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Abstract

As the need for high efficiency in power supplies increases, so does the need to test and

verify the designs of the supplies. To test the design, efficiency, and reliability of a low-

voltage, high-current power supply, an accurate and stable electronic load is needed. The

suitable electronic load needs to be able to sink a large amount of current at a low voltage,

have a selectable resistance, and be reliable over a wide temperature range. The load board

also needs to interface with a computer for automated testing to help remove the human

element from the experiment to provide consistent results. Many times, especially for a high

current sinking load board, the electronic load is expensive. Thus the need to create an

electronic load board that meets all of the requirements while being less expensive than a

commercial load.

This thesis presents the process of designing, building, and testing an electronic load

board for testing low-voltage, high-current power supplies. There are four designs and re-

visions covered and the differences between them. While the first revision merely added a

control board to the first design, revision two was a completely stand-alone device which has

undergone extensive testing and calibration to ensure the board’s accuracy.
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Chapter 1

A Background in Load Boards

Load simulations have been needed since the advent of technology whether it be for

simulating a mechanical, thermal, or electronic load. A very basic load is one that is manually

controlled and can be set before the power source is turned on to see if the calculated output

is achieved, or to calibrate the power source from the controlled load. A good example of

this manual load is a large resistor bank with manual switches such as a dummy load for

an alternative energy system as seen in Figure 1.1. The resistors are loaded in a rack and

according to the amount and how the resistors are hooked up, the researcher can provide

a very precise resistance to test with. While the manual load does a good job at holding

a specific point for a long time, it is not very good at dynamic changes since it can only

change as fast at the operator can move. This causes a large problem when trying to test

the transient response of a power source because the time it takes for the source to change

may be too fast for the operator to respond to.

Figure 1.1: A 1260 W resistor load [1]
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The other category of load is the dynamic load. The dynamic load is built so the load

can be programmed to a set profile or programmed to react to the power input. This allows

for a complete simulation of the desired load the power supply will be hooked to. When

the entire load can be simulated, the research can save both time and money by being able

to simulate a real life event without having to buy all the expensive equipment that will

be used on the final product and have to use the time to hook up multiple end-units if the

final product will have different options for the power supply load. One early example of a

dynamic load is one that tests a electro-hydraulic system as described by E. H. Gamble and

B. W. Hatten in 1951 [2]. In their system, as seen in Figure 1.2 the item to be tested is

connected to the shaft of a hydraulic motor controlled by a computer. The computer reads

the angle of the shaft and uses a computer to compute the current torque, velocity, and

acceleration values. These are compared to the desired values and fed to a servo controller

which limits the amount of oil flowing through the hydraulic motor attached to the end of

the test shaft. This allows the operator to control the properties of the test and ensure the

test is accurate and can be used to qualify a test item for ratings and production. In this

basic form, the hydraulic motor is acting as the mechanical load for the mechanical system

as a transistor or resistor act as the electrical load for an electrical system.

Many of the early loads for simulating a load on a electronic power system were devel-

oped with the power grid in mind. In the Corless and Aldred simulator, they use an analog

computer to allow for analog voltage regulators, testing of prime-mover characteristics, and

magnetic circuit saturation[6]. Their load simulator can simulate both a steady-state load

and a dynamic load on a power grid such as a faulty power transmission line which opens and

closes the circuit to the grid. Like the previous load simulator, a shaft is used to connect the

power source (a generator) to the load. Unlike the previous simulator, Corless and Aldred

use electrical impedance to control the torque on the shaft and simulate the load. Their

dynamic testing was able to reproduce an open in the transmission line, and a subsequent

closure of the transmission line circuit.

2



Figure 1.2: Hydraulic control load Simulator [2]

While the use of dynamic test loads for design validation and verification may have

started by using them for testing mechanical or grid power, the test load commonly used in

modern testing is used for testing power supplies and the power output of various circuits.

These electronic loads come in AC and DC versions each with different abilities. Unfortu-

nately, many of the electronic loads sold for testing and research are expensive. The cheapest

offering from BK Precision is the 8540 DC Electronic Load which cost $525.00 and is only

able to sink a maximum of 30 A at 5 V for a total of 150 W [3]. The cheapest offering

from Agilent Technologies, the N3302A 150 Watt Electronic Load Module has a base price

of $1,833.00 and also has a maximum power rating of 150 W [4]. While these models are

good at what they do, they are expensive and in the case of the Agilent N3302, they need

to be used in a large, external, housing.
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Figure 1.3: BK 8540 DC Load [3]

Figure 1.4: Agilent N3302A DC Load [4]

4



1.1 AC Loads

There are two different types of electronic loads, an AC load and a DC load. AC

electronic loads are used to emulate both time-varying and invariant loads for AC sources

such as inverters, AC sources, and uninterruptable power supplies. AC loads can also be

used for testing energy sources such as solar arrays, wind turbines, fuel cells, and batteries

[7]. In his research, M. Kazerani found that like DC electronic loads, commercially available

AC loads are expensive and limited in their use. Kazerani proposes a controllable AC

load designed to simulate constant-current, constant-resistance, constant-power, or nonlinear

loads with variable power/crest factors. His proposed design uses two consecutive stages for

emulating a load. The first stage converts the AC input to a DC source and serves as a way

to control the phase shift of the voltage source as well as a way to realize the power factor

or reactive power transfer between the power source and the load. The second stage uses a

buck converter to emulate a variable resistor and control the real power consumed by the

electronic load. Because Kazerani chose an A/D to buck topology for his AC load, he can

bypass the analog to digital converter and connect a DC source directly to the terminals of

the buck converter, with the addition of a low-pass filter to protect the source against high

current ripples, to create a DC load capable of being controlled as a constant-current, power,

or resistance DC load.

While the main use of AC electronic loads is to bench test power supplies for accuracy,

speed, and longevity, a new use has sprung up for them: on-site calibration of energy meters

[8]. Due to upcoming EU regulations, measuring instruments that affect the daily life of

citizens are subject to ”legal metrological controls” to verify their calibration and accuracy

in common operating conditions. The test is similar to the tests used for petroleum pumps,

and store scales to ensure they are accurately providing data to both the store employee, and

the owner. Without the proper calibration and accuracy, the customers could be overcharged

for the electricity provided to them by the power company. Although most meters come

calibrated from the factory, they are calibrated in respect towards their future use. For
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example, an industrial meter may be better calibrated to handle imaginary power in the

system, while a residential meter might be calibrated to be more accurate in sensing real

power used. To solve the calibration and accuracy issue, a load had to be developed to

handle the power meter in real world conditions at the facility of use. To do this, Aurilio

proposes an AC electronic load using a hysteresis current control scheme. The power meter

being measured is hooked to the AC load, and the load is then connected to a DC power

supply as seen in Figure 1.5. After simulation of the AC load, it was found that the proposed

design would be acceptable for the on-site calibration of any energy meter. While this design

requires a simple, and robust design, it looses the power input power to heat, making it an

inefficient system.

Figure 1.5: AC calibration load set up

The alternative to the common AC electronic load is a regenerative AC electronic load

which sends the energy absorbed by the load back to the grid. This approach minimizes

the heat produced by the load because the energy does not hit a dead end with a bank

full of resistors, capacitors, and inductors and instead goes back to the power grid. This

configuration also allows for a real impedance load to be emulated without losses, and without

a large bank of parts [9]. An H-bridge design allows for the input rectifier to emulate

the specified load and the output inverter to feed the absorbed energy back into the grid.

Through the combination of the two H-bridges, a resistive, inductive, capacitive, active and

reactive power, and nonlinear loads can be emulated. Their design is controlled by a field
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programmable analog array one-cycle controller. In conjunction with a microcontroller and

a screen, the device can emulate any impedance load as a stand alone system. A program

was also written to calculate the different inputs so the user can properly set the system.

The final system was able to successfully emulate the power load and push the normally

dissipated energy back to the grid. A side effect of the back to back configurations is the

electronic load could be used as a variable AC or DC power source which many electronic

loads cannot do.

1.2 DC Loads

Like Jeong’s regenerative AC electronic load, it is possible to build a DC electronic

load which, instead of dissipating the energy into a bank of resistors, stores the energy into

a rechargeable battery system [10]. Like AC loads, DC loads are used to test both the

dynamic characteristics of power supplies and to provide a base for long term testing. In

order to recover the energy normally lost in a resistive bank, Tsang uses a DC load based on

a single ended primary inductor converter (SEPIC). The back end of the converter is then

connected to a rechargeable battery instead of a resistive load. Unfortunately, the control for

the SEPIC converter involves a fourth order controller with high precision. To overcome this,

the controller is divided into four single order proportional plus integral converters. Tsang

found that the load was able to correctly preform in both constant current and constant

voltage applications. While recharging a battery with the energy flowing through the load

may not be practical for laboratory applications, or continuous long term testing due to

the finite storage available in a battery, and the lifespan of a battery, this technology can

be applied for use in hybrid or fully electric systems to regenerate some of the electricity

normally lost when converting a DC motor from a power load to a power source when

breaking in a car.

While Tsang’s DC electronic load is a novel approach to the use of electronic loads,

most DC electronic loads use a bank of resistors connected to the power source through
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an electronic switch. This is the method followed and a board was developed for testing

the output of high-power, low-voltage power supplies. It was not only used to both test

the transient response of the power sources, but also to test the longevity of such devices by

providing an uninterrupted load for long periods of time. A high-performance DC load needs

to be able to have a high accuracy, fast response to a control signal, high power density, and

low cost [11].

While the AC electronic loads are used to mainly test power grid and other one to three

phase power sources, DC electronic loads can be used to test sources such as photovoltaic

panels and fuel cells to ensure they can react to the loads needed and the available storage

in the case the full output of a photovoltaic system cannot be utilized immediately [12][13].

They can also be used to test batteries to verify their capacities and output characteristics

[14][15]. Most of the time, the I-V characteristic curves of the DC supplies are being tested.

These curves can be used to determine the basic characteristics and parameters of the power

supply. While it would be nice to have one set of curves that can determine all of the

parameters of the power supply, there are an infinite number of curve combinations. The

ones that will be focused on are a constant resistance curve, constant current curve, constant

voltage curve, and constant power curve. By testing each of these curves, the full parameters

of a DC power supply can be determined [16]. Each of the graphs seen in the following

sections can be calculated by using Ohm’s Law (1.1) and Joule’s Law (1.2).

V = I ·R (1.1)

P = I · V (1.2)

1.2.1 Constant Resistance

A constant resistance load is the easiest load to build. This type of load doesn’t have

to involve any active components, just resistors hooked to the output of the power supply.
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A constant resistive load is good for testing the longevity of power supplies as everything

should stay constant, and if the voltage output of the power supply increases or decreases,

the opposite effect would be had on the current output, and vise versa if the current was to

change. If they do change over time with a truly constant resistance load, then the voltage or

current would only change if parts within the power supply were failing or breaking down. A

graph of the I-V curve can be seen in Figure 1.6. Note that as the supplied voltage increases,

so does the current.

Figure 1.6: Constant resistance load graph

1.2.2 Constant Current

A constant current load is a load that changes its resistance according to the voltage

input so the power supply outputs a constant current. An example of a power supply that

would need to output a constant current is an LED driver [17]. If the current through an

9



LED passes its absolute maximum current rating, the LED will begin to break down. The

luminous intensity and chromaticity of an LED is also best controlled when driving it with a

constant current. A graph of an I-V curve with a constant current can be seen in Figure 1.7.

Notice how no matter what the voltage is, the current stays the same, creating a perfectly

vertical line. This means as the voltage increases, so does the resistance in the load.

Figure 1.7: Constant current load graph

10



1.2.3 Constant Voltage

A constant voltage load is a load that ensures a constant voltage is delivered no matter

what the resistance or current is output to the load. One example of the use of a constant

voltage load is to emulate a battery charger. In the second step of a normal battery charger,

the voltage is held the same, and the current is decreased from the maximum allowed to

very little as the battery charges [18]. If the maximum voltage is exceeded during this step,

there is a chance the battery could explode, which is why the power supply would need to be

tested to be able to stay stable for the length of the charging time before a battery is fully

charged. A graph of an I-V curve with a constant current can be seen in Figure 1.8. Notice

how the current increases and decreases as the voltage stays the same, forming a horizontal

line. As the current increases, the resistance on the load needs to decrease to compensate

and keep a constant voltage.

1.2.4 Constant Power

A constant power load is a load which increases or decreases resistance while a variable

voltage is applied to increase and decrease the input current to keep the same power in as

before the change. An example of the need for a constant power load is to test a supply to a

LCD monitor. As the monitor heats up, the internal resistance increases which complicates

the delivery of a constant power level [19]. A graph of an I-V curve showing a constant power

can be seen in Figure 1.9. Notice that as the voltage falls, the current increases keeping the

power constant.
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Figure 1.8: Constant voltage load graph
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Figure 1.9: Constant power load graph
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1.3 Heat Dissipation

Heat is the bane of precision electronics, especially high power precision electronics. As

the heat rises in a circuit, the internal resistance increases. This is a problem for a resistive

load board because as the board heats up, the extra internal resistance will have to be

accounted for to make sure the load is staying within its defined boundaries. To help combat

the heat problem, traces have to be wide and thick enough to handle the current flowing

through them, there have to be enough vias to exchange the current from one side of the

board to the other efficiently so they are not under stress and heat up, and the parts have

to be chosen carefully with their heat dissipation characteristics in mind [20]. Different part

packages will have different heat characteristics. Some parts are made to dissipate very little

power, such as a small surface mount resistor, while other parts are made with high power

applications in mind, such as resistors made to be attached to a heat sink [21]. Another

problem with part packages and heat is if the parts are too close together, and not able to

properly dissipate heat, then the board will experience thermal runaway where the parts

heat each other up to the point of failure [20].

Besides the heat being able to damage the components themselves, there is also the

possibility that over time large fluctuations in heat can damage the printed circuit board the

parts are mounted on. As the board heats and cools, the properties of the board change. The

layers of the board can delaminate themselves, destroying vias and other electrical features

because of air gaps or thicker dielectric boundaries between copper layers. Heat can also

cause the circuit board to warp. This can put extra stress on the solder joints causing

them to crack or shift from the intended pad due to their coefficient of thermal expansion

mismatch.

While any thermal fluctuation is bad for solder joints and will cause them to wear out

due to their expansion and contraction causing cracks and eventual breaks over time, large

thermal fluctuation will exaggerate the effect causing the solder joints to fail quicker [5] as

seen with the solder crack in Figure 1.10. Unlike thicker layers, scorch marks, or other signs
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of high heat on boards, the cracking of solder normally can’t be seen with the naked eye and

would only be detectable under a microscope. A failed solder joint would ruin the board and

make is become unusable after a long period of time. You wouldn’t want your load board to

fail before the power supply you were stress testing.

Figure 1.10: Solder joint crack [5]
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Chapter 2

Load Board Version 1

The first version of the electronic load developed was co-developed with Stephan Hen-

ning. This very basic board was only capable of producing a constant resistance load.

2.1 Specifications

For the first design, the board only had a couple of specifications:

• Had to be able to sink up to 150 A at 1 V

• Had to be adjustable so different currents could be tested at 1 V

• Had to be a small size to easily integrate into the testing setup

• Had to be low cost

• Had to use resistors to produce the load needed

• Had to be a simple circuit so it could be quickly diagnosed if a problem arose

2.2 Design

The populated design of this board can be seen in Figure 2.1 and the CAD drawings

can be seen in Figures 2.2, 2.3, and 2.4. Surface mount resistors with the values of 1 Ω,

0.5 Ω, 0.2 Ω, and 0.1 Ω in D-PAK packages were used because of their small footprint

and high power characteristics. The resistors are turned on using a International Rectifier

IRF6201 HEXFET R© Power MOSFET turned on by jumping the gate pin between +5 V and

ground. The International Rectifier FET was chosen both because of its low on resistance
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of RDSOn = 2.45 mΩ and its high continuous drain current of ID = 27 A. Anderson Power

Pole connectors are used for the +5 V power inputs so it can be easily disconnected, and

through hole terminals are used to connect the output of the power supply to the input

of the load. The resistors are laid out symmetrically on the left and right sides with the

largest resistance, 1 Ω, on the outside, and the smallest resistance, 0.01 Ω on the inside. This

allowed for the resistors flowing the largest amount of current to be as close to the input as

possible so the resistance of the copper traces was not a large factor when calculating the

resistances needed to obtain each current rating. At a 1 V input, the 1 Ω resistor would be

flowing 1 A, and the 0.1 Ω resistor would be flowing 10 A of current.

Figure 2.1: Version 1 populated board

Figure 2.2: Version 1 CAD with all layers
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Figure 2.3: Version 1 CAD top copper layer

Figure 2.4: Version 1 CAD bottom copper layer

2.3 Results

While the board worked as designed, it had its drawbacks. Even though the resistance

could be changed, it had to be changed by hand with the power supply for the load board

turned off as well as the power supply being tested. This meant that the board would have

to be updated to implement it into an automated testing system. The resistor-FET setup

worked well and is implemented in the further revisions.
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Chapter 3

Revision One (Daughter Board)

With the first version of the electronic load board working, the automated control needed

to be worked on. This new board would not be a completely new revision of the load board,

but an add on to the top of the version 1 board.

3.1 Why add the Control Board?

The control board was needed for several reasons. One is that it allows for the almost

instantaneous turn on and turn off of all of the resistors. This is good because the load

and power supplies can be left on when selecting the new resistances needed and allows for

the transient response of the input power supply to be measured. Another reason a control

board is needed is to have a load profile the board can cycle through to simulate the different

power needs of a system with respect to time. A third reason to implement a load board

is to provide an interface with a computer. This interface allows the electronic load to be

incorporated into an automated testing system. The automated testing allows the human

error in the testing to be decreased as much as possible so consistent data can be taken

through the span of testing. The computer integration also allows for the remote changing

of the load. This is essential for testing the power supplies in a safe and enclosed environment

so there is less risk to the test operator in case something goes wrong.

3.2 Specifications

The control board needed to have some specific specifications:

• An interface with the current V1 load board
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• Manual controls to set the load in case a computer was not available for testing

• An on board display to show the expected current flowing through the load board

• Connection to the computer through an FTDI cable and communicate effectively with

the testing software used.

• A built in system to test if the connections were working properly.

3.3 Design

The control board was designed as a symmetrical system of two boards on either side

of the load board. Both of the boards contained a Microchip Technology PIC16F887 micro-

controller to handle the processing, eight FAN3227 gate drivers to turn on and off the FETs

on the load board, headers to interface with the load board, three push button switches for

selecting modes and other manual interface options, a potentiometer to manually set the re-

sistance if needed, two 7-segment displays and their control circuitry to show the current set

to flow on each side of the board, SPI communication to allow for communication between

the two sides, and a UART to allow for the communication to the computer through the

FTDI cable. The bill of materials can be found in appendix A.

The original run of the control boards did not contain any push button switches and

had the wrong pinout for the PIC microcontroller and did not function properly. A revised

design containing the push buttons and an improved microcontroller pinout was immediately

procured for and populated. The populated board can be seen in Figure 3.1, and the cad

drawings can be seen in Figures 3.2, 3.3, and 3.4. The original Microchip PIC16F724 was

unable to run even though the pinout on the control board was correct. The PIC16F724 was

mounted to an evaluation board and still did not respond to programming. The PIC16F887

was purchased to replace the PIC16F724 and worked in both the control board and evaluation

board.
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Figure 3.1: A populated control board

Figure 3.2: Control board CAD design
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Figure 3.3: Control board CAD top layer

Figure 3.4: Control board CAD bottom layer
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3.4 Coding

Besides the board design, another important aspect of the control board was the embed-

ded programming of the Microchip PIC microcontrollers. They were programmed using the

MPLABX environment using the C programming language. The code for the control board

can be seen in appendix D. The embedded code has to handle everything from turning the

resistors on and off, sending the signals to display the current, to communicating between

the boards and the computer.

Because of the heat generated on the load board during testing, the heat needed to be

spread out as much as possible. To do this the MATLAB script in appendix B was written

to calculate the most efficient way of using each resistor. The theory behind the calculations

is say for 10 A, one could just use the 0.1 Ω resistor, but that would push all of the current

through one small section of the board. Instead, if eight 1 Ω resistors and one 0.5 Ω resistor

is used, the current would be able to spread out across the board both reducing the heat

building up in the copper connections, and the heat being built up by the resistors. The

output from the MATLAB script can be seen in appendix C. Once the resistors required

were calculated, they were coded into the main program. The original code used a switch

statement to pull the needed resistor values for currents up to 72 A. This allowed each side

to only be in control of the resistors covered by the board without having to worry if the

microcontroller was trying to turn on more resistors than were available. The limit of the

current to 72 A on each side also reduced the number of lines required to operate the output

in half. Even though it is not an optimized way of calculating the output, it was quick and

made it easily adjustable if a resistor value was found to be off from the specifications.

The second action the embedded code had to handle was the communication between

the two PICs. The communication was obtained using the Serial Peripheral Interface bus

(SPI) as it only needs three wires and is relatively fast for internal communications between

embedded devices [22]. In order to use the SPI interface, each PIC had to be selected as

the master, and the other had to be selected as a slave. To set which configuration the
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PIC had when each was started up, it would look to see if there was a state already saved

in the Electrically Erasable Programmable Read Only Memory (EEPROM). If there was

not a state already saved, a ten second period was started where the displays would flash.

If the middle push button was pressed during this time, the PIC would store the master

state in the EEPROM, and if either of the outer two buttons were pressed, the slave state

would be stored. The storage in the EEPROM guaranteed that even if the power was lost

to the load boards, the state would be saved so the load could be started back without

human intervention. In the SPI protocol, the master PIC controls the clock and initiates the

communication between the two. This allows the master to control most of the functions

of the load board, and leave the slave to only control the resistors on its side of the load

board. The master first looked to see if the desired current was an even or odd number. If

it was even, it would divide the current by two and send half of it to the slave board. If the

desired current was odd, it would subtract one from the total and send half of what was left

to the slave. The master would then add the one back to its half of the desired current so

the correct overall current could be reached.

The third action the embedded code had to handle was interfacing with a computer.

The communication between the computer and the master control board was achieved by

using the Universal Synchronous Asynchronous Receiver Transmitter (USART) [23]. The

key to achieving proper communication using the USART protocol is making sure the baud

rate is the same on both ends. On the computer side, it is easy to set up as it is specified

when setting up the Communications port. On the PIC side a special formula had to be

used to calculate the values for the Serial Port Baud Rate Generator (SPBRG) register as

seen in (3.1) where the FOSC is the oscillator frequency of the microcontroller (4 MHz was

used) and the Baud rate is the desired rate for communications (9600 was used).

SPBRG =
FOSC

16×Baudrate
− 1 (3.1)
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Once the baud rate was correct, the other parameters of the communication had to be

set. For the control board, the communications were set to 8-bit with a stop bit and no

parity. When set on the computer, the communication packet is 8 bits long and ends with a

high ninth bit. The computer was programmed to send the data in the American Standard

Code for Information Interchange (ASCII) format. Once it got to the PIC, it was decoded.

If the sent packet was not a ”g” for go or an ”x” for stop, there is a problem, the code looked

for a newline packet or a number. The code was set up so that each place in the desired

output could be received one at a time. The place was set to zero at the start of the program

and would increase as numbers were received. The first number received represented the

hundreds place, the place counter would increment, and the second number received would

represent the tens place. The counter would increment again and the third number received

would represent the ones place. This number scheme could go on indefinitely, but only the

first three numbers received would be saved. An example of sending a number to the board

would be sending 124 if the desired output was 124 A. For a desired output of 3 A, the

sequence 003 would have to be sent. If the new line command was received, it would add up

the hundreds, tens, and ones place holders to provide the total desired output. At this time,

the place counter would reset so the next three numbers could be sent if needed. The total

output would then be sent back to the computer to make sure the numbers sent and the

numbers stored were the same. The process of entering and storing the total output could

be looped infinitely. If the letter ”g” was received, the last desired total output saved would

be called, divided, output through SPI, and the resistors would be activated. If at any point

in the process the letter ”x” was received by the PIC, all resistors would be turned off except

a 1 Ω resistor to keep a steady current in case of a fault in one of the systems. Whenever

the total output was activated, the PIC also sent the hex values over eight pins to control

the 7-segment displays to show the operator the current desired current flow.

25



3.5 Results

While this iteration of the control board worked most of the time, it still had problems.

One was the boards had a hard time communicating with one another. The slave board

needed to have an older version of the code to run while the master needed to have the newest

version to properly communicate with the computer. The PICs were also very susceptible to

Electrostatic Discharge (ESD) and failed several times due to the damaged it caused. While

the communication between the PICs did not work as expected, the communication between

the computer and master controller worked flawlessly once the computer software was set

up. The use of only one side of the modified code was very useful as only a small amount

of current was being pushed through the load board at this time in the testing process. The

interface with the automated test set up allowed tests which took hours to be brought down

to thirty minutes or less because the load could be changed quickly and without interruption.

3.6 Design Problems

While the basic design was good, several problems were encountered during implemen-

tation. Since the controller board was a stand alone board and was not included in the

original load board, the proper fitting on the control board on the load board was difficult.

If any of the male headers on the load board warped or were placed crooked during the

assembly, they had to be bent by hand until they would fit into the female headers on the

control board. The division of the two control boards also caused a problem. One problem

was that because the SPI header was not keyed, it was easy to reverse the leads from the

desired orientation. The display was also hard to read in this application. One board had the

numbers right-side-up, and the other board showed the numbers upside-down. This made

it difficult to try and add them together to calculate the total current. The control boards

sitting on top of the load board also obstructed air flow to the resistors preventing the heat

from properly dissipating.

26



Chapter 4

Load Board Revision Two (The Combined Board)

The main goal of the third revision was to integrate the controller board into the load

board to form one coherent board. Besides reducing the number of boards that needed to be

produced, the part count was also reduced because the extra switches and displays became

redundant. Combining the boards also allows for only one PIC microcontroller to be used,

cutting out the need for SPI communication between devices.

4.1 specifications

There are several specifications that needed to be met in the second revision of the load

board:

• Load and controller boards combined

• Fully alphanumeric display

• Current and voltage sensing

• Handle up to 300 A at 1 V

• Use mostly the same parts from previous load board

4.2 Design

The design of the second revision of the load board can be seen in populated in Figure

4.1, and the CAD layout can be seen in Figure 4.2. The board begins with the same basic

layout of the original load board with the resistors on the outside of the board. The board

incorporated eight 0.05 Ω resistors and four 2 Ω resistors on top of the previous 32. The
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small 0.02 Ω resistors allowed for an increase of current sinking capability by 160 A. The 2

Ω resistors allowed a fine tuning of the circuit during calibration since they only flow 0.5 A

at 1 V. This configuration allows for the easiest routing of control and power lines to the

gate drivers and FETs; a schematic of a quarter of the board can be seen in Figure 4.3,

and the whole board schematic and PCB layout can be seen in appendix F. The screen on

the left side of the board is a back lit Newhaven NHDC0220BIZ−FS(RGB)−FBW−3VM

Liquid Crystal Display (LCD), which is able to show two lines with twenty characters each.

The display allows both the desired current and actual current to be displayed as well as the

voltage running through the board and the resistance turned on. To power the 3 V display,

a 3 V voltage regulator was used to shift the 5 V from the board to the proper voltage.

To the left side of the board is a set of four push buttons to allow the user to manually

select options or resistances. In the middle of the board is a PIC18F87K22 to handle all of

the controls and communications. The PIC communicates with the computer through the

USART connection with the same 9600 baud rate as before, and to the Newhaven display

through an Inter-Integrated Circuit (I2C) interface. This allows all of the information needed

to run the display to be fed over three lines instead of eight.

On either side of the PIC microcontroller is an Allegro ACS758XCB Hall Effect-based

current sensor. These sensors are able to sense -150 to 150 A with a maximum of 1% error.

These sensors eliminate the need for an inline current sensor or current sense resistor between

the input power supply and the load board. They send the current data to the PIC through

the PIC’s analog inputs. A voltage of +5 V means there is 150 A flowing though the sensor,

and a voltage of 0 V means there is -150 A flowing. A voltage reading of 2.5 V means there

is no current flow. The PIC also uses an external, high resistance, voltage divider on another

analog input port to sense the input voltage of the load board. These allow both for an

automated control stream, and a source of feedback for the computer.

The printed circuit board is six layers thick. This allows for the four inner layers to be

solid copper pours while leaving the top and bottom layers to carry the traces for device
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power and control. The layers can be seen in appendix F The inner two layers carry the

input from the power supply and the next two layers carry the ground plane. The position

of the ground planes help block any interference from reaching the signal wires on the top

and bottom planes.

4.2.1 Current Distribution

One of the biggest problems in a board that can sink 300 W of power at full capacity is

the distribution of the current throughout the board. Like the first load board, the resistors

carrying the least amount of current are placed the farthest away from the power supply

input, and the resistors carrying the largest amount of current are placed the closest to the

input. As before, this allows the least amount of copper traces and planes the current has

to travel through before reaching back to the ground of the input.

The other factor besides the traces that needed to be addressed is the use of vias. Like

traces, vias can only carry a maximum amount of current before they heat up and increase

resistance [24]. Using the PCB Calculator Toolkit from Saturn PCB Design Incorporated

[25] as seen in Figure 4.4 it was calculated that a 25 mil diameter via with a pad diameter

of 35 mil with a 1 mil plating through the 62 mil thick board is able to carry up to 3.7822 A

while keeping the temperature rise in the via at or below 25 ◦C. While a resistance of 0.57

mΩ may seem high, when the via is paralleled with several other vias, the overall resistance

is greatly reduced and the total current carrying capacity is increased. The choice to use 16

vias was made because at the highest concentration of current, the vias would be flowing a

total of 20 A. The 16 vias allows for a maximum of 60 A to flow before their temperature

reaches the 25 ◦C above ambient temperature. In the original design, the current sensors had

plated slots for the legs. Unfortunately, the company manufacturing the boards, Advance

Circuits, could not plate a hole in the PCB that was not a perfect circle, so large planes

of vias were placed on either side of the legs to carry the current to and from the top and

bottom layers of the board that were coated for soldering.

29



Figure 4.1: Fully populated revision 2 load baord

30



Figure 4.2: CAD drawing of version 2 load board
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Figure 4.3: A quarter of the resistor load layout
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Figure 4.4: PCB design toolkit calculations
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4.3 Coding

For the code of the version two of the load board, many of the same approaches were used

as in the first control board. The full code can be seen in appendix G. The PIC communicates

with the computer using the USART port and an FTDI cable. Since the board is not divided

into two different PICs, the only communication protocol needed between components on

the board is the I2C used by the LCD screen. While the I2C bus uses the same pins as the

SPI previously used, the implementation is easier as the LCD is defined as the slave, and has

a specific address for the PIC to send signals to. To turn the LCD screen on, and start the

communication process, the commands and delays found in the data sheet [26] were used.

At first, the display would not turn on, but after troubleshooting the problem was found

to be the transmit and receive lines had been switched when making the PCB. Once the

problem was fixed, the display worked as it should. To send any text to the LCD, the screen

clear command was sent, and then the text was sent with a new line command to push text

to the second row when needed.

While the commands through the USART bus were not changed, and extra command

was added. In the start up routine for the computer program, the program polled all of the

communication ports of the computer sending the ASCII character ”?”. If the load board

received the question mark, it would reply back ”LBC” to indicate that the load control

board was on the specific com port. This made it easy for the test program to be moved to

different computers because the COM port for each device did not have to be known or hard

programmed in before hand. The command for what the load board did when the character

”x” was received was also changed to completely turn off the resistors so no current would

flow in case of an emergency.

To try and improve the efficiency of the output routine on the control board, the old

switch statement controlled output was replaced with a modular approach. The desired

current was broken into different sections for each resistor value. The resistors were turned

on if the desired resistance was within or outside of certain values in a combination of if
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and else if statements. While the code for this takes up as much space as the original

switch statements, it can be expanded to encompass greater current outputs without much

additional code. This was later changed back to an extended version of the switch statements

because of issues while calibrating the board.

4.4 Calibration

While the design and embedded programming of the load board are important, it cannot

be used as a design validation and verification device if it is not properly calibrated. As

mentioned earlier, this is the reason the output sequence had to be reverted to the old style.

In an ideal design with no losses, with a 1 V input, the current flowing through the board

would be the inverse of the resistance selected. Unfortunately on the load board, this was not

the case. While this inconsistency may have been because of the tolerances in the resistors,

resistance in the vias, traces, and RDSON of the FETs, it had to be calibrated out.

To start the calibration process, the power supply inputs of the board were hooked to

a Keithley multimeter. Using a four-wire setup, the total resistance was measured between

the terminals. This total resistance seen by the multimeter was what controlled the current

output of the power supply. Because a very small amount of current was flowing through

the board during this test, resistance due to heat in the parts and traces on the board was

negligible. After the first run through of the resistances with the Keithley, the data was

recorded and can be seen in Figure 4.5. While the lowest and highest expected resistances

are within 1 Ω of each other, the resistances throughout the range were off by an average

of 4.6%. The difference between the desired resistance and measured resistance peaked

around a resistance of 200 Ω. It would make sense that as the resistance increased, so would

the difference in the measured values because any small series resistance through lines and

connectors would be increased because of the small total resistance of all of the resistors in

parallel, but this is not the case. After the initial test, the resistors were remapped for each

desired current based on the measured resistance by the Keithley. While this got closer to
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the desired output, there was still a difference in the desired and measured currents as seen

in Figure 4.6.

Figure 4.5: Current difference

After the board was tested on the Keithley, it was apparent the board needed to be

calibrated. To do this, the load board was hooked to the output of an Agilent N5761A

power supply rated for 0-6 V 180 A. The board was first put through its paces and tested

to a theoretical 180 A. Instead of reaching the expected 180 A, the board only reached 62.1

A when 140 A was the desired output as seen in Figure 4.7. This is due to many factors.

One of the largest is fluctuation in the resistance of the resistors combined with the internal

resistance of connectors, traces, and parts. The inconsistencies in the resistances between

resistors of the same values accounts for the fluctuation of the desired current when different

resistors of the same value are used instead of the original resistors. The second issue is
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Figure 4.6: Calibration with Keithley multimeter

the heat being dissipated by the board while at the higher currents. While each via can

transfer 3.78 A, the input of the load board only contained 36 vias meaning the input can

only handle 136 A before becoming saturated and heating up, causing even more losses. This

can especially be seen in the higher currents without any air circulation cooling the board

off because the current can be seen decreasing from the power supply as the resistance of the

board was increasing because of heat. If a fan was used, the board did not gain resistance

as quickly. The Agilent power supply was then used to calibrate the board for currents up

to 62 A. The board was not calibrated to the maximum current due to board constraints,

time constraints for the rest of the project, and the need was not great to be able to handle

more than 62 A during that phase of power supply testing.
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Figure 4.7: Initial current difference
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Chapter 5

Power Supply Test Integration

After the electronic load board was tested and calibrated, it was used to test the validity

and efficiency of buck converters. The buck boards were placed in their own carrier board so

they could be swapped throughout testing. A current sense resistor was then placed between

the buck carrier board and the load board. This helped get accurate current readings from

the load board. The load board was then placed under a high flow fan to help cool the

resistors and traces while the tests were running. This helped keep the resistances and

current flow stable throughout the buck board testing process to ensure the same data was

being gathered for each buck board. The test setup can be seen in Figure 5.1. In the figure,

the load board is at the top right. To the left is a high flow fan ensuring the board stays

cool. Directly below the load board is the current sense resistor and a current probe. The

dual current sense setup made sure the correct data was being collected and allowed a way

to fix any discrepancies. At the very bottom of the figure is the power supply being tested.

Only one of the five possible buck phases was being tested at the time the picture was taken.
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Figure 5.1: Complete test setup with working load board

Along with the hardware integration with the power supply test setup, the load board

was integrated into the software testing environment. The software used to communicate

with the load board was developed by Dr. Christopher Wilson and controlled the load

board, power supplies, and took the data from the testing. A screenshot of the load board

being setup in the program can be seen in Figure 5.2. The automated testing software

communicated with the load board by sending ASCII characters throughout the testing

process. The software started out by sending a ”?” and received the response ”LBC” if the

load board was connected. The software then sent out the desired load and the load board

sent back the total load to the computer to confirm it was correct. The communications for

a portion of the testing procedure can be seen in Figure 5.3 where the board is testing a

ramp up of 4 to 25 A of current and then starting over again. A portion of the data collected

from this typical test of a buck board can be seen in Figure 5.4. In the data shown, the green

column is the desired current, and the blue column is the actual current flowing through the
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load board as read from the current sense resistor. The load board averages a difference of

only 0.477 A from the desired current, and at a desired 25 A only has a 2.75% error.

Figure 5.2: Load board setup in testing software
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Figure 5.3: Commands sent and received from the load board during testing

Figure 5.4: Test data gathered with load board
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Chapter 6

Conclusion

Overall, the goal of creating an inexpensive, accurate DC electronic load board that

could handle high currents was achieved. The first iteration of the board laid down the

stepping stones for a load board with its manual controls, FETs , and resistors. The second

board produced, the control board, allowed the connectivity of the original load board with a

computer as well as an automated platform for changing the load seen by the power supplies.

The third board, which combined both the original load and control boards into a single unit,

expanded upon the capabilities already used by the previous boards and expanded upon them

by having a larger load capability and more and stable control options for the integration with

testing software and equipment. The final board cost less than $500 with the most expense

spent on the fabrication of the board. The cost of the board can be reduced if ordering in

larger quantities, and longer fabrication times. The load board was able to interface with a

computer and send and receive signals using USART and an FTDI cable for integration in

an automated testing environment. The third board even had extra capabilities that where

not utilized during the span of the power supply testing period. While the board may not

have been able to reach the 306 A of the final goal, it was able to sink as much power as was

being tested at the time after a proper calibration.
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Chapter 7

Further Research

There are many outlets for further research on the low cost, high power DC electronic

load. One is to complete the coding, and build the fourth revision of the load board. This

would provide a much finished and complete DC load while still being able to be tweaked and

upgraded. Another option is to look at the board more in terms of a commercial product.

After the bugs were worked out, a case can be created, and more energy can be spent into

heat dissipation and easier interfaces such as integrating the USB connection and creating

more user-friendly controls for a stand alone device. Software also needs to be created which

is dedicated to the load board so different load profiles can be loaded in to simulate different

needs such as processors over a period of time, or to simulate the charging of a battery.

7.1 Load Board Revision Four

The board design expressed in the further research section was already being worked

on before funding ran out, and is explained below. The fourth iteration of the board is an

improvement of the third revision, especially in the thermal management areas.

7.1.1 Revisions

The design of the third load board had several revisions from the second load board:

• Input power planes placed on the outside of the board for better heat transfer and

thicker copper

• Signal traces were run on the two middle planes

• Through hole resistors used instead of surface mount
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• Heat sinks were included to help dissipate heat from the resistors

• Fans built in to blow the hot air away from the load board instead of a large external

fan

• Input and ground plane sizes increased as well as adding vias to improve current flow

• New power supply input connectors

• Include holes for standoffs

7.1.2 Design

Again, the version three of the load board had the same general layout of the first and

second boards with the resistor around the edge. The screen, PIC microcontroller, push

buttons, and current sensors were kept in the middle of the board for easy access. Holes

for standoffs were also added to increase the air circulation around the bottom of the board

while the added fans increased the circulation on the top of the board. The input connectors

for the power supply being tested were also being changed to be able to handle the heavy

currents needed to test the power supplies while being quicker and easier to disconnect than

the bolted on ”I” loops.

7.1.3 Coding

The coding of the board was also being worked on. While many of the functions were

being kept the same as the version two load board, the current sensors, voltage sensor, and

automatic calibration were being added. The addition of the current sensors in the board

would allow for the board to sense the resistance selected was too high or too low to produce

the correct current and toggle resistors until the correct current was met. The addition of

the sensors would also allow for control algorithms to be embedded onto the board so the

board could operate with the other functions of constant current, voltage, and power instead

of only being able to handle the constant resistance.
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Appendix A

Control board version 1 bill of materials

Daughter Board
Part Part # # of parts Price New part# Price
Gate Driver LM5111-2MYDKR 8 1.47 FAN3227TMXCT 0.9828
LED Display 516-1209-5 1 1.43
LED Driver 568-8243-1 2 0.36
potentiometer P3K1203 1 0.85
pic PIC16F724-I/PT 1 2.44
LED resistors P330ADKR 14 0.04
Female Headers S9008E-03 16 0.92

Table A.1: Control Board V1 BOM
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Appendix B

Resistor calculation code

clc
clear a l l
R2 = . 1 ;
R3 = . 2 ;
R4 = . 5 ;
R5 = 1 ;
R6 = 2 ;
R1 = . 0 0 5 ;
Rof f = 0 ;
R max = R1 ;
R min = 1/(8/R1+8/R2+8/R3+8/R4+8/R5+4/R6 ) ;
R values = zeros ( 6 2 6 , 1 0 ) ;
count = 2 ;

for a = 0 :8
for b = 0 :8

for c = 0 :8
for d = 0 :8

for e = 0 :8
for f = 0 :4

R values ( count , 1 ) = 1/( a/R1+b/R2+c/R3+d/R4+e/R6+f /R6 ) ;
R values ( count , 2 ) = a ;
R values ( count , 3 ) = b ;
R values ( count , 4 ) = c ;
R values ( count , 5 ) = d ;
R values ( count , 6 ) = e ;
R values ( count , 7 ) = f ;
R values ( count , 6 ) = 1/ R values ( count , 1 ) ;
i f R values ( count , 2 ) == 0

R values ( count , 7 ) = 0 ;
end
i f R values ( count , 3 ) == 0

R values ( count , 8 ) = 0 ;
end
i f R values ( count , 4 ) == 0

R values ( count , 9 ) = 0 ;
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end
i f R values ( count , 5 ) == 0

R values ( count , 1 0 ) = 0 ;
end
i f R values ( count , 2 ) == 1

R values ( count , 7 ) = 1 ;
end
i f R values ( count , 3 ) == 1

R values ( count , 8 ) = 1 ;
end
i f R values ( count , 4 ) == 1

R values ( count , 9 ) = 1 ;
end
i f R values ( count , 5 ) == 1

R values ( count , 1 0 ) = 1 ;
end
i f R values ( count , 2 ) == 2

R values ( count , 7 ) = 3 ;
end
i f R values ( count , 3 ) == 2

R values ( count , 8 ) = 3 ;
end
i f R values ( count , 4 ) == 2

R values ( count , 9 ) = 3 ;
end
i f R values ( count , 5 ) == 2

R values ( count , 1 0 ) = 3 ;
end
i f R values ( count , 2 ) == 3

R values ( count , 7 ) = 7 ;
end
i f R values ( count , 3 ) == 3

R values ( count , 8 ) = 7 ;
end
i f R values ( count , 4 ) == 3

R values ( count , 9 ) = 7 ;
end
i f R values ( count , 5 ) == 3

R values ( count , 1 0 ) = 7 ;
end
i f R values ( count , 2 ) == 4

R values ( count , 7 ) = 16 ;
end
i f R values ( count , 3 ) == 4

R values ( count , 8 ) = 16 ;
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end
i f R values ( count , 4 ) == 4

R values ( count , 9 ) = 16 ;
end
i f R values ( count , 5 ) == 4

R values ( count , 1 0 ) = 16 ;
end
count = count +1;

end
end

end
end

end
end

for x = 1:626
for y = x+1:626

i f R values (x , 1 ) == R values (y , 1 )
R values (y , 1 ) = 0 ;

end
end

end

count2 = 1 ;
for z = 1:626

i f R values ( z , 1 ) ˜= 0
R values2 ( count2 , : ) = R values ( z , : ) ;
count2 = count2 +1;

end
end
Fina l combinat ions = sort rows ( R values2 , 1 ) ;
x l s w r i t e ( ’ R e s i s t a n c e v a l u e s a n d o n r e s i s t o r s ’ , F ina l combinat ions ) ;
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Appendix C

Resistor Values from Calculations

Figure C.1: Calculated resistance values
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Appendix D

First control board code

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| F i l e : ac tua l main . c
| Author : Jus t in Moses
|
| This program i s f o r the PIC16F887 mi c r o con t r o l l e r used on the load con t r o l
| board f o r Auburn Un i v e r s i t y . Connects through USART to computer at 9600 baud
| ra t e and can t r an s f e r and r e c e i v e data . Boards are connected to each o ther
| through SPI .
|
| Procedure f o r s t a r t i n g and running dev i c e :
|
| 1 . I f f i r s t run , s e l e c t master or s l a v e ( don ’ t have to worry a f t e r f i r s t
| t ime )
|
| Buttons on board
|
| | | | | | |
| | | |
| s l v mstr s l v
|
| 2 . Set output from 0−144 amps (0−999 p o s s i b l e in code , but not wi th current
| r e s i s t o r c on f i g u r a t i on )
| 3 . Press en ter or send newl ine to c l e a r prev ious de s i r e d output and load
| newest d e s i r e d output
| 4 . Press ’ g ’ to output curren t d e s i r ed output
| 5 . Press ’ x ’ to output 0 ( on ly use 1 r e s i s t o r ) to s top program or in case o f
| emergency
| 6 . Steps 2−5 can be repea ted at any time when the code i s running
|
| On board v a r i a b l e r e s i s t o r c i r r e n t l y doesn ’ t do anyth ing
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <math . h>
#include <htc . h>
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#include <p i c . h>

// Set c on f i g u r ea t i on b i t s
CONFIG(FOSC INTRC NOCLKOUT & WDTE OFF & PWRTE OFF & MCLRE ON & CP OFF & CPD OFF & BOREN OFF & IESO ON & FCMEN ON & LVP OFF ) ;
CONFIG(BOR4V BOR40V & WRT OFF) ;

int s l a v e = 0 ;
int s m s e l e c t e d = 0 ;
int time = 25000 ;
unsigned char eeprom address = 0x0000 ;
unsigned char data ;
int eeprom written = 0 ;
int master = 0 ;
int comm clk ;
char s p i o u t ;
char s p i i n p u t ;
char u s a r t i n ;
int usa r t ou t ;
int usa r t f i r s t comm = 0 ;
int sp i f i r s t c omm = 0 ;
unsigned char ch ;
int a s c i i i n ;
int out ;
int out2 ;
int rx ye s = 0 ;
int p lace = 0 ;
int dec in hundreds = 0 ;
int d e c i n t e n s = 0 ;
int d e c i n o n e s = 0 ;
int t o t a l o u t p u t = 0x0001 ;
int t o t a l ou tpu t2 = 0x0000 ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
//PORTE −− 1ohm r e s i s t o r s
//PORTB −− . 5 and .2 r e s i s t o r s
//PORTA −− . 1ohm r e s i s t o r s
//PORTD −− 15 segment d i s p l a y
void output ( )
{

switch ( out )
{

case 2 :
PORTE = 0x03 ;
PORTB = 0x00 ;
PORTA = 0x00 ;

56



PORTD = 0x20 ;
break ;

case 3 :
PORTE = 0x07 ;
PORTB = 0x00 ;
PORTA = 0x00 ;
PORTD = 0x30 ;
break ;

case 4 :
PORTE = 0x0F ;
PORTB = 0x00 ;
PORTA = 0x00 ;
PORTD = 0x40 ;
break ;

case 5 :
PORTE = 0x07 ;
PORTB = 0x10 ;
PORTA = 0x00 ;
PORTD = 0x50 ;
break ;

case 6 :
PORTE = 0x0F ;
PORTB = 0x10 ;
PORTA = 0x00 ;
PORTD = 0x60 ;
break ;

case 7 :
PORTE = 0x07 ;
PORTB = 0x30 ;
PORTA = 0x00 ;
PORTD = 0x70 ;
break ;

case 8 :
PORTE = 0x0F ;
PORTB = 0x30 ;
PORTA = 0x00 ;
PORTD = 0x80 ;
break ;

case 9 :
PORTE = 0x07 ;
PORTB = 0x70 ;
PORTA = 0x00 ;
PORTD = 0x90 ;
break ;

case 10 :
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PORTE = 0x0F ;
PORTB = 0x70 ;
PORTA = 0x00 ;
PORTD = 0x01 ;
break ;

case 11 :
PORTE = 0x07 ;
PORTB = 0xF0 ;
PORTA = 0x00 ;
PORTD = 0x11 ;
break ;

case 12 :
PORTE = 0x0F ;
PORTB = 0xF0 ;
PORTA = 0x00 ;
PORTD = 0x21 ;
break ;

case 13 :
PORTE = 0x0F ;
PORTB = 0x31 ;
PORTA = 0x00 ;
PORTD = 0x31 ;
break ;

case 14 :
PORTE = 0x07 ;
PORTB = 0x71 ;
PORTA = 0x00 ;
PORTD = 0x41 ;
break ;

case 15 :
PORTE = 0x0F ;
PORTB = 0x71 ;
PORTA = 0x00 ;
PORTD = 0x51 ;
break ;

case 16 :
PORTE = 0x07 ;
PORTB = 0xF1 ;
PORTA = 0x00 ;
PORTD = 0x61 ;
break ;

case 17 :
PORTE = 0x0F ;
PORTB = 0xF1 ;
PORTA = 0x00 ;
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PORTD = 0x71 ;
break ;

case 18 :
PORTE = 0x0F ;
PORTB = 0x33 ;
PORTA = 0x00 ;
PORTD = 0x81 ;
break ;

case 19 :
PORTE = 0x07 ;
PORTB = 0x73 ;
PORTA = 0x00 ;
PORTD = 0x91 ;
break ;

case 20 :
PORTE = 0x0F ;
PORTB = 0x73 ;
PORTA = 0x00 ;
PORTD = 0x02 ;
break ;

case 21 :
PORTE = 0x07 ;
PORTB = 0xF3 ;
PORTA = 0x00 ;
PORTD = 0x12 ;
break ;

case 22 :
PORTE = 0x0F ;
PORTB = 0xF3 ;
PORTA = 0x00 ;
PORTD = 0x22 ;
break ;

case 23 :
PORTE = 0x0F ;
PORTB = 0x37 ;
PORTA = 0x00 ;
PORTD = 0x32 ;
break ;

case 24 :
PORTE = 0x07 ;
PORTB = 0x77 ;
PORTA = 0x00 ;
PORTD = 0x42 ;
break ;

case 25 :
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PORTE = 0x0F ;
PORTB = 0x77 ;
PORTA = 0x00 ;
PORTD = 0x52 ;
break ;

case 26 :
PORTE = 0x07 ;
PORTB = 0xF7 ;
PORTA = 0x00 ;
PORTD = 0x62 ;
break ;

case 27 :
PORTE = 0x0F ;
PORTB = 0xF7 ;
PORTA = 0x00 ;
PORTD = 0x72 ;
break ;

case 28 :
PORTE = 0x0F ;
PORTB = 0x3F ;
PORTA = 0x00 ;
PORTD = 0x82 ;
break ;

case 29 :
PORTE = 0x07 ;
PORTB = 0x7F ;
PORTA = 0x00 ;
PORTD = 0x92 ;
break ;

case 30 :
PORTE = 0x0F ;
PORTB = 0x7F ;
PORTA = 0x00 ;
PORTD = 0x03 ;
break ;

case 31 :
PORTE = 0x07 ;
PORTB = 0xFF ;
PORTA = 0x00 ;
PORTD = 0x13 ;
break ;

case 32 :
PORTE = 0x0F ;
PORTB = 0xFF ;
PORTA = 0x00 ;
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PORTD = 0x23 ;
break ;

case 33 :
PORTE = 0x0F ;
PORTB = 0x37 ;
PORTA = 0x10 ;
PORTD = 0x33 ;
break ;

case 34 :
PORTE = 0x07 ;
PORTB = 0x77 ;
PORTA = 0x10 ;
PORTD = 0x43 ;
break ;

case 35 :
PORTE = 0x0F ;
PORTB = 0x77 ;
PORTA = 0x10 ;
PORTD = 0x53 ;
break ;

case 36 :
PORTE = 0x07 ;
PORTB = 0xF7 ;
PORTA = 0x10 ;
PORTD = 0x63 ;
break ;

case 37 :
PORTE = 0x0F ;
PORTB = 0xF7 ;
PORTA = 0x10 ;
PORTD = 0x73 ;
break ;

case 38 :
PORTE = 0x0F ;
PORTB = 0x3F ;
PORTA = 0x10 ;
PORTD = 0x83 ;
break ;

case 39 :
PORTE = 0x07 ;
PORTB = 0x7F ;
PORTA = 0x10 ;
PORTD = 0x93 ;
break ;

case 40 :
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PORTE = 0x0F ;
PORTB = 0x7F ;
PORTA = 0x10 ;
PORTD = 0x04 ;
break ;

case 41 :
PORTE = 0x07 ;
PORTB = 0xFF ;
PORTA = 0x10 ;
PORTD = 0x14 ;
break ;

case 42 :
PORTE = 0x0F ;
PORTB = 0xFF ;
PORTA = 0x10 ;
PORTD = 0x24 ;
break ;

case 43 :
PORTE = 0x0F ;
PORTB = 0x37 ;
PORTA = 0x30 ;
PORTD = 0x34 ;
break ;

case 44 :
PORTE = 0x07 ;
PORTB = 0x77 ;
PORTA = 0x30 ;
PORTD = 0x44 ;
break ;

case 45 :
PORTE = 0x0F ;
PORTB = 0x77 ;
PORTA = 0x30 ;
PORTD = 0x54 ;
break ;

case 46 :
PORTE = 0x07 ;
PORTB = 0xF7 ;
PORTA = 0x30 ;
PORTD = 0x64 ;
break ;

case 47 :
PORTE = 0x0F ;
PORTB = 0xF7 ;
PORTA = 0x30 ;
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PORTD = 0x74 ;
break ;

case 48 :
PORTE = 0x0F ;
PORTB = 0x3F ;
PORTA = 0x30 ;
PORTD = 0x84 ;
break ;

case 49 :
PORTE = 0x07 ;
PORTB = 0x7F ;
PORTA = 0x30 ;
PORTD = 0x94 ;
break ;

case 50 :
PORTE = 0x0F ;
PORTB = 0x7F ;
PORTA = 0x30 ;
PORTD = 0x05 ;
break ;

case 51 :
PORTE = 0x07 ;
PORTB = 0xFF ;
PORTA = 0x30 ;
PORTD = 0x15 ;
break ;

case 52 :
PORTE = 0x0F ;
PORTB = 0xFF ;
PORTA = 0x30 ;
PORTD = 0x25 ;
break ;

case 53 :
PORTE = 0x0F ;
PORTB = 0x37 ;
PORTA = 0x70 ;
PORTD = 0x35 ;
break ;

case 54 :
PORTE = 0x07 ;
PORTB = 0x77 ;
PORTA = 0x70 ;
PORTD = 0x45 ;
break ;

case 55 :
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PORTE = 0x0F ;
PORTB = 0x77 ;
PORTA = 0x70 ;
PORTD = 0x55 ;
break ;

case 56 :
PORTE = 0x07 ;
PORTB = 0xF7 ;
PORTA = 0x70 ;
PORTD = 0x65 ;
break ;

case 57 :
PORTE = 0x0F ;
PORTB = 0xF7 ;
PORTA = 0x70 ;
PORTD = 0x75 ;
break ;

case 58 :
PORTE = 0x0F ;
PORTB = 0x3F ;
PORTA = 0x70 ;
PORTD = 0x85 ;
break ;

case 59 :
PORTE = 0x07 ;
PORTB = 0x7F ;
PORTA = 0x70 ;
PORTD = 0x95 ;
break ;

case 60 :
PORTE = 0x0F ;
PORTB = 0x7F ;
PORTA = 0x70 ;
PORTD = 0x06 ;
break ;

case 61 :
PORTE = 0x07 ;
PORTB = 0xFF ;
PORTA = 0x70 ;
PORTD = 0x16 ;
break ;

case 62 :
PORTE = 0x0F ;
PORTB = 0xFF ;
PORTA = 0x70 ;
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PORTD = 0x26 ;
break ;

case 63 :
PORTE = 0x0F ;
PORTB = 0x37 ;
PORTA = 0xF0 ;
PORTD = 0x36 ;
break ;

case 64 :
PORTE = 0x07 ;
PORTB = 0x77 ;
PORTA = 0xF0 ;
PORTD = 0x46 ;
break ;

case 65 :
PORTE = 0x0F ;
PORTB = 0x77 ;
PORTA = 0xF0 ;
PORTD = 0x56 ;
break ;

case 66 :
PORTE = 0x07 ;
PORTB = 0xF7 ;
PORTA = 0xF0 ;
PORTD = 0x66 ;
break ;

case 67 :
PORTE = 0x0F ;
PORTB = 0xF7 ;
PORTA = 0xF0 ;
PORTD = 0x76 ;
break ;

case 68 :
PORTE = 0x0F ;
PORTB = 0x3F ;
PORTA = 0xF0 ;
PORTD = 0x86 ;
break ;

case 69 :
PORTE = 0x07 ;
PORTB = 0x7F ;
PORTA = 0xF0 ;
PORTD = 0x96 ;
break ;

case 70 :
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PORTE = 0x0F ;
PORTB = 0x7F ;
PORTA = 0xF0 ;
PORTD = 0x07 ;
break ;

case 71 :
PORTE = 0x07 ;
PORTB = 0xFF ;
PORTA = 0xF0 ;
PORTD = 0x17 ;
break ;

case 72 :
PORTE = 0x0F ;
PORTB = 0xFF ;
PORTA = 0xF0 ;
PORTD = 0x27 ;
break ;

default :
PORTE = 0x01 ;
PORTB = 0x00 ;
PORTA = 0x00 ;
PORTD = 0x10 ;
break ;

}
}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
int delay ( time )
{

while ( time != 0 , time−−){}// de l a y s
}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
void eeprom write1 (unsigned char eeprom add , unsigned char eeprom data )
{

GIE = 0 ; // d i s a b l e i n t e r r u p t s
EEADR = eeprom add ; // s e t the address l o c a t i o n in EEADR
EEDATA = eeprom data ; // data to be wr i t t en i s taken in EEDATA
WREN = 1 ; // enab l e wr i t e
EECON2 = 0x55 ; //
EECON2 = 0xAA; //
WR = 1 ; //
WREN = 0 ; // d i s a b l e wr i t e
while (WR == 1 ) ; // wai t u n t i l wr i t e procedure g e t s completed .
GIE = 1 ; // enab l e i n t e r r u p t s
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}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
void i n i t u s a r t ( )
{

TXEN = 1 ; // enab l e TX por t
SENDB = 0 ; //no by t e sen t
BRGH = 0 ; //Fosc/16
BRG16 = 1 ; //don ’ t d i v i d e by 16
SPBRG = 55 ; //9600 baud ra t e
SPEN = 1 ; // s e r e a l por t enab led
RCIE = 1 ; // enab l e RC in t e r r u p t
PEIE = 1 ; // enab l e usar t i n t e r r u p t
GIE = 1 ; // enab l e i n e r rup t s
RX9 = 0 ; //no 9 th b i t
CREN = 1 ; // cont inuous r e c i e v e
SYNC = 0 ; // synchronous
CSRC = 1 ; // dev i c e c i n f i g u r e d as s l a v e
TX9 = 0 ; //no 9 th b i t
RCIF = 0 ; //Clear RCIF Flag
TXIF = 0 ; //Clear TXIF f l a g
SCKP = 0 ; //not synchronous

}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
void u s a r t t x (unsigned int usa r t ou t )
{

// trans format ion //
unsigned int n ibb l e = usa r t ou t & 0x000F ; // p i ck on ly f i r s t 4 b i t s
unsigned int a s c i i [ 4 ] ; // a s c i i v a r i a b l e f o r s t o r i n g va l u e s
int counter = 0 ; // s e t a t 0
for ( counter = 0 ; counter < 2 ; counter ++) // f i l l s in a s c i i v a l u e s
{

i f ( n ibb l e > 9) // i f a l e t e r
{

a s c i i [1− counter ] = n ibb l e + 55 ; // input l e t t e r
}
else // i f numeral
{

a s c i i [1− counter ] = n ibb l e + 48 ; // save numeral
}
usa r t ou t = usa r t ou t >> 4 ; // save next n i b b l e
n ibb l e = usa r t ou t & 0x000F ; // s e t n i b b l e

67



}

TXREG = a s c i i [ 1 ] ; // s e t and s t a r t u sar t t ransmi t
while ( !TRMT) // wai t wh i l e t r an sm i t t i n g

continue ;
}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
int u s a r t r x ( )
{

while ( ! RCIF)
continue ;

u s a r t i n = RCREG; // r e c i e v e usar t data
usa r t f i r s t comm = 1 ; // shows usar t has communicated at l e a s t once
CREN = 0 ; // d i s a b l e cont inous r e c e i v e
CREN = 1 ; // enab l e cont inuous r e c e i v e
rx ye s = 1 ; // s e t bu t ton pres sed to 1
return ; // s t o r e data

}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// i n i t i a l i z e SPI r e g i s t e r f o r master and s l a v e
void i n i t s p i ( )
{

i f ( master == 1)
{

SSPSTAT = 0b11000000 ; //SMP & CKE = 1
SSPCON = 0b00100000 ; // s e r i a l por t enabled , c l o c k i d l e s t a t e i s low , c l o c k = Fosc/4

}
i f ( master == 0)
{

SSPSTAT = 0b01000000 ; //SMP = 0 , CKE = 1
SSPCON = 0b00100101 ; // s e r i a l por t enabled , c l o c k i d l e s t a t e i s low , c l o c k = sck pin , SS pin d i s a b l e d

}
}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// func t i on to send a by t e in SPI
int s e n d s p i ( out )
{

int dummy; // i n i t i a l i z e ” fake ” by t e
SSPBUF = out ; // ou tpu t s over SPI
while (BF) // wai t u n t i l done

continue ;
dummy = SSPBUF; // d i s card r e c i e v ed va lue
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}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// func t i on to r e c e i v e a by t e in SPI
int r e c s p i ( )
{

while ( !BF) // wa i t s u n t i l SPI i s f i n i s h e d
continue ;

out = SSPBUF; // s t o r e s SPI va lue
return ;

}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// In t e r rup t rou t ine f o r communication
stat ic void i n t e r r u p t uart ISR ( void ) //
{ //

i f (RCIF) //
{ //

RCIF = 1 ; // c l e a r i n t e r r u p t f l a g
u s a r t r x ( ) ; // goto usar t read

} //
}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// s e t s the de s i r e d curren t output p l a c e s f o r the incoming USART numbers
int dec in ( char u s a r t i n )
{

i f ( p lace == 1) // s e t s number f o r the hundreths p l ace
{

switch ( u s a r t i n )
{

case 49 :
dec in hundreds = 0x0064 ; //hex f o r 100
break ;

case 50 :
dec in hundreds = 0x00C8 ; //hex f o r 200
break ;

case 51 :
dec in hundreds = 0x012C ; //hex f o r 300
break ;

case 52 :
dec in hundreds = 0x0190 ; //hex f o r 400
break ;

case 53 :
dec in hundreds = 0x01F4 ; //hex f o r 500
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break ;
case 54 :

dec in hundreds = 0x0258 ; //hex f o r 600
break ;

case 55 :
dec in hundreds = 0x02BC ; //hex f o r 700
break ;

case 56 :
dec in hundreds = 0x0320 ; //hex f o r 800
break ;

case 57 :
dec in hundreds = 0x0384 ; //hex f o r 900
break ;

default :
dec in hundreds = 0x0000 ; //hex f o r 000
break ;

}
}
i f ( p lace == 2) // s e t s t ens pace
{

switch ( u s a r t i n )
{

case 49 :
d e c i n t e n s = 0x000A ; //hex f o r 10
break ;

case 50 :
d e c i n t e n s = 0x0014 ; //hex f o r 20
break ;

case 51 :
d e c i n t e n s = 0x001E ; //hex f o r 30
break ;

case 52 :
d e c i n t e n s = 0x0028 ; //hex f o r 40
break ;

case 53 :
d e c i n t e n s = 0x0032 ; //hex f o r 50
break ;

case 54 :
d e c i n t e n s = 0x003C ; //hex f o r 60
break ;

case 55 :
d e c i n t e n s = 0x0046 ; //hex f o r 70
break ;

case 56 :
d e c i n t e n s = 0x0050 ; //hex f o r 80
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break ;
case 57 :

d e c i n t e n s = 0x005A ; //hex f o r 90
break ;

default :
d e c i n t e n s = 0x0000 ; //hex f o r 00
break ;

}
}
i f ( p lace == 3) // s e t ones p l ace
{

switch ( u s a r t i n )
{

case 49 :
d e c i n o n e s = 0x0001 ; //hex f o r 1
break ;

case 50 :
d e c i n o n e s = 0x0002 ; //hex f o r 2
break ;

case 51 :
d e c i n o n e s = 0x0003 ; //hex f o r 3
break ;

case 52 :
d e c i n o n e s = 0x0004 ; //hex f o r 4
break ;

case 53 :
d e c i n o n e s = 0x0005 ; //hex f o r 5
break ;

case 54 :
d e c i n o n e s = 0x0006 ; //hex f o r 6
break ;

case 55 :
d e c i n o n e s = 0x0007 ; //hex f o r 7
break ;

case 56 :
d e c i n o n e s = 0x0008 ; //hex f o r 8
break ;

case 57 :
d e c i n o n e s = 0x0009 ; //hex f o r 9
break ;

default :
d e c i n o n e s = 0x0000 ; //hex f o r 0
break ;

}
}
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}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
unsigned int ADCRead( ch )
{
unsigned int ADC result ;

ADCON0=0b00000001 ; // s e t Fosc /2 , RA0, enab l e ADC
ADON=1; // sw i t ch on the adc module
GO DONE=1; // S ta r t convers ion
while (GO DONE) ; // wai t f o r the convers ion to f i n i s h
ADON=0; // sw i t ch o f f adc
return ADRESH; // re turn f i n a l d i g i t a l va lue

}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

void eeprom checker ( )
{

EEADR = 1 ; // s e t address as 1
RD = 1 ; // read from tha t address
eeprom written = EEDATA; // s t o r e read data

i f ( eeprom written == 1) // check i f eeprom has been wr i t t en
{

EEADR = 0 ; // sed eeprom address to 0000
RD = 1 ; // read by t e
master = EEDATA; // s e t i f master or not
i f ( master == 0) // i f not master
{

s l a v e = 1 ; // s e t p i c as s l a v e
PORTD = 0xF5 ; // output 5 f o r S lave
delay ( time ∗2 ) ; // de lay
TRISC = 0b10011000 ; // s e t C por t c on f i g u r a t i on f o r SPI s l a v e

}
else
{

PORTD = 0xF3 ; // output 3 f o r Master
delay ( time ∗2 ) ; // de lay
TRISC = 0b10010000 ; // s e t por t C con f i g u r a t i on f o r SPI Master

}
}
else
{

while ( s m s e l e c t e d == 0) // i f s l a v e /master has not been s e l e c t e d
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{
PORTD = 0x55 ; // output 55 f o r S lave S e l e c t
i f (RC0 == 0 | | RC2 == 0) // i f ou t s i d e bu t t ons are pres sed
{

s l a v e = 1 ; // s e t board as s l a v e
s m s e l e c t e d = 1 ; // s e t s l a v e /master as s e l e c t e d
TRISC = 0b11010000 ; // s e t C por t c on f i g u r a t i on f o r SPI s l a v e
PORTD = 0xF5 ; // output 5 f o r S lave
delay ( time ) ; //
PORTD = 0x5F ; //
delay ( time ) ; //
PORTD = 0xF5 ; //
delay ( time ) ; //
eeprom write1 (0 ,0 x00 ) ; // save eeprom 0000 as s l a v e
eeprom write1 (1 ,0 x01 ) ; // save eeprom 0001 as s/m s e l e c t e d

}
else i f (RC1 == 0) // i f i n s i d e bu t ton i s pres sed
{

s l a v e = 0 ; // s e t board f o r master
s m s e l e c t e d = 1 ; // s e t s l a v e /master as s e l e c t e d
TRISC = 0b11011000 ; // s e t por t C con f i g u r a t i on f o r SPI Master
PORTD = 0xF3 ; // output 3 f o r Master
delay ( time ) ; //
PORTD = 0x3F ; //
delay ( time ) ; //
PORTD = 0xF3 ; //
delay ( time ) ; //
eeprom write1 (0 ,0 x01 ) ; // save eeprom 0000 as master
eeprom write1 (1 ,0 x01 ) ; // save eeprom 0001 as s/m s e l e c t e d

}

}
}

}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
void main ( )
{

OSCCON = 0b01110101 ; //<−|
OSCTUNE = 0b00001111 ; //<−| t h e s e s e t the c l o c k to 8MHz
INTCON=1; //
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/∗ s e t pin I /O∗/
TRISA = 0x01 ; //RA0 − input , a l l o ther output
TRISB = 0x00 ; // a l l ou tpu t s
TRISD = 0x00 ; // a l l ou tpu t s
TRISE = 0x00 ; // a l l ou tpu t s

EEPGD = 0 ; // address o f f i r s t eeprom programmable b i t
EEADR = 0 ; // address o f f i r s t eeprom b i t

eeprom checker ( ) ; // checks eeprom va lue
i n i t u s a r t ( ) ; // i n i t i a l i z e s e r i a l connect ion and USART por t s
i n i t s p i ( ) ; // i n i t i a l i z e s p i por t

PORTE = 0x01 ; //1 ohm always on
PORTD = 0x00 ; //
PORTB = 0x00 ; //
PORTA = 0x00 ; //

/∗Flash d i s p l a y a f t e r s t a r t u rou t i n e s completed ∗/
PORTD = 0xFF ; //
delay ( time ) ; //
PORTD = 0x88 ; //
delay ( time ) ; //
PORTD = 0xFF ; //
delay ( time ) ; //
PORTD = 0x88 ; //
delay ( time ) ; //
PORTD = 0xFF ; //
delay ( time ) ; //
PORTD = 0x88 ; //
delay ( time ) ; //

/∗ s i t in t h i s loop u n t i l computer i s t a l k e d to , s p i has been used or one o f the bu t t ons i s h i t ∗/
while ( u sa r t f i r s t comm == 0 && RC0 == 1 && RC1 == 1 && RC2 == 1 && sp i f i r s t c omm == 0) //
{

PORTE = 0x01 ; // l e a v e 1 ohm r e s i s t o r on
PORTD = 0x00 ; //
PORTB = 0x00 ; //
PORTA = 0x00 ; //
i f (RC3 == 1) s p i f i r s t c omm = 1 ;

}
/∗main par t o f the main program tha t c on t r o l s the output and communication o f the dev i c e ∗/

for ( ; ; ) //run i n d e f i n i t e l y
{

i f ( master == 1) // checks to see i f save or master
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{
i f ( u s a r t i n != 0x67 && rx ye s == 1) // i f keyboard i s pres sed but not ’ g ’
{

i f ( u s a r t i n == 13) // i f en ter ( newl ine ) i s pres sed
{

t o t a l o u t p u t = dec in hundreds + d e c i n t e n s + d e c i n o n e s ; // genera t e s the t o t a l output
t o t a l ou tpu t2 = t o t a l o u t p u t >> 8 ; // s h i f t s the t o t a l output by 8 b i t s and saves at output2
u s a r t t x ( t o ta l ou tpu t2 && 0x0F ) ; // tansmit the f i r s t two numbers
u s a r t t x ( t o t a l o u t p u t && 0xFF ) ; // transmi t the l a s t number
rx ye s = 0 ; // r e s e t bu t ton pres sed
p lace = 0 ; // s e t the p l a ce in the input number to hundreds

}
else
{

p lace++; // increment d i g i t s p l a ce
dec in ( u s a r t i n ) ; // func t i on t ha t s t o r e s d i g i t s
u s a r t t x ( u s a r t i n ) ; // send back key pres sed
rx ye s = 0 ; // s e t p l a ce in input number to hundreds

}
}
i f ( u s a r t i n == 0x67 ) // i f ’ g ’ pres sed
{

rx ye s = 0 ; // r e s e t bu t ton pres sed
i f ( t o t a l o u t p u t & 0b00000001 == 1) // i f output i s odd number
{

t o t a l ou tpu t2 = t o t a l o u t p u t − 1 ; // su b t r a c t 1 from output
out = to ta l ou tpu t2 /2 ; // d i v i d e output in 2
out2 = to ta l ou tpu t2 /2 + 1 ; //add the 1 back to the d i v i d ed outpu

}
else // i f even number
{

out = t o t a l o u t p u t /2 ; // d i v i d e output by 2 and output
out2 = out ; // output the d i v i d ed output

}
s e n d s p i ( out2 ) ; // send output2 to second s i d e o f load board
while ( rx ye s == 0) // u n t i l another but ton i s pres sed
{

output ( out ) ; // output d e s i r e d output from be f o r e
}

}
i f ( u s a r t i n == 0x78 ) // i f ’ x ’ i s pres sed
{

rx ye s = 0 ; // s e t bu t t ons pres sed to 0
out = 0 ; // s e t output to 0
s e n d s p i ( out ) ; // send output o f 0 to s l a v e
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while ( rx ye s == 0) //
{

output ( out ) ; // output noth ing u n t i l another bu t ton pres sed
}

}
}
i f ( s l a v e == 1) // i f not master p i c
{

while ( !BF) // wai t f o r SPI to complete
continue ;

out = SSPBUF; // read in SPI data
output ( out ) ; // output SPI data

}
}

return ;
}
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Appendix E

Second load board bill of materials

Index Manuf# Qty

R11, R13, R33, R35, R55

R57, R77, R79 PFS35-0R05J1 8

R15, R17, R37, R39, R59

R61, R81, R83 PFS35-0R2F1 8

R19, R21, R41, R43, R63

R65, R85, R87 PFS35-0R2F1 8

R23, R25, R45, R47, R67

R69, R89, R91 PWR263S-35-R500F 8

R27, R29, R49, R51, R71

R73, R93, R95 PWR263S-35-1R00F 8

R31, R53, R75, R97 PWR263S-35-2R00F 4

R7 RMCF1206FT15R0 1

R5 ERJ-8ENF1003V 1

R1, R2, R3, R4, R6 ERJ-8ENF1002V 5

R8, R9, R10, R12, R14

R16, R18, R20, R22, R24

R26, R28, R30, R32, R34

R36, R38, R40, R42, R44

R46, R48, R50, R52, R54

R56, R58, R60, R62, R64

R66, R68, R70, R72, R74
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R76, R78, R80, R82, R84

R86, R88, R90, R92, R94

R96 ERJ-8ENF1001V 46

C10, C11 C3216X7R2A104K160AA 2

C2, C3, C4, C5, C7

C8, C9 C3216X7R1E105K085AA 7

C1 C3216X5R1A106K160AB 1

C6 1

P3, P4 3-644456-6 2

K1, K2, K3, K4, K5

K6, K7, K8, K9, K10

K11, K12, K13, K14, K15

K16, K7, K18, K19, K20

K21, K22, K23, K24, K25

K26, K27, K28, K29, K30

K31, K32, K33, K34, K35

K36, K37, K38, K39, K40

K41, K42, K43, K44 640452-3 44

Sw1, SW2, SW3, SW4 EVQ-11U04M 4

U6, U7, U8, U9, U10

U11, U12, U13, U14, U15

U16, U17, U18, U19, U20

U21, U22, U23, U24, U25

U26, U27 FAN3227TMX 22

Q1, Q2, Q3, Q4, Q5

Q6, Q7, Q8, Q9, Q10

Q11, Q12, Q13, Q14, Q15
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Q16, Q17, Q18, Q19, Q20

Q21, Q22, Q23, Q24, Q25

Q26, Q27, Q28, Q29, Q30

Q31, Q31, Q32, Q33, Q34, Q35

Q36, Q37, Q38, Q39, Q40

Q41, Q42, Q43, Q44 IRF6201TRPBF 44

D1, D2, D3, D4, D5

D6, D7, D8, D9, D10

D11, D12, D13, D14, D15

D16, D17, D18, D19, D20

D21, D22, D23, D24, D25

D26, D27, D28, D29, D30

D31, D32, D33, D34, D35

D36, D37, D38, D39, D40

D41, D42, D43, D44 LG R971-KN-1 44

U1 PIC18F87K22-I/PTRSL 1

U2 TC1015-3.3VCT713 1

U3 NHD-C0220BIZ-FS(RGB)-FBW-3VM 1

U4, U5 ACS758KCB-150B-PFF-T 2

Table E.1: Load Board V2 BOM
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Appendix F

Second load board CAD
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Figure F.1: V2 top copper
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Figure F.2: V2 second layer
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Figure F.3: V2 third layer
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Figure F.4: V2 fourth layer
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Figure F.5: V2 fifth layer
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Figure F.6: V2 bottom copper
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Figure F.7: V2 top left resistor schematic

Figure F.8: V2 top right resistor schematic
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Figure F.9: V2 bottom left resistor schematic

Figure F.10: V2 bottom right resistor schematic
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Figure F.11: V2 current sensor schematic

Figure F.12: V2 display schematic
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Figure F.13: V2 microcontroller and overall schematic
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Appendix G

Second load board code

/∗
∗ F i l e : loadmain v3 0 . c
∗ Author : JMoses
∗
∗ Created on June 19 , 2013 , 3:33 PM
∗
∗ PORTD − 1 ohm
∗ PORTE − . 5 ohm
∗ PORTF − . 2 ohm
∗ PORTG − G0−3 2 ohm, G4 − . 2ohm
∗ PORTH − . 1 ohm
∗ PORTJ − .05 ohm
∗/

#include <xc . h>
#include <p l i b . h>
#include <pcon f i g . h>
#include <usar t . h>
#include <adc . h>
#include <s t d i o . h>
#include <s t d l i b . h>

#define XTAL FREQ 16000000
#define USE OR MASKS

// PIC18F87K22 Conf i gura t ion Bit S e t t i n g s

// CONFIG1L
#pragma c o n f i g FOSC = INTIO2 , SOSCSEL = DIG, XINST = OFF, IESO = OFF, WDTEN = OFF, RTCOSC = INTOSCREF, CCP2MX = PORTBE, ECCPMX = PORTE, MCLRE = OFF, STVREN = OFF, BOREN = OFF

int u s a r t i n ;
int rx ye s = 0 ;
int p lace = 0 ;
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int dec in hundreds = 0 ;
int d e c i n t e n s = 0 ;
int d e c i n o n e s = 0 ;
int t o t a l o u t p u t = 0x0000 ;
int t o t a l ou tpu t2 = 0x0000 ;
int t e n s d i g i t = 0 ;
unsigned int ADCResult [3 ]= {0} ;
f loat vo l tage ;
f loat cur r ent ;
unsigned char Resu l tSt r [ 1 0 ] ;
unsigned char b u f f e r [ 2 0 ] ;
unsigned char b u f f e r 2 [ 2 0 ] ;
int count = 0 ;
f loat cur rent2 ;
f loat cur rent3 ;
int modi f i ed ones = 0 ;

f loat d i f f e r e n c e = 0 . 0 ;
int pos 20 count ;
int pos 10 count ;
int pos 5 count ;
int pos 2 count ;
int pos 1 count ;
int pos 05 count ;
int d e s i r e d = 0 ;
int mode = 0 ; //1 f o r ac t i v e , 2 f o r pa s s i v e
int button pre s sed = 0 ;

stat ic void i n t e r r u p t uart ISR ( void ) //
{ //

i f (RC1IF) //
{ //

RC1IF = 1 ; // c l e a r i n t e r r u p t f l a g
u s a r t i n = getc1USART ( ) ; // goto usar t read
while (Busy1USART ( ) ) ;
r x ye s = 1 ; // s e t bu t ton pres sed to 1

} //
}

//I2C s t a t t u p rout ine−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void i 2 c s t a r t ( void )
{

PORTCbits .RC3 = 1 ;
PORTCbits .RC4 = 1 ;
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PORTCbits .RC4 = 0 ;
PORTCbits .RC3 = 0 ;

}

//I2C Stop rout ine−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void i 2 c s t o p ( void )
{

PORTCbits .RC4 = 0 ;
PORTCbits .RC3 = 0 ;
PORTCbits .RC3 = 1 ;
PORTCbits .RC4 = 1 ;

}

//I2C output−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void i 2 c o u t (unsigned char d)
{

int n ;

for (n=1; n<9; n++)
{

i f (d & 0x80 )
{

PORTCbits .RC4 = 1 ;
}
else
{

PORTCbits .RC4 = 0 ;
}

d e l a y u s ( 5 ) ;
PORTCbits .RC3 = 1 ;

d e l a y u s ( 5 ) ;
PORTCbits .RC3 = 0 ;

d = d << 1 ;
}

TRISC = 0b10110111 ;
PORTCbits .RC3 = 1 ;
while (PORTCbits .RC4 == 1)
{

PORTCbits .RC3 = 0 ;
PORTCbits .RC3 = 1 ;

}
PORTCbits .RC3 = 0 ;
TRISC = 0b10100111 ;
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}

// I n i t i a l i z i g the LCD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void i n i t l c d ( void )
{

i 2 c s t a r t ( ) ;

i 2 c o u t (0 x78 ) ;
i 2 c o u t (0 x00 ) ;
i 2 c o u t (0 x38 ) ;

d e l a y u s ( 2 5 ) ;
i 2 c o u t (0 x39 ) ;

d e l a y u s ( 2 5 ) ;
i 2 c o u t (0 x14 ) ;
i 2 c o u t (0 x70 ) ;
i 2 c o u t (0x5D ) ;
i 2 c o u t (0x6D ) ;
i 2 c o u t (0x0C ) ;
i 2 c o u t (0 x01 ) ;
i 2 c o u t (0 x06 ) ;

d e l a y u s ( 1 0 ) ;

i 2 c s t o p ;
}

//Clear ing the d i sp l ay−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void c l e a r d i s p l a y ( void )
{

i 2 c s t a r t ( ) ;

i 2 c o u t (0 x78 ) ;
i 2 c o u t (0 x00 ) ;
i 2 c o u t (0 x01 ) ;

i 2 c s t o p ( ) ;
}

//Disp lays on LCD−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void d i sp l ay ( int addr , unsigned char ∗ t ex t )
{

int n ;
int c = 0 ;

while (∗ ( t ex t+c ) )
c++;
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i 2 c s t a r t ( ) ;

i 2 c o u t ( 0x78 ) ; // S lave address o f pane l .
i 2 c o u t ( 0x80 ) ; // Next by t e i s command , f o l l owed by con t r o l by t e .
i 2 c o u t ( 0x80 | addr ) ; // move to address addr
i 2 c o u t ( 0x40 ) ;

for (n=1; n<c+1; n++)
{

i 2 c o u t (∗ t ex t ) ;
t ex t++;

}

i 2 c s t o p ( ) ;
}

// I n i t i a l i z e the ADC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void init ADC ( void ) //Conf igure ADC with 3 analog channe l s
{

ADCON0 = 0b00001000 ;
ADCON1 = 0b00000000 ;
ADCON2 = 0b10001000 ;

PIR1bits .ADIF = 0 ;
PIE1bits .ADIE = 0 ;
INTCONbits . PEIE = 1 ;
ADCON0bits .ADON = 1 ;

}

//Does the convers ion f o r each channel−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void runADC( void )
{

for (unsigned char i =0; i <=2; i++) //Loop th r ee t imes to sample and read each channel i n d i v i d u a l l y .
{
ADCON0bits .CHS=i ; // S e l e c t a channel to sample ( index i = 0 ( f i r s t channel ) when the loop

// runs f o r the f i r s t time , i w i l l be 1 then 2 f o r each s u c c e s s i v e runs )
d e l a y u s ( 1 8 ) ; //A smal l de l ay b e f o r e we conver t the next channel

ConvertADC ( ) ; // Convert Analog to D i g i t a l
while (BusyADC ( ) ) ;
ADCResult [ i ] = (unsigned int ) ReadADC ( ) ; //Read each channel
vo l tage = ( ADCResult [ 2 ] ∗ 5 . 0 ) / 4 0 9 6 ; // conver t 12− b i t ADC data in t o v o l t a g e
cur r ent = ( ( ( ADCResult [ 0 ] −2041 .0)∗60 .0 )+(( ADCResult [ 1 ] −2049 . 0 )∗60 . 0 ) ) /4096 ;
}

}
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//Transmits Characters to PC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void putrs1USART( const char ∗data )
{

do
{ // Transmit a by t e

while (Busy1USART ( ) ) ;
putc1USART(∗ data ) ;

}
while ( ∗data++ ) ;

}

//Converts the ASCII to decimal−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int dec in ( char u s a r t i n )
{

i f ( p lace == 1) // s e t s number f o r the hundreths p l ace
{

switch ( u s a r t i n )
{

case 49 :
dec in hundreds = 0x0064 ; //hex f o r 100
break ;

case 50 :
dec in hundreds = 0x00C8 ; //hex f o r 200
break ;

case 51 :
dec in hundreds = 0x012C ; //hex f o r 300
break ;

case 52 :
dec in hundreds = 0x0190 ; //hex f o r 400
break ;

case 53 :
dec in hundreds = 0x01F4 ; //hex f o r 500
break ;

case 54 :
dec in hundreds = 0x0258 ; //hex f o r 600
break ;

case 55 :
dec in hundreds = 0x02BC ; //hex f o r 700
break ;

case 56 :
dec in hundreds = 0x0320 ; //hex f o r 800
break ;

case 57 :
dec in hundreds = 0x0384 ; //hex f o r 900
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break ;
default :

dec in hundreds = 0x0000 ; //hex f o r 000
break ;

}
}
i f ( p lace == 2) // s e t s t ens pace
{

switch ( u s a r t i n )
{

case 49 :
d e c i n t e n s = 0x000A ; //hex f o r 10
t e n s d i g i t = 1 ;
break ;

case 50 :
d e c i n t e n s = 0x0014 ; //hex f o r 20
t e n s d i g i t = 2 ;
break ;

case 51 :
d e c i n t e n s = 0x001E ; //hex f o r 30
t e n s d i g i t = 3 ;
break ;

case 52 :
d e c i n t e n s = 0x0028 ; //hex f o r 40
t e n s d i g i t = 4 ;
break ;

case 53 :
d e c i n t e n s = 0x0032 ; //hex f o r 50
t e n s d i g i t = 5 ;
break ;

case 54 :
d e c i n t e n s = 0x003C ; //hex f o r 60
t e n s d i g i t = 6 ;
break ;

case 55 :
d e c i n t e n s = 0x0046 ; //hex f o r 70
t e n s d i g i t = 7 ;
break ;

case 56 :
d e c i n t e n s = 0x0050 ; //hex f o r 80
t e n s d i g i t = 8 ;
break ;

case 57 :
d e c i n t e n s = 0x005A ; //hex f o r 90
t e n s d i g i t = 9 ;
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break ;
default :

d e c i n t e n s = 0x0000 ; //hex f o r 00
t e n s d i g i t = 0 ;
break ;

}
}
i f ( p lace == 3) // s e t ones p l ace
{

switch ( u s a r t i n )
{

case 49 :
d e c i n o n e s = 0x0001 ; //hex f o r 1
break ;

case 50 :
d e c i n o n e s = 0x0002 ; //hex f o r 2
break ;

case 51 :
d e c i n o n e s = 0x0003 ; //hex f o r 3
break ;

case 52 :
d e c i n o n e s = 0x0004 ; //hex f o r 4
break ;

case 53 :
d e c i n o n e s = 0x0005 ; //hex f o r 5
break ;

case 54 :
d e c i n o n e s = 0x0006 ; //hex f o r 6
break ;

case 55 :
d e c i n o n e s = 0x0007 ; //hex f o r 7
break ;

case 56 :
d e c i n o n e s = 0x0008 ; //hex f o r 8
break ;

case 57 :
d e c i n o n e s = 0x0009 ; //hex f o r 9
break ;

default :
d e c i n o n e s = 0x0000 ; //hex f o r 0
break ;

}
}

}
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//Output sequence f o r the a c t i v e mode−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void output ac t i v e ( )
{
/∗1 ohm r e s i s t o r s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

i f ( t o t a l o u t p u t > 22) // Se t s ones p l a ce ru l e f o r a l l ou tpu t s above 22 A
{

i f ( d e c i n o n e s == 0 | d e c i n o n e s == 3 | d e c i n o n e s == 5 | d e c i n o n e s == 8)
{

PORTD = 0x7F ; // turns on 3x1 ohm r e s i s t o r s
}
else
{

PORTD = 0xFF ; // turns on 4x1 ohm r e s i s t o r s
}

}
else
{

switch ( t o t a l o u t p u t )
{

case 1 :
PORTD = 0x00 ; //0 A
break ;

case 2 :
PORTD = 0x00 ; //0 A
break ;

case 3 :
PORTD = 0x01 ; //1 A
break ;

case 4 :
PORTD = 0x11 ;
break ;

case 5 :
PORTD = 0x13 ;
break ;

case 6 :
PORTD = 0x33 ;
break ;

case 7 :
PORTD = 0x37 ;
break ;

case 8 :
PORTD = 0x77 ;
break ;

default :
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i f ( d e c i n o n e s & 0b00000001 == 1)
{

PORTD = 0x7F ;
}
else
{

PORTD = 0xFF ;
}
break ;

}
}

/∗ . 5 ohm r e s i s t o r s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
i f ( t o t a l o u t p u t > 22)
{

i f ( d e c i n o n e s == 2 | d e c i n o n e s == 7)
{

PORTE = 0x77 ;
}
else i f ( d e c i n o n e s == 3 | d e c i n o n e s == 4 | d e c i n o n e s == 8 | d e c i n o n e s == 9)
{

PORTE = 0x7F ;
}
else i f ( d e c i n o n e s == 0 | d e c i n o n e s == 1 | d e c i n o n e s == 5 | d e c i n o n e s == 6)
{

PORTE = 0xFF ;
}

}
else
{

i f ( t o t a l o u t p u t < 11)
{

PORTE = 0x00 ;
}
else i f ( t o t a l o u t p u t == 11 | t o t a l o u t p u t == 12)
{

PORTE = 0x01 ;
}
else i f ( t o t a l o u t p u t == 13 | t o t a l o u t p u t == 14)
{

PORTE = 0x11 ;
}
else i f ( t o t a l o u t p u t == 15 | t o t a l o u t p u t == 16)
{

PORTE = 0x13 ;
}
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else i f ( t o t a l o u t p u t == 17 | t o t a l o u t p u t == 18)
{

PORTE = 0x33 ;
}
else i f ( t o t a l o u t p u t == 19 | t o t a l o u t p u t == 20)
{

PORTE = 0x37 ;
}
else i f ( t o t a l o u t p u t == 21 | t o t a l o u t p u t == 22)
{

PORTE = 0x77 ;
}

}
/∗ . 2 ohm r e s i s t o r s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

i f ( t o t a l o u t p u t > 26)
{

i f ( t o t a l o u t p u t < 32)
{

PORTF = 0x11 ;
PORTG = 0x0F ;

}
else i f ( t o t a l o u t p u t > 31 & t o t a l o u t p u t < 37)
{

PORTF = 0x13 ;
PORTG = 0x0F ;

}
else i f ( t o t a l o u t p u t > 36 & t o t a l o u t p u t < 42)
{

PORTF = 0x33 ;
PORTG = 0x0F ;

}
else i f ( t o t a l o u t p u t > 41 & t o t a l o u t p u t < 47)
{

PORTF = 0x37 ;
PORTG = 0x0F ;

}
else i f ( t o t a l o u t p u t > 46 & t o t a l o u t p u t < 52)
{

PORTF = 0x77 ;
PORTG = 0x0F ;

}
else i f ( t o t a l o u t p u t > 51 & t o t a l o u t p u t < 57)
{

PORTF = 0x7F ;
PORTG = 0x0F ;
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}
else i f ( t o t a l o u t p u t >56)
{

i f ( d e c i n o n e s == 7 | d e c i n o n e s == 8 | d e c i n o n e s == 9 | d e c i n o n e s == 0 | d e c i n o n e s == 1)
{

PORTF = 0xFF ;
i f ( t o t a l o u t p u t == 1)
{

PORTG = 0x05 ; // turn 1 A on
}
else // i f even number
{

PORTG = 0x0F ; // turn 2A on
}

}
else
{

PORTF = 0xFF ;
i f ( t o t a l o u t p u t == 1)
{

PORTG = 0x15 ; // turn 1 A on
}
else // i f even number
{

PORTG = 0x1F ; // turn 2A on
}

}
}

}
else
{

PORTF = 0x00 ;
i f ( t o t a l o u t p u t == 1)
{

PORTG = 0x05 ; // turn 1 A on
}
else // i f even number
{

PORTG = 0x0F ; // turn 2A on
}

}
/∗ . 1 ohm r e s i s t o r s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

i f ( t o t a l o u t p u t > 66)
{

i f ( t o t a l o u t p u t > 66 & t o t a l o u t p u t < 77)
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{
PORTH = 0x01 ;

}
else i f ( t o t a l o u t p u t > 76 & t o t a l o u t p u t < 87)
{

PORTH = 0x11 ;
}
else i f ( t o t a l o u t p u t > 86 & t o t a l o u t p u t < 97)
{

PORTH = 0x13 ;
}
else i f ( t o t a l o u t p u t > 96 & t o t a l o u t p u t < 107)
{

PORTH = 0x33 ;
}
else i f ( t o t a l o u t p u t > 106 & t o t a l o u t p u t < 117)
{

PORTH = 0x37 ;
}
else i f ( t o t a l o u t p u t > 116 & t o t a l o u t p u t < 127)
{

PORTH = 0x77 ;
}
else i f ( t o t a l o u t p u t > 126)
{

modi f i ed ones = d e c i n o n e s + 3 ;

i f ( mod i f i ed ones > 9)
{

t e n s d i g i t = t e n s d i g i t + 1 ;
}
else
{

t e n s d i g i t = t e n s d i g i t + 0 ;
}
i f ( t e n s d i g i t & 0b00000001 == 1)
{

PORTH = 0x7F ;
}
else
{

PORTH = 0xFF ;
}

}
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}
else
{

PORTH = 0x00 ;
}

/∗ .05 ohm r e s i s t o r s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
i f ( t o t a l o u t p u t > 146)
{

i f ( t o t a l o u t p u t < 167)
{

PORTJ = 0x01 ;
}
else i f ( t o t a l o u t p u t > 166 & t o t a l o u t p u t < 187)
{

PORTJ = 0x11 ;
}
else i f ( t o t a l o u t p u t > 186 & t o t a l o u t p u t < 207)
{

PORTJ = 0x13 ;
}
else i f ( t o t a l o u t p u t > 206 & t o t a l o u t p u t < 227)
{

PORTJ = 0x33 ;
}
else i f ( t o t a l o u t p u t > 226 & t o t a l o u t p u t < 247)
{

PORTJ = 0x37 ;
}
else i f ( t o t a l o u t p u t > 246 & t o t a l o u t p u t < 267)
{

PORTJ = 0x77 ;
}
else i f ( t o t a l o u t p u t > 266 & t o t a l o u t p u t < 287)
{

PORTJ = 0x7F ;
}
else i f ( t o t a l o u t p u t > 286)
{

PORTJ = 0xFF ;
}

}
else
{

PORTJ = 0x00 ;
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}
}

//Output p a s s i v e r ou t i n e to r e s i s t o r s and de s i r ed va lue on LCD−−−−−−−−−−−−−−−−−−−−−−−−−−
void output pas s i v e ( )
{

switch ( t o t a l o u t p u t )
{

case 0 :
PORTD = 0x00 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x00 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”0A” ) ;
break ;

case 1 :
PORTD = 0x00 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x05 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”1A” ) ;
break ;

case 2 :
PORTD = 0x00 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”2A” ) ;
break ;

case 3 :
PORTD = 0x01 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”3A” ) ;
break ;

case 4 :
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PORTD = 0x11 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”4A” ) ;
break ;

case 5 :
PORTD = 0x13 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”5A” ) ;
break ;

case 6 :
PORTD = 0x33 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”6A” ) ;
break ;

case 7 :
PORTD = 0x37 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”7A” ) ;
break ;

case 8 :
PORTD = 0x7F ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”8A” ) ;
break ;

case 9 :
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PORTD = 0xFF ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”9A” ) ;
break ;

case 10 :
PORTD = 0xFF ; //1
PORTE = 0x01 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x01 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”10A” ) ;
break ;

case 11 :
PORTD = 0x77 ; //1
PORTE = 0x11 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”11A” ) ;
break ;

case 12 :
PORTD = 0x7F ; //1
PORTE = 0x11 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”12A” ) ;
break ;

case 13 :
PORTD = 0xFF ; //1
PORTE = 0x11 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”13A” ) ;
break ;

case 14 :
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PORTD = 0xF7 ; //1
PORTE = 0x13 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”14A” ) ;
break ;

case 15 :
PORTD = 0x7F ; //1
PORTE = 0x33 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”15A” ) ;
break ;

case 16 :
PORTD = 0xFF ; //1
PORTE = 0x33 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”16A” ) ;
break ;

case 17 :
PORTD = 0x7F ; //1
PORTE = 0x37 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”17A” ) ;
break ;

case 18 :
PORTD = 0xFF ; //1
PORTE = 0x37 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”18A” ) ;
break ;

case 19 :
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PORTD = 0xFF ; //1
PORTE = 0x77 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x03 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”19A” ) ;
break ;

case 20 :
PORTD = 0xF7 ; //1
PORTE = 0x7F ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x03 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”20A” ) ;
break ;

case 21 :
PORTD = 0xFF ; //1
PORTE = 0x7F ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”21A” ) ;
break ;

case 22 :
PORTD = 0x7F ; //1
PORTE = 0xFF ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”22A” ) ;
break ;

case 23 :
PORTD = 0xF7 ; //1
PORTE = 0x77 ; // .5
PORTF = 0x10 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”23A” ) ;
break ;

case 24 :

109



PORTD = 0xF7 ; //1
PORTE = 0x7F ; // .5
PORTF = 0x10 ; // .2
PORTG = 0x03 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”24A” ) ;
break ;

case 25 :
PORTD = 0x77 ; //1
PORTE = 0xFF ; // .5
PORTF = 0x10 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”25A” ) ;
break ;

case 26 :
PORTD = 0x7F ; //1
PORTE = 0xFF ; // .5
PORTF = 0x10 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”26A” ) ;
break ;

case 27 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0x10 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”27A” ) ;
break ;

case 28 :
PORTD = 0xFF ; //1
PORTE = 0x77 ; // .5
PORTF = 0x12 ; // .2
PORTG = 0x0F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”28A” ) ;
break ;

case 29 :
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PORTD = 0xFF ; //1
PORTE = 0x7F ; // .5
PORTF = 0x12 ; // .2
PORTG = 0x07 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”29A” ) ;
break ;

case 30 :
PORTD = 0x7F ; //1
PORTE = 0xFF ; // .5
PORTF = 0x10 ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”30A” ) ;
break ;

case 31 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0x10 ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”31A” ) ;
break ;

case 32 :
PORTD = 0x7F ; //1
PORTE = 0x7F ; // .5
PORTF = 0x12 ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”32A” ) ;
break ;

case 33 :
PORTD = 0xFF ; //1
PORTE = 0x7F ; // .5
PORTF = 0x12 ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”33A” ) ;
break ;
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case 34 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0x12 ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”34A” ) ;
break ;

case 35 :
PORTD = 0xFF ; //1
PORTE = 0x77 ; // .5
PORTF = 0x32 ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”35A” ) ;
break ;

case 36 :
PORTD = 0xF7 ; //1
PORTE = 0x7F ; // .5
PORTF = 0x32 ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”36A” ) ;
break ;

case 37 :
PORTD = 0xF7 ; //1
PORTE = 0xFF ; // .5
PORTF = 0x32 ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”37A” ) ;
break ;

case 38 :
PORTD = 0xFF ; //1
PORTE = 0x77 ; // .5
PORTF = 0x36 ; // .2
PORTG = 0x13 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”38A” ) ;
break ;
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case 39 :
PORTD = 0x7F ; //1
PORTE = 0xF7 ; // .5
PORTF = 0x36 ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”39A” ) ;
break ;

case 40 :
PORTD = 0xFF ; //1
PORTE = 0xF7 ; // .5
PORTF = 0x36 ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”40A” ) ;
break ;

case 41 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0x36 ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”41A” ) ;
break ;

case 42 :
PORTD = 0xFF ; //1
PORTE = 0x77 ; // .5
PORTF = 0x76 ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”42A” ) ;
break ;

case 43 :
PORTD = 0xFF ; //1
PORTE = 0x7F ; // .5
PORTF = 0x76 ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”43A” ) ;
break ;
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case 44 :
PORTD = 0xF7 ; //1
PORTE = 0xFF ; // .5
PORTF = 0x76 ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”44A” ) ;
break ;

case 45 :
PORTD = 0xFF ; //1
PORTE = 0x77 ; // .5
PORTF = 0x7E ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”45A” ) ;
break ;

case 46 :
PORTD = 0x7F ; //1
PORTE = 0xF7 ; // .5
PORTF = 0x7E ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”46A” ) ;
break ;

case 47 :
PORTD = 0xF7 ; //1
PORTE = 0xFF ; // .5
PORTF = 0x7E ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”47A” ) ;
break ;

case 48 :
PORTD = 0xF7 ; //1
PORTE = 0x77 ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”48A” ) ;
break ;
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case 49 :
PORTD = 0xF7 ; //1
PORTE = 0xF7 ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”49A” ) ;
break ;

case 50 :
PORTD = 0xF7 ; //1
PORTE = 0xFF ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”50A” ) ;
break ;

case 51 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”51A” ) ;
break ;

case 52 :
PORTD = 0xF7 ; //1
PORTE = 0x7F ; // .5
PORTF = 0x7E ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x01 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”52A” ) ;
break ;

case 53 :
PORTD = 0xF7 ; //1
PORTE = 0xFF ; // .5
PORTF = 0x7E ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x01 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”53A” ) ;
break ;
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case 54 :
PORTD = 0x77 ; //1
PORTE = 0x7F ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x13 ; // 2 , .2
PORTH = 0x01 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”54A” ) ;
break ;

case 55 :
PORTD = 0xFF ; //1
PORTE = 0x7F ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x13 ; // 2 , .2
PORTH = 0x01 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”55A” ) ;
break ;

case 56 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x11 ; // 2 , .2
PORTH = 0x01 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”56A” ) ;
break ;

case 57 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x01 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”57A” ) ;
break ;

case 58 :
PORTD = 0xFF ; //1
PORTE = 0x7F ; // .5
PORTF = 0x7E ; // .2
PORTG = 0x13 ; // 2 , .2
PORTH = 0x11 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”58A” ) ;
break ;
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case 59 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0x7E ; // .2
PORTG = 0x17 ; // 2 , .2
PORTH = 0x11 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”59A” ) ;
break ;

case 60 :
PORTD = 0xFF ; //1
PORTE = 0x7F ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x10 ; // 2 , .2
PORTH = 0x11 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”60A” ) ;
break ;

case 61 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x10 ; // 2 , .2
PORTH = 0x11 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”61A” ) ;
break ;

case 62 :
PORTD = 0xFF ; //1
PORTE = 0xFF ; // .5
PORTF = 0xFE ; // .2
PORTG = 0x1F ; // 2 , .2
PORTH = 0x11 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ”62A” ) ;
break ;

default :
PORTD = 0x00 ; //1
PORTE = 0x00 ; // .5
PORTF = 0x00 ; // .2
PORTG = 0x01 ; // 2 , .2
PORTH = 0x00 ; // .1
PORTJ = 0x00 ; // .05
d i sp l ay (0x0E , ” . 5A” ) ;
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break ;
}

}

//Main program−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void main ( void )
{

i f ( rx ye s == 1)
{

i f ( u s a r t i n != 0x67 ) // i f keyboard i s pres sed but not ’ g ’
{

i f ( u s a r t i n == 13) // i f en ter ( newl ine ) i s pres sed
{

t o t a l o u t p u t = dec in hundreds + d e c i n t e n s + d e c i n o n e s ; // genera t e s the t o t a l output
t o t a l ou tpu t2 = t o t a l o u t p u t >> 8 ; // s h i f t s the t o t a l output by 8 b i t s and saves at output2
Write1USART( to ta l ou tpu t2 && 0x0F ) ; // tansmit the f i r s t two numbers
Write1USART( t o t a l o u t p u t && 0xFF ) ; // transmi t the l a s t number
rx ye s = 0 ; // r e s e t bu t ton pres sed
p lace = 0 ; // s e t the p l a ce in the input number to hundreds

}
else
{

p lace++; // increment d i g i t s p l a ce
dec in ( u s a r t i n ) ; // func t i on t ha t s t o r e s d i g i t s
while (Busy1USART ( ) ) ;
putc1USART( u s a r t i n ) ; // send back key pres sed
rx ye s = 0 ; // s e t p l a ce in input number to hundreds

}
}
i f ( u s a r t i n == 0x67 ) // i f ’ g ’ pres sed
{

rx ye s = 0 ; // r e s e t bu t ton pres sed
c l e a r d i s p l a y ( ) ;
d i sp l ay (0 x00 , ” Des i red : 1V” ) ;
ou tput ac t i v e ( t o t a l o u t p u t ) ;

// output d e s i r e d output from be f o r e
runADC ( ) ;
cur rent3 = cur rent ;
s p r i n t f ( bu f f e r2 , ”%f ” , cur rent3 ) ;
s p r i n t f ( bu f f e r , ”%.3 f ” , vo l t age ) ;
d i sp l ay (0 x40 , ” Actual : ” ) ;
d i sp l ay (0 x47 , b u f f e r ) ;
d i sp l ay (0x4C , ”V” ) ;
d i sp l ay (0x4E , b u f f e r 2 ) ;
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d i sp l ay (0 x53 , ”A” ) ;

pos 20 count = 0 ;
pos 10 count = 0 ;
pos 5 count = 0 ;
pos 2 count = 0 ;
pos 1 count = 0 ;
pos 05 count = 0 ;
d e s i r e d = t o t a l o u t p u t ;

}
i f ( u s a r t i n == 0x78 ) // i f ’ x ’ i s pres sed
{

rx ye s = 0 ; // s e t bu t t ons pres sed to 0
int out = 0 ; // s e t output to 0
while ( rx ye s == 0) //
{

output ac t i v e ( out ) ; // output noth ing u n t i l another bu t ton pres sed
}

}
i f ( u s a r t i n == 0x3F) // i f ? i s sen t
{

putrs1USART( ”LBC” ) ;
}

}
else
{
runADC ;
d i f f e r e n c e = d e s i r e d − cur r ent ;

i f ( abs ( d i f f e r e n c e ) > 0 . 5 )
{

d i f f e r e n c e = t o t a l o u t p u t − cur r ent ;
t o t a l o u t p u t = t o t a l o u t p u t + d i f f e r e n c e ;

/∗This i s to add or s u b t r a c t a s t ep at a time ( a c t i v e p lan 2)−−−−−−−−−−−−−−−−−−−
i f ( d i f f e r e n c e >= 20)
{

t o t a l o u t p u t = t o t a l o u t p u t + 20;
}

i f ( d i f f e r e n c e >= 10 && d i f f e r e n c e < 20)
{

t o t a l o u t p u t = t o t a l o u t p u t + 10;
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}

i f ( d i f f e r e n c e >= 5 && d i f f e r e n c e < 10)
{

t o t a l o u t p u t = t o t a l o u t p u t + 5;
}

i f ( d i f f e r e n c e >= 2 && d i f f e r e n c e < 5)
{

t o t a l o u t p u t = t o t a l o u t p u t + 2;
}

i f ( d i f f e r e n c e >= 1 && d i f f e r e n c e < 2)
{

t o t a l o u t p u t++;
}

i f ( d i f f e r e n c e >= 0.5 && d i f f e r e n c e < 1)
{

t o t a l o u t p u t = t o t a l o u t p u t + 0 . 5 ;
}

i f ( d i f f e r e n c e <= −20)
{

t o t a l o u t p u t = t o t a l o u t p u t − 20;
}

i f ( d i f f e r e n c e <= −10 && d i f f e r e n c e > −20)
{

t o t a l o u t p u t = t o t a l o u t p u t − 10;
}

i f ( d i f f e r e n c e <= −5 && d i f f e r e n c e > −10)
{

t o t a l o u t p u t = t o t a l o u t p u t − 5 ;
}

i f ( d i f f e r e n c e <= −2 && d i f f e r e n c e > −5)
{

t o t a l o u t p u t = t o t a l o u t p u t − 2 ;
}

i f ( d i f f e r e n c e <= −1 && d i f f e r e n c e > −2)
{

t o t a l o u t p u t −−;
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}

i f ( d i f f e r e n c e <= −0.5 && d i f f e r e n c e > −1)
{

t o t a l o u t p u t = t o t a l o u t p u t − 0 . 5 ;
}

∗/

/∗ This i s f o r addre s s ing i n d i v i d u a l r e s i s t o r s ( a c t i v e p lan 3)−−−−−−−−−−−−−−−−−−
i f ( d i f f e r e n c e > 20 && pos 20 count != 8)
{

d i f f e r e n c e = d i f f e r e n c e − 20;
pos 20 count++;
t o t a l o u t p u t = t o t a l o u t p u t + 20;

}

i f ( d i f f e r e n c e > 10 && d i f f e r e n c e < 20)
{

t o t a l o u t p u t = t o t a l o u t p u t + 10;
d i f f e r e n c e = d i f f e r e n c e − 10;

}

i f ( d i f f e r e n c e > 10 && pos 20 count == 8 && pos 10 count != 8)
{

t o t a l o u t p u t = t o t a l o u t p u t + 10;
d i f f e r e n c e = d i f f e r e n c e − 10;
pos 10 count++;

}

i f ( d i f f e r e n c e > 5 && d i f f e r e n c e < 10)
{

t o t a l o u t p u t = t o t a l o u t p u t + 5;
d i f f e r e n c e = d i f f e r e n c e − 5 ;

}

i f ( d i f f e r e n c e > 5 && pos 10 count == 8 && pos 20 count == 8 && pos 5 count != 8)
{

t o t a l o u t p u t = t o t a l o u t p u t + 5;
d i f f e r e n c e = d i f f e r e n c e − 5 ;
pos 5 count++;

}

i f ( d i f f e r e n c e > 2 && d i f f e r e n c e < 5)
{

t o t a l o u t p u t = t o t a l o u t p u t + 2;
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d i f f e r e n c e = d i f f e r e n c e − 2 ;
}

i f ( d i f f e r e n c e > 2 && pos 20 count == 8 && pos 10 count == 8 & pos 5 count == 8 && pos 2 count != 8)
{

t o t a l o u t p u t = t o t a l o u t p u t + 2;
d i f f e r e n c e = d i f f e r e n c e − 2 ;
pos 2 count++;

}

i f ( d i f f e r e n c e > 1 && d i f f e r e n c e < 2)
{

t o t a l o u t p u t++;
d i f f e r en c e −−;

}

i f ( d i f f e r e n c e > 1 && pos 20 count == 8 && pos 10 count == 8 && pos 5 count == 8 & pos 2 count == 8 && pos 1 count != 8)
{

t o t a l o u t p u t++;
d i f f e r en c e −−;
pos 1 count++;

}

i f ( d i f f e r e n c e >= 0.5 && d i f f e r e n c e < 1)
{

t o t a l o u t p u t = t o t a l o u t p u t + 0 . 5 ;
d i f f e r e n c e = d i f f e r e n c e − 0 . 5 ;

}

i f ( d i f f e r e n c e >= 0.5 && pos 20 count == 8 && pos 10 count == 8 && pos 5 count == 8 & pos 2 count == 8 && pos 1 count == 8 && pos 05 count != 4)
{

t o t a l o u t p u t = t o t a l o u t p u t + 0 . 5 ;
d i f f e r e n c e = d i f f e r e n c e − 0 . 5 ;
pos 05 count++;

}
∗/

output ac t i v e ( t o t a l o u t p u t ) ;
}

}
}

void pass ive mode ( void )
{

i f ( rx ye s == 1)
{
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i f ( u s a r t i n != 0x67 ) // i f keyboard i s pres sed but not ’ g ’
{

i f ( u s a r t i n == 13) // i f en ter ( newl ine ) i s pres sed
{

t o t a l o u t p u t = dec in hundreds + d e c i n t e n s + d e c i n o n e s ; // genera t e s the t o t a l output
t o t a l ou tpu t2 = t o t a l o u t p u t >> 8 ; // s h i f t s the t o t a l output by 8 b i t s and saves at output2
Write1USART( to ta l ou tpu t2 && 0x0F ) ; // tansmit the f i r s t two numbers
Write1USART( t o t a l o u t p u t && 0xFF ) ; // transmi t the l a s t number
rx ye s = 0 ; // r e s e t bu t ton pres sed
p lace = 0 ; // s e t the p l a ce in the input number to hundreds

}
else
{

p lace++; // increment d i g i t s p l a ce
dec in ( u s a r t i n ) ; // func t i on t ha t s t o r e s d i g i t s
while (Busy1USART ( ) ) ;
putc1USART( u s a r t i n ) ; // send back key pres sed
rx ye s = 0 ; // s e t p l a ce in input number to hundreds

}
}
i f ( u s a r t i n == 0x67 ) // i f ’ g ’ pres sed
{

rx ye s = 0 ; // r e s e t bu t ton pres sed
c l e a r d i s p l a y ( ) ;
d i sp l ay (0 x00 , ” Des i red : 1V” ) ;
ou tput pas s i v e ( t o t a l o u t p u t ) ;

// output d e s i r e d output from be f o r e
runADC ( ) ;
cur rent3 = cur rent ;
s p r i n t f ( bu f f e r2 , ”%f ” , cur rent3 ) ;
s p r i n t f ( bu f f e r , ”%.3 f ” , vo l t age ) ;
d i sp l ay (0 x40 , ” Actual : ” ) ;
d i sp l ay (0 x47 , b u f f e r ) ;
d i sp l ay (0x4C , ”V” ) ;
d i sp l ay (0x4E , b u f f e r 2 ) ;
d i sp l ay (0 x53 , ”A” ) ;

}
i f ( u s a r t i n == 0x78 ) // i f ’ x ’ i s pres sed
{

rx ye s = 0 ; // s e t bu t t ons pres sed to 0
int out = 0 ; // s e t output to 0
while ( rx ye s == 0) //
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{
output pas s i v e ( out ) ; // output noth ing u n t i l another bu t ton pres sed

}
}
i f ( u s a r t i n == 0x3F) // i f ? i s sen t
{

putrs1USART( ”LBC” ) ;
}

}

else //Updates the d i s p l a y wi th current va l u e s f o r V and A
{

cur rent2 = cur rent ;
runADC ( ) ;
i f ( abs ( current2−cur r ent )>0.5)
{

s p r i n t f ( bu f f e r2 , ”%f ” , cur r ent ) ;
s p r i n t f ( bu f f e r , ”%.3 f ” , vo l t age ) ;
d i sp l ay (0 x40 , ” Actual : ” ) ;
d i sp l ay (0 x47 , b u f f e r ) ;
d i sp l ay (0x4C , ”V” ) ;
d i sp l ay (0x4E , b u f f e r 2 ) ;
d i sp l ay (0 x53 , ”A” ) ;

}
}

}

//Main program−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void main ( void )
{

de lay ms ( 2 5 ) ;

cur r ent = 10 ;

INTCON=1; //
OSCCON = 0b01101111 ;
GIE = 1 ;
PEIE = 1 ;
RC1IE = 1 ;

TRISA = 0b11111111 ;
TRISB = 0b11111111 ;
TRISC = 0b10100111 ;
TRISD = 0b00000000 ;
TRISE = 0b00000000 ;
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TRISF = 0b00000000 ;
TRISG = 0b00000000 ;
TRISH = 0b00000000 ;
TRISJ = 0b00000000 ;

BAUDCON1bits .BRG16 = 1 ; // 1 = 16− b i t Baud Rate Generator ? SPBRGHx and SPBRGx : FOSC/[4 (n + 1) ]
SPBRGH1 = 0b0000 ; // BRGH i s 4 b i t s on ly
SPBRG1 = 0b11010000 ; // 9600 Bauds = 16000000 / (4 (416 + 1)

(n=416 −> 0001 10100000)
TXSTA1 = 0b00100100 ; // ( 8 b i t s − Asynchrone )
RCSTA1 = 0b10010000 ;

PORTD = 0x00 ;
PORTE = 0x00 ;
PORTF = 0x00 ;
PORTG = 0x00 ;
PORTH = 0x00 ;
PORTJ = 0x00 ;

i n i t l c d ( ) ;
init ADC ( ) ;

de lay ms ( 2 5 ) ;
i n i t l c d ( ) ;
c l e a r d i s p l a y ( ) ;
d i sp l ay (0 x00 , ” Press 1 f o r a c t i v e ” ) ;
d i sp l ay (0 x40 , ” Press 2 f o r pa s s i v e ” ) ;

while ( but ton pre s sed == 0)
{

i f (PORTCbits .RC0 == 0)
{

mode = 1 ;
but ton pre s sed = 1 ;

}
i f (PORTCbits .RC1 == 0)
{

mode = 2 ;
but ton pre s sed = 1 ;

}
}

i f (mode == 1)
{

c l e a r d i s p l a y ( ) ;
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d i sp l ay (0 x00 , ”A Des i red : 1V 0A” ) ;

for ( ; ; )
{

act ive mode ( ) ;
}

}

i f (mode == 2)
{

c l e a r d i s p l a y ( ) ;
d i sp l ay (0 x00 , ”P Des i red : 1V 0A” ) ;

for ( ; ; )
{

pass ive mode ( ) ;
}

}

return ;
}
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