flu<g/u={new: f((n)<gn)}cu={ncw:f(n)=gn)}¢u=[/uZglu

Transitivity: Suppose f/u < g/u and g/u < h/u. Then {n € w: f(n) < h(n)} D {n € w:
f(n) <gn)}n{n ew:g(n) <h(n)} €u,so f/u< h/u. Comparability: If f/u # g/u then
{new: f(n)=g(n)} ¢ u. So the complement {n € w: f(n) < g(n)}U{n cw: f(n) >
g(n)} is in u. By Theorem[3.3) {n € w: f(n) < g(n)} €uor{n€w: f(n) > g(n)} € u, so

that f/u < g/u or g/u > f/u. O
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We will be primarily interested in the case X = R. We may view R as a linearly ordered
subset of R¥/u by identifying ¢ € R with the equivalence class f/u, where f is given by
f(n) = cfor all n € w. Under this identification, R*/u = R when w is a principal ultrafilter.
If u is free then R¥/u properly contains R, and is sometimes called hyper-real. In Chapter
6 we will assume —=CH and find 2° free ultrafilters u € w* such that the corresponding R* /u

are pairwise nonisomorphic.

4.2 CH

A dense linear order L is countably saturated if for any countable subsets A and B with

A < B, there exists v € L such that A < v < B.
Theorem 4.2. RY/u is countably saturated for any u € w*.

Proof. Let A and B be countable subsets of R¥/u. Let (a//u);e, be an increasing cofinal
sequence in A and (b* /u)ge, a decreasing coinitial sequence in B. Choose a representative
(a?)ic from a®/u. Assuming a representative has been chosen from a’ /u, select a represen-
tative from a/*'/u such that a] < al*' for all i € w. Recursively select representatives from
each member of (b* /u),e, in a similar manner so that 6" < b¥ for all k,i € w.

For each i € wlet M; = {m < i:a]* < b*}. Claim: For each i € w there exists z; € R
such that a* < z; < b for each m € M;. Fix i € w. Assume M; # &. Let p = max(M,).
Then o < a? < b < b for all m € M;, by choice of representatives. Let x; € (af,b).

Define (x;);e € R¥ as indicated above, setting x; = 0 if M; = @. Now suppose j, k € w.
Let m = max(j,k). Let E € u such that a* < b for all i € E. For each i € E with

i > m we have m € M;. Thus a* < z; < b*foralli € EN{n € w:n>m} € u. So

@ fu < a™/u<x/u<bm/u< b u. O
Theorem 4.3. All countably saturated linear orders of cardinality wy are isomorphic.

Proof. Suppose L and L' are countably saturated linear orders of cardinality w;. Enumerate

L={lg:§<w}and L' = {lz : £ <wi}. We construct a bijection ¢ : w; — w; inductively

23



so that the induced mapping [, — lfp () 18 an order preserving isomorphism from L onto
L. Let @9 = {(0,0)}. Suppose v < wy, and for each § < 7 a bijection s has been defined
between subsets of w; so that

(i) § € dom(ps) Nran(ps), |¢s| < w, p; C ¢; for all i < j <4, and

(ii) the induced mapping lo — I, is an order preserving isomorphism from {l, : a €

@)
dom(ps)} onto {Ij; : 3 € ran(yps)}-

Define ¢, as follows. Let ¢ = [J;_, ¢s. Let & < wi be the least ordinal not in dom(v).
Let

A={aedom(y):l, <lg} and B ={a € dom(y) : lg, <o}

There exists {& < wy such that {l;,,, : a € A} <l <{l},, : @ € B}. Extend 1 by defining

(&) = &. Now let &5 < wy be the least ordinal not in ran(¢). Let

A'={p eran(y) : I <} and B' = {f € ran(v) : I, < I3}

There exists § < w; such that {l,-15: 8 € A’} <l¢, < {ly1(p): B € B'}. Extend 1 again

by defining (&) = &5. Let ¢, = 1. O

Since |R¥/u| = ¢, we have the following.

Corollary 4.4 (CH). R¥/u ~R¥/v for all u,v € w*. O
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Chapter 5

The Continua I, (u € w*)
5.1 Definition

Let I=10,1], M =w x I, and I, = {n} x L. For each u € w* let

L= () claw | In-

A€u neA

Theorem 5.1. I, is a continuum.

Proof. Clearly I, is compact Hausdorff. Now we show I, is connected. Suppose not. Then
there exist two disjoint closed subsets H and K of M such that I, C clgyH U clgy K and
clsmH NI, # @ # clgyK N1I,. There exist A, B € u such that H N1, # @ for all n € A and
K N1, # @ for all n € B. There exists C' € u such that I, C (H U K) for all n € C. There

exists n € AN BNC. Then H and K disconnect I,,, a contradiction. n
[, is a subcontinuum of H* by the following.

Theorem 5.2. I, ~ (., clau U, c4[n, n + 1] € H*.

Proof. Without loss of generality assume the set E of even numbers in w is in u. The map

o: ExI— U,cglnn+1] defined by o({n,z)) = n+ x is a homeomorphism. By Theorems

and there exists a homeomorphism ¢ : clgy (£ x I) — clgg |J,,cp[n, 7+ 1] such that
o] (E x1I)=o0. We have

Hu:ﬂclﬁMUHn:ﬂclﬁM U ]Inz&mclmw U I,

A€u neA A€cu neANE A€cu neANE
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:ﬂclﬁHa U ]In:ﬂclﬁH U [n,n—kl]:ﬂClgHU[n,n—Fl].

Acu ncANE Acu ncANE Acu neA
Since u is free it contains the filter of cofinite sets. So (1), clgrU,c4ln 7+ 1] € H* by

Theorem [3.32 O

Thus I, is a subcontinuum of H*. We now give one more representation of I,. Let
7w : M — w be defined by (n,x) — n. Then 7 is continuous, closed, and surjective. Let

fr : fM — Sw continuously extend 7. By Theorem [3.29]

L= () clawe (J In = () clour ™ (A) = B! (w).

Acu neA A€u

In general it can be shown that 3f~'{p} is a continuum whenever 3f : 3X — BY is the
continuous extension of a closed continuous surjection f : X — Y whose singleton preimages

are continua.

5.2 Decompositions and the Proof of Theorem 1.2

In this section we will identify R with the interval (0,1). For each z/u € R¥/u choose

a representative (z,,) € x/u and let
r,={L e LM):(3Acu)(L2{(nz,)  necA})}.

Let P, = {z, : z/u € R¥/u}.
Theorem 5.3.
(i) z, € 1, and
(it) xy = yy iff {(n €Ew:x, =y} € .
Proof. 1t is easily checked that z, is a filter. To show it is an ultrafilter, suppose L €

L(M) intersects every set in x,. Let A = {n € w: (n,z,) € L}. If w\ A € u then

{(n,x,) :n€w\ A} € z,, but L0{(n,z,) : n € w\ A} = &. Therefore we must have A € u.
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Since L O {(n,x,) : n € A}, we have L € z,. Thus z, is an ultrafilter. Clearly it contains
all the sets |J,c4 In, A € u, so that z,, € I,. Now we prove (ii). Let A ={n € w: z, = y,}.
Suppose A € u. Let L € x,. There exists B € u such that L D {(n,z,) : n € B}. Then
ANBeuwand L D {(n,z,) :n € ANB} ={{n,y,) :n € AN B}, so L € y,. This proves
2, C y, and the reverse inclusion follows similarly. Conversely, if z, = y, and w\ A € u

then @ = {(n,z,) :n€w\ A} N{{n,y,) :n €w\ A} € x,, a contradiction. O

Thus P, is a copy of the set R¥/u inside of I,. Note that not every element in I, is of

the type x,. Consider, for example, the collection

{Upealn : Acu} U{M\ G : G C M is open and (G N1,) < 1/n for each n € w}.

neA-n

Each set in u is infinite, so sets of the first type contain I, for arbitrarily high n € w. For
sufficiently large n, no finite number of the sets G can cover I,,, so the collection has the
finite intersection property. The ultrafilter generated by this collection can contain no set of

the form {(n,z,) : n € w} since we can cover {(n,z,) : n € w} with one of the sets G.
Theorem 5.4. P, is dense in I,.

Proof. Let B(O) N1, be a nonempty basic open subset of I,. Then A ={necw:0NI, #

@} € u. For each n € A choose (n,z,) € ONIL, with z,, # 0,1. Then z, € B(O)NP,. O

For each a, < b, € R¥/u, define an interval in I, by

[aws bu] = () clawe (J {n} x [an, b

A€u neA

It is easily checked that [a,,b,] is well-defined. Each interval is a continuum by the same
argument we used to prove I, is a continuum.

Define a relation on I, by x ~ y iff every interval containing x contains y.
Theorem 5.5. ~ is an equivalence relation.
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Proof. Clearly ~ is reflexive and transitive, so we just need to prove ~ is symmetric. Suppose
x ~ y. Then there is an interval [a,,b,] containing = but not y. There exists L € y such
that L N {J,c {1} X [an,bn] = @. For each n € w let ¢, = sup{c € LN, : ¢ < a,} and
d, =inf{d € LN, : b, < d}. Then y € [0,, c,]U[dy, 1,]. Without loss of generality, assume

y € [0y, ¢,). Since [0y, ¢,] N [ay, b,] = &, we have = ¢ [0,,¢,]. Thus y = . O

For each x € I, define L, = =/ ~, the equivalence class of x with respect to ~. The L,

are called a layers of I,,.

Theorem 5.6. Fach layer is a continuum.

Proof. Notice L, = ({[au,bu] : © € [au, b,]}. Apply Theorem [2.11] O
Theorem 5.7. L, = {xz,} for all x, € P,.

Proof. Clearly x, € L,,. Now suppose y € [, \ {z,}. There exists A € y and B € u such
that AN {(n,z,) : n € B} = @. For each n € B we may define a subinterval {n} X [an, b,]

of I, containing (n, z,,), missing A N1L,. Then x, € [a,,b,] but y ¢ [a,,b,]. Soy ¢ L,,. O

A partial ordering on the intervals in I, is given by [ay, b,] < [cy, dy] iff b, < ¢,. Define
a relation < on the set of layers of I, by L, < L, if there are intervals I; and I, with x € I,

y € I, and I < I5. For each x € I, let [0,, L) = ULﬁLI L, and [0y, L,] = [0y, L) U L.

Theorem 5.8.

(i) < linearly orders I,/ ~,

(1) the canonical epimorphism w : 1, < (L,/ ~, <) is continuous if (I,/ ~, <) has the
order topology induced by <, and

(iii) (L,/ ~, <) contains a dense copy of R¥ /u.

Proof. (i) < is irreflexive: This follows from irreflexivity of the partial ordering < of intervals.
< is a total ordering: Suppose L, # L,. By Theorem [5.5, 2 and y are contained in disjoint

intervals. One interval must be less than the other, so L, < L, or L, < L,. < is transitive:
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Suppose L, < L, and L, < L,. There exist intervals I; < I, and I3 < I such that « € I,
y € IyN I3, and z € I4. Then I, N I3 is an interval and I1 < I, N I3 < Iy, so that L, < L,. <
is antisymmetric: Suppose for a contradiction that L, < L, and L, < L,. Then there exist
I, I, € x and 3,1, € y with [} < I3 and Iy < I,. But I NIy and I3 N I, are nonempty
disjoint intervals with Iy N I, < IsN Iy and I3 N Iy < I; N I3, a contradiction.

(ii) We prove that 7 is continuous by showing [0,, L] is closed in I,. Suppose y €
I, \ [0y, L;]. Then there are intervals [a,, b,| containing x and [¢,, d,,] containing y such that
[, by] < [cu, dy]. Then B(U, e, {n} X (by, 1,]) separates y from [0, Ly].

(iii) The mapping = /u — {z,} identifies R¥ /u with a subset of I,/ ~. If a,, < b, € R¥/u
then it is an easy matter to select intervals [c,,d,| and ey, f.| such that a, € [c,,d.],
by € lew, fu], and [cy,dy] < [ew, fu). Thus < extends the ordering on R¥/u. That R¥/u is

dense in this ordering follows from Theorem [5.4] and the continuity of . O
Theorem 5.9. (I,/ ~, <) is the completion of R /u.

Proof. 1,/ ~ is compact in the order topology since 7 is continuous. Apply Theorems m
and (.8 O

We already know that there are non-R* /u points in I,. The layers of these points can

be large.

Theorem 5.10. Countable cofinality layers in I, contain copies of w*.

Proof. Let (a')ne, be any strictly increasing sequence of elements in R¥/u. Let A = {a! :
n € w}. There exists L, € I,/ ~ such that L, = sup; , A = (clg,/~A) \ A. Then
L, = n ' (cly,;~A) \ 4] D (cl, A) \ A (where 7 : I, — I,/ ~ is the decomposition map).
As A is relatively discrete in I,,, Theorem says clp, A = clgypmA ~ BA ~ Bw. We have

DO (clp,A) \ A ~ w*. O

Theorem 5.11. If u,v € w*, then a homeomorphism 1, — 1, induces an isomorphism

(L) ~, <) = (L,/ ~, <) which is either order preserving or order reversing.
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Proof. Suppose h : I, — [, is a homeomorphism. Define ¢ : (I,/ ~, <) — (I,/ ~, <) by

SO(L:C) = Lh(a?)'

L, & I

+ +
L/~ 5 L/~

Figure 5.1: Theorem [5.11

First we show ¢ is a well-defined bijection by proving A maps layers to layers.

Claim (1): If z € I, \ RY/u then h[L,] C Ly). Well, clearly h(xz) € h[Ly| N Lp).
Now suppose for a contradiction that h[L,] intersects two layers L,, < Ly in I,. Then by
connectedness of L,, continuity of h, and continuity of the canonical epimorphism from I, into
L,/ ~, (L, L,) is a nonempty open subset of h[L,]|. So L, contains a nonempty open subset
of I,, thus L, contains a point z,, € R¥ /u. But then L, = {z,}, contradicting our assumption
about z. Note (2): Arguing as above, if h(z) € I, \ R”/v then h™'[Ly)] € Lp-1h) = Lo,
S0 Ly(z) = hh™ L)) C h[L,).

We may now prove (3) h[L,] = Ly for each « € I,. This is clear if x € R*/u and
h(z) € RY/v. If x € [, \R¥/u and h(z) € R¥ /v, apply (1). If z € R¥/u and h(zx) € I,\R¥ /v,
apply (2). If z € I, \ RY/u and h(z) € I, \ R“/v, apply (1) and (2). Thus,

o(Ly) =@(Ly,) < h[Ly| =h[Ly)]| & L, =L, &z ~y.

This proves ¢ is well-defined and injective. ¢ is surjective by (3) and the fact that h
is surjective. This completes our proof that ¢ is a well-defined bijection. Since h and the
epimorphisms are continuous and closed, ¢ is a homeomorphism. By Theorem © must

be order preserving or order reversing. O]

The preceding theorem will be used to find nonhomeomorphic I, when CH fails. This
approach would fail badly under CH (see Corollary . In fact, if CH is assumed then all

I, have isomorphic closed lattice bases and are thus homeomorphic (see Theorem [3.22((ii)).
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Chapter 6

Constructing Ultrafilters

6.1 Invariant Embeddings

Suppose A, 0 > w are regular cardinals. (A, B) is a (\,0)-cut of Lif A< B, L =AUDB,
cf(A) = A, and coi(B) = #. An order preserving map ¢ : L — L' is an invariant embedding
if every (A, 0)-cut (A, B) of L maps to a cut of L, in the sense that there is no € L' with
w[A] < x < ¢[B]. The main result of this section is that every linear order of cardinality ¢
admits an invariant embedding into some ultrapower w* /u.

Suppose D is a filter over w. Let Ip = {X Cw:w\ X € D} be the corresponding dual

ideal. Then Ip contains @ but not X, and is closed under finite unions and subsets. Define

ACBmod D& A\ Belp

A= Bmod D < AAB € Ip.

Suppose G C w* is a family of surjective functions. G is independent mod D if for all

distinct g1, ..., € G and jy, ..., j; € w (not necessarily distinct), we have

{n €w:gp(n) =i for all k <1} # @ mod D.

Note that “A # @ mod D” means A is not a subset of a complement of a set in D, i.e., A
intersects every set in D.
Let

FI(G) ={h: his a function, dom(h) is a finite subset of G, ran(h) C w}
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be the set of all finite partial functions from G to w. For each h € FI(G) let

Ap={n€w:g(n)=nh(g) for all g € dom(h)},

and

FI(G) = {Ay : h € FI(G)}.

Theorem 6.1. (i) G is independent mod D iff A, # @ mod D for all h € FI(G). (ii)
If G is independent mod D, then there exists a mazximal filter D* O D modulo which G 1is

independent.

Proof of (i). (=) Let h € FI(G). Enumerate dom(h) = {g1,...,gx}. For each i < k let

A, = {new:h(g)=gin) forall i <k}

= {new:g((n) =y forali<k}+# o mod D.

(<) Let g1,...,q0 € G distinct and jy,....,5; € w. Define h € FI(G} by dom(h) =
{g1,..vqi} and h(g;) = j; for each i < [. Then {n € w : g;(n) = j; forall: < I} = A, #

@ mod D. O

Proof of (ii). Let P = {P C P(w) : Pisafilter, D C P, and G is independent mod P},
partially ordered by inclusion. Suppose (Ps)s<q is a chain of filters (P, C P, for v <7 < «)
in P. It is easily seen that (J;_, Ps € P, thus every chain in [P has an upper bound. The

existence of D* follows from Zorn’s Lemma. O
A C P(w) is a partition mod D if
(i) A# @ mod D for all A€ A

(ii) if A, A" € A with A # A’ then AN A" = @ mod D
(iii) for all B € P(w) with B # @ mod D, there exists A € As.t. ANB # @ mod D.
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Suppose A is a partition mod D and B € P(w). B is based on A mod D if for all
A € A, either AC Bmod D or AN B =@ mod D. Suppose & C P(w). B is supported by

</ mod D if it is based on some partition A C o/, mod D.

Theorem 6.2. Suppose D is a mazximal filter over w modulo which G is independent. For

every B € P(w) there exists a countable Gy C G such that B is supported by F1s(Gy) mod D.

Proof. Claim: For every X € P(w) with X # @ mod D, there exists A, € FI,(G) such
that A, € X mod D. Well, for a contradiction suppose X € P(w), X # @ mod D, and (*)
AN (w\ X) # @ mod D for all A, € FI,(G). Then w\ X # @ mod D, so w\ X (which is
not in D) intersects every set in D. The filter generated by D U {w \ X} properly extends
D, and G is independent mod (D U {w \ X}) by (*) and Theorem [6.1{i). This contradicts
the maximality of D.

Now let B € P(w). Enumerate P(w) = {X, : @ < 2¥}. Using the claim we may define
a collection {A; : 0 < 2¢} inductively so that for each § < 2¢ either

(i) As =2 if Xs N B =@ mod D or (Xs N B)N A # & mod D for some £ < 4, or

(il) As € FI(G) with A5 C (X5 N B) mod D.

Define { A5 : 6 < 2¥} similarly for w\ B. Then A = ({45 : 0 < 2*}U{A4;: 6 <2“})\{2}
is a partition on which B is based mod D. We now show A is countable. Suppose not, and
assume |A| = w;. Enumerate A = {A4;, : £ < wi}. Then {dom(he) : £ < wi} is an
uncountable collection of finite sets. By the A-system Lemma there exists an uncountable
S C w; and a finite set » C G such that dom(hs) N dom(h,) = r whenever 6 # v € S.
Enumerate r = {g1, ..., g, }. There are only countably many tuples (he(g1), ..., he(gn)), £ € S,
so there must exist 6 # v € S such that hs and h, agree on the common part of their
domains. But then A,; N A, # @ mod D, contradicting partition property (ii). So A is
countable, which implies Gy = {g € G : (3h € FI(G))(An € A and g € dom(h)} is countable.
Clearly A C FI(Gy), so B is supported by FIs(Gy) mod D. ]

33



Theorem 6.3. There is a family of ¢ surjective functions in w* which is independent modulo

the cofinite filter F'.

Proof. Consider the triples (A, (Ck : k <n), (ji : k <n)), where A is a finite subset of w,
n € w, the sets C} are distinct subsets of A, and j, € w for each k < n. The collection of all
such triples is countable. Let {(A% (Ci : k <mn;),(ji : k <mn;)) :i € w} be an enumeration.

For each B C w define a function fg: w — w by

_ Ji ifBNA, =C}
fB(Z) = .

0 otherwise

Claim {fp : B C w} is as desired. Let {By, : k < n} be a finite collection of distinct subsets
of w and {ji : kK < n} a finite set of values.

First we show there exists ¢ € w such that fg, (i) = ji for each k. For each | # m < n
let ay, € BIAB,,. Let A ={a;, : I # m < n}. Then A is a finite subset of w such that the
By, N A are distinct . Let ¢ € w such that n; =n, A; = A, and for each k, C} = B, N A; and
Ji = jg. Then fp (i) = j) for each k.

{fg:BCw} =2 If By # B, C w and j; # j» € w, then there exists i € w s.t.
fB, (i) = j1 and fp,(i) = ja, so that fp, # fp,. It is also clear that the functions fp are
surjective (i.e. for any j € w there exists i € w such that fg(i) = j).

Now we show {i € w : fp, (i) = jp foreach k < n} # @ mod F. Note that “#
@ mod F” simply means “infinite.” Suppose not. Enumerate the set {iy : n+1 < k < n+m}
and let {By : n+1 < k <n+m} be collection of distinct subsets of w, distinct from the By

(1<k<n). Foreach k € {n+1,....n+m} let ji € w with j, # fp,(ix). Then
{i ew: fp (i) = ji for each k <n+m} =2,

a contradiction. O
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Theorem 6.4. If I is a linear order with |I| = ¢, then there exists a free ultrafilter u on w

such that I admits an invariant embedding into w* /u.

Proof. Let F be the cofinite filter on w. Let G C w® be a family of ¢ surjective function such
that G is independent mod F' (Theorem . Let D D F' be a maximal filter modulo which
G is independent (Theorem [6.1] (ii)). Enumerate G = {f; : t € I'}. For each pair s <t € [

let

By ={new: fi(n) < fi(n)}.

For each pair r < s € I and each function g € w* such that ¢g='(I) is supported by FI,({f; :
te I\ |[rs]}) mod D for all [ € w, let

Cors ={n €w:g(n) < fr(n) or fu(n) < g(n)}.

CramM. The sets By, C,,s have the finite intersection property (any finite intersection

contains A, (mod D) for some h € FI(G)).

Assuming the claim holds, there is an ultrafilter u containing all of the sets B, C, , .

The map s +— fs/u is an invariant embedding from [ into w*/U:
(i) Suppose s <t € I. Then By, € u, so fs/u <fi/u.

(ii) Suppose (I1,15) is a (A, 0)-cut of I and g € w¥. For each | € w there exists a
countable G; C G such that g~1(I) is supported by FI,(G;) mod D. Then g~'(I) is supported
by e, G for all | € w. Since A, > w and ‘UZEW Ql| = w, there exist r € I; and s € I, such
that g—'(1) is supported by FI,({f; :t € I\ [r,s]}) mod D for all [ € w. Thus Cy, € u, so

either g/u < f,/u or fs/u < g/u. O

Proof of Claim. Consider a finite intersection

n b

ﬂ Bui,vi n ﬂ Cgkﬂ“k,é’k'



Re-label the indices wu;, v;, g, s from £y to t, in increasing order. For each k < blet t(k) < a
such that t,() = and 7(k) < a such that ¢4 = s;. To show ()\_; By, ., N ﬂzzl Coprrse 7

&, it suffices to show

m Btz‘vtj N ﬂ Cgkvtb(k)vtr(k) 7£ g.

i<j<a k<b
Let T ={f, :i <a}andfor k <blet Tp = {f:, : i ¢ [t(k), 7(k)]}. We define a sequence
of functions h,, € FI(G) so that
(1) hy € By
(2) dom(h,)NT =
(3)if h*: T — w and k < b, then for m sufficiently large either
(i) there exists [ € w such that Ay, p 7 C g5 (1) mod D, or
(ii) Ap,on- N g, (1) = @ mod D for all | € w.
Enumerate the countably many pairs (h*, k) where h* : T — w and k < b. Suppose m € w
and h,, 1 has been defined for (h*, _,,k,,_1) (to define hy, follow the cases below and ignore

“hpm-1"). We now define h,,, for (h%,, ky,):

Case 1: There exists | € w such that Ay, ,un: N g, (1) # 2 mod D. By assumption g; ' (1)
is supported by FI,({f, : t € I\ [t(km),7(kn)]}) mod D. So there exists h € FI({f :
t € I\ [t(km),7(kn)]}) such that A; C g () mod D and A; N Ay, _,up:, # @ mod D.
In particular, dom(k) N (7 \ 75,) = @, and we may assume hy,_; Uh%, | T, C h. Let
hw = B\ (B, | Th). Then Ay, on i = Aj € g }(1) mod D, dom(h,,) N T = @, and

hm—l g hm

Case 2: Ap,,_ oz, N g,;i(l) =@ mod D for all | € w. Let h,, = hyp—1.
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Our goal now is to find A* : T — w and M € w such that

AhMUh* g Bti,t]’ N Cgk,tL )b (k mod .D (61)
(k)str(k)

i<j<a k<b

For each infinite W C w let W(7) denote the set of all increasing functions h* : 7 — W. For

each k < b define ¢y, : w7 — {1,2,3,4} by

1 if (i) and h*(f, ) < U< 0 (firy)

2 if (i) and I < h*(fi,,.)
o) = 4 :
3 if (i) and I > h*(fi,,,)

4 if (i)

function on w with finite range. By Ramsey’s Theorem there exists an infinite W C w
such that ¢ | W(T) is constant, i.e., such that ¢, | W(T) is constant for each k < b. Let

h* € W), For any m we have
Apune © Aps C ﬂ By, ;-
i<j<a

Now fix k£ < b.

Case 1: pr(h*) = 1. This case may be ruled out by our selection of W: Supposing ¢ (h*) = 1,

7) 1. Using the fact that W is infinite, define b’ € W) so that

we have ¢, | W(

{weW W (fi,) <w<HK(fi )} =2licw: (k) <i<7(k)]. Then @x(h) = 1. Let

7(k)

li € w satisfying (i), such that 1'(f:,,,) <l < N(f; We may modify A’ on functions

i € [u(k), T(k)], to get B € W(T) so that either h”(f, >l orly < h'(fe . ). Again,
T (k) (k)

@r(h") = 1. Let ly € w satisfying (i), such that h"(f; ) <lo < h"(f:,,,). We have l; # Iy,
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Athh/ka - ggl(ll) mod D, Athh”|7—k - glgl(lg) mod D. But AthhIF'E = Athh”[’E- Con-

tradiction.

Case 2: ¢p(h*) = 2. Let | € w such that Ay, op 7. C g5 (1) mod D for m sufficiently large
and [ < h*(fy,,,). Then

Apnr € Athh*[(TkU{ftb(k)}) C{new:gin)=1< h*(fh(k)) A h*(ftb(k)) = ftb(k) (n)} mod D
(6.2)

Case 3: ¢i(h*) = 3. Similar to Case 2. For m sufficiently large,
Appon C{n € w: fi_, (n) < gr(n)} mod D. (6.3)

Case 4: ¢(h*) = 4. For m sufficiently large, Ay, on- N gy (1) = @ mod D for all | € w. As

Ip is closed under finite unions,

Ap, o+ N U 9. ' (1) = @ mod D.
1<h* (e, )

That is, almost none of the points in A, p+ map under g; to < h*(ftT(k)). Thus,

Apon C{n € w: fi_(n) = A (fi 1) AN (fr ) < gx(n)} mod D. (6.4)

Each set in (6.2)-(6.4) containing A p+ (mod D) is contained in C| For each

Kotk tr (k) *

k < b let my be sufficiently large for one of (6.2)-(6.4) to hold. Letting M = maxy<(my),

we have (6.1). O

Corollary 6.5. There exists u € w* such that w*/u has a (X, 0)-cut for each pair of un-

countable regular A\, 0 < c. 0

Corollary 6.6. If I is a linear order with |I| = ¢, then there exists a free ultrafilter u on w

such that I admits an invariant embedding into R¥ /u.
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Proof. We show the inclusion w* /u < R /u is invariant. Suppose (A, B) is a (A, #)-cut of
w/u. Let (fo/u)a<x and (gs/u)s<p be cofinal and coinitial in A and B, respectively. For a
contradiction, suppose there exists h/u € R¥/u with f,/u < h/u < gg/u for all @ < A and
B < 6. We may assume h(n) > 0 for all n € w. Let h~ € w* be defined by h~(n) = |h(n)].
It must be the case that By = {n € w: h(n) € R\ w} € u, so h~ /u < h/u. There exists
ap < Aand Ey € ust. h™(n) < fo,(n) < h(n) for all n € Ey N Ey # @. This is impossible,

as h(n) —h~(n) < 1 for all n. O

6.2 The linear orders J, (a < 2°)

Theorem 6.7. If A > w; is a reqular cardinal, then there exists a set {1, : a < 2*} of linear
orders satisfying

(i) cf(l,) = 1] = A.

(1)) If « # B and o : I, — L, pp : Ig — L' are cofinal invariant embeddings, then L

and L' have no isomorphic final segments.

Proof. There exists a partition {S; : 7 < A} of the stationary set S = {J < A : cf(d) = w;}
into A\ pairwise disjoint stationary subsets (Theorem [2.30). Fix X C A\. For each a < A,

define

. wr ifaelU,exSr
P— )

«

we otherwise

Define Ix = {(a, ) : a < X\, B < AX}. Give Ix the lexicographic ordering, with the order

reversed in the second factor.
()\é(,O]()\f,O] ............ ()\?’O] ...............

Figure 6.1: Ix

Suppose X #Y C XAand ¢x : [x — L, vy : Iy — L’ are cofinal invariant embeddings

into linear orders L, L', respectively. For a contradiction, suppose ¥ : M — M’ is an
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isomorphism between final segments M, M’ of L, L', resp. For each § < A, let

Ms={meM:m < ¢x(v,0) for some v < ¢}

Mjy={m'e M':m' < py(~,0) for some v < §}.

Let C' = {d < X\ : ¢¥[Ms] = M;}. CLAM. C is closed unbounded in A. Assuming the
claim holds, let 7 € XAY. Without loss of generality assume 7 € X \ Y. There exists
§ € CNS,. We have ¢[M;] = M} and A\ = w;. Since the stationary sets S, are pairwise
disjoint, § € Sy, and 7 € X \'Y, we have 6 ¢ S, for any p € Y. Thus A} = wy. Since ¢y
maps cofinally into L, My # @& for § sufficiently large. As C'N.S; is unbounded in A\, we may

assume ¢ was chosen so that My # @.

Figure 6.2: Theorem

Cut Iy and Iy directly below (ws,0]s and (ws, 0]s, respectively. Since cf(§) = wy, these
are (wy,w;) and (wy,ws) cuts of Ix and Iy, respectively. The assumption that px is an
invariant embedding implies M has no elements between Ms and ¢ x (w1, 0]s. Similarly, there
are no elements of M’ between M and ¢y (w2, 0]s5. So coi(M \ Ms) = wy and coi(M'\ Mj) =
wy. But ¥[Ms| = M} implies ¢[M \ Ms) = M’ \ Mj. Contradiction. O

Proof of Claim. First we show that M, = J;_, Ms (and M. = J;_, M§) when v is a limit
ordinal. We just need to show M., C |J; < Ms. To that end suppose m € M,. Then there
exists a < 7y such that m < px(«,0). Since 7 is a limit ordinal there exists a < § < . We

have m € Mj.
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Now we can show C' is unbounded in A. To that end, let p < A. Since px and ¢y are
cofinal and order preserving, we may choose a strictly increasing sequence (p;);e. of elements
in A such that p < pg and M, C ¥(M,;) € M) foralli < j <k € w. Lety = sup;c,pi
Then

vM] = JolM,] =M, = M.,

(S €W
So p < v € C, proving C is unbounded in A\. Now suppose ~ is a limit point of C' (a limit

ordinal to which elements in C' limit). Then

M) =l M) = | M= | elMs)= | Mz=M,

o<y deCny 0eCnry deCny

so v € C. This proves C' is closed. [

Theorem 6.8. If k > wy then there ezists a set {J, : a < 2"} of linear orders satisfying
(i) |Jo| = &
(i1) coi(Jy) = cf(k) + wy
(111) if o # B and w1 1o = L, @g: Ig = L' are coinitial invariant embeddings, then L

and L' have no isomorphic initial segments.

Proof. If k is regular, this follows from the previous theorem. Suppose k is singular. By
Theorem there exists a set {x; : i < cf(k)} of regular cardinals, each k; > wy, such that

SUD; _ of ()R = K and

Let 0 = cf(k) + wy. There exists a partition {S, : 7 < cf(k)} of the stationary set
S ={0<6:cf(§) =wi} into cf(k) pairwise disjoint stationary subsets. For each § € S, let
h(d) € cf(k) such that § € Sy(5), and for § € 8\ S, let h(5) = 0.

For each ¢ < cf(k) let {I;, : @ < 2"} be the set of linear orders of cardinality x; given

by Theorem . For each v € Hi<Cf(n) 2% define J, = {(o, %) : a < 0, 2 € Ip@)unr)}
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with the lexicographic order reversed in the first factor. Note: .J, needs at least one element

when o € 6\ S, to ensure its coinitiality is € instead of only cf (k).

............ (Ih(é),v(h(é))) e ([h(l),v(h(l)))([h(o),v(h(o)))

Figure 6.3: J,

Suppose u,v € [] 2% with uw # v and ¢, : J, — L, ¢, : J, — L’ are invariant

i< cf(x)

coinitial embeddings. For a contradiction suppose there is an isomorphism ¢ : M — M’

between initial segments M and M’ of L and L', respectively. For each § < 0, let

Ms = {m € M :m > p,(y,) for some v < ¢ and = € In(s)uini))}

My ={m'e M :m' > ¢,(v,z) for some v < § and x € Ij(y)v(n() }-

There exists a € S s.t. v(h(a)) # u(h(a)) (b [ S maps onto cf(k)). Choose 0 €
Shia) N {6 < 0 : p[Ms] = M5} with Ms # &. Note that h(0) = h(«). Consider the cuts in L

and L' below Ms and Mj respectively.

Figure 6.4: Theorem

Recall cf(Iy5)6) = ki) and cf(0) = w; are regular uncountable. By the invariant
property of ¢x and ¢y, M \ Ms and M’ \ Mé have [h(é),v(h((s)) and Ih(é),u(h(é)) cofinally
invariantly embedded. But ¢[Ms] = Mj, so M \ Ms ~ M’\ Mj. This contradicts a property

of the linear orders {5 : & < 2Mn®) }. O
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We conclude this section by making a slight modification to Theorems and [6.8]
Suppose L and L' are linear orders. An order preserving map L — L' is an invariant-
1 embedding if the image of each (A, #)-cut of L is filled by precisely one element of L'.
Theorems and hold if we replace “invariant” with “invariant-1.” For instance, if in
the proof of Theorem there are unique [ € L and I’ € L’ such that M; <1 < ¢x(w1,0]s
and Mj <1’ < py(we,0]s, then ¥ must map [ to I’. The contradiction follows as before. In
the next sections we will apply Theorem with this modification, when k = ¢ and CH
fails. It is consistent that ¢ is not regular, so the singular case provided by Theorem is

of use.

6.3 A Quick Proof of Theorem 1.1
Let R /u denote the completion of R /u (i.e., R¥/u =1,/ ~).

Theorem 6.9 (- CH). There exists a family {D, : o < 2°} of free ultrafilters on w and
a collection {[L},L2] : o < 2} of continua, [L},L2] C Ip, for each a < 2%, such that

(LY, L] % [Lg, L3] for any oo < B < 2°,

Proof. Let {J, : a < 2} be the family of linear orders of cardinality ¢ given by Theorem [6.8|
By Corollary [6.6] for each o < 2° there exists D, € w* such that J, + w; has an invariant
embedding ¢, into R¥/D,, (an invariant-1 embedding into R%/D,,). Let L. = infip,[Ja 4 w:]
and L? = supp,[Jo +wi]. Then [L!, L?], the union of the layers in Ip_ between L. and L2,
is a subcontinuum of Ip, ([LL, L2] = N{[ap.,bp.] : ap, < LL and L% < bp,_}).

Ll L?

Ip, 0p, ‘1p,

R“/D, “(Ja) [0, 1) -

Figure 6.5: [L}, L]
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Suppose a < # < 2° and [L}, L2] ~ [L, L3]. Arguing as in the proof of Theorem m,
there is an order preserving or order reversing isomorphism between [L;, L%] and [Lj, L3]
(their linearizations). Then (L}, L2) and (L, L3) must be isomorphic via an order preserving
map, since their coinitialities are cf(c) + wo and their cofinalities are wy. This contradicts

a property of the linear orders J, (J, and Jg are coinitially invariantly-1 embedded into

(L}, L2) and (L, L3), respectively). O

Note also that Jy+w; + J; + w1 + ...+ J. +w; may be invariantly embedded into some

R¥ /u, yielding a “chain” of ¢ pairwise nonhomeomorphic subcontinua of I,,.

6.4 The Proof of Theorem 1.3

We require one additional result from [3].
Theorem 6.10. If \ # 0, then the number of (\,0)-cuts of a linear order I is at most |I|.

Proof. Suppose I is a counterexample of minimal cardinality and let {(A;, B;) : i < |I| T} be
a set of |I| T distinct (A, 6)-cuts of I. Let k = cf(|/]). Enumerate I = {i, : a < |I|}. |I] is
the supremum of x many o, with |a,| < |I| for each v < x (Theorem [2.24)). For each v < x

let I, = {iq : @« < a,}. Then |L,| < |I|, I =U,_.I,, and I C L, for all £ <~ < k.

Y<K

Case 1: k # A, 0. Claim: For each i < |I| * there exists 7; < x such that A;NL,, is cofinal

in A;. Let ¢ < |I]T. Suppose k < A. Let (aq)a<r be cofinal in A;. Since A =J._ {a < X:

<K

aq € I,} and A\ is regular, there exists 7; < x such that [{a < X:a, € I,,}

= A (Theorem
. Then A; N I, is cofinal in A;. Suppose A < x and there no v < k such that A; NI, is
cofinal in A;. We may recursively define strictly increasing sequences (a4 )a<x and (Va)a<x
such that for each a < &, a, € A;N1,, and A;NL,, < a, for all § < a. Then (aq)a<s is cofinal
in A;, a contradiction. This completes or proof of the claim. Similarly, for each i < |I|*
there exists 7; < k such that B; N L, is cofinal in B;. Thus, for each i < |I|* there exists
7v; < K such that A; NI, is cofinal in A; and B; N 1,, is cofinal in B;. Because k < [I| T, |I|*

is regular, and |I| " =J,_.{i < |I| T : v < a}, there exists X C |I|" and v < & such that

a<k
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|X|=|I|* and »; = 7 for all i € X (Theorem[2.23). But then {(A;N1,,B;N1,):i€ X} is
a set of [I| T distinct A, 0 cuts of I, contradicting minimality of |I].

Case 2: kK = A\. Then k # 6. Arguing as in the previous case, there exists a subset
X C |I|* of cardinality |[I| ™ and v < & such that B; N I, is coinitial in B; for each ¢ € X.
We may assume there are less than |/| ¥ many ¢’s for which A; NI, is cofinal in A;, otherwise
a contradiction follows as in the previous case. Therefore we may assume for each 1 € X,
A; NI, is not cofinal in A;. Then for each ¢ € X there exists a; € A; \ I, such that
A;NI, <a; < B;. Suppose i # j € X. The cuts (4;, B;), (A;, Bj) are distinct, so one
of B; and B; must be a proper subset of the other. Assume B; C Bj, so that B, \ B; is a
nonempty subset of A;. Then there exists ¢ € (B; \ B;)N 1, C A;N1,. We have a; < ¢ < a;,
thus a; # a;j. So {a; : i € X} is a collection of |I| * distinct elements of I. The case k = 6

yields a contradiction similarly. O]

Suppose [ is a linear order, \,0 > w are regular cardinals, A, B C I and x € I. Then

(A,z,B)isa (A 1,0)-cut of I if A<z < B, =AU{z}UB, cf(A) = A, and coi(B) = 6.

Proof of Theorem 1.3. Let {J, : a < 2°} be the family of linear orders of cardinality ¢ given
by Theorem [6.8f By Corollary for each o < 2° there exists D, € w* such that wy + J,
invariantly embeds into R¥/D,, (invariantly-1 embeds into R¥/D,,).

Fix a < 2° and let

E, ={B < 2" : w; + J3 has an invariant-1 embedding into R¥/D,}.

We show |E,| < ¢. For each 8 € E, let @z : wi +.J5 — R¥/D,, be an invariant-1 embedding.
Let A = w; and 0 = cf(c) + we. For each § € E,, the image under ¢g of the cut (wq, Jp)
of wy 4 Jz produces a (A, 1,60)-cut (Ay, 24, Ba) of R®/D,. Bach (), 1,60)-cut of R®/D,
corresponds to either a (A, #)-cut or a (A, 1,60)-cut of R¥/D,, each type of which there
are only ¢ many (Theorem . So if |E,| > ¢, there exist f; # P2 € E, such that

(Aﬁlax,@uBﬁl) = (AﬁwxﬁwBﬁz)' In partiCU1ar Bﬂl = Bﬁz‘ But ¥p1 r ‘]51 and ¥B2 r Jﬁz

45



are coinitial invariant-1 embeddings of Jg, and Js, into Bg, and Bpg,, respectively. This
contradicts a property of the orders J,.
We may now recursively define X C 2%, | X| = 2%, such that w; +.J5 admits an invariant-1

embedding into R¥/Dg but not R¥/D,, for any a < § € X. Thus there is no order preserving

isomorphism between R¥/Dg and R¥/D,, for a« < f € X. For a fixed a € X, there is at
most one 5 € X such that there exists an order reversing isomorphism between R+ /D,, and

R« /Dg, so there exists S C X, |S| = 2¢, such that there is no order preserving or order

reversing isomorphism between R¥/D,, and R¥/Dg, for a < g € S. ]
By Theorem [5.11] we have the following.

Theorem 6.11 (= CH). There exists a family {D, : o < 2°} of free ultrafilters on w such

that Ip, # Ip, for any o < 3 < 2°. O

6.5 Concluding Remarks

In [10] it is shown that there are also 2° subcontinua of H* when CH holds. Combined

with Theorem 1.1, we have the following theorem of ZFC.
Theorem 6.12. There exist 2° pairwise nonhomeomorphic subcontinua of H*.

Prior to this result approximately 20 subcontinua were found in the ZFC setting, many
by M. Smith in [7]. In [7] it is also shown that the layers of I, are indecomposable continua
unlike I,,. A. Dow indicates in [10] that the following question remains open: If CH fails,
are there 2° pairwise nonhomeomorphic indecomposable subcontinua of H*? In particular, it
is not known if one can produce 2° pairwise nonhomeomorphic layers by invariantly embed-
ding different linear orders into the linearizations of I,’s (note that each (A, #)-cut of R* /u

corresponds to a layer in I,,).
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