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Abstract 

 

 

 Navigation solely by vision has been a goal in robotics for many years.  It is 

desirable for a robot to plan and navigate the same way we do naturally as humans; 

however computation speed, changing illumination, complex algorithms, and a host of 

other problems have long plagued progress. One of the most prominent issues in using 

visible light outdoors and indoors is the unpredictable and changing ambient lighting. 

Shadows can vastly affect the robot’s ability to navigate on a simple path, and often look 

like separate objects to a robot.  Features detected and described under perfect light may 

not register under dim light.  This work focuses on a method developed to address these 

issues and construct a navigable path using color information, despite ambient and direct 

lighting.  The results show a vast improvement over traditional intensity-based algorithms 

both in navigation and localization. 
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Chapter 1: Introduction 

 

 Since the dawn of automation, man has dreamed of a way to create machines 

capable of perceiving and interacting with their surroundings.  From the first creation of 

Zadoc P. Dederick’s Steam Man [1], we have been seeking new ways to make our 

creations navigate, manipulate, and understand the world we live in.   

 Since then, there have been many devices constructed for mobile robots to sense 

their environments.  Tactile sensors are used to feel surroundings by registering touch, 

force, or pressure, but must make physical contact [2].  Sonar sensors “ping” the 

environment searching for sound waves which bounce off of objects [3], but are 

inherently noisy.  Laser and lidar systems use light in a similar manner to produce point 

clouds [4], but can be very costly, with the most reliable state of the art systems costing 

thousands of dollars.  Infrared has been used in this manner as well, and also with a 

camera to view pattern distortion (such as in the Microsoft Kinect™) [5], but does not 

work well outside due to solar interference. 

 Using the visible light spectrum in the context of computer vision as a sole means 

of data acquisition for robots has been avoided for many years due to its various 

problems.  Computation speed is just starting to catch up to the increasingly complex 

algorithms required, and lighting conditions can cause conventional methods to fail.  

However, while radar, sonar, tactile and other methods of navigation and localization 

have proven useful, it is desirable for a robot to plan and navigate the same way we do 
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naturally as humans.  We have naturally built our environments to support the transfer of 

information through sight, and enabling robots to see the world as we do will simplify 

programming, human-robot interaction, and especially navigation. 

 There is also a considerable cost advantage using a simple camera over many 

costly sensors in tandem.  Most vision-based systems actually work best with relatively 

low resolution imaging, reducing complexity of algorithms and drastically reducing 

processing time.  In fact, simple inexpensive webcams have proven substantial in most 

applications.   Thus expanding vision-based technology will vastly improve accessibility 

in all levels of education as well. 

 One of the most prominent issues in using visible light as the sole means of data 

acquisition outdoors is the unpredictable and changing ambient lighting.  Shadows can 

vastly affect the robot’s ability to navigate on a simple path, much less paths with 

complex coloring and texture.  Shadowing can also present challenges indoors, as 

shadows often look like separate objects to a robot.  To confront this issue, it is necessary 

to construct a color-invariant image of the robot’s surroundings.  This simply means that 

despite changes in ambient and direct lighting, the color information should remain 

largely the same. 

 During the course of this research, a method for obtaining a color-invariant 

image was developed and tested in tandem with computer vision techniques for mobile 

robot navigation, and will be presented throughout the remainder of this thesis.  
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Chapter 2: Literature Survey 

 This chapter serves to provide essential background information regarding the 

field of robotics and computer vision.  First, a brief history of computer vision and its use 

in robotics is presented.  Second, key methods for providing and interpreting information 

for navigation and motion estimation are reviewed.  Next, the topic of color-invariance is 

explored both in history and current research, and finally, current robust methods of 

localization, pose estimation, and map building, and path planning with obstacle 

avoidance pertaining to mobile robots will be discussed. 

 

2.1 Computer Vision 

 In the most general sense, computer vision is the practice of describing the 

environment, and providing information of its properties including shape, illumination, 

objects, and colors.  Though some researchers include non-visible light (such as infrared 

or lidar) as a subset of the field of computer vision, the usage within this thesis refers 

strictly to information gathered in the visible light spectrum through means of a camera. 

 

2.1.1 A Brief History 

 Computer vision first found its mark in the 1970s, as the agenda for artificial 

intelligence was becoming more aggressive.  It was originally thought that pairing the 

visual input with “intelligent” computers and systems would be an easy step towards a 
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functioning human-like perception and decision making system.  According to Boden, a 

professor at Massachusetts Institute of Technology once asked a student to “spend the 

summer linking a camera to a computer and getting the computer to describe what it saw” 

[6].  Computer vision quickly distinguished itself from the field of image processing, as 

full scene understanding and three dimensional reconstructions were pursued. 

 By the 1980s, techniques for stereo correspondence had been established, and 

motion estimation started taking place in the form of optical flow.  Image pyramids 

(using different levels of resolution) were being used in coarse-to-fine searches and scale-

space property inspection, and many algorithms were unified using the same basic 

mathematical infrastructure [7]. 

 In the 1990s, work was devoted to topics such as structure from motion, facial 

recognition, image segmentation, and invariant descriptors.  Physics-based vision was 

born out of using color and intensity measurements along with physical models, and 

optical flow and stereo vision methods were vastly improved.  The computer animation 

business boomed, while animators could reconstruct models from images [7]. 

 Computer vision is becoming increasingly prevalent in today’s society.  Character 

recognition is used to read postal codes and license plates [8], industrial parts are quickly 

assessed for quality control, object recognition is used in self-checkout lines [9], and 

three dimensional models are created from a sequence of images.  Computer vision has 

also found its way into the automotive world, detecting objects and obstacles, and 

researchers have even built self-driving cars [10].  It is also used for surveillance in 

diverse applications such as building security, traffic analysis, and locating drowning 
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victims in pools.  The most recent research comes from feature-based object recognition 

and navigation partnered with machine learning and Bayesian techniques [7]. 

 

2.1.2 Feature Detection and Tracking 

  

 Methods of feature detection and tracking throughout this thesis have been 

restricted to the Scale Invariant Feature Transform (SIFT) algorithm.  SIFT was first 

proposed by Lowe in [11], and has become a staple in the computer vision community 

and a baseline to measure new keypoint detectors and descriptors.   

 There have been many spin-offs of the SIFT algorithm, such as Principle 

Component Analysis (PCA)-SIFT [12], Gradient Location-Orientation Histogram 

(GLOH) [13], and Speeded Up Robust Features (SURF) [14], all of which improve upon 

computation and work marginally better.  

 More recent methods such as BRISK [15] involve different sampling methods for 

the descriptors and sub-pixel level accuracy, accomplished by quickly searching at lower 

resolutions and interpolating for fast sampling and feature recognition.  

 For ease of use and prototyping reasons, all feature detection and tracking in this 

thesis is performed using a SIFT type algorithm, as its speed and robustness are more 

than adequate for the purpose of this research. 

 

2.1.3 Optical Flow 

 Optical (or optic) flow is a method of motion estimation by calculating the motion 

of color or intensity differences on each pixel of an image, first appearing in the 1970s 

[16].  The most common, and general way of doing this is by minimizing the sum of 
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squared differences (SSD) between two subsequent images.  This is routinely done by 

summing over the overlapping regions of the image and looking for minima, or by using 

Markov random fields and looking for a global minimum. 

 Both methods can be refined in incremental steps to achieve sub-pixel estimation, 

and both methods have even been used together in instances when the type of motion is 

known [17].  For example, if a robot is navigating using a camera, the assumption can be 

made that most motion is from the movement of the robot within a static scene.  Local 

optical flow calculations can be made, and the entire scene can be parameterized to form 

a global estimation of motion to update the robot’s position. 

 Computationally, performing per-pixel search over an entire possible 

displacement is a slow process, and more efficient means of estimation have been 

developed more recently.  These newer methods also utilize gradient descent and coarse-

to-fine searches along with the classical optical flow techniques to attain motion 

estimation [17]. 

 

2.2 Color Invariance 

 

 Shadows can vastly affect the robot’s ability to navigate on a simple path, even 

more so on paths with complex coloring and texture.  Shadowing can also present 

challenges indoors as well as outdoors, as shadows often look like separate objects to a 

robot.  To confront this issue, it is necessary to construct a color invariant image of the 

robot’s surroundings. This simply means that despite changes in ambient and direct 

lighting, the color information remains largely the same.  Xu et al. propose a method to 

remove shadows from an image using the L-2 normalization of the RGB color values 
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[18].  Another method, based on log-chromaticity space projection, is presented by 

Finlayson et al. [19].  This approach uses log-domain characteristics to create a color 

invariant image, projected into intensity values. Finlayson made the observation that 

similar colors in an image are projected onto lines having similar slopes in log-

chromaticity space despite ambient and direct lighting.  When projected in the direction 

orthogonal to the lighting, a color invariant image is obtained.  

 

2.3 SLAM 

 Simultaneous Localization and Mapping (SLAM) has long been described as a 

“chicken and egg” problem.  For a robot to accurately localize itself, it must have an 

unbiased map representation.  However, to build an unbiased map, a robot must have an 

accurate pose estimate, accomplished by successfully localizing itself. 

 SLAM has the goal as described by Siegwart et al. of “starting from an arbitrary 

initial point, a mobile robot should be able to explore autonomously the environment with 

its on-board sensors, gain knowledge about it, interpret the scene, build an appropriate 

map, and localize itself relative to this map” [20].   

 There has been much research done to try to resolve the technical obscurities of 

the SLAM problem.  It is understood that being able to successfully and completely 

answer the characteristic questions “what does the world look like?” and “where am I in 

the world?” will give a robot full and true autonomy.  

 Though there are many methods utilizing SLAM, there are three main algorithms 

which are integrated into nearly all of them, including numerous publications: Extended 

Kalman Filter (EKF) SLAM [21], Graph-SLAM [22], and particle-filter SLAM [23].  
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EKF SLAM is known as a more traditional approach, and was the first proposed method 

for obtaining useable results.   

 EKF SLAM uses an extended state vector with the robot’s pose and feature 

locations in the map.  As the robot moves, measurements are recorded, and the state 

vector is updated using an extended Kalman filter.  As new features are discovered and 

described, the state vector grows, along with the noise covariance matrix, making EKF 

SLAM computationally inefficient. 

 Graph-Based SLAM, initially proposed in [22], uses the notion that the SLAM 

problem can be viewed as a set of robot locations and features, with constraints of 

relative position between them.  Error propagation can be corrected by allowing these 

constraints to “flex” or adjust to updated locations.  Therefore, finding the state of 

minimal energy is the solution to the SLAM problem. 

 Finally, particle filter SLAM works by randomly sampling the position error 

distribution [23].  Each particle has a corresponding estimate of the robot’s path as well 

as locations of every feature in the map.  With every measurement update an “importance 

factor” is assigned based on the probability of observing that measurement.  According to 

this importance factor, the distribution is resampled with the same amount of particles, 

and feature locations are updated. 

 

2.4 Path Planning and Obstacle Avoidance 

 

 The concept of path planning and avoiding obstacles has been around since 

autonomous robots first appeared, even before they were mobile [20].  Industrial robots 

had to be able to accurately plan their routes and avoid collision with walls, objects, and 
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other robots.  While some roboticists may think of path planning as a solved problem, it 

actually has transitioned into an optimization problem. 

 Graph-search based methods such as A* [24], D* [25], Voronoi diagrams [26], 

cell decomposition, breadth- or depth-first, Dijkstra’s algorithm[27], and all of their 

variants have long seen use in nearly every robotic platform imagined.  These algorithms 

often work in free space using connectivity graphs, and are all appropriate for static (and 

sometimes slowly changing dynamic) environments. 

 Artificial potential field (APF) path planning has also proven useful in 

many robotic systems [26], and also simplifies calculations in most cases, as the path 

simply follows gradient descent methods.  Of course, potential fields always run the 

possibility of running into local minima, for which there are several proven solutions [28, 

29, 30]. 
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Chapter 3: Hardware 

3.1 Camera 

 Images were acquired using two cameras throughout this project.  The first is an 

8-megapixel Motorola Droid X2 phone camera, and the other is a Nikon Coolpix 

AW100.  Both feature automatic brightness and contrast adjustment, as is industry 

standard [31]. 

 It is important to note that the camera selection is irrelevant, as the process 

developed and tested is designed to work with any type of color capable camera with 

resolution of at least 240x320, as all images are sampled at this resolution. 

 

3.2 Computer 

 All computing was done on a desktop machine equipped with a 3.6 GHz i7 

processor.  While the developed techniques have only been tested via post-processing, 

combining the image processing techniques with the latest and fastest iterations of feature 

detectors and descriptors and matching algorithms should be somewhat trivial to obtain 

real time performance. 

 It is also important to note that nearly all code was written in MATLAB, a 

notoriously slow programming language.  MATLAB was chosen for its invaluable 

selection of built in functions for prototyping purposes.   
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 At a resolution of 240x320, one frame is processed for color-invariance in .0156 

seconds on average. This is fast enough to produce over sixty frames per second, fast 

enough for additional implementations of SIFT (or other feature detection and description 

algorithms), particle filter software, and nearly any path planning and obstacle avoidance 

method desired. 
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Chapter 4: Algorithms 

4.1 Color Invariance 

 Two models were developed to work concurrently to produce the best results in 

changing lighting conditions: L-2 normalization and log-chromaticity space projection. It 

is important to note that any method should ideally work in a real-time vision system. 

Therefore, many different image processing techniques were explored and tested, but 

point-wise operations were given heavy favor due to easy and fast matrix manipulation. 

 

4.1.1 L-2 Normalization 

 

 The first model, derived from a method proposed by Xu et al. [18] to remove 

shadows from single images, involves computing the L-2 norm using the standard red-

green-blue (RGB) values for each frame as inputs. Normalizing each pixel value gives 

the effect of setting all pixels to the same “intensity”. It is important to note that this is 

not the same intensity value given in an indexed or grayscale image, but rather 

standardization of RGB values for each pixel in the image. This was accomplished using 

the standard L-2 norm formula: 
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√          
 

    
 

√          
 

(1) 

 

Where r, g, and b are the red, green, and blue input values, respectively, and r’, g’, and b’ 

are the normalized red, green, and blue outputs, respectively. Figure 1 shows the result of 

this operation.  

 

  

4.1.2 Log-Chromaticity Projection 

 

 The second model is based on log-chromaticity space projection presented by 

G.D. Finlayson et al. [19]. Chromaticity is defined as a description of color “quality” 

regardless of luminance.  Chromaticity has two independent components: hue and 

colorfulness (or saturation).   

Figure 1, L-2 norm image comparison.  Original image (left) compared to L-2 color normalized image 

(right). 
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 This approach uses log-domain characteristics to create a color invariant image, 

projected into intensity values. Finlayson made the observation that similar colors in an 

image are projected onto lines having similar slopes in log-chromaticity space despite 

ambient and direct lighting (and subsequently, the property of luminance). When 

projected in the direction orthogonal to the lighting, a color-invariant image is obtained: 

 
            (

 

 
)         (

 

 
) (2) 

 In this equation, r, g, and b are the red, green, and blue input values, respectively, 

Ө is the projecting direction, and inv is the color-invariant image product. The value of Ө 

was chosen to be 43.58°, shown experimentally by Li et al. to be an acceptable 

approximation. To finish out the model, an exponential operation is applied to the color-

invariant image and histogram equalization is performed to make the matrix easier to 

view and also work with. The result is shown in Figure 2. 
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4.1.3 Combining Models for Path Classification 

  

 Deciding what is and is not a path can be accomplished a number of different 

ways.  Using only color information, region properties can be parameterized, and the 

algorithm can be trained on specific surfaces, vanishing points can be determined, or 

texture analysis can be done.   

 The proposed method assumes that the robot is initialized on a traversable path, or 

region.  The image known to be path is then sampled and analyzed, and all regions within 

the frame having similar properties of normalized color and chromaticity are considered 

to be traversable terrain. 

 This is accomplished by first creating two binary images from the two models 

presented using thresholding, and applying the AND operator to combine them.  Since 

both models are susceptible to different types of error, the AND operator significantly 

reduces the amount of noise in the image.  Next, the largest blob is found and kept, while 

the rest of the blobs are discarded.  The result is a binary image, where the terrain is 

classified as traversable or not on a per pixel basis.  This step is illustrated in Figure 3. 

Figure 2, Comparison of original image (left) with log-chromaticity projected image (right).  Note that 

shadowing in the path is nearly invisible, while color differences (such as in the bottom right of the image) 

are preserved. 
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 Because there could potentially be obstacles or other important occlusions in the 

frame, the binary path is not simply flood filled to close gaps.  Rather, a cost map can be 

created based on pixel density to quantify how safe a region is to travel.  The downside to 

this is that even large obstacles in the background may not register until the robot gets 

closer, and a continuing and diminishing path in the distance will be down-weighted by 

the surrounding non-traversable pixels in the image.  An example of such a cost map is 

shown in Figure 4.  

Figure3, Color invariant path detection.  Binary mask overlaid on original image: Blue tinted regions represent 

detected path, and red tinted regions represent non-path. 
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Figure 4, Cost map computed by pixel density.  Blue levels represent low cost, versus red indicating high cost. 

 

4.2 SIFT 

 Traditionally, feature matching algorithms are computed on entire image frames 

to extract as many usable features as possible.  Due to spatial ambiguities, keypoints 

found in close two dimensional Euclidean distance may actually be infinitely separated in 

the third dimension.  To overcome these ambiguities, many SLAM algorithms rely on 

camera calibration to estimate the distance a keypoint lies from the camera.  Calculating 

locations of keypoints in three dimensions requires complex and computationally 

inefficient affine transform solutions.   

50 100 150 200 250 300
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 To avoid making these calculations, the SIFT keypoint detection and descriptors 

are only computed on the binary classified output from the method of path identification 

in 4.1.  This effectively restricts all keypoints to two dimensional space, i.e. those strictly 

lying on the ground plane within the detected path (see Figure 5).  The important 

assumption is made that the ground is relatively flat, meaning that rapid changes in 

incline or altitude are not made.  This allows a single projective spatial transformation 

(discussed in 4.5) to estimate the global two dimensional coordinates of each keypoint.   

 

 

 The SIFT algorithm first detects keypoints using a Noble’s harmonic mean 

keypoint detector [36], defined as: 

 
    

   (  )

     (  )
 (3) 

 

Where Hr is the classic Harris corner detector [32], defined as: 

 

Figure 5, Comparison of full frame feature detection, and the proposed ground plane restrictions. 
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 (4) 

 

 Noble’s harmonic mean detector was chosen to simplify use by eliminating the 

need for tuning the Harris detector. 

 Once keypoints are located, a Normalized Laplace operator is used to find the 

characteristic scale for each corresponding keypoint.  Local maxima are found and a 

threshold is used to determine if that keypoint is a “corner.”  This allows the keypoint 

descriptor to be invariant to scale. 

 After the characteristic scales are computed, a Gaussian blur function is applied to 

each local area around keypoints, each according to its scale.  Next, the gradient is 

calculated at each keypoint, and a weighted histogram is computed to find the keypoint’s 

main orientation.  Main orientation is the rotation describing the keypoint, and falls into 

one of eight bins for searching.  In the case where a keypoint does not have a main 

orientation (i.e., the histogram is flat), the keypoint is rejected. 

 A SIFT keypoint descriptor, similar to Lowe’s method [11] is then applied by 

sampling the local image of each keypoint according to its characteristic scale and main 

orientation.  The result is a 128 value vector describing a keypoint.  These vectors are 

unique to each keypoint, and are compared in subsequent images to find matches. 

 Keypoints are tracked by searching for similar descriptors in an expected location 

window.  That is, when a robot is moving, keypoints are expected to move only a small 

amount, thus only a small region around the initial detected keypoint is searched for the 
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corresponding match in the next image.  This helps speed up computation time when 

matching features. 

 

4.3 Optical Flow 

 Optical flow was implemented using Roborealm computer vision software.  

Roborealm’s optical flow module uses a block matching strategy similar to the method 

presented in [35].  Since only the global motion is of interest, global horizontal and 

vertical vectors can be saved to file for post processing, or serially transmitted to any 

other software. 

 

4.4 Particle Filter 

 A particle filter was used to filter the results from the SIFT algorithm outputs.  

Particle filters are based on Monte Carlo methods [33] of randomly sampling the robot’s 

two dimensional belief distribution.  This method allows the system to model any 

distribution or non-linear relationship, a powerful tool when tackling the SLAM problem. 

 At each time step (or image frame), K particles contain estimates of the robot’s 

past and present poses Xt
[k]

 and global feature positions having mean μt,i
[k]

 and covariance 

matrices ∑t,i
[k]

.  Each particle is then defined as: 

 Particle[k] = Xt
[k]

; (μt,0
[k]

, ∑t,0
[k]

); (μt,1
[k]

, ∑t,1
[k]

); … ; (μt,n-1
[k]

, ∑t,n-1
[k]

); (5) 

Where k is the particle index, t is the time step, and n is the total number of features in the 

map. 

 Because keypoint locations are restricted to the ground plane, global locations of 

keypoints are estimated based on a linearized relationship between the robot’s pose when 
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viewing the keypoint and the keypoint’s location in the image frame.  Furthermore, the 

assumption is made that the robot’s pose within the image is exactly at the bottom center 

of the frame. 

 Each keypoint’s location is then linearized by finding the polar coordinates of the 

keypoints from the origin, taken at the robot’s pose.  Each feature, then, has a perceived 

global location of: 

 xi  = Xt(x,y) + rt 
6/5

[ sinӨt,  cosӨt] (6) 

Where  xi is the location of the i
th 

feature, Xt is the pose of the robot at time step t, rt is the 

radial distance of the feature in the image frame at timestep t, and Өt is the angle between 

the keypoint and image centerline.  The exponent 6/5 on r is the relationship between 

radial distances of pixels versus actual units in the global scene, and was chosen 

experimentally. 

 At each time step, keypoint mean locations and covariance matrices are updated 

for each particle using the Kalman filter update rule.   

 With each movement ut each particle updates its robot pose estimation, and makes 

another observation zt.  Next, each particle’s importance factor wt
[k]

 is computed as the 

probability of zt given the particles previous states and observations: 

 wt
[k]

 = p(Particle[k]| zt , ut,nt )/ p(Particle[k]| zt-1 , ut ,nt-1) (7) 

 Montemerlo et al. shows in [23] that this representation can be mathematically 

approximated with the integral:  

 wt
[k]

 ≈ ∫p(zt|Xt , Particle[k]t , nt ) p(Xt)dXt (8) 

This calculation comes with the common assumption of a uniform particle distribution. 
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 Based on this importance factor, particles are then resampled to replace those with 

low importance factors with those with higher ones, and means and covariance matrices 

are updated.  Resampling the particles each time with updated importance factors on a 

per particle basis allows the algorithm to assess different observation data association 

concurrently. This makes the particle filter SLAM solution more robust than traditional 

EKF methods, as particles with erroneous estimates will lie further from the center of the 

belief distribution, and thus less likely to be chosen when resampling. 

 

4.5 SLAM 

4.5.1 Localization 

 

 As mentioned in section 4.2, the SLAM problem is greatly simplified by 

restricting keypoints to the ground plane and within the perceived path.  Each feature 

found is stored in a state vector containing a given identification number, descriptor info, 

and global x and y coordinates.   

 Given the location estimations of the SIFT descriptors from the particle filter 

output a pose estimate can be generated.  

 

4.5.2 Map Building 

 

 For new maps (meaning the robot has never seen or navigated in this area before), 

the map is first initialized, and the starting pose of the robot is always [0 0 0] (x,y,theta).  

Using filtered motion estimation information from the output of the optical flow/SIFT 

motion estimators, the robot’s pose change is updated for every movement. 
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 Using pose information, a projective spatial transformation is applied to the 

binary output of traversable terrain to correct for perspective: 

 [       ]  [       ]    (9) 

 

 

Where T has the form: 

 

[

           

           

       
] 

 

and h00, h01, … , h21 = p are parameters of the transformation to be solved.  This can be 

done by iteratively solving for parameters p through minimizing the non-linear least 

squares problem, using robust least-squares, or RANSAC [34] (or its variants).  A 

comparison of the binary image before and after this transformation is shown in Figure 6.  

Figure 6, Comparison of binary image before (left) and after (right) perspective correction spatial 

transformation. 
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 The resulting transformed image is then zero padded to create a “chunk.”  The 

chunk is then rotated and shifted to match the robot’s pose estimation, and the chunk is 

ORed with the global map.  The result is a binary map with real—not approximated—

edges of the perceived path.  Also, because of the OR operation applied, permanent 

obstacles are preserved while moving obstacles become filled.  An example of this 

operation is shown in Figure 7. 

 

 

Figure 7, Illustration of binary map building. 

  

 If instead a cost map is desired, the same process can be applied to the cost map 

information generated using the pixel density function output.  The results can then be 

added and normalized to obtain a global cost map.  This map will have the same features 

from the binary map, including real edges and obstacle preservation (see section 4.1.3). 

 

4.6 Path Planning and Obstacle Avoidance 

 One long standing sensor problem in the area of robotics is the ability not just to 

plan an appropriate path, but where in the world the path is allowed to lie.  Certainly 

other sensor systems have advantages over computer vision techniques when it comes to 
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identifying large obstacles such as rocks or trees, but they most definitely fall short to 

accurately paint the whole scene. 

 Consider a robot navigating in an urban environment: range-finding sensors will 

certainly do a good job locating people, poles and cars, but may not notice any difference 

between roads, medians, and sidewalks.  Similarly, in rural areas, there may be no 

perceivable difference in a point cloud between the road or path and the surrounding 

field.  If a robot using only range-finding sensors ventured into a mud pit, it would surely 

never recover. 

 Some systems supplement range-finders with computer vision, such as the famous 

robot Stanley that won the DARPA Grand Challenge in 2005.  Stanley used an array of 

five laser sensors to scan the surrounding terrain to determine where the vehicle could 

navigate.  Because of the limited range of the sensors (about 22 meters), the vehicle was 

limited to a speed of 25 mph.  The Stanford team supplemented the laser data by 

analyzing the color of the path deemed navigable by the laser data, and searched a video 

feed for areas with similar color characteristics [10].  Due to the video’s much farther 

field of view, the vehicle was able to path plan while traveling up to 35 mph, going on to 

be the first robot to ever complete the challenge. 

 Following this notion, similar techniques using only color information (discussed 

in 4.1) are applied to obtain a per-pixel binary image of perceived traversable areas.  As 

previously discussed, there are many different ways to interpret the binary information to 

use in path planning.   

 Perhaps the most simple and straightforward way to use the binary image is to 

consider the “traversable” pixels the workspace, where any point is safe to travel.  This 
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allows any path planning algorithm such as A* or D* (and their variants) to be directly 

applied.  Note that this can be computed on a local or global scale.  Applying the 

algorithm frame by frame, making the assumption that the robot’s pose is located at the 

bottom center of the frame allows the robot to navigate dynamic and permanent 

obstacles.  Applying the same spatial transformation that is applied to feature and view 

mapping using the robot’s priors can give a transformation to and from the global 

workspace.  This allows a path to be computed in the global workspace, and transformed 

to the local workspace for finer control and obstacle avoidance. 

 Of course, the downside to using a strict binary local workspace is the influence 

of noise.  Without any further processing or decision making, a single pixel declared not 

traversable can hinder the robot’s efficiency in traveling, and perhaps even impede it 

completely.   

 To avoid this, the binary image may be quickly and efficiently converted to a cost 

map or potential field map by applying a Gaussian blur function to the entire image.  

Inverting the result effectively computes the pixel density which is proportional (given 

gains and other parameters) to the desired cost or potential field map. 

 Cost maps have the advantage of smoothing out rigid motions and hindrances of a 

binary workspace while maintaining arithmetic calculations when applying the same path 

planning algorithms.  A* and D* can just as simply be computed on pixels containing a 

value between zero and one versus strictly zero or one. 

 Potential field path planning has also proven useful in many robotic systems, and 

also simplifies calculations in most cases, as the path simply follows gradient descent 

methods.  This map can be calculated by extending the cost map by one step: “tilting” the 
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map by either raising the bottom or lowering the top values (and all values in between 

according to a linear function), or tilting towards the target location.   

 Of course, potential fields always run the possibility of running into local minima, 

and for the sake of demonstration, the proposed solution will be to always have the target 

location at a global minimum, and minimizing the cost function of travelling to that 

value. 
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Chapter 5: Experiments and Results 

 As the title of this thesis suggests, the methods proposed are designed to enhance 

the current methods of visual navigation—not replace them.  To this end, a series of tests 

were designed and comparisons will be drawn. 

 

5.1 Color Invariance and Path Classification 

 

 To evaluate the method for path classification, a series of images will be 

compared to the tried-and-true image segmentation method of k-means clustering.  It 

should be noted that the k-means clustering is hand-tuned for each picture to ensure that 

the most accurate account of the true path is given and compared to the color-invariant 

method proposed.  Because both images being compared are binary, the simplest method 

of sum of absolute differences (SAD) was used, in the form: 

 
      ∑‖                   ‖

 

 (8) 

Where Xk-means is the k-means binary image and Xcompared is the path extracted image using 

the methods of color invariance path classification, and path classification without color 

invariance, respectively. Table 1 shows these results, along with Figure 8, which shows 

the comparison of classifications.  Note that in one instance the proposed color invariant 

path classification actually outperforms k-means clustering. 
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Image 

ESAD with Color 

Invariant path 

detection 

ESAD without Color 

Invariant path 

detection 

1 1764 19341 

2 6716 15637 

3 8775 19218 

4 415 8129 

5 5403 10165 

6 1208 11746 

7 4518 18027 

8 4925 17318 

9 11775 24049 

10 
Outperformed  

k-means 
-- 

 

Table 1, Sum of absolute differences between k-means image segmentation, color invariant path detection, and 

color based path detection. 

  

 Along with comparative accuracy in determining where the path lies, color 

invariant path detection also performs much faster than k-means clustering, as discussed 

in section 3.2. 
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1) 

2) 

3) 

4) 

5) 

6) 



31 

 

7) 

8) 

9) 

10) 

Figure 8, Path detection method comparison.  Methods compared using hand-tuned k-

means clustering (column 1), color invariance as proposed in this thesis (column 2), and 

color classification (column 3) on multiple surface types. Rows 1 through 10 correspond 

with SAD data in table 1.  Note that color invariance outperforms color classification and 

is comparable to k-means clustering, even outperforming it in some instances, such as 10. 
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5.2 Color Invariance with SIFT 

 

 Although SIFT feature descriptors already have some color invariance properties, 

even more color invariance can be achieved by performing SIFT on the log-chromaticity 

projection, as the values in the chromaticity space are mapped to intensity values.  Figure 

9 shows a comparison of a Harris corner detector (red asterisk) and Shi and Tomasi’s 

minimum eigenvalue corner detector (blue asterisk) applied in the tradition grayscale 

intensity image compared to the log-chromaticity projected intensity image.  

 

 

Figure 9, Comparison of keypoint detectors on traditional grayscale (left) vs. log-chromaticity projection (right). 

  

 It is easy to see that there are many more keypoints detected in the grayscale (left) 

image which fall directly onto shadow edges and features.  It is precisely these types of 

keypoints a robot wants to avoid when building a map, as they directly rely upon the 

luminance, weather, and even wind direction and speed; all of which are time variant.  

 Another measure of performance critical to localization derived from SIFT is the 

number of keypoints that are matched between images.  Ideally, it is preferred to have a 

relatively small number of very strong keypoints that can be uniquely identified across 

multiple frames.  Figures 10 and 11 show two sets of images captured at different times 
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of day, with different lighting conditions.  Comparing the grayscale SIFT feature 

matching with the log-chromaticity projection SIFT feature matching shows that in many 

cases log-chromaticity meets or exceeds the number of matches as traditional grayscale 

techniques.  Table 2 shows a comparison of the number of feature matches between 

grayscale and log-chromaticity projection images among seven different data sets (the 

first two rows correspond to Figures 10 and 11, respectively). 

 

 

Figure 10, Comparison of SIFT feature matching (1).  Original image (top), grayscale image (middle), and log-

chromaticity projected image (bottom). 

Corresponding FP between image1 and image2

Corresponding FP between image1 and image2
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Figure 11, comparison of SIFT feature matching (2).  Original image (top), grayscale image (middle), and log-

chromaticity projected image (bottom).  Note the incorrect matches from the grayscale images due to 

shadowing. 

  

Corresponding FP between image1 and image2

Corresponding FP between image1 and image2
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Number of grayscale matches Number of log-chromaticity matches 

10 25 

4 4 

25 22 

125 103 

34 18 

1 1 

3 4 

 

Table 2, Comparison of the number of feature matches between grayscale and log-chromaticity projection 

images 

 

5.3 Color Invariance with Optical Flow  

 

 Perhaps one of the most significant contributions the path detection alone could 

make is the ability to build a map with optical flow.  As discussed in section 2.1.3 and 

4.3, optical flow motion estimation is accomplished by measuring changes in pixel 

values, so there is not much thought given to ambient conditions.  A robust optical flow 

algorithm will give the same results despite hard or soft shadowing, or type of 

environment.   

 For motion estimation on a mobile robot, the assumption is usually made that the 

scene the robot is in is mostly stationary; that is, most objects or obstacles are static.  

Extending this concept, this also means that most of the motions attributing to optical 

flow measurements are from the robot itself moving through the scene.  For a robot, the 

sensing is analogous to humans feeling acceleration.  Imagine closing your eyes while 
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riding in a car—you know when you move, and even which way you move, but you have 

no idea what objects you are moving in reference to.  

 Unless the surface being traveled on is homogenous (which is atypical for outdoor 

environments), it is very difficult to model the traversable areas using optical flow.  

However, when combined with the color invariant path recognition presented in this 

thesis, it is easy to create view and cost maps for initial mapping purposes (it should be 

noted that without proper filters and estimators error propagation will show large drifts 

from the true traveled path, as with any motion estimation). 

 The map building procedure described in 4.5.2 is applied along with global 

motion estimates from the optical flow algorithm to produce the results shown in Figure 

12, and the view map in Figure 13.  These results can be compared to the actual path as 

shown by Google Earth in Figure 14. 
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Figure 32, Path estimation from optical flow global motion measurements. 

 

Figure 43, View map built from optical flow motion estimation and color invariance path detection.  The green 

dot represents the starting point and the red dot represents the end point. 

 

Figure 54, Google Earth image of path traversed in Figures 12, 13, 15, and 16. The green dot represents the 

starting point and the red dot represents the end point (used with permission under Google Earth policies). 
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5.4 Color Invariance with SLAM 

 

 Once keypoints have been detected, described, and matched, the SLAM problem 

remains the same.  Using the path detection along with SLAM offers the advantage of 

being able to build not just a feature map and the path traveled, but a view map as 

produced in section 5.3. An example of this is shown in Figure 15, where the same path 

in Figure 12 is built instead using SIFT feature detection with the SLAM algorithm 

discussed in 4.5. 

 

Figure 6, Path estimation from SIFT global motion measurements. 

 

 

Figure 7, View map built from SIFT motion estimation and color invariance path detection.  The green dot 

represents the starting point and the red dot represents the end point. 
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 While using a particle filter in theory is a simple concept, the logistics of keeping 

track of thousands of features is non-trivial.  Global feature locations should be updated 

upon every instance of detection, however features are not necessarily in subsequent 

frames.  Thus, time constraints prevented the use of actual global feature locations.  

Instead, visual odometry data was taken to be the “actual” path and global feature 

locations were simulated using an arbitrary number of features.  Gaussian observation 

noise was added to simulate actual measurements in x and y directions.  The motion 

(visual odometry) parameter was taken to be the measured movement of matched 

keypoints, and the observation parameter was taken to be position using multilateration 

from observed keypoints. 

 Figures 17 through 19 show the true path via Google Maps, the visual odometry 

path (taken as actual path for simulation purposes) with simulated feature locations and 

pose estimations after filtering with the described particle filter, and the standard 

deviations of the particle filter clouds in two directions.  The results are shown for 

multiple paths. 
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Figure 87, Particle filter demonstration using color invariant features (1).  a) True traversed path (Google 

Earth), b) visual odometry path (blue) overlaid with particle filter estimated path (red), and c) standard 

deviations of particle filter cloud. 

 

a) 

b) 

c) 
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Figure 9, Particle filter demonstration using color invariant features (2).  a) True traversed path (Google Earth), 

b) visual odometry path (blue) overlaid with particle filter estimated path (red), and c) standard deviations of 

particle filter cloud. 

a) 

b) 

c) 
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Figure 10, Particle filter demonstration using color invariant features (3).  a) True traversed path (Google 

Earth), b) visual odometry path (blue) overlaid with particle filter estimated path (red), and c) standard 

deviations of particle filter cloud. 

 

a) 

b) 

c) 
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5.5 Color Invariance with Path planning 

 

 Given the binary output from color invariance path detection, practically any 

navigation algorithm may be run.  Taking the bottom center of the image to be the robot’s 

location (and thus start point), a path was formed to a hand selected goal (for 

demonstration purposes) using different algorithms as shown in Figure 20. 

 

 

 
 

Figure 20, Path planning demonstration with color invariance.  Original image (top) compared to binary 

(middle) and pixel density (bottom) applications of the D* algorithm. 
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Chapter 6: Summary and Future Work 

 This chapter serves to summarize the work presented in this thesis, and suggest 

future work for continuing the presented topic of study. 

 

6.1 Summary 

 This thesis has shown that using color invariant properties of scene images can 

significantly reduce perception errors from traditional computer vision techniques.  The 

fast computation of log-chromaticity projection and L-2 normalization serves to 

specifically improve upon visual navigation techniques for mobile robots operating 

outdoors. 

 The results also show that using computer vision as a sole means of data 

acquisition is not only feasible, but offers advantages such as path recognition and color 

information over other sensory methods. 

 

6.2 Future Work 

 As this work was devoted to prototyping a new method, little effort was given to 

the computation speed of the particular algorithms used.  Other research has shown very 

efficient and fast algorithms that perform all the necessary steps to obtain the results 

achieved from the prototype methods, and could be implemented for real-time use. 
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 As mentioned in section 5.4, considerable effort needs to be given toward a robust 

global feature tracking algorithm.  There is not only a complex geometric relationship 

between feature locations in a video frame and their respective global coordinates, but 

correctly updating observed locations for use in a particle filter is a difficult task.  

 There have also been considerable accomplishments in the research of color-

specific descriptors, and comparisons should be drawn between the methods presented in 

this thesis and current state of the art color descriptors. 
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